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A POSTERIORI ERROR ESTIMATION AND ADAPTIVITY FOR
MULTIPLE-NETWORK POROELASTICITY

EMILIE ELISEUSSEN'®, MARIE ELISABETH ROGNES*?® AND TRAVIS B. THOMPSON**

Abstract. The multiple-network poroelasticity (MPET) equations describe deformation and pressures
in an elastic medium permeated by interacting fluid networks. In this paper, we (i) place these equations
in the theoretical context of coupled elliptic—parabolic problems, (ii) use this context to derive residual-
based a posteriori error estimates and indicators for fully discrete MPET solutions and (iii) evaluate
the performance of these error estimators in adaptive algorithms for a set of test cases: ranging from
synthetic scenarios to physiologically realistic simulations of brain mechanics.
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1. INTRODUCTION

At the macroscale, the brain and other biological tissues can often be viewed as a poroelastic medium: an
elastic structure permeated by one or more fluid networks. Such structures can be modeled via Biot’s equations
in the case of a single fluid network [8,9,35] or by their generalization to the equations of multiple-network
poroelasticity (MPET) which describe the case of two or more interacting fluid networks [2,4-6,18,20,36,37,39].
However, the computational expense associated with the numerical solution of these equations, over complex
domains such as the human brain, is substantial. A natural question is therefore whether numerical error
estimation and adaptivity can yield more accurate simulations of the MPET equations within a limited set of
computational resources.

The quasi-static MPET equations read: given a domain €2, a finite final time 7" > 0 and a set of J fluid
networks, find the displacement field u : [0, 7] x Q@ — R¢ and pressure fields py,po,...,ps : [0,T] x Q — R such
that

J
fdivcr(u)JrZaj Vp; =1, (1.1a)

Jj=1
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8t(sjpj + &%} div u) - diV(Ii]‘ ij) + Tj =9gj- (11b)

The quantity o(u) = 2ue(u) + Atr(e(u))I in (1.1a) is the elastic stress tensor and involves the displacement w,
the linearized strain tensor e(u) = 3 (Vu + VuT), the d x d identity matrix I and the material Lamé coefficients
p and A. Each one of the J fluid networks is associated with a Biot—Willis coefficient o, a storage coefficient
s, and a hydraulic conductivity #;. An interpretation of the Biot—Willis and storage coefficients, in the MPET
context, appears in [4, Section 3]. We use transfer terms T in (1.1b) of the form

Ty = Zij Tji = v5i(pj — pi)- (1.2)

The coefficients v;; regulate the interplay between network ¢ and network j and T is the total transfer out of
network j (into the other networks). The transfer term vanishes when J = 1 and (1.1) coincides with Biot’s
equations for a single fluid in a poroelastic medium. We also note that the fluid (Darcy) velocity v; in network
j is defined by

Uj = —Iij ij (13)

Over the last decade, several authors have studied a posteriori error estimation and adaptivity related to
(1.1) in the case of J = 1; that is, for Biot’s equations of poroelasticity. Depending on the application of interest,
different formulations of Biot’s equations have been used which introduce additional solution fields such as the
Darcy velocity, the total pressure or the effective stress. In each case, a posteriori methods have been developed
to facilitate adaptive refinement strategies. In [30], the authors consider the standard two-field formulation of
Biot’s equation in two spatial dimensions, develop an a posteriori error analysis based on H (div) reconstructions
of the flux and effective stress and apply the resulting estimators to construct a time-space adaptive algorithm.
A posteriori estimators have also been used to provide error estimates for the popular fixed-stress iterative
solution scheme applied to the two-field formulation [22]. Formulations with additional fields have also been
considered for Biot’s equations. The total pressure formulation [29] is a locking-free, three-field formulation,
ideal for a nearly-incompressible poroelastic material. A priori estimates, and an adaptive refinement strategy,
for this formulation are constructed in [21] for quadrilateral and simplicial meshes. Residual-based a posteriori
error estimates have also been advanced [24] for a lowest-order discretization of the standard Darcy-flux three-
field formulation which, as shown in [31], robustly preserves convergence in the presence of vanishingly small
hydraulic conductivity. Finally, a four-field formulation, with symmetric stress and a Darcy velocity, of Biot’s
equations has been used to develop [1] a posteriori error estimates, and an adaptive refinement, based on
post-processed pressure and displacement fields.

The a posteriori landscape for the more general MPET system (1.1) is considerably sparse. A posteriori
error estimates for the two-field formulation of the Barenblatt-Biot equations (corresponding to the J = 2 case
of (1.1)) have indeed been obtained by Nordbotten et al. [27]. In general, though, there has been little work on
the development of a posteriori error estimators for (1.1), for formulations with any number of fields, in the case
of more than one fluid network (i.e. J > 1). However, the recent work of [15] developed an abstract framework
for a posteriori error estimators for a general class of coupled elliptic—parabolic problems.

In this manuscript, our focus is three-fold. First, we rigorously place the MPET equations in the context of
coupled elliptic—parabolic problems. In particular, we consider extended spaces, bilinear forms and augmentation
with a semi-inner product arising from the additional transfer terms. Second, we use this context to derive specific
a posteriori error estimates and error indicators for the space-time finite element discretizations of the multiple-
network poroelasticity equations in general. In biomedical applications, two-field variational formulations are
often used to numerically approximate the multiple-network poroelasticity equations [36,37], and we therefore
focus on such here. Third, we formulate a physiological modelling and simulation-targeted adaptive strategy and
evaluate this strategy on a series of test cases including a clinically-motivated simulation of brain mechanics.
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2. NOTATION AND PRELIMINARIES

This section provides a brief account of the notation and relevant results employed throughout the remainder
of the manuscript.

2.1. Domain, boundary and meshes

It is assumed that the poroelastic domain  C R? with d € {1,2,3} is a bounded, convex domain with 9
Lipschitz continuous. We consider a family of mesh discretization {75}, of Q into simplices; triangles when
d = 2 and tetrahedra when d = 3. Here, h > 0 is a characteristic mesh size such as the maximum diameter over
all simplices. Furthermore, we assume that each mesh 7 in the family is quasi-uniform.

2.2. Material parameters

For simplicity, we assume that all material parameters are constant (in space), and that the following (stan-
dard) bounds are satisfied: > 0, 20+ X >0, k; >0, a;; € (0,1], s; >0 for j =1,...,J, and vj; = y;; > 0 for
i,7 =1,...,J with ; = 0. The analysis can be extended to the case where the parameters, above, vary with
sufficient regularity in space and time provided the above bounds hold uniformly. For each parameter, §; or &;;
above, the minimum and maximum notation

Emax = max§; or max&;; and  Epin = ming; or min&;;,
A 1] 7 )

will be used throughout the manuscript; the notational extension to the case of smoothly varying parameters,
on a bounded domain with compact closure, is clear.

2.3. Norms and function spaces

Let f, g denote real-valued functions with domain  C R<. If there exists a generic constant C' with f < Cyg
then we write

YR

The notation (f, g) signifies the usual Lebesgue inner product defined by
(f9) = | fods
Q

and || f|l = {f, f)l/ % is the corresponding norm on the Hilbert space of square-integrable functions
L*(Q) = {r: Q—>R| If]| < oo}

When the context is evident in praxis the domain, €2, is suppressed in the above expressions. Given w a positive
constant, positive scalar field, or positive-definite tensor field, the symbolics

fo)w = Wha)s flle = (F F)Y2

refer to a w-weighted inner product and norm, respectively.
The Sobolev space H'(£), often abbreviated as simply H', consists of those functions f € L? whereby O, f
exists, in the sense of distributions, for every j = 1,2,...,d and 0,,f € L2. The associated norm is given by

the expression
1/2

d
s = {112+ 10w, £

=1

The subset H} C H' signifies functions with zero trace on the boundary; that is, those functions f € H! such
that f(z) = 0 for almost every € 9Q. In addition, given a Hilbert space X with inner product (-,-)y, the
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notation [X]? refers to vectors f = [f1, fa,.. ., fd]T whereby f; € X for each j = 1,2,...,d. The natural inner
product on [X]?, in which [X]¢ is also a Hilbert space, is then

d

<f7g> = Z<fjvgj>xu

j=1

with resulting norm
1/2

d
e = | DIAI%
j=1

The additional decoration of the inner product, for the case of a Hilbert space X, will be omitted when the
context is clear. For X any Banach space, the notation X* denotes the dual space,and we also write (z*,z) v/, v
for the duality pairing. Accordingly, the operator norm on X* is denoted

[z*|lx- = sup ’<$*’$>X*xx‘-
|| x =

Unlike the inner product case, the decoration of the duality pairing bracket notation will always be made explicit
and never omitted.

We also recall the canonical definition [16] of some useful time-dependent spaces whose codomain is also
a given Hilbert space X. With X selected we consider a strongly measurable function f : [0,7] — X. Then

f € L?(0,T; X) means that
T 1/2
Hf”L?(o,T;)Q = (/0 ||f(t)||§( dt) < o9,

[ flr2(0,7,x) = esssupl| f(?)[| x < o0
0<t<T

whereas f € L*°(0,T; X) implies

and f € C(0,T; X) means that

= t .
IF ooy = s I7(0)]x < o0

We now discuss those strongly measurable functions, f : [0,7] — X, which possess weakly differentiability
in time. The space H*(0,T; X) denotes the collection of functions, f € L?(0,T; X), such that d; f exists, in the
weak sense, and also resides in L?(0,7; X). This is similar to the usual definition of H1(£2), given above, and
the norm corresponding to this space is also similar; it is given by

T
11l 0,7:5) = ( / 1FO)I% + 10 DIl dt)
Likewise, f € C*(0,T; X) implies that f and its first & weak derivatives in time, ag'f for j = 1,2,...,k, all
reside in C(0,T; X).
2.4. Mesh elements and discrete operators

For a fixed h, the mesh 7}, is composed of simplices, denoted T € 7}, and faces (edges in 2D) e € 9T Let I'
denote the complete set of faces of simplices T € 7j; then I' can be written as the disjoint union

I' =Tine UL,

where e € T';,; if e is an interior edge and e € I'yq if e is a boundary edge.
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Let f be a scalar or vector valued function and suppose e is an interior edge e € Ty NT_ where T} and and
T_ are two simplices with an arbitrary but fixed choice of labeling for the pairing. We denote by n. the outward
facing normal associated to T'y. We use an explicit jump operator defined, for e € I';,,;, by

(1= f+— 1=, (2.1)

where f, denotes f restricted to e € Ty and f_ denotes f restricted to e € T_. For an edge e € I'yq we have
that there exists only one T =T € 7}, such that e € 9T and in this case we define

[f1=f+
2.5. Boundary and initial conditions

We assume homogeneous boundary conditions for the displacement and pressures; though, as in [15], these
conditions can easily be generalized [32].

3. COUPLED ELLIPTIC—PARABOLIC PROBLEMS AS A SETTING FOR POROELASTICITY

To consider the a posteriori error analysis of the generalized poroelasticity equations (1.1), we follow the
general framework for a posteriori error analysis for coupled elliptic-parabolic problems presented by Ern
and Meunier [15]. In Section 3.1 below, we briefly overview this general framework and its application to Biot’s
equations. Next, we show that (1.1) can be addressed using this general framework, also for the case where J > 1
under appropriate assumptions on the transfer terms 75, _.,, in Section 3.2. Based on the general framework, Ern
and Meunier derive and analyze several a posterior: error estimators. These estimators, and their corresponding
extensions to the generalized poroelasticity equations, will be discussed in Section 5.

3.1. The coupled elliptic—parabolic problem framework

The setting introduced by Ern and Meunier [15] for coupled elliptic—parabolic problems provides a natural
setting also for generalized poroelasticity. The general coupled elliptic—parabolic problem reads as: find (u,p) €
HY(0,T;V,) x H*(0,T;Vy) that satisfy (for almost every ¢ € [0,T]):

a(u,v) = b(v,p) = {f, U>V;xva’ Vo e Vg, (3.1a)
c(0rp, q) + b(Oru, q) + d(p,q) = (9, Dy v, V4 € Va- (3.1b)

The data, f and g in (1.1), are general and assumed to satisfy f € H'(0,7;V;) and g € H'(0,T;V}). The
initial pressure is assumed to satisfy p(0) € V. Moreover, it is assumed that

(1) V, and V; are Hilbert spaces.

(2) a:VyoxV, - Randd:V;xV; — R are symmetric, coercive, and continuous bilinear forms, thus inducing
associated inner-products and norms (denoted by | - ||, and || - ||4) on their respective spaces.

(3) There exist Hilbert spaces L, and Ly with V, C L, and V; C L4, where the inclusion is dense and such
that 1£]1,, S Ifll, for £ € Va, and lgll,, S llgll, for g € Va.

(4) ¢: Ly x Ly — R is symmetric, coercive and continuous; thereby defining an equivalent norm || - ||, on Lg.

(5) There exists a continuous bilinear form b : V,, x Ly — R such that |[b(f,g)| < || fllallglle for f € V, and
g€ L.

Example 3.1. Biot’s equations of poroelasticity (i.e. (1.1) for J = 1 fluid networks) fit the coupled elliptic—
parabolic framework with

Vo= [HY], L.=[1}%, Va=H} Li=1I°
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and

a(u,v) = (o(u),&(v)),

b(u,p) = (aip,divu), c(p,q) = (c1p,q), d(p,q) = (k1 Vp, V),

with the standard (vector) H}-inner product and norm on V, and V, and L?inner product and norm on L,
and Lg. It is readily verifiable that the general conditions described above are satisfied under these choices of
spaces, norms, inner products and forms [15]. The existence and uniqueness of solutions to Biot’s equations of
poroelasticity (J =1 in (1.1) and (3.1) with the above bilinear forms) is now a classical result [32].

3.2. Generalized poroelasticity as a coupled elliptic—parabolic problem

In this section, we derive a variational formulation of the generalized poroelasticity equations (1.1) for the
case of several fluid networks (i.e. J > 1) and show how this formulation fits the general framework presented
above. The extension from Biot’s equations to generalized poroelasticity is natural in the sense it coincides
with the original application of the general framework to Biot’s equations when J = 1. Suppose that the total
number of networks J is arbitrary but fixed. We define the spaces

V, = [HY], L.=[t3", Vva=[H], La=[17". (3.2)

We consider data such that f € H'(0,T;L,) and (g1,92,...,97) € HY(0,T; Lyg) with given initial network
pressures determined by p(0) € V. A standard multiplication, integration and integration by parts yield the
following variational formulation of (1.1): find v € H(0,T;V,) and p = (p1,...,ps) € H'(0,T;Vy) such that
for a.e. t € (0,T:

J
Z a;pj,dive) = (f,v), (3.3a)
Jj=1
J J
Z Brs5ps, q5) + (Oreey divu, ;) + (55 Vps, Vag) +(Th,q5) = > (95:9;) (3.3b)
o =1

forveV,, ¢=(q,-..,95) € V4. As noted in [15], (3.3a) holds up to time ¢ = 0 so that ug is determined by the
initial data p(0) and initial right-hand side f(0). By labeling the forms

a(u,v) = (o(u),&(v)), (3.4a)
J

b(u,p) = Z a;pj,divu), (3.4b)
”

c(p.q) = > (s;pj ), (3.4c)
j=1
J

d(p,q) = Z(Hy‘ Vp;, V) + (T}, q5), (3.4d)

<
Il
-

we observe that the weak formulation (3.3) of (1.1) takes the form (3.1) where T}, in (3.4d), is given by (1.2).

Remark 3.1. Existence and uniqueness of solutions to (3.3), with forms (3.4), for the case of J = 2 (Barenblatt-
Biot) have been established [33]. However, to our knowledge, a rigorous treatment of existence and uniqueness of
solutions to (1.1), (3.3) for J > 2 remains an open problem despite their otherwise successful use in applications
[18,19,36,37].
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We now show that the associated assumptions on these forms and spaces hold, beginning with properties of
the form d in Lemma 3.1 below.

Lemma 3.1. The form d given by (3.4d) defines an inner product over [H}(Q)]? with associated norm

lallZ = d(a,q Z IV g%, + a7, Vg€V, (3.5)

where | - |7 is defined by (3.7), which is such that

lalla S llgllmzs  Va € [Hol”, (3.6)
with inequality constant depending on J, Kmax, Ymax and €.

Proof. By definition (1.2) and the assumption of symmetric transfer v;; = v;; > 0, we have

J J J 1 J J
> (Tjap) =D > (il ) =52 D (il —pi), (4 — ). (3.7)

j=1 j=11i=1 j=11i=1
Given p, q € Vy, the bilinear form defined by (3.7), that is

J

. @) =Y (T q5)

J=1

is clearly symmetric and satisfies the requirements of a (real) semi-inner product on Ly x Ly in the sense of [11].

It follows that
1/2

1 J J
lalr = (@, 0)7" = | 5 2D (ilay = a0). (45 — @) (3.8)

j=11i=1

defines a semi-norm on Ly X Ly and that the corresponding Cauchy—Schwarz inequality holds. Using the triangle
inequality, the definition (3.7), the bounds for +y,; and the Poincaré inequality, we have that

lglr < Nlallpeys < Nalljmgys (3.9)

with constant depending on ypyax, J, and the domain via the Poincaré constant. Under the assumption that
Kmin > 0, we observe that as a result d defines an inner product and norm on [H]” x [H{]”. Similarly, (3.6)
holds with with constant depending on Kpyax in addition to ypax, J, and the domain €. O

Lemma 3.1 will be used in the subsequent sections. We next show that the choices of spaces (3.2) and
forms (3.4) satisfy the abstract assumptions of the framework as overviewed in Section 3.1, and summarize this
result in Lemma 3.2.

Lemma 3.2. The problem (3.3), arising from the equations of generalized poroelasticity (1.1) with material
parameters as in Section 2.2, posed on the spaces (3.2) with bilinear forms defined via (3.2) is a coupled elliptic—
parabolic problem and satisfy the assumptions set forth in [15].

Proof. We consider each assumption in order. These are standard results, but explicitly included here for the
sake of future reference.

(1) Vo and Vy defined by (3.2) are clearly Hilbert spaces with natural Sobolev norms || - |z,
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2) a is symmetric, coercive on V, by Korn’s inequality and the lower bounds on u, 2 + dA, and continuous
My ape
(with continuity constant depending on fimax and Amax). d is clearly symmetric by the transfer symmetry
assumption and (3.7), coercive by |- |7 > €0 and the assumption that Ky, > 0:

J

J
Z Vq; V), > ’fmmZHQJH?Jg

j=1

and continuous by Lemma 3.1.

(3) The embedding of (V| - ||a) into L, follows from Poincare’s inequality and the coercivity of a over V, and
similarly for Vg <— Ly.

(4) c is symmetric by definition, continuous over Ly with continuity constant depending on ¢pax, and coercive
with coercivity constant depending on cpi, > 0.

(5) The form b given by (3.4b) is clearly bilinear and continuous on V,, x L, as

J J 2
. 2
b, p)| = | Y (py diva), | < [lull lepjll = [lull g Ipll z20 < llullallplle

=1

by applying Cauchy—Schwarz and Hoélder’s inequality, with constant depending on a,;, > 0 and the coer-
civity constants of a and c.

O

In light of Lemma 3.2, the generalized poroelasticity system (3.3) is of coupled elliptic—parabolic type and
takes the form of (3.1) with bilinear forms defined by (3.4).

Corollary 3.1. The following energy estimates hold for almost every t € [0,T]

J J t
I+ S sl 01 + 3 [ w19 LYY [ sttt as
j=1 j=1

i=1 j=1

2 T J
s<sup 17l + / 10u£(s |ds> + / la()I ds + luoll? + > sllpo>
j=1

s€[0,T]

Proof. The proof follows directly from Lemma 3.2, the corresponding energy estimates for coupled elliptic—
parabolic systems [15, Prop. 2.1] and the definition of the norms arising from the forms (3.4). Moreover,
the proportionality constant in the estimates is independent of all material parameters and the number of
networks. (]

Remark 3.2. The elliptic-parabolic MPET energy estimates, of Corollary 3.1, are similar to those of the total
pressure formulation [23, Thm. 3.3] when the second Lamé coefficient, A, is held constant in the latter. The
primary difference is that [23] separates the estimates of u from that of the solid pressure, A div u, by including
the latter term into a ‘total pressure’ variable. This allows for |jul|, to be estimated directly, in [23], regardless
of the value of A used in the definition of |ju]|,.

Remark 3.3. The conditions of Section 3.1, i.e. conditions (2)—(5), can place restrictions on the generalized
poroelastic setting. As an example, the assumption of a vanishing storage coefficient has appeared in the liter-
ature as a modeling simplification [25,40]. However, the coercivity requirement of condition (4) precludes the
use of a vanishing specific storage coefficient, s; in (3.4c), for any network number j =1,2,...,J. Care should
be taken to ensure that any modeling simplifications produce forms that satisfy the conditions of Section 3.1 in
order for the results of Corollary 3.1 and Section 4 to hold.
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4. DISCRETIZATION AND a priori ERROR ESTIMATES

4.1. An Euler-Galerkin discrete scheme

We now turn to an Euler-Galerkin discretization of (1.1) in the context of such discretizations of coupled
elliptic-parabolic problems in general [15]. We employ an implicit Euler discretization in time and conforming
finite elements in space.

We consider a family of simplicial meshes {7,},., with h a characteristic mesh size such as the maximal
element diameter

h = max{hg = diam(K) | K € Ky}.

Furthermore, let {V, 5}, and {Vy}, denote two families of finite dimensional subspaces of V,, and Vj, as in
(3.2), respectively, defined relative to {73 }5. For a final time T'> 0 we let 0 =ty < t; < --- <ty = T denote
a sequence of discrete times and set 7,, = t,, — t,,—1. For functions and fields, we use the superscript n to refer
values at time point ¢,,. We also utilize the discrete time differential notation §; where

Seup =7 H(up —up ). (4.1)

With this notation, the discrete problem is to seek u} € V, 5 and pj = (p?’h,pg)h, e ,p’})h) € Van such that
for all time steps ¢, with n € {1,2,...,N}:

a(uy,vy) — b(vp, py) = (fil,vn) Yon € Von, (4.2a)
c(0tph> qn) + 0(sup, qn) + d(ph, an) = (gn>qn) ¥ qn € Van, (4.2b)

where the spaces and forms are defined by (3.2) and (3.4). The right-hand sides, above, express the inner
product of the discrete approximations f}' € L, 5, to f and g € La, to g, at time ¢,,. By Lemma 3.2 and [15,
Lemma 2.1], the discrete system (4.2) is well-posed.

4.2. A priori error estimates

Now, let V; ;, and Vg 5, be spatial discretizations arising from continuous Lagrange elements of order k, and kg,
respectively, where k; = k, — 1; this relation on relative degree results directly from the framework hypotheses
[15, Sect. 2]. Let Py (T) denote polynomials of order k on a simplex T € Tj,. We consider the continuous Lagrange
polynomials of order k, and k,_1 defined by

Vo = {vn € C°(Q) | vpr € P, (T) for every T € Ty, }, (4.3)
Van = [{an € C°) | gz € P, 1(T) for every T € T;,}]” (4.4)

as the discrete spaces for the displacement and network pressures, respectively. When J = 1 this choice coincides
with the previous [15] discretization considered for Biot’s equations.

The general framework stipulates that three hypotheses [15, Sect. 2.5], restated here for completeness, should
be satisfied for the discretization.

Hypothesis 4.1. There exists positive real numbers, denoted s, and sq, and subspaces, W, C V, and Wy C V,
equipped with norms |||y, and |||y, such that the following estimates hold independently of h

Yo € W, inf |lv —wpl, S B[]y, (4.5)

Uheva,h

Vge Wa, inf |[lg—anlly S 0% gllw, (4.6)
qn€Va,n
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Hypothesis 4.2. There exists a real number § such that for every r € Ly, the unique solution ¢ € Vy for the

dual problem
d(q7 7’) = C(Ta q) vq € Vd

is such that there exists ¢y, € Vg satisfying

16— ¢nlly S ROII7l,-
Hypothesis 4.3. s, =sq+ 6

We now state the primary result of this section.

Lemma 4.1. The discrete two-field variational formulation of the MPET equations (4.2) with the choice of
discrete spaces V, 5, (4.3) and Vg (4.4) satisfy the elliptic-parabolic framework Hypotheses 4.1-4.3, above.

Proof. Choose s, = k, and sq = k,—1. Then the conditions of Hypothesis 4.1 follow, as in [15], from choosing
W, = [Hj N H*+1(Ty)] % and Wy = [H§ N H* (T,)] 7 Where H*(7},) denotes the broken Sobolev space of order
k on the mesh 7;,. The estimate (4.5) follows, without extension, directly from classical results in approximation
theory [14]; precisely as discussed in [15]. Similarly, the estimate (4.6) follows from the properties of d, standard
interpolation estimates [14], and the product structure of V; and Vg .

For Hypothesis 4.2, we use the elliptic regularity, c.f. standard well posedness and interior regularity arguments
in [16, Chp. 6], of the solution to the coupled linear diffusion-reaction equation of finding ¢ € Vy such that

Ap+Top=R for Re€ Ly,

where A is the J x J diagonal Laplacian matrix

A0 --- 0
0 —A--- 0
. (4.7)
0 0 0 —-A
and I' is a matrix composed of the transfer coefficients 7;;: I';; = Ej Vi, and I';; = —;; for j # 4. It follows

from Lemma 3.1, and I symmetric and positive-semi definite, that the solution ¢ € V,; to the dual problem

d(w, ¢) = ¢(R,w) = (R, w>ij,Vdv for all w € V, (4.8)

lies in [HQ]J with [|¢]| 2 S IR, = [ R]|.. Using this and standard interpolation results we have ¢n € Van
with
l¢ = ¢nlly S PIRIl. = R |IRI,,

where 6 = 1; exactly as in [15]. Finally, with 6 = 1 and the choices s, = k, and s4 = k, — 1, Hypothesis 4.3 also
holds. (]

A priori estimates for the Euler-Galerkin discretization (4.2) of the generalized poroelasticity equations (1.1)
then follow directly from [15, Thm. 3.1]. These estimates will be used in the a posteriori analysis and are
restated from [15], subject to the extended spaces and forms of (3.2) and (3.4).

Corollary 4.1 (A priori estimates for generalized poroelasticity). Let I,, = [t,_1,t,] denote the nt" time sub-
interval of [0,T] forn =1,2,...N of length 7, = t, — tn—1. Suppose the exact solution (u,p) to (3.3) satisfies
u e CHO,T;W,)NC%0,T;V,) and p € CH(0,T; W) NC?(0,T; Lyg), where W, and Wy are given above with V,,
and Lq as in (3.2). It is also assumed that the initial data satisfies

luo = wonll, S h*lluollyy, and o = ponll. < h* Ipollw,-



A POSTERIORI ERROR ESTIMATION AND ADAPTIVITY FOR MULTIPLE-NETWORK POROELASTICITY 1931

Define
CT(u,p) = [|0sp(s) I3 IH,Wd)+H3tu(8)|\ioo(1n;wa),
3 (u.p) = [|07p(s HLoo(I oy T 10Fuls )HzLoo(zn;va)’
C™(f,9) = lf™ = £12 + mullg™ = gr 112
C(uo,po) = ||Uo||wa + ||p0||€vd-

p) =
)

Setting, for simplicity, s = k, then s = kq+ 1, by the selection of the discrete spaces, and we have that for each
ne{l,2,...,N}

[u™ = up |2 + [lp" = pil2 < h**C(uo, po) + Z C™(f,9) + Z Tmh? CT*(u, p)

. (4.9)
+ 30 macs )+ 22 (I, + 16711y, ).
m=1
and
37 mallp™ = B < 3 C(u0,po) + . CT(Fg) + Y Tnh O (u,p)
m=1 . m=1 . m=1 (4.10)
+ 3T () + Y Tk T "Gy,
m=1 m=1

5. A posteriori ERROR ESTIMATION FOR GENERALIZED POROELASTICITY

We now turn to discuss the implications to a posteriori error estimates for generalized poroelasticity as
viewed through the lens of the coupled elliptic-parabolic problem framework. Our focus is to derive, apply
and evaluate residual-based error estimators and indicators in the context of generalized poroelasticity. We will
therefore present an explicit account of abstractly defined quantities presented in [15, Sec. 4.1], including e.g. the
Galerkin residuals, applied in our context.

5.1. Time interpolation

We now recall additional notation for time interpolation (from [15, Sec. 4.1]), and rewrite (4.2). Let up,
denote the continuous and piecewise linear function in time, up, € H'(0,T;V, ) such that up,(t,) = ull.
Similarly (pinr,p2,hry- - Dihr) = Phr is defined by pp-(t,) = pj and extended linearly in time. As a result,
O¢upr, Oppr are defined for almost every ¢ € (0,7T). Define the corresponding continuous, piecewise linear in
time variants of the data, fj, and gp-, by the same approach; i.e. fi,(t,) = f' and gn,(t,) = gj.

Before rephrasing (4.2) using the time-interpolated variables we define piecewise constant functions in time
for the pressure and right-hand side data. These are defined as 7°p,, = pp and mOgnr = gpon I, = (th_1,t,).
Using the above notation, the discrete scheme for almost every ¢t € (0,T") becomes

a(Unr,vn) = b(Vh, Phr) = (fur, Vn), Vo € Van, (5.1a)
c(Opnry an) + b(Owunr, qn) + d(7°prr an) = (7°9nr an),  Van € Van. (5.1b)

Remark 5.1. Using the linear time interpolations defined above, such as up, or pp,, we have the following
identity

Oupr = oup forallt € I, = (tn—1,tn),
so that the left-hand sides of and (4.2b) and (5.1b) are identical. However, as noted in [15], the interpolants

of the data, fr, and gp,, are continuous and facilitate the definition of the continuous-time residuals (5.2) and
(5.3).
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5.2. Galerkin residuals

The Galerkin residuals [15, Sec. 4.1] are functions of time whose co-domain lies in the dual of either V,, or V.
More specifically, the residuals are continuous, piecewise-affine functions G, : [0,7] — V;* and Gg : [0,T] — V.
In our context, of generalized poroelasticity, the Galerkin residual G, is, given any v € V,, defined by the relation

J

(Ga,v) = (frr,v) — altupr,v) + b0, ppr) = (frr,v) — alups,v) + Z<pj7h7—, div v}aj. (5.2)

j=1

Similarly, G, is, given any ¢ = (¢1,42, .- .,qs) € Vg, defined by the relation

<gd, > = <ﬂ.Og’ Q> - C(atp}m’a Q) - b(atu}H') Q) - d(ﬂ-ophﬂ Q)

J J J
Z ™ g],hT?QJ> Z S]atp],hT?QJ Z<ajat divuh‘ran>
i=1 i=1 i=1 (5.3)

J J

J
1
Z ki Vi, Vaj) + 5 DO i inr — pine)s (@5 — 4i))-

j=11i=1

Again, we note that (5.2) and (5.3) generalize the corresponding [15, Sec. 4.1] residuals for the case of single-
network poroelasticity studied therein.

5.3. Data, space and time estimators

The general coupled elliptic—parabolic problem framework gives a posteriori error estimates, and in particular
so-called data, space and time estimators for the discrete solutions. In our context of generalized poroelasticity,
these can be expressed explicitly as follows. We have terms for the data f and g given by

9 2
g(fvg) = Hg - WoghTHLQ(QT;V;) + (Hf - thHLOO(O,T;Va*) + ||at(f - th)HLl(O,T;Va*)>

and the framework data, space and time estimators are defined, respectively, as

Edata = Huo—uoth+ ||p0—P0hHi+5(f,g)a (5.4)
2
2
Espace = [9allL2(0,75v5) + (HgaHLw(O,T;v;) + HatgaHLl(o,T;v;)) , (5.5)
2
5‘time - ||ph7' - 7T-Oph‘rHLz(O’T;Vd)a (56)

where we recall that the norms are now defined according to the extended generalized poroelasticity spaces (3.2)
and forms (3.4). The following a posteriori error estimate for the general MPET equations holds:

Proposition 5.1. For every time t,,, with n € {1,2,..., N}, the following inequality holds

2 2 2
Ju — uhTHLOC((],tn;Va) +lp— phTHLOO(O,tn;Ld) +p— phT”L?(o,tn;Vd) (5.7)
2
+ ||p - 7T'OphTHL2(0’1€";VHZ) ,S Edata + gspace + Etime- (58)
Proof. The proof follows from [15, Thm. 4.1] and the arguments of Section 3.2. (I

Remark 5.2. Note [15, Eq. (4.10)] that (5.6) is equivalent to

N

1
gtime = g Z TmHPZL _phm71| 27

m=1

me{l1,2,...,N}.
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The above expression will be used in Section 5.6 and follows, via the definition of p;, and 7°, from the calculation

2
B m m—1112
thT T phTHL2(0TVd Z / < 1) thm — Py lHd d¢
-2 m—1]|2 bm 2
= Z i =y IId/ (€ — 1) de.

m—1

5.4. Element and edge residuals

In this section we state the definition of the element and edge residuals (c.f. [15, Sec. 4.1]) adapted to
generalized poroelasticity. We then define from these residuals a set of a posteriori error indicators. These
indicators can be used to bound the Galerkin residuals defined in Section 5.2. The a posteriori error indicators
defined in this section will be used to carry out adaptive refinement for the numerical studies in Section 6.

5.4.1. Element and edge residuals for the momentum equation

The residuals associated with the displacement are derived from the Galerkin residual (5.2). We give them
explicitly here for the sake of clarity and to facilitate implementation. For v € V, and at time t,,, with n €
{1,2,...,N}, we have

J
< gnav> = Z < }erl—ﬂ}) < (uhr K+Z O‘jp;r,LhT’diVU>K ’
KeT, j=1

where the notation (f,g), = [ . J gdz denotes local integration over a simplex K € 7;, and we have used that

up, = uy and p, = pi, for every n € {1,2,...,n}. Integrating the above by parts over each K € 7}, gives
(Gasv) = Z <RZh7K7 U>K + Z < 17h,e7v>e7 (5.9)
KeT, e€lint

where I';,; denotes the set of interior edges, (f,g), denotes integration over the edge e and where

Ry i = fig +divo(up)g = o Vpl, g, (5.10)
j=1

where the additional subscript denotes the restriction K. To define the term J};, above we use the standard

notation, of (2.1), and define

whe = —lo(up)]cne, (5.11)

where e is an edge and n. is the fixed choice of outward facing normal to that edge. The corresponding time-
shifted local residual and jump operators are then

-1 -1
JtRuh K= Th (Ruh K = Ruh K) 6t‘]uh e = Tn ( uh,e J ) (512)
To close, we note that the conditions in [15] on the jump operator, Jyu . above, are general and other choices
satisfying the abstract requirements can be used if desired.

5.4.2. Element and edge residuals for the mass conservation equation

The residuals associated with the network pressures are derived from the Galerkin residual G4 (5.3). Inte-
grating the diffusion terms by parts, over T' € 7}, gives

gd, Z <Rph K’Q>K Z < he7q (513)

KeTy, e€lint
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In the context of the extended multiple-network poroelasticity framework the strong form of the mass conser-
vation residual, R}, ;- € Lq of (5.13), has a jth component, for j € {1,2,...,J}, with

{Rgh,K}j = g;l,th — sjétpzth — a;(div euy) ;o + (div Kj szh)K — T nix (5.14)

recalling that 7} is given by (1.2), and T} is its discrete analogue. In (5.14), we have also used that d;p7, =
opy = T3 (p;fh - p}ﬁl), Opup - = duy, pjp, = p}y and u?, = u},. The corresponding jump term Jj, . for
e € I';; has jth component

J;Lh,e}j = —[k; V D}, . Tes (5.15)

and we once more remark that other jump operators satisfying the abstract conditions in [15] can also be
considered. We also have the analogous time-shifted versions of the above, 6, R}, x and 0;Jp, -, just as in
(5.12).

5.5. Error indicators in space and time

We now define the element-wise error indicators; these indicators will inform the construction of the a
posteriori error indicators of Section 5.6. In turn, these indicators will form the foundation of the adaptive
refinement strategy of Section 7. Specifically, we define element-wise indicators denoted n;, ;- and 7 - such that
the following equalities hold for all v € V, and ¢q € Vy

Grovy =Y (rwv), Gha) =Y (k) (5.16)

KeT, KeT,

First, we define the following local error indicator associated with the momentum equation:

Mk = hicl Runic i + b D> [T ell. (5.17)
ecOK

= B2 |7 + divo(u}) Zajvpjh +hi > o)l nel?,

K ecdK

where the norms |||| - and ||-||, represent the usual L?, or d-dimensional L?, norm over a simplex, K, and edge,
e, respectively. Likewise, the local error indicators associated with the mass conservation equations are

mpr = Wkl Bpn el + e Y [Tphell.
ecOK

J
=hZ Z
j=1

. 1
9in — 85005, — o div pup, + k; Apyy, — 3 Z’yij(p?,h — i) (5.18)

J
the > 1Y [k Vi,
ecOK ||j=1

e

Similar to (5.12) we will use the time-shifted version of the local spatial error indicator for the momentum
equation. This expression is given by

M 5 (60) = Nl Run i |5 + hic Y 160 Tun eI,
e€OK
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where the right-hand is analogous to that of (5.17) by taking the time-shift of the expressions appearing inside
the norm. With the local indicators in hand we immediately have the global indicators and their time-shifted
version given by

M= Mk M= Y ke M) =Y k(). (5.19)

KeT, KeT, KeT,

In Section 7 we will use the above expressions to define the a posteriori error indicators informing a simple
adaptive refinement strategy for the numerical simulations of Section 6.

5.6. A posteriori error estimators
We close this section by defining the final a posteriori error estimators:

1
2

N
m= <ZTW3> ) ne = sup (n,)?,
n=1

0<n<N

[N

(5.20)

N N 2
3 = ZTn(UZ@t))%, N4 = (Z TanZ —pZ_luz)
n=1

n=1

The summed term sz — p271| 37 in n4 above, can be expanded using the definition of (3.4d) as

J 2
log: =i 1 = D2 il |V (20— 23|
j=1

2 1 J J
L + 5 ZZ%‘;‘
j=11i=1

Finally, a bound on the MPET discretization errors in terms of the a posteriori error estimators follows:

’(p?,h — i) — (0 — p?ﬁl)‘ s

Proposition 5.2. For each time t,, n € {0,1,..., N}, the following inequality for the discretization error holds

H'LL B uhTHLm(Ovtn§Va) + ||p 7phT||L°o(07tn;Ld) + Hp 7phT||L2(07tn§Vd) + ||p o ﬂ-OphTHL2(07tn;Vd)

S +n2+ 13+ na + Eno(uo, po) + En(f, 9)

where Epg(ug, po) and En(f, g) are determined by the fidelity in the approrimation of the initial data and source
terms, respectively, as

Eno(uo,po) = |luo — unoll, + llpo — ponl..,

gh(fa g) = ||g - 7Togh'r||Lz(0,T;Vd) + ”f - th||L°°(0,T;Va) + ||at(f - th)”Ll(O,T;Va)'

Proof. The above follows from the results of [15, Thm. 4.1, Prop. 4.1, Thm. 4.2] applied in the context of
generalized poroelasticity in light of the results of Section 3. O

Remark 5.3. The framework result [15, Prop. 4.2] is stronger than the restatement given above; only the
relevant left-hand side quantities for our computations have been restated. It is also interesting to ask whether
the framework of Ern and Meunier [15] can be extended to yield a posteriori error estimators for higher-order
time discretizations of elliptic-parabolic systems (e.g. (3.1)). One might ponder, for instance, the use of the
generalized 6 scheme &y} = 0 f(y}) + (1 —6) f(y;~ ") for which (4.2) is @ = 1 and 6 = 1/2 yields the trapezoidal
time integration method. Adapting [15] to this context could be approached by generalizing Lemma 2.1 and
Theorem 3.1 alongside extending the discrete scheme interpolation, Galerkin residuals, element and jump resid-
uals, Theorem 4.1 and Proposition 4.1-4.3 of [15, Sec. 4.1]. Though higher-order time discretization schemes
are of practical importance, the analytic extension of [15] to this context is a topic for future work.
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6. NUMERICAL CONVERGENCE AND ACCURACY OF ERROR ESTIMATORS

To examine the accuracy of the computed error estimators and resulting error estimate, we first study
an idealized test case with a manufactured smooth solution over uniform meshes. We will consider adaptive
algorithms and meshes in the subsequent sections. All numerical experiments were implemented using the
FEniCS Project finite element software [3].

Let © = [0,1]? with coordinates (z,y) € €, and let T = 0.4. We consider the case of three fluid networks
(J = 3), first with g = 1.0, A =10.0, o; = 0.5, s; = 1.0, k; = 1.0, for j =1,2,3 and y12 = Y23 = 713 = 1.0. We
define the following smooth solutions to (1.1):

u(z,y) = (0.1 cos(nz) sin(my) sin(nt), 0.1 sin(wz) cos(my) sin(nt)),
p1(x,y) = sin(m ) os(my) sin(27t),
po(z,y) = cos(mz) sin(my) sin(nt),
ps(x,y) = sin(nz) sin(my)t,

with compatible Dirichlet boundary conditions, initial conditions and induced force and source functions f and
g; for j =1,2,3.

We approximate the solutions using Taylor—-Hood type elements relative to given families of meshes; i.e. con-
tinuous piecewise quadratic vector fields for the displacement and continuous piecewise linears for each pressure.
The exact solutions were approximated using continuous piecewise cubic finite element spaces in the numerical
computations.

6.1. Convergence and accuracy under uniform refinement

We first consider the convergence of the numerical solutions, their approximation errors and error estimators
71, M2, N3, 14 under uniform refinement in space and time. We define the meshes by dividing the domain into N x N
squares and dividing each subsquare by the diagonal. The errors and convergence rates for the displacement
and pressure approximations, measured in natural Bochner norms, are listed in Table 1. We observe that both
the spatial and the temporal discretization contributes to the errors, and that all variables converges at at least
first order in space and time — as expected with the implicit Euler scheme. For coarse meshes, we observe that
the displacement converges at the optimal second order under mesh refinement (Tab. la).

We next consider the convergence and accuracy of the error estimators n1,72,73,n4 for the same set of
discretizations (Tab. 2). We observe that each error estimator converge at at least first order in space-time, with
ne and 73 converging at second order in space and 7, converging at first order in time®.

We also define two efficiency indices I.g and g with respect to the Bochner and energy norms, respectively,
for the evaluation of the approximation error:

(6.1)

where
N=mn+ 02+ 13+ M,
E= HU' - uhT||L°°(07T;Hé) + ”p - phTHLOO(O)T;[ﬁ) + ”p _phT||L2(07T;Hé) + ||p - WophTHLz(O’T;Hé)a
E=u- uhTHLOC(O,T;Va) +[lp — phTHLOO(O,T;Ld) +llp — pher(o,T;vd) + Hp - WophTHLQ(O’T;Vd)'

Note that we use both Bochner- and energy norms to investigate the practical quality and efficiency of the
approximations and estimators as well as in terms of the energy/parameter-weighted norms appearing in the

1We observe that the error estimators n2 and n3 are nearly (but not quite) identical for this test case, and conjecture that this
may be not entirely coincidental but related to the choice of the exact solution.
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TABLE 1. Displacement and pressure approximation errors (in different norms) and their rates
of convergence for the smooth 3-network test case under uniform refinement in space (horizon-
tal) and time (horizontal). T' = 0.4, 1o = T'/2. Rate (7) is the rate for the finest mesh, under
time step refinement. Rate (h) is the rate for the finest time step, under mesh refinement. The

diagonal rate (in bold) is the final space-time (diagonal) rate.

N/dt To To/2 To/4 T0/8 70/16 Rate (h)
(a) flu— uhr”Loo(o,T;(Hg)d)

4 1.82x 1072 1.82x1072 1.82x1072 1.82x1072 1.82x 1072

8 471 x 1073 4.64x1072 4.62x107% 461 x1073 4.61x10"3 1.98
16 144 x 1072 1.24x1073 1.18 x10™% 1.16x 1073 1.16x 1073 1.99
32 851 x107% 529x10* 3.63x107* 3.10x107* 296x10~* 1.97
64 786 x107% 450 x107* 240x10~* 1.36x10~* 9.07x 1075 1.70
Rate (7) 0.81 0.90 0.82 0.59 1.77
(b) llp — phr ||Loo(o,T;(L2)J)

4 869 x 1072 893x1072 866 x1072 852x1072 846 x 1072

8 397 x 1072 329x1072 273x1072 247x1072 236x1072 1.84
16 3.06x 1072 197x1072 123x107%2 874x10"% 7.10x10"3% 1.73
32 289 %x 1072 1.69x 1072 9.13x107% 5.14x1073 3.16x 1073 1.14
64 2.86x 1072 1.63x1072 846x 1073 4.39x10~% 233x1073 0.44
Rate (7) 0.81 0.95 0.95 0.91 1.14
(c) [lp— phTHL?(o,T;(Hg)J)

4 442 x 1071 526 x 107! 5.39x 107! 541 x 107! 541 x 107!

8 237x 107t 2.73x 107t 277 x107! 278 x 107! 278 x 107! 0.96
16 1.38 x 107! 145 x 1071 1.42x 10! 1.40x10"' 1.40x10~!' 0.99
32 981 x 1072 854x1072 749x1072 7.13x1072 7.03x1072 0.99
64 853 x 1072 6.23x 1072 4.46x 1072 3.77x1072 3.57x1072 0.98
Rate (7) 0.45 0.48 0.24 0.08 1.00
(d) ||p - 7rOphTHL?(O,T;(H(%)J)

4 941 x 107! 6.94x10"! 6.03x107" 5.67x 107" 553 x 107!

8 789 x 1071 473 x 107! 349x107! 3.02x 107" 2.87x107' 0.95
16 744 x 1071 3.94x 107! 240x 107! 1.74x107!' 150x10"' 0.93
32 732x 107t 3.71x107' 2.03x10"! 1.21x10"' 8.66x 1072 0.80
64 729 x 1071 365 x107!' 1.93x107! 1.04x10~!' 6.09x 1072 0.51
Rate (7) 1.00 0.92 0.89 0.77 0.99

1937

theoretical bound (Prop. 5.2). For this test case, we find Bochner efficiency indices between 1.8 and 5.7, with
little variation in this efficiency index between time steps for coarse meshes, and efficiency indices closer to 1

for finer meshes.

6.2. Variations in material parameters

We also study how variations in the material parameters affect the effectivity of the error estimates, measured
in terms of the effectivity index I.g (6.1) with respect to the energy norm(s). We consider a set of default
parameters: = 1.0, A =10.0, a1 =0.25, as = a3 —aq, a3 = 0.5, s; = k; = ;3 = L.0for i = 1,2,3, j # 4, and
subsequently independent variations in the material parameters representing increased stiffnesses F, reduced
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TABLE 2. Error estimators 71, 12,173,174 and their rates of convergence, and Bochner efficiency
indices I.g for the smooth 3-network test case under uniform refinement in space (horizontal)
and time (horizontal) T' = 0.4, 79 = T'/2. Rate (7) is the rate for the finest mesh, under time
step refinement. Rate (h) is the rate for the finest time step, under mesh refinement. The
diagonal rate (in bold) is the final space-time (diagonal) rate.

N/dt To To/2 To/4 T0/8 70/16 Rate (h)
(a) m

4 3.30 3.19 3.13 3.09 3.08

8 1.73 1.67 1.64 1.63 1.62 0.93
16 880 x 1071 852x10"! 837x107! 829x10"! 825x10°' 0.97
32 443 x 1071 429 x 1071 4.22x 107! 418 x 107! 4.16 x10~! 0.99
64 222 x 1071 215x 1071 212x 107! 2.10x 107! 2.09x 10~! 1.00
Rate (7) 0.05 0.03 0.01 0.01 1.00
(b) 72

4 1.76 1.76 1.76 1.76 1.76

8 451 x 1071 451 x 107! 451 x 1071 451 x10°! 451 x107' 1.97
16 1.14x 107! 1.14x 107! 114 x107! 1.14x 107! 1.14x10"! 1.99
32 284 x 1072 284 x1072 284x1072 284x1072 2.84x10"2 2.00
64 712x 1073 7.12x 1073 7.12x1073 7.12x1073 7.12x 1073 2.00
Rate (7) —0.00 —0.00 —0.00 —0.00 2.00
(c) ns

4 1.76 1.77 1.77 1.77 1.77

8 451 x 1071 452 x 1071 452x 1071 4.52x 107! 4.52x 107! 1.97
16 1.14x 1070 1.14x 107! 1.14x107! 1.14x 107! 1.14x10"! 1.99
32 285 x 1072 285 x 1072 285 x 1072 2.85x 1072 2.85x10"2 2.00
64 712x 1073 713 x 1073 7.13x1073 7.13x1073 7.13x 1073 2.00
Rate (7) —0.00 —0.00 —0.00 —0.00 2.00
(d) ma

4 1.25 6.65 x 1071 3.39x 107! 1.70 x 107! 8.54 x 1072

8 1.28 6.81 x 1071 347 x 107! 1.75x 107! 8.76x 1072 —0.04
16 1.29 6.85 x 1071 349x 10! 1.76x 107! 881 x10"2 —0.01
32 1.29 6.86 x 1071 3.50x 107! 1.76 x 10! 8.83x 1072 —0.0
64 1.29 6.86 x 1071 350x 1071 1.76 x 1071 8.83x 1072 —0.0
Rate (1) 0.91 0.97 0.99 1.00 1.00
(e) Lo

4 5.42 5.56 5.61 5.61 5.59

8 3.65 4.16 4.39 4.44 4.40

16 2.62 3.15 3.58 3.80 3.82

32 2.08 2.47 2.88 3.29 3.50

64 1.81 2.06 2.34 2.74 3.14
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compressibilities v, lower transfer 7, lower hydraulic conductances x, and lower specific storage coefficients
s. Specifically, we consider oy € {0.01,0.1,0.25}, s;, k4,75 € {0.001,0.01,0.1,1.0} for 4 = 1,2,3, j # 4, and
u € {1,10,100,1000, 10000}, A € {10, 100,1000,10000}. Both energy-norm and Bochner efficiency indices Iog
and feff for the different variations are shown in Figure 1.

The energy-norm efficiency indices I.g are above 1 for all material variations considered. Variations in the
specific storage coefficients, Biot—Willis coefficients and transfer coefficients have minimal effect on both the
energy- and Bochner norm efficiency indices: the efficiency indices are ~ 4 for all variations in each of these
parameters. For variations in the permeabilities x;, we observe some reduction in the energy-norm efficiency
indices as the permeability is reduced (from 4.1 to 2.6), but that the index value stabilizes around 2.5 for the
smaller permeabilities. We observe similar behaviour for the Bochner-norm efficiency index, but with index
values of ~ 0.8 for the smaller permeabilities, and thus efficiency indices below 1.0. For the elastic parameters,
the results are quite different. Both the energy-norm and Bochner efficiency indices increase substantially with
increasing Lamé parameters p and A, though with Bochner efficiency indices increasing more.

Remark 6.1. The boundedness of efficiency indices, e.g. I.¢ and _fcﬁr, is canonically provided by the reverse
inequality of Proposition 5.2, whereby the the error indicators are bounded above in terms of a constant times
the norm of the discretization error. That is, one establishes

mtn2+ns+m S u—vnrllpee o) 1P = Prrllpee 0,700

+ Hp - ph7—||L2(07T;Vd) + ||p - WophTHLz(O’T;Vd)-

If the constant of proportionality, in the above inequality, does not involve specific material parameters, then
the efficiency indices are robust with respect to variations in those parameters. However, as in the case of
the use of higher-order time discretizations, the general Euler-Galerkin elliptic—parabolic framework of Ern
and Meunier [15] does not provide this bound and, as a result, its extension to the equations of generalized
poroelasticity (MPET), presented herein, is limited in this same regard. The computational experiments of this
section suggest that such an estimate will entail a constant of proportionality that scales strongly with both p
and .

7. ADAPTIVE STRATEGY: ALGORITHMIC CONSIDERATIONS AND NUMERICAL EVALUATION

We now turn to consider and evaluate two components of an overall adaptive strategy: (i) temporal adaptivity
(only) and (ii) temporal and spatial adaptivity. Our choices for the adaptive strategy can be viewed in light of the
observations on the convergence of 71, 12, 13, 4 for the previous test case, as well as the following characteristics
of MPET problems arising in e.g. biological applications:

— Mathematical models of living tissue are often associated with a wide range of uncertainty e.g. in terms
of modelling assumptions, material parameters, and data fidelity. Simulations are therefore often not con-
strained by a precise numerical error tolerance, but rather by the limited availability of computational
resources.

— Living tissue often feature heterogeneous material parameters, but typically with small jumps, and in partic-
ular smoother variations than e.g. in the geosciences. The corresponding MPET solutions are often relatively
smooth.

— Even for problems with a small number of networks J such as single or two-network settings, the linear
systems to be solved at each time step are relatively large already for moderately coarse meshes.

In light of these points, our target is an adaptive algorithm robustly reducing the error(s) given limited com-
putational resources. We therefore consider an error balancing strategy in which we adaptively refine time steps
such that the estimated temporal and spatial contributions to the error is balanced, then refine the spatial mesh
to reduce the overall error, and repeat. This approach to spatial adaptivity seeks to balance the computational
gains associated with adaptively refined meshes and the computational and implementational overhead costs
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associated with more sophisticated time-space adaptive methods, see e.g. [1,7]. While a full space-time adap-
tive algorithm could yield time-varying meshes of lower computational cost, the computational costs associated
with finite element matrix assembly over separate meshes, and interpolation of discrete fields between different
meshes are often substantial. Without time-varying meshes, the blocks of the MPET linear operator can be
reused (using the time steps 7, as weights) which may reduce assembly time, and potentially linear system
solver times. We note though that there is ample room for more sophisticated time step control methods than
we consider here, see e.g. [34] and related works.

7.1. Time adaptivity

We consider the time-adaptive scheme listed in Algorithm 1. Overall, for a given mesh 7;, we step forward
in time, evaluate (an approximation to) the error estimators at the current time step, compare the spatial and
temporal contributions to the error estimators, and coarsen (or refine) the time step if the spatial (or temporal)
error dominates.

Algorithm 1. Time-adaptive algorithm.

1: Define adaptive parameters o, € [0,1) and 8 > 1, Tyax > 0 and 7 > 0.
2: Assume that a mesh 7;, and an initial time step size 7y is given. Set t° and set the time step iterator n = 0.
3: while t" < T do

4: while True do

5: Set n =n+ 1.

6: Set t* ="~ + 7,,, and solve (4.2) over 7}, for (u},p}) with time step size 7,
7 Compute error estimator approximations at the current time step

Nl
W=

3 1
nt = (ramy)?, ﬁ=(m)w>,@=mwmm,n%{mw—ﬁﬂ®i

0>m>n
8: and set =0t +nz +ny, Nt =ny.
9: if n? < (1 — ay)n, and B, < Tmax then
10: Set t" = t*, (uf, p?) = (u},p}), coarsen the next 71 = 37" and break loop.
11: else if n? > (14 ay))np and 7,/8 > Tmin then
12: Discard the solution and refine the time step: set t* =t"~! n=n—1, 7" = 7"/4.
13: else
14: Set t" = t*, (uy, p?) = (u,p}), 7" = 7", and break loop.
15: end if
16: end while

17: end while

Evaluation of the time-adaptive algorithm on a smooth numerical test case

We evaluate Algorithm 1 using the numerical test case with smooth solutions defined over 3 networks as
introduced in Section 6, the default material parameters, and different uniform meshes (defined by 2 x N x N
triangles as before). We also verified the adaptive solver by comparing the solutions at each time step and error
estimators resulting from rejected coarsening and refinement (resulting in 7, = 0.2 for each n) with the solutions
and error estimators computed with a uniform time step (7 = 0.2). We let T' = 1.0, and considered an initial
time step of 7y = 0.2, adaptive weight o, = 0, a coarsening/refinement factor 8 = 2, and time step bounds
Tmax = 1 and Typin = 0.0.

The discrete times ¢" resulting from the adaptive algorithm, error estimators 7;' and 7.~ are shown in Figure 2
for different uniform mesh resolutions. For N = 8 (Fig. 2a), we observe that the adaptive algorithm estimates
the initial time step of 0.2 to be unnecessarily small in light of the dominating spatial error, and coarsens the
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time step to 0.4 before quickly reaching the end of time (T'). The ||u — up+||fo, |P — Phrllp, a0d ||p — Dir|| )2
errors are 4.61 x 1073, 3.86 x 1072 and 6.83 x 10~!. For comparison, with a uniform time step 7 = 0.2, the
= wnr| ooy 1P = Phrll oo IP = Prrll 2, and ||p — 7r011);LT||L2 (as listed in Tab. 1) are 4.71 x 1073, 4.38 x 1072,
4.96 x 10~!, and 1.33 respectively, and thus the errors with the adaptively defined coarser time step are very
comparable — as targeted by our error balancing principle. The picture changes for N = 16 (Fig. 2b), in this
case the temporal error initially dominates the spatial error, and the time step is reduced substantially initially
before a subsequent increase and plateau at 0.1-0.2. The value of the adaptive error estimator 7, is lower
than for the uniform solution (1.23 wversus 2.17), but the exact errors are comparable between the uniform and
adaptive scheme in this case. By setting 7 = 7°/4, the unnecessarily high initial time step refinement is
limited (Fig. 2c), and again comparable errors as for the uniform time step are observed. For higher spatial
resolution and thus lower spatial errors (N = 32), similar observations hold (Fig. 2d), but now the adaptive
solutions approximately halve the exact errors compared to the uniform 70 = 0.2 case (as expected). We
conclude that the time adaptive scheme efficiently balances the temporal and spatial error, but does little for
reducing the overall error — as the spatial error dominates this case. For N = 64 and the same configurations,
the adaptive time step reduces to the minimal threshold 79/4 = 0.05 and remains there until end of time T
with the expected quartering of the exact errors compared to the 79 = 0.2 case (and the first order accuracy of
the temporal discretization scheme).

7.2. Spatial adaptivity

For the spatial adaptivity, we use adaptive mesh (h-)refinement based on local error indicators {nx}xeT,
derived from the global error estimators (5.20). In light of the theoretical and empirical observation that 7y
primarily contributes to the temporal error, we will rely on local contributions to 71,72 and 13 only for the local
error indicators. Specifically, we will let

NK = N,K + 12,k + M3,K (7.1)
where )
N 2 % N .
MK = ZTnnﬁK M2,k = < sup US,K) y MK = ZTn ("73,[((675)) ° (7.2)
ne1 0<n<N —

for each K € 7j,. The complete space-time adaptive algorithm is given in Algorithm 2. We here choose to use
Dorfler marking [13] or a maximal marking strategy in which the vy of the total number of cells with the
largest error indicators are marked for refinement, but other marking strategies could of course also be used.

Remark 7.1. In Algorithm 2, we suggest adapting the mesh in each outer iteration wvia only (local) mesh
refinements. One could equally well consider a combination of local mesh refinement and coarsening, and/or
other adaptive mesh techniques such as r-refinement. Indeed, this could be particularly relevant in connection
with complex geometries, for which the initial mesh may be overly fine (in terms of approximation power) in
geometrically involved local regions.

Evaluation of the space-time-adaptive algorithm on a smooth numerical test case

We evaluate Algorithm 2 using the numerical test case with smooth solutions defined over 3 networks as
introduced in Section 6 with the default material parameters. As this is a smooth test case in a regular domain,
we expect only moderate efficiency improvements (if any) from adaptive mesh refinement, and therefore primarily
evaluate the accuracy of the error estimators on adaptively refined meshes and the balance between temporal
and spatial adaptivity.

We set T = 1.0, 79 = 0.5, and begin with a 2 x 4 x 4 mesh of the unit square as ’T}? We set € = 0, but instead
prescribe a resource tolerance L. We first set a fine initial time step 79 = 7/64, and let 3 = 2.0, oy, = 0.3,
Tmin = T0/16, and Timax = 70 in Algorithm 1. We note that a Dorfler marking fraction s of 1.0 yields a series
of uniformly refined meshes. For marking fractions between 0.0 and 1.0, we obtain adaptively refined meshes,
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FIGURE 2. Evaluation of adaptive time stepping for a smooth numerical test case, given uniform
meshes and different adaptive parameter configurations. All plots show the approximated error
estimators n and 72 at each time step versus adaptive times t”. (a) N =8, (b) N = 16, (c)
N =16 and Tyin = 7°/4 and (d) N = 32 and 7y = 7°/4.

Algorithm 2. Space-time adaptive algorithm.

1: Assume that an error tolerance € and/or a resource limit L and an initial mesh 7 = 7, are given. Set a
marking fraction parameter vy € (0, 1].
2: while True do

3: Set the parameters (79, &y, 3, Tmax, Tmin) required by Algorithm 1.

4: Solve (4.2) over 7 via the time-adaptive scheme defined by Algorithm 1.

5: Estimate the error n = 1y 4+ 12 + 13 + 14 where 7; for i = 1,2, 3,4 are given by (5.20).

6: if n < e then

7: Break

8: end if

9: Compute spatial error estimators ng for K € 7 via (7.1).

10: From {nx}, define Boolean refinement markers {yx } k7, via Dorfler or maximal marking (with ;).

11: Refine 7 (locally) based on the markers {yx}.
12: if |7| > L then

13: Break

14: end if

15: end while
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FIGURE 3. Evaluation of the space-time adaptive algorithm on a smooth test case. (a) Approx-
imation error F (dots) and error estimates 7 (diamonds) versus total resolution (|7 x N) at
different adaptive iterations with a uniform timestep 7 = 1/64 for different Dorfler marking
fractions (1.0; 0.7; 0.5; 0.3; 0.1). (b) Displacement and pressure approximation errors under
adaptive refinement as generated by the space-time adaptive algorithm with 70 = 7 /4, o, =
0.3,8 =2.0,va = 0.3, Tmax = 70, Tmin = T0/16 and L = 8000. (c¢) Error indicators on final mesh
refinement level with yellow values indicating high error indicators (colormap: viridis) (same
parameters as in 3b). (d) Discrete times (and time steps) generated by the space-time adaptive
algorithm (same parameters as in 3b).

yet for this test case, the time step remains uniform throughout the adaptive loop. The resulting errors and
error estimates at each adaptive refinement iteration are shown in Figure 3a. We observe that the errors decay
as expected, and that the error estimates provide upper bounds for the errors E at each refinement level for all
marking fractions tested.

We next let 79 = T'/4 and vp = 0.3 (and all other parameters as before), and consider the results of the
adaptive algorithm (Fig. 3b—3d). We find that the adaptive algorithm keeps the initial time step and refines the
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mesh only for the first 4 iterations, which substantially reduces the L H} displacement approximation error
and moderately reduces the L H} pressure approximation error. For the next iterations, both the mesh and
the time step is refined. The pressure errors seem to plateau before continuing to reduce given sufficient mesh
refinement, while the displacement errors steadily decrease.

8. ADAPTIVE BRAIN MODELLING AND SIMULATION

We turn to consider a physiologically and computationally realistic scenario for simulating the poroelastic
response of the human brain. Human brains form highly non-trivial, non-convex domains characterized by narrow
gyri and deep sulci, and as such represent a challenge for mesh generation algorithms. Therefore, brain meshes
are typically constructed to accurately represent the surface geometry, without particular concern for numerical
approximation properties. We therefore ask whether the adaptive algorithm presented here can effectively and
without further human intervention improve the numerical approximation of key physiological quantities of
interest starting from a moderately coarse initial mesh and initial time step.

Specifically, we let Q be defined by a subject-specific left brain hemisphere mesh (Fig. 4a) generated from
MRI-data via FreeSurfer [17] and SVMTK as described e.g. in [26]. The domain boundary is partitioned in two
main parts: the semi-inner boundary enclosing the left lateral ventricle 92, and the remaining boundary 02
(Fig. 4b).

Over this domain, we consider the MPET equations (3.3) with J = 3 fluid networks representing an arteri-
ole/capillary network (j = 1), a low-pressure venous network (j = 2), and a perivascular space network (j = 3).
We assume that the two first networks are filled with blood, while the third network is filled with cerebrospinal
fluid (CSF).

8.1. Pulsatility driven by fluid influx

We consider a scenario in which fluid influx is represented by a pulsatile uniform source in the arteri-
ole/capillary network (j = 1):

gi(z,t) =g1(t) = %(1 — cos(27t)), (8.1)

while we set go = g3 = f = 0. From the arteriole/capillary network, fluid can transfer either into the venous
network or into the perivascular network with rates v12,v13 > 0, while 93 = 0. All material parameters are
given in Table 3.

In terms of boundary conditions for the momentum equation, we set

u=0 on the outer boundary 0%, (8.2a)

o — Z a;p;l | -n=—pestn on the inner boundary 952,. (8.2b)
J

for a spatially-constant pess to be defined below. For the arteriole space, we assume no boundary flux:
Vpi-n=0 ondQ. (8.3)
We assume that the venous network is connected to a low (zero) pressure compartment and set:
po =0 on 0N. (8.4)
We assume that the perivascular space is in direct contact with its environment, and set:

P3 = Pest 0N 0. (8.5)
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FIGURE 4. The human brain as a poroelastic medium: meshes, boundaries, and snapshots of
solution fields. (a) Initial mesh of a brain hemisphere (sagittal view, along positive z-axis) with
20911 cells and 6325 vertices, and a volume of 4.37 x 10° mm?3. (b) Illustration of the semi-inner
ventricular boundary (in white), coronal and sagittal clips (view from the y- and negative -
axes, respectively). (¢) Left to right, top to bottom: displacement u magnitude, arteriole/capillary
pressure pj, venous pressure ps, and perivascular pressure ps at peak displacement (7' = 1.7).

Last, we model p.ss via a simple Windkessel model at the boundary:

Cpcsf = Q - p;f (86)

with compliance C' and a resistance R (see Tab. 3), and where @ is the outflow: Q = faQ“ -nds. After an

explicit time discretization, we define at each time step

n n Tn n
Cvpcsig1 = TnQ + (C - E)pcsfv (87)
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TABLE 3. Material parameters corresponding to a human brain at body temperature. The
hydraulic conductances « are defined in terms of the permeabilities and the fluid viscosities
kj =kj/pj, o = p1. Values marked by the * are estimates, yielding physiologically reasonable
brain displacements, fluid pressures, and fluid velocities.

Parameter Value Note

E (Young’s modulus) 1.642 x 10% Pa [10] (gray/white average)
v (Poisson’s ratio) 0.497 *

s1 (arteriole storage coefficient) 2.9 x 1074 Pa~! [19] (arterial network)

s2 (venous storage coefficient) 1.5 x 107° Pa™* [19] (venous network)

sg (perivascular storage coefficient) 2.9x 1074 Pa~! [19] (arterial network)

ay (arteriole Biot—Willis parameter) 0.4 *

as (venous Biot-Willis parameter) 0.2 *

ag (perivascular Biot—Willis parameter) 0.4 *

k1 (arteriole hydraulic conductance) 3.75 x 1072 mm? Pa~' s~ ki /1, see below

Ko (venous hydraulic conductance) 3.75 x 1072 mm? Pa~! 57! ka/ 11, see below

ks (perivascular hydraulic conductance) 1.43 x 10~' mm? Pa™' s=! k3 /us, see below

~12 (arteriole-venous transfer) 1.0x 103 Pa~tg! *

~13 (arteriole-perivascular transfer) 1.0x 107* Pa~ ' s ! *

C' (environment compliance) 10 *

R (environment resistance) 79.8 Pa/(mm?3/s) [38]

k1 (arteriole permeability) 1.0 x 10719 m? [19] (arterial network)

ko (venous permeability) 1.0 x 10719 m? [19] (venous network)

ks (perivascular permeability) 1.0 x 10710 m? Estimate, vascular permeability
w1 (blood dynamic viscosity) 2.67 x 1073 Pas [19] (arterial network)

w3 (CSF dynamic viscosity) 6.97 x 107* Pas [12] (water at body temperature)

and use (8.7) in (8.2) and (8.5). Finally, we let all fields start at zero. We let T' = 2.0 corresponding to two
cardiac cycles, and an initial time step of 79 = 0.1.

The given fluid influx induces pulsatile tissue displacements and pressures in the different networks with
varying temporal and spatial patterns (Figs. 4c and 5). The brain hemisphere expands and contracts with peak
changes in volume

dVv = / divudz,
Q

of up to 1200 mm?. The largest displacements occur around the lateral ventricle with peak displacement mag-
nitudes of ~0.5 mm. The arteriole/capillary pressure varies in space and time with a peak pressure maxp; of
up to 1200 Pa, a pressure pulse amplitude Ap; of ~ 560 Pa and a pressure difference in space of ~ 400 Pa. The
venous pressure field show similar patterns, though with lower temporal variations and higher spatial variability
inducing higher venous blood velocities of above 2.0 mm/s (Fig. 5). The perivascular pressure shows a steady
increase of up to ~ 200 Pa at T" = 2.0, but only moderate pulsatility and lower fluid velocities than both the
arteriole/capillary and venous networks.

The local error indicators {nk } x as defined by (7.1) show substantial local error contributions with substantial
spatial variation (Fig. 6): the values range from the order of 10® to 10° on the initial mesh 7,0. This large
variation in error indicator magnitude makes the choice of marking strategy important: the Dorfler marking
strategy would lead to the marking of perhaps only a handful of cells in this case as the local error indicators
for a few cells would easily add up to a significant percentage of the total error. Therefore, we instead choose
to employ a maximal marking strategy with a marking fraction vy, = 0.03 for this test scenario.
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FIGURE 5. Left to right, top to bottom: volume change dV', peak pressure p; and average velocity
v; for i = 1,2,3 and integrated transfer rates T1o and Ti3 over time for a series of adaptively
refined meshes (al, a2, a3). The opacity indicates the adaptive level: the more opaque, the finer
the mesh.

The adaptive algorithm yields locally refined meshes with around 67 000 cells after one refinement and 198 000
cells after two (Tab. 4a). The error estimates cf. (5.20) decrease with the adaptive refinement (Tab. 4b). The
contribution from 7e and 13 dominates the error estimate, and both of these as well as the total error estimate
n seem to halfen for each adaptive refinement level. We also note that in this simulation scenario, for all
time steps n and refinement levels, the spatial error contribution n;’ dominates the temporal contribution 7}
cf. Algorithm 1. Thus, the adaptive algorithm does not refine the time step and the uniform initial time step of
At = 0.1 is kept throughout.

We also inspect the computed quantities of physiological interest (Tab. 4a). Using the uniform refinement as an
intermediate reference value, we observe that the adaptive algorithm seems to produce more accurate estimates
of these quantities of interest even after a single adaptive refinement, and that the quantities of interest after two
refinements are more accurate than those of a uniform refinement. The adaptive procedure is therefore able to drive
more accurate computation of quantities of interest at a lower or comparable cost as uniform refinement.

Finally, we observe that a single uniform refinement yields a mesh with around 167 000 cells (Tab. 4a). Thus,
even with a small marking fraction of 3%, the mesh growth in each adaptive iteration is substantial. In the Plaza
algorithm [28] and other similar conforming mesh refinement algorithms, both cells marked for refinement as
well as neighboring cells will be refined to avoid mesh artefacts such as hanging nodes. Therefore, the domain
geometry and initial mesh connectivity may strongly influence the adaptive mesh growth, and mesh growth
may be more rapid than anticipated, especially in 3D. A more targeted adaptivity and more gradual growth
could possibly be achieved with even lower marking fractions, though in the current case the propagation of cell
refinement to neighboring cells seems to dominate. In any case, allowing for meshes with hanging nodes could
be an effective albeit more disruptive strategy for reducing the computational complexity.
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FIGURE 6. Error indicators {nx } i for three levels of adaptive refinement 7,°, 7;!, 7,2 the brain
simulation scenario. Refinement levels fromtop to bottom (al, a2, a3), sagittal views from right
and left on the left and right.

8.2. Pulsatility driven by boundary pressure

We also consider an alternative, more localized, scenario in which, instead of considering a Windkessel model
for the CSF pressure and the directly coupled PVS pressure p3, we directly prescribe a variation in the boundary
PVS pressure. Concretely, we set

Pest = —2 % 133 sin(27t) (8.8)
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TABLE 4. (a) Quantities of interest on the initial mesh (al) and two adaptive refinement levels
(a2, a3) and after uniform refinement (u2). Each row gives the number of mesh cells (#cells),
minimal and maximal cell size hmin, Amax (mm), the number of degrees of freedom per time
step (#dofs), the computed peak volume change of the domain dV' (mm?), and pulsatile volume
change amplitude AdV (mm?), peak arteriole/capillary pressure maxp; (Pa) and its pulsatile
amplitude Ap, (Pa), peak venous fluid velocity max vy (mm/s) and its pulsatile amplitude Awy
(mm/s). (b) Computed error estimate i and its partial contributions 71, 72, 73, n4 (see ¢f. (5.20))
for the series of adaptively refined brain meshes (al, a2, a3).

(a)

#cells Amin Amax #dofs dVv AdV  maxp; Ap; maxve Auvg
al 20911 1.9 13.8 135,774 961 577 1086 541 1.84 0.99
a2 66849 0.86 12.8 364,416 1099 643 1144 555  2.08 1.10
a3 198471 0.43 11.4 1,021,749 1186 677 1177 564  2.28 1.19
u2 167288 0.7 9.8 922,350 1162 668 1160 559 2.24 1.18
(b)
m 2 3 N4 n

al 56x10° 57x10° 1.6x10° 29x10% 2.2x 108
a2 4.6x10% 2.7x10° 7.8x10° 29x 10> 1.1 x 106
a3 35x10% 1.3x10° 3.9x10° 29x10% 5.0x 10°

and thus boundary CSF pressure variations of up to £2 x 133 Pa (corresponding to approx. £2 mmHg) in each
cycle. In this scenario, we set the bulk fluid influx to zero (¢1 = g2 = g3 = 0.0). We consider otherwise the
same experiments as in Section 8.1 and the same adaptive parameters. Also for this case, we observe that the
adaptive refinement — even with a small marking fraction and maximal marking yields non-localized marking
patterns and a relatively rapid growth in the number of mesh cells. Three adaptive refinements yields meshes
with 20911, 68608 and 197975 cells and no refinement of the time steps; numbers which are comparable with
the previous case.

These results corroborate the observation that the adaptive algorithm drives distributed mesh refinement,
and that the spatial errors overall dominate. Moreover, further studies may consider finer initial meshes and
further refinements. A prerequisite for this would be robust parallel adaptive refinement algorithms including
robust transfer of fields within the mesh hierarchy, and considered the topic of later work.
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