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Abstract in English

Reflection seismics is used to image the subsurface for the exploration of oil and gas,
geothermal or carbon storage reservoirs, among others. In addition to the structural in-
terpretation of the resulting seismic images, the seismic data can be interpreted quantita-
tively with the goal to obtain rock and fluid properties. An essential tool in quantitative
seismic interpretation is the analysis of the amplitude variation with offset (AVO).

Thin-bedded geology below the seismic resolution poses challenges for AVO modelling
and interpretation. One problem addressed in this thesis is accurate seismic forward
modelling in thin-bedded media. Primaries-only convolutional modelling, commonly
used in conventional AVO modelling and inversion, is prone to failure in the presence of
thin beds. Better alternatives are finite-difference modelling or the reflectivity method.
The reflectivity method is a semi-analytic modelling method for horizontally layered
media and is computationally cheaper than finite-difference modelling on densely sam-
pled grids. I show in this thesis that the reflectivity method is well-suited for the AVO
modelling of layered media.

The band-limited nature of seismic data is one reason for the non-unique estimation of
reservoir properties from seismic data, especially in thin-bedded geology. Probabilistic
inversion methods, such as Bayesian methods, honour this non-uniqueness by predicting
probabilities that allow the uncertainty to be quantified.

In this thesis, I integrate full-wavefield elastic seismic modelling by the reflectivity
method with Bayesian classification and inversion. The objective is to address two con-
crete quantitative seismic interpretation problems: 1) the uncertainty quantification of
Bayesian pore-fluid classification in the presence of thin high-impedance layers caused
by calcite cementation in sandstone, and 2) the estimation of reservoir properties of
turbidite reservoirs characterised by sand-shale interbedding.

In the first application, I show through a modelling study that calcite-cemented beds
lead to detectable reflection responses that can interfere with the target reflection at the
reservoir top and thereby perturb the AVO behaviour. The observed effect increases
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the uncertainty of pore-fluid classification based on AVO attributes, as demonstrated
by a case study. Consequently, the probability of a false hydrocarbon indication is
significantly increased in the presence of calcite-cemented beds.

In the second application, I present a Bayesian inversion that takes the AVO intercept
and gradient measured at the top of a reservoir as input and estimates the probability
density function of the net-to-gross ratio and the net-pay-to-net ratio. The method was
applied to synthetic data and AVO attribute maps from the Jotun field on the Norwegian
Continental Shelf. It was found that the AVO gradient correlates with the net-to-gross
ratio of the reservoir, while the AVO intercept is most sensitive to the type of pore fluid.
After inversion, maps of the most-likely values of the net-to-gross ratio, net-pay-to-net
ratio, net pay and the uncertainty could be generated. These maps help to identify
potential zones of high reservoir quality and hydrocarbon saturation.



Abstract in Norwegian

Refleksjonsseismikk brukes til å lage seismiske «bilder» av den øverste delen av jords-
korpen, blant annet med tanke på leting etter reservoarer for olje, gass, karbonlagring og
geotermisk energi. I tillegg til å gi grunnlag for en strukturell tolkning, kan de seismiske
dataene brukes til å kvantifisere egenskapene til det faste materialet og væskeinnholdet
i bergartene. Et viktig verktøy i slik kvantitativ seismisk tolkning er analyse av såkalt
AVO: amplitudenes variasjon med avstanden mellom kilde og mottaker (offset).

Tynne geologiske lag gir utfordringer for AVO-modellering og tolkning, fordi lagtykkelsen
vil kunne være mindre enn oppløsningen i de seismiske dataene. En problemstilling
som tas opp i denne avhandlingen er nettopp hvordan man kan gjøre nøyaktig seismisk
(forover) modellering i medier med tynne lag. En konvensjonell tilnærming innen AVO-
modellering og inversjon er å bruke såkalt konvolusjonsmodellering. Denne metoden
tar imidlertid bare hensyn til de primære seismiske refleksjonene og er derfor unøyaktig
når modellene har tynne lag. To bedre alternativer er endelig-differanse-modellering og
reflektivitetsmetoden. Reflektivitetsmetoden er en delvis analytisk modelleringsmetode
for horisontalt lagdelte medier og er beregningsmessig billigere enn endelig-differanse-
modellering, der beregningene er basert på et tett samplet rutenett (grid). Jeg viser
i avhandlingen at reflektivitetsmetoden er godt egnet for AVO-modellering i lagdelte
medier.

Seismiske data har en båndbegrenset karakter. En konsekvens er at beregning av reser-
voaregenskaper fra seismiske data generelt ikke er entydig, noe som særlig kommer til
uttrykk for lagdelt geologi med tynne lag. Probabilistiske inversjonsmetoder, som for ek-
sempel bayesianske metoder, tar hensyn til denne flertydigheten ved å forutsi sannsyn-
ligheter, noe som gjør det mulig a kvantisere usikkerheten.

I avhandlingen kombinerer jeg seismisk modellering med bayesiansk klassifisering og
inversjon. Modelleringen er utført med reflektivitetsmetoden og er basert på det kom-
plette elastiske bølgefeltet. Formålet er å adressere to konkrete kvantitative seismiske
tolkningsproblemer: 1) kvantifisering av usikkerhet i bayesiansk porevæske-klassifisering
i nærvær av tynne lag med høy impedans, forårsaket av kalsittsementering i sandstein,
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og 2) estimering av reservoaregenskapene til turbiditt-reservoarer karakterisert ved al-
ternerende lag av sandstein og skifer.

I den første anvendelsen viser jeg i en modelleringsstudie at kalsitt-sementerte lag kan gi
en detekterbar refleksjonsrespons, noe som kan påvirke amplituden målt ved reservoar-
toppen og dermed forstyrre AVO-målingen. Den observerte effekten øker usikkerheten
ved porevæske-klassifisering basert på AVO-attributter, som jeg har demonstrert i en
case-studie. Følgelig øker sannsynligheten for en falsk hydrokarbon-indikasjon betydelig
i nærvær av kalsittsementerte lag.

I den andre anvendelsen presenterer jeg en bayesiansk inversjon som tar AVO-skjærings-
punktet og gradienten målt på toppen av et reservoar som inngangsdata og estimerer
sannsynlighetstetthetsfunksjonen til forholdstallene «net-to-gross» og «net-pay-to-net».
Metoden ble anvendt på syntetiske data og AVO-attributtkart fra Jotunfeltet på norsk
kontinentalsokkel. Det ble funnet at AVO-gradienten korrelerer med reservoarets net-to-
gross forhold, mens AVO-skjæringspunktet er mest følsomt for typen porevæske. Etter
inversjon genererte jeg kart over de mest sannsynlige verdiene av forholdene net-to-gross
og net-pay-to-net, samt kart over net pay og usikkerhetene. Disse kartene kan bidra til
å identifisere potensielle soner med høy reservoarkvalitet og hydrokarbonmetning.
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Chapter 1

Introduction

1.1 Outline

This thesis is based on three research articles. The first part of the thesis describes
the fundamental theory, concepts and methods used in the articles, gives context to the
research work, summarises the results and presents an overall discussion and conclusion
of the thesis. The second part of the thesis is the chapter “Scientific results” that contains
the articles in their published or submitted formats.

The first chapter comprises the background, motivation, scope and scientific contribu-
tions of the thesis.

The subsequent four chapters introduce the scientific methods. Chapter 2 covers im-
portant aspects of finite-difference modelling relevant for Article 1. The central method
of this thesis is the reflectivity method. With chapter 3, a comprehensive chapter is
dedicated to this method. A review of the theory is given, modelling examples are
shown and applications of the method are discussed. The fourth chapter introduces
amplitude-variation-with-offset theory and the practical aspects of its analysis. In chap-
ter 5, selected statistical methods are covered.

The sixth chapter provides summaries of the individual research articles.

A conclusion, discussion and outlook are given in chapter 7.

Finally, the full-length research articles are presented in the last chapter.



2 Introduction

1.2 Background

Active reflection seismics is a geophysical method that makes it possible to image the
subsurface of the earth. The method can be applied both on land and at sea and is
widely used for the exploration of oil and gas, minerals, geothermal reservoirs or in the
context of carbon capture and storage. Figure 1.1 shows a sketch of a marine seismic
towed-streamer acquisition. A single airgun (as shown in the figure) or an airgun array
towed by a vessel generates acoustic waves that travel through the water layer and
penetrate the earth layers below the water bottom. Streamers equipped with seismic
sensors (hydrophones) record the reflected signals.

Figure 1.1: Sketch of a marine seismic towed-streamer acquisition. Created by Nwhit
and licensed under CC BY-SA 3.0.

The reflection seismic method consists of three major steps:

1. Data acquisition

2. Data processing and imaging

3. Interpretation.

Today, the industry standard is 3D seismic surveys producing 3D image volumes of the
subsurface after a sophisticated data processing and imaging procedure. Seismic waves
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are reflected at interfaces at which the elastic properties change (see Figure 1.1). The
resulting seismic images are band-limited reflectivity images that can be regarded to
represent interfaces of rock units. Furthermore, the images contain noise and unwanted
signals that could not be completely removed during the processing and possibly arte-
facts arising from imaging procedures. In the third step, seismic images are structurally
interpreted and correlated with well data to produce models of the subsurface. Quantita-
tive interpretation attempts to link seismic signatures to geological and reservoir-related
properties (Avseth et al., 2005).

The analysis of the amplitude variation with offset (AVO) is one of the most important
tools of quantitative interpretation (Avseth et al., 2005), especially for the exploration
of hydrocarbons (Castagna and Backus, 1993; Chopra and Castagna, 2014). However,
there are several challenges and pitfalls in AVO interpretation related to seismic data
processing, AVO modelling and AVO inversion (Avseth et al., 2005). In addition, geolog-
ical heterogeneity and complexity can make the interpretation of seismic AVO signatures
difficult. The thesis addresses specifically the challenges caused by thin-bedded geology.
The impact of thin layers with high acoustic impedance contrast (Article II) and low
impedance contrast (Article III) on seismic AVO are investigated in this thesis.

Seismic forward modelling simulates a seismic experiment given an earth model and the
locations of a source and receivers. Seismic modelling is a powerful tool and plays an im-
portant role in all three major steps of the seismic method. It can be used to design an
optimal acquisition layout (step 1), it is an integral component of modern imaging tech-
niques (step 2) and it can help to interpret seismic data, e.g., by seismic AVO modelling
(step 3). There are several methods for seismic forward modelling, which all come with
their individual advantages and limitations (Carcione et al., 2002; Krebes, 2004). Among
the most widely used ones are the finite-difference method (Fichtner, 2010), ray tracing
(Červený, 2001), the reflectivity method (Kennett, 2009) and convolutional modelling
(Russell, 1988).

Seismic finite-difference modelling is used as part of seismic imaging and velocity model
building steps, such as reverse-time migration and full-waveform inversion. As a direct
method (Carcione et al., 2002), it solves the wave equation numerically in a discretised
subsurface model and at finite time steps using finite-difference approximations of deriva-
tives. Thereby, the full wavefield can be simulated. The downside of the finite-difference
method is its high computational cost, especially in 3D or when a dense grid sampling
is required to model high frequencies.

The reflectivity method is a non-asymptotic semi-analytic modelling method for hori-
zontally layered media (Sen, 2021). Despite the limitation to stratified media, there are
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many possible applications of this modelling method in the seismic industry. This thesis
demonstrates how full-wavefield elastic modelling by the reflectivity method can be ap-
plied to address specific challenges in quantitative interpretation caused by thin-bedded
geology.

1.3 Motivation and scope of the thesis

Quantitative seismic interpretation by means of AVO analysis has been successfully
applied to locate hydrocarbon reservoirs (Castagna and Backus, 1993; Chopra and
Castagna, 2014; Simm and Bacon, 2014). However, AVO anomalies have been falsely
interpreted as hydrocarbon accumulations in many situations (Allen et al., 1993) and
AVO inversion can fail in practice (Avseth et al., 2016). There are many challenges and
pitfalls in seismic AVO analysis and interpretation. Measured seismic amplitudes can be
affected by noise, acquisition effects, distortions during processing and residual moveout
(Downton et al., 2000; Avseth et al., 2005). It should be kept in mind that residual noise
and multiples can be present after seismic data processing and that migration methods
have limitations and can generate artefacts. Furthermore, seismic ray paths might be
distorted by structurally complex geology (Downton et al., 2000). Seismic data have a
limited bandwidth. Small-scale heterogeneity below the seismic resolution affects the
seismic amplitudes through interference and tuning effects.

This thesis focuses on the effect of vertical heterogeneity of reservoir and caprock on
seismic AVO and AVO-based quantitative interpretation. In Article II, the impact of
thin high-impedance layers on AVO is analysed and the uncertainty of AVO-based pore-
fluid classification in the presence of such hard beds is quantified. The focus of Article III
is a shale–sand interbedding typical for turbidite reservoirs. A Bayesian inversion is
presented that estimates probability distributions of reservoir properties from seismic
AVO attributes.

Most commercially used AVO techniques are based on the Zoeppritz equations or their
linearised approximations (Downton et al., 2000). The Zoeppritz equations are valid
under the assumption that a plane wave hits the planar interface of two isotropic and
homogeneous media (Aki and Richards, 2002; Avseth et al., 2005). Consequently, these
assumptions are violated when the plane-wave approximation of a seismic wave does not
hold (as discussed in more detail in subsection 3.2.1), the interface is curved or the media
are anisotropic or heterogeneous. Conventional AVO modelling, well ties and seismic
pre-stack inversion are based on convolutional seismic modelling (Russell, 1988) using
the Zoeppritz equations or linearised approximations. This means that AVO pitfalls
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may arise when the mentioned assumptions for the Zoeppritz equations are not met, for
example, in thin-bedded geology (Avseth et al., 2005). The limitations of convolutional
modelling are discussed and demonstrated in Articles II and III.

In this thesis, the reflectivity method is used as an alternative to primaries-only convo-
lutional modelling for layered media. The reflectivity method has two major advantages
over convolutional modelling. Firstly, the elastic full-wavefield response of a layered
medium including internal multiples, transmission loss and mode conversions is mod-
elled in contrast to primary reflections only. Secondly, the spherical-wave response is
modelled rather than the plane-wave response. As a semi-analytic method, the reflec-
tivity method is accurate for any layer thickness, which is also proven in Article I.

The semi-analytic character of the reflectivity method guaranteeing high accuracy makes
it an ideal benchmark tool for other seismic forward modelling methods. The two most
important criteria of seismic modelling are accuracy and computational cost. For ef-
ficiency, it is desirable to find the limit of achieving a sufficiently high accuracy for a
respective use case at a minimum computational cost. Efficiency becomes particularly
important when modelling tasks are performed many times, such as in iterative inver-
sion schemes or Monte Carlo simulations. This is also true for finite-difference modelling,
which is widely used in the seismic industry. As a numerical method computed on grids
in space and at discrete time steps, the accuracy generally increases with decreasing sam-
pling intervals in space and time. At the same time, the computational cost increases.
One goal of the PhD project was therefore to analyse the accuracy of finite-difference
modelling in horizontally layered thin-bedded media to find the optimal gridding param-
eters and method for efficient seismic modelling as presented in Article I.

Seismic reservoir characterisation is part of quantitative seismic interpretation and aims
at estimating reservoir properties from seismic data or seismic attributes (Grana et al.,
2021). There are many factors that lead to uncertainty in seismic reservoir character-
isation, such as noise, the limited resolution of seismic data, seismic data processing,
approximations in physical relations, structurally complex geology, anisotropy and ge-
omechanical processes (Grana et al., 2021). In this thesis, the focus is on the uncertainty
associated with thin beds below the seismic resolution.

Several deterministic and probabilistic methods can be applied to solve an inverse geo-
physical problem. Deterministic methods predict a single solution as the best estimate.
In contrast to deterministic methods, probabilistic methods predict a probability or
probability distribution of the model variable. Probabilistic algorithms honour the non-
uniqueness of the solution to an inverse problem by estimating the most likely solution
as well as the uncertainty associated with a prediction (Grana et al., 2021). Uncertainty
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estimates are useful to assess risks in decision-making, to integrate different types of data
and they help to estimate the value of additional information (Avseth et al., 2005).

Grana et al. (2022) reviewed the latest scientific progress in the probabilistic inver-
sion of seismic data for reservoir characterisation. Most of the applications to date are
based on the Bayesian approach (Grana et al., 2022), which has also been used in Arti-
cles II and III. Article II considers uncertainty in Bayesian classification, while Article III
presents a Bayesian inversion.

1.4 Scientific contributions

The fundamental building block of the PhD project is a seismic modelling code that
implements the reflectivity method. At the beginning of the project, several available
open-source codes of the reflectivity method were tested. However, the available codes
were too restrictive in array sizes, model parametrisation and source definition. In addi-
tion, some modelling results exhibited serious wraparound artefacts. In order to have full
control of all aspects of the modelling, it was decided to develop a modelling code from
scratch as part of the PhD project. This also allowed implementing efficient seismic for-
ward modelling as part of Monte Carlo simulations, where a large number of simulations
is required.

Some features of the modelling code to highlight are:

• acoustic, elastic or viscoelastic simulation

• support of 2D (line source) and 3D (point source) wave propagation

• generation of spherical-wave or optionally plane-wave synthetics

• computation of pressure and displacement

• source definition by excitation function or (far-field) wavelet in displacement or
pressure

• option between free surface or absorbing upper model boundary

• option to include or ignore the direct wave

A complete review of the theory of the reflectivity method is given in chapter 3. The
seismic modelling code was carefully checked against benchmarks from analytical solu-
tions and finite-difference modelling. The modelling code was used in the research work
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for all three articles that are included in this thesis. Future research and development
activities of CGG will benefit from the code.

In addition to the developed seismic modelling code, the main scientific contributions of
the thesis can be summarised as follows:

1. Article I gives recommendations for model gridding to achieve accurate seismic
finite-difference modelling results efficiently in discontinuous media. These recom-
mendations refer to the spatial sampling interval and the procedure for low-pass
filtering the model. It is demonstrated that the devised filtering procedure is suited
for the downsampling/upscaling of well logs to produce model grids for efficient
finite-difference modelling. In addition, it is shown that the reflectivity method and
the finite-difference method give practically identical results provided a sufficiently
dense spatial sampling. Checked against analytical solutions, both modelling meth-
ods can be used to accurately model AVO effects in thin-bedded media.

2. In Article II, the increase in uncertainty of AVO-based pore-fluid classification
caused by calcite-cemented beds is quantified. A workflow is presented that can
be adapted to any reservoir that is prone to calcite cementation to obtain better
uncertainty estimates for risk assessment.

3. Article III presents a Bayesian inversion of AVO attributes for the net-to-gross
ratio and the net pay in turbidite reservoirs. It is demonstrated how the inversion
results can be displayed on maps to guide interpretation and decision-making.

To summarise, the feasibility of efficient and accurate full-wavefield elastic modelling by
the reflectivity method for Monte Carlo simulations is demonstrated. This allows to
study the AVO uncertainty related to thin-bedded geology.
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Chapter 2

Finite-difference modelling

This chapter introduces seismic finite-difference modelling briefly and covers aspects that
are relevant for Article I.

2.1 Fundamentals

The propagation of seismic waves is described by the wave equation. The finite-difference
(FD) method can be used to solve the wave equation numerically. The method is based
on a discretisation in space and time or frequency. The fundamental idea behind FD
modelling is to replace derivatives with finite-difference approximations. These approxi-
mations are derived from truncated Taylor series. A second-order central finite-difference
approximation of the spatial derivative of a function f(xi) at location xi can be written
as (Fichtner, 2010, eq. 2.41)

∂f(xi)
∂x

= 1
2∆x [f(xi + ∆x)− f(xi −∆x)] +O((∆x)2) , (2.1)

where ∆x denotes the spatial sampling interval. In this 1D example, the derivative
is approximated by the difference of function f(x) evaluated at the two neighbouring
points.

Higher-order finite-difference stencils can be constructed from truncated Taylor series in
the same way as the second-order stencil. They will converge faster to the exact solution
as ∆x approaches zero and give generally a higher accuracy at a finite ∆x (Fichtner,
2010).

Alternatively, spatial derivatives can be numerically computed by the Fourier or pseu-
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dospectral method (Kosloff and Baysal, 1982; Fornberg, 1988). The spatial derivatives
are computed in the Fourier domain and are accurate up to the Nyquist frequency of
the grid (Kosloff and Baysal, 1982). Theoretically, two grid points per wavelength are
sufficient for the spatial sampling of the wavefield (Kosloff and Baysal, 1982). The pseu-
dospectral method can be regarded as the limit of increasing order of finite-difference
stencils (Fornberg, 1987).

2.2 Formulations

There are finite-difference schemes for solving the acoustic (Alford et al., 1974), elastic
(Graves, 1996) or viscoelastic (Robertsson et al., 1994) wave equation. For solving the
elastic wave equation, several formulations exist, such as the velocity-stress formulation,
the displacement-stress formulation or the displacement formulation (Fichtner, 2010).
Most prominent is the Virieux-type staggered scheme using the velocity-stress formula-
tion (Virieux, 1986; Levander, 1988), where some components of variables are computed
in between grid points on a second, staggered grid. The usage of staggered grids de-
creases the effective grid spacing for the same number of discrete variables and therefore
reduces the numerical dispersion (Fichtner, 2010).

The fact that vectors of field variables need to be computed for elastic wave propagation
with the grid spacing and time step restricted by the lowest shear wave velocity in
the model makes elastic FD modelling computationally expensive (Alkhalifah, 2000).
Therefore, many applications in the seismic industry to date use acoustic FD modelling
as a computationally cheaper approximation. The wavefield in acoustic media can be
described by a single scalar field, the pressure. Acoustic FD schemes for vertical and tilted
transversely isotropic media have been implemented (Alkhalifah, 2000; Zhang et al.,
2011). The FD scheme used in Article I described by Zhang et al. (2011) is based on
conventional central grids in contrast to staggered grids.

2.3 Numerical accuracy and stability

The maximum time step for numerical stability of an FD scheme is given by the Courant-
Friedrichs-Lewy (CFL) condition (Courant et al., 1967) that takes the general form
(Fichtner, 2010, eq. 3.49)

∆t ≤ const. ∆x
vmax

, (2.2)



2.3 Numerical accuracy and stability 11

where ∆x denotes a constant grid spacing and vmax is the maximum wave velocity. The
constant depends on the specific FD scheme.

A too sparsely sampled wavefield will suffer from the numerical artefact of grid dispersion.
To avoid grid dispersion, the grid spacing ∆x should be chosen according to the criterion
(Bohlen et al., 2015)

∆x ≤ λmin
n

= vmin
nfmax

, (2.3)

where λmin denotes the minimum wavelength, vmin is the minimum wave velocity in the
model and fmax is the maximum frequency of the wavelet. The required number n of
grid points per shortest wavelength depends on the FD operator length and type (Bohlen
et al., 2015). Higher-order FD schemes require a lower number n. The Nyquist criterion
requires n = 2 grid points per shortest wavelength. As mentioned, this is the theoretical
requirement for pseudospectral schemes (Kosloff and Baysal, 1982).

Apart from the grid sampling requirement to avoid grid dispersion, the presence of
discontinuities in the FD grid will lead to other types of numerical errors (Symes and
Vdovina, 2009; Mittet, 2017, 2021). In practice, this will make a denser grid sampling
necessary. Article I elaborates on the required grid spacing in discontinuous models
concluding that 4-5 points per shortest wavelength are sufficient for a pseudospectral
scheme.
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Chapter 3

Reflectivity method

This chapter introduces the reflectivity method as a modelling tool in seismology and
applied seismics, explains the theory and gives an overview of its application in today’s
research and technology. Complete derivations can be found in the book by Kennett
(2009).

3.1 Definition and development

Reflectivity methods encompass techniques for calculating synthetic seismograms in
stratified media that include in general the full wavefield with all elastic wave phe-
nomena. In the literature, the term reflectivity method often refers to the more specific
technique described by Fuchs and Müller (1971), which calculates only the reflection re-
sponse of a set of layers comprising a reflection zone that is located below the source
and receivers. As discussed by Kennett (2009), this specific technique can be regarded
as the synthesis of a subset of the full response. In this thesis, I use the term reflectivity
method in the broader sense of a technique that is able to model the full response of a
stratified medium to energy excited by a source, including a reflective surface above the
source.

The origin of reflectivity methods lies in propagator-matrix methods for elastic wave
propagation in stratified media developed by Thomson (1950), Haskell (1953) and
Knopoff (1964). Fuchs (1968) and Fuchs and Müller (1971) established the reflectiv-
ity method as a practical tool for the computation of synthetic seismograms. Kennett
(1974) derived an iterative scheme for the computation of reflection and transmission co-
efficients of multi-layered media by connecting the layer matrices to their reflection and
transmission properties. Fryer (1980) proposed a slowness approach to the reflectivity
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a b

Figure 3.1: Schematic illustration of the reflection of a plane wave (a) and a spherical
wave (b) at a horizontal interface. The thickness of the wavefront lines of the incident
wave (red) and the reflected wave (green) indicates the wave’s amplitude. While the
amplitude of a plane wave changes only upon reflection, the amplitude of a spherical
wave changes additionally during propagation. Modified after Ursenbach et al. (2007).

method. An extension of the reflectivity method to anisotropic layers was introduced by
Booth and Crampin (1983). While the theory of reflectivity methods was well under-
stood, several authors tried to accelerate the numerical computations (Phinney et al.,
1987) and discussed practical computational aspects (Mallick and Frazer, 1987).

3.2 Theory

The reflectivity method can be broken down into two main steps: (i) the computation
of the overall plane-wave reflectivity matrix of a layered medium for all slowness values
p and radial frequency values ω of interest and (ii) the synthesis of the spherical-wave
response measured at a receiver location by numerically computing the Sommerfeld
integral (Sommerfeld, 1909, 1949).

3.2.1 The concepts of plane waves and spherical waves

For understanding the theory of the reflectivity method, it is important to know the dif-
ference between the concepts of plane and spherical waves. The concept of plane waves
is often used in physics and more specifically, commonly used in seismic amplitude vari-
ation with offset (AVO) applications (Ostrander, 1984; Aki and Richards, 2002; Chopra
and Castagna, 2014). However, point sources generate spherical waves (true spherical
wavefronts only in isotropic media). Figure 3.1 illustrates the reflection of a plane wave
(Figure 3.2.1a) and a spherical wave (Figure 3.2.1b) at a horizontal interface.

Unlike plane waves, spherical waves undergo spherical divergence, which means that the
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wave’s amplitude decreases as the wave travels. When a plane wave hits an interface,
the energy partition into reflected and transmitted energy is independent of the wave’s
frequency, which is also evident from the Knott-Zoeppritz equations (Knott, 1899; Zoep-
pritz, 1919). Spherical-wave reflectivity is an integral of many plane-wave contributions
(Aki and Richards, 2002) and is frequency-dependent (Ursenbach et al., 2007; Li et al.,
2017). The reflection coefficient of a spherical wave can be regarded as a sum of plane-
wave reflectivity contributions from a range of incidence angles around the central ray
(Alhussain et al., 2008) and the frequencies that constitute its wavelet (Ursenbach et al.,
2007). The difference between a plane-wave and a spherical-wave reflection coefficient
becomes large when (i) the wavefront curvature is strong (Krail and Brysk, 1983) or (ii)
the incidence angle approaches the critical angle because the plane-wave reflection co-
efficient changes rapidly there and reflected and head waves interfere (Alhussain et al.,
2008). The latter has implications for all AVO applications that are based on plane-wave
theory: Since the plane-wave assumption does not hold for reflections near the critical
angle, critical and post-critical events should not be included in conventional plane-wave
AVO analysis or inversion.

3.2.2 Assumptions

The basic assumption for applying the reflectivity method is that the medium can be
described as a stack of homogeneous horizontal layers. Such a model is sometimes
called a 1D model because its properties only vary in one dimension, the depth. The
layers are assumed to be acoustic, elastic or viscoelastic. Acoustic layers are realised
by a shear wave velocity approaching zero. Viscoelasticity is described by a constant
quality factor Q and a reference frequency fr and is realised by working with complex
velocities (Müller, 1985, eq. 132). Furthermore, it is assumed that the layer properties
are isotropic. Extensions of the reflectivity method for anisotropic media exist (Booth
and Crampin, 1983) but were not used in this thesis.

The modelling code written during this PhD project aims at simulating marine towed-
streamer reflection seismic acquisitions. Therefore, an additional assumption is made for
the uppermost layer to be a fluid layer bounded by the free surface at the top and the
seabed at the bottom. It is further assumed that the source and receivers are located in
this fluid layer and that the source generates only compressional waves and the receivers
measure only compressional waves. Figure 3.2 illustrates the case of a source and receiver
located in a fluid layer on top of a stack of elastic layers.
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Figure 3.2: Sketch of a layered model according to the assumptions made for the reflec-
tivity method as it is used in this thesis. Each layer k is defined by its upper boundary
located at depth zk and the constant elastic properties P-wave velocity αk, S-wave ve-
locity βk and density ρk. The uppermost surface is the free surface located at z = 0.
The first layer is assumed to be a fluid layer that contains the source and receivers.

3.2.3 Overall P-P reflectivity of a layered medium

Let us first concentrate on the reflected waves from a stack of layers below the source
and receiver. Given the (visco-)elastic properties of the layers, it is possible to compute
the overall reflectivity RD of a stack of layers that includes all internal multiples and
mode conversions. This computation can be achieved by an iterative scheme proposed
by Kennett (1974). The overall reflectivity RD(zk−) of a downgoing wavefield impinging
on interface k, just above layer k, specified as depth zk−, can be expressed as (Kennett,
2009, eq. 6.26)

RD(zk−) = RD,k + TU,kRD(zk+) [I −RU,kRD(zk+)]−1 TD,k , (3.1)

where I is the identity matrix and RD,k, RU,k, TD,k, and TU,k denote the local plane-wave
reflection and transmission coefficient matrices at interface k with subscript D for down-
going and subscript U for up-going incident waves. These four matrices are computed
by the Knott-Zoeppritz equations, e.g., given in matrix form by Aki and Richards (2002,
eq. 5.36-5.38). Matrix RD(zk+) denotes the overall reflectivity just below interface k.
It is computed by the multiplication of the overall reflectivity RD(zk+1−) just above the
interface k+1 with phase terms that correspond to the propagation through the uniform
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layer k,
RD(zk+) = ED,kRD(zk+1−)ED,k , (3.2)

where ED,k denotes the phase matrix of layer k.

All reflection and transmission matrices in equations (3.1) and (3.2) are 2 × 2-matrices
of the structure PP SP

PS SS

 ,

where the first letter denotes the incident wave type of P- or S-wave and the second
letter denotes the reflected or transmitted wave type, respectively.

The phase matrices are diagonal 2× 2-matrices because the waves travel as either P- or
S-wave through the uniform layer,

ED,k =
e−iωqα,k(zk+1−zk) 0

0 e−iωqβ,k(zk+1−zk)

 , (3.3)

where ω denotes radial frequency and qα,k =
√
α−2
k − p2 and qβ,k =

√
β−2
k − p2 are the

layer-specific P-wave and S-wave vertical slownesses, respectively, resulting from a given
horizontal slowness p. When waves become evanescent, i.e., the vertical slowness q
becomes imaginary, the branch cuts need to be chosen such that (Kennett, 2009, eq. 28)

exp(−iωq(zk+1 − zk)) = exp(−iω |q| (zk+1 − zk)) . (3.4)

Since zk+1 > zk, growing exponentials with increasing frequencies are avoided and the
computationally scheme is numerically stable (Kennett, 2009).

Starting at the deepest interface of the model, where RD(zN−) = RD,N , equations (3.1)
and (3.2) can now be applied alternately in an iterative way moving the layer stack
upwards until the seabed is reached. Finally, the PP-component of RD(z2−) is multiplied
with a phase term to include the travel time from source level zS to z2 and back to source
level zS.

RD(zS) = RD,PP (z2−)e−2iωqα,1(z2−zS). (3.5)

RD represents then the overall P-wave to P-wave reflectivity of the whole stack of uniform
layers below the seabed for a specific radial frequency ω and horizontal slowness p,
RD(zS, ω, p). It should be noted that mode conversions, such as PPSP, PSPP, PSSP,
etc. are included. This iterative computation scheme needs to be performed for several
horizontal slownesses and frequencies in order to compute spherical-wave seismograms.

The matrix inverse in equation (3.1) can be approximated by a series expansion and,
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thus, be replaced by a truncated series of reverberations (Kennett, 2009)

[I −RU,kRD(zk+)]−1 ≈ I +RU,kRD(zk+) + RU,kRD(zk+)RU,kRD(zk+) + . . . . (3.6)

It should be noted that the interface reflection and transmission matrices RD,k, RU,k,
TD,k, and TU,k are frequency-independent in the acoustic or elastic case and can be pre-
computed.

3.2.4 Reflections at the free surface

Reflections at the free surface at the top of the model (z = z1 = 0) are responsible for
the source and receiver ghost and reverberations observed as free-surface multiples. The
free surface can be treated via reflection matrices or explicitly (Kennett, 2009). Here, we
compute the local P-P reflection coefficient RfS

U,PP of an upgoing incident wavefield by
the Knott-Zoeppritz equations using a typical compressional wave velocity and density
for air to incorporate the boundary conditions at z = 0. The local free-surface reflection
coefficient is multiplied by a phase term to include the travel time from source level zS
to the free surface at z = 0 and back to source level zS. The free-surface reflectivity is
then given by

RfS
U (zS) = RfS

U,PP e
(−2iωqα,1zS) , (3.7)

where qα,1 =
√
α−2

1 − p2 is the vertical slowness of a P-wave for a horizontal slowness p.

From the overall reflectivity RD of a layer stack below the source and receiver and the
free-surface reflectivity RfS

U , the displacement wavefield W (zR) at receiver level zR for
zR < zS is given by (Kennett, 2009, eq. 7.35),

W (zR) =
[
WUS(zR) +WDS(zR)RfS

U

] [
1−RDR

fS
U

]−1
[ΣU +RDΣD] , (3.8)

and for zR > zS is given by (Kennett, 2009, eq. 7.36),

W (zR) = [WDS(zR) +WUS(zR)RD]
[
1−RfS

U RD

]−1 [
ΣD +RfS

U ΣU

]
. (3.9)

WUS and WDS account for the correct travel time to receiver level zR for upgoing and
downgoing waves arriving at the receiver, respectively.

WUS = exp(−iωqα,1(zS − zR)) ,

WDS = exp(+iωqα,1(zS − zR)) .
(3.10)

Additionally, receiver directivity could be included. If the displacement needs to be
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computed at receiver level zR, the horizontal and vertical components of displacement
are given by

W hor
US = sin θWUS ,

W hor
DS = sin θWDS ,

W ver
US = − cos θWUS ,

W ver
DS = cos θWDS .

(3.11)

ΣU and ΣD represent the upward and downward radiation of the source. If we assume
that the radiation pattern of the source is equal in all directions, then

ΣU = ΣD = 1 . (3.12)

To better understand equations (3.8) and (3.9), they should be read from right to left.
The right term in equation (3.8) represents the source contribution. It consists of di-
rectly upwards radiated waves from the source ΣU and downwards radiated waves that
are reflected at the interfaces below the source RDΣD. The term in the centre is a re-
verberation operator that couples the free-surface reflections with the reflections of the
layers below the source. It can be replaced by a limited number of reverberations anal-
ogous to equation (3.6). The left term in equation (3.8) corresponds to the receiver
level zR. It contains waves that arrive at the receiver travelling upwards WUS(zR) and
downwards after being reflected at the free surface WDS(zR)RfS

U .

If we want to simulate an absorbing boundary at z = 0 instead of a free surface, we can
set RfS

U to zero. It follows then for zR < zS,

W (zR) = WUS(zR)ΣU +WUS(zR)RDΣD . (3.13)

The waves arriving at the receiver are coming upwards either directly from the source
or after reflection from below. For zR > zS, we get

W (zR) = WDSΣD(zR) +WUS(zR)RDΣD . (3.14)

In this case, the waves arriving at the receiver are coming downwards directly from the
source or upwards after reflection from below.
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3.2.5 Source excitation function

Given a source signal at a distance R1 from the source in radial displacement U(R1, t)
or pressure P (R1, t), it is possible to compute the excitation function F (t) of the source,
be it an explosive point source (3D wave propagation) or an explosive line source (2D
wave propagation). The Fourier transform of the excitation function, F̂ (ω), will later be
used in the computation of synthetic seismograms.

Spherical waves generated by an explosion point source

The compressional potential Φ(R, t) at distance R and at time t of a spherical wave
generated by an explosion point source in an acoustic medium of constant compressional
wave velocity α is given by (Müller, 2007, eq. 3.8)

Φ(R, t) = 1
R
F
(
t− R

α

)
, (3.15)

where F (t) denotes the source excitation function, also called the reduced displacement
potential (Müller, 2007).

The radial displacement U(R, t) can then be derived as (Müller, 2007, eq. 3.9)

U(R, t) = ∂Φ
∂R

= − 1
R2F

(
t− R

α

)
− 1
Rα

F ′
(
t− R

α

)
, (3.16)

where the first term represents the near-field term dominating at sufficiently short dis-
tances R and the second term is the far-field term dominating at distances larger than
several wavelengths (Müller, 2007). Using the boundary condition that a defined dis-
placement signal U1(R1, t) at distance R = R1 fulfils equation (3.16), it is possible to
compute the excitation function F (t) of the source. For the computation, we use the
displacement Ū1

(
t− R1

α

)
= Ū1 (τ) = U1(t) at the retarded time τ = t − R1

α
. The rela-

tionship between the source excitation function and the defined displacement signal at
distance R1 follows from equation (3.16) and is expressed in the frequency domain as

F̂ (ω) = −R
2
1

ˆ̄U1(R1, ω)
1 + iωR1

α

, (3.17)

where i denotes the imaginary unit and ω denotes radial frequency.

If a pressure signal P̄1(R1, t − R1
α

) = P̄1(R1, τ) = P1(R1, t) at distance R1 and retarded
time τ = t − R1

α
is given, the corresponding source excitation function F (t) can be
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computed using the relation (Müller, 2007)

P (r, t) = −ρ∂Φ(r, t)
∂t2

, (3.18)

assuming a constant density ρ in the medium, resulting in

F̂ (ω) = R1

ω2ρ
ˆ̄P1(R1, ω) (3.19)

in the frequency domain.

Cylindrical waves generated by an explosion line source

The compressional potential Φ(R, t) at distance R and time t of a cylindrical wave
generated by an explosion line source in an acoustic medium of a constant compressional
wave velocity α is given by (Müller, 2007, eq. 3.95)

Φ(R, t) =
∫ t

R
α

F (t− τ) cosh−1
(
ατ

R

)
dτ , t >

R

α
, (3.20)

where F (t) denotes the source excitation function. Equation (3.20) describes a convolu-
tion of F (t) with F (t) ≡ 0 if t < 0 and the function K(R, t), which is defined as

K(R, t) =

0 if t < R
α

cosh−1
(
αt
R

)
if t ≥ R

α

. (3.21)

In the frequency domain, the convolution is expressed as a multiplication of the two
functions, so that

Φ(R,ω) = F̂ (ω)K̂(R,ω). (3.22)

Using the relationship between pressure P and compressional potential Φ given by equa-
tion (3.18), the source excitation function F̂ (ω) can be computed in the frequency domain
given a pressure signal P̂ (R1, ω) at a distance R1

F̂ (ω) = P̂ (R1, ω)
ρω2K̂(R1, ω)

, (3.23)

where ρ denotes the density of the medium.

The radial displacement U(R, t) can be derived as (Müller, 2007, eq. 3.96)

U(R, t) = ∂Φ
∂R

= ∂

∂R
(F (t) ∗K(R, t)) = F (t) ∗ ∂K(R, t)

∂R
= F (t) ∗ Y (R, t) , t > R

α
,

(3.24)
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where Y (R, t) is defined as

Y (R, t) = ∂K(R, t)
∂R

= − t

R
(
t2 − R2

α2

) 1
2
, t >

R

α
(3.25)

The source excitation function F̂ (ω) can be computed given a radial displacement signal
U(R1, ω) at distance R1 in frequency domain as follows

F̂ (ω) = Û(R1, ω)
Ŷ (R1, ω)

. (3.26)

3.2.6 Computation of synthetic seismograms

A spherical wave generated by a point source can be expressed as a sum of plane-
wave contributions using the Weyl integral (Weyl, 1919) or as a sum of conical-wave
contributions using the Sommerfeld integral (Sommerfeld, 1909, 1949). The Sommerfeld
integral itself can be derived from the Weyl integral (Müller, 2007). Aki and Richards
(2002, eq. 6.9) give the Sommerfeld-integral expression of a spherical wave as an integral
over all positive horizontal slowness values p

1
R
e
iω R
α1 = iω

∫ ∞
0

p

q
J0(ωpr)eiωq|z|dp , (3.27)

where q denotes the vertical slowness that relates to the horizontal slowness p as q =√
1
α2

1
− p2, α1 denotes the compressional wave velocity of the medium, J0 is the Bessel

function of the first kind and order zero and R is given by the horizontal coordinate r
and the vertical downwards pointing coordinate z by R =

√
r2 + z2.

Assuming harmonic excitation, the displacement potential of an explosion point source
located at z = r = 0 is (Müller, 2007, eq. 3.80)

Φ = 1
R
e
iω

(
t− R

α1

)
, (3.28)

which can be expressed as an integral over horizontal slowness p using the Sommerfeld
integral (Müller, 2007, cf. eq. D.5)

Φ = 1
R
e
iω

(
t− R

α1

)
= −iω

∫ ∞
0

p

q
J0(ωpr)eiω(t−qz)dp . (3.29)

It is also possible to express the potential as an integral over incidence angle θ, which
is related to the horizontal slowness p = sin θ

α1
and the vertical slowness q = cos θ

α1
. With
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dp = cos θ
α1
dθ, it follows that

Φ = 1
R
e
iω

(
t− R

α1

)
= − iω

α1

∫
Γ

sin θJ0

(
sin θ
α1

ωr

)
e
iω

(
t−z cos θ

α1

)
dθ , (3.30)

where the integration path Γ goes along the real axis from 0 to π
2 and then parallel to

the imaginary axis from π
2 + i0 to π

2 + i∞. In that way, homogeneous and inhomogeneous
plane waves can be included (see Tsvankin (1995), Aki and Richards (2002) and Müller
(2007) for details).

We can now use the Sommerfeld integral to compute the full spherical-wave response
observed at a receiver that is located at a depth zR and a horizontal distance r. In
section 3.2.4, the computation of the full wavefieldW (zR) at receiver level zR was derived
including the direct wave, reflections from subsurface layers and reflections from the free
surface. W (zR, θ, ω) represents the plane-wave response for a specific incidence angle
θ, determining a constant horizontal slowness or ray parameter p = sin θ

α1
, and a radial

frequency ω. The transition to impulse excitation from harmonic excitation requires a
multiplication with the spectrum of the source excitation function F̂ (ω) in frequency
domain (Müller, 2007). See section 3.2.5 for the details of the computation of F̂ (ω). The
Fourier transform of the potential Φ̂(zR, r, ω) of the full-wavefield response at zR and r
is then given by

Φ̂3D(zR, r, ω) = − iω
α1
F̂ (ω)

∫
Γ

sin θJ0

(
sin θ
α1

ωr

)
W (zR, θ, ω)dθ . (3.31)

The phase terms for correct travel times to the receiver are already included in
W (zR, θ, ω) (see section 3.2.4).

The Fourier transform of the pressure response for wave propagation in 3D P̂3D can be
derived from the potential as

P̂3D(zR, r, ω) = ρ1ω
2Φ̂3D(zR, r, ω) = − iω

3ρ1

α1
F̂ (ω)

∫
Γ

sin θJ0

(
sin θ
α1

ωr

)
W (zR, θ, ω)dθ ,

(3.32)
where ρ1 is the density of the medium in which the receiver is located.

The horizontal displacement û3D in the Fourier domain is derived from the potential as
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(J ′0(x) = −J1(x))

û3D(zR, r, ω) = ∂Φ̂(zR, r, ω)
∂r

= iω2

α2
1
F̂ (ω)

∫
Γ

sin2 θJ1

(
sin θ
α1

ωr

)
W (zR, θ, ω)dθ

= iω2

α2
1
F̂ (ω)

∫
Γ

sin θJ1

(
sin θ
α1

ωr

)
W hor(zR, θ, ω)dθ ,

(3.33)

where W hor(zR, θ, ω) = sin θW (zR, θ, ω) (cf. section 3.2.4).

The vertical displacement v̂3D in the Fourier domain is derived from the potential as

v̂3D(zR, r, ω) = ∂Φ̂(zR, r, ω)
∂z

= − iω
α1
F̂ (ω)

∫
Γ

sin θJ0

(
sin θ
α1

ωr

)
∂W (zR, θ, ω)

∂z
dθ

= ω2

α2
1
F̂ (ω)

∫
Γ

sin θJ0

(
sin θ
α1

ωr

)
W ver(zR, θ, ω)dθ

(3.34)

with W ver(zR, θ, ω) defined in section 3.2.4.

Amundsen and Reitan (1994) give the equations needed to transform the potential for
3D wave propagation (equation (3.31)) to the potential for 2D wave propagation. The
potential for 2D wave propagation is given by

Φ̂2D(zR, r, ω) = −2iF̂ (ω)
∫
Γ

cos
(

sin θ
α1

ωr

)
W (zR, θ, ω)dθ . (3.35)

Using the relation P̂2D = ρ1ω
2Φ̂2D, the pressure P̂2D can be expressed as

P̂2D(zR, r, ω) = −2iω2ρ1F̂ (ω)
∫
Γ

cos
(

sin θ
α1

ωr

)
W (zR, θ, ω)dθ . (3.36)

The horizontal displacement for wave propagation in 2D û2D in the Fourier domain is
derived from the potential as

û2D(zR, r, ω) = ∂Φ̂2D(zR, r, ω)
∂r

= 2i ω
α1
F̂ (ω)

∫
Γ

sin
(

sin θ
α1

ωr

)
sin θW (zR, θ, ω)dθ

= 2i ω
α1
F̂ (ω)

∫
Γ

sin
(

sin θ
α1

ωr

)
W hor(zR, θ, ω)dθ .

(3.37)

The vertical displacement for wave propagation in 2D v̂2D in the Fourier domain is
derived from the potential as

v̂2D(zR, r, ω) = ∂Φ̂2D(zR, r, ω)
∂z

= 2 ω
α1
F̂ (ω)

∫
Γ

cos
(

sin θ
α1

ωr

)
W ver(zR, θ, ω)dθ . (3.38)
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W hor and W ver are given by inserting the corresponding displacement matrices for hori-
zontal or vertical displacement, respectively, given in equation (3.11) into equations (3.8)
and (3.9) (see section 3.2.4).

For the computation of synthetic seismograms for 3D or 2D wave propagation, the inte-
grals in equations (3.32)-(3.34) and (3.36)-(3.38) are computed numerically, e.g., by the
trapezoidal method. This can be achieved once the wavefield matrix W has been com-
puted for a range of angles θ and radial frequencies ω using a unit sampling as described
in section 3.2.4. After computation of the integral, multiplication with the factors cor-
responding to equations (3.32)-(3.34) and (3.36)-(3.38) and the spectrum of the source
excitation function F̂ (ω) (see section 3.2.5) is done. Finally, the pressure or displace-
ment observed at a receiver located at depth zR and source-receiver offset r is obtained
in time domain by an inverse Fourier transform.

The main computational burden lies in the computation of the overall reflectivity RD of a
stratified medium (see section 3.2.3) on a regular grid of angle θ and radial frequency ω to
form the matrix W (see section 3.2.4). The computation time increases with the number
of layers. Once this matrix is computed, the generation of synthetic seismic traces is fast.
Mallick and Frazer (1987) discuss the computational aspects of the reflectivity method.
The use of a taper, such as a Hanning window, at the upper integration limit of the
angle θ is recommended to avoid numerical artefacts.

Typically, the Sommerfeld integral is expressed as an integral over horizontal wavenumber
kx or horizontal slowness p (Aki and Richards, 2002; Müller, 2007). Other authors
suggested a transformation to departing angle θ (Fuchs, 1968; Fuchs and Müller, 1971;
Tsvankin, 1995). The reflectivity method as described by Fuchs and Müller (1971)
restricts the integration to real angles. I found the integration over angle θ beneficial
for numerical stability. One reason is the absence of a denominator that can approach
zero, in contrast to equation (3.29). Furthermore, the regular sampling in angle instead
of slowness seems to support numerical accuracy.

3.3 Modelling examples

Figure 3.3 shows the modelling results for a simple 3-layer model with the layer prop-
erties given in Table 3.1 with an absorbing upper model boundary, i.e., no free-surface
reflections or ghosts. The source is a point source located at 20 m depth below the
absorbing upper model boundary. The wavelet is a 20 Hz Ricker wavelet defined in pres-
sure. The receivers are located at 10 m depth and the horizontal source-receiver offset
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Figure 3.3: Synthetic shot gathers of a 3-layer model computed by the reflectivity method
ignoring reflections at the free surface.

ranges from 0 m to 3000 m in steps of 10 m. Note the direct wave, the two primary re-
flections and the later arriving multiples and reflections, where at least one leg travelled
as an S-wave. Refractions are also included.

Depth of layer top (m) VP (m/s) VS (m/s) Density (g/cm3)
Layer 1 (water) 0 1500 0.001 1.0
Layer 2 (solid) 500 2000 1200 2.0
Layer 3 (solid) 800 3000 1800 2.2

Table 3.1: Layer properties of the 3-layer model.

The same modelling exercise has been performed with a reflective free surface and the
modelling results are shown in Figure 3.4. The wavelet shape is now affected by the
source and receiver ghost and the repeated pattern created by the free-surface multiples
can be seen.
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Figure 3.4: Synthetic shot gathers of a 3-layer model computed by the reflectivity method
including reflections at the free surface.
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3.4 Applications

As any seismic forward modelling method, the reflectivity method comes with its advan-
tages and disadvantages. A drawback of the method is certainly its limitation to layered
models (1D models). However, there are many applications, where the local assump-
tion of a layered model can be applied, for example, in the inversion of seismic image
gathers resulting from pre-stack migration (Oliveira et al., 2018; Chen et al., 2020). An
extension of the reflectivity method to curved interfaces was developed by Sen and Pal
(2009). Numerical challenges are another potential disadvantage (Chapman and Orcutt,
1985). The Sommerfeld integral has an oscillatory nature, which requires a dense sam-
pling to avoid numerical inaccuracies. Pole singularities on the integration axis related to
evanescent waves can lead to problems. Incorporating attenuation using complex veloc-
ities (Müller, 1985) shifts such singularities off the real slowness or angle axis (Chapman
and Orcutt, 1985).

An advantage of the reflectivity method is the flexibility to model only a selected part of
the wavefield and neglect unwanted parts of the wavefield, which can be useful to analyse
the contributions of, e.g., internal multiples, mode conversions, free-surface multiples and
ghost arrivals or transmission loss in an isolated way. Single interfaces can be easily made
non-reflective by setting their reflection coefficients to zero without changing travel times
or the ray bending. Likewise, transmission loss can be neglected by setting transmission
coefficients to one. Even the number of reverberations can be controlled as shown in
equation (3.6).

Another advantage is the possibility to choose between plane-wave and spherical-wave
synthetics (cf. section 3.2.1). The plane-wave synthetics can be generated by omitting
the numerical computation of the Sommerfeld integral. Instead, synthetic seismograms
in the τ -p domain can be built by multiplying an overall reflectivity R(ω, p) computed
in a recursive scheme (cf. sections 3.2.3-3.2.4) with a wavelet spectrum followed by an
inverse Fourier transform. Angle gathers can be created afterwards by normal moveout
correction and by transforming slowness in layer i, pi = sin θi

αi
, to angle θi using the P-

wave velocity αi. Combined with an efficient, vectorised computation scheme for the
overall reflectivity, synthetic plane-wave angle gathers generated in this way have been
used for pre-stack AVO inversion (Liu et al., 2016; Oliveira et al., 2018; Liu et al.,
2020; Chen et al., 2020). In contrast to classical primaries-only convolutional modelling
of AVO (Russell, 1988) as currently implemented in most industry software packages,
the plane-wave synthetics from the reflectivity method contain the full response of a
layered medium including internal multiples, transmission loss and mode conversions. It
should be noted that the plane-wave angle gathers are applicable in the far field and as
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long as no critical angle is approached. As discussed in section 3.2.1, the plane-wave
reflection coefficient deviates from the spherical-wave reflection coefficient close to and
at the critical angle. The computational effort for the synthesis of spherical-wave angle
gathers is much higher compared to their plane-wave counterparts because the following
additional steps are required (Oliveira et al., 2018):

• numerical integration along slowness or angle axis, which requires a dense sampling
to avoid aliasing (Mallick and Frazer, 1987)

• normal moveout and geometrical spreading correction or pre-stack migration

• offset-to-angle mapping by ray tracing.

The high computational effort is limiting the usage of spherical-wave synthetics in pre-
stack AVO inversion to date (Oliveira et al., 2018). Recently, there has been some
research interest in the usage of frequency information contained in spherical-wave reflec-
tion coefficients (SRCs) (Li et al., 2017; Cheng et al., 2020; Yan et al., 2020). SRC-based
AVO inversion can be applied also to near and critical offsets, where plane-wave-based
AVO fails (Yan et al., 2020). The expectation is that SRC-based AVO inversion can
improve the density estimation because of the inclusion of wider angles (Downton and
Ursenbach, 2006). However, this still needs to be proven in practice. In AVO inversion
using 1.5D wave-equation-based modelling, the inclusion of wider angles leads only to
small improvements (Gisolf and Haffinger, 2022). Another possibility is the decompo-
sition of an observed spherical wavefield into plane waves by a τ -p transform so that
plane-wave AVO can be applied (Zhu and McMechan, 2015).

The reflectivity method has been successfully applied to models composed of thin layers
(Wapenaar et al., 1999; Ursin and Stovas, 2002; Stovas et al., 2006) and for seismic-
well ties (Liu et al., 2018b; Philip et al., 2018). Thanks to its lower computational cost
compared to finite-difference modelling, the reflectivity method has the potential to be
used in Monte Carlo simulations, as demonstrated in Articles II and III, and to produce
training data for supervised machine learning (Das et al., 2019; Zheng, 2019).

The synthetic seismic data modelled by the reflectivity method are highly accurate if
suitable numerical parameters are chosen (adequate sampling in angle/slowness and
frequency domain, adequate angle/slowness range). For this reason, the method has
been frequently applied as a reference or benchmark (Daley and Hron, 1982; Stephen,
1983; Levander, 1988; Yang et al., 2002) as also shown in Article I.
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Chapter 4

Amplitude variation with offset

The principles of amplitude variation with offset (AVO) are briefly explained in this
chapter. For more details, the reader is referred to the books by Castagna and Backus
(1993), Chopra and Castagna (2014) and Simm and Bacon (2014). Avseth et al. (2005)
give an excellent review of the technique and the pitfalls in its application.

4.1 Angle-dependent reflectivity

If a plane P-wave impinges on a single interface at non-vertical incidence, its energy
is partitioned into a reflected P-wave, a reflected S-wave, a transmitted P-wave and a
transmitted S-wave (Figure 4.1). The reflection and transmission coefficients are a func-
tion of the incidence angle and the material properties of the upper and lower medium.
The Knott-Zoeppritz equations (Knott, 1899; Zoeppritz, 1919) give the plane-wave re-
flection and transmission coefficients at a single interface. Because these equations are
complicated, several approximations have been developed.

Richards and Frasier (1976) and Aki and Richards (1980) derived a well-known approx-
imation for the P-wave reflection coefficient R(θ) = RPP (θ) under the assumption of
weak contrasts in the material properties of the upper and lower medium

R(θ) ≈ 1
2

(
1− 4V

2
S

V 2
P

sin2 θ

)
∆ρ
ρ

+ 1
2 cos2 θ

∆VP
VP
−
(

4V
2
S

V 2
P

sin2 θ

)
∆VS
VS

, (4.1)
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Figure 4.1: Sketch illustrating the energy partitioning of a plane P-wave incident on an
interface at angle θ1 with the normal. The interface separates two homogeneous media
with the respective P-wave velocity VP , S-wave velocity VS and density ρ. A reflected
P-wave with reflection coefficient RPP , a reflected S-wave (RPS), a transmitted P-wave
(TPP ) and a transmitted S-wave (TPS) are generated. The angular relationships follow
Snell’s law. The black double arrows indicate the direction of particle motion. Redrawn
after Chopra and Castagna (2014).

where

∆VP = VP,2 − VP,1, ∆VS = VS,2 − VS,1, ∆ρ = ρ2 − ρ1,

VP = VP,1 + VP,2
2 , VS = VS,1 + VS,2

2 , ρ = ρ1 + ρ2

2 and θ = θ1 + θ2

2 .

In practice, the average angle θ is often replaced by the incidence angle θ1. In that case,
the approximation becomes less accurate at larger angles (Chopra and Castagna, 2014).

Shuey (1985) rearranged the Aki-Richards approximation to a three-term equation

R(θ) ≈ R0 +
(
A0R0 + ∆σ

(1− σ)2

)
sin2 θ + 1

2
∆VP
VP

(
tan2 θ − sin2 θ

)
, (4.2)

where σ denotes the Poisson’s ratio,

∆σ = σ2 − σ1, σ = σ1 + σ2

2 , R0 = 1
2

(
∆VP
VP

+ ∆ρ
ρ

)
,

A0 = B − 2 (1 + B) 1− 2σ
1− σ , B =

∆VP
VP

∆VP
VP

+ ∆ρ
ρ

.
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The three terms describe the reflectivity at normal incidence, intermediate angles, and
wide angles approaching the critical angle, respectively. For θ <30◦, the third term can
be dropped (Shuey, 1985) resulting in the two-term approximation

R(θ) ≈ R(0) +G sin2 θ , (4.3)

where R(0) = R0 denotes the P-wave reflectivity at normal incidence, called the AVO
intercept, and

G = A0R0 + ∆σ
(1− σ)2 (4.4)

is called the AVO gradient. At intermediate angles θ1 < 30◦, the average angle θ can be
replaced by the incident angle θ1 (Chopra and Castagna, 2014).

4.2 AVO analysis

Before the advent of AVO technology, bright-spot technology was used as a tool in
hydrocarbon exploration. It had been observed that high amplitudes visible as bright
spots coincided often with gas-filled sands in the Gulf of Mexico (Avseth et al., 2005).
However, not all bright spots are related to the accumulation of gas. Ostrander (1984)
demonstrated that the Poisson’s ratio has a strong impact on the variation of seismic
amplitudes with offset. Because the presence of gas decreases the Poisson’s ratio, analysis
of the AVO can help to distinguish between gas-related amplitude anomalies and other
types of bright spots. Shuey (1985) showed analytically using an approximation of the
Knott-Zoeppritz equation how the contrast in Poisson’s ratio between the upper and
lower medium affects the angle-dependent reflection coefficient (see equation (4.2)).

The AVO analysis technology developed in the 1980s and 1990s draws heavily on the
simple linear regression described by the 2-term Shuey equation (4.3) (Simm and Bacon,
2014). Consequently, the AVO attributes intercept R(0) and gradient G are commonly
used to describe the seismic AVO. Intercept and gradient can further be combined to
give additional attributes, such as the product R(0)×G.

For AVO analysis, the seismic data need to be processed in an AVO-friendly manner so
that true relative amplitudes are preserved (Avseth et al., 2005). Chopra and Castagna
(2014) elaborate on the different factors that may affect seismic amplitudes and on
seismic data processing for AVO analysis. One important process to mention is normal
moveout correction that flattens the primary reflections. If amplitudes are picked at
a constant time or depth, residual moveout can lead to errors. Amplitude-preserving
pre-stack depth migration is a good choice for AVO processing, especially in areas with
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structural complexity (Avseth et al., 2005).

Seismic data are measured as a function of source-receiver offset. To relate the observed
AVO to angle-dependent reflectivity, a mapping from offset to reflection angle is required.
For this mapping, a velocity model is used. The reflection angle at a specific location
given a source-receiver offset can be found by ray tracing. An estimate of the reflection
angle for horizontally layered media can be computed by the Dix formula (Dix, 1955)
using root-mean-square velocities (Simm and Bacon, 2014).

The calculation of AVO intercept and gradient using the two-term Shuey approximation
(equation 4.3) is illustrated in Figure 4.2. As discussed, it is important to restrict the
angle range to maximum 30◦, where the two-term approximation is appropriate. An
important aspect is the scaling of seismic amplitudes to reflection coefficients, which is
usually done by well ties (Simm and Bacon, 2014).
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Figure 4.2: Illustration of fitting a linear function to picked amplitudes (red crosses) to
obtain the AVO intercept R(0) and the AVO gradient G.

A common way to visualise AVO responses is to plot AVO intercept and gradient in
an AVO crossplot as shown in Figure 4.3. Rutherford and Williams (1989) classified
the AVO responses of shale–gas-sand interfaces into three classes I, II and III (see Fig-
ure 4.3). Ross and Kinman (1995) suggested a class IIp for small positive intercept
class II responses with an inherent phase reversal. Another category, class IV, was intro-
duced by Castagna and Swan (1997) for responses showing a large negative incident and
a decreasing absolute amplitude with offset. Originally developed for classifying AVO
types of hydrocarbon-bearing sands, the mentioned AVO classes are used for describing
AVO behaviour generally (Simm and Bacon, 2014).
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Figure 4.3: AVO classes and their location in the AVO crossplot. For each class, the
characteristic amplitude trend for increasing sin2 θ is shown. Redrawn after Castagna
et al. (1998) and Avseth et al. (2005).

An alternative is the generation of angle stacks, where data of a specified angle range
are stacked to create angle sub-stacks in addition to the full stack. An example of near
and far angle stacks is shown in Figure 4.4. Angle stacks can be interpreted directly or
they can be used as an input data for pre-stack seismic inversion.

a) Seismic gather b) Near angle stack c) Far angle stack

Offset

5º 15º 35º 5−15º 15−35º

CDP CDP

Figure 4.4: Near angle (5–15◦) and far angle (15–35◦) stacks are created by stacking the
seismic data of the specific angle ranges. Modified after Simm and Bacon (2014).
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Chapter 5

Statistical methods for seismic
reservoir characterisation

This chapter introduces the statistical methods that were applied in Article II and Arti-
cle III. The field of statistical methods used in seismic reservoir characterisation is wide.
A good overview is given in the books by Doyen (2007) and Grana et al. (2021). Avseth
et al. (2005) cover the concepts of statistical rock physics.

5.1 Bayesian inversion

The inverse problem in geophysics is to find a model m that can explain the observed
data d. This problem can be formulated as

d = f(m) + ε, (5.1)

where f is the forward operator, typically a set of physical equations, and ε denotes
the measurement error and noise of the data (Grana et al., 2021). Solving the inverse
problem in a probabilistic sense corresponds to estimating the conditional probability
distribution p(m | d). This can be achieved by applying Bayes’ theorem

p(m | d) = p(d |m)p(m)
p(d) = p(d |m)p(m)∫

p(d |m)p(m)dm . (5.2)

In Bayesian vocabulary, the conditional probability p(m | d) is called the posterior
probability that is computed from the prior probability distribution p(m), the likelihood
function p(d |m) and the normalising marginal distribution p(d).
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If there is a linear operator f and if the prior p(m) and the measurement error ε are
Gaussian, the posterior probability distribution p(m | d) is also Gaussian (Tarantola,
2005). These assumptions are often used to solve seismic inversion problems (Grana
et al., 2021). Bayesian linearised AVO inversion was developed by Buland and Omre
(2003) using a linear forward operator by convolutional seismic modelling.

If the operator f is not linear, the posterior distribution can be found by stochastic sim-
ulation techniques, such as Monte Carlo sampling (Mosegaard and Tarantola, 1995).
With the increase in computing power, Monte Carlo simulation has become a popular
method for solving various probabilistic problems (Avseth et al., 2005). The basic idea
is to draw a large number of samples from a given probability distribution and to ap-
ply a (generally non-linear) operator to the samples to estimate the desired probability
distribution. Sequential Monte Carlo simulation is typically realised by Markov chains
(Liu, 2004).

5.2 Bayesian classification

A classification problem can be regarded as a special type of inverse problem, where
the goal is to predict a category rather than inverting for continuous model variables.
In seismic reservoir characterisation, classification is often applied to categorise input
data into lithofacies or pore-fluid classes (Avseth et al., 2005). One way to approach a
classification problem is to apply Bayesian decision theory (Duda, 2001).

Let cj, j = 1, ..., N denote N different classes, for example, the pore fluids brine, oil and
gas. The classification is done based on input data x. For example, this could be the
AVO intercept and gradient. The posterior probability of a particular class cj given an
observed input data point x is according to Bayes’ theorem given by

p (cj | x) = p (x | cj) p (cj)
p(x) , (5.3)

where p (x | cj) denotes the conditional probability of x given class cj, p (cj) denotes the
prior probability of class cj and p(x) is a normalising constant to guarantee that the
sum of probabilities over all classes is one (Avseth et al., 2005). Relation (5.3) updates
a given prior probability of a class to a posterior probability by using a class-conditional
probability distribution estimated from measured or simulated training data (Avseth
et al., 2005). Figure 5.1 shows an example of estimated probability density functions of
the AVO intercept and gradient for three different pore-fluid classes.

The classification based on the estimated posterior probabilities p(cj | x) can be done
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Figure 5.1: Class-conditional probability density functions of AVO intercept and gradient
for the three pore-fluid classes brine (blue), oil (green) and gas (red) shown as surface
plot (left) and contour plot (right). The right figure was modified after Tschache et al.
(2023).

using Bayes’ decision rule
ck = argmax

j=1,...,N
p(cj | x) . (5.4)

This decision rule maximises the posterior probability and minimises the misclassification
error and should be applied when the loss associated with each misclassification type is
equal (Avseth et al., 2005). In a hydrocarbon exploration setting, the losses associated
with a dry hole compared with a missed hydrocarbon accumulation are different and the
decision rule can be changed to reflect the corresponding financial losses (Avseth et al.,
2005).

Typically, the class-conditional probability density functions p (x | cj) will show some
overlap (as shown in Figure 5.1) leading to a non-perfect classification. Classification
confusion matrices allow the analysis of success rates and the different kinds of misclas-
sification. An example of a confusion matrix is shown in Figure 5.2. Each element pij
represents the conditional probability that the true class is ci when the predicted class
is cj, pij = (true class = i | predicted class = j). Confusion matrices can be computed
from training data using the “leave-one-out" jackknife technique or by using validation
datasets (Avseth et al., 2005). The accuracy of statistical estimates, such as success
rates, can be computed by bootstrapping (Efron, 1979).
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Figure 5.2: Confusion matrix for a Bayesian classification of pore-fluid types. Diago-
nal elements represent probabilities of correct classification, while off-diagonal elements
represent misclassification probabilities. The colour intensity is scaled according to the
respective probability value. Modified after Tschache et al. (2023).

5.3 Geostatistical simulation

Geostatistical tools have been originally developed for mining engineering problems in the
1950s and have since then been applied to many domains in Earth sciences (Grana et al.,
2021). In seismic reservoir characterisation, geostatistical methods are typically used to
interpolate reservoir properties spatially between wells by integrating seismic data. In
Article III, geostatistical simulation methods are applied to generate pseudo-wells based
on statistical properties from well measurements. The next paragraphs briefly describe
the methods that were applied in Article III. Detailed explanations can be found in the
cited books.

Variograms (or semivariograms) are typical input parameters of geostatistical simulation.
A variogram measures the dissimilarity of a variable with increasing distance h. Given a
dataset of a continuous variable x, the experimental variogram γ(h)∗ can be computed
as

γ(h)∗ = 1
2nh

nh∑
j=1

[x(uj)− x(uj + h)]2 , (5.5)

where uj is a vector of spatial coordinates of data sample j and nh is the number of
pairs of data points separated by distance h. The variogram γ(h) is related to the
spatial covariance function C(h) by

γ(h) = C(0)− C(h) . (5.6)

Parametric variogram models are fitted to experimental variograms estimated from the
data. The three most common models are exponential, Gaussian and spherical models
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(Grana et al., 2021). A spherical variogram model as used in Article III is defined as

γspherical(h) =

σ
2
(

3h
2r −

h3

2r3

)
h ≤ r

σ2 h > r
, (5.7)

where σ2 is the variance of the variable, called the sill of the variogram model, and r is
called the range of the variogram model. Figure 5.3 shows an example of an experimental
variogram and a fitted spherical variogram model with the sill and range indicated. For
an increasing h, the variogram converges to a plateau level, which is the sill. The range
(or correlation range) r is the distance at which the plateau is reached. Data values
beyond the range are uncorrelated.

0 5 10 15 20
0

1

2

3

4

5

6
x 10

−3

lag distance h (m)

γ 
(h

)

range

sill

Figure 5.3: Experimental variogram (red markers) and fitted spherical variogram model
(blue line) for porosity data of a well.

Sequential Indicator Simulation (SISIM) described by Deutsch and Journel (1992) is a
geostatistical simulation method for categorical variables, such as facies. The method
samples from a given probability mass function of the categories. At each location
visited during the sequential simulation, the probability of a category is conditioned on
the previously simulated samples by indicator kriging. A 1D example of SISIM is the
simulation of a vertical facies model, where a specific facies is assigned to each sample
in a sequential way from top to bottom.

For the simulation of continuous variables, such as porosity, Sequential Gaussian Simula-
tion (SGSIM) is a common method (Deutsch and Journel, 1992). As the name suggests,
this method assumes that the variables have a Gaussian distribution. If this is not the
case, the data are transformed to normal scores before simulation (Goovaerts, 1997).
During SGSIM, simple kriging estimates are computed based on direct measurements
and previously simulated values (Grana et al., 2021). The simulated normal scores are
then back-transformed.
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Chapter 6

Summaries of the articles

6.1 Article I

S. Tschache, V. Vinje, E. Iversen, On the accuracy and spatial sampling of finite-
difference modelling in discontinuous models, Journal of Applied Geophysics 206,
104789, 2022.

Seismic finite-difference (FD) modelling solves the wave equation numerically by ap-
proximating derivatives by finite differences. The accuracy of a 2D acoustic central-grid
pseudospectral scheme was investigated for several discontinuous models: a step model,
a single thin-layer model and a multi-layer model. To evaluate the accuracy, the FD
simulation results were compared to the analytic result of the step model and the semi-
analytic results of the reflectivity method for the thin-layer and multi-layer models. We
analysed the normalised amplitude spectra and phase difference vs. frequency.

For an aliasing-free representation of discontinuities in a regular grid, a tapered low-pass
wavenumber filtering procedure was devised. The cut-off wavenumber of the filter is the
Nyquist wavenumber of the desired grid. The length of the filter operator is controlled by
the adaptable taper size. The filter is applied to densely sampled models of compliance
and density. The filtering procedure can also be used to upscale (downsample) well
logs. More accurate FD modelling results were achieved with upscaled models by the
proposed method compared to upscaling by Backus averaging (Backus, 1962), which is
the conventional method.

The FD modelling accuracy was investigated for a varying grid sampling interval, which
has a huge impact on the computational cost of the simulation. We found that a spa-
tial sampling of 4-5 grid points per shortest wavelength is generally sufficient for high
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accuracy throughout the full bandwidth of the signal. In case of thin layers with strong
impedance contrasts, a denser grid sampling is needed to obtain full bandwidth accuracy
also at wide angles.

The conclusions of this study are directly applicable to an optimal grid representation of
discontinuities, such as the seabed or sediment-salt interfaces. The sampling recommen-
dation concluded from the study is relevant for central-grid FD schemes, that are widely
used in the seismic industry as part of full waveform inversion or reverse time migration.
Furthermore, the suitability of the reflectivity method as an accurate and computation-
ally efficient full-wavefield seismic modelling tool for layered media is demonstrated.

6.2 Article II

S. Tschache, V. Vinje, J. E. Lie, E. Iversen, Quantifying amplitude-variation-with-offset
uncertainties related to calcite-cemented beds using a Monte Carlo simulation, Interpre-
tation 11(2), T315–T329, 2023.

Calcite cementation is often observed locally in shallow marine sandstones forming con-
cretions or thin beds of calcite-cemented rock. Calcite-cemented beds are characterised
by a high acoustic impedance and typical thicknesses in the range 0.1-1.5 m. Owing
to their strong acoustic impedance contrast with the surrounding rock, calcite-cemented
beds produce detectable seismic reflection signals which might interfere with target re-
flections at the top of a reservoir. In such a case, the amplitude variation with offset
(AVO) of the observed seismic signature will be perturbed and may even lead to a false
hydrocarbon indication.

Pore fluids can be predicted by a Bayesian classification of the AVO attributes inter-
cept and gradient. If the AVO attributes are potentially altered by the interference with
seismic responses of calcite-cemented beds, the pore-fluid prediction will be impaired.
Therefore, a workflow was devised that allows the quantification of the uncertainty of
AVO-based pore-fluid discrimination associated with calcite-cemented beds. The work-
flow uses well data to extract regional rock-physical properties and is demonstrated using
a case example of the Alvheim field on the Norwegian Continental Shelf. Two types of
models are generated, where calcite-cemented beds are either absent or present. Many
realisations of these models are considered in a Monte Carlo simulation. Synthetic seis-
mic angle gathers are computed and the AVO attributes at the top of the reservoir are
extracted.

A crucial element of the workflow is the seismic forward modelling method that is used
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as part of the Monte Carlo simulation. It is demonstrated that convolutional modelling
using plane-wave reflection coefficients fails for models that contain calcite-cemented
beds, while the reflectivity method generates correct synthetics.

It was observed that the uncertainty of the pore-fluid classification increases significantly
when calcite-cemented beds are present. In the case example, the probability of a false
hydrocarbon indication increases from 3–5 % to 18–21 % due to the presence of calcite-
cemented beds. A Bayesian classifier based on models that contain calcite-cemented
intervals performed slightly better than a classifier based on models without calcite-
cemented intervals when tested at well locations.

The study shows that calcite-cemented beds can create a serious AVO pitfall. The pres-
ence of such thin, hard beds should not be ignored in a pore-fluid prediction. Otherwise,
the uncertainty will be underestimated. The proposed workflow provides useful uncer-
tainty estimates for the pre-drilling risk assessment of AVO anomalies.

6.3 Article III

S. Tschache, V. Vinje, J. E. Lie, M. Brandtzæg Gundem, E. Iversen, Estimation of net-
to-gross ratio and net pay from seismic amplitude variation with offset using Bayesian
inversion, submitted to Interpretation 5 April 2023.

Turbidite reservoirs are characterised by a sand-shale interbedding which is typically
below the seismic resolution. Essential properties in reservoir characterisation are the
net-to-gross ratio, the ratio of net sand of a gross reservoir thickness, and the net pay,
which comprises the sand intervals that are sufficiently saturated by hydrocarbons for
economic production. The estimation of these reservoir properties in-between wells can
be attempted by using seismic data, particularly the AVO information.

We present a Bayesian inversion that estimates a bivariate probability density function
of net-to-gross ratio and net-pay-to-net ratio given the AVO intercept and gradient mea-
sured from the seismic reflection at the reservoir top. The statistical characteristics of
sand and shale layers are derived from well data of a specific field. These properties
are used to create many pseudo-wells consisting of sand and shale layers. As seismic
modelling method, a variant of the reflectivity method is used that produces plane-wave
synthetic angle gathers. Because of the moderate acoustic impedance contrasts in the
pseudo-wells consisting of sand and shale beds, the plane-wave synthetics are suitable.
A Monte Carlo simulation is used to estimate probability density functions of AVO in-
tercept and gradient from many pseudo-wells with varying reservoir properties. In this
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way, a likelihood function is estimated that is combined with the prior probabilities of
the reservoir properties.

The inversion was successfully tested on pseudo-wells and then applied to synthetic
seismic AVO at well locations, where the inversion results were robust. Finally, the
inversion was applied to AVO attribute maps produced from seismic field data. Maps
of the most likely values of the net-to-gross ratio, the net-pay-to-net ratio, the resulting
net pay and the uncertainty could be generated. Such maps can add useful information
in the screening for zones of high reservoir quality and hydrocarbon saturation.



Chapter 7

Conclusion, discussion and outlook

7.1 Conclusion

Article I demonstrates the feasibility of the reflectivity method as a benchmark mod-
elling tool for finite-difference modelling in horizontally layered media. It could be shown
that the finite-difference modelling results approach the benchmark with decreasing spa-
tial sampling interval. Consequently, the reflectivity method provides an accurate and
computationally cheaper alternative to finite-difference modelling in horizontally layered
models.

An aliasing-protected resampling (upscaling) method for regularly sampled models is
proposed in Article I. This method allows to integrate discontinuities in the model grid
that are smaller than the grid spacing. It has been shown that grids produced by
this method yield more accurate finite-difference modelling results than upscaled grids
obtained from Backus averaging.

Articles II and III show the potential failure of convolutional seismic modelling in thin-
bedded geology. In both articles, it is demonstrated how the reflectivity method can
be used to generate accurate synthetic angle gathers. Although such a full-wavefield
modelling requires more computation time than convolutional modelling, the suitability
for Monte Carlo simulation is proven.

In Article II, it is shown that thin, hard layers that are well below the seismic resolution
can alter the seismic signatures and AVO considerably. A workflow is presented that
allows to assess the uncertainty of AVO-based pore-fluid prediction in the presence of
thin high-impedance layers. The interference with reflection responses from thin high-
impedance layers increases the uncertainty of the pore-fluid prediction significantly and
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therefore increases the probability of a false positive hydrocarbon indication.

In Article III, the estimation of reservoir properties of turbidite reservoirs from seismic
AVO attributes measured at the top of a reservoir is demonstrated. A Bayesian inversion
is presented that estimates the probability density function of the reservoir properties
net-to-gross ratio and net-pay-to-net ratio. The most likely values and the uncertainty
of the prediction can be assessed in this way. In the case example, the AVO gradient is
correlated with the net-to-gross ratio, while the AVO intercept is most sensitive to the
pore-fluid type.

Sub-seismic heterogeneity is one reason for uncertainty in quantitative seismic interpre-
tation. In this thesis, I therefore advocate the use of probabilistic methods to account for
the inherent non-uniqueness of quantitative interpretation of band-limited seismic data.
Furthermore, inappropriate seismic modelling can lead to significant errors. I show in
this thesis the advantages of full-wavefield elastic seismic modelling by the reflectivity
method for AVO studies. The thesis demonstrates how full-wavefield seismic modelling
can be integrated with Bayesian methods for quantitative seismic interpretation.

7.2 Discussion and outlook

The central method for seismic forward modelling in this thesis is the reflectivity method.
In chapter 3, it is discussed how shot gathers can be generated by this method. For
producing synthetic angle gathers as used in AVO studies, there are two variants applied
in this thesis. The first variant is the generation of spherical-wave shot gathers by the
reflectivity method, followed by a Kirchhoff pre-stack depth migration and an offset-to-
angle mapping as applied in Article II. The second variant can be regarded as a shortcut
to produce plane-wave angle gathers, where the computation of the slowness integral
is omitted as described in section 3.4. This procedure has been proposed by Oliveira
et al. (2018) and was used in Article III. Plane-wave synthetics generated using the
reflectivity method are commonly used (Mallick, 1999; Liu et al., 2016; Oliveira et al.,
2018). However, it should be noted that spherical-wave synthetics are required when a
critical angle is reached in the modelling (cf. subsection 3.2.1). In Article II, the thin
high-velocity layers lead to relatively small critical angles, which makes the usage of
spherical-wave synthetics necessary. The models in Article III consist of shale and sand
beds with moderate contrasts in acoustic impedance allowing the usage of plane-wave
synthetics.

The application of the reflectivity method requires the assumption of a horizontally
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layered medium. A pre-stack migration collapses diffractions and corrects for reflector
dip and curvature effects (Oliveira et al., 2018), such that the assumption of a horizontally
layered subsurface can be applied locally to seismic image gathers. Recent advances of
seismic migration methods, such as reverse time migration, could facilitate the usage
of local 1D inversions based on the reflectivity method for targets with more complex
structures (Mallick and Adhikari, 2015).

1D pre-stack seismic waveform inversions using the reflectivity method have been pro-
posed (Sen and Stoffa, 1991; Stoffa and Sen, 1991; Zhao et al., 1994; Mallick, 1995;
Sen and Roy, 2003) but the conventional pre-stack inversion remains on the basis of
primaries-only convolutional modelling. Compared to convolutional modelling, forward
modelling by the reflectivity method is more time-consuming and it is more complicated
to compute differential seismograms (Sen and Roy, 2003; Liu et al., 2016). With the in-
crease in computing power, pre-stack inversion on the basis of the reflectivity method
gained more attention in recent years (Liu et al., 2016, 2018a; Oliveira et al., 2018; Chen
et al., 2020; Yang and Lu, 2020). For better efficiency, the vectorisation by Phinney
et al. (1987) is often used (Liu et al., 2016, 2018a). All the cited inversion algorithms
have in common that they use plane-wave synthetics. Some of them are implemented in
the τ -p domain which requires a plane-wave transformation of the input data (Sen and
Stoffa, 1991; Stoffa and Sen, 1991; Sen and Roy, 2003; Zhao et al., 1994). Other inver-
sion algorithms are directly applied to seismic angle gathers (Mallick, 1995, 1999; Liu
et al., 2016, 2018a; Oliveira et al., 2018; Chen et al., 2020; Yang and Lu, 2020).

The additional effort of computing spherical-wave seismograms using the reflectivity
method as opposed to plane-wave seismograms is the main reason why plane-wave syn-
thetics are currently preferred for pre-stack inversion (Oliveira et al., 2018). Modern seis-
mic acquisitions typically include long source-receiver offsets to support full-waveform
inversion. This means that seismic reflections at or beyond the critical angle are more
commonly recorded (Zhu and McMechan, 2012). To use the full angle range of the data
instead of muting (post-)critical reflections, spherical-wave reflectivity must be taken into
account. Some authors used spherical-wave reflectivity in pre-stack inversion (Skopint-
seva et al., 2011; Zhu and McMechan, 2012). A current research topic is the usage of
the frequency dependence of spherical-wave reflectivity (Li et al., 2017; Yan et al., 2020;
Cheng et al., 2020, 2022). Spherical-wave amplitude-variation-with-offset and -frequency
inversion is still in an exploratory stage today (Cheng et al., 2022).

From a practical viewpoint, the usage of spherical-wave reflectivity in AVO studies has
two application cases. The first case is seismic data recorded at a short travel distance,
where the wavefront can not be regarded as a plane, e.g., in crosshole seismics, vertical
seismic profiling or near-surface reflection seismics. The other use case is seismic data
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recorded at wide angles that include (post-)critical angles. It is commonly expected that
the inclusion of wider angles in pre-stack inversion improves the inversion results (Gisolf
and Haffinger, 2022), especially for shear modulus and density. However, a recent analysis
by Gisolf and Haffinger (2022) indicates that there is little improvement compared to
more conventional pre-critical angle ranges. Even if post-critical reflection energy might
be of limited benefit for the seismic industry and spherical-wave AVO inversion does not
seem to become the industry standard soon, the widespread usage of simplistic primaries-
only convolutional modelling should be reconsidered. As discussed, 1D pre-stack seismic
waveform inversions based on the reflectivity method applied to muted angle gathers
that contain only pre-critical reflections or applied to seismic data in the τ -p domain
would be an improvement because internal multiple reflections, mode conversions and
transmission loss are included. Another promising approach is the application of targeted
wave-equation-based AVO inversion using an integral representation of the elastic wave
equation (Gisolf et al., 2017).

Although full-waveform inversion based on finite-difference modelling has improved a
lot in the past decade, the method is not yet capable of producing reservoir models of
sufficient detail and accuracy (Mallick and Adhikari, 2015). As 3D elastic full-waveform
inversion could become applicable at reservoir scale in the future, this method could
supersede the 1D pre-stack inversions (Mallick and Adhikari, 2015).

The development of Bayesian methods for the prediction of lithology and fluid classes
from seismic data has made good progress in the last twenty years (Larsen et al., 2006;
Ulvmoen and Omre, 2010; Ulvmoen et al., 2010; Grana and Rossa, 2010; Kolbjørnsen
et al., 2020; Grana et al., 2022). The linearised seismic forward modelling by convolution
proposed by Buland and Omre (2003) is typically used with the mentioned limitations
to single scattering and the plane-wave assumption. The problem of estimating reservoir
properties from seismic data continues to be under active research because it is non-linear
and non-unique even for the noise-free case (Das and Mukerji, 2020).

Another research direction, which is currently explored, is the application of machine
learning techniques for quantitative seismic interpretation. Supervised learning of con-
volutional neural networks has been proposed to estimate elastic or petrophysical proper-
ties from seismic data (Das et al., 2019; Das and Mukerji, 2020). Physics-guided networks
for quantitative seismic interpretation include the physics of seismic wave propagation
in the training of the network (Sun et al., 2020, 2021; Biswas et al., 2019; Vashisth and
Mukerji, 2022). The reflectivity method could be used as a full-wavefield modelling al-
ternative to convolutional modelling for generating training data for supervised learning
or as part of physics-guided networks.
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A B S T R A C T   

Finite-difference modelling estimates the wavefield in the subsurface by solving the elastic or acoustic wave 
equation numerically in a discrete version of the subsurface. The derivatives in the wave equation are approx
imated by their finite-difference counterparts. In this paper, we investigate the accuracy of acoustic finite- 
difference modelling as a function of the spatial sampling rate, the frequency, the source-receiver offset and 
the model parameters and parametrisation. To represent discontinuities in a regular grid, we apply a tapered 
low-pass wavenumber filter to densely sampled compliance and density models using the Nyquist wavenumber 
of the desired grid as cut-off wavenumber. A long filter taper improves the finite-difference modelling accuracy 
but also leads to longer oscillations in the model grids. We use a 2D acoustic central-grid pseudospectral scheme 
and compare it to analytical solutions of the wave equation and the reflectivity method. We show that previous 
recommendations for the spatial sampling of four grid points per shortest wavelength in staggered-grid schemes 
also apply to central-grid schemes. In the case of a single thin layer, the accuracy of finite-difference modelling is 
dependent on the impedance contrast and the layer thickness. For accurate wide-angle reflection amplitudes of a 
thin layer with a strong impedance contrast, a denser grid sampling than four grid points per shortest wavelength 
is required. Furthermore, we demonstrate that the presented wavenumber filtering approach is better suited for 
the downsampling of regularly sampled compliance and density data derived from well logs than Backus 
averaging.   

1. Introduction 

Finite-difference (FD) modelling of seismic wave propagation is the 
engine of reverse time migration (RTM) and full-waveform inversion 
(FWI). It is also a valuable tool in the interpretation of seismic images. 
Because the FD technique finds wide application in the seismic industry, 
a thorough understanding of its accuracy is important. 

Although most applications of seismic FD modelling, such as RTM 
and classical diving-wave FWI, are performed on models with relatively 
smoothly varying properties, realistic geological models often contain 
discontinuities. One example is the seabed that acts as a sharp contrast of 
acoustic impedance in marine seismic exploration (Yao et al., 2018). 
Additionally, strong guided waves resulting from the free surface and 
the fluid-solid boundary reflection can be produced in the water column. 
For instance, FWI in shallow-water North Sea data is challenged by 
water bottom reflections and guided waves (Raknes et al., 2015). Other 
examples of discontinuities encountered in seismic exploration are 

sediment-salt boundaries (Jones and Davison, 2014), basalt (Gallagher 
and Dromgoole, 2008), dolerite intrusions (Scheiber-Enslin et al., 2021), 
or thin layers (Juhlin and Young, 1993). Currently, FWI tends to produce 
models with high resolution so that the FD modelling is performed on 
models with more variations (Routh et al., 2017). 

In this paper, we study the accuracy of acoustic FD modelling in the 
presence of discontinuities from a practical viewpoint. The focus is on 
the following research questions: How should discontinuous models be 
represented in regular grid models for FD modelling? What grid sam
pling is needed for an accurate modelling of models with a step, a thin 
layer or a stack of layers? Does the accuracy vary with offset? What 
consequences does a too coarse grid sampling have for the amplitude 
and phase of each frequency component? The answers to these questions 
give insight into the expected errors of acoustic FD applications and how 
to mitigate them. 

Discontinuous (Aoi and Fujiwara, 1999) and adaptive (Pei et al., 
2009) spatial grids and finite-element methods (De Basabe and Sen, 
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2007) have been proposed for accurate and efficient modelling of wave 
propagation in heterogeneous media. However, adaptive grids make the 
implementation more complex and come with challenges in data man
agement, grid generation and high-performance computing (Zhang and 
Zhang, 2022). Typically, anisotropic acoustic modelling schemes on 
central, uniform grids are used in FWI (Warner et al., 2013; Agudo et al., 
2018) and RTM (Zhang et al., 2011). We restrict our investigation to 
acoustic modelling on central, uniform grids without considering 
anisotropy. 

Stephen (1983) and Levander (1988) compared FD modelling to the 
reflectivity method. They observed high agreement between these two 
modelling techniques when they were applied to a set of simple models 
provided suitable numerical parameters were chosen. However, a 
comparison for finely layered models has not, to our knowledge, been 
published before. 

Gustafsson and Mossberg (2004) and Gustafsson and Wahlund 
(2004, 2005) analysed the errors associated with models containing 
discontinuities for time compact staggered-grid schemes of order two 
and four in both space and time. They showed that the error can be split 
into grid dispersion error and an interface error caused by a disconti
nuity. Grid dispersion can be controlled by using higher-order schemes 
in space (Gustafsson and Wahlund, 2005). Gustafsson and Wahlund 
(2004) demonstrated that the interface error is of first order even if the 
schemes they investigated had second- and fourth-order accuracy for 
smoothly varying model properties. Symes et al. (2008), and Symes and 
Vdovina (2009) estimated the interface error for a second-order in time 
and space staggered FD scheme and confirmed that the interface error is 
of first order. They observed a time shift proportional to the time step 
and the distance between the interface and the staggered computational 
grids. To summarize these observations, we can conclude that there are 
two types of errors, the error caused by grid dispersion and the interface 
error. While the grid dispersion can be controlled by higher-order 
schemes, the interface error is of first order in staggered-grid schemes 
irrespective of their order in space (Symes et al., 2008; Symes and 
Vdovina, 2009). 

To increase accuracy, Moczo et al. (2002) constructed a heteroge
neous staggered-grid scheme based on an averaged medium that rep
resents a material discontinuity. Volume harmonic averaging of bulk 
and shear moduli and arithmetic averaging of density were applied. 
Lisitsa et al. (2010) and Vishnevsky et al. (2014) showed that second- 
order accuracy of common staggered-grid schemes could be preserved 
by applying such a parameter averaging. 

Various methods have been proposed to reduce the interface error in 
central-grid schemes. Cohen and Joly (1996) achieved second-order 
accuracy for a fourth-order scheme by using an optimal averaging pro
cedure based on plane-wave analysis. Zhang and Le Veque (1997) 
developed an immersed interface method to achieve second-order ac
curacy. Another member in the family of interface methods is the 
explicit simplified interface method proposed by Lombard and Piraux 
(2004). 

Mittet (2017) studied the interface error in acoustic FD modelling 
using high-order and pseudospectral staggered-grid schemes. He 
observed that four points per shortest wavelength were required for 
spatial derivatives to avoid this type of error. In a related study, Mittet 
(2021a) confirmed that the pseudospectral method could only provide 
“half-spectral” accuracy in discontinuous media, in the sense that four 
instead of two points (corresponding to spectral accuracy) per shortest 
wavelength were required. This type of spatial aliasing error occurred 
also in high-order finite-difference schemes (Mittet, 2021a). In another 
study, Mittet (2021b) observed an accuracy limit of the order of 1/10 of 
the grid sampling interval for the implementation of interfaces by 
applying a band-limited Heaviside step function to the grids. In this way, 
even layers as thin as 1/1000 of the grid sampling interval could be 
represented properly leading to a small spectral amplitude error of 
±2.5% and a negligible traveltime error. However, the experiments on 
thin-layer models were done in 1D and did not investigate the error for 

non-vertically incident waves. Staggered-grid high-order FD and pseu
dospectral schemes were used in these experiments. 

The majority of studies analysed the interface error associated with 
staggered-grid schemes. However, many forward-modelling-based ap
plications in the seismic industry use central-grid schemes that do not 
include special treatment of discontinuities. Central-grid schemes avoid 
numerical inaccuracies introduced by the interpolation necessary in 
staggered-grid schemes (Zhang et al., 2011). It is therefore important to 
investigate the interface error associated with central-grid schemes. 

The cited studies restrict the numerical experiments to simple models 
for which the analytical solution exists. To go further, we use the 
reflectivity method as a reference to include thin-layer and multi-layer 
models. In this way, a better understanding of the accuracy of the FD 
method in more realistic scenarios can be gained. 

In contrast to many other studies, we use a broadband wavelet with a 
uniform amplitude over a large frequency range to study the errors in 
amplitude and phase for each frequency component. Such an investi
gation yields more insight than a visual comparison of waveforms or 
simple error estimates as has been demonstrated by Mittet (2017, 2021a, 
2021b). Furthermore, we study the variation of amplitude and phase 
errors with offset, which is especially relevant in the context of ampli
tude and phase variation with offset studies. 

In this study, we compare the results of acoustic FD modelling to a 
true reference and investigate the interface error on simple (but not 
necessarily analytical) cases. In the simple case of a two-layer model, the 
analytical solution is computed by the Cagniard-de Hoop method 
(Cagniard, 1939, 1962; De Hoop, 1960). In multi-layer cases, modelling 
results of the reflectivity method (Fuchs and Müller, 1971; Müller, 1985; 
Kennett, 2009) serve as a reference. This modelling technique allows 
full-waveform modelling for horizontally layered media and is accurate 
for layers of any thickness (Daley and Hron, 1982). In order to save 
computation time in the FD modelling, the numerical experiments are 
done in 2D. The findings are still relevant for 3D modelling, since nu
merical errors persist when the dimensionality of the simulation is 
increased (Mittet, 2021a). 

The paper is structured as follows: In section 2, we introduce the 
three modelling methods used in this study: the Cagniard-de Hoop 
method, the reflectivity method and the acoustic FD method. Another 
important aspect in section 2 is the preparation of grid models for FD 
modelling. In section 3, we analyse the accuracy of acoustic FD 
modelling results compared to the true reference for a step model, a thin- 
layer model and a realistic multi-layer model derived from a well log. 
Sections 4 and 5 are devoted to a discussion of the results and our 
conclusions for acoustic FD modelling in practice. 

2. Methods 

2.1. Cagniard-de Hoop method 

The Cagniard-de Hoop method provides an analytical solution for 
wave propagation in stratified media. Diaz and Ezziani (2010) imple
mented this method for simple two-layer models and wave propagation 
in 2D (see Diaz and Ezziani, 2015). We used this code to calculate the 
analytical solution for the step model (section 3.1). Strictly speaking, the 
solution is quasi-analytical, since a numerical convolution is involved, 
but we refer to it as an analytical solution in this article. 

2.2. Reflectivity method 

We used the reflectivity method (RM) as the modelling technique for 
thin-layer and multi-layer models. The RM proved to be highly accurate 
when compared to the analytical solution computed by the Cagniard-de 
Hoop method for a step model. 

Only the relevant principles of the RM are explained here and the 
reader is referred to Müller (1985) and Kennett (2009) for details. The 
RM is based on the Sommerfeld integral, which itself can be derived 

S. Tschache et al.                                                                                                                                                                                                                               

64 Scientific results



Journal of Applied Geophysics 206 (2022) 104789

3

from the Weyl integral for cylindrical symmetry (Müller, 2007). By the 
Sommerfeld integral, a spherical wave can be expressed as a super
position of conical waves (Aki and Richards, 2002). The RM was first 
proposed by Thomson (1950) and later developed by Fuchs and Müller 
(1971), Kennett (1979), Fryer (1980) and others. Typically expressed as 
a numerical integration over a part of the real and positive horizontal 
slowness axis, we found it beneficial to change the integration variable 
as proposed by Fuchs (1968). A review of the derivation of the relevant 
equations, which were used to produce the reference solutions for thin- 
layer and multi-layer modelling examples, is provided in Appendix A. 

For the computation of synthetic seismograms in time, first the 
overall P-P reflectivity RPP is computed by Kennett’s method (Kennett, 
1974) for a range of frequencies ω and angles of incidence θ to obtain 
RPP(ω,θ). This recursive computation involves the frequency- 
independent plane-wave reflection and transmission coefficients given 
by the Zoeppritz equations (Aki and Richards, 2002) as well as phase 
terms. The frequency dependency is introduced by those phase terms, 
which are responsible for correct traveltimes and interference of scat
tering. For a large number of layers, the task of computing RPP(ω,θ) is 
the most demanding in terms of computation time. In the next step, the 
integral over θ (see Eqs. (A.5) and (A.6)) is computed by numerical 
integration using the trapezoidal rule. In practice, the integrand should 
be inspected to find a suitable upper integration limit. Furthermore, a 
taper at the upper integration limit is recommended (Mallick and Frazer, 
1987). After integration, a multiplication with the factors in Eqs. (A.5) 
and (A.6) including the source excitation function is performed. Finally, 
the inverse Fourier transform is used to compute the pressure signals in 
time. 

By relationships between the source excitation F(t) of an explosive 
pressure point or line source and the resulting waveform at any distance 
given by Müller (2007), it is possible to calculate the source function 
that gives rise to a desired wavelet at a specific distance from the source. 
In our modelling examples, we used the tapered Ormsby wavelet shown 
in Fig. 1. As a broadband wavelet with a flat amplitude spectrum over a 
wide frequency range, it allows us to analyse the interface error of each 
frequency component. The tapered Ormsby wavelet has the corner fre
quencies 6 Hz, 10 Hz, 100 Hz and 120 Hz, a peak time of 0.1 s, a duration 
of 0.2 s and a maximum amplitude of 1. 

2.3. Finite-difference method 

The 2D acoustic wave equation for pressure P(x, t) at position x = (x, 
z) and time t is given by Eq. (1) 

κ(x)
∂2P(x, t)

∂t2 − ∇⋅
(

1
ρ(x)

∇P(x, t)
)

= S(x, t), (1)  

where κ(x) and ρ(x) denote compliance and density, respectively, and S 
(x, t) is the source term. The compressional wave velocity α is α =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(κρ)−1

√
. 

We used the Fourier method (Fornberg, 1975; Kosloff and Baysal, 
1982), also called the pseudospectral method, where the spatial de
rivatives are computed in the Fourier domain. The spatial derivatives are 
exact up to the Nyquist wavenumber making a sampling of two grid 
points per shortest wavelength sufficient in theory. 

For the time derivatives, a fourth-order finite-difference approxi
mation (Etgen, 1986) was used. We used small time steps to ensure 
stability according to the Courant-Friedrichs-Lewy condition, avoid er
rors in the source injection, and to reduce temporal dispersion. The 
maximum relative dispersion error was computed to be <10−5 so that a 
correction was not required. 

The simulations were performed on a uniform, central grid. Perfectly 
matched layers as well as model extension were used at all model 
boundaries to avoid any model boundary reflections interfering with the 
target reflection signal. 

2.4. Tapered low-pass wavenumber filtering of models 

To find the optimal representation of a discontinuity in a regular 
grid, we devised an aliasing-protected algorithm similar to a procedure 
proposed by Mittet (2017). Starting from ideal models with sharp con
trasts, very densely sampled models of P-wave velocity α and density ρ 
with a sampling interval of Δz′=0.001 m were created. In the next step, 
the compliance κ = ρ−1α−2, the inverse of the bulk modulus, was 
computed. 

The application of a non-windowed low-pass filter to the models 
would lead to long tails of Gibbs oscillations in the filtered models. These 
oscillations would be eventually sharply truncated at the model 
boundaries. Moreover, source and receivers would be located in a 
weakly varying medium instead of a homogeneous medium. In order to 
have a better control over the truncation and to understand its effect on 
the simulation result, we created a tapered low-pass filter. A window of 
length N′Δz′ = NΔz was defined, where Δz is the desired spatial sampling 
interval and N′, N > 0 are even numbers. The ideal filter coefficients fj of 
a low-pass filter with the Nyquist wavenumber kcut = 1

2Δz of the desired 
grid sampling as cut-off wavenumber represent a discrete sinc function, 
here expressed for N′ + 1 samples as 

fj = 2kcut

sin
(

jπ kcut
kNy

)

jπ kcut
kNy

, (2)  

where kNy = 1
2Δz′ , j = 0, ±1, ±2, …, ±N′

2 . The filter coefficients fj were 
multiplied by a flat-top window function wj (D’Antona and Ferrero, 
2006) 

wj = a0 − a1cos
2π

(
j +

1
2
N

′

)

N ′ + a2cos
4π

(
j +

1
2

N
′

)

N ′

−a3cos
6π

(
j +

1
2
N ′

)

N ′ + a4cos
8π

(
j +

1
2
N ′

)

N ′ ,

(3)  

where a0 = 0.21557895, a1 = 0.41663158, a2 = 0.277263158, a3 =

0.083578947, a4 = 0.006947368, to create a tapered low-pass filter. 
This filter was applied to the densely sampled models Vi, i = 1, …, L of 
compliance or density, respectively, 

Vfilt
i = Vi*

(
wjfj

)
. (4) Fig. 1. Tapered Ormsby wavelet (top) used in all numerical experiments and its 

amplitude spectrum (bottom). 
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Finally, the densely sampled filtered model Vi
filt was resampled to the 

desired spatial sampling Δz. The velocity can then be computed from 
filtered compliance and density models. 

Because of the application of a window function to the filter, only N 
+ 1 grid points of the resampled model will be affected by a jump in a 
material property. Fig. 2 illustrates the tapered Gibbs oscillations for two 
different values of N. The windowing of the low-pass filter implies that 
the wavenumber filter has a less steep slope, i.e., its transition zone 
becomes wider as N becomes smaller. Hence, a limited portion of 
wavenumbers above the Nyquist wavenumber will remain after 
filtering. To evaluate the error associated with the tapering, we 
compared FD modelling results from tapered models with different 
window lengths NΔz to modelling results from a non-tapered version. In 
this test, the source and receivers had a vertical distance of 500 m from 
the interface as shown in Fig. 3, so that the Gibbs oscillations have 
decayed almost entirely in the non-tapered version. We used a spatial 
sampling of Δz = 2 m. The L2-norm error E was computed for each trace 
as 

E =

∑S−1

l=0
(fN(lΔt) − f (lΔt) )

2

∑S−1

l=0
(f (lΔt) )

2
, (5)  

where S is the number of trace samples, Δt the time sampling interval, fN 
represents a trace modelled using a tapered model and f represents a 
trace modelled using a non-tapered model. In Fig. 2, the L2-norm error 
averaged over all traces is given as an estimate of the error that is caused 
by applying the taper. Our numerical experiments showed that choosing 
N between 10 and 20 appeared to be a good trade-off to keep the Gibbs 
oscillations short and the taper-induced error low. 

Fig. 4 illustrates how the location of the reflector relative to the grid 
determines where the filtered function is sampled. If the reflector is 

located at the centre of a grid cell, the maximum roughness of the Gibbs 
oscillation is captured (cf. Mittet, 2017) with the samples being located 
at the peaks and troughs of the oscillations as shown in Figs. 2 and 4d. If 
the reflector is located at the boundary of a grid cell (Fig. 4a), the 
samples are located close to the inflection points of the oscillations. We 
will investigate later what impact the interface location with respect to 
the grid has on the FD modelling result. 

3. Results 

3.1. Step model 

In the first example of this study, we analyse the modelling error of 
the acoustic finite-difference (FD) method compared to the analytical 
solution for a single flat reflector. This reflector is located around 500 m 
below the source and receivers, which are all positioned at the same 
depth as visualised in Fig. 3. It separates two homogeneous half spaces 
with the properties given in Fig. 3. We applied the algorithm described 
above to create the grid models for the FD method using a taper of N =
10. 

The direct wave was removed from all modelling results by sub
traction. In this way, we can compare the single reflection event. We 
computed the normalised amplitude R(ω) and the phase difference 
expressed as the traveltime error Δτ(ω) in milliseconds for a specific pair 
of source and receiver by Eqs. (6) and (7) 

R(ω) =
AFD(ω)

ARef(ω)
, (6)  

Δτ(ω) = 1000
ϕFD(ω) − ϕRef(ω)

ω , (7) 

Fig. 2. Illustration of tapered low-pass wavenumber filtering of a 1D velocity 
step model. The densely sampled model (blue) is low-pass filtered (red) with a 
non-tapered filter (a) and tapered filters (b, c) so that N + 1 grid points are 
affected by the step. Black crosses show the grid samples with an interval of Δz 
= 2.0 m. Note that the Gibbs oscillations are asymmetric because the filtering is 
done in compliance and density. Average L2-norm errors of FD modelling re
sults caused by the taper are given below the plots. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 3. Source and receiver locations in all modelling experiments. Receiver 
spacing is 10 m. Layer properties of the step model with constant density 
are given. 

Fig. 4. Tapered low-pass wavenumber filtering of a 1D velocity step model 
with varying locations of the step relative to the grid. The densely sampled 
model (blue) is low-pass filtered (red) using a tapered filter of N = 10. Black 
crosses show the grid samples with an interval of Δz = 2.0 m. The step is 
located at z = 500.0 m (a), z = 500.1 m (b), z = 500.5 m (c) and z = 501.0 m 
(d), while the samples at z = 499 m, 501 m, etc. represent the centres of grid 
cells. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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where AFD(ω) and ϕFD(ω) denote the amplitude and phase spectrum of 
the FD signal and ARef(ω) and ϕRef(ω) denote the amplitude and phase 
spectrum of the reference signal, which is the analytical solution in this 
case. 

3.1.1. Varying reflector location with respect to grid 
In a first experiment, we analysed the impact of the reflector location 

with respect to the grid on the FD modelling accuracy. Fig. 5 illustrates 
various locations of an interface related to a grid cell of Δx = Δz = 4.0 m 
that is located between z = 500 m and z = 504 m. We tested four 
different reflector depths. At z = 500 m, the reflector is aligned with the 
boundary of a grid cell. At z = 500.66 m and z = 501.33 m, the reflector 
crosses a grid cell. At z = 502 m, the reflector is aligned with the centre 
of a grid cell. These locations can be expressed as 500 m + aΔz depth 
with a = 0, a = 1

6, a = 1
3 and a = 1

2. The amplitude and phase errors for 
these four scenarios are given in Fig. 6. It turns out that the best accuracy 
in terms of both amplitude and phase is achieved if the reflector is 
aligned with a grid cell boundary or, in other words, is located mid-way 
between two grid nodes. The largest error is observed if the reflector is 
located at the centre of a grid cell. This case represents the most chal
lenging scenario and will be the focus of subsequent experiments to 
evaluate the accuracy of FD modelling. From Figs. 2 and 4, we can 
observe that the grid captures the maximum roughness of the Gibbs 
oscillations if the interface is located at the centre of a grid cell. 

3.1.2. Varying grid sampling 
Having identified the least and most challenging location of reflector 

position relative to the grid, we tested various grid samplings Δx = Δz in 
these two locations using a taper size of N = 10. The normalised 
amplitude and traveltime errors are shown in Fig. 7. The Fourier method 
used in this study requires a spatial sampling of at least two grid points 
per shortest wavelength. With a maximum frequency of 120 Hz and a 
minimum velocity of 1500 m/s, the shortest wavelength is 12.5 m long. 
Theoretically, a grid sampling of 6.0 m should be sufficient to avoid grid 
dispersion. In the optimal case, where the interface is aligned with the 
grid cell boundaries, all tested grid samplings gave accurate modelling 
results. However, in the most challenging scenario, where the interface 
is aligned with the centres of the grid cells, the accuracy deteriorates 
with increasing frequency and grid sampling interval. We observe a 
slight amplitude loss in the high-frequency components for Δx = Δz =
2.0 m. This effect is even more dramatic for larger spatial sampling in
tervals. For Δx = Δz = 3.0 m, the amplitudes are reliable up to about 80 
Hz. In the case of a grid sampling of 4.0 m, the limit is already reached at 
about 60 Hz and additionally a small phase error is observed at high 
frequencies. At long offset, that is, for wide-angle reflections, the 
amplitude and phase errors vanish for all tested grid sampling intervals. 
This observation is demonstrated by Fig. 8, which shows the normalised 
amplitude and traveltime error at 1000 m offset corresponding to an 
incidence angle of 45◦. 

3.1.3. Varying taper size 
The aim of our next experiment was to analyse the impact the taper, 

which is used in the wavenumber filtering of the grid models, has on the 
accuracy of the FD modelling results. We focus on the most challenging 
reflector location where it is aligned with the grid cell centres. Instead of 
using a taper size of N = 10, we increase N to 20 and 100, which means 
that longer tails of Gibbs oscillations away from the interface are 
included (see Fig. 2). The accuracy of the FD modelling results is shown 
in Fig. 9. Allowing more grid points to sample the Gibbs oscillations and 
represent the parameter jump improves the modelling results by shifting 
the amplitude accuracy limit to higher frequencies for each grid sam
pling. We observe that the limit is shifted up by about 20 Hz for N = 20 
compared to the previous example where a taper of size N = 10 was used 
(Fig. 7, right). When using N = 100, highly accurate modelling results up 
to a grid sampling of 3.0 m are achieved. These results suggest that there 
is a trade-off between shortness of the operator containing the Gibbs 
oscillations on the one hand and required minimum grid sampling for 
full-bandwidth accuracy on the other. 

3.1.4. Model grid in compliance vs. slowness 
Another interesting question concerns which material property the 

tapered low-pass wavenumber filtering should be applied to in order to 
create the model grids. For this experiment, we added a jump in density 
from 1000 kg/m3 to 2000 kg/m3 at the same location as the velocity 
increase from 1500 m/s to 3000 m/s. We applied the tapered filter to 
compliance κ = ρ−1α−2 (the inverse of bulk modulus) and density ρ 
(Fig. 10, left) and to slowness α−1 and density ρ (Fig. 10, right). The 
reflector was aligned with the grid cell centres to create the most chal
lenging scenario. A taper of size N = 10 was used. Fig. 10 shows the 
normalised amplitude and traveltime errors for various grid sampling 
intervals. While performing the wavenumber filtering in slowness yields 
amplitude accuracy up to higher frequencies compared to the case of 
filtering in compliance, increasing phase errors occur with increasing 
spatial sampling. Already for a grid sampling of 2.0 m, a small traveltime 
error can be observed, which is present for all frequencies. The results 
suggest that using compliance results in best accuracy in phase, while 
using slowness results in best accuracy in amplitude. Note that slowness 
is not decoupled from density. It was demonstrated by Mittet (2017) that 
compliance and density are the best choice of material properties on 
which to perform the filtering operation. This observation is in agree
ment with the averaging derived by Backus (1962) and Moczo et al. 
(2002). We therefore decided to do the wavenumber filtering procedure 
in compliance and density in the subsequent tests. 

Fig. 5. Finite-difference grid cell (blue) of size Δx = Δz = 4.0 m and various 
reflector depths indicated by lines: z = 500.0 m (black, solid), z = 500.66 m 
(dark red, dash-dotted), z = 501.33 m (red, dashed) and z = 502.0 m (orange, 
dotted). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 6. Normalised amplitude (top) and traveltime error (bottom) of the 
reflection signal from a reflector at 500 m + aΔz depth observed at 100 m offset 
and modelled by the acoustic FD method using a spatial sampling Δx = Δz =
4.0 m. The factor a determines the location of the reflector relative to the grid as 
shown in Fig. 5. 
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3.2. Thin-layer model 

In this experiment, we analyse the accuracy of the FD modelling of a 
reflection response from a thin, flat layer. The background model has a 
velocity of 1500 m/s and a density of 1000 kg/m3. At a depth of about 
500 m below the source and receivers (located as shown in Fig. 3), a thin 

layer with a thickness of 2 m, a velocity of 3000 m/s and a density of 
2000 kg/m3 was inserted. Wavenumber filtering and model sampling 
were performed in compliance and density using a taper size of N = 10. 
Similar to the previous examples, the direct wave was removed by 
subtraction prior to analysis of the reflection signal. The reference signal 
was calculated by the reflectivity method. The normalised amplitude of 
the FD modelling results and the traveltime error were computed by Eqs. 
(6) and (7). 

With a thickness of 2 m and a velocity of 3000 m/s, the layer can be 
regarded as thin according to the Widess criterion of a thickness below 
λ/8 (Widess, 1973), where λ denotes the wavelength computed by the 
velocity of the thin layer and the maximum frequency of the wavelet. In 
such a case and opposite polarity reflectivity, the thin layer acts as an 
approximate time derivative operator to the wavelet. Fig. 11 illustrates 
how the initially flat spectrum is now altered such that there is a 
maximum amplitude at approximately 96 Hz. The figure also demon
strates the high accuracy of amplitudes for a grid sampling of up to 1.0 m 
and a weak amplitude loss for Δx = Δz = 2.0 m. 

We investigated two different cases for the location of the thin layer 
with respect to the grid. In one case, the layer centre is aligned with a 
grid cell boundary, in the other case, it is aligned with a grid cell centre. 
Fig. 12 illustrates the velocity models after wavenumber filtering in 
compliance and density and the sample locations in these two cases for 
two different layer thicknesses. If the layer is centred at a grid cell 
boundary (Fig. 12a, c), the samples do not capture the maximum of the 
filtered function, but they capture the oscillations away from the layer. If 
the layer centre is aligned with the centre of a grid cell (Fig. 12b, d), the 

Fig. 7. Normalised amplitude (top) and traveltime error (bottom) of the reflection signal from a single reflector aligned with grid cell boundaries (left) and aligned 
with grid cell centres (right) observed at 100 m offset and modelled by the acoustic FD method using varying spatial sampling Δx = Δz. 

Fig. 8. Normalised amplitude (top) and traveltime error (bottom) of the 
reflection signal from a single reflector aligned with grid cell centres observed 
at 1000 m offset and modelled by the acoustic FD method using varying spatial 
sampling Δx = Δz. 

Fig. 9. Normalised amplitude (top) and traveltime error (bottom) of the reflection signal from a single reflector aligned with grid cell centres observed at 100 m 
offset and modelled by the acoustic FD method using varying spatial sampling Δx = Δz and using a taper size of N = 20 (left) and N = 100 (right) to prepare the grids. 
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maximum of the filtered function is sampled, but the oscillations away 
from the layer are only weakly represented in the sample locations. 
Fig. 13 shows the normalised amplitude and traveltime error for varying 
spatial sampling if a 2 m thick layer is centred at grid cell boundaries and 
if its centre is aligned with grid cell centres. 

For a thin layer, the FD modelling result is better if the layer centre is 
aligned with the centre of a grid cell. In this ideal case, full bandwidth 
accuracy up to Δx = Δz = 3.0 m can be achieved. By analogy with the 
step model, this is the case in which the oscillations represented by grid 
samples are the weakest. We have also seen that the maximum of the 
filtered velocity is captured by a sample, which supports amplitude ac
curacy. In the most challenging case where the layer is centred at the 
boundary of a grid cell, good accuracy is observed for the fine grid 
samplings of 0.5 m and 1.0 m. A weak amplitude loss occurs at the high- 
frequency components of the signal for Δx = Δz = 2.0 m, but the ac
curacy is still acceptable. For a larger spatial sampling, significant 
amplitude errors at high frequencies are seen. The traveltimes are cor
rect except for Δx = Δz = 4.0 m above 95 Hz. It should be noted that the 
relative amplitude and phase errors seem to be large at low frequencies 
but are small in absolute values because the amplitudes are very low at 
such low frequencies (see Fig. 11). 

Fig. 14 shows how the normalised amplitude varies with incidence 
angle for a layer thickness of 2.0 m (solid lines) and 0.2 m (dashed lines). 

In addition, an example with a weaker contrast in material properties is 
shown (dash-dotted lines). In this model, the velocity is increased by 
200 m/s and the density is increased by 200 kg/m3 in the 0.2 m thin 
layer. We used the most challenging scenario where the layer is centred 
at the grid cell boundaries and plotted the normalised amplitude at 60 
Hz. 

Unlike the step model, where amplitude and phase errors were 
reduced with increasing offset, in a thin-layer case, we observe an 
amplitude loss which increases as the angle of incidence or offset in
creases. This amplitude error is frequency-independent. It strongly de
pends on the layer thickness and the contrast in material properties. For 
all examples, we see that the amplitude error increases with increasing 
grid sampling. The results suggest that it is challenging to obtain an 
accurate amplitude variation with offset (AVO) response by FD model
ling when very thin layers with strong contrasts in material properties 
are present. Traveltime errors were negligible in all shown examples. 

3.3. Multi-layer model 

After evaluating the accuracy of FD modelling for simple discontin
uous models, we analysed the accuracy of the FD method in a more 
realistic model. At the same time, we compared the model down
sampling by wavenumber filtering used in this study to the widely used 
Backus average (Backus, 1962). Based on well log data, we built a multi- 
layer model consisting of a stack of thin layers with a constant thickness 
of 0.2 m between 500 m and 600 m depth and extrapolated constant 
model properties upwards and downwards. We applied the tapered low- 
pass wavenumber filtering to the compliance and density models of the 
original sampling Δz′ = 0.2 m to create models of sampling Δz = 3.0 m 
and Δz = 4.0 m using N = 14 and N = 20, respectively. An alternative 
approach to downsample densely sampled elastic properties is to use the 
Backus average. For our case of acoustic, isotropic layers, the equations 
reduce to an averaging of compliance and an averaging of density. 
Hence, for Δz = 3.0 m, 15 layers of thickness 0.2 m contribute to one 
sample point. For Δz = 4.0 m, averaging is done over 20 layers. Fig. 15 
demonstrates that the resulting downsampled models of wavenumber 
filtering and Backus average are similar but not identical. It should be 
noted that the Backus averaging is only valid if Δz is much smaller than 
the seismic wavelength, that is, maximum 1/10 of the wavelength 
(Mavko et al., 2009). With the shortest wavelength being 15.5 m in this 
example, the criterion is not fulfilled for Δz = 3.0 m or larger. 

Source and receiver locations are the same as in previous experi
ments (see Fig. 3). We used the reflectivity method to produce a refer
ence dataset based on the original densely sampled model with Δz′ = 0.2 
m. Fig. 16 shows the FD modelling results for the model versions 

Fig. 10. Normalised amplitude (top) and traveltime error (bottom) of the reflection signal from a single reflector aligned with grid cell centres observed at 100 m 
offset and modelled by the acoustic FD method using varying spatial sampling Δx = Δz. Left: The discontinuity was filtered in compliance and density. Right: The 
discontinuity was filtered in slowness and density. 

Fig. 11. Absolute amplitude of the reflection signal from a 2 m thick layer 
centred at grid cell boundaries observed at 100 m offset. The cyan graph shows 
the reference amplitude spectrum modelled by the reflectivity method (RM). 
The other graphs display the amplitude spectra of the acoustic FD modelling 
results using a varying spatial sampling Δx = Δz. 
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downsampled to Δz = 3.0 m compared to the reference dataset. The FD 
modelling results for the models resampled by the tapered low-pass 
wavenumber filter are in good agreement with the reference dataset 
and superior to the modelling results for the models produced by Backus 
averaging although differences are small. As noted before, the Backus 
average loses validity if the layer thickness becomes too large with 
respect to the wavelength. 

Using a grid sampling interval of 4.0 m, which results in less than 
four points per shortest wavelength, yields poorer results as can be seen 
in Fig. 17. At short offsets, the high-frequency components of the FD 
modelling results based on the models produced by wavenumber 
filtering are too low in amplitude. At longer offset, the accuracy is 
satisfactory. As for 3.0 m sampling, the model created by Backus aver
aging leads to larger errors. The observations support the conclusion 
from the simple step model that four to five grid points per shortest 
wavelength are needed for full bandwidth accuracy. Similar to the step 
model, this requirement can be relaxed at long offsets. 

4. Discussion 

The reflectivity method can be regarded as a pseudo-analytical so
lution of the wave equation for layered models and has been used as a 
reference in other studies dealing with the accuracy of the FD method 
(Levander, 1988). By using the reflectivity method as a reference, we 
were able to analyse the offset-dependent accuracy of acoustic FD 
modelling for finely layered models. 

Symes and Vdovina (2009) demonstrated that a discontinuity 
without special treatment leads to an interface error in finite-difference 
(FD) modelling. The interface error is purely in phase, thus, creating a 
time shift. It arises from misalignment between material discontinuities 
and computational grids. Mittet (2017) proposed the use of a band- 
limited Heaviside step function to properly implement a parameter 
jump in the simulation grid. The wavenumber limit is defined by the 
Nyquist wavenumber of the grid. By following this approach, the loca
tion of the interface is arbitrary and the phase error caused by 

Fig. 12. Tapered low-pass wavenumber filtering of a 1D velocity model of a thin layer with increased velocity of 3000 m/s compared to the background velocity of 
1500 m/s for varying locations of the layer centre relative to the grid. The densely sampled model (blue) is low-pass filtered (red) with a tapered filter of taper size N 
= 10. Black crosses show the grid samples with an interval of Δz = 2.0 m. a: 2 m thick layer centred at a grid cell boundary. b: 2 m thick layer centred at a grid cell 
centre. c: 0.2 m thick layer centred at a grid cell boundary. d: 0.2 m layer centred at a grid cell centre. The velocity axis is clipped in c and d. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 13. Normalised amplitude (top) and traveltime error (bottom) of the reflection signal from a thin layer of 2 m thickness with its centre being aligned with grid 
cell boundaries (left) and grid cell centres (right) observed at 100 m offset and modelled by the acoustic FD method using varying spatial sampling Δx = Δz. 
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misalignment with the grid (when there is no special treatment of the 
interface) is corrected. In our study, we used a similar approach to limit 
the wavenumbers to the Nyquist wavenumber of the simulation grid. In 
all examples, we have shown that there is no phase error if discontinu
ities are filtered in compliance and density and the grid sampling is 
sufficiently fine. 

Regarding the accuracy of amplitudes in the step-model example, we 

make similar observations to the staggered-grid observations of Mittet 
(2017, 2021a). For the general case, where the location of the discon
tinuity is not aligned with the grid, Mittet (2017) concluded from ex
periments using staggered-grid schemes that four to five grid points per 
shortest wavelength are required. In our experiments using a central- 
grid scheme, we observed that a spatial sampling of Δx = Δz = 3.0 m, 
corresponding to four grid points per shortest wavelength, is sufficient 
for accuracy in amplitude and phase when allowing N + 1 = 101 grid 
points to sample a discontinuity in material properties. Using a grid 
sampling of 4.0 m, corresponding to only 3 grid points per shortest 
wavelength, leads to inaccuracies in amplitude and phase for the high- 
frequency components. The amplitude error is dominant over trav
eltime error. 

Reducing the taper size N shifts the accuracy limit for each grid 
sampling towards lower frequencies, so that a grid sampling of Δx = Δz=

3.0 m is no longer sufficient for full bandwidth accuracy when N = 20 or 
N = 10. Using a small N makes the accuracy of the FD modelling more 
dependent on the location of the discontinuity relative to the grid. In 
agreement with Mittet (2017), we concluded that the most challenging 
scenario is reached when the interface is aligned with the centre of a grid 
cell. In such a situation, the grid samples capture the peaks and troughs 
of the Gibbs oscillations (see Fig. 4). An interesting observation is that 
the strict requirement concerning the number of grid points per shortest 
wavelength can be relaxed in the case of a wide-angle reflection from a 
single interface (see Fig. 8). 

We have shown that the wavenumber filtering is ideally done in 
compliance and density for optimal accuracy. This choice is in agree
ment with the Backus average that reduces to an averaging in compli
ance and density for the isotropic, acoustic case and with the averaging 
proposed by Moczo et al. (2002). 

Fig. 14. Amplitude variation with incidence angle of the normalised amplitude 
at 60 Hz of the reflection signal from a thin layer for a varying spatial sampling 
Δx = Δz. Solid lines represent the example with a layer thickness of 2.0 m, 
dashed lines represent the example of a 0.2 m layer thickness and dash-dotted 
lines correspond to a 0.2 m layer thickness and a weaker contrast in acous
tic impedance. 

Fig. 15. Resampling of densely sampled models with Δz′ = 0.2 m (blue, solid line) using Backus averaging (red, dashed line) and tapered low-pass wavenumber 
filtering (black, solid line). From left to right: velocity and density resampling to Δz = 3.0 m, velocity and density resampling to Δz = 4.0 m. 
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Fig. 16. FD modelling results (top) and corresponding amplitude spectra (bottom) for models downsampled from 0.2 m to 3.0 m spatial sampling by Backus 
averaging (red, dashed line) and tapered low-pass wavenumber filtering (black, solid line) compared to the reference dataset computed by the reflectivity method for 
the densely sampled model (cyan, solid line). The reflection response of the 500–600 m interval (Fig. 15) is shown after removal of the direct wave. Centre: difference 
between FD modelling results and reference. Left: observed at 100 m offset. Right: observed at 1000 m offset. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 17. FD modelling results (top) and corresponding amplitude spectra (bottom) for models downsampled from 0.2 m to 4.0 m spatial sampling by Backus 
averaging (red, dashed line) and tapered low-pass wavenumber filtering (black, solid line) compared to the reference dataset computed by the reflectivity method for 
the densely sampled model (cyan, solid line). The reflection response of the 500–600 m interval (Fig. 15) is shown after removal of the direct wave. Centre: difference 
between FD modelling results and reference. Left: observed at 100 m offset. Right: observed at 1000 m offset. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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A typical application of these findings would be seabed reflections. 
Mittet (2021b) proposed a method to perform the parameter smoothing 
locally for continuous horizons. In this way, the seabed can be properly 
implemented in the simulation grid. With the right choice of taper size N 
and a grid sampling such that the requirement of four to five grid points 
per shortest wavelength is fulfilled, the seabed reflection will be accu
rate in amplitude and phase for the full bandwidth of the signal. 

Although the tapered wavenumber filtering approach allows the 
representation of layers that are thinner than a grid cell, increasing 
amplitude accuracy problems were observed with increasing incidence 
angle, decreasing layer thickness and increasing contrast in material 
properties. Mittet (2021b) observed a slightly increased amplitude error 
but acceptable accuracy even for layers that were significantly thinner 
than a grid cell, e.g., an amplitude error of ±2.5% for a layer thickness 
1/1000 of the grid step length. However, he did not investigate the 
offset-dependency of the amplitude error and used a considerably larger 
number of grid cells to capture the effect of a thin layer in the grid. Our 
results suggest that thin layers with strong parameter contrasts pose a 
challenge to the FD method, especially if an accurate amplitude varia
tion with offset (AVO) response is needed. In such a case, decreasing the 
grid sampling further may help, as Fig. 14 suggests, but may also in
crease computational costs dramatically. Tests have shown that 
increasing the taper size N will only slightly reduce the amplitude error. 
Our work demonstrates that the reflectivity method provides a fast and 
efficient alternative for modelling the AVO effects of thin layers pro
vided that lateral variations in material properties can be neglected. It 
should be noted that such extreme opposite polarity contrasts in acoustic 
impedance rarely occur in realistic subsurface models. 

The multi-layer experiment confirmed that minimum four grid 
points per shortest wavelength are required to obtain an accurate FD 
modelling result. The model contains moderate contrasts in material 
properties such that the extreme case tested in the thin-layer example 
does not need to be considered. We have seen that the tapered low-pass 
wavenumber filtering in compliance and density yields similar results to 
averaging of compliance and density following the procedure proposed 
by Backus, adapted to acoustic and isotropic media. Mittet (2017) has 
already noted that the low-pass filtering in wavenumber domain re
sembles an averaging although there is no averaging done in the strict 
mathematical sense. For the downsampling of densely sampled models 
to build coarser regular grids for FD modelling, Backus averaging is not 
accurate enough because the spatial sampling becomes too large with 
respect to the wavelength. We have shown that the wavenumber 
filtering approach is a better alternative for such a case. Similar but more 
advanced downsampling methods were discussed by Capdeville et al. 
(2010) and Fichtner and Hanasoge (2017). 

The experiments have shown that in the presence of discontinuities a 
finer grid sampling is required than for smooth models. Because our 
observations agree well with those of Mittet (2017, 2021a), we conclude 
that the recommendation of four to five grid points per shortest wave
length also apply to non-staggered, central-grid schemes, which are 
widely used in the seismic industry. This requirement assumes a proper 
representation of the discontinuity in the grid, limited to the Nyquist 
wavenumber of the grid. To achieve this, we used an adaptable wave
number filtering procedure in compliance and density for optimal re
sults. Although this representation of a discontinuity should guarantee 
invariance of the interface location relative to the grid, we observed that 
this was not generally the case when a taper was used with the filter. The 
most challenging situation for a single interface was created when the 
interface was aligned with the centre of a grid cell. For a single thin 
layer, the most challenging scenario was created when the layer was 
centred at a grid cell boundary. We have seen that the choice of taper 
size N affects amplitude accuracy. Allowing more grid cells to sample the 
Gibbs oscillations by choosing a larger N, generally improves accuracy. 
In other words, a coarser spatial sampling is then sufficient to achieve 
good accuracy for the full bandwidth of the signal. On the other hand, a 
large N creates models with wider zones of Gibbs oscillations, which 

might be unwanted. The parameter N allows easy adaption of the filter 
to specific needs. 

The tapered low-pass wavenumber filtering of a finely sampled 
model as demonstrated here is a valid, effective and adaptable approach 
for models which vary only in one dimension. However, in the case of 2D 
or 3D models, this approach becomes computationally costly. Mittet 
(2021b) proposed a more efficient algorithm for continuous horizons. 
We agree with Mittet (2021a) that the study results for 2D wave prop
agation should also be applicable to 3D wave propagation. Similar nu
merical experiments for elastic, visco-elastic and anisotropic models are 
beyond the scope of this research, but the methodology and setup of the 
experiments presented in this paper will be useful for future studies on 
the topic. Mittet (2017) included an elastic example in his study and 
found that the same grid step was required as in the acoustic case, but 
higher wavenumbers had to be included in the grid generation. The 
consequences of the investigated inaccuracy of FD modelling in 
discontinuous models for applications such as full-waveform inversion 
and reverse time migration should be analysed in more detail in separate 
studies. 

5. Conclusion 

In this study, we investigated the accuracy of acoustic finite- 
difference modelling using the Fourier method for spatial derivatives 
when it is applied to a step model, a thin-layer model and a multi-layer 
model by comparing it to the analytical solution and modelling by the 
reflectivity method. The reflectivity method enabled us to extend 
existing studies that were restricted to simple models, where the 
analytical solution is available, and allowed us to study the accuracy of 
finite-difference modelling for finely layered models. We showed that 
previous recommendations for staggered-grid schemes to apply a low- 
pass wavenumber filter to densely sampled compliance and density 
models and to use a spatial sampling of minimum four grid points per 
shortest wavelength also apply to central-grid schemes. An exception are 
thin layers with very strong parameter contrasts, where the accuracy of 
finite-difference modelling deteriorates with increasing incidence angle. 
A denser spatial sampling is required in such a case. The presented 
aliasing-protected algorithm to represent discontinuities in a regular 
grid for finite-difference modelling includes an adaptable taper size. The 
taper size determines the steepness of the filter slope and the extent to 
which Gibbs oscillations are present in the model. Including more os
cillations increases the accuracy. We have shown that this algorithm is 
better suited for the downsampling of densely sampled well logs for the 
finite-difference method than using Backus averaging. 
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Appendix A. Computing 2D pressure seismograms by the reflectivity method 

To explain the theory of the reflectivity method, we assume a layered medium of plane horizontal, isotropic and homogeneous layers and cy
lindrical symmetry. We further assume that the first layer is a fluid and that the source and receivers are located in this layer, so that only P-waves are 
generated and measured. The source is assumed to be located at z = 0 and the z-axis is pointing downwards. To make the modelling comparisons 
easier, the free surface is not included here but could be implemented in general. Under these assumptions, we can express the incident and reflected 
wavefield from a point pressure source measured by a receiver at offset x and depth z in terms of the compression potentials Φinc and Φrefl by eqs. (A.1) 
and (A.2), respectively (cf. Müller, 2007) 

Φinc(x, z, t) =
1

2π

∫ +∞

−∞
F̂(ω)eiωt

∫ ∞

0

kx

ikz,1
J0(kxx)e−ikz,1 |z| dkx dω, (A.1)  

Φrefl(x, z, t) =
1

2π

∫ +∞

−∞
F̂(ω)eiωt

∫ ∞

0

kx

ikz,1
J0(kxx)RPP(ω, kx)e−ikz,1 |z| dkx dω, (A.2)  

where F̂(ω) denotes the Fourier transform of the source excitation function F(t), t is time, ω is the angular frequency, kx is the horizontal wavenumber, 
kz, 1 is the vertical wavenumber of the first layer, i is the imaginary unit, J0 denotes the Bessel function of first kind and order zero, and RPP(ω,kx) 
denotes the complex overall P-P reflection coefficient of the stack of layers. It should be noted that RPP(ω,kx) is computed by an iterative scheme 
introduced by Kennett (1974) and contains all single and multiple reflections, mode conversions and evanescent waves. The phase terms in this 
computation lead to the frequency dependency. The outer integral in Eqs. (A.1) and (A.2) is an inverse Fourier transform back to the time domain 
while the inner integral is a Sommerfeld integral. 

Following the derivations by Tsvankin (1995), the Sommerfeld integrals in Eqs. (A.1) and (A.2) can be expressed in terms of the departing or 
incidence angle θ instead of the horizontal wavenumber kx by using the definition of the wavenumber k, the length of the wavenumber vector, k = ω

α1 

with α1 being the P-wave velocity in the uppermost fluid layer. Using the following identities: kx = k sin θ, kz, 1 = k cos θ, kxdkx = k2 sin θ cos θdθ, we 
can now exchange the integration variable in Eq. (A.2) and find the Sommerfeld integral for the reflected wavefield to be 

Φ̂refl(x, z, ω) = − ikF̂(ω)

∫

Γ

J0(kxsinθ)RPP(ω, θ)e−ik|z|cosθsinθ dθ. (A.3) 

The integration path Γ goes along the real axis from 0 to π
2 and then parallel to the imaginary axis from π

2 + i0 to π
2 + i∞ in order to include ho

mogeneous and inhomogeneous plane waves. 
Using the derivations by Amundsen and Reitan (1994), we can transform Eq. (A.3) so that it gives the corresponding compression potential for a 

line source and 2D propagation instead of a point source and 3D propagation. This expression is relevant because we want to perform the numerical 
examples in 2D to save computational cost in the finite-difference modelling. The corresponding Eq. (A.4) for the potential in 2D is 

Φ̂
2D
refl(x, z, ω) = − 2iF̂(ω)

∫

Γ

cos(kxsinθ)RPP(ω, θ)e−ik|z|cosθ dθ. (A.4) 

Using the relationship between pressure P and compression potential Φ, P̂(ω) = ω2ρ1 Φ̂(ω) in a fluid with density ρ1 (Müller, 2007), we can express 
the full reflection response of a stack of layers in pressure in the case of a line source (2D) and point source (3D) by the following Eqs. (A.5) and (A.6), 
respectively, 

P̂
2D
refl(x, z, ω) = − 2iω2ρ1 F̂(ω)

∫

Γ

cos(kxsinθ)RPP(ω, θ)e−ik|z|cosθ dθ, (A.5)  

P̂
3D
refl(x, z, ω) = − ikω2ρ1 F̂(ω)

∫

Γ

J0(kxsinθ)RPP(ω, θ)e−ik|z|cosθsinθ dθ. (A.6) 

The corresponding horizontal and vertical displacement components, ux and uz, can be derived by taking the derivative of the potential Φ with 
respect to x and z, respectively. The incident wavefield in pressure can be derived from Eq. (A.1) in the same way as shown here for the reflection 
wavefield. 

Typically, the reflectivity method is expressed using a limited integral over the horizontal wavenumber kx or the horizontal slowness p, with kx =

ωp (Fryer, 1980; Aki and Richards, 2002). As can be seen from Eq. (A.2), the integrand attains very large values when the vertical wavenumber 
approaches zero. In general, poles that correspond to surface wave modes lie on the real kx- or p-axis and hence on the integration path (Aki and 
Richards, 2002). These poles lead to difficulties in the numerical integration and to artefacts in the resulting synthetic seismograms. A common way to 
mitigate this difficulty is to introduce attenuation through complex velocities (see for example Müller, 1985). In our study, however, we wanted to 
compare to results from finite-difference modelling without attenuation and therefore needed a way to compute attenuation-free synthetic data by the 
reflectivity method. We found that changing the integration variable to the incidence angle θ is beneficial because the resulting integral no longer has a 
denominator that can approach zero (see Eqs. (A.3) to (A.6)). Several authors have made similar modifications to the traditional Sommerfeld integral 
(Fuchs, 1968; Fuchs and Müller, 1971). However, the expression of the Sommerfeld integral using the incidence angle is less advantageous if the 
method needs to be extended to anisotropic media. Note that the reflectivity method is a (visco-)elastic modelling tool, but acoustic modelling can be 
achieved by assuming very low S-wave velocities in all layers. 
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Villars, Paris.  

Cagniard, L., 1962. Reflection and Refraction of Progressive Seismic Waves. McGraw- 
Hill, New York.  

Capdeville, Y., Guillot, L., Marigo, J.-J., 2010. 1-D non-periodic homogenization for the 
seismic wave equation. Geophys. J. Int. 181 (2), 897–910. https://doi.org/10.1111/ 
j.1365-246X.2010.04529.x. 

Cohen, G., Joly, P., 1996. Construction and analysis of fourth-order finite difference 
schemes for the acoustic wave equation in nonhomogeneous media. SIAM J. Numer. 
Anal. 33 (4), 1266–1302. https://doi.org/10.1137/S0036142993246445. 

Daley, P.F., Hron, F., 1982. Ray-reflectivity method for SH-Waves in stacks of thin and 
thick layers. Geophys. J. Int. 69 (2), 527–535. https://doi.org/10.1111/j.1365- 
246X.1982.tb04963.x. 

D’Antona, G., Ferrero, A., 2006. Digital Signal Processing for Measurement Systems: 
Theory and Applications. Information Technology: Transmission, Processing, and 
Storage. Springer, New York.  

De Basabe, J.D., Sen, M.K., 2007. Grid dispersion and stability criteria of some common 
finite-element methods for acoustic and elastic wave equations. Geophysics 72 (6), 
T81–T95. https://doi.org/10.1190/1.2785046. 

De Hoop, A.T., 1960. A modification of Cagniard’s method for solving seismic pulse 
problems. Appl. Sci. Res. Sec. B 8 (1), 349–356. https://doi.org/10.1007/ 
BF02920068. 

Diaz, J., Ezziani, A., 2010. Analytical solution for waves propagation in heterogeneous 
acoustic/porous media. Part I: the 2D case. Commun. Comput. Phys. 7 (1), 171–194. 
https://doi.org/10.4208/cicp.2009.08.148. 

Diaz, J., Ezziani, A., 2015. Gar6more2D (version 2.0). http://gar6more2d.gforge.inria.fr. 
Etgen, J.T., 1986. High-order finite-difference reverse time migration with the 2-way 

non-reflecting wave equation. Stanford Explor. Project 133–146. 
Fichtner, A., Hanasoge, S.M., 2017. Discrete wave equation upscaling. Geophys. J. Int. 

209 (1), 353–357. https://doi.org/10.1093/gji/ggx016. 
Fornberg, B., 1975. On a Fourier method for the integration of hyperbolic equations. 

SIAM J. Numer. Anal. 12 (4), 509–528. https://doi.org/10.1137/0712040. 
Fryer, G.J., 1980. A slowness approach to the reflectivity method of seismogram 

synthesis. Geophys. J. Int. 63 (3), 747–758. https://doi.org/10.1111/j.1365- 
246X.1980.tb02649.x. 

Fuchs, K., 1968. The reflection of spherical waves from transition zones with arbitrary 
depth-dependent elastic moduli and density. J. Phys. Earth 16 (Special), 27–41. 
https://doi.org/10.4294/jpe1952.16.Special_27. 

Fuchs, K., Müller, G., 1971. Computation of synthetic seismograms with the reflectivity 
method and comparison with observations. Geophys. J. Int. 23 (4), 417–433. 
https://doi.org/10.1111/j.1365-246X.1971.tb01834.x. 

Gallagher, J.W., Dromgoole, P.W., 2008. Seeing below the basalt – offshore Faroes. 
J. Article Geophys. Prospect. 56 (1), 33–45. https://doi.org/10.1111/j.1365- 
2478.2007.00670.x. 

Gustafsson, B., Mossberg, E., 2004. Time compact high order difference methods for 
wave propagation. SIAM J. Sci. Comput. 26 (1), 259–271. https://doi.org/10.1137/ 
030602459. 

Gustafsson, B., Wahlund, P., 2004. time compact difference methods for wave 
propagation in discontinuous media. SIAM J. Sci. Comput. 26 (1), 272–293. https:// 
doi.org/10.1137/S1064827503425900. 

Gustafsson, B., Wahlund, P., 2005. time compact high order difference methods for wave 
propagation, 2D. J. Sci. Comput. 25 (1), 195–211. https://doi.org/10.1007/ 
BF02728988. 

Jones, I.F., Davison, I., 2014. Seismic imaging in and around salt bodies. Interpretation 2 
(4), SL1–SL20. https://doi.org/10.1190/INT-2014-0033.1. 

Juhlin, C., Young, R., 1993. Implications of thin layers for amplitude variation with offset 
(AVO) studies. Geophysics 58 (8), 1200–1204. https://doi.org/10.1190/1.1443504. 

Kennett, B.L.N., 1974. Reflections, rays, and reverberations. Bull. Seismol. Soc. Am. 64 
(6), 1685–1696. https://doi.org/10.1785/BSSA0640061685. 

Kennett, B.L.N., 1979. Theoretical reflection seismograms for elastic media. Geophys. 
Prospect. 27 (2), 301–321. https://doi.org/10.1111/j.1365-2478.1979.tb00972.x. 

Kennett, B.L.N., 2009. Seismic Wave Propagation in Stratified Media, New ed. ANU E 
Press, Canberra, ACT, Australia. https://doi.org/10.22459/SWPSM.05.2009.  

Kosloff, D.D., Baysal, E., 1982. Forward modeling by a Fourier method. Geophysics 47 
(10), 1402–1412. https://doi.org/10.1190/1.1441288. 

Levander, A.R., 1988. Fourth-order finite-difference P-SV seismograms. Geophysics 53 
(11), 1425–1436. https://doi.org/10.1190/1.1442422. 

Lisitsa, V., Podgornova, O., Tcheverda, V., 2010. On the interface error analysis for finite 
difference wave simulation. Comput. Geosci. 14 (4), 769–778. https://doi.org/ 
10.1007/s10596-010-9187-1. 

Lombard, B., Piraux, J., 2004. Numerical treatment of two-dimensional interfaces for 
acoustic and elastic waves. J. Comput. Phys. 195 (1), 90–116. https://doi.org/ 
10.1016/j.jcp.2003.09.024. 

Mallick, S., Frazer, L.N., 1987. Practical aspects of reflectivity modeling. Geophysics 52 
(10), 1355–1364. https://doi.org/10.1190/1.1442248. 

Mavko, G., Mukerji, T., Dvorkin, J., 2009. The Rock Physics Handbook: Tools for Seismic 
Analysis of Porous Media. Cambridge University Press, Cambridge.  

Mittet, R., 2017. On the internal interfaces in finite-difference schemes. Geophysics 82 
(4), T159–T182. https://doi.org/10.1190/geo2016-0477.1. 

Mittet, R., 2021a. On the pseudospectral method and spectral accuracy. Geophysics 86 
(3), T127–T142. https://doi.org/10.1190/geo2020-0209.1. 

Mittet, R., 2021b. Small-scale medium variations with high-order finite-difference and 
pseudospectral schemes. Geophysics 86 (5), T387–T399. https://doi.org/10.1190/ 
geo2020-0210.1. 

Moczo, P., Kristek, J., Vavrycuk, V., Archuleta, R.J., Halada, L., 2002. 3D heterogeneous 
staggered-grid finite-difference modeling of seismic motion with volume harmonic 
and arithmetic averaging of elastic moduli and densities. Bull. Seismol. Soc. Am. 92 
(8), 3042–3066. https://doi.org/10.1785/0120010167. 

Müller, G., 1985. The reflectivity method: a tutorial. J. Geophys. Zeitschrift für 
Geophysik 58, 153–174. 

Müller, G., 2007. Theory of elastic waves, (Scientific Technical Report STR; 07/03), 
Potsdam : Deutsches GeoForschungsZentrum GFZ, p. 228. https://doi.org/10.2312/ 
GFZ.b103-07037. 

Pei, Z.-L., Fu, L.-Y., Yu, G.-X., Zhang, L.-X., 2009. A wavelet-optimized adaptive grid 
method for finite-difference simulation of wave propagation. Bull. Seismol. Soc. Am. 
99 (1), 302–313. https://doi.org/10.1785/0120080002. 

Raknes, E.B., Arntsen, B., Weibull, W., 2015. Three-dimensional elastic full waveform 
inversion using seismic data from the Sleipner area. Geophys. J. Int. 202 (3), 
1877–1894. https://doi.org/10.1093/gji/ggv258. 

Routh, P., Neelamani, R., Lu, R., Lazaratos, S., Braaksma, H., Hughes, S., Saltzer, R., 
Stewart, J., Naidu, K., Averill, H., Gottumukkula, V., Homonko, P., Reilly, J., 
Leslie, D., 2017. Impact of high-resolution FWI in the Western Black Sea: Revealing 
overburden and reservoir complexity. Lead. Edge 36 (1), 60–66. https://doi.org/ 
10.1190/tle36010060.1. 

Scheiber-Enslin, S.E., Manzi, M., Webb, S.J., 2021. Seismic imaging of dolerite sills and 
volcanic vents in the Central Karoo, South Africa: implications for shale gas 
potential. S. Afr. J. Geol. 124 (2), 465–480. https://doi.org/10.25131/ 
sajg.124.0043. 

Stephen, R.A., 1983. A comparison of finite difference and reflectivity seismograms for 
marine models. Geophys. J. Int. 72 (1), 39–57. https://doi.org/10.1111/j.1365- 
246X.1983.tb02803.x. 

Symes, W.W., Vdovina, T., 2009. Interface error analysis for numerical wave 
propagation. Comput. Geosci. 13 (3), 363–371. https://doi.org/10.1007/s10596- 
008-9124-8. 

Symes, W.W., Terentyev, I.S., Vdovina, T.W., 2008. Gridding requirements for accurate 
finite difference simulation. In: SEG Technical Program Expanded Abstracts, 2008, 
pp. 2077–2081. https://doi.org/10.1190/1.3059300. 

Thomson, W.T., 1950. Transmission of elastic waves through a stratified solid medium. 
J. Appl. Phys. 21 (2), 89–93. https://doi.org/10.1063/1.1699629. 

Tsvankin, Ilya, 1995. Seismic wavefields in layered isotropic media. Samizdat Press, 
Colorado School of Mines, Golden, CO.  

Vishnevsky, D., Lisitsa, V., Tcheverda, V., Reshetova, G., 2014. Numerical study of the 
interface errors of finite-difference simulations of seismic waves. Geophysics 79 (4), 
T219–T232. https://doi.org/10.1190/geo2013-0299.1. 

Warner, M., Ratcliffe, A., Nangoo, T., Morgan, J., Umpleby, A., Shah, N., Vinje, V., 
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Quantifying amplitude-variation-with-offset uncertainties related to
calcite-cemented beds using a Monte Carlo simulation

Saskia Tschache1, Vetle Vinje2, Jan Erik Lie3, and Einar Iversen4

Abstract

Calcite cement often occurs locally, forming thin layers of calcite-cemented sandstone characterized by high
seismic velocities and densities. Because of their strong impedance contrast with the surrounding rock, calcite-
cemented intervals produce detectable seismic reflection signals that may interfere with target reflections at the
top of a reservoir. In this case, the amplitude-variation-with-offset (AVO) of the effective seismic signature will
be altered and may even create a false hydrocarbon indication. From the Monte Carlo simulation, we find that
the presence of thin calcite-cemented beds increases the uncertainty of the Bayesian pore-fluid classification
based on the AVO attributes intercept and gradient. In the case example of a North Sea turbiditic oil and gas
field, the probability of a false-positive hydrocarbon indication increases from 3%–5% to 18%–21% assuming an
equal probability of the occurrence of brine, oil, and gas. The results confirm that calcite-cemented beds can
create a pitfall in AVO analysis. Realistic estimates of the AVO uncertainty are crucial for the risk assessment of
well placement decisions.

Introduction
Tight beds of calcite-cemented sandstone often are

observed in shallow marine sandstones (Bjørkum and
Walderhaug, 1990a) and have been documented in sev-
eral North Sea reservoir rocks (Kantorowicz et al., 1987;
Saigal and Bjørlykke, 1987; Walderhaug et al., 1989;
Walderhaug and Bjørkum, 1992; Gibbons et al., 1993).
Thus far, the main interest in studying the distribution,
geometry, and geochemical evolution of calcite cemen-
tation in sandstones has been motivated by their effect
on reservoir quality (Kantorowicz et al., 1987; Saigal and
Bjørlykke, 1987; Walderhaug et al., 1989; Bjørkum and
Walderhaug, 1990b). As noted by Kantorowicz et al.
(1987), laterally continuous beds of calcite-cemented
rock act as impermeable barriers to fluid flow and
can compartmentalize a reservoir. In some cases, cal-
cite-cemented beds make up a significant proportion
of a reservoir and thereby reduce its net-to-gross ratio
(Walderhaug and Bjørkum, 1992). From well-log data,
it is known that calcite-cemented beds are characterized
by a significant increase in acoustic impedance com-
pared with uncemented formation (Bakke, 1996).
Although these beds are thin (with a typical thickness
of 0.1–1.5 m in our study area) compared with the seis-
mic wavelength, we demonstrate that they can produce a

detectable seismic reflection signal owing to their high
acoustic impedance contrast to the embedding rock.

In this study, we show that interference with calcite
stringer reflections may affect the observed reflection
amplitudes of target reflectors, and consequently, it
may alter their amplitude-variation-with-offset (AVO)
attributes. AVO attributes play an important role in hy-
drocarbon exploration (Castagna and Backus, 1993;
Chopra and Castagna, 2014). There are many examples
from the oil and gas industry, such as the Zumba pros-
pect (Avseth et al., 2016) or the Blåveis prospect in the
Tertiary turbidites offshore Norway (J. E. Lie, personal
communication, 2022), where hard-cemented beds are
suspected to create AVO pitfalls. The aim of our study is
to quantify the uncertainty of hydrocarbon prediction
from the AVO attributes in the presence and absence
of calcite-cemented beds. We do not attempt to de-
crease the uncertainty of the pore-fluid prediction.
Nevertheless, the results of our investigation provide
useful estimations for risk assessment of well place-
ment decisions in areas where calcite cementation or
similar thin high-impedance layers are present. The
workflow, that we demonstrate using a case example
from the Alvheim Field, can be applied to other regions
where well data are available. In frontier areas with
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poor well control, statistical properties derived from
analog areas can be used in the workflow.

Unlike quartz cement, calcite cement is not distrib-
uted evenly in the rock but accumulated in certain
zones, where the pores are filled by calcite cement
(Bjørkum and Walderhaug, 1990a). Bjørkum and
Walderhaug (1990a) distinguish between three forms
of calcite-cemented sandstone as (1) layers of continu-
ously cemented rock, (2) layers where cementation is
not continuous and calcite-cemented concretions occur
strata bound, and (3) randomly scattered concretions.
They present a nucleation and growth model that can
explain these three observed types of calcite cementa-
tion, which has been discussed further in Walderhaug
and Bjørkum (1998). The main source of calcite cement
in shallow marine sandstones is carbonate fossils
(Bjørkum and Walderhaug, 1990a). Figure 1 shows
how a continuously cemented layer forms starting from
a layer rich in carbonate fossils. A study on deeply
buried marine sandstones showed that calcite cement
precipitated at a shallow burial depth and at a depth
of approximately 1.5 km and there was no evidence
of late cementation (Saigal and Bjørlykke, 1987). The
lateral extent of calcite-cemented beds is variable but
can reach several kilometers (Bryant et al., 1988;
Walderhaug et al., 1989). Their thicknesses typically
range from 0.05 to 5 m in the North Sea shallow marine
sandstones (Walderhaug et al., 1989; Walderhaug and

Bjørkum, 1992; Gibbons et al., 1993). Although in some
regions, the vertical spacing of calcite-cemented beds
has a cyclic nature (Bryant et al., 1988; Gibbons et al.,
1993), in other regions, the spacing appears random
(Cavazza and Dahl, 1990; McBride et al., 1995).

The AVO of single thin beds, of which calcite-ce-
mented intervals are an example, has been studied
by several authors (Juhlin and Young, 1993; Bakke
and Ursin, 1998; Liu and Schmitt, 2003; Pan and
Innanen, 2013; Yang et al., 2016).

Gibson (2004, 2005) investigates the effect of internal
reservoir stratification on AVO using the propagator
matrix method. Stovas et al. (2006) study the effect
of the net-to-gross ratio on AVO and propose a simulta-
neous AVO attribute inversion for the net-to-gross ratio
and fluid saturation. These studies considered internal
reservoir heterogeneity but did not include any thin
layers with high contrasts in acoustic impedance.

Specific research on the impact of calcite-cemented
beds on reflection seismic data is extremely sparse. The
doctoral thesis by Bakke (1996) on the prediction of cal-
cite cement distribution from seismic data is one of the
few published resources. Dutta et al. (2008) analyze the
seismic response of calcite cement in sandstones from a
rock-physics viewpoint.

In the Bayesian framework, prior probability distri-
butions are updated to posterior probability distribu-
tions by means of data (Avseth et al., 2005). Bayesian
classification and inversion are frequently applied in
seismic reservoir characterization because the non-
uniqueness of the solution is honored and uncertainties
can be assessed (Grana et al., 2022). Lörtzer and
Berkhout (1992) formulate a Bayesian lithologic inver-
sion. Eidsvik et al. (2002) use the Bayesian framework
to predict the reservoir properties of a turbidite oil field
in the North Sea. Buland and Omre (2003) develop a
Bayesian AVO inversion based on the convolutional
modeling method and a linearized approximation of
the Zoeppritz equations. Larsen et al. (2006) propose
a Bayesian prediction of lithology/fluid classes along
1D profiles using the Markov-chain prior models. This
approach was extended by Ulvmoen and Omre (2010)
and Ulvmoen et al. (2010) to three dimensions by mod-
eling lateral continuity. They achieve high-resolution in-
version results identifying thin shale units.

Rimstad et al. (2012) perform lithology and fluid
prediction in the Alvheim Field using a hierarchical Baye-
sian AVO inversion, but the effect of calcite cementation
was ignored in the approach. Although quartz cementa-
tion was the focus of earlier studies, the presence of tight
calcite-cemented beds was merely mentioned. However,
these beds were not included as a distinct facies class
(Avseth et al., 2009, 2021). Occasionally, unclassified units
in lithofacies classification were interpreted as thin units
of locally cemented sand (Avseth et al., 2003).

In the first part, we analyze using seismic modeling if
a single calcite-cemented bed may produce a reflection
signal that, when interfering with a target reflection, can
alter the target AVO. Then, we explain, showcase, and

Figure 1. Formation of a calcite-cemented bed starting from
a layer rich in carbonate fossils. (1) Nucleation points in the
fossil-rich layer grow into (2) calcite concretions that eventu-
ally consolidate to (3) a continuously cemented layer. Modi-
fied after Bjørkum and Walderhaug (1990a).
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discuss a workflow to quantify the AVO uncertainty
caused by calcite-cemented beds.

Effect of a single thin high-impedance layer on
target reflection AVO

In the following text, we use the terms “calcite string-
ers” or “stringers” to refer to thin intervals of calcite-ce-
mented sand. Inspired by a well log from the Alvheim
Field that reveals a calcite stringer only a few meters
above the top of the reservoir formation, we built a
set of three simple models (Figure 2a, 2e, and 2i). Model
1 contains only the caprock (shale) – reservoir (sand-
stone) interface. The second model contains a 1 m thick

calcite stringer embedded in shale. In the third model, a
1 m thick calcite stringer is located 6 m above the cap-
rock-reservoir interface. All models were overlain by a
water layer of 120 m, in which the source and receivers
are located. The free surface was not included in the
modeling. The elastic properties used in the modeling
are provided in Table 1. Shale and sandstone properties
were read from the logs and S-wave velocity was esti-
mated using an empirical relation. The properties of the
calcite-cemented bed were estimated using a Hill mix-
ing (Hill, 1952) of quartz and 35% calcite.

We applied three different seismic modeling methods
and compared their results in the depth domain for a

Figure 2. Seismic modeling of (a–l) three simple models. (a, e, and i) The acoustic impedance profiles of the 1D models and (b, f, j),
(c, g, k), and (d, h, l) the angle gathers from convolutional modeling, ray tracing, and the reflectivity method, respectively.
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Ricker wavelet with a dominant frequency of 30 Hz. The
first method was the primary-only convolutional model-
ing method (Russell, 1988) using the Zoeppritz reflection
coefficients, which is typically applied in a prestack inver-
sion. Angle-dependent reflectivity series were convolved
with the wavelet and the resulting traces were converted
to depth. For better comparison, we used the same
smoothed velocity model for time-to-depth mapping as
for migration of the shot gathers from the other two mod-
eling methods. The second method was a primary-only
ray-tracing-based convolutionalmodeling. In thismethod,
ray tracing provided the traveltimes, incidence angles,
and geometric-spreading factors, and the Zoeppritz equa-
tions provided reflection coefficients so that synthetic
shot gathers could be generated by convolution. The third
modeling technique was the reflectivity method (Kennett,
1979; Müller, 1985; Kennett, 2009), which computes the
elastic full-wavefield spherical-wave response including
all internal multiples and mode conversions. The reflec-
tivity method provides an exact solution of the elastic
wave equation for horizontally layered media (Gisolf
et al., 2021), even when layers are thin (Tschache et al
., 2022). The synthetic shot gathers produced by ray-trac-
ing-based convolutional modeling and the reflectivity
method were migrated by a true-amplitude Kirchhoff pre-
stack depth migration (Hanitzsch et al., 1994) using a
smoothed version of the true velocity profile. The migra-
tion involved ray tracing in the smoothed velocity model
to compute traveltimes and incidence angles, which were
used for offset-angle mapping.

The angle gathers for the three models and the three
different modeling methods are compared in Figure 2.
The convolutional modeling and the ray-tracing-based
modeling use the plane-wave P-wave reflection coeffi-
cients computed by the Zoeppritz equations directly
under the assumption of plane waves. However, it is well
known that this assumption breaks down when the inci-
dence angle approaches the critical angle (Červený, 1961;
Červený and Ravindra, 1971; Krail and Brysk, 1983;
Alhussain et al., 2008; Alulaiw and Gurevich, 2013). This
failure can be clearly seen in the modeling results of the
convolutional modeling and the ray tracing for models 2
and 3. As a result of the strong impedance contrast at the
top of the calcite stringer, the critical angle is already
reached at 24° causing a very large Zoeppritz reflection
coefficient at this angle and complex reflection coeffi-
cients beyond. The ray-tracing modeling results show a
noticeable difference to reflectivity-method modeling re-
sults at low angles for models 2 and 3. These errors are

caused by the strong ray-bending effect of the thin layer
leading to different incidence angles at the layer top and
bottom. The reflectivity method computes the spherical-
wave response as an integral of many plane-wave contri-
butions (Aki and Richards, 2002) and represents the cor-
rect solution. It also includes internal multiples and mode
conversions that were neglected in the other primary-
only modeling techniques. We see that all modeling meth-
ods agree well for model 1, where no thin layer with high
impedance contrast is present and no critical angle is en-
countered. It is evident from this experiment that the re-
flectivity method should be used as a modeling engine
rather than convolutional modeling or ray tracing in
the presence of thin high-impedance layers.

The response of a single calcite stringer as shown in
model 2 in Figure 2 is formed by the interference of
the opposite reflections at the top and bottom of the
stringer and is approximately a scaled derivative of
the wavelet (Widess, 1973). The amplitude is weaker
compared with the reflection amplitude of the shale-
sandstone interface but is detectable. In the synthetic
data for model 3, we see the interference of the calcite
stringer reflection with the shale-sandstone reflection.
It is noticeable that the amplitude variation with an an-
gle is different from that of model 1.

The maximum amplitudes of the synthetic data mod-
eled by the reflectivity method were picked in a window
±10 m around the top of the reservoir. By least-squares
fitting, the AVO attributes intercept Rð0Þ and gradient G
were obtained. In Figure 3, the estimated AVO intercept
Rð0Þ and gradient G of models 1 and 3 are shown. In
both cases, the intercept is positive and the gradient
is negative. In this example, the tuning with the calcite
stringer response (model 3) causes a shift in the gra-
dient in the negative direction and a subtle decrease
of Rð0Þ. The simple example proves that the presence

Table 1. Elastic properties of the lithologies used in
seismic modeling.

Lithology VP (m/s) VS (m/s) Density (kg/m3)

Shale 2500 1087 2400

Sandstone 3500 1824 2250

Calcite stringer 6136 3838 2670

Figure 3. Crossplot of AVO intercept Rð0Þ and gradient G for
model 1 (the blue) and model 3 (the red). The tuning with the
calcite stringer response in model 3 causes a considerable
shift in the Rð0Þ-G plane.
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of a thin high-impedance layer in the vicinity of the
shale-sandstone interface can perturb the target AVO
attributes. Typically, in the interpretation of the AVO
intercept and gradient, deviations from a background
trend are regarded as potential hydrocarbon indicators
(Castagna et al., 1998). Other effects creating similar de-
viations from a background trend can therefore be a
serious pitfall in the AVO analysis.

Although the simple example is illustrative, a ques-
tion arises of how the uncertainty in pore-fluid predic-
tion based on the widely used AVO attributes, intercept
and gradient, is affected by the presence of several thin
calcite-cemented beds intercalated in the caprock and
reservoir zone. To investigate this research question,
we developed a workflow and applied it to data from
the Alvheim Field.

Methods
The Bayesian classification

For our investigation, we assume that there is a known
target horizon, which is the top of a reservoir rock over-
lain by a caprock. The analysis focuses on the AVO at this
target. The target zone is defined to a range ±100 m
around the target depth. Furthermore, we assume that
well-log data are available in the study area.

In the first step, rock-physics analysis of the well-log
data should be performed to define a region-specific set
of N classes cj representing the dominant lithofacies and
pore fluids in the target zone. According to the Bayes’
theorem, the posterior probability Pðcj ∣ Rð0Þ; GÞ of each
class cj given a pair of AVO attributes intercept and gra-
dient ðRð0Þ; GÞ is given by

Pðcj ∣ Rð0Þ; GÞ ¼
PðRð0Þ; G ∣ cjÞPðcjÞ

PðRð0Þ; GÞ ; (1)

where PðRð0Þ; G ∣ cjÞ is the conditional probability
of an observation ðRð0Þ; GÞ given a class cj , PðcjÞ
denotes the prior probability of class cj , and
PðRð0Þ; GÞ ¼ P

jPðRð0Þ; G ∣ cjÞPðcjÞ is a normalizing di-
visor. The prior probability PðcjÞ describes the probabil-
ity of the occurrence of class cj without any knowledge
of the AVO attributes. Prior probabilities can be esti-
mated using a priori knowledge from the well data or
reservoir models (Avseth et al., 2005). In our approach,
the conditional probability density functions (PDFs)
PðRð0Þ; G ∣ cjÞ for each class are computed by a Monte
Carlo simulation from trivariate PDFs PðVP; VS; ρ ∣ cjÞ of
the elastic properties P-wave velocity VP, S-wave veloc-
ity VS, and density ρ for each class cj . These PDFs are
computed from the well-log data of (ideally several)
wells from the study area as nonparametric probability
density distributions by multivariate kernel density esti-
mation using a Gaussian kernel. Alternatively, paramet-
ric distributions can be used if they adequately describe
the probability density distribution of the data. The tri-
variate class PDFs take the correlation among VP, VS,
and ρ into account.

Bayesian classification is done using the Bayes’ de-
cision rule,

ck ¼ argmax
j∈f1; : : : ;Ng

PðRð0Þ; G ∣ cjÞPðcjÞ; (2)

assigning the class ck to a given set of variables
ðRð0Þ; GÞ that has the highest posterior probability
among all classes cj; j ¼ 1; : : : ; N . In practice, the deci-
sion rule can be modified to minimize the expected fi-
nancial loss of a company (Avseth et al., 2005). By
applying the Bayes’ decision rule to many examples,
it is possible to estimate the probabilities of the correct
classification Pðck ∣ prediction ¼ ckÞ and misclassifica-
tion Pðcj ∣ prediction ¼ ckÞ; j ≠ k for each individual
class.

A Monte Carlo simulation for base models
Usually, the two-term approximation of Shuey (1985)

is used in a Monte Carlo simulation to estimate
PðRð0Þ; G ∣ cjÞ from PðVP; VS; ρ ∣ cjÞ of the upper and
lower medium (Avseth et al., 2001a, 2001b, 2003). As
seen from our simple experiment, synthetic seismic
data generated by the reflectivity method are needed
to investigate the effect of calcite stringers on the
AVO attributes. The computational cost of the reflectiv-
ity method increases with the number of layers in the
model. In the Monte Carlo simulation, we used simpli-
fied base models consisting of a 120 m thick water layer,
which was followed by a 1980 m thick homogeneous
caprock layer and, finally, a homogeneous reservoir
layer without a lower boundary. The simplified models
represent the average observed water bottom and top
reservoir depths of the study area. In our case study, the
caprock layer was always of class shale, whereas the
reservoir layer could be one out of the three classes
brine, oil, and gas corresponding to brine-, oil-, and
gas-saturated sandstone, respectively.

For each of the three pore-fluid types, 1000 models
were generated and their corresponding AVO attrib-
utes, intercept and gradient, were calculated by apply-
ing these steps:

1) Draw one shale example ðVP; VS; ρÞ from the shale
PDF PðVP; VS; ρ ∣ shaleÞ and use these properties for
the caprock layer.

2) Combine the caprock layer with a reservoir layer using
one example drawn from each of the three pore-fluid
class PDFs PðVP; VS; ρ ∣ brineÞ, PðVP; VS; ρ ∣ oilÞ,
and PðVP; VS; ρ ∣ gasÞ. Note that the three resulting
models are not related to each other, except for having
the same caprock properties.

3) Generate synthetic seismic shot gathers by the re-
flectivity method using a Ricker wavelet with a peak
frequency of 30 Hz.

4) Apply true-amplitude Kirchhoff prestack depth mi-
gration (Hanitzsch et al., 1994) to each offset class
using ray tracing in a smoothed version of the true
velocity model. The smoothing was done in slow-
ness using a 100 m long Gaussian kernel.
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5) Extract seismic amplitudes at the target depth.
6) Fit a linear function RðθÞ ¼ Rð0Þ þ G sin2 θ by the

least-squares method to obtain AVO intercept
Rð0Þ and AVO gradient G.

Step 3 simulates the true wave propagation in the lay-
ered elastic earth creating realistic shot gathers. The
modeling was done with an absorbing water surface
so that we simulated a seismic processing sequence that
perfectly removed the surface-generated multiples.

A Monte Carlo simulation for stringer models
For investigating the impact of the presence of calcite

stringers on the resulting PDFs PðRð0Þ; G ∣ cjÞ, many ran-
dom models containing realistic distributions of several
calcite stringers were required. From interpreted well
data, we estimated the approximate PDF PðnÞ for the
number n of calcite stringers per well in the target zone
(±100 m around the defined target). Using well logs and
core images, the PDFs PðdÞ of the calcite stringer thick-
ness d and PðzÞ of the vertical location z of the stringer
top relative to the target depth were estimated. Further-
more, a PDF PðVP; VS; ρ ∣ stringerÞ of the elastic proper-
ties of the calcite stringers was needed. It could be either
estimated from available data or by using rock-physics
mixing models. For simplification, we assumed that each
calcite stringer could be approximated by a thin layer
with homogeneous elastic properties.

The workflow of a Monte Carlo simulation for the
stringer models comprised the following steps, which
were performed iterating through the base model data
set for i ¼ 1; : : : ; 1000:

1) Draw the calcite stringer properties from the corre-
sponding PDFs: at first the number of stringers n
from PðnÞ, then thickness d, vertical location z,
and elastic properties P-wave velocity VP, S-wave
velocity VS, and density ρ for each individual
stringer.

2) Insert this specific set of n calcite stringers into the
three base models of iteration i.

Then, steps 3–6 of the aforementioned workflow for
the base models were applied.

Application of workflow to the Alvheim Field
Definition and characterization of lithology/fluid
classes

The Alvheim Field is an oil and gas field on the Nor-
wegian continental shelf (Figure 4). The main reser-
voirs are turbidite deposits of the Paleocene age of
the Heimdal Formation at depths of approximately
2100 m (Norwegian Petroleum Directorate, n.d.). For
our case study, we defined the top of the Heimdal For-
mation as our target. The caprock is predominantly
shale belonging to the Lista Formation. The well data
revealed that the shale is sometimes interrupted by thin
hard beds that were interpreted as calcite-cemented
sandstone. Such intercalated sand layers are typical
for turbidite deposits (Rimstad et al., 2012).

The Heimdal Formation consists primarily of sands.
Quartz cementation of the sand initiates at a tempera-
ture of approximately 70°C, which corresponds to a
burial depth of approximately 2000 m in the North
Sea area (Bjørlykke, 1998). Therefore, unconsolidated
sands and quartz-cemented sands are expected around
the target depth, as also confirmed by rock-physics
analysis (Avseth et al., 2021). Quartz cementation stiff-
ens the rock frame, reduces the fluid sensitivity of the
rock, and changes the rock’s AVO signature (Avseth
et al., 2008, 2009).

Calcite stringers were interpreted in all well logs that
were included in our workflow. An example of a calcite-
cemented interval of approximately 1.1 m thickness is
shown in the core image in Figure 5. Figure 6 shows
exemplarily well logs fromwell E in the target zone with
the calcite stringer locations indicated by the arrows.
Note that several calcite stringers in the caprock and
the reservoir zone were interpreted. In a rock-physics
analysis of the Alvheim Field, such calcite-cemented
stringers stood out above the stiff sand bound
(Avseth et al., 2021).

We defined five different lithology/fluid classes for
this case study: shale for the caprock; brine, oil, and
gas corresponding to brine-, oil-, and gas-saturated
sandstone in the reservoir unit; and stringer corre-
sponding to calcite-cemented sandstone beds that
may traverse the caprock and the reservoir unit. Except
for the stringer class, the same lithology/fluid classes
were used in the study by Rimstad et al. (2012) on
the Alvheim area.

Figure 4. Location of the Alvheim Field in the North Sea (the
green square in the small inset map) and map of the Alvheim
Field showing the wells A–L (the red markers) included in this
case study. Note that some wells share the same surface lo-
cation because of sidetracks. Discoveries (the shaded
areas) and field outlines (the dark blue outlines) are shown
for orientation.
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Estimation of lithology/fluid class PDFs
We used the well logs of nine wells (D–L in Figure 4),

which penetrated the target zone, to extract data sam-
ples of the P-wave velocity VP, S-wave velocity VS, and
density ρ for the classes shale, brine, oil, and gas. The
aim was to estimate PDFs that represent the variability
of the rock physical parameters in the Alvheim Field
realistically. For each well, we used only the data in
the target zone ±100 m around the target (top of the
Heimdal Formation). We excluded the calcite stringer
and heterolithic zones. We will discuss subsequently
how the elastic properties of the calcite stringers were
obtained.

Five of the wells did not have any S-wave informa-
tion. For the estimation of VS from VP using locally de-
rived empirical relations, we applied a procedure
proposed by de Sousa et al. (2019), which has proven
successful for other North Sea wells. The method in-
cluded the Gassmann fluid substitution (Gassmann,
1951) for hydrocarbon zones. The comparison of the es-
timated and measured VS (where possible) confirmed
that the VS estimation is robust.

Figure 7 shows the well-log-derived rock-physical
properties for the lithology/fluid classes in a crossplot
of VP=VS and acoustic impedance ρVP. In the crossplot,
the data points of all four classes cluster nicely. Shale
samples are well separated from the sandstone data
points. Brine data points are separated from hydrocar-
bon data points and the hydrocarbon trend toward
lower acoustic impedance and lower VP=VS is visible.
The oil and gas data points are not fully separated.

For each of the four classes, shale, brine, oil, and gas,
we computed a nonparametric probability density distri-
bution by multivariate kernel density estimation using
the Gaussian kernels. The kernel bandwidths were com-
puted by the Silverman’s rule of thumb (Silverman, 1986).
The resulting trivariate class-conditional probability den-
sity distributions PðVP; VS; ρ ∣ cjÞ are visualized as 3D
contours of equal probability density in Figure 8.
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Figure 5. Core image from one of the wells included in the
case study showing a 1.1 m interval of calcite-cemented sand-
stone. Image (without labels) courtesy of Norwegian Petro-
leum Directorate.
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Figure 6. Gamma ray, density, P-wave velocity, S-wave
velocity, and acoustic impedance logs in the target zone of
well E. Interpreted calcite stringer locations are indicated
by the blue arrows. The top of the Heimdal Formation is at
a depth of 2099 m. Log data courtesy of Diskos.

Figure 7. Rock-physics properties of the four classes shale
(the gray), brine (the blue), oil (the green), and gas (the
red) derived from well logs of nine wells. Different markers
represent different wells.
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The number of interpreted calcite stringers n counted
in the target zone ranged from 5 to 11. Although the data
set was very sparse with only nine wells, we fitted a
Poisson distribution for PðnÞ as shown in Figure 9a.
In Figure 9b, the statistics of the vertical location z of
the individual calcite stringers relative to the reservoir
top are shown. Interestingly, there is no preferred loca-
tion and there are almost as many stringers in the shale
(negative relative locations) as in the sandstone intervals
(positive relative locations). Therefore, we assumed a
uniform distribution of PðzÞ.

The analysis of well-log data at the interpreted cal-
cite stringer locations revealed a wide range in VP,
VS, and density values. We concluded that the calcite
stringers were so thin that the log measurements were
severely affected by averaging effects of the specific
tools and shoulder-bed effects. These effects also ham-
pered the measurement of calcite stringer bed thick-
ness. Therefore, we used core images to measure the
individual bed thicknesses. Comparison with the micro-
resistivity logs revealed that the resolution of these
measurements was high enough to obtain a good esti-
mate of the bed thickness. Where no core images were
available, we used the microresistivity logs (when avail-
able) to estimate bed thicknesses. The resulting distri-
bution of the observed bed thicknesses d shown in
Figure 9c agreed well with other studies on calcite-ce-
mented intervals in the North Sea sands (Walderhaug
et al., 1989; Walderhaug and Bjørkum, 1992). We fitted
a truncated normal distribution to the bed thickness
data to obtain PðdÞ.

We looked in the literature for typical compositions of
the calcite-cemented North Sea sandstones. The main
components are typically quartz and calcite minerals,
and the porosity is usually low (Saigal and Bjørlykke,
1987; Walderhaug and Bjørkum, 1992). As an approxima-
tion, we assumed that the calcite stringers are composed
of quartz and calcite minerals without any porosity. We
further assumed that the calcite fraction probability den-
sity is normally distributed with a maximum of 35% (see
Figure 9d). Using the Hill mixing law (Hill, 1952), we

computed the resulting P-wave velocity
VP, S-wave velocity VS, and density ρ
depending on the calcite fraction. For a
calcite fraction of 35%, we obtained val-
ues of VP = 6136 m/s, VS = 3838 m/s, and
ρ = 2.671 g/cm3. These values were in rea-
sonably good agreement with the as-
sumptions made by Bakke (1996) of
VP = 6520 m/s and ρ = 2.68 g/cm3 for cal-
cite-cemented intervals. By using a nor-
mally distributed calcite fraction, we
could account for the variability in cal-
cite content observed in studies (Saigal
and Bjørlykke, 1987) and the related vari-
ability in elastic properties.

Results of Monte Carlo simulations
Figure 10 shows the PDFs resulting

from the Monte Carlo simulations of
base and stringer models after following
the workflow described in the “Meth-
ods” section. In the case of the base
models, there is a good separation be-
tween the brine and the hydrocarbon
classes in the Rð0Þ-G domain with only
limited overlap of the PDFs. The PDF
of class gas has its peak at a lower inter-
cept amplitude compared with the maxi-
mum of the PDF of oil. The overlap of

Figure 8. Surfaces of the equal probability density of 10−5 for
the classes shale (the gray), brine (the blue), oil (the green),
and gas (the red).
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Figure 9. Statistics of the observed calcite stringer properties (the blue) and fit-
ted or assumed probability density distributions (the red). (a) Number of stringers
in the target zone per well (sparse data set), (b) vertical location of individual
stringer top relative to the target depth, (c) stringer thickness, and (d) assumed
probability density distribution of the calcite fraction (no data available).
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the PDFs of gas and oil is significant, suggesting that the
discrimination between the presence of oil and gas by
the AVO intercept and gradient alone is challenging in
the Alvheim Field.

The PDFs of the stringer models are different from
those of the base models, and all align along the same
linear trend. There is considerable overlap between the
three class-conditional PDFs, indicating that the pore-
fluid discrimination by the AVO intercept and gradient
is reduced by the presence of calcite stringers. Espe-
cially the brine PDF moved toward the hydrocarbon
PDFs. A single calcite stringer produces a peak-
trough-shaped seismic signal as seen in the simple mod-
eling example. Depending on its location above or be-
low the top reservoir, the AVO intercept (zero-offset
amplitude) measured at the reservoir top can be de-
creased or increased because of the interference. The
AVO gradient is affected by offset-dependent tuning
and shows more variability than the AVO intercept.

Results of the Bayesian classification
Using the class-conditional PDFs PðRð0Þ; G ∣ cjÞ, the

Bayesian confusion matrices can be estimated showing
the probabilities of the correct and incorrect classifica-
tion for each class. These values are important for
evaluating the uncertainty of the Bayesian classifica-
tion. Figure 11 shows the confusion matrices of
the Bayesian classifiers derived from the base and
stringer models assuming equal prior probabilities
PðbrineÞ ¼ PðoilÞ ¼ PðgasÞ ¼ 1=3. Each matrix element
in row i and column j represents the conditional prob-
ability Pij ¼ Pðtrue class ¼ ci ∣ predicted class ¼ cjÞ.
The diagonal elements contain the probabilities of cor-
rect classification, whereas the off-diagonal elements
contain misclassification probabilities. The column-
wise sum of probabilities is one.

Comparing the two confusion matrices, we see that
all probabilities of correct classification are decreased

and almost all misclassification probabilities are in-
creased for the stringer models compared with the base
models. In general, we can state that the presence of the
calcite stringers significantly increases the uncertainty
of pore-fluid prediction from the AVO attributes inter-
cept and gradient. More specifically, the probability
of correctly classifying brine has decreased from 87%
to 55%, and the probabilities to predict a hydrocarbon,
when there is brine (false positive), and predicting
brine, when there is a hydrocarbon (false negative),
are clearly increased. The confusion between oil and
gas is similar for base and stringer model classifiers.

Bootstrap analysis
Bootstrapping (Efron, 1979) is a common statistical

tool to measure the accuracy of statistical estimates. It
gives us an estimate of the variability and, thus, the cer-
tainty of the classification probabilities. We used 100
bootstrap data sets created by drawing from the original
data set with replacement.

Figure 12 shows the resulting histograms for the
probabilities of correct classification Pðci ∣ ciÞ for the
base and stringer model classifiers. The histograms in-
dicate that the variability in the probabilities is small.
For both classifiers, the probability of correctly predict-
ing oil is the lowest. This is not surprising because the
PDF of oil is in between brine and gas causing more
misclassification when there is oil. All of the probabil-
ities of correct classification are reduced for the
stringer model classifier compared with the base model
classifier with the most dramatic decrease observed
for brine.

The probability of a false-positive hydrocarbon
indication Pðbrine ∣ oil ∪ gasÞ, i.e., a dry hole, was esti-
mated by summing the error probabilities Pðbrine ∣ oilÞ
and Pðbrine ∣ gasÞ (Avseth et al., 2005). In Figure 13, the
Bootstrap histograms of false-positive probabilities
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Figure 10. Class-conditional PDFs PðRð0Þ; G ∣ cjÞ resulting
from a Monte Carlo simulation for (a) base models and
(b) stringer models. Crosses show the locations of the
maxima.
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Pðbrine ∣ oil ∪ gasÞ for base and stringer models are
shown. The probability of a false-positive hydrocarbon
indication increased from 3%–5% to 18%–21%. It should
be noted that these results are valid under the
assumption of equal prior probability, which should
be replaced by a more realistic estimate in practice.

Tests on synthetic seismic data at well locations
Ideally, the Bayesian classifiers should be tested on

seismic data at locations, where the pore-fluid class is
known. In our case study, we used synthetic seismic
data generated from well logs from the Alvheim Field
using the reflectivity method. This approach has the ad-
vantage that the encountered pore fluids at the well lo-
cations are known. We included three test wells A–C
that had not been used in the workflow and the nine
training wells D–L that were used to estimate the lith-
ology/fluid class PDFs. The 12 test models were built by
using the target zone of the well logs (in true vertical
depth, if available) and upward extrapolation to the
water bottom. If necessary, VS was estimated from
VP using the same procedure as mentioned previously.
At calcite stringer locations, we assumed a VP=VS ratio
of 1.67. Steps 3–6 of the workflow described in the
“Methods” section were applied to the test data sets.

Table 2 shows the resulting posterior probabilities us-
ing the class-conditional PDFs derived from base models
Pbðcj ∣ Rð0Þ; GÞ and stringer models Psðcj ∣ Rð0Þ; GÞ in
comparison to the true pore fluids, assuming equal prior
probabilities for brine, oil, and gas. Despite their remark-
able differences, the class-conditional PDFs from the
base and stringer models performed surprisingly well
in the Bayesian classification. Using the PDFs derived
from the base models gave correct predictions in nine
out of 12 cases, and the PDFs derived from the stringer
models led to correct predictions in 10 out of 12 cases.

The better performance of the stringer model classifier
indicates that the PDFs derived from stringer models
provide a better estimate of probabilities than the PDFs
derived from base models when calcite stringers are
present. In wells C and K, the hydrocarbon columns
are so short that their effect on the AVO is probably
too small, and it is not surprising that classification based
on the AVO attributes is prone to fail in these situations.
Both classifiers failed to identify the oil zone inwell H. As
we had already observed previously, the discrimination
between oil and gas based on the AVO attributes is chal-
lenging in the Alvheim Field. Many wells encountered a
gas zone and an oil zone underneath. The probabilities at
these wells are typically highest for gas, followed by oil.
The test results indicate that the discrimination between
hydrocarbon and brine is robust. Due to the overlap of
the class-conditional PDFs derived from stringer models,
in some cases the uncertainty can be high, as for wells B
and K. Because these models include calcite stringers
and are thereforemore realistic, we expect that the PDFs
derived from stringer models give better uncertainty es-
timates in the Bayesian classification.

One weakness of this approach for testing is that the
test models were built based on raw well logs, which
can be inaccurate at the calcite stringer locations.
We expect that the measurements of VP, VS, and den-
sity are potentially underestimated and smeared out in
depth at such locations.

Suggestions for further study
The approach of considering many realizations of the

simple models of a homogeneous caprock and reservoir
is a simplification that is commonly used (Avseth et al.,
2001a, 2001b; Grana and Bronston, 2015). In fact, in these
earlier studies, the AVO attributes were directly derived
from rock-physics properties instead of via a seismic
modeling procedure. Alternatively, convolutional seismic

Figure 12. Bootstrapping results for the probabilities of the
correct classification of the brine (the blue), oil (the green),
and gas (the red) for the base model classifier (the dashed
lines) and the stringer model classifier (the solid lines).

Figure 13. Bootstrapping results for the probability of a
false-positive classification for the base models (the dashed
lines) and stringer models (the solid lines).
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modeling was used in other studies (Rimstad et al., 2012).
Our approach involved advanced and realistic seismic
forward modeling and migration because the inclusion
of thin high-impedance layers required it. In addition,
the procedure resembled the processing of seismic field
data which should make the resulting PDFs more appli-
cable to measured seismic attributes. The seismic mod-
eling and migration were computationally more costly
but still allowed a Monte Carlo simulation where many
realizations are needed. We found that approximately
15 h were required to run 1000 realizations on a regular
modern business laptop.

The usage of well-log data from several wells in the
area helped to capture the variability of rock-physics
properties vertically and laterally. In our case study,
it was crucial to include wells at various locations be-
cause effects such as quartz cementation can lead to
different seismic signatures (Avseth et al., 2009). We
considered upscaling the well logs first to bring the
rock-physics properties to the seismic scale (Avseth
et al., 2005). However, this process reduced the vari-
ance of the data a lot and would have led to a strong
imprint of individual wells on the resulting PDFs.

Turbidite reservoirs are characterized by depositional
variability and complex distributions of sand lobes
(Rimstad et al., 2012). Fluid discrimination by rock phys-
ics and the AVO can be hampered by the interplay of geo-
logic factors such as quartz cementation, sorting, net-to-
gross ratio, and shale anisotropy (Avseth et al., 2009;
Golikov et al., 2013). We did not consider these factors
directly in our study where we focused specifically on
the effect of calcite cement. Another simplification is
the assumption of full saturation by one pore fluid at
a time, whereas actual rocks can be partially saturated
by several fluids and many wells encountered a gas and
an oil zone. One possibility would be to distinguish only
between the brine and hydrocarbon in the workflow.

Accounts of the elastic properties of calcite-ce-
mented beds in the literature are sparse. We came to
the same conclusion as Bakke (1996) that the well-
log measurements are unreliable in these very thin
and hard intervals due to the averaging effects and
shoulder-bed effects. Our approach of applying the Hill
mixing law assuming a mixture of quartz and calcite
grain can be considered as an approximation that needs
to be confirmed, for example, by laboratory measure-
ments. P-wave velocities above 6000 m/s were mea-
sured in some calcite-cemented intervals suggesting
that our assumed values were realistic.

The AVO intercept and gradient are common AVO
attributes in the seismic industry and the estimation
by least-squares fitting of a straight line to measured
amplitudes is a standard procedure (Chopra and
Castagna, 2014). The tuning with calcite stringers can
increase the misfit because the assumptions for the
two-term AVO are not valid anymore. A large misfit
could be used as an indicator for tuning with calcite
stringers but might be masked by noise, residual multi-
ples, etc., in field data.

We compared the class-conditional PDFs and Baye-
sian classification uncertainty in the absence of calcite
stringers (base models) and the presence of calcite
stringers (stringer models). For this purpose, it was
beneficial to work with synthetic seismic data. There
are several aspects that need to be considered when
the AVO attributes from field data are used in lithol-
ogy/fluid classification. Several types of noise can affect
the amplitudes of the data, including residual multiples.
As the true velocity field is unknown, the migration re-
sult will be imperfect and residual moveout might need
to be corrected. Measurement uncertainty can be in-
cluded in a probabilistic model (Avseth et al., 2005).
We tested peak/trough-guided amplitude picking
instead of measuring amplitudes at constant depth lev-

Table 2. Bayesian classification results for test data at well locations in comparison to observed pore fluids.

Well Pbðbrinej ·Þ Pbðoilj ·Þ Pbðgasj ·Þ Psðbrinej ·Þ Psðoilj ·Þ Psðgasj ·Þ True observation

A 0.05 0.46 0.49 0.00 0.20 0.79 32 m gas, 9 m oil

B 0.87 0.08 0.06 0.35 0.32 0.34 Brine

C 0.21 0.77 0.01 0.06 0.19 0.75 6 m gas

D 0.93 0.04 0.02 0.71 0.18 0.11 Brine

E 0.02 0.48 0.50 0.08 0.41 0.52 52 m gas, 17 m oil

F 0.00 0.23 0.77 0.01 0.22 0.77 25 m gas, 28 m oil

G 0.01 0.39 0.60 0.08 0.41 0.51 3 m gas, 5 m oil

H 0.00 0.24 0.75 0.00 0.24 0.76 48 m oil

I 0.00 0.06 0.94 0.00 0.00 1.00 9 m gas, 7 m oil

J 0.33 0.24 0.43 0.06 0.35 0.59 42 m gas, 8 m oil

K 0.79 0.15 0.06 0.40 0.28 0.33 1 m oil

L 0.97 0.02 0.00 0.74 0.14 0.12 Brine

Here, Pbð·∣·Þ denotes the probabilities from the base model PDFs, whereas Psð·∣·Þ denotes the probabilities from the stringer model PDFs. The condition of all
probabilities represented by a dot in the table header is a pair of the AVO attributes ðRð0Þ; GÞ. Figures are rounded to two decimals and bold figures indicate the
highest posterior probability. Observed hydrocarbon columns are gross intervals. Wells A–C are test wells and wells D–L belong to the training data.
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els in our workflow, but we found this to be too prone to
errors when zero-offset reflectivity was low. There are
many pitfalls in estimating the AVO attributes from seis-
mic data (Avseth et al., 2005). Another important step is
the calibration of the seismic AVO attributes to PDFs
derived from the well logs, which can be achieved by
covariance matching (Avseth et al., 2005). It also should
be noted that the wavelet will influence offset-depen-
dent tuning.

In the tests on synthetic data at well locations, both
classifiers performed well despite their differences. The
stringer model classifier performed slightly better and
typically predicted higher uncertainties showing that
the PDFs derived from stringer models are more real-
istic than those derived from clean base models. We
are aware that the test data set is too small to make
a valid evaluation and that the classifiers should be
tested on seismic field data in future work. It should
be noted that it was not the goal of the study to create
an optimal Bayesian classifier but rather to quantify the
change in uncertainty that is caused by the presence of
calcite stringers interfering with the target AVO.

We have several suggestions for future work on
building an optimal Bayesian prediction model for
the Alvheim Field. Other geologic factors, such as
quartz cementation, sorting, net-to-gross ratio and shale
anisotropy, and their depth dependency should be in-
cluded. The probability of the presence of calcite string-
ers should be carefully assessed, for example, by
evaluating all available well data. Furthermore, it
should be attempted to estimate prior probabilities
from the data instead of assuming equal prior probabil-
ities. Once the class-conditional PDFs are derived from
the data, the priors can be varied easily to analyze how
sensitive the Bayesian classification is to varying a pri-
ori assumptions.

The presented workflow can be applied to estimate
uncertainties of the AVO attributes in areas, where cal-
cite stringers or similar thin high-impedance layers are
present. The uncertainty estimates are valuable for risk
assessment prior to drilling. As discussed, regionally
adapted Bayesian classifiers can be created that include
the potential amplitude tuning with calcite stringer re-
flections. Such classifiers then can be applied to field
seismic AVO attributes.

Conclusion
With a simple example inspired by well data from the

Alvheim Field, we have demonstrated that a thin cal-
cite-cemented bed may lead to a detectable reflection
response owing to its high acoustic impedance and that
this signal can interfere with a target reflection re-
sponse altering the AVO. Such a tuning effect might lead
to a false hydrocarbon AVO indication. Therefore, the
goal of this study was to quantify the uncertainty in
the Bayesian pore-fluid classification from the AVO
attributes caused by interference with calcite stringers.
We have developed a workflow that estimates the PDFs
from two types of models, one that ignored calcite

stringers and one that included them. For these two
types of models, we then evaluated the corresponding
probabilities of correct and incorrect classification. The
workflow was applied to well data from the Alvheim
Field, where we found that the classification uncer-
tainty was significantly increased by the presence of
calcite stringers. The probability of a false-positive hy-
drocarbon indication increased from 3%–5% to 18%–21%
when an equal probability of the occurrence of brine,
oil, and gas was assumed. We tested two Bayesian clas-
sifiers, one ignoring and one including calcite stringers,
on synthetic seismic data at well locations. Both classi-
fiers achieved good classification results with a slightly
better performance of the classifier that took calcite
stringers into account. We concluded that calcite string-
ers may create an AVO pitfall and should not be
ignored. Our proposed workflow provides uncertainty
estimates that can be used in predrilling risk assess-
ment for AVO anomalies in mature areas. In frontier
areas with poor well control, the workflow could be ap-
plied using statistical properties derived from the ana-
log areas.
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Abstract

Net-to-gross ratio and net pay are essential properties for characterizing tur-
bidite reservoirs. We present a Bayesian inversion that estimates the probability
density distributions of the reservoir properties from the amplitude-variation-with-
offset (AVO) attributes intercept and gradient, which are measured at the top of
the reservoir. The method is adapted to the region-specific characteristics of the
sand-shale interbedding as observed from well data. The likelihood function is
estimated by a Monte Carlo simulation, pseudo-wells, and seismic modeling using
the reflectivity method. In a North Sea oil field case example, the AVO gradient
is most sensitive to variations in the net-to-gross ratio, while the AVO intercept is
most sensitive to the type of pore fluid. The inversion was successfully tested on
pseudo-wells and synthetic seismic AVO from well data. We show that the inver-
sion can be applied to AVO maps to produce maps of the most likely estimates of
the net-to-gross ratio and the net pay-to-net ratio, the resulting net pay, and the
uncertainty.

Introduction

Turbidite reservoirs can be found in sedimentary basins around the world (Weimer and
Link, 1991) and are important exploration targets for the oil and gas industry. Turbidite
systems are often complex (Avseth, 2000) and characterized by a sand-shale interbedding
with bed thicknesses below the seismic resolution (Lai and Gibson, 2005; Stovas et al.,
2006). The sand-shale distribution of a reservoir determines the net-to-gross ratio (N/G),
the fraction of reservoir-quality sand (net) of a gross reservoir thickness. This property
is of great interest for reservoir characterization because it is related to the reservoir
quality and the potential fluid content. Another interesting property is the net pay
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of a reservoir, which comprises only those net reservoir intervals that are sufficiently
saturated by hydrocarbons for economic production.

Several authors attempted the estimation of N/G from seismic data. Takahashi et al.
(1999) estimated the sand-shale ratio from zero-offset seismic reflectivity using stochastic
simulation and Bayesian inversion. They found that the sand-shale ratio is not well
constrained by zero-offset reflectivity alone, leading to high uncertainty. Vernik et al.
(2002) used volumes of acoustic impedance (AI) and shear impedance (SI) from seismic
prestack inversion together with facies-dependent trends in the AI-SI domain to estimate
the sand volume. Integration over the gross reservoir interval yielded N/G. Stovas et al.
(2006) developed an amplitude-variation-with-offset (AVO) attribute inversion for N/G
and fluid saturation based on binary effective media and considered the uncertainty
of this estimation in Stovas and Landrø (2006). Connolly (2007) used band-limited
impedance data from colored inversion to estimate seismic N/G and net pay after a
detuning process. Rietsch (2008) proposed to determine the net-sand thickness of a
reservoir by applying a probe function to the zero-offset seismic reflection response of a
layered sand-shale package. Avseth et al. (2009) used effective medium theory to model
the rock properties of interbedded sand-shale sequences considering different pore-fluid
scenarios. Spikes (2009) applied a Bayesian classification scheme to invert seismic zero-
offset amplitudes for saturation and N/G. Connolly and Hughes (2016) proposed a 1D
stochastic inversion of band-limited impedance traces to estimate the mean and standard
deviation of N/G. Pradhan and Mukerji (2020) applied Bayesian evidential learning to
estimate N/G and average fluid saturation and the corresponding uncertainty from near-
and far-offset seismic waveforms.

The usage of the seismic AVO attributes, intercept and gradient, is common in seismic
exploration (Chopra and Castagna, 2014). The previously mentioned studies and the
investigations by Vernik (2016) suggest that these attributes are sensitive to changes in
N/G and fluid saturation. There is also a strong consensus in academic literature that
the AVO gradient is more sensitive to variations in N/G than the AVO intercept (Stovas
et al., 2006; Vernik, 2016).

It is important to note the scale dependency of seismic wave propagation in stratified
media. Depending on the seismic wavelength and scale of heterogeneity, ray theory, scat-
tering theory, or effective medium theory are applicable (Marion et al., 1994; Takahashi,
2000). Effective medium theory is valid if individual layers are considerably thinner than
the seismic wavelength, while the exact limit depends on the reflectivity contrast (Stovas
et al., 2006). As layers become thicker and the effective medium limit is transgressed,
scattering effects need to be considered. To correctly simulate scattering in finely lay-
ered models, simple primaries-only convolutional modeling is not adequate (Stovas et
al., 2006). Instead, full-wavefield propagator-matrix or reflectivity methods need to be
used (Marion et al., 1994; Stovas et al., 2006).

Periodic binary models, as used in the modeling study by Stovas et al. (2006), are
illustrative but neglect the variation of individual layer thickness and the variability
of elastic properties of sand and shale beds. A method for generating more realistic
stratified models of turbidite sequences was proposed by Lai and Gibson (2005) using
well-data-derived cumulative density functions for bed thickness, velocity, and density.
Takahashi et al. (1999) applied geostatistical sequential indicator simulation for the
generation of layered models. In this way, equiprobable models for a certain sand-
shale ratio can be generated that honor the vertical correlation observed in well data.
1D synthetic stratigraphic sequences with attached physical properties (pseudo-wells)
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were used by many authors to better understand the relationship between seismic and
lithology (Sinvhal and Khattri, 1983; Gancarski et al., 1994; Joseph et al., 1999). More
recently, pseudo-wells have been used to train artificial neural networks (Das et al., 2019;
Allo et al., 2021).

We build on the work by Takahashi et al. (1999) and Stovas et al. (2006) to study the
level of confidence with which local reservoir properties can be determined based on AVO
attributes measured at the reservoir top. As opposed to Takahashi et al. (1999), we use
AVO intercept and gradient and not only zero-offset reflectivity. Additionally, we include
the variability of the elastic properties of sand and shale layers and the pore-fluid effect.
In contrast to Stovas et al. (2006) and many other studies, we do not use effective medium
theory. As already shown by Takahashi et al. (1999), using an effective medium does
not honor the actual non-uniqueness of N/G-estimation from seismic AVO attributes.
As discussed, the effective medium limit is dependent on the ratio of wavelength to layer
thickness and the acoustic impedance contrast. An increased seismic frequency, layer
thickness, or impedance contrast (or a combination of the three) can easily make effective
medium theory inaccurate and make the consideration of scattering effects necessary.

Recently, there has been increased interest and success in the probabilistic inversion of
seismic data for reservoir properties (Grana et al., 2022). The advantage of probabilistic
inversions, such as Bayesian methods, is that they honor the non-uniqueness of the inverse
problem and provide an uncertainty estimate in addition to the most likely solution.
Quantification of uncertainty is valuable for decision-making (Grana et al., 2022).

We apply a combination of stochastic simulation and full-wavefield seismic forward
modeling to estimate probabilities of AVO attributes at the reservoir top for varying
N/G and net pay of a reservoir to be used in a Bayesian inversion. The inversion is
applied to pseudo-wells, synthetic seismic data at well locations, and AVO attributes
from field data. We further investigate which seismic forward modeling technique is
optimal for the proposed workflow and what impact the wavelet has on the extracted
AVO attributes.

Method

We developed a Bayesian inversion that is adapted to the characteristics of a specific
reservoir by well data. The idea behind our approach is to capture the depth (vertical)
heterogeneity of the caprock and reservoir and the variability of rock physical properties
observed from well data under the assumption that the reservoir is composed of sand
and shale layers that determine the net-to-gross ratio N/G. We define N/G as the
cumulative thickness of all sand layers in the reservoir interval divided by the gross
reservoir thickness. Furthermore, we introduce the parameter net-pay-to-net ratio NP/N
as the fraction of the cumulative thickness of oil-saturated sand intervals of the net
reservoir. For simplicity, we assume that the sand intervals are fully saturated by one
single pore fluid, either brine or oil. The NP/N determines the location of the oil-
water contact (OWC). All sand intervals above the OWC are fully oil-saturated and all
sand intervals below the OWC are fully brine-saturated. Figure 1 explains the defined
variables with an example. The figure also illustrates that the theoretical sensitivity
interval of the reflection response from the reservoir top is half the length of the respective
wavelet.

The statistics (histograms, vertical correlation) obtained from many sand and shale
layers sampled by well logs are used to produce a huge number of pseudo-wells composed
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Figure 1: Illustration of the variables gross, net, net pay, and the oil-water-contact
(OWC) on a simple example of a sand-shale interbedded reservoir with a net-to-gross
ratio N/G of 50 % and a net-pay-to-net ratio NP/N of 20 %. The sensitivity interval
of half a wavelet length is indicated. The example is a 30 Hz Ricker wavelet converted
to depth using a constant velocity of 3000 m/s.

of sand and shale layers. For any given N/G and NP/N , many possible shale-sand
interbedding scenarios in the form of pseudo-wells can be generated. This makes it
possible to estimate the probability density distribution of AVO attributes given a fixed
N/G and NP/N by using seismic modeling, amplitude picking at the reservoir top, and
linear curve fitting to obtain AVO intercept R(0) and gradient G. Available well data
and other a priori information from regional stratigraphic studies can be used to build
a model of prior probability p(N/G,NP/N).

An overview of the complete workflow is shown in Figure 2. Once the probability
density distributions are computed by the Monte Carlo simulation, the inversion can
take AVO data, e.g., from AVO attribute maps of the reservoir top, as an input to yield
a probability density function of N/G and NP/N for each data point (R(0), G).

Generation of pseudo-wells

For the Monte Carlo simulation in our study, many pseudo-wells with a fixed N/G and
NP/N are required. This can be achieved by geostatistical simulation (Takahashi et
al., 1999). The pseudo-wells used in this study have the following structure from top to
bottom: a 400 m thick shale overburden followed by a 100 m thick caprock unit and a 200
m thick reservoir unit that is bounded by a constant shale layer. The elastic properties
of the overburden and the deepest layer are derived from well data. In our case example,
we use a P-wave velocity VP of 2600 m/s, an S-wave velocity VS of 1136 m/s, and a
density ρ of 2.33 g/cm3. The simulation of the properties of the caprock and reservoir
units is explained in the following two sub-subsections.
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Figure 2: Workflow for the estimation of probability density distributions by Monte
Carlo simulation to be used in a Bayesian inversion for net-to-gross ratio N/G and
net-pay-to-net ratio NP/N given the AVO attributes intercept R(0) and gradient G.
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Figure 3: Workflow for the generation of the caprock interval of pseudo-wells. The
P-wave velocity is simulated by Sequential Gaussian Simulation (SGSIM). The S-wave
velocity and density are computed by empirical relations.

Caprock

The vertical heterogeneity of the caprock can impact the AVO of the composite top
reservoir reflection response and, therefore, needs to be considered by the pseudo-wells.
The workflow for the simulation of the caprock interval of the pseudo-wells is shown in
Figure 3. The caprock properties of the well data in the interval above the reservoir top
are analyzed to obtain the histogram of VP , the spherical semivariogram model param-
eters of VP , and the empirical linear relations between VS and VP and between ρ and
VP . A Sequential Gaussian Simulation (SGSIM; Deutsch and Journel, 1992; Goovaerts,
1997; Remy et al., 2009) is then used to simulate a VP -log. Using the data-derived
linear relations, VS and ρ are computed from VP . Detailed parameters of the caprock
simulation applied in our case example are given in Table 1.
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Parameter Value(s)

Number of realizations for a specific N/G and NP/N 100
Vertical sampling interval 0.125 m

Caprock thickness 100 m
VP semivariogram model range 1.92 m
VP semivariogram model sill 1
VS regression model intercept −123.15 m/s
VS regression model slope 0.49
ρ regression model intercept 1.93 g/cm3

ρ regression model slope 1.53× 10−4 g/cm3 s/m

Table 1: Parameters of pseudo-well generation workflow for the caprock unit derived
from data from three wells.

SISIM SGSIM RPMN/G, NP/N

Facies

Sand

Shale

P-wave velocity S-wave velocity DensityClay volume Porosity

Well data Well data Well
data

Vcl (v/v) VP (m/s) VS (m/s)

Figure 4: Workflow for the generation of the reservoir interval of pseudo-wells. In this
example, the net-to-gross ratio N/G is 0.5, the net-pay-to-net ratio NP/N is 0.2, and
the vertical sampling is 0.125 m. Facies models of sand and shale layers are generated
by Sequential Indicator Simulation (SISIM). Clay volume and porosity are simulated by
Sequential Gaussian Simulation (SGSIM). Finally, elastic properties are computed using
a rock-physics model (RPM).

Reservoir

For the simulation of the reservoir interval of the pseudo-wells, we developed a multistage
workflow, shown in Figure 4, that takes the statistical information of measured well data
into account. The workflow draws on previous work by Takahashi et al. (1999), Das et
al. (2019), and Allo et al. (2021). The detailed parameters of the simulation in our case
example based on three wells are given in Table 2.

In the first step, equiprobable binary facies models are generated. Each facies model
represents a sequence of sand and shale layers with variable individual layer thicknesses.
The simulation is performed by a geostatistical Sequential Indicator Simulation (SISIM;
Deutsch and Journel, 1992; Goovaerts, 1997; Remy et al., 2009) using a spherical semi-
variogram model fitted to experimental vertical semivariograms from well data. The
well data have been interpreted by petrophysicists and each sample of the reservoir unit
has been classified as either shale or sand. The SISIM algorithm constrains the N/G by
marginal probabilities for the occurrence of sand and shale, respectively, and the vertical
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Parameter Value(s)

N/G 0 to 1 in steps of 0.1
NP/N 0 to 1 in steps of 0.1

Number of realizations for a specific N/G and NP/N 100
Vertical sampling interval 0.125 m

Reservoir thickness 200 m
Facies semivariogram model range 3.21 m

Facies semivariogram model sill 0.19
Clay volume semivariogram model range 1.05 m

Clay volume semivariogram model sill 1
Correlation coefficient of clay volume and porosity -0.61

Cement volume 0.005
Bulk modulus of quartz 36.8 GPa
Shear modulus of quartz 44 GPa

Density of quartz 2.65 g/cm3

Bulk modulus of clay 12 GPa
Shear modulus of clay 3 GPa

Density of clay 2.35 g/cm3

Bulk modulus of brine 2.24 GPa
Density of brine 1.00 g/cm3

Bulk modulus of oil 1.20 GPa
Density of oil 0.76 g/cm3

Cement cohesion coefficient (Allo, 2019) 1 (0.3 to fit VS)
Critical porosity 0.39

Coordination number 8

Table 2: Parameters of the pseudo-well generation workflow for the reservoir unit derived
from data from three wells.

correlation of the facies by the given semivariogram model.
In the second step, SGSIM is applied to populate the sand and shale layers of a

facies model with the petrophysical properties clay volume and porosity. A spherical
semivariogram model of clay volume is derived from the well data and constrains the
vertical correlation during the simulation. The porosity is simulated from the bivariate
Gaussian distribution of the normal score transformed variables (Goovaerts, 1997) to take
the negative correlation between porosity and clay volume into account (Doyen, 2007).
The SGSIM algorithm reproduces the facies-dependent histograms of clay volume and
porosity.

In the third step, a rock-physics model (RPM; Allo, 2019; Allo et al., 2021) is used
to compute the elastic properties VP , VS, and ρ given the simulated clay volume and
porosity values and the pore fluid (in case of a sand layer). The RPM shown in Figure 5
together with the well data is a constant-cement model (Avseth et al., 2000) of 0.05 %
quartz cement. The saturated-rock properties are computed by the Gassmann model
(Gassmann, 1951).
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Figure 5: Acoustic impedance vs. porosity crossplot of the reservoir formation data from
three wells. The clay volume Vcl is represented by color. The fitted constant-cement
rock-physics model is shown as black lines.

Seismic forward modeling

The seismic forward modeling engine as part of the Monte Carlo simulation, where
many possible realizations are considered, needs to be both accurate for finely layered
media and computationally fast. We compare three modeling algorithms with respect
to amplitude accuracy and computation time: primaries-only convolutional modeling
(CM), the plane-wave reflectivity method (PRM), and the spherical-wave reflectivity
method (SRM).

CM (Russell, 1988) uses angle-dependent reflectivity series r(t, θ) of primary reflec-
tions from the Zoeppritz equations or their approximations that are convolved with a
wavelet f(t) to produce angle gathers

S(t, θ) = f(t) ∗ r(t, θ) . (1)

This method is widely used and extremely efficient but neglects multiple reflections,
mode conversions, and transmission loss.

The PRM computes the full-wavefield response of an elastic layered medium to har-
monic plane waves using an iterative computation scheme (Kennett, 1974; 2009). The
resulting complex reflectivity r(ω, p) is given in the frequency-slowness domain, where ω
denotes radial frequency and p is the horizontal slowness or ray parameter. The corre-
sponding response S(τ, p) of a seismic signal f(ω) in τ -p domain with intercept time τ
can be obtained by convolution and inverse temporal Fourier transform

S(τ, p) =
1

2π

∫ ∞

−∞
f(ω)r(ω, p)eiωτdω . (2)

Oliveira et al. (2018) proposed a procedure to transform synthetic τ -p seismograms
to angle gathers. First, a τ -p normal-moveout correction is applied (van der Baan,
2004). Then, the horizontal slowness p = sinθ

VP (τ)
is mapped to the incidence angle θ using

a smoothed velocity model VP (τ) in time. The result is a synthetic plane-wave angle
gather S(τ, θ). In contrast to CM, internal multiples, mode conversions, and transmission
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loss are included. The method gained therefore attraction for the application in AVO
inversion in recent years (Liu et al., 2016; Yang and Lu, 2020; Chen et al., 2020).

To compute spherical-wave synthetics using the SRM, a weighted sum of plane-wave
contributions needs to be computed (Fuchs and Müller, 1971; Aki and Richards, 2002).
The scalar potential Φr(x, t) of the spherical-wave reflection response from a layered
medium observed at the surface z = 0 and at a source-receiver offset x is (Fuchs and
Müller, 1971)

Φr(x, t) =
1

2π

∫ ∞

−∞
eiωtF (ω)

∫ ∞

0

ωp

iq1

J0(ωpx)r(ω, p) dp dω , (3)

where q1 =
√
V −2
P,1 − p2 is the vertical slowness in the uppermost layer with P-wave

velocity VP,1, J0 is the Bessel function of the first kind and order zero, and F (ω) denotes
the Fourier transform of the source excitation function F (t). The slowness integral has
an oscillatory integrand, which makes a dense sampling in slowness domain necessary to
avoid spatial aliasing (Sen, 2021). This requirement increases the computational effort
of computing r(ω, p) compared to the PRM. The generation of angle gathers from offset-
time seismograms can be done by applying a migration algorithm (Hanitzsch et al., 1994)
followed by an offset-angle mapping, which requires ray tracing. As an alternative to
migration, normal moveout, and geometrical spreading correction can be applied. These
additional steps to produce angle gathers from synthetic shot gathers from the SRM
increase the computational cost further.

The generated pseudo-wells are in log scale and have a vertical sampling interval ∆z
of 0.125 m. This corresponds to a ratio of wavelength to vertical sampling interval of
λ

∆z
= 693 with the wavelength λ computed at the average shale velocity of 2600 m/s

and a dominant wavelet frequency of 30 Hz. To reduce the computation time of seismic
forward modeling, the models are upscaled (resampled) to a vertical sampling interval
of 4 m, corresponding to λ

∆z
≈ 22. The upscaling is performed by an aliasing-protected

low-pass wavenumber filtering of the inverse P-wave modulus c−1
33 = ρ−1V −2

P , the inverse
shear modulus c−1

44 = ρ−1V −2
S and the density ρ (Tschache et al., 2022). The upscaling

procedure preserves the low wavenumbers of the model properties up to the cut-off
(Nyquist) wavenumber at 1

2∆z
and removes the higher wavenumbers, which are irrelevant

for a wave propagating with a wavelength of λ ≈ 84 m.
Figure 6a shows the upscaled acoustic-impedance model (red) compared to the log-

scale model (blue) of an example pseudo-well. The SRM (Figure 6b), PRM (Figure 6c),
and CM (Figure 6d) synthetic angle gathers of the upscaled model generated using a
30 Hz Ricker wavelet are displayed. The computation times on a regular business laptop
are given for orientation at the bottom of Figure 6. All three synthetic angle gathers
are visually similar. The peak amplitudes at the top reservoir reflection at a 500 m
depth were picked and the resulting amplitude variation with angle (AVA) is displayed
in Figure 7. For comparison, the AVA of the SRM synthetics produced for the originally
sampled model at log scale is shown by a dashed line. The AVA of the SRM and the
PRM are generally in good agreement, while the AVA of the CM synthetics deviates
considerably at large incidence angles. This is probably caused by offset-dependent
tuning effects, which are not correctly simulated by the simplistic primaries-only CM
approach. The PRM synthetics are equivalent to spherical-wave seismograms in the
pre-critical angle range provided that the wave propagation distance is sufficiently long
(Ursenbach et al., 2007). Because the velocity contrasts of the upscaled pseudo-wells are
moderate, it can be guaranteed that critical angles are not reached in the angle range
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Figure 6: a: Acoustic impedance model in original sampling (blue) and upscaled ver-
sion (red), b-d: corresponding synthetic seismic angle gathers from the spherical-wave
reflectivity method (SRM), the plane-wave reflectivity method (PRM) and convolutional
modeling (CM), respectively. A comparison of computation time is given at the bottom.

of 0° to 30°. The PRM requires a considerably shorter computation time than the SRM
(see Figure 6, bottom) while providing sufficient amplitude accuracy and is therefore the
preferred modeling method for this study.

AVO attribute extraction

The angle-dependent amplitudes R(θ) at the reservoir top are picked on the peak am-
plitude in a window 500± 10 m. A linear curve is fitted by the least-squares method to
obtain the AVO intercept R(0) and gradient G from Shuey’s two-term approximation
(Shuey, 1985)

R(θ) = R(0) +Gsin2θ. (4)

Bayesian inversion

The goal of solving the inverse problem is the estimation of reservoir properties m from
geophysical data d. In this study, the reservoir properties of interest are N/G and NP/N
and the geophysical data are AVO attributes intercept R(0) and gradient G. Because of
the variable scale of heterogeneity of turbidite reservoir models, the relationship between
reservoir properties and AVO attributes is non-unique (Takahashi, 2000). To honor this
non-uniqueness, we can express the inverse problem as a conditional probability distri-
bution p (m | d). According to Bayes’ theorem, the posterior probability distribution
can be estimated by

p (m | d) =
p (d |m) p (m)

p (d)
= const. · p (d |m) p (m) , (5)

where the likelihood function p (d |m) is the conditional probability distribution of AVO
attributes conditioned on the reservoir properties N/G and NP/N , p(m) is the prior
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sured on different synthetic seismic angle gathers.

probability of the reservoir properties independent of seismic AVO observations, and
p (d) is a normalizing constant.

By considering many equiprobable reservoir models n of a fixed set of N/G and
NP/N , we can estimate the conditional probability density function (Takahashi, 2000)

p (d |m) =

∫
p (d | n,m) p (n |m) dn. (6)

This is realized by simulating equiprobable pseudo-wells and applying seismic forward
modeling to obtain AVO attributes as discussed in the previous subsections.

Using the described Monte Carlo approach of pseudo-well generation, seismic for-
ward modeling, and AVO attribute extraction of many pseudo-well realizations, the
two-dimensional model space of N/G and NP/N is explored systematically on a regular
grid. Both N/G and NP/N range from 0 to 1. The grid spacing is chosen to be 0.1
for both parameters because the computational effort of the Monte Carlo simulation is
heavy. At each model-space grid point mi,j, 100 pseudo-wells are generated.

Results

Likelihood function

The seismic modeling as part of the Monte Carlo simulation was run for two different
wavelets, a Ricker wavelet of 30 Hz peak frequency and a tapered Ormsby wavelet with
corner frequencies 6 Hz, 10 Hz, 80 Hz, and 90 Hz, which are both shown in Figure 8. In
this way, the impact of the wavelet’s shape and bandwidth on the resulting probability
density functions (PDFs) can be analyzed.

Bivariate normal distributions were fitted to the 100 data points to estimate the
likelihood p (R(0), G | mi,j) at each grid location mi,j in the model space. Figure 9
shows the mean, variance, and covariance values of the resulting PDFs in the model
space for the two different wavelets. The AVO intercept is mainly sensitive to the fluid
content. It is largest when there is brine (NP/N = 0) and smallest when there is a thin
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Figure 8: Ricker (blue) and tapered Ormsby (red) wavelet (top) and their corresponding
frequency spectra (bottom).

oil interval (NP/N = 0.1). As expected, the fluid effect on R(0) is stronger as N/G
increases and vanishes if N/G is low. The AVO gradient shows a correlation with N/G:
a decreasing N/G makes the gradient more negative. There is also sensitivity for varying
NP/N when NP/N is low. The gradient sensitivity for low NP/N is mainly driven by
the interference with the OWC reflection response. If NP/N is larger than 0.4, the OWC
response is too far away from the top reservoir reflection to interfere with it. We can
conclude from this observation that the sensitivity interval of the two wavelets reaches
a maximum depth of 80 m measured from the reservoir top.

The different interference pattern of the two wavelets explains the difference in
the mean gradient displays. For the Ricker wavelet, there is a gradient depression at
NP/N = 0.2, which is found at NP/N = 0.1 for the Ormsby wavelet. The variances are
significantly higher for the Ormsby wavelet than for the Ricker wavelet, probably caused
by the longer coda of the Ormsby wavelet. This indicates that the broadband Ormsby
wavelet is less suitable for an inversion of AVO attributes, which are measured at the
reservoir top, for N/G and NP/N .

Prior probability

The estimation of realistic prior probabilities is often challenged by sparse a priori infor-
mation. We gathered data of N/G and NP/N from six wells of the study area, which
is not enough to estimate a probability distribution. Therefore, we built a simple prior
model shown in Figure 10 that integrates the observations without making too strict
assumptions on the probability distribution. For N/G, an equal prior probability is as-
sumed in the range of 0.3 to 0.9 and a lower prior probability at the limits. The prior
probability of NP/N is equal for the range of 0 to 0.4 and decreases by a Gaussian
taper towards a low prior probability for NP/N = 1, which represents a completely
oil-saturated reservoir unit of 200 m.

Brunstad et al. (2013) investigated the N/G of several formations of the Rogaland
group. For the reservoir formation of concern, they estimated a general N/G of about
0.65, which is in good agreement with the observed range of N/G at the well locations
shown in Figure 10.
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Figure 9: Mean, variance, and covariance of intercept R(0) and gradient G resulting
from Monte Carlo simulation using a Ricker and Ormsby wavelet displayed on a grid of
varying net-to-gross ratio N/G and net-pay-to-net ratio NP/N . Interpolation between
grid points was done for display purposes.

Figure 10: Prior probability of N/G and NP/N with a priori information from six wells
shown by black markers.
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Posterior probability

Using Bayes’ theorem and linear interpolation, the posterior probabilities can be com-
puted for a given data point (R(0), G). This has been done on a regular grid of R(0)
and G covering the central zone of observed AVO attributes resulting from the Monte
Carlo simulation. In Figure 11, the posterior probabilities are displayed in the form
of contour lines of highest posterior density (HPD) regions. These HPD contours can
be easily interpreted. The probability that N/G and NP/N are inside the 90 % HPD
contour is 90 %. Additionally, the locations of maximum a posteriori probability (MAP)
are displayed.

Figure 11 visualizes how well the reservoir properties N/G and NP/N are constrained
at different locations in the AVO crossplot. At R(0) = 0.14, G = 0.02, for example, a
fully brine-saturated high-N/G reservoir condition is predicted with confidence. For
other values, such as R(0) = 0.10, G = −0.04, the HPD regions are large indicating
that N/G and NP/N are not well constrained by the AVO attributes. The posterior
probabilities nicely reflect the already mentioned correlation between gradient and N/G
and the weak dependence of N/G on the intercept.

Application to pseudo-wells

To check the consistency of the inversion, we applied it to 1000 test pseudo-wells with
reservoir properties N/G and NP/N that were drawn from the prior probability dis-
tribution shown in Figure 10. The test pseudo-wells were generated using the same
workflow as discussed in the Methods section, followed by the generation of synthetic
seismic angle gathers by the PRM, amplitude picking, and estimation of AVO intercept
and gradient.

Figure 12a shows the AVO attributes of all test pseudo-wells in an AVO crossplot. We
demonstrate the reliability of the inversion at one example location in the AVO crossplot
at R(0) = 0.1 and G = −0.04. For this specific pair of AVO attributes, the posterior
probability density was computed by the inversion and is shown as 90 % and 50 %
HPD region contours in Figure 12b. The test pseudo-wells that are closest to the target
point in the AVO crossplot were selected and are shown by red markers in Figure 12a.
Assuming that we can apply the target posterior to those selected test pseudo-wells that
have a very similar AVO to the target, we plot their true N/G and NP/N values in the
target HPD region display (Figure 12b). We see that 16 out of 18 (89 %) selected test
pseudo-wells are located inside the 90 % HPD region and 8 (44 %) are located inside
the 50 % HPD region. Given the relatively small number of selected test pseudo-wells,
these scores match well with the expectation. Figure 12b also demonstrates the non-
uniqueness of the estimation of reservoir properties from AVO attributes when using a
very smooth and almost uniform prior model. A wide range of reservoir properties can
lead to the same observed AVO at the reservoir top.

From all 1000 test pseudo-wells with known N/G and NP/N , we counted how many
are in the respective HPD regions between 10 % and 90 %. The observed scores shown
in Figure 13 are close to the expectation. Slightly higher scores could be a consequence
of the linear interpolation that was applied to compute the HPD regions.
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a b

Figure 12: a: AVO crossplot of all 1000 test pseudo-wells (blue markers) with the target
AVO marked by a black cross and the selection of neighboring test pseudo-wells marked
in red. b: Contours of the 90 % (outer) and 50 % (inner) highest posterior density
regions for the target AVO with the true reservoir properties of the selected neighbor
test pseudo-wells shown by red crosses.
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Figure 13: Percentage of test pseudo-wells with N/G and NP/N inside the respective
highest posterior density (HPD) regions of a given probability compared to the expec-
tation.
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Figure 14: a: Synthetic seismic angle gathers of three wells computed by the PRM. The
top of the reservoir interpreted from the well data is indicated by dotted red lines. b:
Measured seismic AVO of the three wells (red markers) plotted on top of the AVO of all
pseudo-wells (blue markers) c: Inversion results for the three wells showing the contours
(dashed lines) of the 90 % (outer) and 50 % (inner) HPD regions and the actual N/G
and NP/N by red crosses.

Application to synthetic seismic data from well logs

The inversion was applied to the AVO data from synthetic seismic angle gathers com-
puted by the PRM using the well-log data from three wells (A, B, D). Well A does not
have shear-wave logs and VS was estimated using the RPM. Figure 14a shows the angle
gathers in depth with the top of the reservoir interpreted from well data marked. The
peak amplitudes closest to the reservoir top were picked, and R(0) and G were estimated.
The AVO crossplot shown in Figure 14b reveals that the AVO of wells A and B is inside
the distribution of AVO estimated from pseudo-wells, while the AVO observed at well D
is outside. Consequently, the inversion result for well D is unreliable (Figure 14c right).
As can be seen on the angle gather from well D, the top reservoir reflection is masked by a
thin, hard layer that produces a typical dipole (peak-trough) seismic reflection response.
The inversion results at wells A and B shown in Figure 14c (left and center) match well
with the actual reservoir properties at these well locations. In case of well A, the true
N/G and NP/N point is inside the 50 % HPD region. For well B, the true N/G and
NP/N location is outside the 50 % HPD region but inside the 90 % HPD region.

Application to field data

The inversion was finally applied to field seismic AVO data from the Jotun Field, a
North Sea oil field in Paleocene sandstones of turbidite deposits (Bergslien, 2002). In
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Figure 15: Maps of the AVO intercept (left) and gradient (right) of the top reservoir
reflection response. The locations of four wells A-D are indicated.
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Figure 16: Map of the net-to-gross ratio N/G where the posterior probability is highest.

the study area, the transition from the caprock shale (Sele and Lista Formations) to the
reservoir sand (Heimdal Formation) is seismically characterized by a hard event (increase
in acoustic impedance resulting in a positive peak) and a class I AVO signature. The
reservoir top has been interpreted following the peak amplitude on a near (0° to 15°) and
far (24° to 39°) sub-stack. However, the interpretation was challenging, and its confidence
decreases away from well control. Figure 15 shows the resulting AVO attribute maps of
intercept and gradient at the reservoir top, generated using windowed root-mean-squared
amplitudes around Top Heimdal from near and far sub-stacks.

New synthetic angle gathers of the pseudo-wells were generated to encompass the
angle range 0° to 39° and to use an extracted wavelet from the seismic data. The observed
seismic AVO intercept and gradient values were calibrated using synthetic seismic AVO
data at the three wells A, B, and D (Figure 15). In a second calibration step, the gradient
was scaled to match the variance of the pseudo-well gradients. The inversion was applied
to the calibrated seismic AVO data. At every location on the map, the inversion result
is a bivariate PDF of N/G and NP/N . The maps in Figures 16 and 17 show the MAP
solution.

Figure 18 shows an uncertainty estimate, which is the proportional area of the 90 %
HPD region in the N/G-NP/N space. An estimate of net pay was generated by com-
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Figure 17: Map of the net-pay-to-net ratio NP/N where the posterior probability is
highest.
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Figure 18: Map of the uncertainty of N/G and NP/N .

puting the product of the MAP N/G, the MAP NP/N , and a constant gross thickness
of 200 m. The resulting net-pay map is shown in Figure 19.

The MAP N/G (Figure 16) shows a correlation with the AVO gradient. Patches of
high N/G are predicted where the gradient is positive and largest. There are coherent
clusters of high MAP N/G that can be interpreted, for example around well A.

The MAP NP/N (Figure 17) varies only between 0 and 0.4 because there is no sensi-
tivity of the AVO attributes for higher NP/N . A MAP NP/N = 0 indicates the absence
of hydrocarbon and these zones correspond to a large AVO intercept. The presence of
hydrocarbon has a dimming effect on the amplitude in this hard sand reservoir. For most
parts of the map, a NP/N between 0.1 and 0.3 is predicted as the most likely value,
which means that the presence of oil is more likely in these places than the presence of
brine.

The uncertainty estimate of the inversion (Figure 18) is high (≥ 0.5) throughout vast
parts of the map. Low uncertainty values correlate with high AVO intercept, where the
absence of hydrocarbon (NP/N = 0) is predicted. The high level of uncertainty should
always be kept in mind when interpreting the MAP N/G and MAP NP/N maps.

The map of net pay (Figure 19) is a scaled product of the MAP N/G and MAP
NP/N maps and indicates the expected net pay in meters. If a gross thickness map is
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Figure 19: Map of the net-pay thickness in meters estimated from the MAP N/G and
the MAP NP/N . The color scale was capped at 30 m.

available, it should be used in the calculation of net pay rather than assuming a constant
gross thickness.

Figure 20 shows the bivariate PDFs resulting from the inversion as filled contours of
the 50 % and 90 % HPD regions and the MAP solution for wells A-D together with the
true values of N/G and NP/N . At well A, the MAP prediction almost coincides with
the actual values of N/G and NP/N . This is also the location of the highest confidence
of the input AVO maps. For two wells (A and B), the true values are located inside
the 50 % HPD regions and in all four cases they are located inside the 90 % probability
contours. A huge deviation of the MAP solution at well C from the true values can be
explained by a gas cap that was drilled there. The presence of gas (as opposed to oil or
brine) was neglected by the simplified assumptions of the modeling. All inversion results
in the gas cap of the Tau structure (Bergslien, 2002) should therefore be disregarded.

Suggestions for further study

The net-to-gross ratio is a scale-dependent parameter (Avseth et al., 2009) and is also
dependent on the definition of net intervals. In this study, we refer to N/G interpreted
at log scale with measurement intervals of 0.125 to 0.15 m. The facies, rock physical, and
elastic properties of pseudo-wells are simulated consistently in log scale. N/G varies ver-
tically and laterally in turbidite reservoirs. Typical turbidite sequences, such as Bouma
(Bouma, 1962) or Lowe (Lowe, 1982) sequences, have not been considered in this study
and could be accounted for in future work.

The generated pseudo-wells rely on several simplifying assumptions. One basic as-
sumption is that the reservoir can be described by a sequence of sand and shale layers.
Additional facies, such as shaly sand, could be added if deemed necessary. Despite only
two facies being used, the variability of rock physical and elastic properties observed from
well logs have been incorporated. We further assume that the reservoir thickness is above
the tuning thickness (Widess, 1973) and that the top and base reflections are completely
separated. We also simplified the fluid saturation scenarios for practical purposes. The
presence of gas and a variable saturation of mixed fluids could be considered in future
work. The effect of the caprock has been ignored in many earlier studies (Takahashi et
al., 1999; Stovas et al., 2006; Pradhan and Mukerji, 2020). We realized that caprock
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Figure 20: Inversion results at wells A-D (a-d) displayed by the highest posterior density
regions of 90 % and 50 % probability and the maximum a posteriori solution compared
to the true N/G and NP/N values.

heterogeneity affects the measured AVO at the reservoir top through interference and
have included this effect in the presented workflow for the generation of pseudo-wells.

The usage of AVO attributes measured at the top of the reservoir sets a limitation
on the presented method. The reflection response at the reservoir top is most sensitive
to the uppermost part of the reservoir and it is assumed that the predicted N/G there is
representative of the whole reservoir unit. The sensitivity limit for the wavelets included
in this study is located at 80 m depth below the reservoir top. Nevertheless, we show
that useful information on reservoir properties can be derived. The AVO attributes at
the reservoir top are influenced by the type of pore fluid and by the OWC when it is
within the sensitivity interval of the wavelet. The presented inversion can be applied to
AVO attribute maps that are often already available or that can be easily produced from
sub-stacks. An interesting present and future research direction is the usage of complete
seismic traces and the application of machine learning methods as proposed by Pradhan
and Mukerji (2020).

Local geological features such as facies that are considerably softer or harder than
shale or sand can perturb the seismic reflection response at the top of the reservoir as has
been observed in well D. The presented inversion is not adapted to such irregularities. If
there are indications for thin, hard layers intercalated in the reservoir or caprock, such
as calcite-cemented sand layers, these should be included in the pseudo-wells (Tschache
et al., 2023).

The estimated uncertainty values represent only the geological uncertainty originating
from the non-unique relationship between AVO measured at the reservoir top and the
reservoir properties of interest. Additional uncertainty associated with the measurement
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error of seismic amplitudes and AVO is not included, such as noise in the seismic data,
amplitude distortions from processing, or errors related to the interpretation of the top
reservoir reflection, the calibration of the seismic amplitudes, and the estimation of the
AVO attributes. The signal-to-noise ratio of the AVO intercept is higher than that of the
AVO gradient (Chopra and Castagna, 2014). Especially the prediction of N/G will suffer
from low-quality gradient input data. The incorporation of the measurement uncertainty
of the AVO attributes should be addressed in future work.

Possible ways to reduce the uncertainty of the predictions would be a more constrain-
ing prior model or the incorporation of more input variables. As discussed, the usage of
complete seismic traces is also promising (Kjønsberg et al., 2010; Pradhan and Mukerji,
2020).

The presented inversion contains several improvements compared to previous work
by Takahashi et al. (1999) and Stovas et al. (2006). The correlation between the
reservoir properties and the AVO attributes is investigated which helps to understand
the inversion results. The prior model can be easily replaced to include additional data.
The pseudo-wells are constructed based on the observed regional characteristics of sand
and shale layers. The usage of an adequate seismic forward modeling method allows us
to include all scattering effects instead of regarding the reservoir as an effective medium.
Combining the pseudo-wells and the seismic forward modeling, the geological uncertainty
of the estimation of reservoir properties based on AVO is estimated, which is important
to consider in quantitative seismic interpretation.

Conclusion

We present a 1D Bayesian inversion that estimates the probability density function of the
local reservoir properties net-to-gross ratio N/G and net-pay-to-net ratio NP/N given
the AVO attributes intercept R(0) and gradient G at the reservoir top as input data.
From the estimated probability density functions, regions of highest posterior density can
be computed, or the maximum a posteriori solution together with uncertainty measures
can be derived.

A reflectivity method producing plane-wave synthetics was used for seismic forward
modeling because it yields better amplitude accuracy than primaries-only convolutional
modeling for an acceptable computational cost. We found a broadband wavelet to be
less suitable for the presented workflow than a Ricker wavelet because observed variances
of AVO attributes are significantly larger when using a broadband wavelet with a long
coda. In the study area, the AVO intercept is mainly sensitive to the pore fluid, while
the AVO gradient shows a correlation with N/G and sensitivity for low NP/N .

The consistency of the method was proven on a test dataset of pseudo-wells. The
inversion was further tested on synthetic seismic AVO at well locations, where it gave
reasonable results when the observed AVO was in the range of AVO of the training
dataset. We applied the inversion to AVO attribute maps of the reservoir top of the
Jotun Field, where maps of the most likely N/G, NP/N , net pay, and of the uncertainty
were produced. Despite the high uncertainty in predicting definite values of reservoir
properties, spatial trends could be identified. Such maps can, combined with other
information, support the screening for areas of high reservoir quality.
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