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Abstract 

The role of hydraulic stimulation in enhancing geothermal reservoir production and 

allowing for commercial exploitation of a larger range of geothermal resources has attracted 

attention from researchers in recent decades. During stimulation, preexisting fractures may 

slip, propagate, and connect to other fractures to enhance permeability. The processes are 

characterized by strong hydromechanical interactions, which have limited monitoring 

opportunities. Therefore, numerical simulations provide a powerful tool to help us better 

understand the mechanisms.  

This thesis aims to develop a comprehensive mathematical model and a numerical approach 

to analyze fracture mechanisms, and to investigate the coupled hydromechanical processes 

occurring in fractured porous media. The proposed model will employ a mixed-dimensional 

conceptual model, incorporating the concepts of poroelasticity and fracture contact 

mechanics. The model will also allow for the growth and coalescence of preexisting 

fractures. 

A novel discretization scheme for solving the proposed mathematical model is presented. 

The proposed scheme employs a two-level simulation approach, categorized into coarse 

and fine levels, to reduce the computational costs and ensure accuracy. A finite volume 

method is combined with an active set strategy to discretize poroelasticity and fracture 

contact mechanics on the coarse level. Fracture propagation is considered on a fine level, 

in which a finite element method is combined with collapsed quarter-point elements to 

capture the stress singularity at the fracture tips. Adaptive remeshing based on an error 

estimator and Laplacian smoothing is introduced on both levels to effectively capture 

fracture propagation and coalescence in the computational grid. The simulations conducted 

in this thesis improve our understanding of hydraulic stimulation and its effect on enhancing 

fracture permeability and connectivity in geothermal reservoirs. 
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Abstrakt 

Rollen til hydraulisk stimulering i å øke produksjonen fra geotermiske reservoarer, og 

muliggjøre kommersiell utnyttelse av et større spekter av geotermiske ressurser, har fått økt 

oppmerksomhet de siste tiårene. Under stimulering kan eksisterende sprekker 

sideforskyves, forplante seg og koble seg til andre sprekker og der igjennom øke 

permeabiliteten i reservoaret. Prosessene er preget av sterke hydromekaniske interaksjoner, 

som vi har begrensede muligheter til å overvåke. Numeriske simuleringer er derfor et viktig 

verktøy for å hjelpe oss til å bedre forstå mekanismene som er i spill. 

Avhandlingen tar sikte på å utvikle en omfattende matematisk modell og en numerisk 

tilnærming for å analysere bruddmekanismer og undersøke koblede hydromekaniske 

prosesser som forekommer i oppsprukne porøse medier. Den foreslåtte modellen benytter 

en blandet-dimensjonal konseptuell modell, som inkluderer porelastisitet i det porøse 

mediet og kontaktmekanikk for sprekkene. Modellen tillater også forplantning og 

koalescens av eksisterende sprekker. 

Et nytt diskretiseringsskjema for å løse den foreslåtte matematiske modellen presenteres. 

Den foreslåtte metoden bruker en to-nivå simuleringstilnærming, kategorisert i grove og 

fine nivåer, for å redusere beregningskostnader og sikre nøyaktighet. En endelig 

volummetode kombineres med en aktiv-sett løsningsstrategi for å diskretisere porelastisitet 

og bruddkontaktmekanikk på det grove nivået. Sprekkeforplantning betraktes på et fint 

nivå, der en endelig elementmetode kombineres med kollapsede kvartpunktselementer for 

å approksimere singulariteten i spenningen ved enden av sprekkene. Adaptiv gitring basert 

på en feilestimator og Laplace-glatting av gitteret introduseres på begge nivåer for effektivt 

å håndtere sprekkepropagering og koalescens. Simuleringene utført i denne avhandlingen 

forbedrer vår forståelse av hydraulisk stimulering og dens effekt på forbedring av 

sprekkepermeabilitet og konnektivitet i geotermiske reservoarer. 
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Chapter 1: Introduction  

Globally, geothermal reservoirs provide a significant renewable energy resource 

(Secretariat-REN21, 2021). Several of the reservoirs that could be exploited are 

characterized by low permeability, the existence of fractures, and high temperatures. Fluid 

injection at elevated pressure can reduce the friction between the fracture surfaces, causing 

fracture slip and dilation, and triggering fractures to propagate, contributing to establishing 

additional fracture network connections. Both shear dilation of the preexisting fractures and 

hydraulic fracture propagation can contribute to providing sufficient reservoir permeability 

for commercial exploitation (Abe & Horne, 2023; McClure & Horne, 2014; Schoenball et 

al., 2020). However, our understanding of the mechanisms of fracture and fluid-fracture 

interactions at depth is limited. This thesis focuses on the development of a mathematical 

model and numerical approach to investigate the hydromechanical processes.  

A mathematical model for fractured porous media must be based on simplifying the fracture 

geometry assumptions and representations of the porous structure. In reality, fractures 

typically have large aspect ratios, with lengths that can reach hundreds of meters, while the 

apertures are typically only up to a few millimeters in size (Berkowitz, 2002; Singhal & 

Gupta, 2010). As a result, it is necessary to use a highly resolved grid if details of the 

fracture geometry are to be explicitly represented within a computational domain. One 

approach to addressing this issue is to reduce the dimensionality of the fractures by 

representing them as lower-dimensional entities, such as lines or curves in a two-

dimensional domain or surfaces in a three-dimensional domain. Thus, fractures are still 

explicitly represented in the computational domain but with a simplified geometrical 

description. The explicit modeling of fractures allows the displacement field over the 

fractures to be discontinuous, i.e., the fracture surfaces can move apart or slide. This model 

can further account for the contact and friction between the fracture surfaces, in which the 

surfaces are assumed to be nonpenetrating and allowed to shear slip (Kikuchi & Oden, 

1988; Wriggers, 2006). The effect of the flows between the fracture and the surrounding 

porous medium can also be included in this conceptual model (de Borst, 2017). In addition, 
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this model is convenient to extend to consider the coalescence of fractures during fracture 

propagation, which affects the fracture network and behavior of the fluid (Weng, 2015). 

Furthermore, a simplified representation of the porous medium is necessary due to the 

complexity of the pore structure. A porous medium contains numerous small pores that 

allow fluids to flow. In the geothermal reservoir, these pores can range in size from 

micrometers to centimeters, while the reservoirs size can be several kilometers (Kashif et 

al., 2019). Given the scale of these systems, explicitly describing each pore in a geothermal 

reservoir is not feasible. However, the effect of the pore structure and fine-scale fractures 

can be captured by simplified models, such as a continuum model (Biot, 1941; Pimienta et 

al., 2017). 

Moreover, a simplified model is applicable for analyzing flow characteristics in a low 

permeability medium. The permeability indicates how easily a fluid can pass through a 

medium (Gueguen & Palciauskas, 1994). Consequently, in a low permeability medium 

such as geothermal reservoirs, fluid flows typically occur at a low velocity and are stable 

(Berre et al., 2019; Eggertsson et al., 2020). As a result, nonlinear flow regimes need not 

be considered. 

To fully understand the interaction between fracture mechanisms and fluid flows in a 

porous medium, a unified model is needed. In this context, a unified model implies a 

combination of the equations governing the deformation of the porous medium with the 

equations governing the fluid flow through the pore structure and fractures. When fractures 

exist, they can provide pathways for fluids to flow through the medium, significantly 

impacting the fluid flow behavior. In fact, the presence of fractures can enhance the 

permeability of the medium, allowing for the fluid to flow more easily through the medium. 

Additionally, elevated fluid pressure can have significant impacts on fractures. When the 

pressure of the fluid within the fractures increases, it can cause the fracture surfaces to slide 

when in contact with each other. The slip can result in an accumulation of stress at the 

fracture tips, potentially triggering the fracture to propagate. Moreover, when the pressure 
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of the fluid exceeds the compressive strength of the rock surrounding the fracture, the 

fracture surfaces can move apart, and the fracture propagates further. 

Based on the above discussions, this thesis aims to establish a hydromechanical coupled 

mathematical model based on several key assumptions. First, we model the domain 

surrounding the fractures as poroelastic and thereby take into account the interaction 

between the fluid flows and the solid deformations within a porous medium. Second, we 

model fractures as lower-dimensional objects compared to the medium, and we consider 

the fluid flow in the fracture. Finally, we consider fracture contact mechanics. Therefore, 

the resulting mathematical model consists of a system of differential equations for 

poroelasticity and fluid flow in fractures, along with inequalities for the fracture contact 

mechanics and friction. In addition, the proposed model includes the criterion to model 

fracture propagation. 

Combining differential equations with inequalities and the fracture propagation criterion 

makes the model complex, and we are faced with several challenges in finding its solution. 

One such challenge is the complexity of the geometry when many fractures present. In 

addition, the extension of the fracture geometry as they propagate, is an unknown variable. 

Additionally, the relationship between the aperture and fluid flow in a fracture constitutes 

a nonlinear relationship in the mathematical model. A crucial outcome of this nonlinear 

relationship is that the transmissivity of a fracture, which assesses its ability to transmit 

fluid, is highly sensitive to aperture changes. Even slight modifications in the aperture can 

result in substantial variations in transmissivity, with potential consequences for the fluid 

flow dynamics. Moreover, all the variables in the model should be solved simultaneously 

to avoid a decoupling error. Pressure and displacement are tightly coupled in porous media, 

where the fluid flow affects the deformation of the solid matrix and vice versa. If these 

variables are solved independently, it is possible to obtain results that do not accurately 

reflect the actual behavior of the system, resulting in a decoupling error. In addition, the 

interdependence of pressure and displacement means that changes in one variable can 
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significantly impact the other, making it essential to solve them simultaneously to capture 

the full dynamics of the system. 

Using numerical methods to find solutions for the proposed model leads to other challenges. 

First, the presence of fractures causes difficulty in controlling the quality of the 

computational grid, which affects the accuracy of the numerical solution. In numerical 

methods, the accuracy of the solution can be significantly affected by the presence of skew 

cells in the grid, which come from the small intersecting angles between the fractures 

(Zienkiewicz & Taylor, 2013). The skewed cells can cause distortions, resulting in 

inaccurate stress and strain calculations. These cells can also affect the convergence rate of 

the solution, leading to a slower convergence or even divergence. In addition, these cells 

can cause numerical instability and lead to numerical errors, such as oscillations and 

spurious modes. Second, fractures can propagate, causing geometric changes to the fracture 

domain during a simulation, requiring suitable adaptive meshing techniques. This technique 

must ensure that the fracture can develop in any direction, and adjusts the grid when the 

geometry changes. Third, the choice of numerical method plays an important role in 

accurately simulating the proposed model. Two of the most varied properties are 

permeability and porosity, which allow fluids to flow easily through the fractures but are at 

low levels in the surrounding medium. In addition, the fracture propagation mechanism is 

completely different from that of fluid flow, and different numerical methods have 

advantageous properties in simulating the various phenomena. For example, the finite 

element method (FEM), whose computation is node-based, is a computational method 

proposed and preferred in solid mechanics (Zienkiewicz et al., 2005). FEM is effectively 

performed on arbitrary grids and allows for easy application of boundary conditions due to 

a computation based on node interpolation. In addition, the system of algebraic equations 

resulting from discretization is symmetric and sparse, making it possible to solve it 

efficiently. Meanwhile, the finite volume method (FVM) has an advantage in the simulation 

of fluid mechanics (Kolditz, 2002; Moukalled et al., 2015). Similar to FEM, FVM results 

in a system of algebraic equations with similar properties. In addition, the FVM enforces 

the conservation of mass and momentum at discretized scales. As a result, fluxes between 
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adjacent control volumes are directly balanced, making the FVM efficient for solving fluid 

mechanics problems. 

This thesis proposes a coupled mathematical model to simulate the interaction between 

flows and fractures in porous media. Furthermore, we will use a numerical approach to find 

the solution. However, many challenges arise in establishing a mathematical model and 

numerical approach. Therefore, this thesis tackles a portion of these challenges by 

considering the following main issues. 

The first issue is to develop a model to simulate fracture propagation in porous media under 

the influence of fluid flow. Most previously proposed models consider tensile fracturing 

and ignore the effects of shear slip, contact, and friction (Lecampion et al., 2017), or they 

allow fractures to propagate only along predefined paths (McClure & Horne, 2014; Weng 

et al., 2011). Unlike these previous models, the proposed model in this study combines 

mixed-mode fractures with fracture contact mechanics. Mixed-mode fractures are 

references to the combination of different modes of fracture propagation, such as Mode I 

(opening mode) and Mode II (sliding mode). On the other hand, fracture contact mechanics 

considers the effects of contact and friction between the fracture surfaces. Thus, the current 

model has the ability to simulate the shear slip and propagation of the fractures induced by 

fluid flow. 

The second issue is choosing the right numerical approach to perform the simulation. 

Compared to the fluid flow time scale, fracture propagation can be considered quasistatic, 

and can therefore be loosely coupled to the fluid flow problem (Adachi et al., 2007; Kim & 

Duarte, 2015). In addition, there will be no fracture propagation for significant periods, and 

efficiency can be gained by considering the coupled deformation and fluid flow without 

fracture propagation. In addition, while it is critical for the propagation problem to 

accurately capture the stress in the vicinity of the propagating fracture, including the 

singularity at the tip, the mechanical response of the more expansive reservoir can be given 

a coarser representation. This thesis proposes a novel approach that splits the coupled 

mathematical model into submodels that are solved by different numerical approaches. 
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Specifically, we consider deformations due to fluid pressure in the fractured porous media 

(poroelasticity) and fracture contact mechanics as a coarse-level model. Mechanical 

fracture propagation is evaluated in a local fine-level model. The FVM and FEM 

advantages in fluid and solid mechanic simulations allow us to discretize the coarse-level 

model by FVM and the fine-level model by FEM. The split model aims to achieve the best 

simulation efficiency, i.e., reduce the computational cost and ensure a sufficiently low error 

in the numerical results. 

The third issue is the meshing of the fractured domain and fracture propagation. An 

adaptive meshing technique is considered to address the complexity caused by fracture 

propagation (Paluszny & Zimmerman, 2011; Salimzadeh et al., 2017). This technique is 

based on triangular elements/cells, where finer cells are generated at sensitive areas where 

the estimation error is significantly larger than that for the remaining area. In addition, 

regions around the fracture tips are remeshed to improve the accuracy in the computation 

of the fracture propagation along the cell faces. Then, the face-splitting technique is used 

to update the newly developed fracture in the computational grid. 

The final issue arising from the numerical simulation is the complexity of implementation. 

Using numerical methods to solve nonlinear coupled models often requires numerous 

iterations to find the solutions, making programming challenging. To address this issue, 

this study proposes a new implementation that combines newly developed code with an 

open-source tool named PorePy (Keilegavlen et al., 2021). The new code focuses on 

fracture propagations, accounting for the fracture contact mechanics, and is associated with 

an adaptive remeshing technique. Porepy, on the other hand, can simulate poroelasticity 

with fracture contact mechanics (Berge et al., 2020; Berre et al., 2020; Stefansson, Berre, 

et al., 2021; Stefansson, Keilegavlen, et al., 2021). The proposed implementation aims to 

provide an efficient and reliable tool for simulating the coupled hydromechanical processes 

occurring in fractured porous media. 
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1.1. Main contribution 

The main contributions of this thesis are as follows: 

• A numerical modeling of wing crack propagation accounting for fracture contact 

mechanics. First, Papers A and B present a mathematical model and corresponding 

numerical solution approach to model fracture mechanics under shear processes. The 

proposed mathematical model has the ability to model wing crack propagation and the 

coalescence of preexisting fractures while accounting for fracture contact mechanics. 

The numerical solution approach is based on combining the finite element method with 

quarter-point elements to handle the singularity at the fracture tips. The fracture contact 

mechanics are modeled by using the active set strategy. Due to the significant difference 

in scale between the simulation domain and the fracturing processes, adaptive 

remeshing, based on an error estimator and Laplacian smoothing for implementation, is 

utilized for computational efficiency. 

• Modeling of injection-induced fracture slip and wing-crack propagation in 

poroelastic media for enhanced geothermal reservoirs. Papers C and D present a 

mathematical model and a numerical solution strategy for coupling fluid flow, matrix 

deformation, fracture slip and fracture propagation and coalescence in porous media due 

to fluid injections. The governing mathematical model is based on Biot's model, with 

the deformation of the existing fractures represented by contact mechanics. The 

maximum tangential stress criterion is combined with Paris' law to govern the fracture 

growth processes. A two-level simulation is presented to reduce the computational costs 

and ensure accuracy. The numerical approach employs a novel combination of finite 

volume methods for the poroelastic deformation of the existing fractures with a finite 

element approach, as developed in Papers A and B, for the fracture propagation process. 

The effects of the injection rate, matrix permeability, and stress anisotropy on the 

stimulation outcome are studied to enhance our understanding of the hydromechanical 

processes in geothermal reservoirs. 
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1.2. Outline 

This thesis is divided into two parts. Part I is an introduction to the mathematical model and 

numerical methods. Part II presents the main scientific contribution with four papers either 

published or submitted to scientific journals. 

The remainder of Part I is organized as follows: 

Chapter 2 gives a brief overview of the different conceptual models for fractured porous 

media, where the main focus is on the mixed-dimensional discrete fracture matrix model. 

Chapter 3 presents a mathematical model for fracture propagation in a linearly elastic 

medium. This model is then extended to a fractured porous medium, in which deformation, 

fluid flow, and fracture propagation are considered.  

Chapter 4 presents the discretizations of the mathematical models given in Chapter 3.  

Chapter 5 summarizes the papers in Part II and their scientific contributions. The limitations 

of the current study and its prospects are also discussed in this section. 

  



11 

 

 

 

Chapter 2: Conceptual model 

Conceptual models are the essential assumptions that guide the development of a suitable 

and efficient mathematical model for simulation. These assumptions are intended to define 

the application scope of the proposed model, providing a framework for accurately 

simulating the phenomenon of interest. Therefore, this chapter focuses on the conceptual 

models used for fractured porous media. After an introduction to different models in 

Section 2.1, the chapter provides more details on the mixed-dimensional discrete fracture-

matrix model used throughout this thesis in Section 2.2. 

While the purpose of this thesis is not to develop new conceptual models, this chapter serves 

as a brief introduction to prepare the reader for the mathematical modeling concepts 

discussed in Chapter 3, and the discretization techniques covered in Chapter 4. Both of 

these subsequent chapters rely on the choice of a conceptual model, and understanding the 

underlying assumptions and principles is crucial for the reader's comprehension.  

2.1 Fractured porous media model 

Fractured porous media are complex structures commonly found in geothermal reservoirs 

(Jung, 2013; McClure & Horne, 2011, 2014; Norbeck et al., 2018; Pine & Batchelor, 1984; 

Schoenball et al., 2020) and have attracted the interest of scientists in developing efficient 

mathematical models (Viswanathan et al., 2022). These structures are characterized by 

numerous pores and fractures that allow fluids to flow through them. Both the pores and 

fractures form in different sizes. While pores are significantly smaller than the domain of 

interest for the current modeling study, fractures exist in various sizes, from a few 

millimeters to several kilometers. Furthermore, the fracture surfaces are rough, with a 

nonuniform aperture, where the apertures are significantly smaller than the fracture length. 

In addition, the network of fractures in porous media is also highly complex because the 

fractures occur randomly and intersect. 

For the pore structure, the arbitrary distribution of a large number of pores at a microscale 

can be represented by a continuum model based on the concept of a representative 
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elementary volume (REV) (Bear, 2013). In this approach, the porous medium is simplified 

by a continuum and does not consider the intricacies and fine details of the microscopic 

pore structure. Instead, upscaled parameters such as porosity and permeability, are used to 

describe this structure in the geometry domain at the macroscopic scale. 

The single-continuum model is often used to represent porous media (Bear, 1993), 

however, it has limitations when fractures exist. This model is the simplest and most 

accessible because it assumes that the porous media is homogeneous, and it does not 

consider the presence of larger fractures or other types of heterogeneities. As such, this 

model is suitable for microfracture networks where the flow rates in the pores and fractures 

are not much different but it is not appropriate for larger fractures. Larger fractures can 

significantly alter the flow behavior by providing preferential pathways for fluid flows, 

increasing the effective permeability of the porous media, and causing fluid channeling. 

Because of this, it is not, in general, possible to define an REV and to use the single-

continuum model to characterize the hydromechanics in both the fractures and pores. 

The discrete fracture network (DFN) model is a relevant approach for a complex fracture 

network (Sahimi, 2012). This model explicitly presents the entire fracture network and 

ignores the details of the physical processes in the rock matrix, i.e., the domain surrounding 

the fractures is assumed to be impermeable. The fracture surfaces are approximated as 

planar and parallel, and the aperture parameter represents the average distance between 

them. This model allows a fracture to be mechanically closed, i.e., there is contact across 

the fine-scale rough fracture surfaces, even if the aperture is not zero. Even though this 

model captures the characteristics of the fracture network, neglecting the permeability in 

the rock leads to unsuitability when using this model to consider the flows in fractured 

porous media. The computational cost also presents challenges when dealing with a 

complex fracture network that involves many fractures of significantly different sizes. 

The discrete fracture-matrix (DFM) model is proposed to address the limitations of the DFN 

model (Dietrich et al., 2005; Neuman, 2005). The DFM model combines the explicit 

representation of major fractures with the continuum approach for the surrounding medium. 
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Specifically, while the pore structure is represented entirely by a continuum domain, the 

fracture network is represented by two different models. Small-scale fractures are 

integrated as part of the continuum domain and represented through an upscaled effective 

permeability. Meanwhile, the large-scale dominant fractures are represented explicitly in 

the same manner as the DFN model (Frih et al., 2012; Nordbotten et al., 2019; 

Reichenberger et al., 2006). Thus the choice between the computational cost and accuracy 

in approximating the actual problem is flexibly set in this model. 

2.2 Mixed-dimensional DFM model 

Although the DFM model has many advantages in terms of computational cost and 

accuracy, it is still challenging to present the fracture aperture in the computational grid 

because of the high fracture aspect ratio, leading to the proposal of the mixed-dimensional 

DFM model. Indeed, a significant difference between the length and aperture of the fracture 

requires a spatial discretization of the domain with a high number of small and/or skewed 

cells that significantly affect the numerical solution. To address this challenge, a co-

dimension-one object with a parameter for the aperture can be considered to represent the 

fracture (Martin et al., 2005; Reichenberger et al., 2006). Specifically, the fracture is still 

represented by two parallel faces in the computational grid but they overlap. Thus, this 

approach does not directly represent the fracture aperture on the grid. Instead, a fracture 

aperture parameter is associated with the computational grid of the fracture. With this 

approach, the fracture aperture does not affect the grid resolution. 

Another dilemma when modeling fracture networks is the coalescence of the fractures. In 

this work, by representing fractures as co-dimension-one objects, we use a point to 

represent an intersection of the fractures. For preexisting fractures, the fractures can be 

considered intersecting in the V-, X-, and T-types. However, in this thesis, new 

intersections resulting from fracture propagation are only considered in the T-type due to 

the limitations of the current model, as shown in Papers B and D. 

The next chapter focuses on developing a mathematical model for coupled 

hydromechanical problems based on the mixed-dimensional DFM conceptual model. The 
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porous medium, fractures, and intersection between fractures are defined as subdomains 

that are two-dimensional (2D), one-dimensional (1D), and zero-dimensional (0D), 

respectively. The 2D domain representing the porous medium is assumed to be 

geometrically continuous, however, solutions may be discontinuous across the fractures. 

This domain also considers the influence of pores and fractures at the microscopic level by 

continuum-scale parameters representing porosity and permeability (Koponen et al., 1997). 

Meanwhile, larger fractures are explicitly represented. In the 1D domain, the aperture 

parameter represents the fracture thickness. In addition, the roughness and friction between 

the fracture surfaces are simplified by the parameters and variables describing the fracture 

contact mechanics. 
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Chapter 3: Mathematical model 

This chapter presents mathematical models based on the chosen conceptual model, i.e., the 

mixed-dimensional DFM model. First, we present a mathematical model for fracture 

contact mechanics and propagation in a solid domain. Then, the model is extended to 

fractured porous media. For the convenience of establishing the mathematical model, Table 

1 lists the symbols used in this work, and the conceptual representation of each subdomain 

and interface is presented in Figure 3.1. The matrix is denoted by ΩM, the fracture is denoted 

by ΩF, and the intersection of the fractures is denoted by ΩI. The interface between ΩM and 

ΩF is denoted by Γ, and that between ΩF and ΩI is denoted by Λ. The boundary of ΩM that 

coincides with the interface Γ is denoted by ∂ΩM. 

Table 1. Definition of Symbols 

Symbol Description 

ΩM matrix domain 

ΩF fracture domain 

ΩI intersection of fractures 

Γ interface between ΩM and ΩF 

Λ interface between ΩF and ΩI 

𝜕Ω boundary of Ω domain 

Π projection operators  

𝛔 stress tensor 

𝛆 symmetric infinitesimal strain tensor 

C elasticity (Hooke's) tensor 

𝐮 displacement 

⟦𝐮⟧ displacement jump 

𝐟 traction 

𝐾𝐼 , 𝐾𝐼𝐼 stress intensity factors 

𝜇𝑠 friction coefficient 

𝑔 gap of fracture 
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𝑎 aperture of fracture 

𝑎0 residual aperture in the undeformed state 

𝑝 matrix pressure 

𝜙 matrix porosity 

𝑐𝑝 fluid compressibility 

𝜇 fluid viscosity 

q matrix flux 

𝜁 inflow from the matrix to the fracture 

𝒦 matrix permeability 

𝜅 fracture permeability 

𝒦𝐹 fracture transmissivity 

𝑝𝐹 fracture pressure 

𝐪𝐹 fracture flux 

𝜆 flux at the interface of matrix and fracture 

𝜂 flow from fracture to intersection of fractures 

(𝑟, 𝜃) polar coordinates 

Oxy cartesian system of coordinates 

 

 

Figure 3.1. Conceptual representation of the subdomains and the interface 

3.1 Linear elasticity 

In the mixed-dimensional DFM model, the porous media is represented by a continuum, in 

which the theory of elasticity is assumed to govern the mechanical behavior. Under the 

effect of an external force and ignoring gravity, a stress field appears inside to balance and 
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keep the body in equilibrium. The relationship between them is represented by the 

conservation of momentum as given by 

∇ ⋅ 𝛔 + 𝐛 = 0   on   ΩM, (1) 

where ∇ is a gradient operator, 𝛔 is the stress, and 𝐛 is the external force. By linear elastic 

theory, the stress is defined by  

𝛔 = 𝐂: 𝛆   on   ΩM, (2) 

where C is the elasticity (Hooke's) tensor defined by Young's modulus and Poisson's ratio. 

The symmetric infinitesimal strain tensor, 𝛆, is defined from displacement 𝐮, such that 

𝛆 =
1

2
(∇𝐮 + ∇𝐮T)   on   ΩM. 

(3) 

Eqs. (2) and (3) are obtained based on some assumptions. The first assumption is that the 

stress and strain are proportional to each other within the elastic limit, meaning that the 

material will return to its original shape when the applied forces are removed. The second 

assumption is that the deformation is sufficiently small, so the changes in each direction are 

negligible compared to the original shape. Therefore, the strains, which represent the 

changes in the shape of the material, are assumed to be small. Both assumptions are 

acceptable because porous rock is a sturdy structure with low elasticity. This mathematical 

model was used in Papers A and B.  

3.2 Fracture propagation criteria 

When a fracture exists, assuming the fracture is parallel to the Ox axis in the Cartesian 

system of coordinates, Oxy, the stresses around a fracture tip can be expressed in terms of 

scaling factors called the stress intensity factors (SIFs) for any subjected loading. These 

factors are defined by (Irwin, 1957) 

𝐾𝐼 = lim
𝑟→0

√2𝜋𝑟 𝜎𝑥𝑥(𝑟, 𝜃 = 0), (4) 
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𝐾𝐼𝐼 = lim
𝑟→0

√2𝜋𝑟 𝜎𝑥𝑦(𝑟, 𝜃 = 0), (5) 

where 𝜎𝑥𝑥 and 𝜎𝑥𝑦 are the normal and tangential stresses defined from the model presented 

in Section 3.1. The polar coordinates with the origin at the fracture tip are denoted by (𝑟, 𝜃). 

𝐾𝐼 is the SIF for Mode I, applied to the opening (tensile) mode where the fracture surfaces 

move directly apart. 𝐾𝐼𝐼 is the SIF for Mode II (in-plane shear), where the fracture surfaces 

slide over one another in a direction perpendicular to the leading face of the fracture. Then, 

the stress field around the fracture tip is determined by (Erdogan & Sih, 1963; Williams & 

Ewing, 1984) 

𝜎𝑟𝑟 =
1

√2𝜋𝑟
[
𝐾𝐼

4
(5 cos

𝜃

2
− cos

3𝜃

2
) +

𝐾𝐼𝐼

4
(−5 sin

𝜃

2
+ 3 sin

3𝜃

2
)], 

(6) 

𝜎𝜃𝜃 =
1

√2𝜋𝑟
[
𝐾𝐼

4
(3 cos

𝜃

2
+ cos

3𝜃

2
) +

𝐾𝐼𝐼

4
(−3 sin

𝜃

2
− 3 sin

3𝜃

2
)], 

(7) 

𝜎𝑟𝜃 =
1

√2𝜋𝑟
[
𝐾𝐼

4
(sin

𝜃

2
+ sin

3𝜃

2
) +

𝐾𝐼𝐼

4
(cos

𝜃

2
+ 3 cos

3𝜃

2
)]. 

(8) 

By Eqs. (6)-(8), we can see that stresses at the tip of a fracture are infinite and independent 

of the applied load. According to this model, the failure of the structure always appears, 

even in a minor fracture and at an insignificant applied load. However, this stress field is 

still obtained from linear elastic theory, which is no longer suitable for the nonlinear 

behavior of materials approaching the fracture tip. Indeed, in the tiny region close to the 

tip, the concentration of stresses around the fracture tip can cause a localized plastic 

deformation or irreversible changes in the shape of the material (Anderson, 2017; Tada et 

al., 2000). Nevertheless, as the distance from the tip increases, the magnitude of the stresses 

decreases, and the material behavior becomes more elastic. Therefore, for the remaining 

region, such as the asymptotic region around the fracture tip, this stress field is still valid 

and can be used to design the fracture propagation criteria presented in the next section 

(Irwin, 1957; Rice, 1968). 
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As discussed in the previous chapter, this study utilizes the continuous mechanical fracture 

approach that considers only macroscale and deterministic fractures. In addition, we assume 

that a fracture propagates without branching and may connect to other fractures. Therefore, 

this section focuses on a propagation criteria consistent with these assumptions. There are 

three suitable criteria. The first is the maximum tangential stress criterion (MTS) (Beuth & 

Herakovich, 1989; Buczek & Herakovich, 1985; Carloni & Nobile, 2005; Paris & Erdogan, 

1963; Saouma et al., 1987). This criterion states that the fracture propagates in the direction 

where the circumferential stress is maximum. The second criterion is the minimum strain 

energy density criterion (MSE) (Erdogan & Sih, 1963; Sih, 1974). The fracture grows in a 

direction in which the strain energy density reaches the minimum value by the MSE. The 

third criterion is the maximum strain energy release rate criterion based on the Griffith 

theory (GRT) (Chang et al., 2006). The GRT presents a general mixed-mode brittle fracture 

criterion based on the maximum potential energy release rate concept. 

All of these criteria are consistent with experiments when simulating the unbranched 

growth of fractures in brittle material (Ingraffea & Heuze, 1980). The criterion with the 

simplest form, which is the MTS, is used in our work (Papers A, B, C, and D). Based on 

the MTS, the propagation angle is the solution of the equation 𝜕𝜎𝜃𝜃 𝜕𝜃⁄ = 0 and subject to 

𝜕2𝜎𝜃𝜃 𝜕𝜃2⁄ < 0. Hence, the propagation angle is defined by 

𝜃0 = 2 tan−1 (
𝐾I

4𝐾II

±
1

4
√(

𝐾I

𝐾II

)
2

+ 8), 

(9) 

𝐾II (sin
𝜃0

2
+ 9 sin

3𝜃0

2
) < 𝐾I (cos

𝜃0

2
+ 3 cos

3𝜃0

2
). 

(10) 

Equation (9), subjected to condition (10), always returns a unique solution depending on 

the SIFs. This means that the fracture propagates in a single direction from each tip at each 

specific stress state. The propagation length will be discussed in Chapter 4. 
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3.3 Fracture contact mechanics   

The fracture surfaces are typically in contact because the porous media in a geothermal 

reservoir are under compressive stress, so fracture contact mechanics should be considered 

in the model. Before establishing the contact model, three assumptions are considered. 

First, even though the fracture is mechanically closed, it can contain a volume of fluid 

caused by the small-scale fracture roughness. Therefore, the residual aperture in the 

undeformed state should be considered, and is denoted by 𝑎0. Then, the fracture aperture, 

indicated by 𝑎, is a function determined based on the residual aperture and normal 

displacement jump, such as 

𝑎 = 𝑎0 + ⟦𝐮⟧n   on   ΩF, (11) 

where ⟦𝐮⟧n is the normal displacement jump on the fracture interfaces. 

Second, a gap, denoted by 𝑔, is defined as the normal displacement jump, ⟦𝐮⟧n, between 

two fracture interfaces when they are in contact. This value depends on the tangential 

displacement on the fracture interfaces. Indeed, tangential displacements on the fracture 

may induce dilation as a result of the roughness of the interfaces when they slide over each 

other (Hossain et al., 2002). In this case, the fracture is still considered mechanically closed 

even though the gap between them is nonzero. Therefore, the formulation of the gap is 

given by (Rahman et al., 2002) 

𝑔 = −tan(𝜓)‖⟦𝐮⟧τ‖    on   ΩF, (12) 

where ⟦𝐮⟧τ is the tangential displacement jump on the fracture interfaces, and 𝜓 is the 

dilation angle. 

Third, there is contact traction on ΩF projected from the matrix domain. We consider that 

contact forces, which are defined by the stress (defined in Section 3.1) and the normal 

vector on the fracture surfaces in ΩM, obey Newton's third law, i.e., they are equal but have 
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opposite signs when the surfaces are in contact. Then, the value of traction on ΩF is equal 

to the value of the corresponding forces from ΩM. The traction is defined by 

𝐟 = 𝛔 ∙ 𝐧  on   Γ+, (13) 

where 𝐧 denotes the normal vector initiating from Γ+ to Γ−, in which Γ± are the interfaces 

between ΩM and ΩF at each side of ΩF. In the following, the fracture contact mechanics 

model is considered independently in the normal and tangential directions. In the normal 

direction, whenever the normal deformation jump is equal to the gap, the fracture is 

considered closed but not penetrating, and when it is larger, it is considered open. Whenever 

the fracture comes into contact, the normal contact traction keeps the forces in equilibrium. 

In contrast, this traction is zero when a fracture opens. These assumptions are expressed in 

the form of the Karush Kuhn-Tucker (KKT) conditions (Wohlmuth, 2011) as follows 

⟦𝐮⟧n − 𝑔 ≥ 0,     𝑓n ≤ 0,    (⟦𝐮⟧n − 𝑔)𝑓n = 0    on   ΩF, (14) 

where 𝑓n is the normal contact traction acting on the fracture. 

Next, considering the tangential direction, whenever the fracture interfaces come in contact, 

they can slide in the opposite direction. This slip is affected by the friction between them. 

By the Coulomb friction law, the sliding, or deformation in the tangential direction when 

the fracture is closed, satisfies the following system (Popov, 2010) 

|𝑓τ| ≤ −𝜇𝑠𝑓n

|𝑓τ| < −𝜇𝑠𝑓n → ⟦𝐮̇⟧τ = 0
|𝑓τ| = −𝜇𝑠𝑓n →  ∃𝜀 ∈ ℝ,  𝑓τ = −𝜀⟦𝐮̇⟧τ

    on   ΩF, 

 

(15) 

where 𝑓τ is the tangential contact traction and 𝐮̇ is the derivative of 𝐮 with respect to time. 

The tangential traction of the fracture is bounded from above by the normal traction scaled 

by the friction 𝜇𝑠, and when the frictional resistance is overcome, the fracture surfaces slip 

parallel to the tangential traction. 
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The mathematical model for fracture contact mechanics presented in this subsection was 

used in Papers B, C, and D. 

3.4 Deformation and fluid flow in fractured porous media  

This section extends the fracture propagation model accounting for the fracture contact 

mechanics presented in Sections 3.1–3.3 to porous media, and was used in Papers C and D. 

Hence, we will consider deformation, fluid flow, and fracture propagation in porous media. 

The assumptions for the deformation and fracture propagation are as in the above sections, 

i.e., we utilize the theory of linear elasticity accounting for fracture contact mechanics. We 

assume that the temperature effects on fluid flow are negligible, and we model the flow as 

a single phase with a low Reynolds number, i.e., laminar flow. The expansion of the model 

requires the incorporation of new variables. Specifically, we need to account for the 

pressure variable in the pores, since the fluid flows through the pore structure. Moreover, 

we also need to consider the flow behavior in the fracture. 

3.4.1 Matrix deformation and flow 

In porous media, momentum conservation is similar to that in solids, i.e., governed by Eq. 

(1). Meanwhile, the stress is the result of not only deformation but also pore pressure, so 

that (Biot, 1941) 

𝛔 = 𝐂∇𝑠𝐮 − 𝛼𝑝𝐈   on   ΩM, (16) 

where C is the elasticity tensor defined the same as Eq. (2), 𝐈 is the second-order identity 

matrix and p is the pressure in the porous medium. The Biot coefficient of the matrix is 𝛼 ∈

[0,1].  

By considering the fluid flow, the conservation of mass is governed by 

𝛼
𝜕(𝛻 ⋅ 𝐮)

𝜕𝑡
+ 𝑀

𝜕𝑝

𝜕𝑡
+ 𝛻 ⋅ 𝐪 = 𝑞0   on   ΩM, 

(17) 
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where 𝑡 is the time variable. The Biot modulus is given by 𝑀 = (𝜙𝑐𝑝 +
𝛼−𝜙

𝐾
), 𝑐𝑝 is the 

fluid compressibility, 𝜙 is the matrix porosity, 𝐾 denotes the bulk modulus, and 𝑞0 is the 

source/sink team. The flux, q, is defined by Darcy's law such that 

𝐪 = −
𝒦

𝜇
𝛻𝑝   on   ΩM, 

(18) 

where 𝜇 is the fluid viscosity and 𝒦 denotes the matrix permeability. Eqs. (17) and (18) are 

developed based on the continuous model for porous media, in which the pore structure and 

permeability of porous media are upscaled by 𝜙 and 𝒦. 

3.4.2 Fluid flow in the fracture  

The simplest flow model through a fracture is called the parallel plate model, where the 

fracture is assumed to be bounded by two smooth, parallel surfaces separated by an 

aperture. Based on this model, the permeability of the fracture can be identified as 

(Witherspoon et al., 1980; Zimmerman & Bodvarsson, 1996)  

𝜅 =
𝑎2

12
    on   ΩF, 

(19) 

where 𝑎 is the fracture aperture, given by Eq. (11). The product of the permeability and the 

fracture aperture, which is sometimes known as transmissivity, is equal to   

𝒦𝐹 = 𝜅𝑎 =
𝑎3

12
    on   ΩF. 

(20) 

Eq. (20) is called the cubic law. An important consequence of the cubic law is that the 

fracture transmissivity is extremely sensitive to aperture change. 

The dominant pathway for fluid flow through a fracture is along its length due to the 

difference between the fracture aperture and pore diameters in the surrounding rock matrix. 

The aperture of a fracture is typically much larger than the pore diameters in the matrix, 

providing a preferential pathway for fluid flow. As a result, fluid flows more easily through 
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the fracture than through the surrounding rock matrix. Under this observation, the equation 

for the conservation of mass in the fracture can be simplified to a one-dimensional equation, 

defined along the length of the fracture (Martin et al., 2005; Stefansson, Berre, et al., 2021), 

𝜕𝑎

𝜕𝑡 
+ 𝑎𝑐𝑝

𝜕𝑝𝐹

𝜕𝑡
+ ∇∥ ∙ 𝐪𝐹 − 𝜁 = 𝑞𝐹

0   on   ΩF,  
(21) 

𝐪𝐹 = − 
𝒦𝐹

𝜇
∇∥𝑝𝐹  on   ΩF, 

(22) 

where the differential operator, ∇∥, is defined on the tangent space of ΩF. In Eqs. (21) and 

(22), 𝜇 is the fluid viscosity; 𝐪𝐹, 𝑝𝐹, and 𝑞𝐹
0 are the flux, pressure, and source/sink in the 

fracture; and the term 𝜁 represents inflow from the matrix to the fracture. 

 

 

a) Projections between ΩM and ΩF b) Projections between ΩF and ΩI 

Figure 3.2. Projection representation for the coupling between subdomains  

To facilitate coupling between subdomains, specifically between ΩM and ΩF and between 

ΩF and ΩI, we introduce projection operators Π, as depicted in Figure 3.2. Details of these 

operators can be found in the work of Keilegavlen et al. (Keilegavlen et al., 2021). The 

subscripts of Π denote the origin, while the superscripts indicate the destination of the 

projection. The trace operator tr maps quantities from ΩM to its boundary ∂ΩM. 

To establish the mapping between ΩM and ΩF, we first determine the flux at the interfaces 

Γ±, which is generated by pressure in both the fracture and matrix. Then, we enforce the 

balance of flux at the interfaces. The flux on the Γ± is defined as 
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𝜆± = −
𝜅

𝜇
(

ΠΩF
Γ±

𝑝𝐹 − Π𝜕±ΩM
Γ±

tr± 𝑝

𝑎 2⁄
)     over   Γ±. 

(23) 

The balance of the flux between the matrix and fracture is enforced in the interfaces as 

follows: 

𝐪 ∙ 𝐧|𝜕±ΩM = Π
Γ±
𝜕±ΩM

𝜆±    on   𝜕ΩM, (24) 

The inflow from the matrix to the fracture in Eq. (21), 𝜁, is defined by (Martin et al., 2005) 

𝜁 = ΠΓ+
ΩF

𝜆+ + ΠΓ−
ΩF

𝜆−  on   ΩF. (25) 

When fractures intersect, the conservation equation in the intersection, ΩI, is defined by 

𝑑(𝑎𝐼
2)

𝑑𝑡
+ 𝑎𝐼

2𝑐𝑝

𝜕𝑝𝐼

𝜕𝑡
− ∑ Π

Λi
ΩI

𝜂𝑖

𝑁

𝑖=1
= 𝑞𝐼

0    on   ΩI, 
(26) 

where 𝑁 is the number of intersecting fractures around ΩI and 𝑎𝐼 is taken to be the average 

of the apertures of the intersecting fractures. For T-type and X-type intersections, 𝑁 = 3 

and 𝑁 = 4, respectively. 𝑞I
0 is the source/sink term in the fracture intersection. 𝜂𝑖 is a 

variable that represents the flow from fracture i to ΩI, defined by 

𝜂𝑖 = −
𝒦𝐹

𝜇
(

ΠΩI
Λi

𝑝𝐼 − ΠΩF
Λi

 𝑝𝐹

𝑎𝐼 2⁄
)    on   Λ𝑖 , 

(27) 

Then, a balance between the fracture and fracture intersection is enforced as  

𝐪𝐹 ∙ 𝐧|
𝜕Ω𝑖

F = Π
Λi
ΩF

𝜂𝑖     on   𝜕Ω𝑖
F, (28) 

where 𝐧|
𝜕Ω𝑖

F  is the normal vector pointing out from 𝜕Ω𝑖
F in the direction of Λ𝑖. 
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3.4.3 Contact mechanics in a fractured porous medium 

The presence of fluid in a fracture affects the contact force on the fracture surface. 

Therefore, the contact traction used to establish the fracture contact mechanics in Eq. (13), 

denoted by 𝐟, is modified as follows:  

𝐟± = ± (Π𝜕±ΩM
Γ±

𝛔 +  𝐈 𝛼𝑓 ΠΩF
Γ±

𝑝𝐹)     on   Γ±, (29) 

where 𝛔 represents the hydromechanical stress in the matrix as defined in Eq. (16), and 𝛼𝑓 

represents the Biot coefficient in the fracture. Except for the modified contact traction, the 

rest of Subsection 3.3 remains unchanged when the flow effect is included in the fracture. 
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Chapter 4: Numerical methods 

This chapter presents a numerical approach to discretize the mathematical models proposed 

in Chapter 3. Since the mathematical model depends on both the space and time variables, 

model discretization must be considered for both variables. For the variation with time, the 

mathematical model only contains the first derivative, so time discretization is directly 

accomplished by the backward Euler method. In contrast, the model is more complex in 

terms of the spatial variations of the variables. Therefore, examples of spatial discretization 

methods are presented below. Based on the meshing, these approaches can be divided into 

two main categories: meshing independent of the fracture and conforming to the fracture. 

The extended finite element method (XFEM) models the fracture independently of the 

computational grid, and it is specially designed for treating the discontinuities caused by 

the fracture (Belytschko & Black, 1999). This method uses a grid that is independent of the 

fractures, and the discontinuity is handled by using enrichment functions locally in elements 

around fractures. Hence, it is convenient for fracture propagation modeling because it 

avoids remeshing. To consider coupled fluid flow and fracture propagation, by using a 

special enriched shape function, the fluid pressure variable is introduced to describe the 

fluid flow within the fracture and its contribution to the fracture deformation (Lecampion, 

2009; Liu et al., 2017; Mohammadnejad & Khoei, 2013). The XFEM is also extended to 

simulate the fracture contact mechanics by considering a Heaviside function based on the 

normal jump between the interfaces (Khoei & Nikbakht, 2006). 

The conforming grid approach forces fracture growth along the faces of the grid cells. The 

FEM and FVM methods (Golovin et al., 2015; Hunsweck et al., 2013; Settgast et al., 2017) 

are widely used methods based on this approach. First, a conforming grid with fractures is 

generated and refined in the region where fractures may propagate. Then, the fracture 

extension in the grid is determined by the faces that either best fit the numerical solution or 

are locally adjusted based on the estimated propagation orientation. Compared with XFEM, 

this approach is made more expensive by increasing the number of computational cells to 

capture the fracture geometry, and the accuracy of this approach is highly dependent on the 
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grid resolution. However, by the explicit representation of the fracture geometry, this 

approach is more straightforward in modeling the mechanical characteristics of fracture 

such as the deformation, stress, strain, energy, and friction inside and surrounding the 

fracture. 

The highly dependent grid resolution of the conforming grid approach can be solved by the 

adaptive remeshing technique (ARM). In the ARM, mesh refinement is performed around 

the fracture tips after each fracture propagation step (Paluszny & Zimmerman, 2011; Secchi 

et al., 2007; Simoni & Secchi, 2003). The propagation results in the modification of fracture 

geometry and changes in the grid to ensure that the grid face coincides with the fracture 

extension. As a result, with the conforming grid approach combined with ARM, capturing 

the propagating fractures with a rather coarse mesh is possible. 

Based on the above discussion, we use the conforming grid approach associated with the 

adaptive remeshing technique. The grid generation details will be discussed later.  

4.1 Time discretization 

Papers B, C, and D include a mathematical model that contains a first-order derivative with 

respect to time. To ensure stability with relatively large time steps, Backward Euler's 

method (also known as the implicit scheme) is used (John Charles Butcher, 2003). 

Typically, we address with an initial value problem as follows: 

𝜕𝐱(𝑡)

𝜕𝑡
= 𝐲(𝐱, 𝑡),   𝐱(0) = 𝐱0, 

(30) 

where 𝐱 is an unknown vector, and 𝐲 is a nonlinear function.  

Let 𝑡𝑘 , 𝑘 = 0, 1, 2, …, be a sequence in time with time step ∆𝑡, then 𝑡𝑘+1 = 𝑡𝑘 + ∆𝑡. 

Therefore, 𝐱(𝑡𝑘+1) is obtained from 𝐱(𝑡𝑘) as follows: 

𝐱(𝑡𝑘+1) = 𝐱(𝑡𝑘) + ∆𝑡𝐲[𝐱(𝑡𝑘+1), 𝑡𝑘+1]. (31) 
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As shown in Eq. (31), the new approximation 𝐱(𝑡𝑘+1) appears on both sides of the equation, 

so an iteration method, such as Newton, can be used to find the solution. 

4.2 Spatial grids 

The utilization of the mixed-dimensional model requires the adoption of mixed-

dimensional grids for spatial discretization, which pertains to the computational grid used 

in each subdomain. Specifically, we discretize the computational domain by three distinct 

groups of grids. These grids are designed to match each other. The first group is a 2D grid 

for ΩM, denoted by Ωℎ, which contains the nonoverlapping triangle computational cells 

conforming to the fractures. The cells around the fracture are significantly smaller than the 

others. In this grid, the nodes and faces along the fracture are split to capture the 

discontinuity caused by the fractures. The second group is 1D grids containing the 

nonoverlapping segments generated for ΩF and Γ, denoted by Ω𝑙. The 1D grid matches the 

2D grid, i.e., the segments are identical to the faces along the fractures of the 2D grid. The 

last group has points, i.e., 0D grids, generated for ΩI and Λ. An illustration of the mixed-

dimensional grids can be found in (Keilegavlen et al., 2021). When considering the pure 

mechanics (i.e., the model presented in Sections 3.1–3.3), only 2D and 1D grids are needed 

for the simulation, as were used in Papers A and B. Otherwise, the fully coupled model 

needs all three groups of grids for discretization, as was used in Papers C and D. 

4.3 Numerical approach 

The selection of a numerical method for spatial discretization relies on the characteristics 

of the problem under consideration. Based on the properties of the FEM and FVM discussed 

earlier in this thesis, we divide the mathematical model into two submodels: coarse- and 

fine-level models. Then, we use the FVM and FEM for discretization in each model.  

The coarse-level model, as presented in Chapter 3 with the exception of the fracture 

propagation criteria, describes the poroelasticity and fracture contact mechanics (as 

demonstrated in Papers C and D). This model considers the coupling between the fluid 

flow, deformation, and fracture contact mechanics in the porous media but does not directly 
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incorporate fracture propagation. Meanwhile, the fine-level model, which involves 

deformation and fracture propagation in a linear elasticity domain, is represented by Eqs. 

(1) - (10) and is demonstrated in Paper A. The fine-level model can be extended to include 

fracture contact mechanics by considering Eqs. (11) - (15), as demonstrated in Paper B. 

The concepts of coarse and fine come from the numerical implementation, in which a coarse 

grid is used to discretize the poroelasticity and fracture contact mechanics. In contrast, a 

finer grid is used to simulate fracture propagation. The use of both coarse-level and fine-

level grids aims to reduce the simulation cost while limiting the error of the numerical 

solution. For example, considering the fluid flow problem in porous media, a coarse grid is 

acceptable for discretization because the flow is considered laminar with a low velocity. In 

contrast, fracture propagation is sensitive to any change in the stress field around the tip. 

Thus, a fine grid will ensure a better capture of the fracture propagation. 

The finite volume method (FVM) and the finite element method (FEM) are employed to 

discretize the coarse-level and fine-level models, respectively, to simulate the behavior of 

fractured porous media under various conditions. FVM allows for accurate modeling of the 

fluid flow behavior in the fracture and porous media, while FEM captures the deformation 

of the fractured domain. To ensure accurate simulations, it is crucial to consider the 

coupling between the two submodels. In the fine-level model, the displacement on the 

fracture surfaces is constrained by that from the coarse-level model. Meanwhile, the coarse-

level fracture geometry is updated based on the fine-level fracture propagation. This ensures 

a continuous representation of the evolving geometry in both models. 

As both the coarse-level and fine-level models are based on elliptic problems, the following 

subsection will provide a brief overview of the FVM and FEM for general elliptic problems. 

Additionally, we will discuss our approach to treating fracture contact mechanics, fracture 

propagation, and coalescence. A general elliptic steady-state problem for 2D solid 

mechanics is defined as 

∇𝑠
T ⋅ 𝛔 + 𝐪̃𝑠 = 0      on ΩM, (32) 
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𝛔 = 𝐃∇𝑠𝐮     on ΩM, (33) 

where 𝛔 is the stress and 𝐮 is the displacement. 𝐃 is the material matrix obtained from the 

elasticity tensor. ∇𝑠 denotes the gradient operators.  

A general elliptic steady-state problem for fluid flow is defined as 

∇ ∙ 𝐪 = 𝑞̃𝑓      on Ω, (34) 

𝐪 = −𝐓∇𝑝     on Ω, (35) 

where Ω is the computational domain, such as ΩM or ΩF. 𝐪 is the flux, and 𝑝 is the pressure. 

𝐓 is the matrix defined as permeability divided by viscosity. 

4.3.1 Finite volume methods 

The domain Ω is discretized by a set of computational cells {Ω𝑒}. At each cell Ω𝑒, the 

discretization of Eqs. (32) and (34) by FVM is defined as  

∫ 𝛔 ∙ 𝐧d𝑙
𝜕Ω𝑒

= ∫ 𝐪̃𝑠dΩ
Ω𝑒

, 
(36) 

− ∫ 𝐪 ∙ 𝐧d𝑙
𝜕Ω𝑒

= ∫ 𝑞̃𝑓dΩ
Ω𝑒

, 
(37) 

where 𝜕Ω𝑒 denotes the faces of cell Ω𝑒. Eqs. (36) and (37) are obtained by integrating Eqs. 

(32) and (34) over each computational cell and applying the divergence theorem. The body 

force and source/sink term are explicitly defined, so appropriate quadrature rules can be 

used to compute the right-hand side of Eqs. (36) and (37). The left-hand sides of Eqs. (36) 

and (37) are the stress and flux acting on the boundary of the computational cells, which 

can be assumed to be the approximate value at the face center and can be approximated by  
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1

|𝛾𝑘𝑙|
∫ 𝛔 ∙ 𝐧d𝑙

𝛾𝑘𝑙

≈ 𝛔𝑘𝑙 = ∑ 𝐝Ω𝑒

𝑘𝑙 𝐮Ω𝑒

𝑛𝑐

𝑒=1

, 
(38) 

1

|𝛾𝑘𝑙|
∫ 𝐪 ∙ 𝐧d𝑙

𝛾𝑘𝑙

≈ 𝐪𝑘𝑙 = ∑ 𝑡Ω𝑒

𝑘𝑙 𝑝Ω𝑒

𝑛𝑐

𝑒=1

, 
(39) 

where 𝛾 denotes the face in the computational grid. 𝐝Ω𝑒

𝑘𝑙  and 𝑡Ω𝑒

𝑘𝑙  are the transmissibilities 

from cell Ω𝑒 to face 𝛾𝑘𝑙, which are defined from D and T. 𝐮Ω𝑒
 and 𝑝Ω𝑒

 are the displacement 

and pressure representing cell Ω𝑒, which can be assumed to be the approximate values at 

the center of the cell. 

Depending on the determination of the cells that connect to the face 𝛾𝑘𝑙, this method can 

be classified into a two-point flux approximation (TPFA) and multipoint flux/stress 

approximation (MPFA/MPSA) (Aavatsmark, 2002; Nordbotten, 2015, 2016). Specifically, 

if 𝛾𝑘𝑙 is the common face of cells Ω𝑘 and Ω𝑙, then 𝑛𝑐 = 2, and the discretization in Eq. (39) 

leads to the TPFA. On the other hand, if a cell Ω𝑒 and face 𝛾𝑘𝑙 share at least one vertex, 𝑛𝑐 

is the total number of cells that connect to face 𝛾𝑘𝑙. In this case, the discretization in Eqs. 

(38) and (39) lead to MPSA and MPFA, respectively. 

For the poroelasticity problem, the displacement and pressure interact, so the discretization 

should treat the coupled system of deformation and flow directly instead of combining the 

discretizations for the two separate subproblems. This approach ensures both accuracy and 

computational efficiency. An implementation of this approach is the MPFA/MPSA-FVM 

proposed by Nordbotten (Nordbotten, 2016). 

By implementing the discretization presented by Eqs. (38) and (39) for all computational 

cells, then assembling, we obtain a linear system given by the potential    

𝐀𝐯 = 𝐁, (40) 

where A is the discretization matrix, v is the vector of potentials associated with each cell, 

and B is the integrated source/sink term and possible boundary conditions. 
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4.3.2 Finite element methods 

By multiplying the governing equation (32) with a test function and integrating over each 

computational cell, ignoring the boundary condition, the FEM weak formulation is defined 

by 

∫ (∇𝑠𝐮ℎ)T𝐃∇𝑠𝐮̅ℎdΩ
Ω𝑒

= ∫ 𝐪̃𝑠𝐮̅ℎdΩ
Ω𝑒

     on Ω, 
(41) 

where 𝐮ℎ is the approximate solution and 𝐮̅ℎ is the test function. 

The variables 𝐮ℎ and 𝐮̅ℎ in Eq. (41) are then approximated by the values at the nodes 

located at the vertices and middle of the faces of each computational cell through the shape 

functions. The shape functions are constructed based on singularity elements for the cells 

around the fracture tip and, as the usual quadratic function for the remaining cells. Similar 

to the coarse-level domain, a linear equation is also obtained in the fine-level domain to 

find an approximate solution for the mathematical model. Details are presented in Paper B. 

4.3.3 Discretization for fracture contact mechanics 

To incorporate the fracture contact mechanics into the model, it is necessary to discretize 

the contact traction and displacement on the fracture surfaces, and determine the state of 

the surfaces based on these discrete variables. The numerical solution obtained from the 

coarse-level model is used to approximate the discrete contact traction, 𝐟(𝐱), based on Eq. 

(29), and the displacement jump on the fracture surfaces, ⟦𝐮(𝐱)⟧, where x represents a point 

corresponding to an element in Ω𝑙. Using the discrete variables 𝐟(𝐱) and ⟦𝐮(𝐱)⟧, we check 

the nonpenetration condition and Coulomb friction law, as presented in Section 3.3, to 

determine the state of each element - whether it is open, sticking, or sliding. This checking 

of the state of the fracture surfaces is accomplished using an active set approach 

(Hintermüller et al., 2002; Hüeber & Wohlmuth, 2005; Wohlmuth, 2011).   

First, at each time step, we predict a set of possible contact points {𝐱, ℜ(𝐱)}, where 𝐱 ∈ Γ+ 

and ℜ(𝐱) is the projection of 𝐱 in Γ−. Then we define the normal and tangential tractions 
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(𝑓n(𝐱), 𝑓τ(𝐱)) on Γ+ as a set of Lagrange multipliers, and the displacement jump 

(⟦𝐮(𝐱)⟧n, ⟦𝐮(𝐱)⟧τ) on Γ. After that, we define a friction bound by 𝑏𝑘(𝐱) =

𝜇𝑠[−𝑓𝐧
𝑘(𝐱) + 𝑐(⟦𝐮(𝐱)⟧𝐧

𝑘 − 𝑔(𝐱))], where 𝑐 > 0 is a given numerical parameter, and k is 

the iteration step. The nonpenetration condition and Coulomb friction, presented in 

inequalities (14) and (15), can be rewritten as a nonlinear optimization problem by means 

of the complementary functions 

𝐶𝐧(⟦𝐮(𝐱)⟧n, 𝑓n(𝐱)) = −𝑓n(𝐱) −
1

𝜇𝑠

max{0, 𝑏𝑘(𝐱)}, 
(42) 

𝐶τ(⟦𝐮̇(𝐱)⟧τ, 𝑓τ(𝐱))

= −𝑓τ(𝐱) ∙ max{𝑏𝑘(𝐱), ‖−𝑓τ(𝐱) + 𝑐⟦𝐮(𝐱)⟧τ‖}

− (−𝑓τ(𝐱) + 𝑐⟦𝐮̇(𝐱)⟧τ)max{0, 𝑏𝑘(𝐱)}. 

(43) 

When 𝐶𝐧(⟦𝐮(𝐱)⟧n, 𝑓n(𝐱)) = 0 and 𝐶τ(⟦𝐮̇(𝐱)⟧τ, 𝑓τ(𝐱)) = 0, we find the solution pair 

{𝐮(𝐱), 𝐟(𝐱)} that satisfies the nonpenetration condition and the Coulomb friction law. 

Equation 𝐶𝑛 = 0 and 𝐶𝜏 = 0 can be solved by a semismooth Newton scheme, which results 

in an active set strategy. 

4.3.4 Fracture propagation, coalescence and grid update 

As discussed in Section 3.2, fracture propagation is evaluated by SIFs, which can be 

estimated using the nodal displacement correlation technique (Barsoum, 1977; Parks, 

1974). In this method, 𝐾I and 𝐾II are estimated through normal and tangent displacements 

at some point near the fracture tip, respectively (Barsoum, 1977; Chen & Kuang, 1992; 

Kuang & Chen, 1993). The accuracy of this method has been verified through previously 

published studies (Fu et al., 2012; Nikishkov, 2013; Ramamurthy et al., 1986). 

To simulate fracture propagation, the propagation length must also be determined, in 

addition to determining the propagation direction. In fact, for any acting force, the fracture 

always grows a corresponding length that may be below the resolution of the grid. Instead, 

the new fracture is updated and taken into account in the model if the fracture propagates 
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to a sufficient distance. In this study, the propagation length is computed by a Paris-type 

law (Paris & Erdogan, 1963). This law assumes that a single fracture inside a fine-level 

domain grows with a length equal to a preset value. If more than one fracture grows 

simultaneously, the tips with higher energy advance further than the others (Paris & 

Erdogan, 1963; Renshaw & Pollard, 1994). 

This work also allows fractures to coalesce, and assumes the connection by a T-type model. 

They are considered connected when the distance between a growing crack tip, and a 

boundary or another fracture, is less than the crack tip rosette radius. Then the fracture is 

extended by a connection point defined by the projection of the fracture tip on the boundary. 

Finally, splitting the new fracture extension path creates a T-type connection. Details can 

be found in Papers B and D. 

Grid updates are implemented independently in the coarse-level and fine-level grids. In the 

fine-level domain, the grid is updated whenever a fracture is propagated. However, small 

increases in the fracture length on the fine-level domain are not immediately projected to 

the coarse-level problem for simulation efficiency. Instead, a fracture propagating on the 

fine-level domain is updated on the coarse-level fracture only when they are connected, or 

when the change is significant enough to affect the coarse-level domain. Further details on 

the grid update process can be found in Papers C and D. 
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Chapter 5: Summary and outlook 

5.1 Summary of papers 

This chapter describes each of the four papers constituting Part II.  

Paper A 

Title: Numerical investigation of wing crack initiation and propagation due to 

shear slip 

Authors: Hau Trung Dang, Eirik Keilegavlen, Inga Berre 

Book: European Geothermal Congress. 2019 

Paper A presents a simple numerical modeling and an adaptive remeshing method (ARM) 

to simulate fracture propagation in rock material. The ARM technique helps reduce the 

computational costs and accurately captures the geometrical changes caused by fracture 

propagation. The model is established based on linear elasticity theory and the maximum 

tangential stress criterion. The ARM technique is developed based on an error estimator, 

deleted-replaced process, and Laplacian smoothing. The numerical solution approach is 

based on combining the finite element method with quarter-point elements to handle the 

singularity at the fracture tips. The main contribution of Paper A is to present a 

mathematical model and numerical approach to simulate the initiation, propagation, and 

coalescence of wing cracks caused by compression and shear slip. 

Paper B 

Title: Numerical modeling of wing crack propagation accounting for fracture 

contact mechanics 

Authors: Hau Trung Dang, Eirik Keilegavlen, Inga Berre 
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Journal: International Journal of Solids and Structures. Volumes 204–205, Pages 

233-247. 2020 

One of the restrictions of the model presented in Paper A is that it ignores the fracture 

contact mechanics. Paper B, hence, based on the previously proposed model, accounts for 

the fracture contact mechanics, in which fracture surfaces are allowed to be in contact or 

fully open. In this contact model, a nonpenetration condition is enforced in the normal 

direction of the fracture segments. For the tangential direction, either the fracture surfaces 

are modeled as frictionless, or the displacement jump in the tangential direction is specified. 

The proposed model also has the ability to consider multiple fractures propagating 

simultaneously at different speeds based on Paris's law. This paper uses ARM technique to 

ensure computational efficiency. The obtained results are verified by analytical solutions 

and experimental observations to show the accuracy of the presented model. In addition, 

more complex numerical test cases demonstrated the capabilities of this model in 

investigating the development of wing cracks for situations where multiple fractures 

interact. 

Paper C 

Title: Two-level simulation of injection-induced fracture slip and wing-crack 

propagation in poroelastic media 

Authors: Hau Trung Dang, Eirik Keilegavlen, Inga Berre 

Journal: International Journal of Rock Mechanics and Mining Sciences. Vol. 160, 

105248. 2022 

This study extends Paper B to a fully coupled model for fracture propagation caused by 

anisotropic compressive stresses and fluid injection. The governing mathematical model is 

based on Biot's model, with the contact mechanics representing the deformation of the 

existing fractures. The normal contact traction and the friction between the fracture surface 

are considered in the proposed model. A two-level simulation was presented to reduce the 
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computational costs and ensure accuracy. The numerical approach employs a novel 

combination of finite volume methods for the poroelastic deformation of the existing 

fractures with a finite element approach for the fracture propagation process. The obtained 

results show that the current model has potential in the simulation of mixed-mechanism 

hydraulic stimulation of fractured reservoirs. Both fracture shearing and the corresponding 

wing-crack propagation lead to an increase in permeability. 

Paper D 

Title: Modeling of mixed-mechanism stimulation for the enhancement of 

geothermal reservoirs 

Authors: Hau Trung Dang, Eirik Keilegavlen, Inga Berre 

Journal: Submitted manuscript. 2023 

This study builds upon the mathematical model presented in Paper C by considering the 

coalescence between fractures. We conduct numerous complex numerical test cases to 

better comprehend the role and impact of mixed-mechanism stimulations on permeability 

in fractured geothermal reservoirs. The obtained results indicate the following: 

1) Fluid injection at low pressure causes shear slip and dilation of the fractures, depending 

on the principal stress scenario. 

2) A more permeable bulk domain causes flow leakage and slows fracture growth. Thus, 

stimulation by a low-pressure fluid injection may not be as effective for areas with high 

permeability. 

3) The relationship between the injection rate and fracture growth speed is nonlinear. It 

takes a significantly longer injection time at a low rate for the fracture to propagate than in 

the higher rate case. Hence, if an injection is at a too-low rate, fracture propagation may not 

occur. 
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4) The location of the preexisting fractures can significantly impact the expansion of the 

fracture network. Fractures generally propagate along the direction of the maximum 

principal stress, and the presence of preexisting fractures can either facilitate or restrain the 

development of the propagating fractures. 

5.2 Summary and outlook 

Collecting the contributions described in the previous section, this section provides a 

unified summary of the thesis before some possible extensions and future possibilities are 

suggested.  

This thesis presented a mathematical model and numerical approach to simulate injection-

induced fracture slip and wing-crack propagation in fractured porous media. The model is 

based on a coupled hydromechanical model, considering poroelastic and fracture contact 

mechanics, allowing the preexisting fracture to grow and coalesce through a fracture 

propagation model. A two-level simulation is presented to reduce the computational costs 

and ensure accuracy. A finite volume method is combined with an active set strategy to 

discretize the poroelastic deformation of the existing fractures on the coarse level. The 

implementation is performed by PorePy for this level. A finite element method is combined 

with collapsed quarter-point elements at the fracture tips to capture the stress singularity 

for fracture propagation on the fine level. Adaptive remeshing, based on an error estimator 

and Laplacian smoothing, was introduced on both levels to account for fracture 

propagation. 

The verification and validation for pure mechanics have been presented, showing an 

appropriate agreement between the analytical solutions and experimental observations for 

single fracture computations. For more complicated simulations, i.e., the propagation of 

multiple fractures under anisotropic principal stresses and fluid injection, the stability of 

the solution with different time steps, coarse-level grid sizes, and fine-level grid sizes was 

verified. This approach is capable of simulating complex problems, such as the 

simultaneous propagation of multiple fractures combined with the slip and dilation of 



41 

 

 

 

fractures in contact and tensile openings. In addition, hydraulically and mechanically 

interacting fractures are handled naturally. 

Some of the results obtained in Paper D show that the effect of mixed mechanism 

stimulations can significantly enhance fracture permeability and connectivity. The effect 

on the enhancement of overall reservoir permeability in geothermal reservoirs will, in 

general, be complex. As this paper has shown, parameters such as the background stress 

state, permeability of the porous medium, injection rate, and fracture location significantly 

affect the expansion of the fracture network. 

Therefore, the results in this thesis partly help us better understand the hydromechanical 

mechanisms of fracture slip, opening, and propagation in geothermal reservoirs, and the 

parameters that may affect the efficiency of geothermal energy extractions. 

Although the results of modeling hydromechanical interactions in fractured porous media 

are impressive, this work still has limitations that need improvement to extend the 

application into practice. First, the model developed is 2D, which is unrealistic when 

geothermal reservoirs are complex 3D structures. Therefore, a 2D model is incapable of 

simulating physical phenomena accurately. Second, the flow in this study is assumed to be 

single phase. In reality, flow in the subsurface is multicomponent and multiphase with 

complex physical properties. Third, a phase change can occur under high temperatures in 

geothermal reservoirs, so it should be included in the model. Finally, fracture initiation 

should not be limited to emerging from preexisting fracture tips, and fracture connectivity 

should be considered in more forms, such as crossings with or without an offset. Hopefully, 

we will see new studies address the current limitations in the coming years. 
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ABSTRACT 

The expansion of wing cracks produced by slip of 

fractures due to water injection at pressure far below the 

minimum principal stress affects the performance of 

geothermal system. This work investigates how the 

wing cracks are emerged, propagated and connected 
due to slip at the interfaces of a pre-existing fracture. A 

mathematical model is presented and followed by an 

adaptive remeshing technique for the simulation. 

Several numerical investigations are conducted to 

validate the present model and study the initiation and 

propagation of wing cracks. 

1. INTRODUCTION  

An enhanced geothermal system (EGS) is a volume of 

hot rock that has been stimulated by reactivating natural 

fractures in the subsurface. By water injection at low 

pressure, slip is caused if the reduction in normal stress 

is sufficient to overcome the frictional resistance to the 

shear stresses on the fracture. The slip of fracture 

surfaces in opposite directions can cause the fracture to 

propagate in the form of wing crack (Cheng et al. 2019; 

Jung 2013; Kamali and Ghassemi 2016; Lin et al. 

2010). In a system of multiple pre-existing natural 
fractures, many wing cracks are created and filled by 

massive water injection during stimulation. Some of 

them result in new connected flow paths and enhance 

permeability (Norbeck et al. 2018). While the 

propagation of wing crack could be central in 

stimulation of geothermal reservoirs, the mechanism 

has been only to a limited extent been studied by 

mathematical modeling and simulation in this context. 

Further improvements in modeling and simulation, will 

lead to increased understanding of this mechanism, 

while predictions will still be challenging due to the 
uncertainties in initial stress acting on the natural 

fractures as well as their locations (Lin et al. 2010). This 

leads to the lack of knowledge about the mechanism of 

wing cracks in EGS. 

Many studies about behaviours of wing cracks in 

specimens made of rock/rock-like materials have been 
published, both related to experimental observations 

(Abdollahipour and Fatehi Marji 2016; Ashby and 

Hallam 1986; Bobet and Einstein 1998; Haeri et al. 

2014; Horii and Nemat-Nasser 1985; Ingraffea and 

Manu 1980; Janeiro and Einstein 2010; Lee and Jeon 
2011; Li et al. 2005; Park and Bobet 2009; Park and 

Bobet 2010; Shen et al. 1995; Wong and Einstein 2009; 

Xu et al. 2018; Yang et al. 2009; Yang 2011) and 

mathematical modeling (Bryant and Sun 2018; Fatehi 

Marji 2014; Gonçalves da Silva and Einstein 2013; 

Haeri et al. 2013; Ingraffea and Heuze 1980; Li and 

Wong 2012; Sharafisafa and Nazem 2014; Sivakumar 

and Maji 2016; Xie et al. 2016; Zhang et al. 2017). In 

these experiments, it is observed that emerging wing 

cracks at the tips of pre-existing fractures tend to align 

with the direction of the maximum compressive stress. 

By mathematical modeling, the behaviour of wing 
cracks in brittle material is usually modeled by use of 

the stress intensity factors (Lehner and Kachanov 1996) 

and/or a fracture criteria (Erdogan and Sih 1963; 

Hussain et al. 1973; Sih 1974). The maximum 

tangential stress (MTS) criterion seems to be the best 

choice for wing crack modeling because of the 

simplification and agreement with the observed 

trajectories (Gonçalves da Silva and Einstein 2013; 

Ingraffea and Heuze 1980). All these studies focused 

on the formation, growth and connection of wing cracks 

under external compressive load, as is relevant for EGS 
applications. 

An inherent problem in simulation of fracture 

propagation is the disparate lengths scales involved: 

While the simulation domain can be quite large – in an 

EGS setting the reservoir is commonly measured in at 

least hundreds of meters - the fracturing processes takes 
place on a scale that is several of orders of magnitude 

smaller. Moreover, most numerical methods for 

fracture propagation are dependent on resolving the 

fracture in the grid, however, the fracture path is not 

known a priori. A possible remedy for both these issues 

is to apply adaptive remeshing (ARM) techniques to 

refine and adjust the mesh around an advancing fracture 

path. 

This paper aims to present the mathematical model and 

an ARM technique conjunction with finite element 

method to understand how do wing cracks emerge, 

propagate and connect in a 2D-EGS model due to slip 

of pre-existing fracture interfaces. First, in section 2, 

the mathematical model for a wing crack was 

formulated based on linear elasticity theory, in 

combination with the MTS criterion. The displacement 
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at interfaces of the pre-existing fracture is assumed to 

enforce a jump condition on displacement along the 

fracture. In section 3, a novel ARM technique that 

based on a simple error estimator, a deleted-displace 

process and Laplacian smoothing is proposed. The 

discretization will be presented in section 4. Several 

examples are discussed in section 5, in comparison with 
experiment data to validate and show the accuracy of 

the proposed model and procedure. Then a physical 

model is attempted to understand the role of wing 

cracks in shear stimulation of fractured geothermal 

reservoirs EGS. 

2. GOVERNING EQUATIONS 

Here we give the governing equations for the 

deformation of a linearly elastic medium, with 

emphasis on conditions placed on the boundaries of 

existing and newly created fractures. We also describe 

the criterion used to decide when and where a fracture 

will propagate. 

2.1 Elasticity 

Consider a plane strain domain 
2  with outward 

unit normal vector n on its boundary and a pre-existing 

fracture with boundary denoted by c  as shown in 

Figure 1. The Dirichlet and Neumann conditions are 

applied on D   and N  , respectively. For a 

linear elastic fracture problem, the strong form of 

governing equations can be expressed as 

 

Figure 1: An elastic body containing a pre-existing 

fracture. 
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where 𝛔, 𝛆 and u are the Cauchy stress tensor, the 
symmetric infinitesimal strain tensor and the 

displacement field, respectively. C is the fourth-order 

elasticity (Hooke’s) tensor defined from Young’s 

modulus, E, and Poisson’s ratio, v. b is the body force. 

u  and 𝐟 ̅ are the prescribed displacement along the 

Dirichlet boundary and the applied traction along the 

Neumann boundary, respectively.  

When a pre-existing fracture c  is compressed and/or 

slipped, the normal jump displacement condition is 

imposed at the fractures’ interfaces c

 and c

 . As the 

focus in this work is on the effect of shear slip, it is for 

simplicity assumed that the normal fracture dilation is 

zero, i.e., 

         0
c c c

       
 n

u u x u x n x   [2] 

For the tangential direction of c , two types of 

conditions are considered: Either, the fracture surfaces 

are modeled as frictionless, thus the tangential traction 

is zero at c ,  

 0 σ t   [3] 

where t is the tangential vector on the surfaces of a pre-

existing fracture. This assumption, in practice, leads to 

an exaggeration of the slip, but is acceptable herein, as 
the trajectory of fracture is the primary quantity of 

interest. For the friction-free case, the deformation of 

the elastic medium and the fractures contained within 

is driven by external boundary conditions on D  and 

N , or by displacements on other fractures. 

The second type of condition considered in the 

tangential direction of c  is a specified displacment 

jump i.e., 

       0

c c c u
        

 t
u u x u x t   [4] 

where the total slip at c , 0u , is considered as known. 

In the context of low-pressure stimulation of 

geothermal systems, this type of condition applies to 

sliding fractures. 

The wing cracks emerged after compressed and/or 

slipped are the tensile cracks (Bobet and Einstein 1998; 

Wong and Einstein 2009). This means that the surfaces 

of this cracks are in not contact and both normal and 

tangential tractions at these faces are zeros, i.e., 

 0   σ n σ t   [5] 

The wing cracks are not present in the computational 

domain at the start of the simulations. Indeed, the 

computation of the time of fracturing and the paths of 

wing cracks is the main challenge in this work.  

2.2 Fracture criteria 

The primary mechanism for permeability enhancement 

in the construction of EGS systems is believed to be 

sliding of pre-existing fractures. This motion will alter 

the stress field in the rock surrounding rock matrix, and 

may trigger propagation of new fractures, commonly 

denoted wing cracks, emanating from the fracture tips. 
The modeling and computation of this secondary 

fracturing is of interest in this work. 

From the mathematical model for elastic deformation, 

the stress at an arbitrary point can be directly calculated 

for a certain problem. So, the fracture criteria based on 
maximum tensile stress (MTS) (Erdogan and Sih 1963) 

that is simple and accuracy (Gonçalves da Silva and 

Einstein 2013; Ingraffea and Heuze 1980), should be 

c



c



n

x t
c



c



D

2Ω R

b

n

f
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adapted to predict the initiation and propagation of 

wing cracks in EGS. This criterion states that a crack 

grows when the maximum average tangential stress in 

the fracture process zone ahead of the crack tip reaches 

a critical value. Moreover, the crack growth direction 

coincides with the direction of the maximum average 

tangential stress along a constant radius around the 
crack tip. It is a local approach since it is based on local 

stress fields around the crack front. The tangential 

stress in around a crack tip is given by 

 
31 3

cos cos sin
2 2 22

I IIK K
l



 
 



 
  

 
  [6] 

The wing crack emerges if the tangential stress reaches 

a critical value, i.e. 

 
0

3 0 0
0 IC

3
2 cos cos sin

2 2 2
I IIl K K K

 
       [7] 

where KIC is the fracture toughness, 0  is the crack 

initiation angle with respect to the original crack plane. 

0  is obtained by solving 0     for   and 

combining with sufficient condition 2 2 0     

such as 

 
1 2

0

1 1
2tan 8 ,

4 4
I IIK K     

    
 

  [8] 

 0 0 0 03 3
sin 9sin cos 3cos

2 2 2 2
II IK K

      
     

   
  [9] 

in which KI and KII are the stress intensity factors 

(SIFs), as parameters for the intensity of stresses close 

to the crack tip, can be evaluated by several techniques 

(Moran and Shih 1987; Parks 1974; Phongthanapanich 

and Dechaumphai 2004). In this work, SIFs are 

computed by the nodal displacement correlation 

technique (Parks 1974) in conjunction of collapsed 

quarter point singular elements (CQPE) (Barsoum 

1976; Henshell and Shaw 1975). CQPEs considerably 

improve the numerical solution near the crack tip, result 
in more accurate computation of SIFs (Khoei et al. 

2008). Through the displacement of CQPE around a 

crack tip, these SIFs can be calculated as 

 

Figure 2: The collapsed quarter point singular 

elements around a crack tip. 
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  [10] 

where l is the crack tip rosette radius. u  and v  are the 

local displacements of nodal points located on the crack 

in CQPE, in which x  is aligned in the direction of 

crack axis, as shown in Figure 2. 

3. DISCRETIZATION 

The finite element discretization of the governing 

equations shown in the previous section are presented 

in this section, together with an adaptive remeshing 

technique. The propagation of wing cracks is 

complicated, and their trajectories are difficult to 

achieve by analytical approach. In this case numerical 

solutions by the finite element method (FEM) is a 

natural alternative. The finite element formulation is 

based on the weak formulation established from the 

governing equation and states: Find Vu  such that 

V v  

 
 

N

T T d d

d d

c 

 

  

   

 

 

n
u L DLv σ n v

bv fv
  [11] 

where u must be selected from a set of admissible 

functions in the space V such that 

  1: ( ), 0V H


    
u

u v v   [12] 

in which H1 is the standard Sobolev space. In Eq. [11] 

L and D are the differential operator and the material 

matrix modified from C given by 

 T

2

1

2

1 0
0

, 1 0
0 1

0 0 (1 )

x y

y x

v
E

v
v

v

 

 

 

 

 
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L D   [13] 

3.1 Finite element method 

The approximate solution of Eq. [11], denoted by hu , 

can be evaluated by using a subset of the allowable 

function space hV V  composed of first order 

Lagrangian shape functions, that is, piecewise linear 

functions. This requires discretizing the domain   into 
m non-overlapping finite elements that conform to the 

fracture geometry, such that 

 
1

mh

ee
     [14] 

where e  are triangular elements in this work. For 

each element e , the displacement field is 

approximated as a linear function, which is expressed 

in terms of the displaced values at the three vertices 

such that 

,x u

,y v

c
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i i e

h

i i

N uu

N vv

  
     
   

u Nu   [15] 

By substituting Eq. [15] into Eq. [11], the discretized 

system can be written as 

 h Ku F   [16] 

where K and F are the global stiffness matrix and global 

load vector, respectively. For elements that are not 

adjacent to a fracture surface, they are obtained by 

assembly from each element and expressed as follows 

 T

1 1
d

e

m m

ee e  
    K K B DB   [17] 

 T T

1 1
d d

e

m m

e te e   
        

t

F F F N b N t   [18] 

where B is gradient matrix defined as 

 B LN   [19] 

3.2 Adaptive remeshing technique 

The accuracy of the FEM simulation depends on the 

quality of the mesh that is affected by the geometric 

discretization errors and the gradients of solution within 

individual elements. For the fracture propagation 
problem in a linearly elastic medium, the stress is 

singular at the fracture tip and drops quickly away from 

the fracture tip. In this work, we consider a combination 

of two techniques to give a reasonable representation of 

this behaviour in the vicinity of the crack tip: First mesh 

refinement based on an error estimation to improve the 

accuracy of FEM, and second, remeshing around crack 

tip domain by the collapsed quarter point elements to 

represent the tip singularity, and thus improve the 

accuracy in computation of the stress intensity factors 

and to easily extend crack in this domain. In addition, a 
third ingredient of our approach is Laplacian smoothing 

to improve the quality of the mesh. 

4. NUMERICAL INVESTIGATION 

In this section, three numerical examples are 

investigated. The first and second intended for 

validation purposes, while the last one is designed for 
EGS applications: To validate the proposed model, the 

propagation paths of wing cracks in domains with a 

single and two pre-existing fractures under uniaxial 

compression are considered and compared with 

experimental observations. After that, this model is 

extended to a more complex problem where the 

surfaces of one fracture slip and creates wing cracks 

that connects to other fractures. 

4.1 Validation 

The compression test of a rock specimen with a single 

pre-existing fracture as shown in Figure 3 is adapted. 

The fracture is inclined located at 45˚ to the horizontal 

direction at center of the specimen. The material 

parameters are Young’s modulus E = 36.2 GPa, 

Poisson’s ratio ν = 0.21, fracture toughness KIC = 6.5 

MPa·m1/2. The size of specimen is 102 × 102 mm2 and 

of the length of fracture is 20.32 mm. Boundary 

conditions on the specimen are indicated in Figure 3; 

on the existing fracture, a no-friction condition is 

assigned in the tangential direction. 

 
 

Figure 3: Geometry of specimen with a single pre-

existing fracture. 

The propagation paths of two wing cracks originated 

from tips of the pre-existing fracture is shown in Figure 

4. The paths are curvilinear and tend to migrate of 

around 70 degrees and gradually turn in the loading 

direction. The trajectories of the wing cracks obtained 

in this work is similar to the observation from the 

experiments reported in (Ashby and Hallam 1986; 

Haeri et al. 2014; Ingraffea and Manu 1980; Lee and 

Jeon 2011; Shen et al. 1995). 

  

Figure 4: The trajectories of wing cracks from a 

single pre-existing crack. 

As a second test, consider the connection of double pre-

existing fractures in a specimen under the uniaxial 

compression. The specimen shown in Figure 5 is made 

from gypsum with the material parameters are as 

follows: Young’s modulus E = 5.96 GPa, Poisson’s 

ratio ν = 0.24, fracture toughness KIC = 0.1778 

MPa·m1/2. The size of the specimen is 152.4 ×
76.2 mm2. There are two pre-existing fractures are in 

the specimen and inclined at 45˚ to the horizontal 

direction. Boundary conditions on the specimen are 
indicated in Figure 5; again, no-friction conditions are 

assigned in the tangential direction of the pre-existing 

fractures. 
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Figure 5: Geometry of a specimen with two pre-

existing fractures. 

  

Figure 6: The trajectories of wing cracks from 

double pre-existing cracks 

The fracture propagation process is shown in Figure 6. 

The wings cracks initiate at the two tips of each pre-

existing fracture and propagate in opposite directions. 

Then the wing crack originating from one fracture links 

to other fractures to extend the failure. The trajectories 
of the wing cracks are curvilinear and similar to that 

observed previously in the compression test of the rock 

(Park and Bobet 2009; Shen et al. 1995). 

The agreement with experimental observations in the 

above examples shows that the mathematical model 

proposed in this work is valid for the fracture 
propagation in type of wing cracks. Compared to a 

finely resolved static grid, the ARM technique 

significantly reduces the computational cost, while 

preserving accuracy of the predicted fracture trajectory. 

Motivated by this confirmation, the procedure is 

extended to investigate a typical problem in EGS that 

wing cracks emerge and propagate not by compression 

stress but by sliding in opposite direction of interfaces 

of a pre-existing fracture. This extension is presented in 

the next example. 

4.2 EGS application 

This example extends the proposed model to the 

problem of enhanced permeability in EGS. The 

example setup and geometry are shown in Figure 7, in 

which three natural horizontal fractures exist initially in 

a specimen. The size and length of the specimen and 

fractures are, respectively, 3000 × 2000 mm2 and 500 

mm. The material parameters are the same as for first 

example. A measurable slip is imposed on the middle 

fracture, mimicking the slip due to water injection in 

fracture shear stimulation. Instead of compressive 

stress, the slip is considered the cause of wing cracks in 

EGS. 

 

Figure 7: Geometry of specimens with three pre-

existing fractures. 

The initiation and propagation of wing cracks are 

shown in Figure 8. When a pre-existing fracture 

experience a jump in tangential displacements, wing 

cracks may emerge at its tips, tend to migrate of around 

70 degrees and gradually turn in the almost 
perpendicular directions. If the tectonic stress stored in 

this fracture is large enough, wing cracks propagate 

away and link to nearby fractures to form connected 

flow pathways. Then water flows to these fractures and 

the process of developing wing cracks is repeated to 

enhance permeability in EGS.  

  

Figure 8: The trajectories of wing cracks caused by 

shear slip at interfaces a pre-existing crack 

The obtained results in this example show that, the 

mechanism of wing cracks caused by the shear slip in 

the interfaces of a pre-existing fracture is predictable. 
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This is important for improving the performance of 

geothermal systems which are significantly influenced 

by permeability. 

5. CONCLUSIONS 

The simple mathematical model and the ARM 

technique are presented in this work to simulate the 

wing cracks initiation and propagation in rock material. 

The model is established based on the linear elasticity 

theory, in combination with MTS criterion. An ARM 

technique is developed based on a simple error 

estimator, deleted-replaced process and Laplacian 

smoothing. Three examples are considered. The first 

and second examples are for validation purposes, while 
the last one is designed to investigate the mechanism of 

wing cracks in EGS. The obtained results in this work 

show the accuracy and effectiveness of the proposed 

model and procedure in the prediction of wing cracks 

propagation caused by both compression and shear slip. 
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a b s t r a c t

As a consequence of shearing, wing cracks can emerge from pre-existing fractures. The process involves
the interaction of sliding of the existing fracture surfaces and the tensile material failure that creates wing
cracks. This work devises a numerical model to investigate how wing cracks emerge, propagate and con-
nect pre-existing fractures under shear processes. A mathematical and numerical model for wing crack
propagation based on linear elastic fracture mechanics that also accounts for fracture contact mechanics
is presented. Computational efficiency is ensured by an adaptive remeshing technique. The numerical
model is verified and validated through a comparison of the analytical and experimental results.
Additional numerical examples illustrate the performance of the method for complex test cases where
wing-cracks develop for multiple pre-existing and interacting fractures.
� 2020 The Authors. Published by Elsevier Ltd. This is an open access article under theCCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Wing cracks can develop from a pre-existing fracture when the
fracture is subjected to shear processes. This occurs for many appli-
cations where fractured media are subjected to anisotropic stress
regimes. For example, in fractured subsurface systems, fractures
will slip if shear forces overcome the cohesion and frictional
strength of the contact between the fracture surfaces. This can
occur due to natural changes in tectonic stresses, but the process
can also be induced by fluid injection, such as in situations of
geothermal reservoirs. In the latter case, elevated pressures reduce
the effective normal stress on the fracture, ultimately causing slip
if the reduction in the normal stress is sufficient for the shear
forces to overcome the cohesion and frictional resistance of the
fracture. The slip of the fracture surfaces in opposite directions
can cause the fracture to propagate in the form of wing cracks, pos-
sibly creating enhanced reservoir connectivity (Cheng et al., 2019;
Jung, 2013; McClure and Horne, 2014; Norbeck et al., 2018).
Understanding this mechanism is, thus, crucial in the simulation
of fractured subsurface formations.

Many experimental studies have been published that consider
the formation, growth and connection of wing cracks caused by
external compressive loading in specimens made of rock or rock-

like materials (Haeri et al., 2014a, 2014b; Horii and Nemat-
Nasser, 1985; Ingraffea and Manu, 1980). In these experiments, if
the pre-existing fracture is not perpendicular to the external load,
wing cracks emerge at the tip and tend to align with the direction
of the maximum compressive stress. The same conclusion is drawn
from mathematical modeling. Based on the finite element method
(FEM), Ingraffea and Heuze (1980) predicted the propagation of
wing cracks in rock structures by using three different criteria
based on stress, energy and strain. Primary crack trajectories pre-
dicted by the stress and energy criteria are in good agreement with
the observed trajectories. Based on the phase-field model (Bryant
and Sun, 2018) and a modified phase-field model (Zhang et al.,
2017), wing crack propagation was modeled using energy criteria
that divided the active energy density into distinct parts corre-
sponding to different crack modes (mode I and mode II).
Sharafisafa and Nazem (2014) used the vector level set with both
the discrete element method (DEM) and the extended finite ele-
ment method (XFEM) to model the wing crack propagation and
coalescence in fractured rock masses. Among these methods and
failure criteria, the FEM is the simplest method in implementation
and the stress criterion is one of the most extensively used and
least complicated. Specifically, the combination of FEM with the
stress criterion (the maximum tangential stress) for modeling of
wing cracks has been shown to produce simulation in good agree-
ment with observed crack trajectories (Gonçalves da Silva and
Einstein, 2013; Ingraffea and Heuze, 1980).
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While wing cracks develop as tensile fractures, the pre-existing
fractures that wing cracks emerge from may be either open or in
contact. This necessitates the inclusion of fracture contact mechan-
ics in the wing crack models (Hüeber et al., 2008; Oden and Pires,
1983). There are several ways to formulate the contact mechanics
corresponding to the different types of discretizations. For exam-
ple, Kim and Duarte (2015) simulated the mode I propagation of
cohesive fractures in 3D by the cohesive law using a generalized
finite element method. Because of the difference of material beha-
viour in the vicinity of propagating crack fronts compared to the
rest of the domain, this approach requires updates of global–local
enrichments during the analysis, which increases the computa-
tional cost. Hesch et al. (2016) formulated the contact mechanics
by Coulomb’s friction law and Karush Kuhn-Tucker (KKT) condi-
tions applied to a phase-field approach within the context of isoge-
ometric analysis. A fourth order approach for the crack-density
functional was used to ensure sufficient accuracy of the chosen
phase-field approach. This leads to a request of at least C1 continu-
ity within the domain. Also using Coulomb’s friction law and the
KKT conditions, Nejati et al. (2016) modeled the internal contact
in fractured media by a sophisticated algorithm based on isopara-
metric integration-point-to-integration-point discretization of the
contact contribution to enforce the contact constraint accurately
over the crack surfaces. Based on the semianalytical displacement
discontinuity method, Kamali and Ghassemi (2018) developed a
simulation model in which the closed natural fractures were repre-
sented by so-called contact displacement discontinuity elements
(Asgian, 1988), approximating the contact mechanics condition.
However, the approach has limitations in dealing with the interac-
tion between multiple fractures due to inherent limitations of the
semianalytical displacement discontinuity method.

The FEM model for elasticity can be derived by using one of the
following widely used methods: the weighted-residual method
based on the linear momentum balance or minimization of an
energy function (Liu and Quek, 2003). By using the energy princi-
ple, the contact should be considered as an inequality constraint
of the optimization formulation of the potential energy. This
means that the potential energy is minimized while satisfying a
contact constraint assumed to be a nonpenetration condition
between the surfaces of the fracture. The inequality constraint
can be solved by some methods, such as the active-set, Frank-
Wolfe, penalty or barrier methods (Hüeber et al., 2008; Hüeber
and Wohlmuth, 2005).

An inherent problem in the simulation of fracture propagation
is the disparate length scales. While the simulation domain can
be quite large, the fracturing processes occur on a scale that is sev-
eral orders of magnitude smaller. Moreover, most numerical meth-
ods for fracture propagation are dependent on resolving the
fracture in a grid; however, the fracture path is not known a priori.
A possible remedy for both of these issues is to apply adaptive
remeshing (ARM) techniques to refine and adjust the mesh around
an advancing fracture path.

This paper presents a mathematical model and corresponding
numerical solution approach to simulate the development of wing
cracks while accounting for fracture contact mechanics. First, in
Section 2, the mathematical model for wing crack propagation is
formulated based on the linear elasticity theory, in combination
with the criteria for a mixed-mode fracture propagation. Fracture
surfaces are allowed to be in contact or fully open, modeled by con-
tact mechanics formed by the KKT conditions. Section 3 presents
the numerical solution approach. The governing equations are dis-
cretized using a finite element method with collapsed quarter-
point elements at the fracture tips. This is combined with an adap-
tive remeshing technique based on error estimates and Laplacian
smoothing. The contact mechanics are implemented by using an
active set method. Section 4 presents several numerical test cases.

The obtained results are compared with both the analytical and
experimental data to verify, validate and show the accuracy of
the proposed model and procedure. Finally, more complex test
cases where wing cracks develop for multiple pre-existing and
interacting fractures show the capability of the proposed approach
in modeling the development of wing cracks under shear
processes.

2. Governing equations

A mathematical model for wing crack propagation based on lin-
ear elastic fracture mechanics is presented in the following section.
Emphasis is placed on the conditions on the boundaries of existing
and newly formed fracture paths. We also describe the criterion
used to decide when, where and how far a fracture will propagate.

2.1. Elasticity and contact mechanics

Consider a domain X � R2 with an outward unit normal vector
n on its boundary and a pre-existing fracture with boundaries
denoted by C�

C as shown in Fig. 1. The Dirichlet and Neumann con-
ditions are applied on the boundary. Ignoring, for the moment, the
internal boundary conditions on the fracture, the governing equa-
tions for a linear elastic body can be expressed as (Jaeger et al.,
2007)

r � rþ b ¼ 0 in X Equilibrium eq:
r ¼ C : e in X Constitutive eq:

e ¼ 1
2 ruþruT
� �

in X Kinematic eq:
u ¼ u0 on CD Dirichlet BC
r � n ¼ f on CN Neumann BC

8>>>>>><
>>>>>>:

ð1Þ

where, r, e and u ¼ u;vf gT are the Cauchy stress tensor, the sym-
metric infinitesimal strain tensor and the displacement field,
respectively; C is the fourth-order elasticity (Hooke’s) tensor
defined by the Young’s modulus, E, and Poisson’s ratio, v; b is the
body force; and u0 and f are the prescribed displacement along
the Dirichlet boundary and the applied traction along the Neumann
boundary, respectively.

To formulate the contact mechanics at the internal boundary,
the fracture’s boundary is divided into a positive side Cþ

C and a neg-
ative side C�

C . Let n xð Þ denote the normal vector initiating from x at
side Cþ

C to side C�
C . The initial gap between the two fracture sides is

g xð Þ P 0. The jump in the normal direction of the fracture, u xð Þ½ �n,
and the surface traction in the normal direction, f n xð Þ, are given by

u xð Þ½ �n ¼ u xð Þ½ � � n xð Þ; f n xð Þ ¼ f xð Þ � n xð Þ; x 2 Cþ
C ð2Þ

where f xð Þ ¼ r xð Þ � n xð Þ is the traction at the fracture’s boundary,
which vanishes in the case of an open fracture.

A nonpenetration condition is enforced in the normal direction
of the fracture segments. This condition is governed in the form of
Karush-Kuhn-Tucker (KKT) condition for the normal displacement
jump and the normal surface traction (Wohlmuth, 2011), which
reads

n

x
t

2

b

n
f

x

C

C

C

C

N

D

Fig. 1. An elastic body containing a pre-existing fracture.
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u xð Þ½ �n � g xð Þ 6 0; f n xð Þ 6 0; f n xð Þ u xð Þ½ �n � g xð Þ� � ¼ 0; x 2 Cþ
C

ð3Þ
If Cþ

C and C�
C are in contact, by Newton’s third law, the surface

tractions on both sides are equal but in opposite directions; that is

f xð Þ ¼ �f R xð Þð Þ; x 2 Cþ
C ð4Þ

in which R : Cþ
C ! C�

C is a mapping that projects a point from side
Cþ

C onto side C�
C in the normal direction. The displacement jump,

u xð Þ½ �, is then defined by

u xð Þ½ � ¼ u xð Þ � u R xð Þð Þ; x 2 Cþ
C ð5Þ

For the tangential direction of CC, two types of conditions are
considered: Either the fracture surfaces are modeled as frictionless,
or the displacement jump in the tangential direction is specified.
For frictionless fracture surfaces, the tangential traction is zero at
CC; i.e.

r xð Þ � t xð Þ ¼ r R xð Þð Þ � t R xð Þð Þ ¼ 0; x 2 Cþ
C ð6Þ

where t xð Þ is the tangential vector initiating from x at side Cþ
C . The

assumption of zero friction leads to an exaggeration of the slip but
is acceptable herein, as the trajectory of the fracture is the primary
quantity of interest. For the friction-free case, the deformation of
the elastic medium and the fractures contained within are driven
by the body force, external boundary conditions on CD and CN, or
displacements on other fractures.

The second type of condition is a specified displacement jump
in the tangential direction of the fracture, i.e.

u xð Þ½ �t ¼ u xð Þ � u R xð Þð Þ½ � � t xð Þ ¼ u0 ð7Þ
where the total slip at CC, u0, is considered as known. This type of
condition is relevant to mimic the slip along an existing fracture,
which in applications, may be triggered by effects not considered
in the present model.

The wing cracks emerging due to the shear force on existing
fractures are tensile cracks (Bobet and Einstein, 1998; Wong and
Einstein, 2009). This means that their surfaces are in not contact
and both normal and tangential tractions at the corresponding
fracture faces are zero; i.e.

r � n ¼ r � t ¼ 0 ð8Þ
The wing cracks are not present in the computational domain at

the start of the simulations. Indeed, the computation of the point of
failure and the paths of the wing crack that develop are the main
challenges that are addressed in this work.

2.2. Failure and propagation

The wing crack growth processes are governed by a mixed-
mode fracture criterion. From the mathematical model for elastic
deformation, the stress at an arbitrary point can be directly calcu-
lated for a certain problem. In this work, we chose to adapt the
fracture criterion based on the maximum tangential stress (MTS)
(Erdogan and Sih, 1963), which is simple and sufficiently accurate
(Gonçalves da Silva and Einstein, 2013; Ingraffea and Heuze, 1980),
to predict the initiation and propagation angle of wing cracks. This
criterion states that a crack grows when the maximum average
tangential stress in the fracture process zone ahead of the crack
tip reaches a critical value. Moreover, the crack growth direction
coincides with the direction of the maximum average tangential
stress along a constant radius around the crack tip. In polar coordi-
nates r; hð Þ with the origin at the crack tip, the tangential stress for
a mixed-mode crack has the following form (Erdogan and Sih,
1963)

rh r; hð Þ ¼ 1ffiffiffiffiffiffiffiffiffi
2pr

p K Icos3
h
2
� 3
2
K II cos

h
2
sinh

� �
ð9Þ

where r is the distance from the tip. KI and KII are the stress inten-
sity factors (SIFs), which are measures for the intensity of stresses
close to the crack tip. The wing crack emerges if the tangential
stress reaches a critical value, i.e.,

rh0

ffiffiffiffiffiffiffiffiffi
2pr

p
¼ K Icos3

h0
2
� 3
2
K II cos

h0
2
sinh0 ¼ K IC ð10Þ

where KIC is the material toughness and h0 is the crack initiation
angle with respect to the original crack plane. h0 is obtained by solv-
ing @rh=@h ¼ 0 for h and combining the result with the sufficient
condition @2rh=@h

2 < 0 such that

h0 ¼ 2tan�1 1
4
l� 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 8

q� �
; l ¼ K I=K II ð11Þ

K II sin
h0
2
þ 9sin

3h0
2

� �
< K I cos

h0
2
þ 3cos

3h0
2

� �
ð12Þ

When the wing crack emerges, i.e., the criterion shown in Eq.
(10) is satisfied, the increment of each fracture needs to be deter-
mined. For a single crack propagation, the increment is defined by
a fixed distance such as the crack tip rosette radius h. In the case
where more than one crack grows simultaneously, the tips with
the highest energy in the fracture set advance significantly further
than the others (Paluszny and Matthäi, 2009). The increment for
each tip is defined by the Paris-type law (Paris and Erdogan,
1963; Renshaw and Pollard, 1994)

Liadv ¼ Lmax
Gi

max Gið Þ
� �a

ð13Þ

where Liadvand Gi are the propagation length and the energy release
rate for the ith propagation crack, respectively, Lmax is the maxi-
mum length increase at any propagation step, and the exponent a
is a numerical parameter, which is set to 0.35 in this work
(Renshaw and Pollard, 1994). For a general fracture in a two-
dimensional domain, the energy release around the fracture tip is
given by

G ¼ 1þ mð Þ 1þ kð Þ
4E

k2I þ k2II
� �

ð14Þ

here, kI and kII are the local mode I and mode II stress intensity fac-
tors at the tip obtained by summing the normal and shear stresses
(Anderson, 2017), respectively

kI ¼ ryy

ffiffiffiffiffiffiffiffiffi
2ph

p

¼ 1
4

3cos
h0
2

� �
þ cos

3h0
2

� �	 

K I

� 1
4

3sin
h0
2

� �
� 3sin

3h0
2

� �	 

K II ð15Þ

kII ¼ sxy
ffiffiffiffiffiffiffiffiffi
2ph

p

¼ 1
4

sin
h0
2

� �
þ sin

3h0
2

� �	 

K I

þ 1
4

cos
h0
2

� �
þ 3cos

3h0
2

� �	 

K II ð16Þ

3. Discretization

This section presents the finite element discretization of the
governing equations presented in Section 2, together with an adap-
tive remeshing technique. The propagation of wing cracks is com-
plicated, and their trajectories are difficult to achieve by analytical
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or semianalytical approaches, particularly when multiple fractures
interact. In this case, numerical solutions by means of the finite
element method (FEM) are a common approach. The finite element
formulation is based on the weak formulation established from the
governing equation and states: Find u 2 VS such that 8v 2 VT

(Zienkiewicz et al., 2005)Z
X
uTLTDLvdX�

Z
Cc

r � nvdC ¼
Z
X
bvdXþ

Z
CN

f
�
vdC ð17Þ

where VT and VS are the test space and the solution space satisfying
the inhomogeneous Dirichlet boundary conditions (so-called essen-
tial boundary conditions), respectively. VT and VS are defined by

VT :¼ v 2 H1
0ðXÞ; vjCD

¼ 0
n o

;

VS :¼ v 2 H1ðXÞ; vjCD
¼ u0

n o
ð18Þ

where H1ðXÞ is the Sobolev space of functions that are square inte-
grable and have a square integrable first derivative. In Eq. (17), L is
the differential operator, and D is the material matrix modified from
C and defined by

L ¼ @=@x 0 @=@y

0 @=@y @=@x

	 
T
ð19Þ

D ¼ E
1� v2

1 v 0
v 1 0
0 0 1

2ð1� vÞ

2
64

3
75; for plane stress ð20Þ

D ¼ E
1þ vð Þ 1� 2vð Þ

1� v v 0
v 1� v 0
0 0 1

2ð1� 2vÞ

2
64

3
75; for plane strain

ð21Þ

3.1. Deformation and contact mechanics

The approximate solution of Eq. (1), denoted by uh, can be eval-
uated by using a subset of the allowable function space Vh � VS

composed of piecewise polynomial functions. This requires dis-
cretizing the domain X into m nonoverlapping finite elements that
conform to the fracture geometry, such that

X ffi Xh �
[m

e¼1
Xe ð22Þ

In this work, Xe are chosen as triangular elements.
The stress field at fracture tip as shown in Eq. (9) is dominated

by the singularity whilst the stress field at remaining points is
finite. So, in this work, the numerical approximation employed
on the grid differs between the interior elements that are close
to the fracture tip and the interior elements that are not. On ele-
ments that are not connected to the crack tip, the displacement
field is approximated as a quadratic function, which is expressed

in terms of the displaced values, dh, at the three vertices and the
midpoints of the three edges such that

u ¼ u

v

� �
ffi uh ¼

X6

i¼1

Ni n;gð Þui

Ni n;gð Þv i

� �
¼ Ndh ð23Þ

where Ni are the shape functions of a 6-node triangular plane
isoparametric element defined by Eq. A(1).

To represent the stress singularity at the fracture tip, quarter-
point elements (QPE) (Barsoum, 1977) are employed. Each element
around the crack tip, as shown in Fig. 2(a), is mapped by an 8-node
plane isoparametric quadrilateral element, as shown in Fig. 2(b), so
that

x ¼
X8
i¼1

Ni n;gð Þxi; y ¼
X8
i¼1

Ni n;gð Þyi ð24Þ

where Ni are the shape functions defined by Eq. A(2). Then, the dis-
placement field is approximated through the displacements at 6

nodes, dh, as a quadratic function such that

u ¼ u

v

� �
ffi uh ¼

X6

i¼1

N	
i n;gð Þui

N	
i n;gð Þv i

� �
¼ Ndh ð25Þ

where N	
i are defined by

N	
i n;gð Þ ¼ N1 þ N7 þ N8; if i ¼ 1;

N	
i n;gð Þ ¼ Ni; otherwise:

�
ð26Þ

By using the approximation given in Eq. (25), the numerical
stress is singular at the crack tip, similar to the analytical formula
shown in Eq. (9). More details are shown in Appendix A.

By substituting Eqs. (23) and (25) into Eq. (17), the discretized
system can be written as

Kdh ¼ F ¼ Fb þ
Z
CN

NT t
�
dC ð27Þ

where K and Fb are the global stiffness matrix and global body load
vector, respectively, and are obtained by the assembly of the stiff-
ness matrix and body load vector of each element (Ke and Fe) that
are expressed as

Ke ¼
Z
Xe

BTDBdX; Fe ¼
Z
Xe

NTbdX ð28Þ

where B is the gradient matrix defined as

B ¼ LN ð29Þ
In the discrete system, the contact mechanics relations defined

in Eq. (3) are manifested in the boundary conditions on the frac-
ture, which takes different from depending on whether the fracture
is in contact or not. This is treated at each pair of contact points by
the active set strategy (Hüeber and Wohlmuth, 2005). The details
of the active set algorithm are shown in Fig. 3 and explained as
follows:

(1) Set k = 1, initialize d as an initial solution, predict a set of
possible contact points VP and assume the actual contact
zone C1 ¼ VP. VP is defined as

VP ¼ x;R xð Þf g; x 2 Cþ
C ð30Þ

(2) Define the normal displacement jump u xð Þ½ �n and normal
traction f n xð Þ at points x;R xð Þf g by Eq. (2).

(3) With the current solution, the points x;R xð Þf g are in contact
if the normal displacement jump and normal traction satisfy
the following condition:

cf n xð Þ � u xð Þ½ �n � g xð Þ
 �
< 0; x 2 Cþ

C ð31Þ
where c is a positive constant depending on the material. If Eq. (31)
is satisfied, either f n xð Þ < 0, u xð Þ½ �n � g xð Þ P 0 or f n xð Þ ¼ 0,
u xð Þ½ �n � g xð Þ > 0. Therefore, the pair x;R xð Þf g should be consid-
ered as the contact points for the calculation in the next step.

(4) Check if the contact zone at step k, Ck, is the same as step
k + 1, Ckþ1. If yes then stop, else, the nonpenetration condi-
tion u xð Þ½ �n � g xð Þ ¼ 0 at the contact points is counted for
the system by using the Lagrangian multiplier, then go to
step (2).
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3.2. Fracture propagation

The modeling of wing crack propagation is based on two
assumptions. First, the wing crack emerges from the tip of the frac-
ture, and second, a crack stops growing whenever its tip reaches a
domain boundary or another fracture. That is, we do not consider
the fracture propagation that crosses other fractures.

As detailed in Section 2.2, the fracture computation is based on
the stress intensity factor evaluation. In this work, we compute
SIFs by using the nodal displacement correlation technique
(Parks, 1974) in conjunction with QPE (Barsoum, 1977; Henshell
and Shaw, 1975) that not only captures the singularity of the stres-
ses but also considerably improves the displacement near the crack
tip, resulting in a more accurate computation of the SIFs (Khoei
et al., 2008). Through the displacement of the QPE around a crack
tip, these SIFs can be calculated as (Chen and Kuang, 1992; Kuang
and Chen, 1993)

K I ¼ E
6ð1þ vÞð1þ kÞ

ffiffiffiffiffiffiffi
2p
h

r
8ðv 0

b � v 0
dÞ � v 0

c � v 0
eð Þ½ � ð32Þ

K II ¼ E
6ð1þ vÞð1þ kÞ

ffiffiffiffiffiffiffi
2p
h

r
8ðu0

b � u0
dÞ � u0

c � u0
eð Þ½ � ð33Þ

where k ¼ ð3� vÞ=ð1þ vÞ for a plane stress problem and k ¼ 3� 4v
for a plane strain problem. As shown in Fig. 4(a), h is the crack tip
rosette radius or size of the element around the crack tip. u0 and
v 0 are the local displacements of the nodal points located on the
crack in the QPE, in which x0 is aligned in the direction of the crack
axis.

The advance of a fracture may cause difficulties in the current
approach, and thus some special conditions need to be defined
for the tip of propagating, approaching and intersecting fractures.
For the propagating fracture, a new crack tip must be defined by
the propagation length Ladv and crack initiation angle h0 each time
a crack propagates. To ensure the validity of the grid and to reduce

the computational cost associated with updates to the grid geom-
etry, a tolerance for geometric mismatch based on the crack tip

rosette radius h, Limin ¼ 0:4hi is introduced. If Liadv < Limin, the crack
will not be allowed to move, except in the special case when
hi0 ¼ 0, when the tip position is updated by moving the tip node

to a new position. If Liadv P Limin, the crack tip is extended by split-
ting the previous tip into two new nodes, as shown in Fig. 4(b). For
the approaching fracture, when the distance between a growing
crack tip and a boundary (external boundary or surface of another
fracture), denoted by dbou, is less than the crack tip rosette radius,
they are assumed to be connected. A new crack tip belonging on
the boundary is determined by the stretching of the current crack
tip as shown in Fig. 5(a). After that the fracture joint is considered a
T-shape, as shown in Fig. 5(b), by splitting both the previous and
current tips.

A limitation of the present approach is its unability to predict
through-going fracturing, which is one of the most challenging
problem in computational fracture mechanics. The fracture propa-
gation process presented here also entails that the grid geometry is
updated in the vicinity of the crack, as detailed in the next
subsection.

3.3. Adaptive remeshing

The accuracy of the numerical simulation depends on the qual-
ity of the mesh that is affected by the geometric discretization
errors and the gradients of the solution within the individual ele-
ments. In this work, we use the adaptive mesh refinement to
obtain a solution that satisfies a given mesh discretization error
while minimizing the number of elements. The adaptive remesh-
ing (ARM) process involves two techniques: first, mesh refinement
based on the error estimator (Zienkiewicz and Zhu, 1987) is used to
improve the accuracy of the numerical solution, and second, Lapla-
cian smoothing (Buell and Bush, 1973; Field, 1988) is used to
improve the quality of the mesh.

(a) (b) 

3 4h4h

x

y Crack tip

l

l

1, 1 1, 1

1,11,1

Fig. 2. Definition of the elements around the crack tip (a) and an 8-node plane isoparametric element (b).

Fig. 3. The numerical solver for the contact mechanics problem.
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3.3.1. Error estimator and refinements
The error estimator is based on the comparison between the

numerical stress computed directly from the computed displace-
ment field and a recovered stress with higher regularity. The
numerical stress is directly computed by Eq. (1):

rh ¼ C :
1
2

ruh þ ruh� �Th i
ð34Þ

The quadratic approximation for the displacement renders a
numerical stress that is a piecewise linear function on the elements
and discontinuous across the interelement boundaries. To recover
a globally continuous stress, we first define a nodal stress r	

i by
area-weighted averaging of the elements in the surrounding node:

r	
i ¼

1Pn
i¼1

AXi

Xn
i¼1

Z
Xi

rhdX ð35Þ

where AXi
is the area of element Xi that has node i as a vertex. The

recovered stress is then defined by linear interpolation between the
stress values r	

i .
The error at each element is estimated by the difference

between the numerical and recovered stresses, such as

eXi
¼ k rh � r	 kXi

ð36Þ
The refinement is then performed based on a calculated error

estimator. The essence of this process is to balance the errors
between the elements. This means that the elements in regions
of high error are locally refined. This process is repeated until the
desired accuracy is obtained.

Fig. 6 illustrates the recovery process and mesh refinement in
the case of the 1D domain. The refinement with a high estimated
error (X1 and X2) increases the accuracy in both the displacement
and the stress computations. With the same idea as the 1D, in a 2D
problem, the element Xi that needs to be refined (Fig. 7(a)) is
divided into four subelements by the connection between the mid-
points of the edges (Fig. 7(b)). Three hanging nodes appear. These

nodes are removed by connecting it to an opposite vertex, as
shown in Fig. 7(c).

3.3.2. The mesh smoothing process
The mesh refinement process proposed above is local and there-

fore has a low implementation cost. However, the locality some-
times causes triangles with undesirable properties, such as
overlapping elements. We improve the quality of the mesh by
using the Laplacian smoothing process that is defined as follows:
Let triangles Ei; i ¼ 1; :::;n, share an internal vertex x	 ¼ ðx	; y	Þ,
and let the remaining vertices of Ei, be xi ¼ ðxi; yiÞ. The node x	 is
updated by the equation

x	 ¼ 1
n

XM
i¼1

xi ð37Þ

A precaution is taken to guarantee that the new coordinate
assigned to x	 will define valid triangles. The new coordinate for
x	 is immediately used for all subsequent Laplacian smoothing of
other coordinates.

The general algorithm for the fracture propagation simulation
in conjunction with the adaptive remeshing and accounting for
the fracture contact mechanics is presented in Fig. 8. The item ‘‘nu-
merical solver” requires the solution of the contact mechanics
problem, as shown in Fig. 3.

4. Numerical investigation

In this section, four numerical examples are investigated. The
first and second examples are intended for verification and valida-
tion purposes, investigating the convergence rates and comparison
with the analytical solutions and experimental results. The last two
examples are designed to show how the methodology can handle
the complex case of shear deformation for a domain with multiple
fractures, accounting for wing crack formation as well as fracture
contact mechanics.

4.1. Method verification through convergence of computed strain
energy

To evaluate the new approach, we consider a benchmark prob-
lem with the propagation of an isolated crack in a medium that
undergoes tensile or shear stress. The medium is a general isotro-
pic material characterised by its Young’s modulus and Poisson
ratio. For this problem, the performance of the second order finite
element method and quarter point elements (FEM-QPE) with and
without adaptive mesh refinement is compared to that of conven-
tional finite elements. The performance is measured in terms of the
accuracy of the strain energy and SIF computation under grid
refinement.
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Fig. 4. The quarter point elements around a crack tip and the extension of a fracture.
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The model problem is a thin rectangular plate (length L, width b,
and thickness t) including a pre-existing edge fracture, which is
subject to tensile (mode I) or shear (mode II) stress as illustrated
in Fig. 9. To make a fair comparison, as shown in Fig. 10, the FEM
and FEM-QPE use a unique mesh, while the variant of the latter

method that includes ARM (FEM-ARM-QPE) uses a multi-size-
mesh controlled by the error estimator. The strain energy is given
by

U uð Þ ¼ 1
2

Z
X

rTedX ð38Þ

For the plane stress singularity problem, the rate of convergence
of the numerical solution is bounded satisfying (Pin and Pian,
1973)

U uh � uexact� �
6 ch2a�2þn ð39Þ

where uh and uexact denote the solution from the numerical
method and the exact solution, and n and a are the spatial dimen-
sion of the domain and the singularity degree of solution near the
point of singularity, respectively. In the current case, n = 2 and
a ¼ 1=2 (by Eq. (9)); hence, the convergence of the strain energy
is linear with h.

For the mode I study, the comparisons of the convergence of the
strain energy between the three different methods are shown in
Fig. 11(a, b). A linear convergence rate for the strain energy can
be observed, in accordance with Eq. (39) and the conclusions by
previous published studies (Mirza and Olson, 1978; Pin and Pian,
1973). However, the FEM-QPE is significantly more accurate than
the FEM. The convergence rate of the FEM-ARM-QPE is better than
that of the FEM, and its accuracy approaches that of the FEM-QPE if
the mesh refinement is sufficiently good. The comparison with the
analytical solution (Tada et al., 2000) for the stress intensity factor
is shown in Fig. 11(c). The QPEs considerably improve the solution
near and ahead of the crack tip and result in a more accurate com-
putation of the SIF. The ARM technique reduces the computational
cost while still ensures the accuracy of the computation of the
strain energy and stress intensity factor. This is confirmed by
Table 1, which shows the total number of degrees of freedom
(DOF) and total number of elements for the three methods under
grid refinement.

For the mode II study, the reference solutions are obtained by
ANSYS for the strain energy and by ABAQUS (Treifi et al., 2008)
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Fig. 6. The procedures for the error estimator and mesh refinement for a one-dimensional problem using a quadratic approximation.
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for KII. As shown in Fig. 12, as in the case of tensile stress, the QPE
improves the accuracy of the solutions close to the stress singular-
ity, and the ARM technique preserves the accuracy with fewer
degrees of freedom.

The demonstrated accuracy and efficiency of the FEM-ARM-QPE
methodology, shown in previous studies, make it suitable for
numerical examples considering more complex geometries in the
following section.

a) Edge-cracked plate subjected 

to a mode I loading condition 

b) Edge-cracked plate subjected to 

a mode II loading condition 
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Fig. 9. Plane stress problem considered for the investigation of the convergence of the strain energy and SIFs.
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Fig. 10. The discretization with h = b/8.
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4.2. Model validation through stress intensity factor accuracy

To further validate the presented numerical model, FEM-ARM-
QPE, the initiation and propagation of wing cracks from the ends
of a pre-existing fracture under uniaxial compression loading are
investigated. The test case focuses on the accuracy in the computa-
tion of the SIFs and fracture propagation paths for a case where
both analytical (Atkinson et al., 1982) and experimental (Haeri
et al., 2014b) data are available.

The computational domain is a disc-shaped rock specimen con-
taining a central single pre-existing fracture, as shown in Fig. 13.
Here, R and t denote the radius and thickness of the disc, and 2a
is the length of the fracture. The fracture is inclined at an angle
u to the vertical direction at the center of the specimen. The spec-
imen is compressed by two line loads f0 ¼ 0; f 0f g and

�f0 ¼ 0;�f 0f g acting parallel to the y-axis. The material parame-
ters are the Young’s modulus E = 15 GPa, Poisson’s ratio m = 0.21,
and fracture toughness KIC = 2 MPa m1/2 (Haeri et al., 2014b). On
the existing fracture, a no-friction condition is assigned in the tan-
gential direction. For this problem, the analytical solution for the
SIFs is given by (Atkinson et al., 1982)

K I

K II

� �
¼ f 0

ffiffiffi
a

pffiffiffiffi
p

p
R

1� 4sin2uþ 4sin2u 1� 4cos2u
� �

a2

R2

2sin 2uð Þ þ sin 2uð Þ 8cos2u� 5
� �

a2

R2

8<
:

9=
; ð40Þ

The fracture is a purely mode I fracture for u ¼ 0o and u ¼ 90o,
while it is a mixed mode fracture for all other angles, with shear
effects being most pronounced at u ¼ 45o.

Numerical, analytical and experimental results for the nondi-
mensional SIFs considering different crack inclination angles are
shown in Table 2 and Fig. 14. The computation of the SIFs by the
FEM-ARM-QPE model is in good agreement with both the analyti-
cal solution (Atkinson et al., 1982) and the experimental data
(Haeri et al., 2014b) for various inclination angles of the pre-
existing crack.

Fig. 15 shows the computed propagation paths together with
the experimental observations (Haeri et al., 2014b) of two wing
cracks originating from the tips of the pre-existing fracture. The
paths are symmetrically curvilinear and tend to migrate stably
and gradually turn in the loading direction. A good agreement
between the proposed model and the experiment is recognized
in cases where u ¼ 30o and u ¼ 60o. For u ¼ 45o, the wing cracks
obtained by the experiment are asymmetric and visibly different
from those computed numerically. We do not consider this a con-
cern for accuracy of the numerical method and note that the sim-

Table 1
Comparison between the computational costs of the three methods under grid refinement (L/b = 2, b/a = 2).

Computational costs Method b/h

4 8 16 32 64

Degrees of freedom (DOF) FEM 330 1106 4290 16802 66402
FEM-QPE 330 1106 4290 16802 66402
FEM-ARM-QPE 214 678 1454 4970 17742

Total number of elements FEM 68 248 1016 4088 16376
FEM-QPE 68 248 1016 4088 16376
FEM-ARM-QPE 44 152 340 1196 4348
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ulations consistently predict propagation towards the locations of
the point loads, independent of the fracture rotation angle.

The agreement with the experimental observations in the above
examples shows that the mathematical model and the simulation
approach proposed in this work are valid for fracture propagation
of wing cracks.

4.3. Wing crack propagation due to shearing along a pre-existing
fracture

The third example investigates the formation and propagation
of wing cracks in a domain with multiple pre-existing fractures,
with fracture propagation driven by shearing along one of the frac-
tures. The setup is designed so that the existing fractures will first

be linked by newly formed wing cracks, followed by further wing
crack formation from the extremities of the newly formed net-
work. The objectives of the example are to analyse the propagation,
connection, and final geometry of the generated fracture network.
The material parameters are chosen to resemble those of a granite
rock mass, with a Young’s modulus E = 70 GPa, Poisson’s ratio
m = 0.21, mass density q ¼ 2700 Kg=m3 and fracture toughness
KIC = 1.5 MPa m1/2. The gravity is g = 9.8 m/s2.

The initial configuration consists of three horizontal parallel
natural fractures shown in Fig. 16. The geometrical parameters
are W = 7 m, D = 6 m, thickness t = 1 m, a = 1 m, b = 0.5 m, and
h0 = 1 m. There is no opening of the pre-existing fractures. To
mimic the subsurface conditions, we assume that this granite rock
mass is located at a depth of H = 1000 m and subjected to in situ
stresses resulting from the weight of the overlying strata (assumed
to be granite) approximated by

rx ¼ m
1� m

qgHt; ry ¼ qgHt ð41Þ

A measurable slip, u0 ¼ u0;0f g, is imposed on the middle frac-
ture (fracture (2)), mimicking the slip due to the increase in the
fluid pressure in the hydraulic shear stimulation of the fractures.

The growth of the wing cracks, the increment of slip and the
number of DOFs during the fracture propagation are shown in
Figs. 17 and 18. The number of DOFs is approximately doubled at
the end of the simulation. When the pre-existing fracture (2) expe-
riences slip u0 = 0.012 mm in the tangential displacements, wing
cracks emerge at its tips. They form an angle of approximately
70 degrees to the main fracture. By increasing the slip until
u0 = 0.147 mm, wing cracks from fracture (2) gradually turn in
the direction perpendicular to the minimum principle stress and

Table 2
Comparison of KI and KII for different crack inclination angles (a = 5 mm, R = 42 mm).

u (deg) K I
ffiffiffiffi
p

p
R= f 0

ffiffiffi
a

p� �
K II

ffiffiffiffi
p

p
R= f 0

ffiffiffi
a

p� �
Present model Analytical

(Atkinson et al., 1982)
Experimental
(Haeri et al., 2014b)

Present model Analytical
(Atkinson et al., 1982)

Experimental
(Haeri et al., 2014b)

0 1.0269 1.0 1.0 0.0 0.0 0.0
15 0.7420 0.7323 0.715 1.0069 1.0175 1.017
30 �0.0272 0.0035 �0.016 1.7251 1.7443 1.778
45 �1.0417 �0.9858 �1.014 1.9601 1.9858 2.040
60 �2.0252 �1.9681 �2.054 1.6787 1.6952 1.712
75 �2.7469 �2.6827 �2.701 0.9580 0.9684 0.947
90 �3.0132 �2.9433 �2.948 0.0 0.0 0.0

o30
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32 steps, DOF = 2352  8848 
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Fig. 15. Comparison of fracture propagation paths between the present model and experiment (Haeri et al., 2014b).
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connect to fractures (1) and (3). By increasing the slip until
u0 = 0.3105 mm, two wing cracks newly emerge from fracture
(1) and (3) and propagate away. As shown in Fig. 17, before the
wing cracks from fracture (2) reach fractures (1) and (3), the sur-
faces of pre-existing fractures (1) and (3) are completely in contact.
After that, the parts near the connected wing cracks open while the
rests are still in contact. The change in the open/closed state of the
fractures is caused by the influence of the in situ stresses and the
interaction between multiple fractures.

4.4. Propagation of multiple fractures driven by the shearing boundary
conditions

Finally, we consider a more complex case with multiple closed
pre-existing fractures arbitrarily appearing in a specimen, as illus-
trated in Fig. 19. The proposed FEM-AMR-QPE technique is ideally
suited to address the complexity of this problem in an efficient and
accurate manner.

The size of the specimen is W = 7 m, D = 5 m, and thickness
t = 1 m, while the rock parameters are set equal to those in Sec-
tion 4.3. The fracture propagation is driven by a gradual increase
in the tangential traction, s, on the top and bottom boundaries of
the domain, while the left and right boundaries are assigned trac-
tion free conditions.

The propagation trajectory is shown in Fig. 20. The increments
of tangential traction and the number of DOFs are shown in
Fig. 21. The DOFs increased by approximately 30% at the end of
simulation. A wing crack first emerges at fracture (3) when the
assigned tangential traction reached s ¼ 0:0746 MPa. By increas-
ing the tangential traction until s ¼ 0:4735 MPa, a new wing crack

emerges at the end of fracture (2). At s ¼ 0:4847 MPa, wing cracks
emerge at both tips of fracture (2) and propagate in opposite direc-
tions; one connects to fracture (3), and the other connects to frac-
ture (1). After that, wing cracks appear at all tips of fractures (1)
and (3) and propagate further at different lengths. During shear
slip, fractures (4) and (5) do not propagate while the wing cracks
propagate in the direction almost 45 degrees with that of tangen-
tial traction. Fracture (4) is completely closed during the simula-
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Fig. 16. Geometry of specimens with three pre-existing fractures.
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Fig. 17. The trajectories of the wing cracks caused by shear slip increasing until u0 = 0.3105 mm at the interfaces of a pre-existing crack.
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tion. Fracture (3) is completely closed before wing cracks emerge
and is partly closed after that. The remaining fractures are tensile
cracks during propagation. The results clearly show the further
propagation of wing cracks under tangential traction and how
the propagation of wing cracks and deformation of the larger frac-
tures prevents wing crack propagation of the smaller fractures

The obtained results in example 4.3 and 4.4 show the interac-
tion of different fractures, in which, a growing crack tip is weaker
and more deformed when approaching other fractures. Similar
observations on the fracture interaction has also been made by
other authors, e.g. Thomas et al. (2017), Legrand and Lazarus

(2015), and Laures and Kachanov (1991). For the simple symmetric
geometry where an analytical solution exists, SIFs for interacting
fracture tips computed by our developed methodology were also
verified by the analytical solution by Kachanov (1987).

In the case of modeling multiple fractures propagation pre-
sented in examples 4.3 and 4.4 by FEM without ARM, a fine mesh
is required to accurately capture propagated paths. A regular mesh
in the same quality as the ones in the above examples consists
almost 40.000 elements with approximated 200.000 DOFs. The
number of DOFs by the regular mesh is approximately ten times
more than one by the ARM mesh at the end of the simulation.
Although ARM is costly for the element refinement in regions of
high error, the adjustments of the mesh are local, and the cost of
remeshing and discretization is negligible compared to a full dis-
cretization and solution of the corresponding algebraic equations.
So, using the proposed ARM for the fracture propagation simula-
tion is a great advantage when compared to approaches based on
a regular mesh.

5. Conclusions

This work presented a numerical model for wing crack initia-
tion and propagation due to shear slip. The governing mathemati-
cal model is based on linear elastic fracture mechanics and contact
mechanics, along with failure and propagation criteria for multiple
mixed-mode fracture propagation. The numerical solution
approach is based on a combination of the finite element method
combined with quarter point elements to handle the singularity
at the fracture tips. The fracture contact mechanics are solved by
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Fig. 20. The trajectories of wing cracks caused by shear slip at the top and bottom sides.
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using the active set strategy. In addition, an adaptive remeshing
based on an error estimator and Laplacian smoothing for imple-
mentation is utilized for computational efficiency.

Verification and validation studies of the methodology are pre-
sented, showing appropriate agreement between the analytical
solutions and experimental observations for single fracture com-
putation. More complex numerical test cases demonstrated the
method’s capabilities in investigating the development of wing
cracks for situations where multiple fractures interact. The results
show how the development of wing cracks interacts with the
deformation and propagation of other existing fractures account-
ing for different fracture contact conditions as well as the overall
stress regime.
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Appendix A


 The 6-node triangular shape functions are defined by
Ni n;gð Þ¼ 1�n�gð Þ 1�ni�gið Þ 16 nniþggið Þþ 1�2n�2gð Þ 1�2ni�2gið Þ½ �

þnni 2n�1ð Þ 2ni�1ð Þþ16ngnigiþggi 2g�1ð Þ 2gi�1ð Þ
Að1Þ


 The 8-node quadrilateral shape functions are defined by

Ni n;gð Þ¼ n2i g
2
i

4 1þnnið Þ 1þggið Þ� 1�n2
� �

1þggið Þ� 1þnnið Þ 1�g2
� �� �

g2
i
2 1�nið Þ 1�n2

� �
1þggið Þþ n2i

2 1�g2
i

� �
1þnnið Þ 1�g2

� � Að2Þ


 The details of the QPE formulation.

Substituting specific coordinates of 6 nodes xi; yið Þ as shown in
Fig. 2(a) into Eq. (24) gives

x ¼ h
4

1þ nð Þ2; y ¼ l
4

1þ nð Þ2g Að3Þ

By assuming r is the distance from point (x, y) to the crack tip
gives

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
) 1þ nð Þ ¼ ffiffiffi

r
p

A0 h; l;gð Þ Að4Þ
The Jacobian of the transformation [J] is given by

½J� ¼ @x=@n @y=@n

@x=@g @y=@g

	 

¼ 1

4
2h 1þ nð Þ 2lg 1þ nð Þ

0 l 1þ nð Þ2
" #

Að5Þ

Taking the derivatives both sides of Eq. (25) gives

@uh

@x
@uh

@y

n oT
¼ ½J��1 @N

@n
@N
@g

n oT
dh Að6Þ

The derivatives of the displacement can be explicitly written in
the form

@uh
@x ¼ 1

nþ1ð ÞA1 h;ui;gð Þ þ A2 h; uið Þ; @vh

@x ¼ 1
nþ1ð ÞA1 h;v i;gð Þ þ A2 h;v ið Þ

@uh
@y ¼ 1

nþ1ð ÞB1 l;ui;gð Þ þ B2 l;uið Þ; @vh

@y ¼ 1
nþ1ð ÞB1 l;v i;gð Þ þ B2 l; v ið Þ

Að7Þ

By combining Eq. (1), Eq. A(4) and Eq. A(7), the stress compo-
nents from the numerical method are defined by

rh
x

rh
y

shxy

8><
>:

9>=
>;¼ 1ffiffiffi

r
p

A0 h; l;gð ÞD
A1 h;ui;gð ÞþA2 h;uið Þ
B1 l;v i;gð ÞþB2 l;v ið Þ

A1 h;v i;gð ÞþA2 h;v ið ÞþB1 l;ui;gð ÞþB2 l;uið Þ

8><
>:

9>=
>;

Að8Þ

where Ai and Bi are defined by

A0 h; l;gð Þ ¼ 2 h2 þ l2g2
� ��1

4
Að9Þ

A1 h;ui;gð Þ ¼ 1
h

3u1 þ 2 gþ 1ð Þu2 � 3g2 þ gþ 2
� �

u3

þ 3g2 þ 1
� �

u4 � 3g2 � gþ 2
� �

u5 � 2 g� 1ð Þu6

" #

Að10Þ

A2 h;uið Þ ¼ 1
h

2u1 � 2u2 þ u3 þ u5 � 2u6ð Þ Að11Þ

B1 l;ui;gð Þ ¼ 1
l
�4u2 þ 2 gþ 1ð Þu3 � 4gu4 þ 2g� 1ð Þu5 þ 4u6½ �

Að12Þ

B2 l;uið Þ ¼ 1
l
2u2 � u3 þ u5 � 2u6ð Þ Að13Þ

It is clear that as r ! 0 (which means n ! 0 and/or g ! 0), the
terms Ai and Bi become constants. Therefore, the numerical stresses
in Eq. A(8) tend to Oð1= ffiffiffi

r
p Þ.

Appendix B

Influence of the interaction on stress intensity factor

The interaction between multiple fractures is an important con-
sideration on the fracture propagation simulation. In this section,
the SIFs of interacting fractures were evaluated by the FEM-ARM-
QPE in comparison with the exact solution for a geometrically sim-
ple test case, which is also extended to investigate the effect of the
fracture’s location. The setup model for this problem is shown in
Fig. B1. Two fractures of the same size (length a) exist in a domain
(Fig. B1 (a)). The fracture (1) is inclined at an angle u to the hori-
zontal direction while the fracture (2) is always parallel to the hor-
izontal direction. The horizontal distance between the fractures is
2b. Firstly, the SIFs around a interacting tip of fracture (2) (denoted

by Kint
I;II) that is interacting with fracture (1) are calculated. Then,

fracture (1) is removed (Fig. B1 (b)), and SIFs are calculated around

an isolated tip (denoted by K iso
I;II ) for the fracture (2). In this way, the

same geometry for fracture (2) is tested twice, and the changes in

the SIFs can be examined through the ratio between Kint
I;II and K iso

I;II .
The changes in SIFs are investigated due to changes of distance

between these existing fractures and the incline of the fracture (1).

The values of Kint
I =K iso

I and Kint
II =K

iso
II are shown in Tables B1 and B2,

respectively, for the tension by applying a normal traction and
shearing by applying a shear traction. A visual view of the influence
of distance on SIFs is shown in Fig. B2. For the tension of two col-
inear fractures, the present results are compared with the exact
solution presented by Kachanov (1987). A good agreement with
the exact solution is observed. As expected, the influence of the
interaction on SIFs decreases as the fractures move apart.
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Fig. B1. Model of interacting fractures.

Table B1
The values of Kint

I =K iso
I change due to interaction of two fractures (Poisson’s ratio is 0.25).

b/a u ¼ 0o u ¼ 30o u ¼ 45o u ¼ 60o u ¼ 90o

Present model Exact (Kachanov, 1987) Present model Present model Present model Present model

0.02 1.9253 1.905 1.3716 1.1980 1.0921 1.0133
0.05 1.4974 1.473 1.3076 1.1683 1.0786 1.0090
0.1 1.2854 1.255 1.2235 1.1321 1.0636 1.0051
0.2 1.1568 1.112 1.1233 1.0835 1.0453 1.0084
0.5 1.0542 - 1.0406 1.0254 1.0081 0.9949
1.0 1.0266 - 1.0201 1.0159 1.0094 1.0058
1.5 1.0153 - 1.0109 1.0094 1.0056 1.0037

Table B2
The values of Kint

II =K
iso
II change due to interaction of two fractures (Poisson’s ratio is 0.25).

b/a u ¼ 0o u ¼ 30o u ¼ 45o u ¼ 60o u ¼ 90o

0.02 1.8777 1.0533 1.0560 1.0913 1.1272
0.05 1.4968 1.0769 1.0684 1.0885 1.1097
0.1 1.2905 1.1156 1.0876 1.0945 1.1016
0.2 1.1571 1.1077 1.0889 1.0895 1.0817
0.5 1.0544 1.0584 1.0528 1.0474 1.0372
1.0 1.0242 1.0308 1.0312 1.0293 1.0225
1.5 1.0190 1.0252 1.0262 1.0248 1.0188

Fig. B2. Change in SIFs with relative distance between two fracture.
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A B S T R A C T   

In fractured poroelastic media under high differential stress, the shearing of pre-existing fractures and faults and 
propagation of wing cracks can be induced by fluid injection. This paper presents a two-dimensional mathe
matical model and a numerical solution approach for coupling fluid flow with fracture shearing and propagation 
under hydraulic stimulation by fluid injection. Numerical challenges are related to the strong coupling between 
hydraulic and mechanical processes, the material discontinuity the fractures represent in the medium, and the 
strong effect that fracture deformation and propagation have on the physical processes. The solution approach is 
based on a two-level strategy that is classified into the coarse and fine levels. In the coarse level, flow in and 
poroelastic deformation of the matrix are coupled with the flow in the fractures and fracture contact mechanics, 
allowing fractures to frictionally slide. Fracture propagation is handled at the fine level, where the maximum 
tangential stress criterion triggers the propagation of fractures, and Paris’ law governs the fracture growth 
processes. Simulations show how the shearing of a fracture due to fluid injection is linked to fracture propa
gation, including cases with hydraulically and mechanically interacting fractures.   

1. Introduction 

In the hydraulic stimulation of geothermal reservoirs in igneous 
rocks, elevated pressures in combination with anisotropic stress condi
tions result in shear displacement and the dilation of fractures and faults 
favorably oriented to slip, propagation of wing cracks from sliding or 
shearing fractures, and/or propagation of hydraulic fractures.1–4 

Sliding, dilation, and the propagation of fractures affect the stress and 
flow regime in the formation and, thereby, the stress state and defor
mation of nearby fractures. The coupling between flow in fractured and 
faulted rocks, fracture slip and propagation, and poromechanical matrix 
deformation is strong: fracture propagation occurs locally but impacts 
and interacts with macroscopic reservoir-scale flow and deformation of 
the fractured rock. 

The current work presents a modeling approach for hydraulic stim
ulation of fractured reservoirs under anisotropic stress. In this case, 
depending on the elevation of fluid pressure, the stimulation will cause 
slip of pre-existing fractures as well as fracture propagation. Slips of pre- 
existing fractures occur when coupled hydromechanical processes 
induced by fluid injection result in changes to the effective stress regime 
so that the fracture’s frictional resistance to slip is exceeded.5,6 The 

stress alterations resulting from fracture slip are coupled with fluid 
pressurization and drive tensile propagation of wing cracks at the frac
ture’s tips. Hence, in contrast to most of the research literature on 
fracture propagation resulting from hydraulic stimulation, this work 
does not only consider the development of tensile hydrofractures. 
Instead, the reservoir stimulation is caused by a combination of slip of 
pre-existing fractures with fracture propagation.1–3 Following McClure 
and Horne,2 we refer to this as mixed-mechanism stimulation. 

To fully represent how injection operations alter fractured rock 
characteristics, simulation models must capture both the slip and 
deformation of existing fractures as well as fracture propagation. In 
addition, they must be able to account for the heterogeneous charac
teristics of subsurface formations. Challenges are related to capturing 
how the hydromechanical processes in the matrix interact with the flow, 
deformation, and propagation of fractures. This includes accounting for 
fracture contact mechanics, with the possibility of fractures being 
closed, sliding, and open. 

To model the physics of these phenomena, fractures must be repre
sented explicitly in an otherwise intact porous medium, conceptually 
leading to a discrete fracture-matrix model. To avoid resolving thin 
fractures in their normal direction, fractures are represented as co- 
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dimension one objects embedded in the host medium with corre
sponding dimensionally reduced equations, resulting in a mixed- 
dimensional model.7 Discretizations of such models can be both non
conforming and conforming. While conforming methods align the 
computational grid to the fractures, nonconforming methods utilize 
enrichment functions to capture the effects of the fractures. Recently, 
the nonconforming XFEM methodology, which has previously been 
developed for hydraulic fracture propagation,8–11 has been extended to 
couple fracture propagation with fracture contact mechanics in imper
meable media.12,13 A conforming method allows the direct assignment 
of variables and governing equations to the host medium, the fracture, 
and the matrix-fracture interface. For fluid flow, this flexibility sim
plifies the task of correctly capturing fluid exchange within and between 
fractures and the matrix. Furthermore, a conforming fracture repre
sentation allows for the modeling of fracture contact mechanics in 
poroelastic media,9,10,14–16 including fracture propagation17,18 in a 
manner that directly couples shear and normal displacements along the 
fracture with alterations in stress and flow regime.19 

In numerical modeling of fracture mechanics in porous media caused 
by fluid injection, numerical models have generally focused either (1) on 
the tensile propagation of hydraulic fractures or (2) the deformation of 
pre-existing fractures or faults. The first regime ignores the deformation 
of existing fractures caused by frictional contact and governs the growth 
of fractures by Mode I fracturing.8,10,15,20–31 The second regime focuses 
on the frictional sliding, dilation and/or opening of pre-existing frac
tures or faults without considering fracture propagation.11,19,32–37 Some 
recent models couple both regimes.2,18,19,38 However, the coupling of 
hydromechanical processes between fractures and the matrix and the 
fracture propagation in these models are typically based on strong as
sumptions. For example, fracture dilation is assumed to not affect the 
surrounding stress2,18 and restrictions allow fractures to propagate only 
along predefined paths2 or the edges of fixed grid cells.18,38–41 

This work presents a numerical model, based on conforming dis
cretizations, for injection-induced fracture shear-deformation and wing- 
crack propagation in poroelastic media without these limitations. Biot’s 
model for poroelasticity governs flow and deformation in the matrix, 
with the deformation of fractures represented by contact mechanics, 
which consider the fractures’ frictional resistance to sliding.19 The 
fracture growth process is governed by the maximum tangential stress 
criterion and Paris’s law.42,43 A primary motivation for our work is to 
enable simulations on domains that are too large for the fracture prop
agation to be resolved in detail. To that end, we separate the poroelastic 
matrix deformation and fracture shearing from the fracture propagation 
in a two-level approach. A relatively coarse grid can be accepted for 
flow, poroelastic matrix deformation, and fracture deformation. In 
contrast, to capture the stress and correctly evaluate fracture propaga
tion, a refined grid is needed around the fracture tip. As fracture prop
agation occurs locally from the fracture’s tips,2,44 an efficient solution 

strategy can be defined based on multilevel methods,45–47 which in this 
work is cast in the language of the heterogeneous multiscale 
approach.45,48 Flow, poroelastic deformation, and contact mechanics of 
fractures are evaluated in a coarse-level model, and mechanical fracture 
propagation is evaluated in a local fine-level model48 subject to body 
forces and boundary conditions that also account for the influence of 
macroscale fluid pressure. The models are coupled via displacement 
fields close to fracture tips (coarse level to fine level) and updates to the 
fracture path (fine level to coarse level). 

In discretizing the coarse-level model, a finite volume method for 
fracture and matrix flow and poroelastic matrix deformation is com
bined with an active set strategy for fracture contact mechanics.19 For 
fracture propagation on the fine level, a finite element method is applied 
in combination with collapsed quarter-point elements at the fracture tips 
to capture their stress singularity.17,49 Adaptive remeshing is introduced 
on both levels to account for fracture propagation based on the imple
mentation by Dang-Trung et al.17 This work presents numerical exam
ples that focus on the method’s ability to balance accuracy and 
computational cost under variations in grid resolution and the param
eters which govern the coupling between the coarse- and fine-level 
modeling. This work also presents a case with multiple hydromechani
cally coupled fractures, showcasing the capacity of our methodology to 
solve complex problems. 

The paper is structured as follows. Section 2 presents the governing 
equations and Section 3 presents the two-level solution strategy. Section 
4 presents a numerical approach that employs a novel combination of a 
finite volume method for the poroelastic deformation of existing frac
tures with a finite element approach for the fracture propagation pro
cess. Section 5 presents several numerical test cases to show the stability 
and accuracy of the proposed approach and its potential in settings 
where multiple fractures mutually affect each other. 

2. Mathematical model 

The mathematical model for injection-induced fracture shear 
deformation and wing-crack propagation in poroelastic media is based 
on systems of partial differential equations and KKT conditions gov
erning the physics. We start by introducing notations of geometry and 
primary variables. Then, we present the mathematical model for frac
ture contact mechanics, poroelastic deformation of the matrix, and fluid 
flow. At the end of this section, we present the model for the fracture 
propagation process. 

2.1. Geometry and primary variables 

As shown in Fig. 1, we represent a fractured porous media as a two- 
dimensional domain Ω that is divided into a host medium, termed the 
matrix and denoted ΩM, and a set of fractures that are considered to be 

Fig. 1. Illustration of a fracture, ΩF
i and a host medium, ΩM .  
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one-dimensional objects embedded in ΩM. From here on, we will refer to 
both fractures and faults simply as fractures and let ΩF

i denote fracture i 
and ∂kΩF

i , k = {1, 2} represent the two tips of ΩF
i . Throughout the paper, 

we assume that fractures do not intersect. Finally, we denote the inter
face between ΩM and ΩF

i by Γi, where, when needed, we shall represent 
the two sides of the interface by Γ+

i and Γ−
i . The boundary of ΩM that 

coincides with Γ±
i is denoted ∂±

i ΩM. 
The primary variables are displacements, fluid pressures, contact 

forces on the fractures, and fluid fluxes between fractures and the ma
trix. Specifically, the displacements on ΩM are denoted as u, the pressure 
is represented by p in ΩM and pi in ΩF

i , and the contact force fi is defined 
only in ΩF

i . Finally, u±
i and λ±

i denote the displacement and fluid flux on 
Γ±

i , respectively. Time derivatives are denoted by a dot, e.g., u̇i. 

2.2. Fracture contact mechanics 

Let ni be the normal vector to the fracture surface ΩF
i , pointing from 

Γ+
i to Γ−

i . We define the jump operator acting on ui by 

⟦ui⟧ = (⟦ui⟧n, ⟦ui⟧τ) = u−
i − u+

i , (1)  

where ⟦ui⟧n and ⟦ui⟧τ denote the normal and tangential components of 
the displacement jump, respectively. In the normal direction, we require 
nonpenetration and define the normal component of the contact trac
tion, f i,n, to be negative in contact. This assumption gives rise to the KKT 
condition, i.e. 

⟦ui⟧n − g ≥ 0, fi,n ≤ 0, (⟦ui⟧n − g)f i,n = 0. (2)  

Here, the gap function g allows the fracture to open while the walls are 
still in mechanical contact. We set g = ⟦ui⟧τ tan ψ , with ψ being the 
dilation angle to let the fracture open due to tangential slip. 

The tangential motion of the fracture is modeled as a frictional 
contact problem, with the following relation between the tangential 
contact traction, f i,τ, and the change of displacement jump in time, ⟦u̇i⟧τ: 
⃒
⃒fi,τ

⃒
⃒ ≤ −μsf i,n,

⃒
⃒fi,τ

⃒
⃒ < −μsf i,n so ⟦u̇i⟧τ = 0,

⃒
⃒fi,τ

⃒
⃒ = −μsf i,n so∃γ ∈ R, f i,τ = −γ2⟦u̇i⟧τ.

(3) 

The tangential traction is bounded from above by the normal traction 
scaled by the friction μs, and when the frictional resistance is overcome, 
the displacement is parallel to the tangential traction. 

The force balance on the fracture’s surfaces is given by 

ni ⋅ σ|∂+
i ΩM = f i − αipi(I ⋅ ni), −ni ⋅ σ|∂−

i ΩM = f i − αipi(I ⋅ ni), (4)  

where σ denotes the hydromechanical stress in the matrix, f i is the 
contact traction acting on the fracture surface, and pi is the pressure 
inside the fracture. The Biot coefficient in the fracture is denoted by αi 

and I is the identity matrix. Equality should be enforced on Γ±
i , but for 

notational convenience, we have suppressed projection operators. See 
Keilegavlen et al.50 for more information. 

2.3. Flow and poroelastic deformation of matrix 

Flow and deformation in ΩM are modeled by Biot theory, with the 
matrix taken as a linearly elastic medium. By neglecting inertial terms, 
the conservation of momentum and mass is governed by 

∇ ⋅ σ = b, (5)  

α ∂(∇⋅u)

∂t
+ M

∂p
∂t

− ∇ ⋅
(

K

μ ∇p
)

= q, (6)  

where σ is the hydromechanical stress in ΩM, defined by 

σ = C∇su − αpI. (7)  

Here, ∇s represents the symmetrized gradient, C is the stiffness matrix, b 
denotes body forces, and q is the fluid source term. The Biot coefficient 
of the matrix is α, the Biot modulus is given by M =

(
φcp + α−φ

K
)
, cp is the 

fluid compressibility, φ is the matrix porosity, K is the bulk modulus, K 

denotes the permeability of the porous matrix, which is assumed to be 
isotropic, and μ is the fluid viscosity. On ∂±

i ΩM, continuity of the dis
placements is enforced so that tr u|∂±

i ΩM = u±
i , where tr is the trace 

operator. As seen from ΩM, the interface displacement thus acts as a 
Dirichlet boundary condition. The interface fluid flux λi enters as a 
Neumann condition to the mass conservation equation. 

2.4. Fluid flow in fractures and matrix-fracture interaction 

By using the discrete fracture-matrix model, the fracture is repre
sented explicitly in the domain. Following Stefansson et al.,19 who 
extended the work of Martin et al.51 to discrete fracture-matrix models 
with changing apertures, the conservation of mass in fracture i is given 
by 

∂ai

∂t
+ aicp

∂pi

∂t
− ∇ ⋅

(
K i

μ ∇pi

)

+
(
λ+

i + λ−
i

)
= qi. (8)  

Here, we assume that the fracture can be completely occupied by the 
fluid, i.e., that the fracture porosity and Biot’s coefficient are equal to 
one. K i is the fracture tangential transmissivity. The aperture ai = a0

i +

⟦ui⟧n is computed by a sum of an initial value a0
i and an update due to 

fracture deformation. Therefore, the first term in Eq. (8) represents 
volume changes due to changes in aperture. The fracture transmissivity 
is related to aperture by the so-called cubic law, K i = a3

i /12 52; i.e., ai 

equals the hydraulic aperture of the fracture. The term (λ+
i +λ−

i ) repre
sents inflow from the matrix over Γ±

i , where λ±
i is the interface flux 

between the matrix and the fracture defined as 

λ±
i = −κi(pi − tr p±), (9)  

where κi = 2K i /(μa2
i ) is an expression of permeability normal to the 

fracture, p± represents pressures from the matrix at the two sides of the 
fracture, and it is understood that the fracture and matrix pressures 
should be projected onto Γ±

i . 

2.5. Fracture propagation 

The propagation criterion is based on a criterion on maximum 
tangential stress42 for mixed-mode fracturing. The theory postulates 
propagation when the maximum tangential stress in the process zone 
around a fracture tip exceeds a critical value. The direction of propa
gation is that of the maximum tangential stress. The tangential stress 
around a fracture tip can be expressed in polar coordinates as 

σL
θ (r, θ) =

1̅̅̅
̅̅̅̅

2πr
√

(

KI cos3θ
2

−
3
2
KII cos

θ
2

sin θ
)

(10) 

and the crack grows in the direction θ0 if σL
θ (r,θ0) = KIC.̅̅̅̅̅

2πr
√ , where KIC. is 

the fracture toughness. The propagation angle is given by 

θ0 = 2 tan−1

⎛

⎝ KI

4KII
±

1
4

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

KI

KII

)2

+ 8

√ ⎞

⎠ (11)  

subjected to a condition 

KII

(

sin
θ0

2
+ 9 sin

3θ0

2

)

< KI

(

cos
θ0

2
+ 3 cos

3θ0

2

)

(12)  

where r is the distance from the tip. KI and KII are the stress intensity 
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factors (SIFs). The propagation length can, in general, be computed by a 
Paris-type law,43 which, under the assumption that there is a single 
fracture inside every fine-level domain, simplifies to a propagation 
length equal to a preset value, lmax. If more than one crack grows 
simultaneously, then the tips with the higher energy in the fracture set 
advance further than the others. The increment for each tip is defined by 

li
adv = lmax

(
Gi

max(Gi)

)0.35

(13)  

where Gi is the energy release rate for the ith propagation crack.53 

3. Two-level solution strategy 

Our goal is to define a computational approach for the interaction 
between, on the one hand, deformation of fractures and domains due to 
hydromechanical stresses and, on the other hand, the propagation of 
fractures. While a fully coupled approach to the governing equations 
presented in the previous section is possible, it is impractical for three 
reasons. First, compared to the time scale of fluid flow, wing-crack 
propagation can be considered quasi-static and can therefore be 
loosely coupled to the fluid flow problem.20,54 Second, there will be no 
wing-crack propagation for significant periods, and efficiency can be 
gained by considering only the coarse-level problem. Third, while it is 
critical for the propagation problem to accurately capture the stress in 
the vicinity of the propagating fracture, including the singularity at the 
tip, the mechanical response of the more expansive reservoir, including 
other (potentially propagating) fractures, can be given a coarser 
representation. 

Motivated by these observations, our computational model is based 
on a two-level approach. We define subproblems for, on the one hand, 
large-scale fluid flow and deformation of fractures and the matrix, and 
on the other hand, fracture propagation and accompanying deformation 
locally around fracture tips. Reflecting the small time and length scales 
involved in propagation, we assign separate, small domains around each 
fracture tip to be used in the purely mechanical propagation calculation, 
referred to as the fine-level problem. Conversely, the whole simulation 
domain is referred to as the coarse-level domain, on which we solve the 
problem consisting of fluid flow and fracture and matrix deformation. 

3.1. Coarse- and fine-level models 

The coarse-level problem is defined on the geometry presented in 
Section 2, with the governing equations given by Eqs. (1)–(9), that is, 
frictional contact mechanics coupled with hydromechanical deforma
tion in the matrix and on the fracture domains. Fracture propagation is 
not explicitly accounted for in the coarse-level model but is instead 
updated from the solution to the fine-level problem, as discussed in 
Section 3.2. 

As shown in Fig. 2, the fine-level models are centered on fracture 
tips. With each fracture tip ∂kΩF

i in the coarse-level domain, we associate 
a (generally) smaller domain, termed a fine-level domain, and denoted 
as ωik with size lx × ly. The fine-level domain is composed of a part of the 
matrix, ωik⊂ΩM, and a single fracture domain, ωF

ik, which represents a 
part of the fracture ΩF

i in the coarse-level domain. In general, ωF
ik ∕⊂ ΩF

i 
since the resolution of the propagating fracture is different in the fine- 
level and coarse-level domains that will be discussed in Section 4. We 
let ∂±

i ωik represent the two sides of the fine-level fracture while ∂Mω is 
the rest of the boundary of ωik. 

In accordance with the discussion at the beginning of this section, we 
include the effect of fluid pressure as a body force in the fine-level 
model. The primary variable in the fine-level problem is, therefore, 
the displacement in ωik, which we represent by uL for simplicity. As with 
the full deformation, we assume that the fine-level matrix behaves 
similarly to a linearly elastic and isotropic medium governed by 

∇ ⋅ c∇suL = b (14)  

where b = ∇⋅(αpI) is the body force caused by pressure in the coarse- 
level domain. c is the stiffness tensor. Boundary conditions for the 
fine-level problem are set according to the coarse-level state, as dis
cussed next. 

3.2. Coupling between coarse-level and fine-level models 

For the fine-level problem, the fracture surfaces are not allowed to 
move freely. Instead, their displacement is set from the coarse-level 
behavior close to the fracture tip. That is, the fine-level boundary con
dition on ∂±

i ωik is given as a displacement jump computed from the 
coarse-level state, 

⟦uL⟧
⃒
⃒

∂±
i ωik

= R

(
⟦ui⟧|∂±

i ΩM

)
, (15)  

where R is a reconstruction operator, defined for the discrete problem 
in Section 4.4. On the remainder of the boundary, ∂ωik, we similarly set 

uL
⃒
⃒

∂ωik
= R (u). (16) 

The coupling from the fine-level model to coarse-level model consists 
of updating the coarse-level fracture geometry based on fine-level 
fracture propagation. This is linked to the continuous representation 
of the evolving geometry in the two models. For simplicity, we will 
represent the fractures as piecewise linear objects with a resolution 
related to that of the computational grids on the two scales, as detailed 
in Section 4. However, to cover more advanced features, including 
merging of fractures and three-dimensional problems, more elaborate 
geometric representations are needed.55,56 

Fig. 2. Illustration of a fracture, ΩF
i and a fine-level domain ωik.  
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4. Numerical approach 

This section describes the building blocks of our numerical approach 
in terms of grids and solution approaches to coarse-level and fine-level 
problems, together with the two-level coupling concept. 

4.1. Numerical grids for fracture propagation 

We construct numerical grids to conform to fractures in both the 
coarse-level and fine-level domains. That is, the grids on both ΩM and ωik 
are constructed so that fractures coincide with the paths of grid faces and 
then split nodes and faces along these paths, as done by Dang-Trung 
et al.17 In the coarse-level domain, we further construct 
one-dimensional grids on ΩF

i , as well as on the interfaces Γ±
i . 

Focusing on a single fine-level domain, we represent the mesh size in 
a fine-level grid by Δh and let ΔH represent the coarse-level mesh size 
around the same fracture tip. To ensure the stability of the propagation, 
the resolution of the fine-level domain is set to be finer than that of the 
coarse-level domain, i.e., Δh = εmΔH with εm ≤ 1. On both scales, we 
consider simplex grids, with the initial grids being constructed by 
Gmsh.57 Updates to the fracture geometry will generally not follow 
existing paths of grid faces at both the fine level and coarse level. Thus, 
before fracture propagation on either the fine-level domain or 
coarse-level domain, the grid is adjusted in the vicinity region of radius 
5 × lmax around the fracture tip with triangular rosette elements, size Δh 
or ΔH, to accommodate the extension of the fracture, followed by Lap
lacian smoothing to preserve the grid quality.17 This technique is 
effective in removing degenerate and small elements. The fracture is 
then prolonged by splitting grid faces and nodes. For the coarse-level 
grid, it is further necessary to prolong the grid for the fracture domain 
ΩF

i and the interfaces Γ±
i and to update the projections between the 

different grids. 
We remark that although the grid adjustment necessitates an update 

of the discretization in ΩM, the cost of this operation can be limited by 
confining the adjustment to a region close to the fracture tip. 

4.2. Coarse-level discretization 

The governing equations (1)–(9) on the coarse level, namely poroe
lastic deformation in ΩM and both fluid flow and contact mechanics in 
ΩF

i and over Γi are discretized and solved fully coupled by the open- 
source software tool PorePy.50 The overall approach has been used 
before to study poroelastic32,33 and thermoporoelastic19 deformation 
coupled with fracture mechanics and has also been applied to field 
studies.58 

The discretization of the frictional contact problem requires handling 
the discontinuity in the contact conditions Eqs. (2)–(4). These are 
evaluated cellwise to determine whether fractures are open or closed 
and, if closed, whether they are sticking or slipping; see Stefansson 
et al.19 for details. This classification is employed in an active set 
method, where the contact conditions and balance of forces expressed 
are discretized according to the state from the previous iteration.19,33,59 

The conservation equations for flow in ΩM and ΩF
i as well as mo

mentum in ΩM are discretized by a family of cell-centered multipoint 
finite volume methods developed for poroelasticity.60,61 The methods 
are based on constructing discrete representations of stresses (respective 
fluxes) over cell faces regarding displacements (respectively pressures) 
in nearby cell centers. The balance of momentum and mass is enforced 
on the cells. For fracture domains, the method reduces to the 
well-known two-point flux method, which can also deal with nonplanar 
domains resulting from fracture propagation. Finally, the coupling be
tween the matrix and fractures follows the scheme described by Nord
botten et al.14 for the flow problem. 

The coupled set of equations is nonlinear and requests an iteration 
solver due to the active set approach to the contact conditions. The 

system is solved by a semismooth Newton method using a direct solver 
for the linearized system. 

4.3. Fine-level discretization 

While our coarse-level discretization was chosen to comply with 
conservation, calculations meant to decide whether a fracture will 
propagate, and if so, where it will go, pose different requirements on the 
spatial discretizations. Specifically, it is crucial to represent the stress 
singularity at the fracture tip. To that end, Eq. (14) is discretized by a 
finite element method with P 2 basis functions. The stress singularity is 
captured using the nodal displacement correlation technique62 based on 
quarter-point elements.49 To enhance computational accuracy, the 
fine-level grid is refined and guided by residual-based a posteriori error 
estimates.63 From a computed displacement field, SIFs are estimated to 
determine whether the fracture should propagate and, if so, in which 
direction.17,62 The fine-level grid is updated as described in Section 4.1, 
and the displacement and pressure variables are mapped to the new grid 
by a P 1 interpolation. For details of the algorithm and investigations of 
its performance on SIFs convergence and fracture propagation verifi
cation, we refer to Dang-Trung et al.17 

Depending on the boundary conditions, several propagation steps 
may be needed to arrive at a stable state. During these iterations, the 
boundary conditions are fixed, consistent with the assumption that fine- 
level propagation is instantaneous relative to dynamics on the coarse 
level. 

4.4. Discrete mapping between coarse-level and fine-level models 

4.4.1. Mapping of variables 
To couple the numerical states on the coarse-level and fine-level 

domains, it is necessary to project displacements from the coarse-level 
to fine-level domain boundaries and compress fine-level updates to the 
fracture geometry onto the coarse-level grid. It should be noted that, the 
solutions are naturally determined at the cell centers in the coarse-level 
grid and the nodes in the fine-level grid. Therefore, we use three pro
cesses named cell center to cell center (C2C), node to node (N2N), and 
cell center to node (C2N) for the mapping. 

The C2C projects variables between cells in the coarse-level grid. If a 
fracture propagates in the coarse-level domain, the corresponding grid is 
locally adjusted to ensure the fracture path coincides with faces and, 
therefore, the variables at cell centers on the adjusted grid also need to 
be reconstructed. We use the natural neighbor interpolation as illus
trated in Fig. 3 for this projection. We assume that new cell e interacts 
with old cells O-ABCDEF. The variables at the center of cell e will be 
reconstructed by the variables at the centers of cells O-ABCDEF, such 
that. 

Fig. 3. Interpolation of coarse-level variables after an update of the coarse- 
level grid. The variables in cell e in the new grid is reconstructed from the 
old grid, with cells O-ABCDEF, using a nearest neighbor interpolation. The 
intersection area determines the weight of cell ODE to the variables for the 
cell e. 
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ξe =
1

∑n

j=1
Aej

∑n

j=1
Aejξj, (17)  

where ξj denotes variables at the center of cell j, and Aej is the inter
section area. 

The N2N projects variables from the coarse-level grid to the fine- 
level grid or between the fine-level grids. By the P 1 interpolation, as 
illustrated by Fig. 4, variables at each point in the fine level grid can be 
determined through the variables at the nodes of the parent cell in either 
coarse-level grid or fine-level grid. 

For a fine-level node with coordinates (x, y) belonging to a parent cell 
defined by nodes (xi, yi) in the coarse-level or fine-level grids, the values 
at (x, y) is then approximated by 

ξ(x, y) =
∑3

i=1
Ni(x, y)ξ(xi, yi), (18)  

where Ni(x, y) are the Lagrange basis polynomials. 
The C2N projects variables from the coarse-level grid to the fine-level 

grid. First, the variables from the cell center are projected to the nodes of 
the coarse-level grid by using the natural neighbor interpolation. Then 
we use N2N to interpolate variables at each node of the fine-level grid. 

Eq. (18) represents a discrete representation of the reconstruction 
operator R shown in Eqs. (15) and (16), i.e., 

ξ(x, y) = R̃ ξcell−center
j (19)  

where ̃R is the discrete reconstruction. By Eq. (19), the values at desired 
fine-level points are estimated through values at cells centers in the 
coarse-level grid. 

4.4.2. Updating the coarse-level fracture path 
In our model, the fracture path is represented directly in the 

computational grid. Hence, the information transfer on the fracture path 
from the fine-level model to the coarse-level model is dependent on the 
grid resolution on the two scales. Critical for simulation efficiency, small 
increases in the fracture length on the fine-level domain are not imme
diately projected to the coarse-level problem. Instead, for a fracture 
propagating on the fine level, with added length |Δωik|, the coarse-level 
fracture is updated only when 

⃒
⃒ΔωF

ik
⃒
⃒ ≥ εpΔH, where εp is a simulation 

parameter. When this threshold is overcome, the coarse-level fracture is 
extended by a linear approximation of ΔωF

ik and the coarse-level grid is 
updated as discussed in Section 4.1. Thus εp controls both the resolution 
of the coarse-level grid in the vicinity of propagating fractures and the 
numerical coupling strength between the fine-level and coarse-level 
models. 

4.5. Numerical solution approach 

As a summary of the above presentation, Fig. 5 illustrates the 
workflow of the two-level simulation approach. The time step size is 
usually taken as a constant represented by Δt. However, when a fracture 
propagates on the coarse level, both governing equations and parame
ters change along the fracture path, and the coarse-level state adjusts 
accordingly. In particular, the fractured part of the rock experiences 

Fig. 4. The P 1 interpolation.  

Fig. 5. Illustration of the workflow in the two-level simulation method. The simulation is controlled by the coarse-level grid size ΔH, time step size Δt, fine-level 
domain size l, relation between fine-level grid and coarse-level grid size εm and coarse-level resolution of the fracture εp. The details of the "Remesh/Split face" box are 
given in Section 4.1. 
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enhanced permeability and volume available for fluids. The pressure 
field in the vicinity of the tip will adjust to the new parameters on a time 
scale that is much shorter than that of pressure diffusion related to the 
injection. We capture this effect by temporarily reducing the time step 
size with a factor ε = 10−2 until this rapid dynamics is resolved and the 
pressure field near the crack tip is stabilized, whereupon we continue 
with the standard step size. 

5. Results 

The correctness of either the fine-level model or coarse-level model 
has been verified in previous studies.5,17,19,33 This section, therefore, is 
devoted to the presentation of numerical experiments of the fully 
coupled model. The coarse-level problem alone may strain the available 
computational resources in application-oriented simulations with large 
domains and multiple fractures. Therefore, it is paramount to limit the 
additional computational cost to incorporate fracture propagation in 
such simulations. We have devised a suite of numerical experiments 
designed to investigate the stability, accuracy, and computational effi
ciency of the proposed numerical approach. Specifically, we study how 
the prediction of the fracture path is altered under variations in the size 
of the fine-level domain (l = lx = ly), the mesh size on the fine-level (Δh) 
and coarse-level (ΔH) domains, the time step size (Δt), and the threshold 
for updating the coarse-level geometry (εp). Together, these simulation 
parameters determine the balance between solution accuracy and 
computational cost. As our motivation is to allow simulations on large 
domains where high-resolution simulations are not feasible, our focus is 
not on the convergence of the numerical solution but rather its stability 
as the resolution in time and space are coarsened. Based on observations 
from these tests, we finally present a complex case of hydromechanical 
processes interacting with the deformation and propagation of multiple 
pre-existing fractures in a synthetic subsurface fluid injection scenario. 
The source code for the following simulations is open access.64 

5.1. Onset of fracture 

We first investigate how the onset of fracturing, determined by SIFs, 
is influenced by the size of the time step, coarse-level grid, and fine-level 
domain. To that end, we consider a porous media domain assumed to be 
homogenous and linearly elastic with the material properties given in 
Table 1. The geometry and boundary conditions of the model are 

Table 1 
Material properties.  

Parameter Definition Value 

Е Young’s modulus 40 GPa 
ν Poisson’s ratio 0.2 
α Biot’s coefficient in the matrix 0.8 
φ Material porosity 0.01 
cp Fluid compressibility 4.0 × 10−10Pa−1 

K Matrix permeability 5.0 × 10−20m2 

μ Viscosity 1.0 × 10−4 Pa • s 
μs Friction coefficient 0.5 
ψ Dilation angle 1o  

Fig. 6. Model of a porous media with a single fracture subjected to a principal 
stress regime. 

Fig. 7. Stress intensity factors at tip A obtained by different microdomain sizes l (m), mesh sizes ΔH (m), and time steps Δt (h).  
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illustrated in Fig. 6, in which Lx = Ly = 2 m. A single fracture of length 
lf = 0.1 m and initial aperture a0 = 1 mm is located at the center of the 
computational domain and oriented at 45◦ to the positive x-direction. 
The left and bottom boundaries are fixed in the x- and y-directions, 
respectively, and the top and right boundaries are free. The fluid is not 
allowed to flow through boundaries. The fractured porous media is 
subject to a stress state with the maximum horizontal stress σ1 = 20 MPa 
and the minimum vertical stress σ2 = 10 MPa, imposed orthogonally to 
the domain along the x- and y-directions, respectively. Water is injected 
into the pre-existing fracture after 6 h (h) and continuously for 15 h at a 
constant rate of Q0 = 5 × 10−9m2/s. 

The effects of the time step (Δt), size of the fine-level domain(l), and 
mesh size (ΔH) on SIFs, displacement, and pressure are considered. Two 
levels of the fine-level domain size are considered, i.e., l = 0.5 m or 1.0 
m. The resolutions of the fine-level and coarse-level domains are the 
same, i.e., εm = 1.0, and we consider two different levels: ΔH = Δh =

0.01 m or 0.02 m. Three levels of time steps are used: Δt = 0.5 h, 1.0 h, 
or 1.5 h. Because of the lack of experimental data and exact solutions, 
the results from a computational setup are chosen as the reference. In the 
reference setup, the fine-level domain coincides with the coarse-level 
domain, i.e., l = L, and they are similar in resolution, i.e., ΔH =

0.01 m, εm = 1.0. We also use a small-time step, i.e., Δt = 0.5 h, in this 
setup. 

The SIFs at tip A, pressure at point C = (1.5,1.5), and displacement 
at point D = (2, 2) obtained by different fine-level domain sizes, mesh 
sizes, and time steps are shown in Figs. 7 and 8. There are no significant 
differences in the solutions obtained by using a small fine-level domain 
compared to using a larger domain for a given mesh size ΔH. In addition, 
the resolution of meshes and time steps have little effect on the solution. 
These agreements indicate that the calculation of SIFs is stable for the 
considered time steps, fine-level domain sizes, and mesh sizes. 

The injection at a low rate gradually builds up pressure, causing slip 
of the pre-existing fracture and shear failure instead of tensile failure at 
the fracture tip. As shown in Fig. 7, the injection increases KII from 
0.79 MPa • m1/2 to 1.47 MPa • m1/2, while there is almost no effect on 
KI. This is the result of the gradual reduction of the contact traction at 
the pre-existing fracture during the injection. In addition, the injection 
also increases pore pressure and resists deformation of the domain 
caused by compression. As shown in Fig. 8, the pore pressure at point C 
and displacement at point D are 6.8 MPa and 0.63 mm, respectively, at 
the beginning of the injection. After 15 h of injection, pressure increases 
to 8.0 MPa and displacement decreases to 0.60 mm. Termination of 
injection keeps the pore pressure and displacement stable. 

5.2. Wing-crack propagation caused by fluid injection 

Next, we consider further aspects of the model and solution strategy 
by studying the initiation and propagation of wing cracks from the ends 
of a pre-existing fracture caused by gradual pressure build-up by fluid 
injection at a low rate. The problem geometry, boundary conditions, and 
material parameters are the same as in the previous example. The 
fracture toughness is KIC = 0.7 MPa • m1/2. Water is injected at a con
stant rate of Q0 = 5 × 10−9m2/s into the pre-existing fracture during the 
simulation. The simulation is stopped when the wing crack propagating 
from tip A reaches a length of 0.25 m. To facilitate comparison between 
different sets of simulations, a reference case is computed with the same 
simulation parameters as used for the reference in Section 5.1, where we 
additionally use a threshold of εp = 0.5 for the coarse-level propagation 
of the fracture. 

5.2.1. Simulation study of coupled physics 
We start by illustrating the capacity of the present model to capture 

Fig. 8. Displacement at point D and pressure at point C obtained by different microdomain sizesl (m), mesh sizes ΔH (m), and time steps Δt (h).  

Fig. 9. Aperture expansion and shear slip at the fracture during simulation.  
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the complex coupled physics involved in fracture deformation and 
propagation based on a study of results from the reference case. Figs. 9 
and 10 show the aperture expansion, shear slip, and contact traction of 
the fracture during the simulation. The fracture slowly extends in the 
first 40 h, but then it suddenly increases more quickly. Due to injection 
at a relatively low rate and low permeability of the matrix, pressure 

takes time to build up in the porous media domain. This process grad
ually reduces the fracture contact traction and causes small slips on the 
fracture surface, but the fracture is still in contact. The small slip causes 
slight growth along the pre-existing fracture. After approximately 40 h 
of injection, the fluid pressure is sufficiently elevated in the domain to 
decrease the contact traction and induce slip in larger regions of the pre- 

Fig. 10. Normal and tangential tractions at the fracture during simulation.  

Fig. 11. Fracture propagation and pressure evolution in a 2D porous media during the fluid injection into the pre-existing fracture. Solid white/black lines denote 
fractures. The color bar represents pore pressure (MPa). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 12. The propagation length (m) from tip A and predicted fracture paths obtained by different resolutions ΔH (m) for l = L, εp = 1.0, and Δt = 1.0 h.  
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existing fracture, leading to the further propagation of wing cracks. 
Finally, the contact traction goes to zero along the initial fracture, 
leading to its complete opening and rapid propagation. 

The fracture geometry and surrounding pore pressure for the simu
lations are shown in Fig. 11. First, the slip of fracture faces triggers wing 
cracks to initiate from the tips. Then, fractures slowly propagate toward 
the maximum horizontal stress direction (the x-direction) during the 
first 40 h. High fluid pressure mainly occurs along the pre-existing 
fracture due to the low permeability of the surrounding porous me
dium. After that, the fracture extension makes fluid pressure propagate 
further in the domain while injection continues to elevate the pressure. 
This process reduces contact traction and causes the fracture to grow 
farther. 

In the first 10 h, pressure and slip in the injected fracture increase 
gradually, but not enough to trigger the fracture to propagate. So, the 
coarse-level computational grid and solution are preserved. After that, 
wing cracks emerge and require the grid adjustment, followed by the 
update of the solution. 

5.2.2. Effect of coarse-level grid resolution 
To probe the robustness of the two-level simulation approach, we 

first investigate the effect of coarse-level grid resolution on predicting 
the speed of fracture growth and fracture paths. In this example, the 
fine-level grid coincides with the coarse-level grid, i.e., l = L, and εm =

1.0, while the time step is Δt = 1.0 h. A comparison of predictions ob
tained by different resolutions is shown in Fig. 12, in which black lines 
represent a prediction based on the computational reference. 

For all grid resolutions, the wing cracks propagate in the direction 
normal to the least principal stress, although the fracture paths can be 
seen to meander, particularly for the coarser grids. The propagation 
speed is initially stable with small increments in fracture size, followed 
by accelerated propagation starting at 40–50 h for the different grid 
resolutions. The results are in relatively good agreement in the first 
period, although the timing of the propagation events varies between 
the grid resolutions. The results differ more in the acceleration period, 
with the coarsest resolution (ΔH = Δh = 0.05 m) showing almost brutal 
fracturing compared with the gradual although accelerating speed for 
the solutions obtained on the more refined grids. This is not unexpected 
since fast propagation is hard to capture, particularly for coarse grid 
resolutions. The example thus illustrates the balance between accuracy 
and computational cost and underlines the need to adapt and refine the 
coarse-level grid in the vicinity of a propagating fracture tip. 

5.2.3. Effect of fine-level domain size and grid resolution 
Next, we consider the impact of seeking computational savings in the 

fine-level problem by assigning a smaller fine-level domain size l and 
different resolutions in the fine-level grids. We fix the time step to Δt =

1.0 h and set the resolution of the coarse-level domain and propagation 

Fig. 13. The overlapping between coarse-level grid and fine-level grid for case ΔH = 0.02, l = 0.5, and εm = 0.25.  

Fig. 14. The propagation length from tip A and fracture paths obtained by different sizes of the fine-level domain, l (m), and resolutions of the fine-level domain, εm, 
for ΔH = 0.02 m, Δt = 1.0 h, and εp = 0.5. 
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threshold to ΔH = 0.02 m and εp = 0.5, respectively. The failure crite
rion is evaluated from a solution to the fine-level problem on a domain 
surrounding the fracture tip. The mesh for case ΔH = 0.02, l = 0.5, and 
εm = 0.25 is shown in Fig. 13. 

The effect of the fine-level domain size, l, and the resolution, Δh =

εmΔH, of this fine-level domain on the propagation speed and fracture 
path is shown in Fig. 14. Again, the calculated fracture paths meander 
for the coarser grid, but this effect abates with the refinement of the fine- 
level grid. In terms of propagation speed, the simulations again show a 
transition from stable to accelerating propagation. Except for εm in the 
period from approximately 8 h–20 h after the start of the injection, the 
propagation speed is always larger for the smaller fine-level domains. As 
the boundary conditions for the fine-level problem are fixed by the 
coarse-level state, the smaller domains must absorb the energy from 
fracture sliding in a smaller rock volume, increasing the stresses in the 
vicinity of the tip. The severity of this effect should, to a large degree, be 
independent of the size of the coarse-level domain, and thus, using only 
somewhat larger fine-level domains should also be feasible for larger 
problems. 

The impact of varying the fine-level mesh size is less clear. The re
sults obtained on the two coarser fine-level grids, εm = 0.5 and εm = 1.0,

are in broad agreement in the period of stable propagation but exhibit 
notable differences when transitioning to an accelerating regime. The 
results from the finest fine-level grid do not show a period of stable 
propagation on the coarse-level grid but instead enter the period of 
acceleration directly, at approximately the same time as the other sim
ulations. This disagrees with the other results, notably the observation in 
Fig. 7 that the critical threshold for KII is crossed approximately 7 h after 
the start of injection. A possible explanation is that the relatively large 
difference in mesh size between the fine-level and coarse-level problems 
for this value of εm makes the fracture propagate on the fine level 
without this effect being captured on the coarse-level domain. 

5.2.4. Effect of discretization coupling parameters: time-step size and 
coarse-level propagation threshold 

The effects of time step and threshold to extend fracture in the 
coarse-level domain are investigated in this example. For the time step 
study, as shown in Fig. 15 (a), we fix the size of the fine-level domain and 
mesh resolutions, i.e., l = 1.0 m and ΔH = Δh = 0.01 m, and consider 
three levels of the time step, i.e., Δt = 0.5 h, 1.0 h, or 1.5 h. The method 
can be seen to be stable under this variation with a similar speed of 
fracture propagation in all three cases. The difference from the reference 
case can be attributed to the smaller size of the fine-level domain. 

Besides, we also consider how the coarse-level propagation 
threshold, εp, affects the propagation speed, as shown in Fig. 15 (b). In 
this case, we set l = 1.0 m, ΔH = 0.02 m, Δt = 1.0 h, and εm = 1/3 and 
assign three different values for εp, namely, 1/3 , 2/3, or 1. For the two 
highest values of εp, i.e., 2/3 and 1, there is no period of stable 

propagation on the coarse level but rather an abrupt transition to the 
accelerating regime. This is like the results reported in Fig. 14, which 
also had a small value of εm = 1/4. Using a small value for εp also 
compensates for this effect. 

The findings of these experiments are summarized as follows. First, 
the direction of propagation is mainly controlled by boundary condi
tions. However, the computed fracture path tends to wiggle unless a 
relatively fine grid is applied on the fine-level domain. Such refined 
grids may again lead to delayed propagation on the coarse-level grid 
unless the fine-level and coarse-level problems are tightly coupled 
through the parameter εp. Second, the size of the fine-level domain can 
be reduced to lower the computational cost. However, a microdomain 
that is too small can overestimate the propagation speed. Finally, the 
time step size had little impact on the results for the cases we considered. 

5.3. Extension: propagation of multiple fractures under fluid injection 

Finally, to show the power of the proposed approach, hydrome
chanical processes interacting with the deformation and propagation of 
three pre-existing fractures in porous media are studied. The geometry 
and boundary conditions are illustrated in Fig. 16, in which Lx = Ly =

Fig. 15. The propagation length from tip A obtained by different resolutions, fine-level domain sizes, time steps, and propagation thresholds.  

Fig. 16. Model of three fractures in a porous media subject to bound
ary conditions. 
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2 m. There are three fractures with the same initial aperture, a0
i = 1 mm, 

pre-existing in the domain. Fracture 1 is defined by endpoints A =

(0.751, 1.208) and B = (0.849, 1.192), fracture 2 by endpoints C =

(0.965, 0.965) and D = (1.035,1.035), and fracture 3 by endpoints E =

(1.144, 0.780) and F = (1.256, 0.831). Water is injected at a constant 
rate of Q0 = 5 × 10−9m2/s into fracture 2 during the simulation. The 
material parameters are the same as for the example in Section 5.2. The 
simulation is implemented based on the two-level model, in which l =

0.5 m, ΔH = 0.02 m, εm = 0.5, εp = 0.5, and Δt = 1 h. 
The evaluation of the fracture geometry and the pore pressure is 

shown in Fig. 17. As in the above example, wing cracks mainly initiate 
and propagate from the fracture where fluid is injected. Small wing 
cracks are also observed from the other pre-existing fractures and are 
caused mainly by mechanical effects, i.e., the deformation of the 
domain. The fractures where fluid is injected propagate as a conse
quence of the hydromechanical stresses induced by the fluid injection, 
and fluid infiltrates farther into the domain as the fracture grows. These 
processes take place at the same time, leading the fracture to grow 
increasingly faster. In addition to the fracture growth, the injection also 
stimulates the nearby fracture to propagate. 

6. Conclusion 

This work presented a mathematical model and a numerical solution 
for coupling fluid flow, matrix deformation, fracture slip, and fracture 
propagation in porous media due to fluid injection. The governing 
mathematical model is based on Biot’s model, with the deformation of 
existing fractures represented by contact mechanics. The maximum 
tangential stress criterion is combined with Paris’ law to govern the 
fracture growth processes. A two-level simulation approach was pre
sented, that employs a novel combination of finite volume methods for 
the poroelastic deformation of existing fractures with a finite element 
approach for the fracture propagation process. 

The two-level approach allows for balancing between computational 
cost and simulation accuracy by varying the coupling between the 
coarse-level and fine-level models; tuning of the coupling strength 
should be done with respect to the problem to be solved, but also the 
computational resources available. The verifications in this paper show 
that the proposed approach is stable with different time steps, coarse- 
level grid sizes, and fine-level grid sizes. This approach is capable of 
simulating complex problems, such as the simultaneous propagation of 
multiple fractures combined with the slip and dilation of fractures in 

contact and tensile opening. Hydraulically and mechanically interacting 
fractures are handled naturally. Therefore, the current model has po
tential in the simulation of mixed-mechanism hydraulic stimulation of 
fractured reservoirs, in which both fracture shearing and corresponding 
wing-crack propagation lead to an increase in permeability. 
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2010;47(3):405–413. https://doi.org/10.1016/j.ijrmms.2009.10.001. 

37 Nguyen TS, Selvadurai APS. A model for coupled mechanical and hydraulic 
behaviour of a rock joint. Int J Numer Anal Methods GeoMech. 1998;22:29–48. 

38 Stefansson I, Keilegavlen E, Halldórsdóttir S, Berre I. Numerical Modelling of 
Convection-Driven Cooling, Deformation and Fracturing of Thermo-Poroelastic Media. 
Transp Porous Media; 2021. https://doi.org/10.1007/s11242-021-01676-1. 
Published online December. 

39 Yan C, Fan H, Huang D, Wang G. A 2D mixed fracture–pore seepage model and 
hydromechanical coupling for fractured porous media. Acta Geotech. 2021;16(10): 
3061–3086. https://doi.org/10.1007/s11440-021-01183-z. 

40 Yan C, Jiao YY. A 2D fully coupled hydro-mechanical finite-discrete element model 
with real pore seepage for simulating the deformation and fracture of porous medium 
driven by fluid. Comput Struct. 2018;196:311–326. https://doi.org/10.1016/j. 
compstruc.2017.10.005. 

41 Yan C, Jiao YY, Zheng H. A fully coupled three-dimensional hydro-mechanical finite 
discrete element approach with real porous seepage for simulating 3D hydraulic 
fracturing. Comput Geotech. 2018;96:73–89. https://doi.org/10.1016/j. 
compgeo.2017.10.008. 

42 Erdogan F, Sih GC. On the crack extension in plates under plane loading and 
transverse shear. J Basic Eng. 1963;85(4):519–525. https://doi.org/10.1115/ 
1.3656897. 

43 Paris P, Erdogan F. A critical analysis of crack propagation laws. J Fluid Eng. 1963;85 
(4):528–533. https://doi.org/10.1115/1.3656900. 

44 Haeri H, Shahriar K, Fatehi Marji M, Moarefvand P. Experimental and numerical 
study of crack propagation and coalescence in pre-cracked rock-like disks. Int J Rock 
Mech Min Sci. 2014;67:20–28. https://doi.org/10.1016/j.ijrmms.2014.01.008. 

45 E W, Engquist B. The heterogeneous multi scale methods. Commun Math Sci. 2003;1: 
87–132. 

46 Dhia H ben. Global-local approaches: the Arlequin framework. Eur J Comput Mech. 
2006;15(1-3):67–80. https://doi.org/10.3166/remn.15.67-80. 

47 Feyel F. A multilevel finite element method (FE2) to describe the response of highly 
non-linear structures using generalized continua. Comput Methods Appl Mech Eng. 
2003;192:3233–3244. https://doi.org/10.1016/S0045-7825(03)00348-7. 

48 Abdulle A, Weinan E, Engquist B, Vanden-Eijnden E. The heterogeneous multiscale 
method. Acta Numer. 2012;21:1–87. https://doi.org/10.1017/S0962492912000025. 

49 Barsoum RS. Triangular quarter-point elements as elastic and perfectly-plastic crack 
tip elements. Int J Numer Methods Eng. 1977;11(1):85–98. https://doi.org/10.1002/ 
nme.1620110109. 

50 Keilegavlen E, Berge R, Fumagalli A, et al. PorePy: an open-source software for 
simulation of multiphysics processes in fractured porous media. Comput Geosci. 2021; 
25(1):243–265. https://doi.org/10.1007/s10596-020-10002-5. 
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Abstract 

Hydraulic stimulation is a critical process for increasing the permeability 

of fractured geothermal reservoirs. This technique relies on coupled 

hydromechanical processes induced by reservoir stimulation through 

pressurized fluid injection into the rock formation. The injection of fluids 

causes poromechanical stress changes that can lead to the dilation of 

fractures due to fracture slip and to tensile fracture opening and 

propagation, so-called mixed-mechanism stimulation. The effective 

permeability of the rock is particularly enhanced when new fractures 

connect with pre-existing fractures. Mixed-mechanism stimulation can 

significantly improve the productivity of geothermal reservoirs, and the 

technique is especially important in reservoirs where the natural 

permeability of the rock is insufficient to allow for commercial flow rates. 

This paper presents a modeling approach for simulating the deformation 

and expansion of fracture networks in porous media under the influence of 

anisotropic stress and fluid injection. It utilizes a coupled hydromechanical 

model for poroelastic, fractured media. Fractures are governed by contact 

mechanics and allowed to grow and connect through a fracture 

propagation model. To conduct numerical simulations, we employ a two-

level approach, combining a finite volume method for poroelasticity with 

a finite element method for fracture propagation. The study investigates 

the impact of injection rate, matrix permeability, and stress anisotropy on 

stimulation outcomes. By analyzing these factors, we can better 

understand the behavior of fractured geothermal reservoirs under mixed-

mechanism stimulation. 

KEYWORDS 

Mixed mechanism stimulation; Fluid injection; Fracture propagation and 

connection; Fault slip, Poroelasticity; Heterogeneous permeability; Two-

level simulation; Contact mechanics; Open-source software. 

1. Introduction 

Hydraulic stimulation plays a critical role in facilitating the production of geothermal 

energy in low-permeability igneous rocks. Its main goal is to increase reservoir 

permeability to achieve flow rates that are economically feasible for commercial 



Submitted manuscript - 2023 

2 

 

production.1–3 Hydraulic stimulation can be performed at different fluid pressures. High 

pressures exceeding the minimum principal stress are used to propagate hydraulic fractures, 

while elevated but lower pressures can cause hydro-shearing of pre-existing fractures as 

their frictional resistance to slip is exceeded. 

In conventional hydraulic fracturing, mixtures of liquid and small insoluble particles are 

injected at pressures exceeding the tensile strength of the rock to increase reservoir 

permeability. A high-pressure injection may cause stress concentration at the fracture tip 

that can trigger tensile fracture propagation.4 Propagating fractures may connect with pre-

existing fractures5 and thereby increase the fluid flow. When the hydraulic pressurization 

is reduced, small insoluble particles are retained in the opening of the fracture and, hence, 

maintain increased permeability. When applied to geothermal reservoirs, this process risks 

thermal short-circuiting and corresponding low temperatures of the produced fluid.6,7 

Injections at pressures below the minimum principal stress have been shown to be an 

efficient mechanism for stimulating larger volumes of rock if the reservoir is characterized 

by pre-existing fractures and faults and high-stress anisotropy. In this case, poromechanical 

stress changes induced by fluid injection can cause fracture slip and corresponding shear 

dilation due to the sliding of rough fracture surfaces against each other. Shear dilation can 

strongly enhance fracture permeability.8,9 For injections at pressures close to and above the 

minimum principal stress, the deformation of pre-existing fractures combines with the 

propagation of wing cracks toward the direction of maximum principal stress.3,10–13 When 

a propagating fracture reaches another pre-existing fracture, there are no pressure 

concentration and low tensile stress at the tip; thus, propagation is arrested.5 The pressure 

increase due to injection can then extend to the newly connected fracture, potentially 

causing shear slip or tensile opening and the formation of new wing cracks. As a result, the 

development of complex fracture networks created by connecting newly formed wing 

cracks to pre-existing fractures enhances the permeability of the geothermal reservoir. This 

mechanism of hydraulic stimulation, combining shear-dilation and propagation of 

fractures, is referred to as mixed-mechanism stimulation.13–15 However, the complex 

dynamics of stress redistribution related to mixed-mechanism stimulation and how it 

interacts with pre-existing fractures are not well understood. 

Numerical modeling can be employed to study the interaction between fluid flow through 

fractured rock and the poromechanical deformation of the rock, including fracture 

deformation and propagation. The complexity of the coupled processes makes it difficult 

to include all such effects, and thus it is common to apply simplified models that consider 

only a subset of the processes. For instance, modeling of tensile fracturing of poroelastic 

media caused by high injection pressure while neglecting the effects of shear slip, contact, 

and friction has been widely reported.16–19 Several studies have further investigated the 
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extension of pre-existing fracture networks in porous media resulting from fluid injection. 

However, these studies have either neglected friction and contact mechanics at fracture 

interfaces20–22 or forced fractures to propagate along predefined paths.11,21 

Recently, the authors proposed a new methodology to simulate fluid flow, matrix 

deformation, fracture slip, and fracture propagation in porous media as a result of fluid 

injection.10 Specifically, a mathematical model was developed based on the mixed-

dimensional discrete fracture matrix (md-DFM) conceptual model that combined the 

explicit representation of major fractures with a continuum representation of the 

surrounding medium. This model utilized a co-dimension-one representation of the 

fractures. Hence, for a two-dimensional (2D) domain, fractures were represented as one-

dimensional (1D) lines, with a longitudinal parameter representing fracture apertures. The 

model allowed for the application of fracture contact mechanics, including frictional sliding 

and shear-dilation of fractures and tensile fracture opening. The framework was designed 

as a two-level method, with local computation of fracture propagation around individual 

tips split separate from global computations of flow and poromechanical deformation of 

the fractured rock. The coupling strength between the local and global models was a user-

controlled parameter that allowed users to balance simulation accuracy and computational 

cost. 

This study uses the approach proposed by Hau et al.10 to further investigate the mixed-

mechanism stimulation of fractured rock under anisotropic stresses. It explores how fluid 

injection can change the effective poroelastic stress regime, resulting in fracture slip and 

dilation as well as tensile fracture propagation. The study examines how stimulation 

outcomes are affected by the injection rate, matrix permeability, and stress anisotropy. 

Specifically, the study considers fracture coalescence, which creates new, dominant flow 

paths. 

The paper is organized as follows. Section 2 presents the mathematical model for mixed-

mechanism stimulation of a fractured geothermal reservoir. In Section 3, we describe the 

numerical approach used to simulate the behavior of the reservoir under stimulation. 

Section 4 presents the results of several numerical test cases, which provide insights into 

the role of mixed-mechanism stimulation in enhancing reservoir permeability. Finally, in 

Section 5, we present our conclusions and provide remarks about the implications of our 

findings. 

2. Mathematical model 

This section presents the governing equations that model fluid flow and deformation in 

fractured porous media. Additionally, we introduce a mathematical model for fracture 

contact mechanics, propagation, and coalescence. These equations are essential for 

developing a simulation model that accurately captures the behavior of fractured 
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geothermal reservoirs under mixed-mechanism stimulation. By modeling the coupling of 

fluid flow, rock deformation, and fracture growth, we can better understand the impact of 

stimulation on the reservoir. The numerical simulations described in later sections of the 

paper are based on the mathematical models presented in this section. 

2.1. Fluid flow and poroelastic deformation of the matrix and fracture 

The md-DFM conceptual model for a 2D fractured porous media domain was employed in 

this paper. By using the md-DFM model, we divide the domain into three subdomains: a 

2D host medium denoted by ΩM, a set of fractures represented as 1D objects and denoted 

by ΩF, and fracture intersections represented as points and denoted by ΩI. The boundaries 

of ΩM and ΩF are denoted by 𝜕ΩM and 𝜕ΩF, respectively, while Γ represents the interfaces 

between the host medium and fractures. When necessary, to denote the interfaces at the 

different sides of a fracture, we use superscripts ± on Γ. The interfaces between ΩF and ΩI 

are denoted by Λ, where the superscript 𝑖 is used on Λ when necessary to denote the interface 

between ΩI and a specific fracture indexed by 𝑖. Figure 1 provides an illustration of the 

model. 

 
Figure 1. Illustration of a host medium 𝛺𝑀, fractures 𝛺𝐹, intersection 𝛺𝐼, and interfaces 

between higher- and lower-dimensional domains, denoted by 𝛤 and 𝛬, respectively. In the 

detailed images to the right of the general figure on the left, the different domains and 

interfaces are separated for illustration purposes. 

To facilitate coupling between the subdomains, projection operators Π[−]
[−]

 are introduced.23 

The illustration of these operators is given in Figure 2, where the subscripts of Π indicate 

the origin, while the superscripts indicate the destination of the projection. 
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a) Projection operators between ΩM and ΩF b) Projection operators between ΩF and ΩI 

Figure 2. Illustration of projection operators between subdomains. 

In our model, we assume that the porous media domain is deformable and that its 

mechanical properties are elastic, isotropic, and homogeneous. We assume that the fluid is 

a single phase and slightly compressible. The permeability is allowed to be heterogeneous. 

The governing equations can be given as follows: 

∇ ⋅ 𝛔 = 𝐛, on ΩM (1) 

𝛔 = 𝐂∇𝐮 − 𝛼𝑝𝐈, on ΩM (2) 

𝛼
𝜕(∇⋅𝐮)

𝜕𝑡
+ (𝜙𝑐𝑝 +

𝛼−𝜙

𝐾
)

𝜕𝑝

𝜕𝑡
+ ∇ ⋅ 𝐪 = 𝑞0, on ΩM (3) 

𝐪 = −
1

𝜇
[
𝜅𝑥𝑥 0
0 𝜅𝑦𝑦

] ∇𝑝, 
on ΩM (4) 

𝜕𝑎

𝜕𝑡 
+ 𝑎𝑐𝑝

𝜕𝑝𝐹

𝜕𝑡
+ ∇∥ ∙ 𝐪𝐹 − ΠΓ+

ΩF
𝜆+ − ΠΓ−

ΩF
𝜆− = 𝑞𝐹

0, on ΩF (5) 

𝐪𝐹 = − 
𝜅𝑎

𝜇
∇∥𝑝𝐹, on ΩF (6) 

𝜕(𝑎𝐼
2)

𝜕𝑡
+ 𝑎𝐼 2𝑐𝑝

𝜕𝑝𝐼

𝜕𝑡
− ∑ Π

Λi
ΩI

𝜂𝑖
𝑁
𝑖=1 = 𝑞I

0, on ΩI (7) 

where 𝐮, 𝛔, 𝑝, and 𝐪 denote displacements, stress, pore pressure, and flux on ΩM. The source 

terms for the mass conservation in the subdomains for the matrix, fractures, and fracture 

intersections are denoted by 𝑞0, 𝑞𝐹
0, and 𝑞𝐼

0, respectively. The flux and pressure in the 

fracture subdomains are denoted by 𝐪𝐹 and 𝑝𝐹 , respectively. The terms 𝜆± are variables 

that represent the flux from the matrix to the fracture at each side of the fracture. The 

aperture of the fracture is 𝑎, and for the fracture intersection, ΩI, the aperture, 𝑎𝐼, is taken 

to be the average of the apertures of the intersecting fractures. The term 𝜂𝑖 is a variable that 

represents the flux from fracture i to ΩI, and 𝑁 is the number of intersecting fractures around 
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ΩI. The fracture aperture is a function determined based on the residual aperture and normal 

displacement jump, such that: 

𝑎 = 𝑎0 + ⟦𝐮⟧n, on ΩF (8) 

where 𝑎0 denotes the residual aperture in the undeformed state, and ⟦𝐮⟧n represents the 

displacement jump in the normal direction over ΩF, in which the displacement jump is 

defined by: 

⟦𝐮⟧ = 𝐮|Γ− − 𝐮|Γ+, on ΩF (9) 

where Γ is the interface between ΩM and ΩF. The other parameters in the above equations 

are given in Table 1. 

Table 1. The parameters used in the governing equations. 

Notation Description Notation Description 

𝐂 stiffness matrix 𝑐𝑝 fluid compressibility 

𝜙 matrix porosity 𝜇 fluid viscosity 

𝜅𝑥𝑥, 𝜅𝑦𝑦 permeability of the porous 

matrix 

𝑁 number of intersecting 

fractures 

𝜁 inflow from the matrix to the 

fracture 

𝐾 bulk modulus 

𝜅 fracture permeability 𝐛 body forces around ΩI 

∇, ∇∥ gradient operators tr trace operator 

 

To fully represent the physical system, it is necessary to incorporate the coupling between 

subdomains into the mathematical model. First, the coupling between 𝛺𝑀 and 𝛺𝐹 is defined 

by: 

𝐪 ∙ 𝐧|𝜕±ΩM = Π
Γ±
𝜕±ΩM

𝜆±, on 𝜕ΩM (10) 

𝜆± = −
𝜅

𝜇
(

Π
ΩF
Γ±

𝑝𝐹−Π
𝜕±ΩM
Γ±

tr± 𝑝

𝑎 2⁄
), 

on Γ± (11) 

where Eq. (10) indicates the balance of flux between the matrix and fracture. 

The coupling between ΩF and ΩI is given by: 

𝐪𝑓 ∙ 𝐧|
𝜕Ω𝑖

F = Π
Λi
ΩF

𝜂𝑖, on 𝜕Ω𝑖
F (12) 

𝜂𝑖 = −
𝜅𝑎𝐼

𝜇
(

Π
ΩI
Λi

𝑝𝐼−Π
ΩF
Λi

 𝑝𝐹

𝑎𝐼 2⁄
). 

on Λ𝑖 (13) 
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The governing equations presented here are comprehensive, as they describe the 

mechanisms operating in each subdomain and consider their interactions. 

2.2. Fracture contact mechanics 

In the context of hydromechanical coupled processes, fractures are assumed to be in one of 

three states: closed and sticking (with no shear displacement), closed and slipping, or open. 

The interactions between the fracture surfaces are governed by fracture contact mechanics. 

In the following, the fracture contact mechanics model is considered independently in the 

normal and tangential directions. First, the normal opening of the fracture is governed by a 

non-penetration condition written in Karush-Kuhn-Tucker (KKT) form24 as: 

⟦𝐮⟧n − 𝑔 ≥ 0,     𝑓n ≤ 0,    (⟦𝐮⟧n − 𝑔)𝑓n = 0. on ΩF (14) 

Here, 𝑓n represents the contact traction in the normal direction, and 𝑔 is a gap function 

defined by: 

𝑔 = −tan(𝜓)‖⟦𝐮⟧τ‖, on ΩF (15) 

where 𝜓 is the dilation angle and ⟦𝐮⟧τ is the displacement jump in the tangential direction. 

The gap function in Eq. (15) accounts for the dilation of the fracture resulting from 

tangential slip while maintaining contact between the fracture surfaces. This feature enables 

the enhancement of permeability in the fracture due to shear dilation. 

The tangential motion of the fracture is modeled as a frictional contact problem given by: 

|𝑓τ| ≤ −𝜇𝑠𝑓n,

|𝑓τ| < −𝜇𝑠𝑓n → ⟦𝐮̇⟧τ = 0,
|𝑓τ| = −𝜇𝑠𝑓n →  ∃𝜀 ∈ ℝ,  𝑓τ = −𝜀⟦𝐮̇⟧τ,

 

 

on ΩF 

 

(16) 

where 𝜇𝑠 represents the friction coefficient and 𝐮̇ is the derivative of 𝐮 with respect to time. 

The contact traction in the tangential direction, 𝑓τ, contains directional information, and is 

therefore a vector despite the fracture being 1D. 

Traction on the fracture surfaces balances the pressure in the fracture by Newton's third law 

and can be expressed as 

𝐟+ = (Π𝜕+ΩM
Γ+

𝛔 +  𝐈 𝛼𝑓 ΠΩF
Γ+

𝑝𝐹), on   Γ+ (17) 

𝐟− = −(Π𝜕−ΩM
Γ−

𝛔 + 𝐈 𝛼𝑓 ΠΩF
Γ−

𝑝𝐹). on   Γ− (18) 

The tractions on Γ± are related to the contact traction vector 𝐟 = (𝒇𝜏 , 𝒇𝑛) by 𝐟± =

± ΠΩF
Γ±

(𝐑𝐟), where 𝐑 is a rotation matrix from the local (𝜏, 𝑛) to the global (𝑥, 𝑦) coordinate 

system. Eqs. (17) and (18) indicate that the traction on the fracture surfaces is caused not 

only by the matrix deformation and pressure but also by pressure in the fracture. 
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2.3. Fracture propagation 

We combine the maximum tangential stress criterion25 and Paris's law26 to determine the 

onset of fracture propagation as well as the propagation direction and length. The maximum 

tangential stress criterion assumes that a fracture propagates when the maximum tangential 

stress in the process zone around a fracture tip exceeds a critical value defined as: 

𝐾I cos3 𝜃

2
−

3

2
𝐾II cos

𝜃

2
sin 𝜃 ≥  𝐾IC., 

(19) 

The direction of propagation is that of the maximum tangential stress given by: 

𝜃 = 2 tan−1 (
𝐾I

4𝐾II
±

1

4
√(

𝐾I

𝐾II
)

2

+ 8), 
(20) 

𝐾II (sin
𝜃

2
+ 9 sin

3𝜃

2
) < 𝐾I (cos

𝜃

2
+ 3 cos

3𝜃

2
), (21) 

where 𝐾I and 𝐾II are the stress intensity factors (SIFs). If more than one crack grows 

simultaneously, then the tips in the fracture with higher energy advance farther than the 

others, with a distribution given by the Paris-type law,26 

𝑙adv
𝑖 =  𝑙max (

𝐺𝑖

max(𝐺𝑖)
)

0.35

, 
(22) 

where 𝑙adv
𝑖  and 𝐺𝑖 are the propagation length and energy release for tip i, respectively.27 By 

Eq. (22), the increment for each tip is limited by a preset value, 𝑙max. 

A propagating fracture may reach and coalesce with another fracture in a T-type connection. 

This leads to the formation of a new intersection point that is added to ΩI and new 

connections between the merged fractures and the intersection. 

3. Discretization method 

In this section, we describe a numerical approach for discretizing the mathematical model 

presented in Section 2. As the model depends on both space and time variables, both 

variables must be discretized. Since the mathematical model contains only the first 

derivative with respect to time, time discretization can be achieved using the backward 

Euler method. However, the model is more complex regarding spatial variations, which can 

be dealt with by the two-level simulation recently proposed by Hau et al.10 

The motivation for using the two-level simulation approach is to balance computational 

cost and simulation accuracy. Specifically, poroelastic deformations with fracture contact 

mechanics, but without fracture propagation, are assumed to be quasi-static and are treated 

using a relatively coarse grid. In contrast, a locally refined grid around the fracture tip is 

needed to accurately capture the interaction between fracture propagation and local stress 

variations. If a fracture propagates and exceeds a certain threshold length, then the geometry 
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of the fracture network and the solution are updated in the coarse-level domain for the next 

time step. A brief description of this approach is provided below; for more information, we 

refer to Hau et al.10 

 
Figure 3. Illustration of a fracture, ΩF,  and a fine-level domain 𝜔, adapted from Hau et al. (2022).10 

The computational domain is divided into a coarse-level domain that matches the entire 

domain and smaller fine-level domains with size l that surround the fracture tips. The 

coarse-level and fine-level domains are denoted by ΩM and 𝜔, respectively, as illustrated 

in Figure 3. These domains are discretized using triangular cells with grid sizes Δ𝐻 and Δℎ 

for ΩM and 𝜔, respectively. The grids conform to the fractures so that fractures coincide 

with grid faces, and nodes and faces are split along the fractures. To best represent fracture 

paths in the grids and avoid excessive computational cost while ensuring an accurate 

numerical solution at the relevant scale of the model, an adaptive remeshing technique is 

employed.27 This technique uses finer cells around fracture tips in both coarse-level and 

fine-level grids to sufficiently capture the details of fracture propagation. Additionally, to 

ensure the stability of the simulation, the resolution of the fine-level grid is set to be finer 

than that of the coarse-level grid, i.e., ∆ℎ = 𝜀𝑚∆𝐻 with 𝜀𝑚 ≤ 1. 

When none of the fine-level domains intersect with neighboring fractures, the coarse-level 

and fine-level domains are defined differently. However, for technical reasons, our 

implementation cannot handle fine-scale domains that contain multiple fractures. 

Therefore, when there is an intersection between a fine-level domain and neighboring 

fractures, the fine-level domain is defined to be identical to the coarse-level domain. 

Nonetheless, we emphasize that the proposed approach is still applicable for much larger 

domains than those demonstrated in this paper. 

3.1. Two-level discretization 

The poroelastic deformation model presented in subsections 2.1 and 2.2 is discretized based 

on the coarse-level grid. Specifically, the governing equations in subsection 2.1 are 

discretized using a finite volume approach with a multi-point flux approximation and a 

multi-point stress approximation,28,29 while the fracture contact mechanics presented in 

subsection 2.2 are discretized by an active set method.24,30,31 The solution at this level 

provides the deformation and fluid pressure in the poroelastic domain and determines 
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fracture mechanical behavior, whether the fracture is open, closed and sticking or closed 

and slipping. 

The fine-level domain is responsible for evaluating fracture propagation at each time step. 

To do this, we combine Eqs. (1) and (2) and assume that the fine-level domain behaves 

similarly to a linearly elastic medium governed by: 

∇ ⋅ (𝐜∇s𝐮𝑙) + 𝐛 = 0,  (23) 

where 𝐮𝑙 is the deformation in the fine-level domain, 𝐛 = −∇ ⋅ (𝛼𝑝𝐈) is the body force 

caused by pressure from the coarse-level domain, and 𝐜 is the stiffness tensor. The boundary 

conditions for the fine-level problem, i.e., defined at 𝜕𝜔, are set according to the coarse-

level state. To solve Eq. (23), we use a combination of the 𝒫2 finite element method and 

quarter point elements to accommodate the stress singularity at the fracture tip.32,33 The 

solution obtained is then used to compute stress intensity factors (SIFs) and determine 

whether a fracture will propagate and, if so, where and how far it will go, as described in 

subsection 2.3. The maximum increment of fracture is set to the fine-level grid size, i.e., 

𝑙max = ∆ℎ. 

3.2. Coupling between coarse-level and fine-level solutions 

To establish the numerical coupling between the coarse-level and fine-level domains, it is 

necessary to project the displacements from the coarse-level to the fine-level domain 

boundaries and compress the fine-level updates to the fracture geometry in the coarse-level 

grid. These projections can be achieved using three mapping processes: cell center to cell 

center (C2C), node to node (N2N), and cell center to node (C2N).10 Additionally, updating 

the coarse-level fracture path is necessary if the propagation in the fine-level domain is 

sufficiently significant to cause a considerable change in the coarse-level grid. To 

accomplish this, we denote |∆ωF| as the total propagation length in a fine-level domain. If 

|∆ωF| exceeds 𝜀𝑝∆𝐻, with 𝜀𝑝 being a propagation factor, the coarse-level fracture is 

extended using a linear approximation of ∆ωF, and the coarse-level grid is updated. 

3.3. Fracture coalescence 

This paper models the fracture intersection by a T-type connection. As illustrated in Figure 

4 (a), when the distance between a propagating crack tip and a boundary or another fracture 

is less than the grid size around the tip, the two fractures are assumed to be connected. A 

connection point is identified by projecting the fracture tip onto the boundary, resulting in 

point A. Point B is then defined as the projection of point A to the opposite side of the 

connected fracture boundary. Finally, the tip of the propagating fracture is split at point A 

to create a T-type connection, as depicted in Figure 4 (b). 
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a) Determination of 

intersection point (A) 

 
b) Fractures joined by a 

T-type connection 

Figure 4. The T-type intersection between fractures or a fracture and boundary. The 

fracture is widened for illustration purposes. 

4. Results 

The accuracy of simulations of fracture propagation and fluid flow in the fractured porous 

media domain were verified in previous studies.10,23,27 The numerical examples in this 

section aim to show the ability of the proposed model to simulate complex problems, such 

as multiple fractures deforming, propagating, and connecting in a medium with 

heterogeneous permeability. 

This section presents four numerical examples to investigate the effects of the fluid 

injection rate, principal stress, permeability, and fracture network on mixed-mechanism 

stimulation for a fractured low-permeability porous medium representative of an idealized 

configuration in a geothermal reservoir. Given the limitation of our resources, a relatively 

small domain with several pre-existing fractures is considered. For all cases, the coordinates 

of the tips, the material, and the simulation parameters are given in Table 2, Table 3, and 

Table 4, respectively. 

Table 2. Tips coordinates (units: m) 

Tip 𝑥 𝑦 Tip 𝑥 𝑦 

A 1.00 1.15 B 1.00 0.85 

C 0.85 0.97 D 1.15 1.03 

E 0.65 1.10 F 0.65 0.90 

G 1.40 1.06 H 1.28 0.94 

Table 3. Material properties 

Parameter Definition Value 

𝛦 Young's modulus 40.0 GPa 

𝜈 Poisson's ratio 0.2 

𝐾IC fracture toughness 1.0 MPa ∙ m1 2⁄  

𝛼 Biot's coefficient in the matrix 0.8 
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𝜙 material porosity 0.01 

𝑐𝑝 fluid compressibility 4.4 × 10−10Pa−1 

𝜇 viscosity 1.0 × 10−4 Pa ∙ s 

𝜇𝑠 friction coefficient 0.5 

𝜓 dilation angle 1.0o 

𝑎0 initial aperture 1.0 mm 

 

Table 4. Simulation parameters 

Parameter Definition Value 

𝐿𝑥 = 𝐿𝑦 coarse-level domain size 2.0 m 

𝑙 fine-level domain size 0.1 m 

∆𝐻 coarse-level grid size 0.02 m 

∆ℎ fine-level grid size 0.01 m 

𝜀m ratio between coarse-grid and fine-grid sizes 0.5 

𝜀𝑝 propagation factor 0.5 

∆𝑡 time step 0.5 minutes 

4.1. Effect of principal stress direction 

First, the effect of the principal stress on fracture propagation is investigated. As illustrated 

in Figure 5, we consider a 2D domain containing two intersecting fractures and the 

boundary conditions prescribed in this figure. We assume that the matrix permeability of 

the domain is isotropic and homogeneous, given by 𝜅𝑥𝑥 = 𝜅𝑦𝑦 = 5.0 × 10−20 m2. The 

fractured porous medium is subject to a stress state imposed orthogonally to the domain. 

Fluid is injected into the vertical fracture continuously at a constant rate of 

𝑄0 = 1 × 10−7 m2 s⁄ . Two stress scenarios are considered. For case 1, 𝜎1 = 2𝜎2 = 20 

MPa, and for case 2, 2𝜎1 = 𝜎2 = 20 MPa. The propagation of the fractures, presented by 

solid lines, and the fluid flow, described by color, are shown in Figure 6. 
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Figure 5. The geometry of model 1. 

 
Case 1: Before 

injection 

 
Case 1: After injection 

for 0.5 minutes 

 
Case 1: After injection 

for 4.5 minutes 

 
Case 1: After injection for 10 

minutes 

 
Case 2: Before 

injection 

 
Case 2: After injection 

for 0.5 minutes 

 
Case 2: After injection 

for 4.5 minutes 

 
Case 2: After injection for 10 

minutes 

Figure 6. Fracture propagation and pressure evolution in a 2D porous media during fluid 

injection at rate 𝑄0 = 1 × 10−7 𝑚2 𝑠⁄  into a pre-existing fracture. The solid white lines 

indicate opening fractures, while the solid red lines indicate closed fractures. The color 

bar represents pore pressure in MPa. 
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In both scenarios, pre-existing fractures are closed before fluid is injected due to 

compressive stress and friction at the fracture interfaces. Depending on the stress regime, 

the injection can lead to slip in pre-existing fractures. After 0.5 minutes of injection, in case 

1, the fracture, which is nearly parallel to the direction of maximum stress, slips. At the 

same time, for case 2, both fractures remain undeformed, i.e., in the stick mode. In both 

cases, the vertical fracture is closed and remains in stick mode under compressive stress. 

It is well known that fractures propagate toward the direction of maximum principal stress. 

In case 1, the low injection rate of the fluid does not provide sufficient pressure to induce 

tensile propagation of the vertical fracture where fluid is injected. However, it does cause 

shear slip and dilation of the nearly horizontal crossing fracture early in the stimulation 

process. Continued injection results in wing cracks that appear after 4.5 minutes and 

propagate in the direction of the maximum principal stress. Thus, this test case demonstrates 

an example of mixed-mechanism stimulation, where both shear-slip and tensile fracture 

propagation occur during the stimulation. In case 2, continued fluid injection combined 

with the shifted stress anisotropy causes the vertical fracture in which the fluid is injected 

to open. Shear slip does not occur in this case, and tensile propagation of the vertical 

fracture initiates after 7 minutes of injection once the fluid pressure has built up sufficiently. 

The simulation also displays the state of fractures, whether they are closed in stick mode, 

closed in slip mode, or open. A red line indicates a section of a fracture in stick mode, while 

a light-blue line indicates a section in slip mode. A section of a fracture in open mode is 

indicated by a solid white line. 

4.2. Effect of matrix permeability 

This study examines the influence of matrix permeability on fracture propagation within a 

2D domain. Two distinct permeability regions are investigated, as illustrated in Figure 7. 

Region 1 is bounded by the curves 𝑐1: 𝑥 − (𝑦 − 1)2 − 1.2 = 0, 𝑐2: 𝑥 − (𝑦 − 1)2 − 1.4 =

0, and the right boundary, while region 2 is the remainder. The permeability in region 2 is 

homogeneous and isotropic with values of 𝜅𝑥𝑥 = 𝜅𝑦𝑦 = 5 × 10−20 m2. Two simulation 

cases are conducted, depending on the permeability of region 1. For case 1, 𝜅𝑥𝑥 =

5 × 10−20 m2 and 𝜅𝑦𝑦 = 5 × 10−18 m2, while for case 2, 𝜅𝑥𝑥 = 5 × 10−20 m2 and 

𝜅𝑦𝑦 = 5 × 10−19 m2. Additional parameters used for the simulations are 𝜎1 = 2𝜎2 = 20 

MPa and 𝑄0 = 1 × 10−7 m2 s⁄ . The propagation of the fractures and the fluid flow are 

shown in Figure 8. 
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Figure 7. The geometry of model 2. 

 
Case 1: After injection 

for 0.5 minutes 

 
Case 1: After injection 

for 7 minutes 

 
Case 1: After injection for 20 

minutes 

 
Case 2: After injection 

for 0.5 minutes 

 
Case 2: After injection 

for 7 minutes 

 
Case 2: After injection for 20 

minutes 

Figure 8. Fracture propagation and pressure evolution in a 2D porous medium during fluid 

injection, 𝑄0 = 1 × 10−7 𝑚2 𝑠⁄ , into a pre-existing fracture. The solid white lines indicate open 

fractures, while the solid red lines indicate closed fractures. The color bar represents pore 

pressure in MPa. 
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The presence of a highly permeable area inhibits fracture growth by preventing fluid 

pressure from building sufficiently due to fluid leakage into the matrix. Similar to case 1 in 

example 4.1, the principal stress scenario and fluid injection induce horizontal fracture slip 

and trigger the appearance of wing cracks after 5.5 minutes of injection. The wing cracks 

then propagate to opposite sides, where one makes contact with the area of higher 

permeability after 7 minutes. This contact causes fluid leakage and slows the fracture 

growth rate. Additionally, the tip in contact with the higher permeability region propagates 

much more slowly, while the remaining tip propagates in the direction of the maximum 

principal stress. In both cases studied, the fractures could not propagate through the higher 

permeability region. This example clearly illustrates the sensitivity of matrix permeability 

and demonstrates that simulation tools that do not capture this effect or represent flow in 

the matrix at all cannot accurately represent the propagation process. 

4.3. Effect of injection rate 

This example investigates the effect of the injection rate on the expansion of the stimulation 

area. Figure 9 illustrates a 2D fractured domain containing three fractures with boundary 

conditions described in the figure. We assume that the permeability is isotropic and 

homogeneous, given by 𝜅𝑥𝑥 = 𝜅𝑦𝑦 = 5.0 × 10−20 m2. The principal stress is given by 

𝜎1 = 2𝜎2 = 20 MPa. Various injection rates are studied, and the effect on fracture growth 

and pressure in the fracture is shown in Figure 10. 

 
Figure 9. The geometry of model 3. 
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Figure 10. Effect of fluid injection rate on pressure at the injection point and total fracture growth. 

The results shown in this example indicate that an increase in the injection rate leads to 

faster fracture propagation, and the propagation speed is nonlinearly dependent on the 

injection rate. As illustrated in Figure 10, wing cracks initiate after 4.5 minutes for an 

injection rate of 𝑄0 = 1 × 10−7 m2 s⁄ , whereas it takes up to 870 minutes for an injection 

rate of 𝑄0 = 1 × 10−8 m2 s⁄ . This indicates that increasing the injection rate by a factor of 

ten can accelerate the expansion of the fracture network by up to 200 times. However, if 

the injection rate is too low, then no fracture deformation may occur during our 

implementation. 

4.4. Interaction with pre-existing fractures 

Finally, we investigate the influence of the location and shape of pre-existing fractures on 

the expansion of the fracture network. The model geometry is shown in Figure 11. The 

matrix permeability in this example is assumed to be isotropic and homogeneous, i.e., 

𝜅𝑥𝑥 = 𝜅𝑦𝑦 = 5.0 × 10−20 m2. The principal stress is given by 𝜎1 = 2𝜎2 = 20 MPa. The 

injection rate is 𝑄0 = 2 × 10−7 m2 s⁄ . The evolutions of the fracture geometry and the pore 

pressure are shown in Figure 13. 
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Figure 11. The geometry of model 4. 

 
Figure 12. Fracture state and pressure in a 2D porous medium before fluid is injected. 

Prior to fluid injection, the fracture mode and pore pressure are evaluated. As illustrated in 

Figure 12, pre-existing fractures are closed and remain in stick mode due to compressive 

stress and friction at the fracture interfaces. Additionally, the pressure throughout the 

domain is uniform at 6.8 MPa. The result in this simulation indicates a stable condition with 

no fracture slip or propagation. 

 
After injection for 0.5 minutes 

 
After injection for 5 minutes 
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After injection for 8 minutes 

 
After injection for 20 minutes 

Figure 13. Fracture propagation and pressure evolution in a 2D porous medium during 

fluid injection, 𝑄0 = 2 × 10−7 𝑚2 𝑠⁄ , into a pre-existing fracture. The solid white lines 

indicate open fractures, while the solid red lines indicate closed fractures. The color bar 

represents pore pressure in MPa. 

Subsequently, fluid is injected into a vertical fracture, resulting in several interesting 

phenomena, as shown in Figure 13. First, the injection has an insignificant effect on the 

state of the fracture where fluid is injected, as it remains under compression under the 

influence of the stress regime. However, the injection facilitates the opening of the 

horizontal fracture connected to it and leads to the propagation of this fracture. Second, due 

to deformation and hydromechanical stress changes caused by fluid injection, the pre-

existing fracture to the right of the domain starts to slip at an early stage of fluid injection. 

Eventually, small wing cracks are observed to form at the tips of this fracture. Third, there 

is a strong link between fracture propagation and pressure drop in the fracture. After a 

period of fluid injection, the pressure in the central, nearly horizontal, fracture increases 

sufficiently to cause tensile propagation of the fracture, which ultimately connects to the 

pre-existing fractures at the left and right. Each connection results in an instantaneous 

decrease in pore pressure, which takes time to recover through fluid injection before the 

fracture can resume growing. Furthermore, the expansion of the fractured network is 

influenced by the pre-existing fractures. During the simulation, the fracture on the right-

hand side where the slip occurs continues to grow, while the fracture on the left side where 

compression occurs (closed in stick mode) prevents further network expansion. 

5. Conclusions 

This paper presents a mathematical model and numerical approach to investigate the use of 

mixed-mechanism stimulation to improve permeability in geothermal reservoirs. The 

mathematical model combines Biot poroelasticity and fracture mechanics and accounts for 

frictional contact mechanics and fracture propagation and connection. A two-level model 

that combines finite volume and finite element methods is proposed for numerical 
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simulations. Several numerical examples are performed, and the results indicate the 

following: 

1) Fluid injection at elevated pressure can induce shear slip and dilation, opening, and 

propagation of fractures. Newly formed fractures tend to propagate in the direction 

of maximum principal stress. In the case of multiple connected fractures in an 

anisotropic stress field, the propagation of fractures depends on fracture network 

characteristics such as fracture orientation relative to the stress field and whether 

fractures are hydraulically connected to the well through other fractures. 

2) A more permeable bulk domain slows fracture growth by causing fluid leakage into 

the matrix, making hydraulic stimulations less effective for areas with higher 

permeability. 

3) The relationship between the injection rate and fracture growth speed is nonlinear, 

and injection at a low rate may not result in fracture expansion. In most cases, when 

the injection rate is slower, the injection time required for a fracture to propagate is 

significantly longer. 

4) The locations of pre-existing fractures influence the expansion of a fracture network. 

Fractures tend to propagate in the direction of the maximum principal stress, and 

pre-existing fractures can facilitate or impede the development of propagating 

fractures. 

In conclusion, this study demonstrates that mixed-mechanism stimulation can significantly 

improve permeability by expanding the fracture network. However, this expansion is 

complex and influenced by various factors, including the stress state, material permeability, 

injection rate, and fracture location. The simulation model proposed in this study represents 

an approach that is appropriate for utilization in future studies to further investigate these 

phenomena. 
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