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Abstract

Mitochondria are highly dynamic organelles, containing vital populations of mitochondrial

DNA (mtDNA) distributed throughout the cell. Mitochondria form diverse physical structures

in different cells, from cell-wide reticulated networks to fragmented individual organelles.

These physical structures are known to influence the genetic makeup of mtDNA populations

between cell divisions, but their influence on the inheritance of mtDNA at divisions remains

less understood. Here, we use statistical and computational models of mtDNA content

inside and outside the reticulated network to quantify how mitochondrial network structure

can control the variances of inherited mtDNA copy number and mutant load. We assess the

use of moment-based approximations to describe heteroplasmy variance and identify sev-

eral cases where such an approach has shortcomings. We show that biased inclusion of

one mtDNA type in the network can substantially increase heteroplasmy variance (acting as

a genetic bottleneck), and controlled distribution of network mass and mtDNA through the

cell can conversely reduce heteroplasmy variance below a binomial inheritance picture. Net-

work structure also allows the generation of heteroplasmy variance while controlling copy

number inheritance to sub-binomial levels, reconciling several observations from the experi-

mental literature. Overall, different network structures and mtDNA arrangements within

them can control the variances of key variables to suit a palette of different inheritance

priorities.

Author summary

In many organisms, mitochondria form large, connected networks. The reasons for this

network formation are not fully understood, and it is likely that several different advan-

tages may be provided by a physical network structure. Here we use maths and simulation

to show and explore one of these possible advantages. By forming physical networks in

the cell, mitochondria can control the inheritance of the vital mtDNA molecules that they

contain. Different physical behaviour of mitochondrial networks can both generate useful

variability in, and tightly control, the genetic mtDNA content of daughter cells after divi-

sions. This physical control of genetic content allows different priorities to be addressed,
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including the segregation of mutational damage, and the faithful inheritance of mtDNA

copy number.

Introduction

Mitochondria are vital bioenergetic organelles responsible for essential energetic and meta-

bolic processes in eukaryotes [1, 2]. Due to their evolutionary history, mitochondria have

retained small genomes [3–5] that encode genes central to their functionality [6, 7]. MtDNA

in several taxa, including many animals, is subject to a high mutation rate relative to the

nucleus, and mutations in mtDNA cause cellular dysfunction, and are involved in a range of

human diseases [8, 9]. As mtDNA is predominantly uniparentally transmitted [10], the ques-

tion arises of how eukaryotes avoid the gradual accumulation of mtDNA mutations, known as

Muller’s ratchet [11].

The proportion of mutant mtDNA in a cell is usually referred to as heteroplasmy, and dis-

eases are often manifest when heteroplasmy exceeds a certain level [12]. Eukaryotes may

deploy a combination of strategies to generate cell-to-cell variability in inherited heteroplasmy

[13–16], thus potentially generating offspring with heteroplasmies below a pathogenic thresh-

old [9, 17, 18]. For instance, in mammalian development, a developing female produces a set

of oocytes for the next generation. Through an effective ‘genetic bottleneck’, oocytes with dif-

ferent heteroplasmies are generated [15]. This range of heteroplasmies means that some cells

may inherit a lower heteroplasmy than the mother’s average. Across species, in concert with

selection [19–24], this generation of variation allows shifts in heteroplasmy between genera-

tions [25, 26].

The mtDNA bottleneck has been suggested to incorporate a number of different mecha-

nisms [27]. These include mtDNA depletion [28–30], and subpopulation replication [29, 31]

in mammals, with a potential role for gene conversion in several other taxa [16], all coupled

with random effects from partitioning of mtDNA at cell divisions. This partitioning is a focus

of this report. Generally, when a cell divides, its mtDNA population will be partitioned

between its daughter cells. Any deviation from precise deterministic partitioning (exactly half

the mtDNA molecules of every genetic type go into each daughter) will likely lead to the

daughter cells inheriting different heteroplasmy levels. The role of cell divisions—which may

be asymmetric—in generating variability in important cell biological quantities has been stud-

ied with a growing body of recent theory, including effects on mRNA and protein levels [32,

33], cell size distributions [34], and general cell contents [35, 36] including organelles [16, 37,

38].

Models for mtDNA segregation have typically regarded the cellular mtDNA population as

well-mixed [36], but the mitochondria containing the population have varied morphologies

and dynamics in different cell types, with important consequent and emergent properties [39–

42]. Mitochondria can form cell-wide networks in some cell types, undergoing fission and

fusion [43–47]. These dynamic structures, together with mtDNA turnover, are linked to qual-

ity control and genetic dynamics of mtDNA populations [24, 48, 49]. In both somatic tissues

[50–53], and the germline [16, 23], the balance between fusion, fission and selective degrada-

tion of individual dysfunctional mitochondria has emerged as an important influence on

mtDNA populations [50, 52, 54–56].

The important effects of heterogeneous spatial distributions on noise in other cell biological

contexts are being increasingly recognised [57]. The central importance of mitochondria in

cell metabolism and bioenergetics mean that variability in their physical and genetic
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inheritance can influence many other, also noisy, downstream processes [37, 58]. Quantitative

progress modelling the spatial influence of these mitochondrial dynamics on mtDNA quality

control is advancing [50–53, 56]. In particular, the role of network structure in generating cell-

to-cell mtDNA variability via modulating mtDNA turnover has been addressed with recent

stochastic modelling [16, 59]. These studies report that cell-to-cell mtDNA variability increases

with the proportion of fragmented mitochondria in the cell, the rate of turnover, and the

length of the cell cycle. Moreover, turnover itself may increase due to a highly fragmented net-

work, with a highly fused network effectively masking mitochondria marked for degradation.

However, the influence of mitochondrial network structure on the inheritance of mtDNA dur-

ing cell divisions remains less studied. Although the mitochondrial network may fragment

prior to cell division, allowing individual mitochondria to diffuse or actively mix [60], the net-

work structure prior to division may exert substantial influence on the distribution of mtDNAs

in the parent cell [43], ultimately reflected in daughter cell statistics. Partitioning at cell divi-

sions even in the absence of spatial substructure can constitute an important source of cell-to-

cell variability [35, 36]. In yeast, mtDNA inheritance occurs with finer-than-random (bino-

mial) control over the number of mitochondrial nucleoids [61], suggesting that physical mech-

anisms must exist to exert this control. As mtDNA resides in nucleoids that are physically

distributed—potentially heterogeneously—throughout the mitochondria of the cell [62], we

set out to explore how different physical structures of mitochondria may shape mtDNA

inheritance.

Materials and methods

Network simulation

We constructed a random network, modelling the arrangement of mitochondria inside a cell,

via an elongation and branching process; network segments elongated deterministically with

rate e = 0.01 and branched according to Poissonian dynamics with a given rate k = 0.02, and

terminated if they hit the cell boundary. Network growth was initiated at a number of evenly-

spaced seed points around the cell circumference (the first of which was randomly positioned

in each simulation). Initial segments then grew perpendicular to the perimeter of a circular 2D

cell, represented by the unit disc. Network growth proceeded until a predetermined network

mass had been created; if all segments terminated before this mass was reached, we re-seeded

the perimeter, and continued the growth process. We chose this threshold size as U� = 50r in

units of cell radius r. Assuming a mitochondrial network tubule width of* 0.4μm and a cell

radius of 40 μm (from an example mouse embryonic fibroblast image taken from [46]), this

gives a mitochondrial area of 800μm2 and a cell area of* 5000μm2, for a mitochondrial frac-

tion of* 16%. Although the mitochondrial content of different cell types varies substantially,

this proportion is consistent with, for example, classical observations between 10 − 20% in liver

cells [63]. By changing the number of seed points from which segments grow, we tune the uni-

formity of the network structure: a high number of seed points yielded homogeneous network

structures, whereas a low number of seed points often lead to heterogeneous network structures

(see Fig 1). This growth process is not intended as a model of the true biophysics, where mito-

chondrial networks do not grow from nothing—we simply require a range of possible networks

as the final result. The parameters were manually chosen to support a range of different net-

work structures as seeding varied, and are not directly connected to real biophysical processes.

After simulating a network structure, we distributed mtDNAs in the cell. We considered

two mtDNA types, wildtype W and mutant type M, each a predetermined proportion of the

mtDNA population, specified by h. Proportions p of wild type mtDNA and q of mutant type

mtDNA molecules were then placed within the network according to a particular placement
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rule (see below). The remaining mtDNA molecules were randomly and uniformly distributed

in the cell, modelling presence of fragmented organelles in the cytoplasm. First, we considered

random and uniform placement of mtDNA within the network, in which every point of the

network was equally likely to host an mtDNA molecule. Later we introduce a minimal inter-

mtDNA distance within the network, hence enforcing spacing between mtDNA molecules

through a mutual repulsion. This spacing is parameterised by l, the characteristic proportion

of cell radius between mtDNA molecules. l = 0.05 for a 40 μm cell radius corresponds to a spac-

ing of 2 μm, within the range of inter-nucleoid distances identified in Ref. [64].

Finally, we partition the cell and record the number of wildtype W and mutant M mtDNAs

in one daughter, the heteroplasmy h = m/(w + m), as well as the proportion of network mass u.

The process of cell division was modelled by recording only the network mass and mtDNA

content of a fixed circular segment spanning an angle ϕ (with ϕ = 180˚ corresponding to sym-

metric cell division), randomly orientated with respect to the network seed points. We are par-

ticularly interested in the heteroplasmy variance V(h) and copy number variance V(N), where

N = W + M, across many realisations of this system.

Statistical models of mtDNA copy number and heteroplasmy

We consider h ¼ M
WþM and N = W + M as our key variables. We assume that the parent cell’s

heteroplasmy level is h 2 [0, 1], with a total of N0 mtDNA molecules. Thus there are hN0

mutant molecules, and (1 − h)N0 wild type molecules of mtDNA.

We ignore correlations between daughter cells and focus on a single daughter from a cell

division. In the daughter, the copy number variance is

VðNÞ ¼ VðWÞ þ VðMÞ þ 2CovðW;MÞ ð1Þ

Fig 1. Snapshots of computationally generated networks and mtDNA arrangements with tunable physical and genetic parameters. Networks were

generated by an elongation and branching process initialized from a number of seed points (s) uniformly distributed on the perimeter of the cell. Small

seed numbers s (A-C) usually resulted in heterogeneous network structures, with marked differences in network density across the cell; for increasing

seed numbers (D-F), networks were more uniformly distributed throughout the cell. Wild type (WT; red) and mutant type (MT; blue) mtDNA

molecules were distributed into networks according to the proportions p (WT) and q (MT). In different model variants, diffusion with scale parameter

λ was applied to mtDNAs prior to division to model network fragmentation and subsequent motion (G-H; original network shown for reference), and

mtDNAs were placed with a repulsive interaction inducing greater-than-random spacing (I).

https://doi.org/10.1371/journal.pcbi.1010953.g001
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Here V(W) and V(M) are the variances of wild-type and mutant mtDNA, respectively, and

Cov(W, M) is the covariance of W with M. The heteroplasmy variance, V(h) does not follow a

simple form as it deals with a ratio of random variables. Instead, we use either explicit sums for

the moments as in the text:

Eðf ðhÞÞ ¼
Xwc

Wc¼0

PðWcÞ
Xmc

Mc¼0

PðMcÞ

Z 1

0

PðUÞdU
Xwn

Wn¼0

PðWnjUÞ

�
Xmn

Mn¼0

PðMnjUÞf
Mn þMc

Wn þWc þMn þMc

� �

:

ð2Þ

with mean E(h) and variance V(h) = E(h2) − E(h)2, or a first-order Taylor expansion, finding

that

V1ðhÞ ¼ h02MVðMÞ þ h02WVðWÞ þ 2h0Mh
0
WCovðW;MÞ ð3Þ

The prefactors h0M and h0W are derivatives of the heteroplasmy level considered as a function of

W and M, and are model dependent (described below). Dividing V1(h) by h(1 − h), we get the

normalized heteroplasmy variance, V 0
1
ðhÞ, which conveniently removes some of the depen-

dence on h. We also considered higher order terms in this expansion (see S1 Appendix).

The null hypothesis: No mtDNA placement in network. As our null hypothesis, we con-

sidered a binomial segregation model for mtDNA [15]. In this model, no network structure

exists and no active mechanisms contribute to the distributions of mtDNA (of either type) to

the daughter cell. Supposing that the cell divides such that the daughter consists of a propor-

tion pc of the parent cell volume, we supposed

M � BinðhN0; pcÞ and W � Binðð1 � hÞN0; pcÞ ð4Þ

The copy number variance of the daughter is then, from the binomial distribution,

VðNÞ ¼ pcð1 � pcÞN0 ð5Þ

To find the heteroplasmy level variance, we calculated the variances of W and M, and their cor-

responding derivatives; the covariance of W and M is zero in this case. A detailed derivation of

V1(h) is presented in S1 Appendix, the result of which is

V 0ðhÞ ¼
1 � pc
pc

1

N0

ð6Þ

This is our null case, with nothing actively influencing the placement of mtDNAs within the

cell. If this is the case, apportioning of mtDNA to daughter cells is binomial. The familiar

expression of 1/N0 is recapitulated for symmetric cell divisions, i.e., with pc = 1/2, in which

case V0(h) = 1/N0.

Random mtDNA placement in network. Following intuition and preliminary observa-

tion of our simulations, we model the proportion u of network mass inherited by the smaller

daughter as beta distributed variable U, with mean E(U) and variance V(U). Expected network

inheritance E(U) will simply be pc, the proportion of cell volume inherited; V(U) will depend

on the spread of the network through the cell, and constitutes a fit parameter in comparing

this statistical model to simulation. Hence a particular value u is drawn from the beta distribu-

tion, Beta(α, β) with mean E(U) = α/(α + β) = pc and variance VðUÞ ¼ ab

ðaþbÞ2ðaþbþ1Þ
.

We now write Wn, Wc respectively for the number of wildtype mtDNAs placed in the net-

work and randomly spread in the cytoplasm, and Mn, Mc likewise for mutant mtDNA. Wc and

Mc are assumed to follow the binomial partitioning dynamics above. Assuming that mtDNAs
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in the network are randomly positioned therein, we draw a u* Beta(α, β) to reflect the net-

work proportion inherited by the smaller daughter, and write

Wn � Binðwn; uÞ

Wc � Binðwc; pcÞ

Mn � Binðmn; uÞ

Mc � Binðmc; pcÞ

ð7Þ

where wn = p(1 − h)N0, wc = (1 − p)(1 − h)N0, mn = qhN0, mc = (1 − q)hN0.

The mean and variance of N are readily derived using the laws of iterated expectation and

total variance to account for the compound distribution of mtDNA in the network (S1 Appen-

dix). To estimate heteroplasmy variance, we combine the (co)variances of the different

mtDNA types as described in S1 Appendix).

Repulsive mtDNA placement in network. Next, we considered the case where mtDNAs

placed in the network are not randomly positioned, but instead experience a repulsive interac-

tion, and thus adopt a more even spacing. Capturing this picture perfectly with a statistical

model is challenging; instead, we use the following picture. The proportion of inherited net-

work mass u consists of a finite number of ‘spaces’, each of which can be occupied by at most

one mtDNA molecule. Choose a number of spaces to fill, then sample mtDNA molecules from

the available pool without replacement, assigning each drawn mtDNA to the next unoccupied

network space. In this case, the final population of mtDNAs in the network is described by the

hypergeometric distribution. We draw u* Beta(α, β) to reflect the network proportion inher-

ited by the smaller daughter, and write

Wn � Hypergeometricðwn þmn;wn; bu=lcÞ

Wc � Binðwc; pcÞ

Mn � bu=lc � Wn

Mc � Binðmc; pcÞ

ð8Þ

We can once again use the laws of total variance and iterated expectation (see S1 Appendix)

to estimate heteroplasmy and copy number behaviour. As previously discussed, this model has

several shortcomings and is only expected to match qualitative behaviour (see S1 Appendix).

Results

Network inclusion with genetic bias increases cell-to-cell variability

To build intuition about the influence of network structure on mtDNA inheritance, we first

considered a simple computational model for the spatial distribution of mitochondria and

mtDNA within a cell (see Methods). This model consists of a random network structure, with

a tunably heterogeneous distribution, simulated within a circular cell (see Fig 1). The model

resembles a general interpolation between the ‘clustered’ and ‘spaced’ models for mitochon-

drial and nucleoid distributions in Ref. [61], with a parameter allowing different structures

between these limiting cases to be generated. This 2D model will capture several common cell

morphologies where one dimension is much smaller than others; furthermore, the aspects of

the model that would change in higher dimensions are those controlled by the parameters of

our model and so can readily be tuned to any required circumstances. The mother cell has a
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fixed population of N0 mtDNAs, a proportion h of which are mutants (h is heteroplasmy). The

model structure is not intended to perfectly match the details of real mitochondrial networks,

but rather as a general framework to understand spatial substructure in the cell. To compare

roughly with mammalian cells, assuming a mitochondrial tubule width of 1μm corresponds to

our model networks occupying roughly 1/6 of the cell volume, consistent with, for example,

mammalian liver cells [63] (see Methods).

To reflect the fact that different mtDNA types may have different propensities to be included

in the reticulated network [54], we use p and q to describe the proportions of wildtype and

mutant mtDNAs respectively that are contained in the network; the remainder are in fragments

in the cytoplasm (Fig 1). Hence, p> q means that wildtype mtDNAs are more likely to be con-

tained in the network and mutant mtDNAs are less likely to be included; p = q means that both

types are equally likely to be in a networked state. Network placement can follow various rules

(described below) and mtDNA positions may be subsequently perturbed, but we begin with ran-

dom placement in the network and no subsequent motion prior to division. We then divide the

model cell and explore the statistics of mtDNA copy number and heteroplasmy in the daughter

cells. We first consider symmetric partitioning, so that the initial cell is physically halved to pro-

duce two daughters; we relax this assumption and consider asymmetric partitioning later.

To explore the influence of mtDNA network placement in the parent cell on the mtDNA

statistics of the daughter, we varied network inclusion probabilities p and q (Fig 1A–1C) and

network heterogeneities (Fig 1C–1E) and observed the variances of copy number V(N) and

heteroplasmy V(h) in daughter cells after division (Fig 2). These results are for an illustrative

case where N0 = 100, and the behaviour is qualitatively preserved for larger mtDNA popula-

tions (S1 Fig shows the equivalent results for N = 1000 mtDNAs). We found a clear pattern

that V(h) takes minimum values when p = q, that is when network inclusion probabilities are

equal for mutant and wildtype mtDNA. When the two differ, V(h) increases, with highest val-

ues occurring when the majority mtDNA type is exclusively contained in the network and the

minority type exclusively in the cytoplasm.

This result may seem counterintuitive at first glance: when the network is highly heteroge-

neous, it might be expected that including all mtDNAs there would maximise variance. This is

true for copy number variance (Fig 2), but not for heteroplasmy variance, because including

both types equally induces correlation in their inheritance and lowers variance. The maximum

V(h) is achieved by embedding the majority type in the high-variance network and having the

minority type in the uncorrelated cytoplasm.

Statistical models of mtDNA inheritance capture the variance induced by

cell divisions

To further explore this behaviour, we constructed a statistical model for this inheritance pro-

cess (see Methods). The system begins with a circular mother cell, with deterministic mtDNA

contents described as above by the total copy number N0, the proportion of mutants (hetero-

plasmy) h, and p, q respectively the proportion of wildtype and mutant mtDNAs contained in

a network (as opposed to fragmented organelles). The network is constructed by random pro-

cesses, and it and the fragmented organelles will both in general be unevenly distributed

through the mother cell. The cell then divides according to a given division rule, correspond-

ing to a sector (half the circle, in the symmetric case) being removed as one daughter and the

remaining sector forming the other. Then we consider four state variables describing the

mtDNA population of a daughter cell after the mother divides: Wn, Wc, Mn, Mc for the wild-

type (w) and mutant (m) mtDNAs contained in a reticulated mitochondrial network (n) or in

fragmented mitochondrial elements in the cytoplasm (c). An additional variable U describes
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Fig 2. Genetic bias and physical heterogeneity in mitochondrial networks induce cell-to-cell mtDNA variability in symmetric cell divisions.

Normalised heteroplasmy variance V0(h) (left column) and copy number variance V(N) (right column) for N = 100 mtDNA molecules randomly

distributed in networks. A: simulations for h = 0.1; B: simulations for h = 0.5; C: sum over state variables for h = 0.5; D: first-order Taylor expansion for

h = 0.5. The three columns for each panel give decreasing network heterogeneity, expressed via different seed numbers, 4, 16 and 64 (more seed points

give a more homogeneous network). In each panel, variances are given for different values of wild and mutant type network inclusion parameters p
(horizontal axis) and q (vertical axis). White baseline reflects the null case from the analytic sum without any network inclusion.

https://doi.org/10.1371/journal.pcbi.1010953.g002
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the proportion of the mother’s network mass inherited by the daughter cell. Given a particular

value u for this proportion, the mtDNA profile inherited by the daughter follows

Wn � Binðwn; uÞ

Wc � Binðwc; 1=2Þ

Mn � Binðmn; uÞ

Mc � Binðmc; 1=2Þ

ð9Þ

where wn = p(1 − h)N0, wc = (1 − p)(1 − h)N0, mn = qhN0, mc = (1 − q)hN0. We model the pro-

portion u of network mass inherited by a daughter with a beta-distributed variable U, with var-

iance V(U) allowed to vary to describe different partitioning regimes of network mass. To

compare to simulations, we fit the beta distribution parameters to match the simulated inher-

ited network variance. As Wn and Mn are then drawn from the compound distribution that is

binomial with a beta-distributed probability, they follow beta-binomial distributions. We are

interested in the inherited copy number N = Wn + Wc + Mn + Mc and heteroplasmy h = (Mn +

Mc)/N.

We can numerically extract moments for the system through summing over state variables

and calculating expectations, for example,

Eðf ðhÞÞ ¼
Xwc

Wc¼0

PðWcÞ
Xmc

Mc¼0

PðMcÞ

Z 1

0

PðUÞdU

�
Xwn

Wn¼0

PðWnjUÞ
Xmn

Mn¼0

PðMnjUÞf
Mn þMc

Wn þWc þMn þMc

� �

:

ð10Þ

Figs 2 and 3 demonstrates good correspondence between simulations and statistics using Eq

10 for copy number and heteroplasmy variance (V(X) = E(X2) − E(X)2). However, as these

large sums do not admit much intuitive analysis, we sought other approaches to learn the

forms of pertinent statistics of the inherited mtDNA population.

The mean and variance of inherited number N are readily derived using the laws of iterated

expectation and total variance to account for the compound distribution of networked

mtDNA (S1 Appendix):

VðNÞ ¼
N0

4
þ kN0ðkN0 � 1ÞVðUÞ ð11Þ

where κ = p(1 − h) + qh denotes the proportion of total mtDNA placed in the network. Hence

V(N) experiences an extra, V(U)-dependent term in addition to the expected N0/4 result for a

purely binomial distribution. This term is quadratic in the proportion κ of mtDNA in the net-

work. This expression well captures the results from simulation and Eq 10 (Fig 2).

For heteroplasmy variance, as the ratio of random variables, we cannot extract an exact

solution and must instead use a Taylor-expanded approximation (see Methods) to obtain

V 0ðhÞ ’ V 0
1
ðhÞ ¼

1

N0

þ 4VðUÞ hð1 � hÞðp � qÞ2 � ðphþ qð1 � hÞÞ=N0

� �
ð12Þ

Eq 12 allows some informative analysis. First, we qualitatively see that an additional, V(U)-

dependent term is introduced compared to the binomial case (which gives 1/N0), illustrating

the influence of network heterogeneity on heteroplasmy variance. For large N0, this network

term is dominated by the first term in brackets in Eq 12, which is quadratic in (p − q), the
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difference in inclusion probabilities for the different types of mtDNA. For p 6¼ q, the network

is genetically biased towards one of the types, to which there is associated an increase in V0(h).

For p = q, the network is unbiased, with associated prediction V 0
1
ðhÞ ¼ 1

N0
�

4pVðUÞ
N0

—that is, a

small negative change from the binomial case. However, this negative shift is in fact an artefact

Fig 3. Asymmetric cell divisions can induce large cell-to-cell variability in mtDNA quality. Normalised heteroplasmy variance V0(h) (left column)

and copy number variance V(N) (right column) for mtDNA randomly distributed in networks. The daughter of interest inherits 10% of the parent

cytoplasm. A: simulations for h = 0.1; B: simulations for h = 0.5; C: sum over state variables; D: first-order Taylor expansion. The three columns for each

panel give decreasing network heterogeneity, expressed via different seed numbers, 4, 16 and 64 (more seed points give a more homogeneous network).

In each panel, variances are given for different values of wild and mutant type network inclusion parameters p (horizontal axis) and q (vertical axis).

White baseline reflects the null case from the analytic sum without any network inclusion.

https://doi.org/10.1371/journal.pcbi.1010953.g003
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of the imperfect Taylor approximation we use (see below and S1 Appendix), and the p = q case

in fact resembles the binomial case with a slight increase (captured by a higher-order approxi-

mation, see S1 Appendix) at higher p (Fig 2).

The more useful prediction under this approximate model concerns the maximum normal-

ised heteroplasmy variance achievable—when the majority mtDNA type is completely con-

tained in the network and the minority type completely excluded from it—is given for

example by setting p = 1, q = 0 for h� 0.5:

V 0
1
ðhÞ ¼

1

N0

þ 4VðUÞ hð1 � hÞ � h=N0ð Þ; ð13Þ

with a V(U)-dependent term scaled by h(1 − h) (in most cases the h/N0 term will be negligible),

illustrating that genetic bias in network inclusion can substantially increase heteroplasmy vari-

ance in proportion to inherited network variability.

This picture does not completely capture the simulation and exact results, where we see a

small increase in (normalized) heteroplasmy variance for non-biased increases in inclusion

probabilities, instead of a decrease. This reflects the approximate nature of the Taylor expan-

sion process used to derive Eq 12; in S1 Appendix we show that a second-order expansion pro-

vides a compensatory diagonal term (S4 Fig), but in general we will need further terms in the

expansion to perfectly match the true behaviour. In S1 Appendix we further show that all

higher-order moments and covariances of the mtDNA copy numbers are well captured by the-

ory; it is their combination into an estimate for the moments of a ratio (heteroplasmy) that

leads to departures from analytic and simulated results here. We will observe below that this

Taylor expansion approach (which has been successfully employed previously [27, 38, 65])

also fails to provide accurate estimates for more instances of this system—generally, account-

ing for physical structure induces correlations between mtDNA types that are hard to capture

with the Taylor expression (see Discussion).

Asymmetric cell divisions induce more mtDNA variability

The above model has assumed that the cell divides symmetrically, with half the cell volume

inherited by each daughter. To generalise to asymmetric cell divisions, we next asked how the

proportion of inherited cell volume pc (pc = 1/2 in the symmetric case) influences the mtDNA

statistics in daughters. Clearly, the expected copy number will differ if the inherited proportion

differs. The expressions above generalise to

VðNÞ ¼ N0pcð1 � pcÞ þ kN0ðkN0 � 1ÞVðUÞ ð14Þ

V 0
1
ðhÞ ¼

1 � pc
pc

1

N0

þ
VðUÞ
p2
c

hð1 � hÞðp � qÞ2 � ðphþ qð1 � hÞÞ=N0

� �
; ð15Þ

with the result that asymmetric cell divisions can generate large increases in cell-to-cell vari-

ability for the smaller daughters (Fig 3). Small number effects are at play here, with a smaller

sampling of the initial cell inevitably leading to greater relative variance. A decrease in pc from

the symmetric case pc = 1/2 to pc = 0.1 results in a near order-of-magnitude increase in the

maximum normalised heteroplasmy variance. Asymmetric divisions also further challenge the

Taylor expansion approach, with a systematic underestimation of heteroplasmy variance

apparent using this approximation (copy number variance remains well captured).
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MtDNA self-avoidance tightens mtDNA copy number control and can

reduce heteroplasmy variance

We next asked whether the variances of copy number V(N) and heteroplasmy V(h) could be

reduced below their ‘null’ binomial value through cellular control. To this end, we modelled

self-avoidance of mtDNA molecules within the network (Fig 1I), reasoning that such con-

trolled arrangement may allow a more even spread of mtDNAs within the network, and corre-

spondingly lower variability. To accomplish this self-avoidance within our model, we enforce

a ‘halo’ of exclusion around each mtDNA placed within the network, so that another net-

worked mtDNA cannot be placed within a distance l of an existing one. l is measured in units

of cell radius, so, for example, l = 0.05 enforces that mtDNAs must be separated by a minimum

of 5% of the cell radius. The results are shown in Fig 4 for l = 0.1 (pronounced inter-mtDNA

spacing to demonstrate the effects) and S3 Fig for l = 0.05 (reflecting a wider range of biological

examples, see Methods).

Copy number variance V(N) is decreased substantially by self-avoidance (Fig 4). In the case

of a homogenous network and high proportions of mtDNA network inclusion, this decrease

can readily extend below the binomial null model, allowing more faithful than binomial inher-

itance, as reported in yeast [61]. This sub-binomial inheritance requires both an even network

distribution and mtDNA self-avoidance, and hence two levels of active cellular control —fol-

lowing the findings in Ref. [61]. Under these circumstances, mtDNA molecules are evenly

spread throughout the cell volume, and their inheritance approaches a deterministic propor-

tion of the inherited volume fraction pc.
The effect of mtDNA self-avoidance on heteroplasmy variance is more complicated. For

highly heterogeneous network distributions, heteroplasmy variance follows the same qualita-

tive pattern as for the non-repulsive case, with higher variances achieved when network inclu-

sion discriminates wildtype and mutant types. However, for homogeneous network

distributions, the opposite case becomes true. Here, network inclusion discrimination lowers

Fig 4. Active spread of mtDNAs in the network can increase and decrease cell-to-cell variability from cell divisions. Simulated normalised

heteroplasmy variance V0(h) (left column) and copy number variance V(N) (right column) for mtDNAs with mutual repulsion with radius l = 0.1

within the network, under symmetric cell divisions. Rows show different values of initial mutant proportion, with h = 0.1 in the top row and h = 0.5 in

the bottom row. The three columns for each panel give decreasing network heterogeneity, expressed via different seed numbers, 4, 16 and 64 (more

seed points give a more homogeneous network). In each panel, variances are given for different values of wild and mutant type network inclusion

parameters p (horizontal axis) and q (vertical axis). White baseline reflects the null case from the analytic sum without any network inclusion.

https://doi.org/10.1371/journal.pcbi.1010953.g004
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the heteroplasmy variance induced by cell divisions. This possibly surprising result arises

because of covariance effects. When both genotypes are equally included in the network, the

variance of both copy numbers is relatively low, but there is substantial (negative) correlation

because of mutual repulsion. Regions with many wildtypes will contain few mutants and vice

versa, effectively inducing spatial clustering of the genetic populations within the homoge-

neous network, and hence increasing heteroplasmy variance upon partitioning. The first-

order Taylor approximations in our model, though not a perfect representation, demonstrate

that the Cov(W, M) covariance term in V(h) has a negative coefficient—so a negative covari-

ance will increase heteroplasmy variance. When one genotype but not the other is in the net-

work, this correlation effectively vanishes, and the heteroplasmy variance can become lower

than binomial because, while one genotype is binomially distributed, the other is more evenly

spread.

The heteroplasmy variance induced by cell divisions can be controlled to sub-binomial lev-

els in the case of self-avoidance, strong discrimination, and a homogeneous network distribu-

tion. Notably, it is possible for the cell to control copy number variance below the binomial

limit while also generating heteroplasmy variance, without biased network inclusion (for

example, in the n = 64, h = 0.5 cases in Fig 4), reflecting a potentially beneficial case for imple-

menting a genetic bottleneck without challenging overall mtDNA levels.

Analytic progress is more challenging for this case, but an imperfect statistical model (S2

Fig; see Methods) can begin to capture some of the qualitative behaviour. The model correctly

predicts the direction of change of copy number variance for various network structures, and

the capacity to control variance below the binomial value, but the magnitudes of predicted var-

iances are more extreme than those observed in simulation. This discrepancy arises because, to

retain tractability, the algebraic model imposes an even spread of mtDNAs more strictly than

is applied in the simulation (where this imposition is limited for numerical reasons). The

range of variance values in the simulation is thus more limited than those that emerge from

model predictions, although the trends of behaviour with governing variables are largely

consistent.

Diffusion of mtDNA relaxes statistics towards their null value

The mitochondrial network fragments before cell division. This fragmentation gives a time

window during which mtDNAs that were previously constrained by the network structure can

diffuse away from their initial position. In the limit of infinite diffusion, network structure will

be forgotten and the mtDNA population will be randomly and uniformly distributed through-

out the cell, leading to binomial inheritance patterns. To connect with recent literature

highlighting the importance of this pre-division motion [60], we next investigated how limited

amounts of diffusion away from the initial structure influence the patterns of mtDNA inheri-

tance. To this end, we fragment the network structure in our model so that each mtDNA mole-

cule is free to diffuse (in an individual organelle). Diffusion is applied through 100 normally-

distributed random steps of width λ (in units of cell radius), so that mtDNA molecules

undergo random walks with expected total displacement around 10λ (though not exactly this

value, due to boundary conditions). This model (Fig 1G and 1H) mirrors findings that mito-

chondria may undergo a series of directed bursts of motion from active randomization prior

to cell division [60].

Fig 5 shows V0(h) for random placement of mtDNA in the network (left column) and repul-

sive placement of mtDNA in the network (right column) for 4, 16, and 64 seed points (more

seed points give a more homogeneous network), respectively, in rows from the top to the bot-

tom. Our results indicate that directed bursts of motion of the mitochondria indeed work to
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remove the effects of the network on daughter cell statistics, resulting in binomial segregation.

Notably, there are cases in which extremely heterogeneous mitochondrial networks can leave

an imprint on mtDNA inheritance despite high diffusion strength (top row).

Discussion

We have demonstrated that a cell’s mitochondrial network structure can control cell-division-

induced variability in both mtDNA copy number and heteroplasmy inheritance, in both direc-

tions (Fig 6). When different mtDNA genotypes have different propensities for network inclu-

sion, random arrangement in a heterogeneous network generates (much) more variability

than could be achieved through random cytoplasmic arrangement alone. On the other hand,

ordered arrangement in a homogeneous network can control heteroplasmy variance below the

binomial level expected from random partitioning. In concert, homogeneous network struc-

ture dramatically reduces copy number variance to sub-binomial levels (as observed experi-

mentally in Ref. [61]), and heterogeneous network structure correspondingly increases it.

Notably, it is possible to tightly control copy number while generating heteroplasmy variance

—a strategy that may be useful in implementing a beneficial genetic bottleneck to segregate

mtDNA damage.

Fig 5. Network fragmentation and diffusion reverse the variance induced by mitochondrial networks. Normalised

heteroplasmy variance V0(h) after repeatedly perturbing each mtDNA molecule with mean displacement λ from their

original positions, resulting in a total mean displacement of around 10λ. The left column shows V0(h) for random

spread of mtDNA in the network (i.e., with a repulsive radius of l = 0); the right column shows V0(h) for active spread

of mtDNA in the network with a radius of l = 0.1. The three rows show decreasing levels of network heterogeneity,

expressed via different seed numbers (more seed points give a more homogeneous network). As the diffusion strength

increases, effects on cell statistics due to the network is washed away regardless of the underlying mtDNA distribution

model.

https://doi.org/10.1371/journal.pcbi.1010953.g005
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How do mitochondria in different taxa and tissues correspond to the different regimes in

our model? In animals, mitochondrial structure is highly varied, from largely fragmented

organelles (low p and q in our model) to highly reticulated networks (high p and/or q), with

mtDNA nucleoids moving freely throughout the mitochondrial reticulum, leading to a ran-

dom distribution of mtDNA within the network [66, 67]. Animal mitochondria are expected

to fragment prior to cell divisions, with a spectrum of active randomization mechanisms [60,

68], captured by the diffusion behaviour in our model. Fungal mitochondria, on the other

hand, are often inherited without fragmenting the network, which remains in its reticulated

state through cell division [43]. Saccharomyces cerevisiae populations have been shown to clear

heteroplasmy within a few generations, with relatively heterogeneous networks and semi-regu-

lar spacing of mtDNA [24]. This situation corresponds to the ‘repulsive’ version of our model,

inducing heteroplasmy variance (helping to clear heteroplasmy) while controlling copy num-

ber. In plants, mitochondria normally exist in a fragmented state (low p and q) [40, 69]. An

intriguing exception to this is the formation of a reticulated network prior to division in the

shoot apical meristem—the tissue that gives rise to the aboveground germline [18]. This for-

mation could be the signature of network structure being employed to shape mtDNA prior to

inheritance—although this employment is also likely to involve facilitating recombination

[16]. One useful extension to this model would be to consider spatial correlations in mtDNA

type, so that wildtype and mutant mtDNAs are more likely to be close to others of the same

genotype. This correlation would arise from clonal expansion of mtDNAs in a cell with limited

subsequent motion, and would potentially further increase heteroplasmy variance generated

through divisions. Another extension would be to consider an explicit model for network

growth between cell divisions, which would allow a tighter connection to real network topolo-

gies and would support coupling between network state and cell cycle progression. Previous

Fig 6. Illustration of the range of influences of network structure and contents on mtDNA statistics from

partitioning. MtDNA molecules distributed randomly through the cytoplasm are segregated binomially (centre); the

influence of network structure (heterogeneous or homogeneous distributions) and mtDNA inclusion (genetically

neutral or biased) changes cell-to-cell variability in different ways: Depending upon genetic bias and network

heterogeneity, networks can both increase and decrease cell-to-cell mtDNA variability in copy number and

heteroplasmy. Genetic bias for network inclusion can modulate (physical) copy number statistics, by influencing the

total number of mtDNA molecules that are evenly spread through the cell.

https://doi.org/10.1371/journal.pcbi.1010953.g006
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work has modelled linked mitochondrial development and cell cycle progression [37] and

more general concentration homeostasis over cell divisions [70]; coupling these approaches

with mitochondrial spatial structure would allow a more universal theory.

One technical observation from our work is that the Taylor expansion method for approxi-

mating heteroplasmy variance, often employed in mtDNA models [27, 65], has several short-

comings in the face of network structure and other physical phenomenology that induce

correlations between mtDNA types. Higher-order terms in the expansion do not immediately

fix the discrepancies from simulation; we conclude that the series is likely slow to converge in

these cases. Our model does successfully capture all the moments and covariances of the quan-

tities of interest (see S1 Appendix)—so, for example, all pertinent statistics of the number of

wildtype mtDNAs can reliably be extract. It is the combination of these statistics into an

approximation for a ratio (heteroplasmy) that is unreliable. We advocate the use of analytic

expressions (like our exhaustive sum over states) and explicit simulation to check the validity

of such results in future contexts (in a sense paralleling the careful consideration of moment-

based methods for stochastic chemical kinetics [71]).

Our observations on how network structure influences genetic population structure stand

in parallel with the many other phenomena associated with the physical and genetic behaviour

of mitochondria. Mitochondrial network structure and dynamics likely fulfil many purposes

[45], including contributing to mtDNA quality control [54, 55] via facilitating selection. Here,

we assume that selection occurs (if at all) between cell divisions, focussing rather on the behav-

iour at cell divisions. Previous modelling work has demonstrated the capacity of mitochondrial

network structure to shape mtDNA genetics through ongoing processes through the cell cycle

[16, 59]; other work has considered the behaviour of controlled mtDNA populations across

divisions without considering how that control may be physically manifest [36, 38]. We hope

that our models here help bridge the gap between these pictures of mitochondrial spatial

dynamics between, and well-mixed behaviour at, cell divisions across a range of eukaryotic

life.

Supporting information

S1 Appendix. Mathematical derivations. Statistical modelling and moment calculations for

physical and genetic distributions of inherited mitochondria.

(PDF)

S1 Fig. Cell-to-cell mtDNA variability for larger mtDNA populations. Following Fig 2 in

the main text, but for N0 = 1000 mtDNAs rather than N0 = 100. Normalised heteroplasmy vari-

ance V0(h) (left column) and copy number variance V(N) (right column) for mtDNA ran-

domly distributed in networks. A: simulations for h = 0.1; B: simulations for h = 0.5; C: sum

over state variables for h = 0.5; D: first-order Taylor expansion for h = 0.5. The three columns

for each panel give decreasing network heterogeneity, expressed via different seed numbers, 4,

16 and 64 (more seed points give a more homogeneous network). In each panel, variances are

given for different values of wild and mutant type network inclusion parameters p (horizontal

axis) and q (vertical axis). White baseline reflects the null case from the analytic sum without

any network inclusion.

(TIF)

S2 Fig. Approximate model predictions for repulsive interactions between mtDNAs in the

network. V0(h) (left column) and V(N) (right column) under an approximate model for active

spread of mtDNA in the network with a radius of l = 0.1. Qualitatively trends in behaviour are
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captured, but the magnitudes of the effects involved differ from simulated results (see text).

(TIF)

S3 Fig. Lower-than-binomial variances under more limited mtDNA self-avoidance. Simu-

lated normalised heteroplasmy variance V0(h) (left column) and copy number variance V(N)

(right column) for mtDNAs with mutual repulsion with radius l = 0.05 (compared to l = 0.1 in

the main text) within the network, under symmetric cell divisions. Rows show different values

of initial mutant proportion, with h = 0.1 in the top row and h = 0.5 in the bottom row. The

three columns for each panel give decreasing network heterogeneity, expressed via different

seed numbers, 4, 16 and 64 (more seed points give a more homogeneous network). In each

panel, variances are given for different values of wild and mutant type network inclusion

parameters p (horizontal axis) and q (vertical axis). White baseline reflects the null case from

the analytic sum without any network inclusion.

(TIF)

S4 Fig. Comparison of simulation results with analytic model results for first and second

order Taylor expansion. By row, simulation, first, and second order analytic results for V0(h)

for random placement of mtDNAs in the network. The first order theory in the second row

produces results similar to our simulation results on the off-diagonal, but fails to reproduce

the increase observed along the diagonal. The second order theory, while loosely retaining the

same structure on the off-diagonal as the first order theory, overestimates this increase along

the diagonal. We expect that our model would captures this behavior if we were to derive even

higher order terms.

(TIF)

S5 Fig. Comparisons of individual simulation moments (vertical axes) and analytic

moments (horizontal axes) for random spread of mtDNA in the network (Eq 9) for varying

proportions of cell volume inherited by the smallest daughter. Colors reflect the proportion

of parent cell volume apportioned to the daughter of interest.

(TIF)

S6 Fig. Comparisons of individual simulation moments (vertical axes) and analytic

moments (horizontal axes) for active spread of mtDNA in the network (Eq 8) for varying

parent cell cytoplasm proportions inherited by the smallest daughter. Colors reflect the

proportion of parent cell volume apportioned to the daughter of interest. The repulsive radius

is l = 0.1.

(TIF)
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