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A POSTERIORI ERROR ESTIMATION AND ADAPTIVITY FOR
MULTIPLE-NETWORK POROELASTICITY

Emilie Eliseussen1 , Marie Elisabeth Rognes2,3 and Travis B. Thompson4,*

Abstract. The multiple-network poroelasticity (MPET) equations describe deformation and pressures
in an elastic medium permeated by interacting fluid networks. In this paper, we (i) place these equations
in the theoretical context of coupled elliptic–parabolic problems, (ii) use this context to derive residual-
based a posteriori error estimates and indicators for fully discrete MPET solutions and (iii) evaluate
the performance of these error estimators in adaptive algorithms for a set of test cases: ranging from
synthetic scenarios to physiologically realistic simulations of brain mechanics.
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1. Introduction

At the macroscale, the brain and other biological tissues can often be viewed as a poroelastic medium: an
elastic structure permeated by one or more fluid networks. Such structures can be modeled via Biot’s equations
in the case of a single fluid network [8, 9, 35] or by their generalization to the equations of multiple-network
poroelasticity (MPET) which describe the case of two or more interacting fluid networks [2,4–6,18,20,36,37,39].
However, the computational expense associated with the numerical solution of these equations, over complex
domains such as the human brain, is substantial. A natural question is therefore whether numerical error
estimation and adaptivity can yield more accurate simulations of the MPET equations within a limited set of
computational resources.

The quasi-static MPET equations read: given a domain Ω, a finite final time 𝑇 > 0 and a set of 𝐽 fluid
networks, find the displacement field 𝑢 : [0, 𝑇 ]×Ω → R𝑑 and pressure fields 𝑝1, 𝑝2, . . . , 𝑝𝐽 : [0, 𝑇 ]×Ω → R such
that

−div 𝜎(𝑢) +
𝐽∑︁

𝑗=1

𝛼𝑗 ∇ 𝑝𝑗 = 𝑓, (1.1a)
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𝜕𝑡(𝑠𝑗𝑝𝑗 + 𝛼𝑗 div 𝑢)− div(𝜅𝑗 ∇ 𝑝𝑗) + 𝑇𝑗 = 𝑔𝑗 . (1.1b)

The quantity 𝜎(𝑢) = 2𝜇𝜀(𝑢) + 𝜆 tr(𝜀(𝑢))I in (1.1a) is the elastic stress tensor and involves the displacement 𝑢,
the linearized strain tensor 𝜀(𝑢) = 1

2

(︀
∇𝑢 +∇𝑢𝑇

)︀
, the 𝑑×𝑑 identity matrix I and the material Lamé coefficients

𝜇 and 𝜆. Each one of the 𝐽 fluid networks is associated with a Biot–Willis coefficient 𝛼𝑗 , a storage coefficient
𝑠𝑗 , and a hydraulic conductivity 𝜅𝑗 . An interpretation of the Biot–Willis and storage coefficients, in the MPET
context, appears in [4, Section 3]. We use transfer terms 𝑇𝑗 in (1.1b) of the form

𝑇𝑗 =
𝐽∑︁

𝑖=1

𝑇𝑗𝑖, 𝑇𝑗𝑖 = 𝛾𝑗𝑖(𝑝𝑗 − 𝑝𝑖). (1.2)

The coefficients 𝛾𝑗𝑖 regulate the interplay between network 𝑖 and network 𝑗 and 𝑇𝑗 is the total transfer out of
network 𝑗 (into the other networks). The transfer term vanishes when 𝐽 = 1 and (1.1) coincides with Biot’s
equations for a single fluid in a poroelastic medium. We also note that the fluid (Darcy) velocity 𝑣𝑗 in network
𝑗 is defined by

𝑣𝑗 = −𝜅𝑗 ∇ 𝑝𝑗 . (1.3)

Over the last decade, several authors have studied a posteriori error estimation and adaptivity related to
(1.1) in the case of 𝐽 = 1; that is, for Biot’s equations of poroelasticity. Depending on the application of interest,
different formulations of Biot’s equations have been used which introduce additional solution fields such as the
Darcy velocity, the total pressure or the effective stress. In each case, a posteriori methods have been developed
to facilitate adaptive refinement strategies. In [30], the authors consider the standard two-field formulation of
Biot’s equation in two spatial dimensions, develop an a posteriori error analysis based on 𝐻(div) reconstructions
of the flux and effective stress and apply the resulting estimators to construct a time-space adaptive algorithm.
A posteriori estimators have also been used to provide error estimates for the popular fixed-stress iterative
solution scheme applied to the two-field formulation [22]. Formulations with additional fields have also been
considered for Biot’s equations. The total pressure formulation [29] is a locking-free, three-field formulation,
ideal for a nearly-incompressible poroelastic material. A priori estimates, and an adaptive refinement strategy,
for this formulation are constructed in [21] for quadrilateral and simplicial meshes. Residual-based a posteriori
error estimates have also been advanced [24] for a lowest-order discretization of the standard Darcy-flux three-
field formulation which, as shown in [31], robustly preserves convergence in the presence of vanishingly small
hydraulic conductivity. Finally, a four-field formulation, with symmetric stress and a Darcy velocity, of Biot’s
equations has been used to develop [1] a posteriori error estimates, and an adaptive refinement, based on
post-processed pressure and displacement fields.

The a posteriori landscape for the more general MPET system (1.1) is considerably sparse. A posteriori
error estimates for the two-field formulation of the Barenblatt-Biot equations (corresponding to the 𝐽 = 2 case
of (1.1)) have indeed been obtained by Nordbotten et al. [27]. In general, though, there has been little work on
the development of a posteriori error estimators for (1.1), for formulations with any number of fields, in the case
of more than one fluid network (i.e. 𝐽 > 1). However, the recent work of [15] developed an abstract framework
for a posteriori error estimators for a general class of coupled elliptic–parabolic problems.

In this manuscript, our focus is three-fold. First, we rigorously place the MPET equations in the context of
coupled elliptic–parabolic problems. In particular, we consider extended spaces, bilinear forms and augmentation
with a semi-inner product arising from the additional transfer terms. Second, we use this context to derive specific
a posteriori error estimates and error indicators for the space-time finite element discretizations of the multiple-
network poroelasticity equations in general. In biomedical applications, two-field variational formulations are
often used to numerically approximate the multiple-network poroelasticity equations [36, 37], and we therefore
focus on such here. Third, we formulate a physiological modelling and simulation-targeted adaptive strategy and
evaluate this strategy on a series of test cases including a clinically-motivated simulation of brain mechanics.
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2. Notation and preliminaries

This section provides a brief account of the notation and relevant results employed throughout the remainder
of the manuscript.

2.1. Domain, boundary and meshes

It is assumed that the poroelastic domain Ω ⊂ R𝑑 with 𝑑 ∈ {1, 2, 3} is a bounded, convex domain with 𝜕Ω
Lipschitz continuous. We consider a family of mesh discretization {𝒯ℎ}ℎ>0 of Ω into simplices; triangles when
𝑑 = 2 and tetrahedra when 𝑑 = 3. Here, ℎ > 0 is a characteristic mesh size such as the maximum diameter over
all simplices. Furthermore, we assume that each mesh 𝒯ℎ in the family is quasi-uniform.

2.2. Material parameters

For simplicity, we assume that all material parameters are constant (in space), and that the following (stan-
dard) bounds are satisfied: 𝜇 > 0, 2𝜇 + 𝜆 > 0, 𝜅𝑗 > 0, 𝛼𝑗 ∈ (0, 1], 𝑠𝑗 > 0 for 𝑗 = 1, . . . , 𝐽 , and 𝛾𝑗𝑖 = 𝛾𝑖𝑗 ≥ 0 for
𝑖, 𝑗 = 1, . . . , 𝐽 with 𝛾𝑖𝑖 = 0. The analysis can be extended to the case where the parameters, above, vary with
sufficient regularity in space and time provided the above bounds hold uniformly. For each parameter, 𝜉𝑖 or 𝜉𝑖𝑗

above, the minimum and maximum notation

𝜉max = max
𝑖

𝜉𝑖 or max
𝑖𝑗

𝜉𝑖𝑗 and 𝜉min = min
𝑖

𝜉𝑖 or min
𝑖𝑗

𝜉𝑖𝑗 ,

will be used throughout the manuscript; the notational extension to the case of smoothly varying parameters,
on a bounded domain with compact closure, is clear.

2.3. Norms and function spaces

Let 𝑓 , 𝑔 denote real-valued functions with domain Ω ⊂ R𝑑. If there exists a generic constant 𝐶 with 𝑓 ≤ 𝐶𝑔
then we write

𝑓 . 𝑔.

The notation ⟨𝑓, 𝑔⟩ signifies the usual Lebesgue inner product defined by

⟨𝑓, 𝑔⟩ =
∫︁

Ω

𝑓𝑔 d𝑥

and ‖𝑓‖ = ⟨𝑓, 𝑓⟩1/2 is the corresponding norm on the Hilbert space of square-integrable functions

𝐿2(Ω) =
{︀
𝑓 : Ω → R

⃒⃒
‖𝑓‖ < ∞

}︀
.

When the context is evident in praxis the domain, Ω, is suppressed in the above expressions. Given 𝑤 a positive
constant, positive scalar field, or positive-definite tensor field, the symbolics

⟨𝑓, 𝑔⟩𝑤 = ⟨𝑤𝑓, 𝑔⟩, ‖𝑓‖𝑤 = ⟨𝑓, 𝑓⟩1/2
𝑤 ,

refer to a 𝑤-weighted inner product and norm, respectively.
The Sobolev space 𝐻1(Ω), often abbreviated as simply 𝐻1, consists of those functions 𝑓 ∈ 𝐿2 whereby 𝜕𝑥𝑗

𝑓
exists, in the sense of distributions, for every 𝑗 = 1, 2, . . . , 𝑑 and 𝜕𝑥𝑗 𝑓 ∈ 𝐿2. The associated norm is given by
the expression

‖𝑓‖𝐻1 =

⎛⎝‖𝑓‖2 +
𝑑∑︁

𝑗=1

⃦⃦
𝜕𝑥𝑗 𝑓

⃦⃦2

⎞⎠1/2

.

The subset 𝐻1
0 ⊂ 𝐻1 signifies functions with zero trace on the boundary; that is, those functions 𝑓 ∈ 𝐻1 such

that 𝑓(𝑥) = 0 for almost every 𝑥 ∈ 𝜕Ω. In addition, given a Hilbert space 𝑋 with inner product ⟨·, ·⟩𝑋 , the
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notation [𝑋]𝑑 refers to vectors 𝑓 = [𝑓1, 𝑓2, . . . , 𝑓𝑑]𝑇 whereby 𝑓𝑗 ∈ 𝑋 for each 𝑗 = 1, 2, . . . , 𝑑. The natural inner
product on [𝑋]𝑑, in which [𝑋]𝑑 is also a Hilbert space, is then

⟨𝑓, 𝑔⟩ =
𝑑∑︁

𝑗=1

⟨𝑓𝑗 , 𝑔𝑗⟩𝑋 ,

with resulting norm

‖𝑓‖𝑋𝑑 =

⎛⎝ 𝑑∑︁
𝑗=1

‖𝑓𝑗‖2𝑋

⎞⎠1/2

.

The additional decoration of the inner product, for the case of a Hilbert space 𝑋, will be omitted when the
context is clear. For 𝑋 any Banach space, the notation 𝑋* denotes the dual space,and we also write ⟨𝑥*, 𝑥⟩𝑋′×𝑋

for the duality pairing. Accordingly, the operator norm on 𝑋* is denoted

‖𝑥*‖𝑋* = sup
‖𝑥‖𝑋=1

⃒⃒
⟨𝑥*, 𝑥⟩𝑋*×𝑋

⃒⃒
.

Unlike the inner product case, the decoration of the duality pairing bracket notation will always be made explicit
and never omitted.

We also recall the canonical definition [16] of some useful time-dependent spaces whose codomain is also
a given Hilbert space 𝑋. With 𝑋 selected we consider a strongly measurable function 𝑓 : [0, 𝑇 ] → 𝑋. Then
𝑓 ∈ 𝐿2(0, 𝑇 ; 𝑋) means that

‖𝑓‖𝐿2(0,𝑇 ;𝑋) =

(︃∫︁ 𝑇

0

‖𝑓(𝑡)‖2𝑋 d𝑡

)︃1/2

< ∞,

whereas 𝑓 ∈ 𝐿∞(0, 𝑇 ; 𝑋) implies
‖𝑓‖𝐿2(0,𝑇 ;𝑋) = ess sup

0≤𝑡≤𝑇
‖𝑓(𝑡)‖𝑋 < ∞

and 𝑓 ∈ 𝐶(0, 𝑇 ; 𝑋) means that
‖𝑓‖𝐶(0,𝑇 ;𝑋) = max

0≤𝑡≤𝑇
‖𝑓(𝑡)‖𝑋 < ∞.

We now discuss those strongly measurable functions, 𝑓 : [0, 𝑇 ] → 𝑋, which possess weakly differentiability
in time. The space 𝐻1(0, 𝑇 ; 𝑋) denotes the collection of functions, 𝑓 ∈ 𝐿2(0, 𝑇 ; 𝑋), such that 𝜕𝑡𝑓 exists, in the
weak sense, and also resides in 𝐿2(0, 𝑇 ; 𝑋). This is similar to the usual definition of 𝐻1(Ω), given above, and
the norm corresponding to this space is also similar; it is given by

‖𝑓‖𝐻1(0,𝑇 ;𝑋) =

(︃∫︁ 𝑇

0

‖𝑓(𝑡)‖2𝑋 + ‖𝜕𝑡𝑓(𝑡)‖2𝑋 d𝑡

)︃
.

Likewise, 𝑓 ∈ 𝐶𝑘(0, 𝑇 ; 𝑋) implies that 𝑓 and its first 𝑘 weak derivatives in time, 𝜕𝑗
𝑡 𝑓 for 𝑗 = 1, 2, . . . , 𝑘, all

reside in 𝐶(0, 𝑇 ; 𝑋).

2.4. Mesh elements and discrete operators

For a fixed ℎ, the mesh 𝒯ℎ is composed of simplices, denoted 𝑇 ∈ 𝒯ℎ, and faces (edges in 2D) 𝑒 ∈ 𝜕𝑇 . Let Γ
denote the complete set of faces of simplices 𝑇 ∈ 𝒯ℎ; then Γ can be written as the disjoint union

Γ = Γ𝑖𝑛𝑡 ∪ Γ𝑏𝑑,

where 𝑒 ∈ Γ𝑖𝑛𝑡 if 𝑒 is an interior edge and 𝑒 ∈ Γ𝑏𝑑 if 𝑒 is a boundary edge.
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Let 𝑓 be a scalar or vector valued function and suppose 𝑒 is an interior edge 𝑒 ∈ 𝑇+ ∩ 𝑇− where 𝑇+ and and
𝑇− are two simplices with an arbitrary but fixed choice of labeling for the pairing. We denote by 𝑛𝑒 the outward
facing normal associated to 𝑇+. We use an explicit jump operator defined, for 𝑒 ∈ Γ𝑖𝑛𝑡, by

[𝑓 ] = 𝑓+ − 𝑓−, (2.1)

where 𝑓+ denotes 𝑓 restricted to 𝑒 ∈ 𝑇+ and 𝑓− denotes 𝑓 restricted to 𝑒 ∈ 𝑇−. For an edge 𝑒 ∈ Γ𝑏𝑑 we have
that there exists only one 𝑇+ = 𝑇 ∈ 𝒯ℎ such that 𝑒 ∈ 𝜕𝑇 and in this case we define

[𝑓 ] = 𝑓+.

2.5. Boundary and initial conditions

We assume homogeneous boundary conditions for the displacement and pressures; though, as in [15], these
conditions can easily be generalized [32].

3. Coupled elliptic–parabolic problems as a setting for poroelasticity

To consider the a posteriori error analysis of the generalized poroelasticity equations (1.1), we follow the
general framework for a posteriori error analysis for coupled elliptic–parabolic problems presented by Ern
and Meunier [15]. In Section 3.1 below, we briefly overview this general framework and its application to Biot’s
equations. Next, we show that (1.1) can be addressed using this general framework, also for the case where 𝐽 > 1
under appropriate assumptions on the transfer terms 𝑇𝑚→𝑛, in Section 3.2. Based on the general framework, Ern
and Meunier derive and analyze several a posteriori error estimators. These estimators, and their corresponding
extensions to the generalized poroelasticity equations, will be discussed in Section 5.

3.1. The coupled elliptic–parabolic problem framework

The setting introduced by Ern and Meunier [15] for coupled elliptic–parabolic problems provides a natural
setting also for generalized poroelasticity. The general coupled elliptic–parabolic problem reads as: find (𝑢, 𝑝) ∈
𝐻1(0, 𝑇 ; 𝑉𝑎)×𝐻1(0, 𝑇 ; 𝑉𝑑) that satisfy (for almost every 𝑡 ∈ [0, 𝑇 ]):

𝑎(𝑢, 𝑣)− 𝑏(𝑣, 𝑝) = ⟨𝑓, 𝑣⟩𝑉 *𝑎 ×𝑉𝑎
, ∀ 𝑣 ∈ 𝑉𝑎, (3.1a)

𝑐(𝜕𝑡𝑝, 𝑞) + 𝑏(𝜕𝑡𝑢, 𝑞) + 𝑑(𝑝, 𝑞) = ⟨𝑔, 𝑞⟩𝑉 *𝑑 ×𝑉𝑑
. ∀ 𝑞 ∈ 𝑉𝑑. (3.1b)

The data, 𝑓 and 𝑔 in (1.1), are general and assumed to satisfy 𝑓 ∈ 𝐻1(0, 𝑇 ; 𝑉 *
𝑎 ) and 𝑔 ∈ 𝐻1(0, 𝑇 ; 𝑉 *

𝑑 ). The
initial pressure is assumed to satisfy 𝑝(0) ∈ 𝑉𝑑. Moreover, it is assumed that

(1) 𝑉𝑎 and 𝑉𝑑 are Hilbert spaces.
(2) 𝑎 : 𝑉𝑎× 𝑉𝑎 → R and 𝑑 : 𝑉𝑑× 𝑉𝑑 → R are symmetric, coercive, and continuous bilinear forms, thus inducing

associated inner-products and norms (denoted by ‖ · ‖𝑎 and ‖ · ‖𝑑) on their respective spaces.
(3) There exist Hilbert spaces 𝐿𝑎 and 𝐿𝑑 with 𝑉𝑎 ⊂ 𝐿𝑎 and 𝑉𝑑 ⊂ 𝐿𝑑, where the inclusion is dense and such

that ‖𝑓‖𝐿𝑎
. ‖𝑓‖𝑎 for 𝑓 ∈ 𝑉𝑎, and ‖𝑔‖𝐿𝑑

. ‖𝑔‖𝑑 for 𝑔 ∈ 𝑉𝑑.
(4) 𝑐 : 𝐿𝑑 × 𝐿𝑑 → R is symmetric, coercive and continuous; thereby defining an equivalent norm ‖ · ‖𝑐, on 𝐿𝑑.
(5) There exists a continuous bilinear form 𝑏 : 𝑉𝑎 × 𝐿𝑑 → R such that |𝑏(𝑓, 𝑔)| . ‖𝑓‖𝑎‖𝑔‖𝑐 for 𝑓 ∈ 𝑉𝑎 and

𝑔 ∈ 𝐿𝑑.

Example 3.1. Biot’s equations of poroelasticity (i.e. (1.1) for 𝐽 = 1 fluid networks) fit the coupled elliptic–
parabolic framework with

𝑉𝑎 =
[︀
𝐻1

0

]︀𝑑
, 𝐿𝑎 =

[︀
𝐿2
]︀𝑑

, 𝑉𝑑 = 𝐻1
0 , 𝐿𝑑 = 𝐿2
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and

𝑎(𝑢, 𝑣) = ⟨𝜎(𝑢), 𝜀(𝑣)⟩,
𝑏(𝑢, 𝑝) = ⟨𝛼1𝑝, div 𝑢⟩, 𝑐(𝑝, 𝑞) = ⟨𝑐1𝑝, 𝑞⟩, 𝑑(𝑝, 𝑞) = ⟨𝜅1∇ 𝑝,∇ 𝑞⟩,

with the standard (vector) 𝐻1
0 -inner product and norm on 𝑉𝑎 and 𝑉𝑑, and 𝐿2-inner product and norm on 𝐿𝑎

and 𝐿𝑑. It is readily verifiable that the general conditions described above are satisfied under these choices of
spaces, norms, inner products and forms [15]. The existence and uniqueness of solutions to Biot’s equations of
poroelasticity (𝐽 = 1 in (1.1) and (3.1) with the above bilinear forms) is now a classical result [32].

3.2. Generalized poroelasticity as a coupled elliptic–parabolic problem

In this section, we derive a variational formulation of the generalized poroelasticity equations (1.1) for the
case of several fluid networks (i.e. 𝐽 ≥ 1) and show how this formulation fits the general framework presented
above. The extension from Biot’s equations to generalized poroelasticity is natural in the sense it coincides
with the original application of the general framework to Biot’s equations when 𝐽 = 1. Suppose that the total
number of networks 𝐽 is arbitrary but fixed. We define the spaces

𝑉𝑎 =
[︀
𝐻1

0

]︀𝑑
, 𝐿𝑎 =

[︀
𝐿2
]︀𝑑

, 𝑉𝑑 =
[︀
𝐻1

0

]︀𝐽
, 𝐿𝑑 =

[︀
𝐿2
]︀𝐽

. (3.2)

We consider data such that 𝑓 ∈ 𝐻1(0, 𝑇 ; 𝐿𝑎) and (𝑔1, 𝑔2, . . . , 𝑔𝐽) ∈ 𝐻1(0, 𝑇 ; 𝐿𝑑) with given initial network
pressures determined by 𝑝(0) ∈ 𝑉𝑑. A standard multiplication, integration and integration by parts yield the
following variational formulation of (1.1): find 𝑢 ∈ 𝐻1(0, 𝑇 ; 𝑉𝑎) and 𝑝 = (𝑝1, . . . , 𝑝𝐽) ∈ 𝐻1(0, 𝑇 ; 𝑉𝑑) such that
for a.e. 𝑡 ∈ (0, 𝑇 ]:

⟨𝜎(𝑢), 𝜀(𝑣)⟩−
𝐽∑︁

𝑗=1

⟨𝛼𝑗𝑝𝑗 , div 𝑣⟩ = ⟨𝑓, 𝑣⟩, (3.3a)

𝐽∑︁
𝑗=1

⟨𝜕𝑡𝑠𝑗𝑝𝑗 , 𝑞𝑗⟩+ ⟨𝜕𝑡𝛼𝑗 div 𝑢, 𝑞𝑗⟩+ ⟨𝜅𝑗 ∇ 𝑝𝑗 ,∇ 𝑞𝑗⟩+ ⟨𝑇𝑗 , 𝑞𝑗⟩ =
𝐽∑︁

𝑗=1

⟨𝑔𝑗 , 𝑞𝑗⟩ (3.3b)

for 𝑣 ∈ 𝑉𝑎, 𝑞 = (𝑞1, . . . , 𝑞𝐽) ∈ 𝑉𝑑. As noted in [15], (3.3a) holds up to time 𝑡 = 0 so that 𝑢0 is determined by the
initial data 𝑝(0) and initial right-hand side 𝑓(0). By labeling the forms

𝑎(𝑢, 𝑣) = ⟨𝜎(𝑢), 𝜀(𝑣)⟩, (3.4a)

𝑏(𝑢, 𝑝) =
𝐽∑︁

𝑗=1

⟨𝛼𝑗𝑝𝑗 , div 𝑢⟩, (3.4b)

𝑐(𝑝, 𝑞) =
𝐽∑︁

𝑗=1

⟨𝑠𝑗𝑝𝑗 , 𝑞𝑗⟩, (3.4c)

𝑑(𝑝, 𝑞) =
𝐽∑︁

𝑗=1

⟨𝜅𝑗 ∇ 𝑝𝑗 ,∇ 𝑞𝑗⟩+ ⟨𝑇𝑗 , 𝑞𝑗⟩, (3.4d)

we observe that the weak formulation (3.3) of (1.1) takes the form (3.1) where 𝑇𝑗 , in (3.4d), is given by (1.2).

Remark 3.1. Existence and uniqueness of solutions to (3.3), with forms (3.4), for the case of 𝐽 = 2 (Barenblatt-
Biot) have been established [33]. However, to our knowledge, a rigorous treatment of existence and uniqueness of
solutions to (1.1), (3.3) for 𝐽 > 2 remains an open problem despite their otherwise successful use in applications
[18,19,36,37].
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We now show that the associated assumptions on these forms and spaces hold, beginning with properties of
the form 𝑑 in Lemma 3.1 below.

Lemma 3.1. The form 𝑑 given by (3.4d) defines an inner product over [𝐻1
0 (Ω)]𝐽 with associated norm

‖𝑞‖2𝑑 = 𝑑(𝑞, 𝑞) =
𝐽∑︁

𝑗=1

‖∇ 𝑞𝑗‖2𝜅𝑗
+ |𝑞|2𝑇 , ∀ 𝑞 ∈ 𝑉𝑑, (3.5)

where | · |𝑇 is defined by (3.7), which is such that

‖𝑞‖𝑑 . ‖𝑞‖𝐻1
0
, ∀ 𝑞 ∈ [𝐻1

0 ]𝐽 , (3.6)

with inequality constant depending on 𝐽 , 𝜅max, 𝛾max and Ω.

Proof. By definition (1.2) and the assumption of symmetric transfer 𝛾𝑗𝑖 = 𝛾𝑖𝑗 ≥ 0, we have

𝐽∑︁
𝑗=1

⟨𝑇𝑗 , 𝑞𝑗⟩ =
𝐽∑︁

𝑗=1

𝐽∑︁
𝑖=1

⟨𝛾𝑗𝑖(𝑝𝑗 − 𝑝𝑖), 𝑞𝑗⟩ =
1
2

𝐽∑︁
𝑗=1

𝐽∑︁
𝑖=1

⟨𝛾𝑗𝑖(𝑝𝑗 − 𝑝𝑖), (𝑞𝑗 − 𝑞𝑖)⟩. (3.7)

Given 𝑝, 𝑞 ∈ 𝑉𝑑, the bilinear form defined by (3.7), that is

⟨𝑝, 𝑞⟩𝑇 =
𝐽∑︁

𝑗=1

⟨𝑇𝑗 , 𝑞𝑗⟩

is clearly symmetric and satisfies the requirements of a (real) semi-inner product on 𝐿𝑑×𝐿𝑑 in the sense of [11].
It follows that

|𝑞|𝑇 ≡ ⟨𝑞, 𝑞⟩1/2
𝑇 =

⎛⎝1
2

𝐽∑︁
𝑗=1

𝐽∑︁
𝑖=1

⟨𝛾𝑗𝑖(𝑞𝑗 − 𝑞𝑖), (𝑞𝑗 − 𝑞𝑖)⟩

⎞⎠1/2

(3.8)

defines a semi-norm on 𝐿𝑑×𝐿𝑑 and that the corresponding Cauchy–Schwarz inequality holds. Using the triangle
inequality, the definition (3.7), the bounds for 𝛾𝑗𝑖 and the Poincaré inequality, we have that

|𝑞|𝑇 . ‖𝑞‖[𝐿2]𝐽 . ‖𝑞‖[𝐻1
0 ]𝐽 (3.9)

with constant depending on 𝛾max, 𝐽 , and the domain via the Poincaré constant. Under the assumption that
𝜅min > 0, we observe that as a result 𝑑 defines an inner product and norm on [𝐻1

0 ]𝐽 × [𝐻1
0 ]𝐽 . Similarly, (3.6)

holds with with constant depending on 𝜅max in addition to 𝛾max, 𝐽 , and the domain Ω. �

Lemma 3.1 will be used in the subsequent sections. We next show that the choices of spaces (3.2) and
forms (3.4) satisfy the abstract assumptions of the framework as overviewed in Section 3.1, and summarize this
result in Lemma 3.2.

Lemma 3.2. The problem (3.3), arising from the equations of generalized poroelasticity (1.1) with material
parameters as in Section 2.2, posed on the spaces (3.2) with bilinear forms defined via (3.2) is a coupled elliptic–
parabolic problem and satisfy the assumptions set forth in [15].

Proof. We consider each assumption in order. These are standard results, but explicitly included here for the
sake of future reference.

(1) 𝑉𝑎 and 𝑉𝑑 defined by (3.2) are clearly Hilbert spaces with natural Sobolev norms ‖ · ‖𝐻1
0
.
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(2) 𝑎 is symmetric, coercive on 𝑉𝑎 by Korn’s inequality and the lower bounds on 𝜇, 2𝜇 + 𝑑𝜆, and continuous
(with continuity constant depending on 𝜇max and 𝜆max). 𝑑 is clearly symmetric by the transfer symmetry
assumption and (3.7), coercive by | · |𝑇 ≥ 𝑒0 and the assumption that 𝜅min > 0:

𝑑(𝑞, 𝑞) ≥
𝐽∑︁

𝑗=1

⟨∇ 𝑞𝑗 ∇ 𝑞𝑗⟩𝜅𝑗
≥ 𝜅min

𝐽∑︁
𝑗=1

‖𝑞𝑗‖2𝐻1
0

and continuous by Lemma 3.1.
(3) The embedding of (𝑉𝑎, ‖ · ‖𝑎) into 𝐿𝑎 follows from Poincare’s inequality and the coercivity of 𝑎 over 𝑉𝑎 and

similarly for 𝑉𝑑 →˓ 𝐿𝑑.
(4) 𝑐 is symmetric by definition, continuous over 𝐿𝑑 with continuity constant depending on 𝑐max, and coercive

with coercivity constant depending on 𝑐min > 0.
(5) The form 𝑏 given by (3.4b) is clearly bilinear and continuous on 𝑉𝑎 × 𝐿𝑑 as

|𝑏(𝑢, 𝑝)| =

⃒⃒⃒⃒
⃒⃒ 𝐽∑︁
𝑗=1

⟨𝑝𝑗 , div 𝑢⟩𝛼𝑗

⃒⃒⃒⃒
⃒⃒ . ‖𝑢‖𝐻1

⎛⎝ 𝐽∑︁
𝑗=1

‖𝑝𝑗‖2
⎞⎠ 1

2

= ‖𝑢‖𝐻1‖𝑝‖[𝐿2]𝐽 . ‖𝑢‖𝑎‖𝑝‖𝑐

by applying Cauchy–Schwarz and Hölder’s inequality, with constant depending on 𝛼min > 0 and the coer-
civity constants of 𝑎 and 𝑐.

�

In light of Lemma 3.2, the generalized poroelasticity system (3.3) is of coupled elliptic–parabolic type and
takes the form of (3.1) with bilinear forms defined by (3.4).

Corollary 3.1. The following energy estimates hold for almost every 𝑡 ∈ [0, 𝑇 ]

‖𝑢(𝑡)‖2𝑎+
𝐽∑︁

𝑗=1

𝑠𝑗‖𝑝𝑗(𝑡)‖2 +
𝐽∑︁

𝑗=1

∫︁ 𝑡

0

𝜅𝑗‖∇ 𝑝(𝑠)‖2 d𝑠 +
𝐽∑︁

𝑖=1

𝐽∑︁
𝑗=1

∫︁ 𝑡

0

𝛾𝑖𝑗‖𝑝𝑗(𝑠)− 𝑝𝑖(𝑠)‖2 d𝑠

.

(︃
sup

𝑠∈[0,𝑇 ]

‖𝑓(𝑠)‖ +
∫︁ 𝑇

0

‖𝜕𝑡𝑓(𝑠)‖ d𝑠

)︃2

+
∫︁ 𝑇

0

‖𝑔(𝑠)‖2 d𝑠 + ‖𝑢0‖2𝑎 +
𝐽∑︁

𝑗=1

𝑠𝑗‖𝑝0‖2.

Proof. The proof follows directly from Lemma 3.2, the corresponding energy estimates for coupled elliptic–
parabolic systems [15, Prop. 2.1] and the definition of the norms arising from the forms (3.4). Moreover,
the proportionality constant in the estimates is independent of all material parameters and the number of
networks. �

Remark 3.2. The elliptic–parabolic MPET energy estimates, of Corollary 3.1, are similar to those of the total
pressure formulation [23, Thm. 3.3] when the second Lamé coefficient, 𝜆, is held constant in the latter. The
primary difference is that [23] separates the estimates of 𝑢 from that of the solid pressure, 𝜆 div 𝑢, by including
the latter term into a ‘total pressure’ variable. This allows for ‖𝑢‖1 to be estimated directly, in [23], regardless
of the value of 𝜆 used in the definition of ‖𝑢‖𝑎.

Remark 3.3. The conditions of Section 3.1, i.e. conditions (2)–(5), can place restrictions on the generalized
poroelastic setting. As an example, the assumption of a vanishing storage coefficient has appeared in the liter-
ature as a modeling simplification [25, 40]. However, the coercivity requirement of condition (4) precludes the
use of a vanishing specific storage coefficient, 𝑠𝑗 in (3.4c), for any network number 𝑗 = 1, 2, . . . , 𝐽 . Care should
be taken to ensure that any modeling simplifications produce forms that satisfy the conditions of Section 3.1 in
order for the results of Corollary 3.1 and Section 4 to hold.
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4. Discretization and a priori error estimates

4.1. An Euler-Galerkin discrete scheme

We now turn to an Euler-Galerkin discretization of (1.1) in the context of such discretizations of coupled
elliptic–parabolic problems in general [15]. We employ an implicit Euler discretization in time and conforming
finite elements in space.

We consider a family of simplicial meshes {𝒯ℎ}ℎ>0 with ℎ a characteristic mesh size such as the maximal
element diameter

ℎ = max{ℎ𝐾 = diam(𝐾) |𝐾 ∈ 𝒦ℎ}.

Furthermore, let {𝑉𝑎,ℎ}ℎ and {𝑉𝑑,ℎ}ℎ denote two families of finite dimensional subspaces of 𝑉𝑎 and 𝑉𝑑, as in
(3.2), respectively, defined relative to {𝒯ℎ}ℎ. For a final time 𝑇 > 0 we let 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑁 = 𝑇 denote
a sequence of discrete times and set 𝜏𝑛 = 𝑡𝑛 − 𝑡𝑛−1. For functions and fields, we use the superscript 𝑛 to refer
values at time point 𝑡𝑛. We also utilize the discrete time differential notation 𝛿𝑡 where

𝛿𝑡𝑢
𝑛
ℎ = 𝜏−1

𝑛

(︀
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

)︀
. (4.1)

With this notation, the discrete problem is to seek 𝑢𝑛
ℎ ∈ 𝑉𝑎,ℎ and 𝑝𝑛

ℎ =
(︁
𝑝𝑛
1,ℎ, 𝑝𝑛

2,ℎ, . . . , 𝑝𝑛
𝐽,ℎ

)︁
∈ 𝑉𝑑,ℎ such that

for all time steps 𝑡𝑛 with 𝑛 ∈ {1, 2, . . . , 𝑁}:

𝑎(𝑢𝑛
ℎ, 𝑣ℎ)− 𝑏(𝑣ℎ, 𝑝𝑛

ℎ) = ⟨𝑓𝑛
ℎ , 𝑣ℎ⟩ ∀ 𝑣ℎ ∈ 𝑉𝑎,ℎ, (4.2a)

𝑐(𝛿𝑡𝑝
𝑛
ℎ, 𝑞ℎ) + 𝑏(𝛿𝑡𝑢

𝑛
ℎ, 𝑞ℎ) + 𝑑(𝑝𝑛

ℎ, 𝑞ℎ) = ⟨𝑔𝑛
ℎ , 𝑞ℎ⟩ ∀ 𝑞ℎ ∈ 𝑉𝑑,ℎ, (4.2b)

where the spaces and forms are defined by (3.2) and (3.4). The right-hand sides, above, express the inner
product of the discrete approximations 𝑓𝑛

ℎ ∈ 𝐿𝑎,ℎ, to 𝑓 and 𝑔𝑛
ℎ ∈ 𝐿𝑑,ℎ, to 𝑔, at time 𝑡𝑛. By Lemma 3.2 and [15,

Lemma 2.1], the discrete system (4.2) is well-posed.

4.2. A priori error estimates

Now, let 𝑉𝑎,ℎ and 𝑉𝑑,ℎ be spatial discretizations arising from continuous Lagrange elements of order 𝑘𝑎 and 𝑘𝑑,
respectively, where 𝑘𝑑 = 𝑘𝑎 − 1; this relation on relative degree results directly from the framework hypotheses
[15, Sect. 2]. Let 𝒫𝑘(𝑇 ) denote polynomials of order 𝑘 on a simplex 𝑇 ∈ 𝒯ℎ. We consider the continuous Lagrange
polynomials of order 𝑘𝑎 and 𝑘𝑎−1 defined by

𝑉𝑎,ℎ =
{︀
𝑣ℎ ∈ 𝐶0(Ω̄) | 𝑣ℎ|𝑇 ∈ 𝒫𝑘𝑎

(𝑇 ) for every 𝑇 ∈ 𝒯ℎ

}︀
, (4.3)

𝑉𝑑,ℎ =
[︀{︀

𝑞ℎ ∈ 𝐶0(Ω̄) | 𝑞ℎ|𝑇 ∈ 𝒫𝑘𝑎−1(𝑇 ) for every 𝑇 ∈ 𝒯ℎ

}︀]︀𝐽
(4.4)

as the discrete spaces for the displacement and network pressures, respectively. When 𝐽 = 1 this choice coincides
with the previous [15] discretization considered for Biot’s equations.

The general framework stipulates that three hypotheses [15, Sect. 2.5], restated here for completeness, should
be satisfied for the discretization.

Hypothesis 4.1. There exists positive real numbers, denoted 𝑠𝑎 and 𝑠𝑑, and subspaces, 𝑊𝑎 ⊂ 𝑉𝑎 and 𝑊𝑑 ⊂ 𝑉𝑑

equipped with norms ‖·‖𝑊𝑎
and ‖·‖𝑊𝑑

, such that the following estimates hold independently of ℎ

∀𝑣 ∈ 𝑊𝑎, inf
𝑣ℎ∈𝑉𝑎,ℎ

‖𝑣 − 𝑣ℎ‖𝑎 . ℎ𝑠𝑎‖𝑣‖𝑊𝑎
, (4.5)

∀𝑞 ∈ 𝑊𝑑, inf
𝑞ℎ∈𝑉𝑑,ℎ

‖𝑞 − 𝑞ℎ‖𝑑 . ℎ𝑠𝑑‖𝑞‖𝑊𝑑
. (4.6)
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Hypothesis 4.2. There exists a real number 𝛿 such that for every 𝑟 ∈ 𝐿𝑑, the unique solution 𝜑 ∈ 𝑉𝑑 for the
dual problem

𝑑(𝑞, 𝑟) = 𝑐(𝑟, 𝑞) ∀𝑞 ∈ 𝑉𝑑

is such that there exists 𝜑ℎ ∈ 𝑉𝑑,ℎ satisfying

‖𝜑− 𝜑ℎ‖𝑑 . ℎ𝛿‖𝑟‖𝑐.

Hypothesis 4.3. 𝑠𝑎 = 𝑠𝑑 + 𝛿

We now state the primary result of this section.

Lemma 4.1. The discrete two-field variational formulation of the MPET equations (4.2) with the choice of
discrete spaces 𝑉𝑎,ℎ (4.3) and 𝑉𝑑,ℎ (4.4) satisfy the elliptic–parabolic framework Hypotheses 4.1–4.3, above.

Proof. Choose 𝑠𝑎 = 𝑘𝑎 and 𝑠𝑑 = 𝑘𝑎−1. Then the conditions of Hypothesis 4.1 follow, as in [15], from choosing
𝑊𝑎 =

[︀
𝐻1

0 ∩𝐻𝑘𝑎+1(𝒯ℎ)
]︀3 and 𝑊𝑑 =

[︀
𝐻1

0 ∩𝐻𝑘𝑎(𝒯ℎ)
]︀𝐽 where 𝐻𝑘(𝒯ℎ) denotes the broken Sobolev space of order

𝑘 on the mesh 𝒯ℎ. The estimate (4.5) follows, without extension, directly from classical results in approximation
theory [14]; precisely as discussed in [15]. Similarly, the estimate (4.6) follows from the properties of 𝑑, standard
interpolation estimates [14], and the product structure of 𝑉𝑑 and 𝑉𝑑,ℎ.

For Hypothesis 4.2, we use the elliptic regularity, c.f. standard well posedness and interior regularity arguments
in [16, Chp. 6], of the solution to the coupled linear diffusion-reaction equation of finding 𝜑 ∈ 𝑉𝑑 such that

𝐴𝜑 + Γ𝜑 = 𝑅 for 𝑅 ∈ 𝐿𝑑,

where 𝐴 is the 𝐽 × 𝐽 diagonal Laplacian matrix⎛⎜⎜⎝
−∆ 0 · · · 0
0 −∆ · · · 0
...

. . . . . .
...

0 0 0 −∆

⎞⎟⎟⎠ (4.7)

and Γ is a matrix composed of the transfer coefficients 𝛾𝑖𝑗 : Γ𝑖𝑖 =
∑︀

𝑗 𝛾𝑗𝑖, and Γ𝑖𝑗 = −𝛾𝑖𝑗 for 𝑗 ̸= 𝑖. It follows
from Lemma 3.1, and Γ symmetric and positive-semi definite, that the solution 𝜑 ∈ 𝑉𝑑 to the dual problem

𝑑(𝑤, 𝜑) = 𝑐(𝑅,𝑤) = ⟨𝑅,𝑤⟩𝐿′𝑑,𝑉𝑑
, for all 𝑤 ∈ 𝑉𝑑, (4.8)

lies in
[︀
𝐻2
]︀𝐽 with ‖𝜑‖𝐻2 . ‖𝑅‖𝐿𝑑

= ‖𝑅‖𝑐. Using this and standard interpolation results we have 𝜑ℎ ∈ 𝑉𝑑,ℎ

with
‖𝜑− 𝜑ℎ‖𝑑 . ℎ𝛿‖𝑅‖𝑐 = ℎ𝛿‖𝑅‖𝐿𝑑

,

where 𝛿 = 1; exactly as in [15]. Finally, with 𝛿 = 1 and the choices 𝑠𝑎 = 𝑘𝑎 and 𝑠𝑑 = 𝑘𝑎− 1, Hypothesis 4.3 also
holds. �

A priori estimates for the Euler-Galerkin discretization (4.2) of the generalized poroelasticity equations (1.1)
then follow directly from [15, Thm. 3.1]. These estimates will be used in the a posteriori analysis and are
restated from [15], subject to the extended spaces and forms of (3.2) and (3.4).

Corollary 4.1 (A priori estimates for generalized poroelasticity). Let 𝐼𝑛 = [𝑡𝑛−1, 𝑡𝑛] denote the 𝑛𝑡ℎ time sub-
interval of [0, 𝑇 ] for 𝑛 = 1, 2, . . . 𝑁 of length 𝜏𝑛 = 𝑡𝑛 − 𝑡𝑛−1. Suppose the exact solution (𝑢, 𝑝) to (3.3) satisfies
𝑢 ∈ 𝐶1(0, 𝑇 ; 𝑊𝑎)∩𝐶2(0, 𝑇 ; 𝑉𝑎) and 𝑝 ∈ 𝐶1(0, 𝑇 ; 𝑊𝑑)∩𝐶2(0, 𝑇 ; 𝐿𝑑), where 𝑊𝑎 and 𝑊𝑑 are given above with 𝑉𝑎

and 𝐿𝑑 as in (3.2). It is also assumed that the initial data satisfies

‖𝑢0 − 𝑢0,ℎ‖𝑎 . ℎ𝑘𝑎‖𝑢0‖𝑊𝑎
and ‖𝑝0 − 𝑝0,ℎ‖𝑐 . ℎ𝑘𝑎‖𝑝0‖𝑊𝑑

.
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Define

𝐶𝑛
1 (𝑢, 𝑝) = ‖𝜕𝑡𝑝(𝑠)‖2𝐿∞(𝐼𝑛;𝑊𝑑) + ‖𝜕𝑡𝑢(𝑠)‖2𝐿∞(𝐼𝑛;𝑊𝑎),

𝐶𝑛
2 (𝑢, 𝑝) =

⃦⃦
𝜕2

𝑡𝑡𝑝(𝑠)
⃦⃦2

𝐿∞(𝐼𝑛;𝐿𝑑)
+
⃦⃦
𝜕2

𝑡𝑡𝑢(𝑠)
⃦⃦2

𝐿∞(𝐼𝑛;𝑉𝑎)
,

𝐶𝑛(𝑓, 𝑔) = ‖𝑓𝑛 − 𝑓𝑛
ℎ ‖

2
𝑎 + 𝜏𝑛‖𝑔𝑛 − 𝑔𝑛

ℎ‖
2
𝑑,

𝐶(𝑢0, 𝑝0) = ‖𝑢0‖2𝑊𝑎
+ ‖𝑝0‖2𝑊𝑑

.

Setting, for simplicity, 𝑠 = 𝑘𝑎 then 𝑠 = 𝑘𝑑 + 1, by the selection of the discrete spaces, and we have that for each
𝑛 ∈ {1, 2, . . . , 𝑁}

‖𝑢𝑛 − 𝑢𝑛
ℎ‖

2
𝑎 + ‖𝑝𝑛 − 𝑝𝑛

ℎ‖
2
𝑐 . ℎ2𝑠𝐶(𝑢0, 𝑝0) +

𝑛∑︁
𝑚=1

𝐶𝑚(𝑓, 𝑔) +
𝑛∑︁

𝑚=1

𝜏𝑚ℎ2𝑠𝐶𝑚
1 (𝑢, 𝑝)

+
𝑛∑︁

𝑚=1

𝜏3
𝑚𝐶𝑚

2 (𝑢, 𝑝) + ℎ2𝑠
(︁
‖𝑢𝑛‖2𝑊𝑎

+ ‖𝑝𝑛‖2𝑊𝑑

)︁
,

(4.9)

and
𝑛∑︁

𝑚=1

𝜏𝑚‖𝑝𝑚 − 𝑝𝑚
ℎ ‖

2
𝑑 . ℎ2𝑠𝐶(𝑢0, 𝑝0) +

𝑛∑︁
𝑚=1

𝐶𝑚(𝑓, 𝑔) +
𝑛∑︁

𝑚=1

𝜏𝑚ℎ2𝑠𝐶𝑚
1 (𝑢, 𝑝)

+
𝑛∑︁

𝑚=1

𝜏3
𝑚𝐶𝑚

2 (𝑢, 𝑝) +
𝑛∑︁

𝑚=1

𝜏𝑚ℎ2𝑠−1‖𝑝𝑚‖2𝑊𝑑
.

(4.10)

5. A posteriori error estimation for generalized poroelasticity

We now turn to discuss the implications to a posteriori error estimates for generalized poroelasticity as
viewed through the lens of the coupled elliptic–parabolic problem framework. Our focus is to derive, apply
and evaluate residual-based error estimators and indicators in the context of generalized poroelasticity. We will
therefore present an explicit account of abstractly defined quantities presented in [15, Sec. 4.1], including e.g. the
Galerkin residuals, applied in our context.

5.1. Time interpolation

We now recall additional notation for time interpolation (from [15, Sec. 4.1]), and rewrite (4.2). Let 𝑢ℎ𝜏

denote the continuous and piecewise linear function in time, 𝑢ℎ𝜏 ∈ 𝐻1(0, 𝑇 ; 𝑉𝑎,ℎ) such that 𝑢ℎ𝜏 (𝑡𝑛) = 𝑢𝑛
ℎ.

Similarly (𝑝1ℎ𝜏 , 𝑝2,ℎ𝜏 , . . . , 𝑝𝐽,ℎ𝜏 ) = 𝑝ℎ𝜏 is defined by 𝑝ℎ𝜏 (𝑡𝑛) = 𝑝𝑛
ℎ and extended linearly in time. As a result,

𝜕𝑡𝑢ℎ𝜏 , 𝜕𝑡𝑝ℎ𝜏 are defined for almost every 𝑡 ∈ (0, 𝑇 ). Define the corresponding continuous, piecewise linear in
time variants of the data, 𝑓ℎ𝜏 and 𝑔ℎ𝜏 , by the same approach; i.e. 𝑓ℎ𝜏 (𝑡𝑛) = 𝑓𝑛

ℎ and 𝑔ℎ𝜏 (𝑡𝑛) = 𝑔𝑛
ℎ .

Before rephrasing (4.2) using the time-interpolated variables we define piecewise constant functions in time
for the pressure and right-hand side data. These are defined as 𝜋0𝑝ℎ𝜏 = 𝑝𝑛

ℎ and 𝜋0𝑔ℎ𝜏 = 𝑔𝑛
ℎ on 𝐼𝑛 = (𝑡𝑛−1, 𝑡𝑛).

Using the above notation, the discrete scheme for almost every 𝑡 ∈ (0, 𝑇 ) becomes

𝑎(𝑢ℎ𝜏 , 𝑣ℎ)− 𝑏(𝑣ℎ, 𝑝ℎ𝜏 ) = ⟨𝑓ℎ𝜏 , 𝑣ℎ⟩, ∀𝑣 ∈ 𝑉𝑎,ℎ, (5.1a)
𝑐(𝜕𝑡𝑝ℎ𝜏 , 𝑞ℎ) + 𝑏(𝜕𝑡𝑢ℎ𝜏 , 𝑞ℎ) + 𝑑

(︀
𝜋0𝑝ℎ𝜏 , 𝑞ℎ

)︀
=
⟨︀
𝜋0𝑔ℎ𝜏 , 𝑞ℎ

⟩︀
, ∀𝑞ℎ ∈ 𝑉𝑑,ℎ. (5.1b)

Remark 5.1. Using the linear time interpolations defined above, such as 𝑢ℎ𝜏 or 𝑝ℎ𝜏 , we have the following
identity

𝜕𝑡𝑢ℎ𝜏 = 𝛿𝑢𝑛
ℎ for all 𝑡 ∈ 𝐼𝑛 = (𝑡𝑛−1, 𝑡𝑛),

so that the left-hand sides of and (4.2b) and (5.1b) are identical. However, as noted in [15], the interpolants
of the data, 𝑓ℎ𝜏 and 𝑔ℎ𝜏 , are continuous and facilitate the definition of the continuous-time residuals (5.2) and
(5.3).
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5.2. Galerkin residuals

The Galerkin residuals [15, Sec. 4.1] are functions of time whose co-domain lies in the dual of either 𝑉𝑎 or 𝑉𝑑.
More specifically, the residuals are continuous, piecewise-affine functions 𝒢𝑎 : [0, 𝑇 ] → 𝑉 *

𝑎 and 𝒢𝑑 : [0, 𝑇 ] → 𝑉 *
𝑑 .

In our context, of generalized poroelasticity, the Galerkin residual 𝒢𝑎 is, given any 𝑣 ∈ 𝑉𝑎, defined by the relation

⟨𝒢𝑎, 𝑣⟩ ≡ ⟨𝑓ℎ𝜏 , 𝑣⟩ − 𝑎(𝑢ℎ𝜏 , 𝑣) + 𝑏(𝑣, 𝑝ℎ𝜏 ) = ⟨𝑓ℎ𝜏 , 𝑣⟩ − 𝑎(𝑢ℎ𝜏 , 𝑣) +
𝐽∑︁

𝑗=1

⟨𝑝𝑗,ℎ𝜏 , div 𝑣⟩𝛼𝑗
. (5.2)

Similarly, 𝒢𝑑 is, given any 𝑞 = (𝑞1, 𝑞2, . . . , 𝑞𝐽) ∈ 𝑉𝑑, defined by the relation

⟨𝒢𝑑, 𝑞⟩ ≡
⟨︀
𝜋0𝑔, 𝑞

⟩︀
− 𝑐(𝜕𝑡𝑝ℎ𝜏 , 𝑞)− 𝑏(𝜕𝑡𝑢ℎ𝜏 , 𝑞)− 𝑑(𝜋0𝑝ℎ𝜏 , 𝑞)

=
𝐽∑︁

𝑗=1

⟨︀
𝜋0𝑔𝑗,ℎ𝜏 , 𝑞𝑗

⟩︀
−

𝐽∑︁
𝑗=1

⟨𝑠𝑗𝜕𝑡𝑝𝑗,ℎ𝜏 , 𝑞𝑗⟩ −
𝐽∑︁

𝑗=1

⟨𝛼𝑗𝜕𝑡 div 𝑢ℎ𝜏 , 𝑞𝑗⟩

−
𝐽∑︁

𝑗=1

⟨𝜅𝑗 ∇ 𝑝𝑗 ,∇ 𝑞𝑗⟩+
1
2

𝐽∑︁
𝑗=1

𝐽∑︁
𝑖=1

⟨𝛾𝑖𝑗(𝑝𝑗,ℎ𝜏 − 𝑝𝑖,ℎ𝜏 ), (𝑞𝑗 − 𝑞𝑖)⟩.

(5.3)

Again, we note that (5.2) and (5.3) generalize the corresponding [15, Sec. 4.1] residuals for the case of single-
network poroelasticity studied therein.

5.3. Data, space and time estimators

The general coupled elliptic–parabolic problem framework gives a posteriori error estimates, and in particular
so-called data, space and time estimators for the discrete solutions. In our context of generalized poroelasticity,
these can be expressed explicitly as follows. We have terms for the data 𝑓 and 𝑔 given by

ℰ(𝑓, 𝑔) =
⃦⃦
𝑔 − 𝜋0𝑔ℎ𝜏

⃦⃦2

𝐿2(0,𝑇 ;𝑉 *𝑎 )
+
(︁
‖𝑓 − 𝑓ℎ𝜏‖𝐿∞(0,𝑇 ;𝑉 *𝑎 ) + ‖𝜕𝑡(𝑓 − 𝑓ℎ𝜏 )‖𝐿1(0,𝑇 ;𝑉 *𝑎 )

)︁2

and the framework data, space and time estimators are defined, respectively, as

ℰdata = ‖𝑢0 − 𝑢0ℎ‖2𝑎 + ‖𝑝0 − 𝑝0ℎ‖2𝑐 + ℰ(𝑓, 𝑔), (5.4)

ℰspace = ‖𝒢𝑑‖2𝐿2(0,𝑇 ;𝑉 *𝑑 ) +
(︁
‖𝒢𝑎‖𝐿∞(0,𝑇 ;𝑉 *𝑎 ) + ‖𝜕𝑡𝒢𝑎‖𝐿1(0,𝑇 ;𝑉 *𝑎 )

)︁2

, (5.5)

ℰtime =
⃦⃦
𝑝ℎ𝜏 − 𝜋0𝑝ℎ𝜏

⃦⃦2

𝐿2(0,𝑇 ;𝑉𝑑)
, (5.6)

where we recall that the norms are now defined according to the extended generalized poroelasticity spaces (3.2)
and forms (3.4). The following a posteriori error estimate for the general MPET equations holds:

Proposition 5.1. For every time 𝑡𝑛, with 𝑛 ∈ {1, 2, . . . , 𝑁}, the following inequality holds

‖𝑢− 𝑢ℎ𝜏‖2𝐿∞(0,𝑡𝑛;𝑉𝑎) + ‖𝑝− 𝑝ℎ𝜏‖2𝐿∞(0,𝑡𝑛;𝐿𝑑) + ‖𝑝− 𝑝ℎ𝜏‖2𝐿2(0,𝑡𝑛;𝑉𝑑) (5.7)

+
⃦⃦
𝑝− 𝜋0𝑝ℎ𝜏

⃦⃦2

𝐿2(0,𝑡𝑛;𝑉𝑑)
. ℰdata + ℰspace + ℰtime. (5.8)

Proof. The proof follows from [15, Thm. 4.1] and the arguments of Section 3.2. �

Remark 5.2. Note [15, Eq. (4.10)] that (5.6) is equivalent to

ℰtime =
1
3

𝑁∑︁
𝑚=1

𝜏𝑚

⃦⃦
𝑝𝑚

ℎ − 𝑝𝑚−1
ℎ

⃦⃦2

𝑑
, 𝑚 ∈ {1, 2, . . . , 𝑁}.
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The above expression will be used in Section 5.6 and follows, via the definition of 𝑝ℎ𝜏 and 𝜋0, from the calculation

⃦⃦
𝑝ℎ𝜏 − 𝜋0𝑝ℎ𝜏

⃦⃦2

𝐿2(0,𝑇 ;𝑉𝑑)
=

𝑁∑︁
𝑚=1

∫︁ 𝑡𝑚

𝑡𝑚−1

(︂
𝜉 − 𝑡𝑚−1

𝜏𝑚

)︂2⃦⃦
𝑝𝑚

ℎ − 𝑝𝑚−1
ℎ

⃦⃦2

𝑑
d𝜉

=
𝑁∑︁

𝑚=1

𝜏−2
𝑚

⃦⃦
𝑝𝑚

ℎ − 𝑝𝑚−1
ℎ

⃦⃦2

𝑑

∫︁ 𝑡𝑚

𝑡𝑚−1

(𝜉 − 𝑡𝑚−1)2 d𝜉.

5.4. Element and edge residuals

In this section we state the definition of the element and edge residuals (c.f. [15, Sec. 4.1]) adapted to
generalized poroelasticity. We then define from these residuals a set of a posteriori error indicators. These
indicators can be used to bound the Galerkin residuals defined in Section 5.2. The a posteriori error indicators
defined in this section will be used to carry out adaptive refinement for the numerical studies in Section 6.

5.4.1. Element and edge residuals for the momentum equation

The residuals associated with the displacement are derived from the Galerkin residual (5.2). We give them
explicitly here for the sake of clarity and to facilitate implementation. For 𝑣 ∈ 𝑉𝑎 and at time 𝑡𝑛, with 𝑛 ∈
{1, 2, . . . , 𝑁}, we have

⟨𝒢𝑚
𝑎 , 𝑣⟩ =

∑︁
𝐾∈𝒯ℎ

⎛⎝⟨𝑓𝑚
ℎ𝜏 , 𝑣⟩𝐾 − ⟨𝜎(𝑢𝑚

ℎ𝜏 ), 𝜖(𝑣)⟩𝐾 +
𝐽∑︁

𝑗=1

⟨︀
𝛼𝑗𝑝

𝑚
𝑗,ℎ𝜏 , div 𝑣

⟩︀
𝐾

⎞⎠,

where the notation ⟨𝑓, 𝑔⟩𝐾 =
∫︀

𝐾
𝑓 𝑔 d𝑥 denotes local integration over a simplex 𝐾 ∈ 𝒯ℎ and we have used that

𝑢𝑛
ℎ𝜏 = 𝑢𝑛

ℎ and 𝑝𝑛
𝑗,ℎ𝜏 = 𝑝𝑛

𝑗,ℎ for every 𝑛 ∈ {1, 2, . . . , 𝑛}. Integrating the above by parts over each 𝐾 ∈ 𝒯ℎ gives

⟨𝒢𝑛
𝑎 , 𝑣⟩ =

∑︁
𝐾∈𝒯ℎ

⟨︀
𝑅𝑛

𝑢ℎ,𝐾 , 𝑣
⟩︀

𝐾
+
∑︁

𝑒∈Γ𝑖𝑛𝑡

⟨︀
𝐽𝑛

𝑢ℎ,𝑒, 𝑣
⟩︀

𝑒
, (5.9)

where Γ𝑖𝑛𝑡 denotes the set of interior edges, ⟨𝑓, 𝑔⟩𝑒 denotes integration over the edge 𝑒 and where

𝑅𝑛
𝑢ℎ,𝐾 = 𝑓𝑛

ℎ|𝐾 + div 𝜎(𝑢𝑛
ℎ)𝐾 −

𝐽∑︁
𝑗=1

𝛼𝑗 ∇ 𝑝𝑛
𝑗,ℎ|𝐾 , (5.10)

where the additional subscript denotes the restriction 𝐾. To define the term 𝐽𝑛
𝑢ℎ above we use the standard

notation, of (2.1), and define
𝐽𝑛

𝑢ℎ,𝑒 = −[𝜎(𝑢𝑛
ℎ)]𝑒𝑛𝑒, (5.11)

where 𝑒 is an edge and 𝑛𝑒 is the fixed choice of outward facing normal to that edge. The corresponding time-
shifted local residual and jump operators are then

𝛿𝑡𝑅
𝑛
𝑢ℎ,𝐾 = 𝜏−1

𝑛

(︁
𝑅𝑛

𝑢ℎ,𝐾 −𝑅𝑛−1
𝑢ℎ,𝐾

)︁
, 𝛿𝑡𝐽

𝑛
𝑢ℎ,𝑒 = 𝜏−1

𝑛

(︁
𝐽𝑛

𝑢ℎ,𝑒 − 𝐽𝑛−1
𝑢ℎ,𝑒

)︁
. (5.12)

To close, we note that the conditions in [15] on the jump operator, 𝐽𝑢ℎ,𝑒 above, are general and other choices
satisfying the abstract requirements can be used if desired.

5.4.2. Element and edge residuals for the mass conservation equation

The residuals associated with the network pressures are derived from the Galerkin residual 𝒢𝑑 (5.3). Inte-
grating the diffusion terms by parts, over 𝑇 ∈ 𝒯ℎ, gives

⟨𝒢𝑑, 𝑞⟩ =
∑︁

𝐾∈𝒯ℎ

⟨︀
𝑅𝑛

𝑝ℎ,𝐾 , 𝑞
⟩︀

𝐾
+
∑︁

𝑒∈Γ𝑖𝑛𝑡

⟨︀
𝐽𝑛

𝑝ℎ,𝑒, 𝑞
⟩︀

𝑒
. (5.13)
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In the context of the extended multiple-network poroelasticity framework the strong form of the mass conser-
vation residual, 𝑅𝑛

𝑝ℎ,𝐾 ∈ 𝐿𝑑 of (5.13), has a jth component, for 𝑗 ∈ {1, 2, . . . , 𝐽}, with{︀
𝑅𝑛

𝑝ℎ,𝐾

}︀
𝑗

= 𝑔𝑛
𝑗,ℎ|𝐾 − 𝑠𝑗𝛿𝑡𝑝

𝑛
𝑗,ℎ|𝐾 − 𝛼𝑗(div 𝛿𝑡𝑢

𝑛
ℎ)𝐾 +

(︀
div 𝜅𝑗 ∇ 𝑝𝑛

𝑗,ℎ

)︀
𝐾
− 𝑇𝑗,ℎ|𝐾 , (5.14)

recalling that 𝑇𝑗 is given by (1.2), and 𝑇𝑗,ℎ is its discrete analogue. In (5.14), we have also used that 𝜕𝑡𝑝
𝑛
𝑗,ℎ𝜏 =

𝛿𝑡𝑝
𝑛
𝑗,ℎ = 𝜏−1

𝑚

(︁
𝑝𝑛

𝑗,ℎ − 𝑝𝑛−1
𝑗,ℎ

)︁
, 𝜕𝑡𝑢

𝑛
ℎ,𝜏 = 𝛿𝑡𝑢

𝑛
ℎ, 𝑝𝑛

𝑗,ℎ𝜏 = 𝑝𝑛
𝑗,ℎ and 𝑢𝑛

𝑗,ℎ𝜏 = 𝑢𝑛
𝑗,ℎ. The corresponding jump term 𝐽𝑛

𝑝ℎ,𝑒 for
𝑒 ∈ Γ𝑖𝑛𝑡 has jth component {︀

𝐽𝑛
𝑝ℎ,𝑒

}︀
𝑗

= −
[︀
𝜅𝑗 ∇ 𝑝𝑛

𝑗,ℎ

]︀
𝑒
· 𝑛𝑒, (5.15)

and we once more remark that other jump operators satisfying the abstract conditions in [15] can also be
considered. We also have the analogous time-shifted versions of the above, 𝛿𝑡𝑅

𝑛
𝑝ℎ,𝐾 and 𝛿𝑡𝐽

𝑛
𝑝ℎ,𝐾 , just as in

(5.12).

5.5. Error indicators in space and time

We now define the element-wise error indicators; these indicators will inform the construction of the a
posteriori error indicators of Section 5.6. In turn, these indicators will form the foundation of the adaptive
refinement strategy of Section 7. Specifically, we define element-wise indicators denoted 𝜂𝑛

𝑢,𝐾 and 𝜂𝑛
𝑝,𝐾 such that

the following equalities hold for all 𝑣 ∈ 𝑉𝑎 and 𝑞 ∈ 𝑉𝑑

⟨𝒢𝑛
𝑎 , 𝑣⟩ =

∑︁
𝐾∈𝒯ℎ

⟨︀
𝜂𝑛

𝑢,𝐾 , 𝑣
⟩︀
, ⟨𝒢𝑛

𝑑 , 𝑞⟩ =
∑︁

𝐾∈𝒯ℎ

⟨︀
𝜂𝑛

𝑝,𝐾 , 𝑞
⟩︀
. (5.16)

First, we define the following local error indicator associated with the momentum equation:

𝜂𝑛
𝑢,𝐾 = ℎ2

𝐾‖𝑅𝑢ℎ,𝐾‖2𝐾 + ℎ𝐾

∑︁
𝑒∈𝜕𝐾

⃦⃦
𝐽𝑛

𝑢ℎ,𝑒

⃦⃦
𝑒

(5.17)

= ℎ2
𝐾

⃦⃦⃦⃦
⃦⃦𝑓𝑛

ℎ + div 𝜎(𝑢𝑛
ℎ)−

𝐽∑︁
𝑗=1

𝛼𝑗 ∇ 𝑝𝑛
𝑗,ℎ

⃦⃦⃦⃦
⃦⃦

2

𝐾

+ ℎ𝐾

∑︁
𝑒∈𝜕𝐾

‖[𝜎(𝑢𝑛
ℎ)]𝑒𝑛𝑒‖2𝑒,

where the norms ‖·‖𝐾 and ‖·‖𝑒 represent the usual 𝐿2, or d-dimensional 𝐿2, norm over a simplex, 𝐾, and edge,
𝑒, respectively. Likewise, the local error indicators associated with the mass conservation equations are

𝜂𝑛
𝑝,𝑇 = ℎ2

𝐾

⃦⃦
𝑅𝑛

𝑝ℎ,𝐾

⃦⃦2

𝐾
+ ℎ𝐾

∑︁
𝑒∈𝜕𝐾

⃦⃦
𝐽𝑛

𝑝ℎ,𝑒

⃦⃦
𝑒

= ℎ2
𝐾

𝐽∑︁
𝑗=1

⃦⃦⃦⃦
⃦𝑔𝑛

𝑗,ℎ − 𝑠𝑗𝛿𝑡𝑝
𝑛
𝑗,ℎ − 𝛼𝑗 div 𝛿𝑡𝑢

𝑛
ℎ + 𝑘𝑗∆𝑝𝑛

𝑗,ℎ −
1
2

𝐽∑︁
𝑖=1

𝛾𝑖𝑗(𝑝𝑛
𝑗,ℎ − 𝑝𝑛

𝑖,ℎ)

⃦⃦⃦⃦
⃦

2

𝐾

+ ℎ𝐾

∑︁
𝑒∈𝜕𝐾

⃦⃦⃦⃦
⃦⃦ 𝐽∑︁

𝑗=1

[︀
𝑘𝑗 ∇ 𝑝𝑛

𝑗,ℎ

]︀
𝑒
· 𝑛𝑒

⃦⃦⃦⃦
⃦⃦

𝑒

.

(5.18)

Similar to (5.12) we will use the time-shifted version of the local spatial error indicator for the momentum
equation. This expression is given by

𝜂𝑛
𝑢,𝐾(𝛿𝑡) = ℎ2

𝐾‖𝛿𝑡𝑅𝑢ℎ,𝐾‖2𝐾 + ℎ𝐾

∑︁
𝑒∈𝜕𝐾

‖𝛿𝑡𝐽𝑢ℎ,𝑒‖2𝑒,
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where the right-hand is analogous to that of (5.17) by taking the time-shift of the expressions appearing inside
the norm. With the local indicators in hand we immediately have the global indicators and their time-shifted
version given by

𝜂𝑛
𝑢 =

∑︁
𝐾∈𝒯ℎ

𝜂𝑛
𝑢,𝐾 , 𝜂𝑛

𝑝 =
∑︁

𝐾∈𝒯ℎ

𝜂𝑛
𝑝,𝐾 , 𝜂𝑛

𝑢(𝛿𝑡) =
∑︁

𝐾∈𝒯ℎ

𝜂𝑛
𝑢,𝐾(𝛿𝑡). (5.19)

In Section 7 we will use the above expressions to define the a posteriori error indicators informing a simple
adaptive refinement strategy for the numerical simulations of Section 6.

5.6. A posteriori error estimators

We close this section by defining the final a posteriori error estimators:

𝜂1 =

(︃
𝑁∑︁

𝑛=1

𝜏𝑛𝜂𝑛
𝑝

)︃ 1
2

, 𝜂2 = sup
0≤𝑛≤𝑁

(𝜂𝑛
𝑢)

1
2 ,

𝜂3 =
𝑁∑︁

𝑛=1

𝜏𝑛(𝜂𝑛
𝑢(𝛿𝑡))

1
2 , 𝜂4 =

(︃
𝑁∑︁

𝑛=1

𝜏𝑛

⃦⃦
𝑝𝑛

ℎ − 𝑝𝑛−1
ℎ

⃦⃦2

𝑑
.

)︃ 1
2

(5.20)

The summed term
⃦⃦
𝑝𝑛

ℎ − 𝑝𝑛−1
ℎ

⃦⃦2

𝑑
, in 𝜂4 above, can be expanded using the definition of (3.4d) as

⃦⃦
𝑝𝑛

ℎ − 𝑝𝑛−1
ℎ

⃦⃦2

𝑑
=

𝐽∑︁
𝑗=1

𝜅𝑗

⃦⃦⃦
∇
(︁
𝑝𝑛

𝑗,ℎ − 𝑝𝑛−1
𝑗,ℎ

)︁⃦⃦⃦2

𝐿2
+

1
2

𝐽∑︁
𝑗=1

𝐽∑︁
𝑖=1

𝛾𝑖𝑗

⃦⃦⃦
(𝑝𝑛

𝑗,ℎ − 𝑝𝑛
𝑖,ℎ)− (𝑝𝑛−1

𝑗,ℎ − 𝑝𝑛−1
𝑖,ℎ )

⃦⃦⃦2

𝐿2
.

Finally, a bound on the MPET discretization errors in terms of the a posteriori error estimators follows:

Proposition 5.2. For each time 𝑡𝑛, 𝑛 ∈ {0, 1, . . . , 𝑁}, the following inequality for the discretization error holds

‖𝑢− 𝑢ℎ𝜏‖𝐿∞(0,𝑡𝑛;𝑉𝑎) + ‖𝑝− 𝑝ℎ𝜏‖𝐿∞(0,𝑡𝑛;𝐿𝑑) + ‖𝑝− 𝑝ℎ𝜏‖𝐿2(0,𝑡𝑛;𝑉𝑑) +
⃦⃦
𝑝− 𝜋0𝑝ℎ𝜏

⃦⃦
𝐿2(0,𝑡𝑛;𝑉𝑑)

. 𝜂1 + 𝜂2 + 𝜂3 + 𝜂4 + ℰℎ0(𝑢0, 𝑝0) + ℰℎ(𝑓, 𝑔)

where ℰℎ0(𝑢0, 𝑝0) and ℰℎ(𝑓, 𝑔) are determined by the fidelity in the approximation of the initial data and source
terms, respectively, as

ℰℎ0(𝑢0, 𝑝0) = ‖𝑢0 − 𝑢ℎ0‖𝑎 + ‖𝑝0 − 𝑝0ℎ‖𝑐,

ℰℎ(𝑓, 𝑔) =
⃦⃦
𝑔 − 𝜋0𝑔ℎ𝜏

⃦⃦
𝐿2(0,𝑇 ;𝑉𝑑)

+ ‖𝑓 − 𝑓ℎ𝜏‖𝐿∞(0,𝑇 ;𝑉𝑎) + ‖𝜕𝑡(𝑓 − 𝑓ℎ𝜏 )‖𝐿1(0,𝑇 ;𝑉𝑎).

Proof. The above follows from the results of [15, Thm. 4.1, Prop. 4.1, Thm. 4.2] applied in the context of
generalized poroelasticity in light of the results of Section 3. �

Remark 5.3. The framework result [15, Prop. 4.2] is stronger than the restatement given above; only the
relevant left-hand side quantities for our computations have been restated. It is also interesting to ask whether
the framework of Ern and Meunier [15] can be extended to yield a posteriori error estimators for higher-order
time discretizations of elliptic–parabolic systems (e.g. (3.1)). One might ponder, for instance, the use of the
generalized 𝜃 scheme 𝛿𝑡𝑦

𝑛
ℎ = 𝜃𝑓(𝑦𝑛

ℎ) + (1− 𝜃)𝑓(𝑦𝑛−1
ℎ ) for which (4.2) is 𝜃 = 1 and 𝜃 = 1/2 yields the trapezoidal

time integration method. Adapting [15] to this context could be approached by generalizing Lemma 2.1 and
Theorem 3.1 alongside extending the discrete scheme interpolation, Galerkin residuals, element and jump resid-
uals, Theorem 4.1 and Proposition 4.1–4.3 of [15, Sec. 4.1]. Though higher-order time discretization schemes
are of practical importance, the analytic extension of [15] to this context is a topic for future work.
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6. Numerical convergence and accuracy of error estimators

To examine the accuracy of the computed error estimators and resulting error estimate, we first study
an idealized test case with a manufactured smooth solution over uniform meshes. We will consider adaptive
algorithms and meshes in the subsequent sections. All numerical experiments were implemented using the
FEniCS Project finite element software [3].

Let Ω = [0, 1]2 with coordinates (𝑥, 𝑦) ∈ Ω, and let 𝑇 = 0.4. We consider the case of three fluid networks
(𝐽 = 3), first with 𝜇 = 1.0, 𝜆 = 10.0, 𝛼𝑗 = 0.5, 𝑠𝑗 = 1.0, 𝜅𝑗 = 1.0, for 𝑗 = 1, 2, 3 and 𝛾12 = 𝛾23 = 𝛾13 = 1.0. We
define the following smooth solutions to (1.1):

𝑢(𝑥, 𝑦) = (0.1 cos(𝜋𝑥) sin(𝜋𝑦) sin(𝜋𝑡), 0.1 sin(𝜋𝑥) cos(𝜋𝑦) sin(𝜋𝑡)),
𝑝1(𝑥, 𝑦) = sin(𝜋𝑥) cos(𝜋𝑦) sin(2𝜋𝑡),
𝑝2(𝑥, 𝑦) = cos(𝜋𝑥) sin(𝜋𝑦) sin(𝜋𝑡),
𝑝3(𝑥, 𝑦) = sin(𝜋𝑥) sin(𝜋𝑦)𝑡,

with compatible Dirichlet boundary conditions, initial conditions and induced force and source functions 𝑓 and
𝑔𝑗 for 𝑗 = 1, 2, 3.

We approximate the solutions using Taylor–Hood type elements relative to given families of meshes; i.e. con-
tinuous piecewise quadratic vector fields for the displacement and continuous piecewise linears for each pressure.
The exact solutions were approximated using continuous piecewise cubic finite element spaces in the numerical
computations.

6.1. Convergence and accuracy under uniform refinement

We first consider the convergence of the numerical solutions, their approximation errors and error estimators
𝜂1, 𝜂2, 𝜂3, 𝜂4 under uniform refinement in space and time. We define the meshes by dividing the domain into 𝑁×𝑁
squares and dividing each subsquare by the diagonal. The errors and convergence rates for the displacement
and pressure approximations, measured in natural Bochner norms, are listed in Table 1. We observe that both
the spatial and the temporal discretization contributes to the errors, and that all variables converges at at least
first order in space and time – as expected with the implicit Euler scheme. For coarse meshes, we observe that
the displacement converges at the optimal second order under mesh refinement (Tab. 1a).

We next consider the convergence and accuracy of the error estimators 𝜂1, 𝜂2, 𝜂3, 𝜂4 for the same set of
discretizations (Tab. 2). We observe that each error estimator converge at at least first order in space-time, with
𝜂2 and 𝜂3 converging at second order in space and 𝜂4 converging at first order in time1.

We also define two efficiency indices 𝐼eff and 𝐼eff with respect to the Bochner and energy norms, respectively,
for the evaluation of the approximation error:

𝐼eff =
𝜂

�̃�
, 𝐼eff =

𝜂

𝐸
, (6.1)

where

𝜂 ≡ 𝜂1 + 𝜂2 + 𝜂3 + 𝜂4,

�̃� ≡ ‖𝑢− 𝑢ℎ𝜏‖𝐿∞(0,𝑇 ;𝐻1
0 ) + ‖𝑝− 𝑝ℎ𝜏‖𝐿∞(0,𝑇 ;𝐿2) + ‖𝑝− 𝑝ℎ𝜏‖𝐿2(0,𝑇 ;𝐻1

0 ) +
⃦⃦
𝑝− 𝜋0𝑝ℎ𝜏

⃦⃦
𝐿2(0,𝑇 ;𝐻1

0 )
,

𝐸 ≡ ‖𝑢− 𝑢ℎ𝜏‖𝐿∞(0,𝑇 ;𝑉𝑎) + ‖𝑝− 𝑝ℎ𝜏‖𝐿∞(0,𝑇 ;𝐿𝑑) + ‖𝑝− 𝑝ℎ𝜏‖𝐿2(0,𝑇 ;𝑉𝑑) +
⃦⃦
𝑝− 𝜋0𝑝ℎ𝜏

⃦⃦
𝐿2(0,𝑇 ;𝑉𝑑)

.

Note that we use both Bochner- and energy norms to investigate the practical quality and efficiency of the
approximations and estimators as well as in terms of the energy/parameter-weighted norms appearing in the

1We observe that the error estimators 𝜂2 and 𝜂3 are nearly (but not quite) identical for this test case, and conjecture that this
may be not entirely coincidental but related to the choice of the exact solution.
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Table 1. Displacement and pressure approximation errors (in different norms) and their rates
of convergence for the smooth 3-network test case under uniform refinement in space (horizon-
tal) and time (horizontal). 𝑇 = 0.4, 𝜏0 = 𝑇/2. Rate (𝜏) is the rate for the finest mesh, under
time step refinement. Rate (ℎ) is the rate for the finest time step, under mesh refinement. The
diagonal rate (in bold) is the final space-time (diagonal) rate.

N/dt 𝜏0 𝜏0/2 𝜏0/4 𝜏0/8 𝜏0/16 Rate (ℎ)
(a) ‖𝑢− 𝑢ℎ𝜏‖𝐿∞(0,𝑇 ;(𝐻1

0 )𝑑)

4 1.82× 10−2 1.82× 10−2 1.82× 10−2 1.82× 10−2 1.82× 10−2

8 4.71× 10−3 4.64× 10−3 4.62× 10−3 4.61× 10−3 4.61× 10−3 1.98
16 1.44× 10−3 1.24× 10−3 1.18× 10−3 1.16× 10−3 1.16× 10−3 1.99
32 8.51× 10−4 5.29× 10−4 3.63× 10−4 3.10× 10−4 2.96× 10−4 1.97
64 7.86× 10−4 4.50× 10−4 2.40× 10−4 1.36× 10−4 9.07× 10−5 1.70
Rate (𝜏) 0.81 0.90 0.82 0.59 1.77

(b) ‖𝑝− 𝑝ℎ𝜏‖𝐿∞(0,𝑇 ;(𝐿2)𝐽 )

4 8.69× 10−2 8.93× 10−2 8.66× 10−2 8.52× 10−2 8.46× 10−2

8 3.97× 10−2 3.29× 10−2 2.73× 10−2 2.47× 10−2 2.36× 10−2 1.84
16 3.06× 10−2 1.97× 10−2 1.23× 10−2 8.74× 10−3 7.10× 10−3 1.73
32 2.89× 10−2 1.69× 10−2 9.13× 10−3 5.14× 10−3 3.16× 10−3 1.14
64 2.86× 10−2 1.63× 10−2 8.46× 10−3 4.39× 10−3 2.33× 10−3 0.44
Rate (𝜏) 0.81 0.95 0.95 0.91 1.14

(c) ‖𝑝− 𝑝ℎ𝜏‖𝐿2(0,𝑇 ;(𝐻1
0 )𝐽 )

4 4.42× 10−1 5.26× 10−1 5.39× 10−1 5.41× 10−1 5.41× 10−1

8 2.37× 10−1 2.73× 10−1 2.77× 10−1 2.78× 10−1 2.78× 10−1 0.96
16 1.38× 10−1 1.45× 10−1 1.42× 10−1 1.40× 10−1 1.40× 10−1 0.99
32 9.81× 10−2 8.54× 10−2 7.49× 10−2 7.13× 10−2 7.03× 10−2 0.99
64 8.53× 10−2 6.23× 10−2 4.46× 10−2 3.77× 10−2 3.57× 10−2 0.98
Rate (𝜏) 0.45 0.48 0.24 0.08 1.00

(d)
⃦⃦
𝑝− 𝜋0𝑝ℎ𝜏

⃦⃦
𝐿2(0,𝑇 ;(𝐻1

0 )𝐽 )

4 9.41× 10−1 6.94× 10−1 6.03× 10−1 5.67× 10−1 5.53× 10−1

8 7.89× 10−1 4.73× 10−1 3.49× 10−1 3.02× 10−1 2.87× 10−1 0.95
16 7.44× 10−1 3.94× 10−1 2.40× 10−1 1.74× 10−1 1.50× 10−1 0.93
32 7.32× 10−1 3.71× 10−1 2.03× 10−1 1.21× 10−1 8.66× 10−2 0.80
64 7.29× 10−1 3.65× 10−1 1.93× 10−1 1.04× 10−1 6.09× 10−2 0.51
Rate (𝜏) 1.00 0.92 0.89 0.77 0.99

theoretical bound (Prop. 5.2). For this test case, we find Bochner efficiency indices between 1.8 and 5.7, with
little variation in this efficiency index between time steps for coarse meshes, and efficiency indices closer to 1
for finer meshes.

6.2. Variations in material parameters

We also study how variations in the material parameters affect the effectivity of the error estimates, measured
in terms of the effectivity index 𝐼eff (6.1) with respect to the energy norm(s). We consider a set of default
parameters: 𝜇 = 1.0, 𝜆 = 10.0, 𝛼1 = 0.25, 𝛼2 = 𝛼3 − 𝛼1, 𝛼3 = 0.5, 𝑠𝑖 = 𝜅𝑖 = 𝛾𝑗𝑖 = 1.0 for 𝑖 = 1, 2, 3, 𝑗 ̸= 𝑖, and
subsequently independent variations in the material parameters representing increased stiffnesses 𝐸, reduced
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Table 2. Error estimators 𝜂1, 𝜂2, 𝜂3, 𝜂4 and their rates of convergence, and Bochner efficiency
indices 𝐼eff for the smooth 3-network test case under uniform refinement in space (horizontal)
and time (horizontal) 𝑇 = 0.4, 𝜏0 = 𝑇/2. Rate (𝜏) is the rate for the finest mesh, under time
step refinement. Rate (ℎ) is the rate for the finest time step, under mesh refinement. The
diagonal rate (in bold) is the final space-time (diagonal) rate.

N/dt 𝜏0 𝜏0/2 𝜏0/4 𝜏0/8 𝜏0/16 Rate (ℎ)

(a) 𝜂1

4 3.30 3.19 3.13 3.09 3.08
8 1.73 1.67 1.64 1.63 1.62 0.93
16 8.80× 10−1 8.52× 10−1 8.37× 10−1 8.29× 10−1 8.25× 10−1 0.97
32 4.43× 10−1 4.29× 10−1 4.22× 10−1 4.18× 10−1 4.16× 10−1 0.99
64 2.22× 10−1 2.15× 10−1 2.12× 10−1 2.10× 10−1 2.09× 10−1 1.00
Rate (𝜏) 0.05 0.03 0.01 0.01 1.00

(b) 𝜂2

4 1.76 1.76 1.76 1.76 1.76
8 4.51× 10−1 4.51× 10−1 4.51× 10−1 4.51× 10−1 4.51× 10−1 1.97
16 1.14× 10−1 1.14× 10−1 1.14× 10−1 1.14× 10−1 1.14× 10−1 1.99
32 2.84× 10−2 2.84× 10−2 2.84× 10−2 2.84× 10−2 2.84× 10−2 2.00
64 7.12× 10−3 7.12× 10−3 7.12× 10−3 7.12× 10−3 7.12× 10−3 2.00
Rate (𝜏) −0.00 −0.00 −0.00 −0.00 2.00

(c) 𝜂3

4 1.76 1.77 1.77 1.77 1.77
8 4.51× 10−1 4.52× 10−1 4.52× 10−1 4.52× 10−1 4.52× 10−1 1.97
16 1.14× 10−1 1.14× 10−1 1.14× 10−1 1.14× 10−1 1.14× 10−1 1.99
32 2.85× 10−2 2.85× 10−2 2.85× 10−2 2.85× 10−2 2.85× 10−2 2.00
64 7.12× 10−3 7.13× 10−3 7.13× 10−3 7.13× 10−3 7.13× 10−3 2.00
Rate (𝜏) −0.00 −0.00 −0.00 −0.00 2.00

(d) 𝜂4

4 1.25 6.65× 10−1 3.39× 10−1 1.70× 10−1 8.54× 10−2

8 1.28 6.81× 10−1 3.47× 10−1 1.75× 10−1 8.76× 10−2 −0.04
16 1.29 6.85× 10−1 3.49× 10−1 1.76× 10−1 8.81× 10−2 −0.01
32 1.29 6.86× 10−1 3.50× 10−1 1.76× 10−1 8.83× 10−2 −0.0
64 1.29 6.86× 10−1 3.50× 10−1 1.76× 10−1 8.83× 10−2 −0.0
Rate (𝜏) 0.91 0.97 0.99 1.00 1.00

(e) 𝐼eff

4 5.42 5.56 5.61 5.61 5.59
8 3.65 4.16 4.39 4.44 4.40
16 2.62 3.15 3.58 3.80 3.82
32 2.08 2.47 2.88 3.29 3.50
64 1.81 2.06 2.34 2.74 3.14
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compressibilities 𝜈, lower transfer 𝛾, lower hydraulic conductances 𝜅, and lower specific storage coefficients
𝑠. Specifically, we consider 𝛼1 ∈ {0.01, 0.1, 0.25}, 𝑠𝑖, 𝜅𝑖, 𝛾𝑗𝑖 ∈ {0.001, 0.01, 0.1, 1.0} for 𝑖 = 1, 2, 3, 𝑗 ̸= 𝑖, and
𝜇 ∈ {1, 10, 100, 1000, 10 000}, 𝜆 ∈ {10, 100, 1000, 10 000}. Both energy-norm and Bochner efficiency indices 𝐼eff

and 𝐼eff for the different variations are shown in Figure 1.
The energy-norm efficiency indices 𝐼eff are above 1 for all material variations considered. Variations in the

specific storage coefficients, Biot–Willis coefficients and transfer coefficients have minimal effect on both the
energy- and Bochner norm efficiency indices: the efficiency indices are ∼ 4 for all variations in each of these
parameters. For variations in the permeabilities 𝜅𝑖, we observe some reduction in the energy-norm efficiency
indices as the permeability is reduced (from 4.1 to 2.6), but that the index value stabilizes around 2.5 for the
smaller permeabilities. We observe similar behaviour for the Bochner-norm efficiency index, but with index
values of ∼ 0.8 for the smaller permeabilities, and thus efficiency indices below 1.0. For the elastic parameters,
the results are quite different. Both the energy-norm and Bochner efficiency indices increase substantially with
increasing Lamé parameters 𝜇 and 𝜆, though with Bochner efficiency indices increasing more.

Remark 6.1. The boundedness of efficiency indices, e.g. 𝐼eff and 𝐼eff , is canonically provided by the reverse
inequality of Proposition 5.2, whereby the the error indicators are bounded above in terms of a constant times
the norm of the discretization error. That is, one establishes

𝜂1 + 𝜂2 + 𝜂3 + 𝜂4 . ‖𝑢− 𝑢ℎ𝜏‖𝐿∞(0,𝑇 ;𝑉𝑎) + ‖𝑝− 𝑝ℎ𝜏‖𝐿∞(0,𝑇 ;𝐿𝑑)

+ ‖𝑝− 𝑝ℎ𝜏‖𝐿2(0,𝑇 ;𝑉𝑑) +
⃦⃦
𝑝− 𝜋0𝑝ℎ𝜏

⃦⃦
𝐿2(0,𝑇 ;𝑉𝑑)

.

If the constant of proportionality, in the above inequality, does not involve specific material parameters, then
the efficiency indices are robust with respect to variations in those parameters. However, as in the case of
the use of higher-order time discretizations, the general Euler-Galerkin elliptic–parabolic framework of Ern
and Meunier [15] does not provide this bound and, as a result, its extension to the equations of generalized
poroelasticity (MPET), presented herein, is limited in this same regard. The computational experiments of this
section suggest that such an estimate will entail a constant of proportionality that scales strongly with both 𝜇
and 𝜆.

7. Adaptive strategy: algorithmic considerations and numerical evaluation

We now turn to consider and evaluate two components of an overall adaptive strategy: (i) temporal adaptivity
(only) and (ii) temporal and spatial adaptivity. Our choices for the adaptive strategy can be viewed in light of the
observations on the convergence of 𝜂1, 𝜂2, 𝜂3, 𝜂4 for the previous test case, as well as the following characteristics
of MPET problems arising in e.g. biological applications:

– Mathematical models of living tissue are often associated with a wide range of uncertainty e.g. in terms
of modelling assumptions, material parameters, and data fidelity. Simulations are therefore often not con-
strained by a precise numerical error tolerance, but rather by the limited availability of computational
resources.

– Living tissue often feature heterogeneous material parameters, but typically with small jumps, and in partic-
ular smoother variations than e.g. in the geosciences. The corresponding MPET solutions are often relatively
smooth.

– Even for problems with a small number of networks 𝐽 such as single or two-network settings, the linear
systems to be solved at each time step are relatively large already for moderately coarse meshes.

In light of these points, our target is an adaptive algorithm robustly reducing the error(s) given limited com-
putational resources. We therefore consider an error balancing strategy in which we adaptively refine time steps
such that the estimated temporal and spatial contributions to the error is balanced, then refine the spatial mesh
to reduce the overall error, and repeat. This approach to spatial adaptivity seeks to balance the computational
gains associated with adaptively refined meshes and the computational and implementational overhead costs
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Figure 1. Efficiency indices for the smooth 3-network test case for different variations of
the MPET material parameters 𝑠𝑖, 𝜅𝑖, 𝛼𝑖, 𝛾𝑗𝑖, 𝜇, and 𝜆; energy-norm indices 𝐼eff (light blue)
and Bochner norm indices 𝐼eff (middle blue). Numerical resolution parameters were kept fixed
(𝑇 = 0.4, 𝜏 = 0.1, 𝑛 = 8).
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associated with more sophisticated time-space adaptive methods, see e.g. [1, 7]. While a full space-time adap-
tive algorithm could yield time-varying meshes of lower computational cost, the computational costs associated
with finite element matrix assembly over separate meshes, and interpolation of discrete fields between different
meshes are often substantial. Without time-varying meshes, the blocks of the MPET linear operator can be
reused (using the time steps 𝜏𝑛 as weights) which may reduce assembly time, and potentially linear system
solver times. We note though that there is ample room for more sophisticated time step control methods than
we consider here, see e.g. [34] and related works.

7.1. Time adaptivity

We consider the time-adaptive scheme listed in Algorithm 1. Overall, for a given mesh 𝒯ℎ, we step forward
in time, evaluate (an approximation to) the error estimators at the current time step, compare the spatial and
temporal contributions to the error estimators, and coarsen (or refine) the time step if the spatial (or temporal)
error dominates.

Algorithm 1. Time-adaptive algorithm.
1: Define adaptive parameters 𝛼𝜂 ∈ [0, 1) and 𝛽 ≥ 1, 𝜏max > 0 and 𝜏min ≥ 0.
2: Assume that a mesh 𝒯ℎ and an initial time step size 𝜏0 is given. Set 𝑡0 and set the time step iterator 𝑛 = 0.
3: while 𝑡𝑛 < 𝑇 do
4: while True do
5: Set 𝑛 = 𝑛 + 1.
6: Set 𝑡* = 𝑡𝑛−1 + 𝜏𝑛, and solve (4.2) over 𝒯ℎ for (𝑢*ℎ, 𝑝*ℎ) with time step size 𝜏𝑛

7: Compute error estimator approximations at the current time step

𝜂𝑛
1 =

(︀
𝜏𝑛𝜂𝑛

𝑝

)︀ 1
2 , 𝜂𝑛

2 =
(︂

sup
0≥𝑚≥𝑛

𝜂𝑚
𝑢

)︂ 1
2

, 𝜂𝑛
3 = 𝜏𝑛(𝜂𝑛

𝑢(𝛿𝑡))
1
2 , 𝜂𝑛

4 =
(︁
𝜏𝑛

⃦⃦
𝑝𝑛

ℎ − 𝑝𝑛−1
ℎ

⃦⃦2

𝑑

)︁ 1
2
,

8: and set 𝜂𝑛
ℎ = 𝜂𝑛

1 + 𝜂𝑛
2 + 𝜂𝑛

3 , 𝜂𝑛
𝜏 = 𝜂𝑛

4 .
9: if 𝜂𝑛

𝜏 ≤ (1− 𝛼𝜂)𝜂ℎ and 𝛽𝜏𝑛 ≤ 𝜏max then
10: Set 𝑡𝑛 = 𝑡*, (𝑢𝑛

ℎ, 𝑝𝑛
ℎ) = (𝑢*ℎ, 𝑝*ℎ), coarsen the next 𝜏𝑛+1 = 𝛽𝜏𝑛, and break loop.

11: else if 𝜂𝑛
𝜏 ≥ (1 + 𝛼𝜂)𝜂𝑛

ℎ and 𝜏𝑛/𝛽 ≥ 𝜏min then
12: Discard the solution and refine the time step: set 𝑡𝑛 = 𝑡𝑛−1, 𝑛 = 𝑛− 1, 𝜏𝑛 = 𝜏𝑛/𝛽.
13: else
14: Set 𝑡𝑛 = 𝑡*, (𝑢𝑛

ℎ, 𝑝𝑛
ℎ) = (𝑢*ℎ, 𝑝*ℎ), 𝜏𝑛+1 = 𝜏𝑛, and break loop.

15: end if
16: end while
17: end while

Evaluation of the time-adaptive algorithm on a smooth numerical test case

We evaluate Algorithm 1 using the numerical test case with smooth solutions defined over 3 networks as
introduced in Section 6, the default material parameters, and different uniform meshes (defined by 2×𝑁 ×𝑁
triangles as before). We also verified the adaptive solver by comparing the solutions at each time step and error
estimators resulting from rejected coarsening and refinement (resulting in 𝜏𝑛 = 0.2 for each 𝑛) with the solutions
and error estimators computed with a uniform time step (𝜏 = 0.2). We let 𝑇 = 1.0, and considered an initial
time step of 𝜏0 = 0.2, adaptive weight 𝛼𝜂 = 0, a coarsening/refinement factor 𝛽 = 2, and time step bounds
𝜏max = 𝑇 and 𝜏min = 0.0.

The discrete times 𝑡𝑛 resulting from the adaptive algorithm, error estimators 𝜂𝑛
ℎ and 𝜂𝜏𝑛 are shown in Figure 2

for different uniform mesh resolutions. For 𝑁 = 8 (Fig. 2a), we observe that the adaptive algorithm estimates
the initial time step of 0.2 to be unnecessarily small in light of the dominating spatial error, and coarsens the
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time step to 0.4 before quickly reaching the end of time (𝑇 ). The ‖𝑢− 𝑢ℎ𝜏‖𝐿∞ , ‖𝑝− 𝑝ℎ𝜏‖𝐿∞ , and ‖𝑝− 𝑝ℎ𝜏‖𝐿2

errors are 4.61 × 10−3, 3.86 × 10−2 and 6.83 × 10−1. For comparison, with a uniform time step 𝜏 = 0.2, the
‖𝑢− 𝑢ℎ𝜏‖𝐿∞ , ‖𝑝− 𝑝ℎ𝜏‖𝐿∞ , ‖𝑝− 𝑝ℎ𝜏‖𝐿2 , and

⃦⃦
𝑝− 𝜋0𝑝ℎ𝜏

⃦⃦
𝐿2 (as listed in Tab. 1) are 4.71× 10−3, 4.38× 10−2,

4.96 × 10−1, and 1.33 respectively, and thus the errors with the adaptively defined coarser time step are very
comparable – as targeted by our error balancing principle. The picture changes for 𝑁 = 16 (Fig. 2b), in this
case the temporal error initially dominates the spatial error, and the time step is reduced substantially initially
before a subsequent increase and plateau at 0.1–0.2. The value of the adaptive error estimator 𝜂4 is lower
than for the uniform solution (1.23 versus 2.17), but the exact errors are comparable between the uniform and
adaptive scheme in this case. By setting 𝜏min = 𝜏0/4, the unnecessarily high initial time step refinement is
limited (Fig. 2c), and again comparable errors as for the uniform time step are observed. For higher spatial
resolution and thus lower spatial errors (𝑁 = 32), similar observations hold (Fig. 2d), but now the adaptive
solutions approximately halve the exact errors compared to the uniform 𝜏0 = 0.2 case (as expected). We
conclude that the time adaptive scheme efficiently balances the temporal and spatial error, but does little for
reducing the overall error – as the spatial error dominates this case. For 𝑁 = 64 and the same configurations,
the adaptive time step reduces to the minimal threshold 𝜏0/4 = 0.05 and remains there until end of time 𝑇 ,
with the expected quartering of the exact errors compared to the 𝜏0 = 0.2 case (and the first order accuracy of
the temporal discretization scheme).

7.2. Spatial adaptivity

For the spatial adaptivity, we use adaptive mesh (h-)refinement based on local error indicators {𝜂𝐾}𝐾∈𝒯ℎ

derived from the global error estimators (5.20). In light of the theoretical and empirical observation that 𝜂4

primarily contributes to the temporal error, we will rely on local contributions to 𝜂1, 𝜂2 and 𝜂3 only for the local
error indicators. Specifically, we will let

𝜂𝐾 = 𝜂1,𝐾 + 𝜂2,𝐾 + 𝜂3,𝐾 (7.1)

where

𝜂1,𝐾 =

(︃
𝑁∑︁

𝑛=1

𝜏𝑛𝜂𝑛
𝑝,𝐾

)︃ 1
2

, 𝜂2,𝐾 =
(︂

sup
0≤𝑛≤𝑁

𝜂𝑛
𝑢,𝐾

)︂ 1
2

, 𝜂3,𝐾 =
𝑁∑︁

𝑛=1

𝜏𝑛

(︀
𝜂𝑛

𝑢,𝐾(𝛿𝑡)
)︀ 1

2 . (7.2)

for each 𝐾 ∈ 𝒯ℎ. The complete space-time adaptive algorithm is given in Algorithm 2. We here choose to use
Dörfler marking [13] or a maximal marking strategy in which the 𝛾𝑀 of the total number of cells with the
largest error indicators are marked for refinement, but other marking strategies could of course also be used.

Remark 7.1. In Algorithm 2, we suggest adapting the mesh in each outer iteration via only (local) mesh
refinements. One could equally well consider a combination of local mesh refinement and coarsening, and/or
other adaptive mesh techniques such as r-refinement. Indeed, this could be particularly relevant in connection
with complex geometries, for which the initial mesh may be overly fine (in terms of approximation power) in
geometrically involved local regions.

Evaluation of the space-time-adaptive algorithm on a smooth numerical test case

We evaluate Algorithm 2 using the numerical test case with smooth solutions defined over 3 networks as
introduced in Section 6 with the default material parameters. As this is a smooth test case in a regular domain,
we expect only moderate efficiency improvements (if any) from adaptive mesh refinement, and therefore primarily
evaluate the accuracy of the error estimators on adaptively refined meshes and the balance between temporal
and spatial adaptivity.

We set 𝑇 = 1.0, 𝜏0 = 0.5, and begin with a 2× 4× 4 mesh of the unit square as 𝒯 0
ℎ . We set 𝜖 = 0, but instead

prescribe a resource tolerance 𝐿. We first set a fine initial time step 𝜏0 = 𝑇/64, and let 𝛽 = 2.0, 𝛼𝜂 = 0.3,
𝜏min = 𝜏0/16, and 𝜏max = 𝜏0 in Algorithm 1. We note that a Dörfler marking fraction 𝛾𝑀 of 1.0 yields a series
of uniformly refined meshes. For marking fractions between 0.0 and 1.0, we obtain adaptively refined meshes,
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Figure 2. Evaluation of adaptive time stepping for a smooth numerical test case, given uniform
meshes and different adaptive parameter configurations. All plots show the approximated error
estimators 𝜂𝑛

ℎ and 𝜂𝑛
𝜏 at each time step versus adaptive times 𝑡𝑛. (a) 𝑁 = 8, (b) 𝑁 = 16, (c)

𝑁 = 16 and 𝜏min = 𝜏0/4 and (d) 𝑁 = 32 and 𝜏min = 𝜏0/4.

Algorithm 2. Space-time adaptive algorithm.
1: Assume that an error tolerance 𝜖 and/or a resource limit 𝐿 and an initial mesh 𝒯 = 𝒯 0

ℎ are given. Set a
marking fraction parameter 𝛾𝑀 ∈ (0, 1].

2: while True do
3: Set the parameters (𝜏0, 𝛼𝜂, 𝛽, 𝜏max, 𝜏min) required by Algorithm 1.
4: Solve (4.2) over 𝒯 via the time-adaptive scheme defined by Algorithm 1.
5: Estimate the error 𝜂 = 𝜂1 + 𝜂2 + 𝜂3 + 𝜂4 where 𝜂𝑖 for 𝑖 = 1, 2, 3, 4 are given by (5.20).
6: if 𝜂 < 𝜖 then
7: Break
8: end if
9: Compute spatial error estimators 𝜂𝐾 for 𝐾 ∈ 𝒯 via (7.1).

10: From {𝜂𝐾}, define Boolean refinement markers {𝑦𝐾}𝐾∈𝒯ℎ
via Dörfler or maximal marking (with 𝛾𝑀 ).

11: Refine 𝒯 (locally) based on the markers {𝑦𝐾}.
12: if |𝒯 | > 𝐿 then
13: Break
14: end if
15: end while



1944 E. ELISEUSSEN ET AL.

Figure 3. Evaluation of the space-time adaptive algorithm on a smooth test case. (a) Approx-
imation error E (dots) and error estimates 𝜂 (diamonds) versus total resolution (|𝒯 | × 𝑁) at
different adaptive iterations with a uniform timestep 𝜏 = 1/64 for different Dörfler marking
fractions (1.0; 0.7; 0.5; 0.3; 0.1). (b) Displacement and pressure approximation errors under
adaptive refinement as generated by the space-time adaptive algorithm with 𝜏0 = 𝒯 /4, 𝛼𝜂 =
0.3, 𝛽 = 2.0, 𝛾𝑀 = 0.3, 𝜏max = 𝜏0, 𝜏min = 𝜏0/16 and 𝐿 ≈ 8000. (c) Error indicators on final mesh
refinement level with yellow values indicating high error indicators (colormap: viridis) (same
parameters as in 3b). (d) Discrete times (and time steps) generated by the space-time adaptive
algorithm (same parameters as in 3b).

yet for this test case, the time step remains uniform throughout the adaptive loop. The resulting errors and
error estimates at each adaptive refinement iteration are shown in Figure 3a. We observe that the errors decay
as expected, and that the error estimates provide upper bounds for the errors 𝐸 at each refinement level for all
marking fractions tested.

We next let 𝜏0 = 𝑇/4 and 𝛾𝑀 = 0.3 (and all other parameters as before), and consider the results of the
adaptive algorithm (Fig. 3b–3d). We find that the adaptive algorithm keeps the initial time step and refines the



A POSTERIORI ERROR ESTIMATION AND ADAPTIVITY FOR MULTIPLE-NETWORK POROELASTICITY 1945

mesh only for the first 4 iterations, which substantially reduces the 𝐿∞𝐻1
0 displacement approximation error

and moderately reduces the 𝐿∞𝐻1
0 pressure approximation error. For the next iterations, both the mesh and

the time step is refined. The pressure errors seem to plateau before continuing to reduce given sufficient mesh
refinement, while the displacement errors steadily decrease.

8. Adaptive brain modelling and simulation

We turn to consider a physiologically and computationally realistic scenario for simulating the poroelastic
response of the human brain. Human brains form highly non-trivial, non-convex domains characterized by narrow
gyri and deep sulci, and as such represent a challenge for mesh generation algorithms. Therefore, brain meshes
are typically constructed to accurately represent the surface geometry, without particular concern for numerical
approximation properties. We therefore ask whether the adaptive algorithm presented here can effectively and
without further human intervention improve the numerical approximation of key physiological quantities of
interest starting from a moderately coarse initial mesh and initial time step.

Specifically, we let Ω be defined by a subject-specific left brain hemisphere mesh (Fig. 4a) generated from
MRI-data via FreeSurfer [17] and SVMTK as described e.g. in [26]. The domain boundary is partitioned in two
main parts: the semi-inner boundary enclosing the left lateral ventricle 𝜕Ω𝑣 and the remaining boundary 𝜕Ω𝑠

(Fig. 4b).
Over this domain, we consider the MPET equations (3.3) with 𝐽 = 3 fluid networks representing an arteri-

ole/capillary network (𝑗 = 1), a low-pressure venous network (𝑗 = 2), and a perivascular space network (𝑗 = 3).
We assume that the two first networks are filled with blood, while the third network is filled with cerebrospinal
fluid (CSF).

8.1. Pulsatility driven by fluid influx

We consider a scenario in which fluid influx is represented by a pulsatile uniform source in the arteri-
ole/capillary network (𝑗 = 1):

𝑔1(𝑥, 𝑡) = 𝑔1(𝑡) =
1
2

(1− cos(2𝜋𝑡)), (8.1)

while we set 𝑔2 = 𝑔3 = 𝑓 = 0. From the arteriole/capillary network, fluid can transfer either into the venous
network or into the perivascular network with rates 𝛾12, 𝛾13 > 0, while 𝛾23 = 0. All material parameters are
given in Table 3.

In terms of boundary conditions for the momentum equation, we set

𝑢 = 0 on the outer boundary 𝜕Ω𝑠, (8.2a)⎛⎝𝜎 −
∑︁

𝑗

𝛼𝑗𝑝𝑗𝐼

⎞⎠ · 𝑛 = −𝑝csf 𝑛 on the inner boundary 𝜕Ω𝑣. (8.2b)

for a spatially-constant 𝑝csf to be defined below. For the arteriole space, we assume no boundary flux:

∇ 𝑝1 · 𝑛 = 0 on 𝜕Ω. (8.3)

We assume that the venous network is connected to a low (zero) pressure compartment and set:

𝑝2 = 0 on 𝜕Ω. (8.4)

We assume that the perivascular space is in direct contact with its environment, and set:

𝑝3 = 𝑝csf on 𝜕Ω. (8.5)
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Figure 4. The human brain as a poroelastic medium: meshes, boundaries, and snapshots of
solution fields. (a) Initial mesh of a brain hemisphere (sagittal view, along positive x-axis) with
20 911 cells and 6325 vertices, and a volume of 4.37×105 mm3. (b) Illustration of the semi-inner
ventricular boundary (in white), coronal and sagittal clips (view from the y- and negative x-
axes, respectively). (c) Left to right, top to bottom: displacement u magnitude, arteriole/capillary
pressure 𝑝1, venous pressure 𝑝2, and perivascular pressure 𝑝3 at peak displacement (𝑇 = 1.7).

Last, we model 𝑝csf via a simple Windkessel model at the boundary:

𝐶�̇�csf = 𝑄− 𝑝csf

𝑅
(8.6)

with compliance 𝐶 and a resistance 𝑅 (see Tab. 3), and where 𝑄 is the outflow: 𝑄 =
∫︀

𝜕Ω
𝑢 · 𝑛 d𝑠. After an

explicit time discretization, we define at each time step

𝐶𝑝𝑛+1
csf = 𝜏𝑛𝑄𝑛 +

(︁
𝐶 − 𝜏𝑛

𝑅

)︁
𝑝𝑛
csf , (8.7)
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Table 3. Material parameters corresponding to a human brain at body temperature. The
hydraulic conductances 𝜅 are defined in terms of the permeabilities and the fluid viscosities
𝜅𝑗 = 𝑘𝑗/𝜇𝑗 , 𝜇2 = 𝜇1. Values marked by the * are estimates, yielding physiologically reasonable
brain displacements, fluid pressures, and fluid velocities.

Parameter Value Note

𝐸 (Young’s modulus) 1.642× 103 Pa [10] (gray/white average)
𝜈 (Poisson’s ratio) 0.497 *
𝑠1 (arteriole storage coefficient) 2.9× 10−4 Pa−1 [19] (arterial network)
𝑠2 (venous storage coefficient) 1.5× 10−5 Pa−1 [19] (venous network)
𝑠3 (perivascular storage coefficient) 2.9× 10−4 Pa−1 [19] (arterial network)
𝛼1 (arteriole Biot–Willis parameter) 0.4 *
𝛼2 (venous Biot–Willis parameter) 0.2 *
𝛼3 (perivascular Biot–Willis parameter) 0.4 *
𝜅1 (arteriole hydraulic conductance) 3.75× 10−2 mm2 Pa−1 s−1 𝑘1/𝜇1, see below
𝜅2 (venous hydraulic conductance) 3.75× 10−2 mm2 Pa−1 s−1 𝑘2/𝜇1, see below
𝜅3 (perivascular hydraulic conductance) 1.43× 10−1 mm2 Pa−1 s−1 𝑘3/𝜇3, see below
𝛾12 (arteriole-venous transfer) 1.0× 10−3 Pa−1 s−1 *
𝛾13 (arteriole-perivascular transfer) 1.0× 10−4 Pa−1 s−1 *
𝐶 (environment compliance) 10 *
𝑅 (environment resistance) 79.8 Pa/(mm3/s) [38]

𝑘1 (arteriole permeability) 1.0× 10−10 m2 [19] (arterial network)
𝑘2 (venous permeability) 1.0× 10−10 m2 [19] (venous network)
𝑘3 (perivascular permeability) 1.0× 10−10 m2 Estimate, vascular permeability
𝜇1 (blood dynamic viscosity) 2.67× 10−3 Pa s [19] (arterial network)
𝜇3 (CSF dynamic viscosity) 6.97× 10−4 Pa s [12] (water at body temperature)

and use (8.7) in (8.2) and (8.5). Finally, we let all fields start at zero. We let 𝑇 = 2.0 corresponding to two
cardiac cycles, and an initial time step of 𝜏0 = 0.1.

The given fluid influx induces pulsatile tissue displacements and pressures in the different networks with
varying temporal and spatial patterns (Figs. 4c and 5). The brain hemisphere expands and contracts with peak
changes in volume

dV =
∫︁

Ω

div 𝑢 d𝑥,

of up to 1200 mm3. The largest displacements occur around the lateral ventricle with peak displacement mag-
nitudes of ≈0.5 mm. The arteriole/capillary pressure varies in space and time with a peak pressure max 𝑝1 of
up to 1200 Pa, a pressure pulse amplitude ∆𝑝1 of ≈ 560 Pa and a pressure difference in space of ≈ 400 Pa. The
venous pressure field show similar patterns, though with lower temporal variations and higher spatial variability
inducing higher venous blood velocities of above 2.0 mm/s (Fig. 5). The perivascular pressure shows a steady
increase of up to ≈ 200 Pa at 𝑇 = 2.0, but only moderate pulsatility and lower fluid velocities than both the
arteriole/capillary and venous networks.

The local error indicators {𝜂𝐾}𝐾 as defined by (7.1) show substantial local error contributions with substantial
spatial variation (Fig. 6): the values range from the order of 103 to 109 on the initial mesh 𝒯 0

ℎ . This large
variation in error indicator magnitude makes the choice of marking strategy important: the Dörfler marking
strategy would lead to the marking of perhaps only a handful of cells in this case as the local error indicators
for a few cells would easily add up to a significant percentage of the total error. Therefore, we instead choose
to employ a maximal marking strategy with a marking fraction 𝛾𝑀 = 0.03 for this test scenario.
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Figure 5. Left to right, top to bottom: volume change d𝑉 , peak pressure 𝑝𝑖 and average velocity
𝑣𝑖 for 𝑖 = 1, 2, 3 and integrated transfer rates 𝑇12 and 𝑇13 over time for a series of adaptively
refined meshes (a1, a2, a3). The opacity indicates the adaptive level: the more opaque, the finer
the mesh.

The adaptive algorithm yields locally refined meshes with around 67 000 cells after one refinement and 198 000
cells after two (Tab. 4a). The error estimates cf. (5.20) decrease with the adaptive refinement (Tab. 4b). The
contribution from 𝜂2 and 𝜂3 dominates the error estimate, and both of these as well as the total error estimate
𝜂 seem to halfen for each adaptive refinement level. We also note that in this simulation scenario, for all
time steps 𝑛 and refinement levels, the spatial error contribution 𝜂𝑛

ℎ dominates the temporal contribution 𝜂𝑛
𝜏

cf. Algorithm 1. Thus, the adaptive algorithm does not refine the time step and the uniform initial time step of
∆𝑡 = 0.1 is kept throughout.

We also inspect the computed quantities of physiological interest (Tab. 4a). Using the uniform refinement as an
intermediate reference value, we observe that the adaptive algorithm seems to produce more accurate estimates
of these quantities of interest even after a single adaptive refinement, and that the quantities of interest after two
refinements are more accurate than those of a uniform refinement. The adaptive procedure is therefore able to drive
more accurate computation of quantities of interest at a lower or comparable cost as uniform refinement.

Finally, we observe that a single uniform refinement yields a mesh with around 167 000 cells (Tab. 4a). Thus,
even with a small marking fraction of 3%, the mesh growth in each adaptive iteration is substantial. In the Plaza
algorithm [28] and other similar conforming mesh refinement algorithms, both cells marked for refinement as
well as neighboring cells will be refined to avoid mesh artefacts such as hanging nodes. Therefore, the domain
geometry and initial mesh connectivity may strongly influence the adaptive mesh growth, and mesh growth
may be more rapid than anticipated, especially in 3D. A more targeted adaptivity and more gradual growth
could possibly be achieved with even lower marking fractions, though in the current case the propagation of cell
refinement to neighboring cells seems to dominate. In any case, allowing for meshes with hanging nodes could
be an effective albeit more disruptive strategy for reducing the computational complexity.



A POSTERIORI ERROR ESTIMATION AND ADAPTIVITY FOR MULTIPLE-NETWORK POROELASTICITY 1949

Figure 6. Error indicators {𝜂𝐾}𝐾 for three levels of adaptive refinement 𝒯 0
ℎ , 𝒯 1

ℎ , 𝒯 2
ℎ the brain

simulation scenario. Refinement levels fromtop to bottom (a1, a2, a3), sagittal views from right
and left on the left and right.

8.2. Pulsatility driven by boundary pressure

We also consider an alternative, more localized, scenario in which, instead of considering a Windkessel model
for the CSF pressure and the directly coupled PVS pressure 𝑝3, we directly prescribe a variation in the boundary
PVS pressure. Concretely, we set

𝑝csf = −2× 133 sin(2𝜋𝑡) (8.8)
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Table 4. (a) Quantities of interest on the initial mesh (a1) and two adaptive refinement levels
(a2, a3) and after uniform refinement (u2). Each row gives the number of mesh cells (#cells),
minimal and maximal cell size ℎmin, ℎmax (mm), the number of degrees of freedom per time
step (#dofs), the computed peak volume change of the domain d𝑉 (mm3), and pulsatile volume
change amplitude ∆d𝑉 (mm3), peak arteriole/capillary pressure max 𝑝1 (Pa) and its pulsatile
amplitude ∆𝑝1 (Pa), peak venous fluid velocity max 𝑣2 (mm/s) and its pulsatile amplitude ∆𝑣2

(mm/s). (b) Computed error estimate 𝜂 and its partial contributions 𝜂1, 𝜂2, 𝜂3, 𝜂4 (see cf. (5.20))
for the series of adaptively refined brain meshes (a1, a2, a3).

(a)
#cells ℎmin ℎmax #dofs d𝑉 ∆d𝑉 max 𝑝1 ∆𝑝1 max 𝑣2 ∆𝑣2

a1 20 911 1.9 13.8 135,774 961 577 1086 541 1.84 0.99
a2 66 849 0.86 12.8 364,416 1099 643 1144 555 2.08 1.10
a3 198 471 0.43 11.4 1,021,749 1186 677 1177 564 2.28 1.19
u2 167 288 0.7 9.8 922,350 1162 668 1160 559 2.24 1.18

(b)
𝜂1 𝜂2 𝜂3 𝜂4 𝜂

a1 5.6× 103 5.7× 105 1.6× 106 2.9× 103 2.2× 106

a2 4.6× 103 2.7× 105 7.8× 105 2.9× 103 1.1× 106

a3 3.5× 103 1.3× 105 3.9× 105 2.9× 103 5.0× 105

and thus boundary CSF pressure variations of up to ±2× 133 Pa (corresponding to approx. ±2 mmHg) in each
cycle. In this scenario, we set the bulk fluid influx to zero (𝑔1 = 𝑔2 = 𝑔3 = 0.0). We consider otherwise the
same experiments as in Section 8.1 and the same adaptive parameters. Also for this case, we observe that the
adaptive refinement – even with a small marking fraction and maximal marking yields non-localized marking
patterns and a relatively rapid growth in the number of mesh cells. Three adaptive refinements yields meshes
with 20 911, 68 608 and 197 975 cells and no refinement of the time steps; numbers which are comparable with
the previous case.

These results corroborate the observation that the adaptive algorithm drives distributed mesh refinement,
and that the spatial errors overall dominate. Moreover, further studies may consider finer initial meshes and
further refinements. A prerequisite for this would be robust parallel adaptive refinement algorithms including
robust transfer of fields within the mesh hierarchy, and considered the topic of later work.
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