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Abstract
In this work, we study the k-median clustering problem with an additional equal-
size constraint on the clusters from the perspective of parameterized preprocessing.
Our main result is the first lossy (2-approximate) polynomial kernel for this problem
parameterized by the cost of clustering. We complement this result by establishing
lower bounds for the problem that eliminate the existence of an (exact) kernel of
polynomial size and a PTAS.

Keywords k-median clustering · Parameterized approximation · Kernelization ·
Lossy kernels

1 Introduction

Lossy kernelization stems from parameterized complexity, a branch in theoretical
computer science that studies the complexity of problems as functions of multiple
parameters of the input or output [1]. A central notion in parameterized complexity is
kernelization, which is a generic technique for designing efficient algorithms availing
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a polynomial-time preprocessing step that transforms a “large” instance of a problem
into a smaller, equivalent instance. Naturally, the preprocessing step is called the
kernelization algorithm and the smaller instance is called the kernel. One limitation
of the classical kernelization technique is that kernels can only deal with “lossless”
preprocessing in the sense that a kernel must be equivalent to the original instance.
This is why most of the interesting problems arising from machine learning, e.g.,
clustering, are intractable from the perspective of kernelization. Lossy or approximate
kernelization is a successful attempt of combining kernelization with approximation
algorithms. Informally, in lossy kernelization, given an instance of the problem and
a parameter, we would like the kernelization algorithm to output a reduced instance
of size polynomial in the parameter; however, the notion of equivalence is relaxed
in the following way. Given a c-approximate solution (i.e., one with the cost within
c-factor of the optimal cost) to the reduced instance, it should be possible to produce
in a polynomial time an αc-approximate solution to the original instance. The factor
α is the loss incurred while going from the reduced instance to the original instance.
The notion of lossy kernelization was introduced by Lokshtanov et al. in [2]. However,
most of the developments of lossy kernelization up to now are in graph algorithms
[3–7], see also [8, Chapter 23] for an overview.

One of the actively developing areas of parameterized complexity concerns fixed-
parameter tractable- or FPT-approximation.We refer to the survey [9] for an overview
of the area. Several important advances in FPT-approximation concern clustering prob-
lems. It includes tight algorithmic and complexity results for k-means and k-median
[10] and constant factor FPT-approximation for capacitated clustering [11]. The pop-
ular approach for data compression used for FPT-approximation of clustering is based
on coresets. The notion of coresets originated from computational geometry. It was
introduced by Har-Peled and Mazumdar [12] for k-means and k-median clustering.
Informally, a coreset is a summary of the data that for every set of k centers, approxi-
mately (within (1 ± ε) factor) preserves the optimal clustering cost.

Lossy kernels and coresets have a lot of similarities. Both compress the space
compared to the original data, and any algorithm can be applied on a coreset or kernel
to efficiently retrieve a solutionwith a guarantee almost the same as the one provided by
the algorithm on the original input. The crucial difference is that coreset constructions
result in a small set of weighted points. The weights could be up to the input size n.
Thus, a coreset of size polynomial in k/ε, is not a polynomial-sized lossy kernel for
parameters k, ε because of the log n bits required to encode the weights. Moreover,
usually coreset constructions do not bound the number of coordinates or the dimension
of the points.

While the notion of lossy kernelization proved to be useful in the design of graph
algorithms, we are not aware of its applicability in clustering. This brings us to the
following question: What can lossy kernelization offer to clustering?

In this work, we make the first step towards the development of lossy kernels for
clustering problems. Our main result is the design of a lossy kernel for a variant
of the well-studied k- Median clustering with clusters of equal sizes. More precisely,
consider a collection (multiset) of points fromZ

d under the �p-norm. Thus, every point
is a d-dimensional vector with integer coordinates. For a nonnegative integer p, we use
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‖x‖p to denote the �p-norm of a d-dimensional vector x = (x[1], . . . , x[d]) ∈ R
d ,

that is, for p ≥ 1,

‖x‖p =
(

d∑
i=1

|x[i]|p
)1/p

and for p = 0, ‖x‖0 is the number of nonzero elements of x, i.e., the Hamming norm.
For any subset of points T ⊆ Z

d , we define

costp(T ) = min
c∈Rd

∑
x∈T

‖c − x‖p.

Then k- Median1 clustering (without constraints) is the task of finding a partition
{X1, . . . , Xk} of a given set X ⊆ Z

d of points minimizing the sum

k∑
i=1

costp(Xi ).

Inmany real-life scenarios, it is desirable to cluster data into clusters of equal sizes. For
example, to tailor teachingmethods to the specific needs of various students, onewould
be interested in allocating k fair class sizes by grouping students with homogeneous
abilities and skills [13]. In scheduling, the standard task is to distribute n jobs to k
machines while keeping identical workloads on each machine and simultaneously
reducing the configuration time. In the setting of designing a conference program, one
might be interested in allocating n scientific papers according to their similarities to k
“balanced” sessions [14].

The following model is an attempt to capture such scenario:

Equal Clustering

Input: A collection (multiset) X = {x1, . . . , xn} of n points of Z
d and a positive

integer k such that n is divisible by k.
Task: Find a partition {X1, . . . , Xk} (k-clustering) ofX with |X1| = · · · = |Xk | = n

k
minimizing

k∑
i=1

costp(Xi ).

First, note that Equal Clustering is a restricted variant of the capacitated version
[11] of k- Median where the size of each cluster is required to be bounded by a given
number U . Also note, that some points in X may be equal (in the above examples,
several students, jobs, or scientific papers can have identical features but could be

1 Traditionally this problem is studied with real input points, but because of the choice of the parameteri-
zation, it is natural for us to assume that points have integer coordinates. As the coordinates can be scaled,
this does not lead to the loss of generality.
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assigned to different clusters due to the size limitations). We refer to the multisets
X1, . . . , Xk as the clusters.

To describe the lossy-kernel result, we need to define the parameterized version of
Equal Clustering with the cost of clustering B (the budget) being the parameter.
Following the framework of lossy kernelization [2], when the cost of an optimal
clustering exceeds the budget, we assume it is equal to B + 1. More precisely, in
Parameterized Equal Clustering, we are given an additional integer B (budget
parameter). The task is to find a k-clustering {X1, . . . , Xk} with |X1| = · · · = |Xk |
and minimizing the value

costBp (X1, . . . , Xk) =
{∑k

i=1 costp(Xi ) if
∑k

i=1 costp(Xi ) ≤ B,

B + 1 otherwise.

Before stating our results, let us first discuss some limitations and advantages of param-
eterization of Decision Equal Clustering by the budget B. First, parameterization
by B is reasonable when the vectors are integer-valued, which is a common situation
when the data is categorical, that is, can admit a fixed number of possible values.
For example, it could be gender, blood type, or political orientation. A prominent
example of categorical data is binary data, where the points are binary vectors. Binary
data arise in several critical applications. For example, in electronic commerce, each
transaction can be modeled as a binary vector (known as market basket data), each
of whose coordinates denotes whether a particular item is purchased or not [15, 16].
In document clustering, each document can be modeled as a binary vector, each of
whose coordinates denotes whether a specific word is present or not in the document
[15, 16].

The most drastic effect of compression occurs when B is small. Intuitively, this
means that many of the data points are the same. Such a condition is common in
handling personal data that cannot be re-identified. For example, the k-anonymity
property requires each person in the data set to be undistinguishable from at least k
individuals whose information appears in the release [17].

Finally, comparing lossy kernelization from Theorem 1 and the coresets for k-
Median and k-Means. The sizes of all known coreset constructions depend on the
number of clusters k and thus guarantee compression only for small values of k. On
the other hand, the size of the lossy kernel is independent of k. In particular, such type
of results is interesting when we have to identify many clusters of small size.

Our firstmain result is the following theoremproviding a polynomial 2-approximate
kernel.

Theorem 1 For every nonnegative integer constant p, Parameterized Equal
Clustering admits a 2-approximate kernel when parameterized by B, where the
output collection of points has O(B2) points of Z

d ′
with d ′ = O(B p+2), where each

coordinate of a point takes an absolute value of O(B3).

In other words, the theorem provides a polynomial-time algorithm that compresses
the original instance X to a new instance whose size is bounded by a polynomial of
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B and such that any c-approximate solution in the new instance can be turned in a
polynomial time to a 2c-approximate solution to the original instance.

A natural question is whether the approximation ratio of the lossy kernel in The-
orem 1 is optimal. While we do not have a complete answer to this question, we
provide lower bounds supporting our study of the problem from the perspective of
approximate kernelization. Our next result rules out the existence of an “exact” kernel
for the problem. To state the result, we need to define the decision version of Equal
Clustering. In this version, we call it Decision Equal Clustering, the question
is whether for a given budget B, there is a k-clustering {X1, . . . , Xk} with clusters of
the same size such that

∑
1≤i≤k costp(Xi ) ≤ B.

Theorem 2 For the �0 and �1-norms, Decision Equal Clustering has no poly-
nomial kernel when parameterized by B unless NP ⊆ coNP /poly, even if the input
points are binary, that is, are from {0, 1}d .

On the other hand, we prove that Decision Equal Clustering admits a poly-
nomial kernel when parameterized by k and B.

Theorem 3 For every nonnegative integer constant p, Decision Equal Cluster-
ing admits a polynomial kernel when parameterized by k and B, where the output
collection of points hasO(kB) points ofZd ′

with d ′ = O(kB p+1) and each coordinate
of a point takes an absolute value of O(kB2).

When it comes to approximation in a polynomial time, we show (Theorem 5) that it
isNP-hard to obtain a (1+εc)-approximation for Equal Clusteringwith �0 (or �1)
distances for some εc > 0. However, parameterized by k and ε, standard techniques
yield (1+ε)-approximation in FPT time. For the �2 norm, there is a general framework
for designing algorithms of this form for k- Median with additional constraints on
cluster sizes, introduced by Ding and Xu [18]. The best-known improvements by
Bhattacharya et al. [19] achieve a running time of 2Õ(k/εO(1))nO(1)d in the case of
Equal Clustering, where Õ hides polylogarithmic factors. In another line of work,
FPT-time approximation is achieved via constructing small-sized coresets of the input,
and the work [20] guarantees an ε-coreset for Equal Clustering (in the �2 norm)
of size (kd log n/ε)O(1), and consequently a (1 + ε)-approximation algorithm with
running time 2Õ(k/εO(1))(nd)O(1).

Moreover, specifically for Equal Clustering, simple (1 + ε)-approximations
with similar running time can be designed directly via sampling. A seminal work of
Kumar et al. [21] achieves a (1 + ε)-approximation for k- Median (in the �2 norm)
with running time 2Õ(k/εO(1))nd. The algorithm proceeds as follows. First, take a small
uniform sample of the input points, and by guessing ensure that the sample is taken only
from the largest cluster. Second, estimate the optimal center of this cluster from the
sample. In the case of k- Median, Theorem5.4 of [21] guarantees that froma sample of
size (1/ε)O(1) one can compute in time 2(1/ε)O(1)

d a set of candidate centers such that at
least one of them provides a (1 + ε)-approximation to the cost of the cluster. Finally,
“prune” the set of points so that the next largest cluster is at least �(1/k) fraction
of the remaining points and continue the same process with one less cluster. One can
observe that in the case of Equal Clustering, a simplification of the above algorithm
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suffices: one does not need to perform the “pruning” step, as we are only interested
in clusterings where all the clusters have size exactly n/k. Thus, (1/ε)O(1)-sized
uniform samples from each of the clusters can be computed immediately in total time
2Õ(k/εO(1))nd. This achieves (1+ε)-approximation for Equal Clusteringwith the
same running time as the algorithm of Kumar et al. In fact, the same procedure works
for the �0 norm as well, where for estimating the cluster center it suffices to compute
the optimal center of a sample of sizeO(1/ε2), as proven by Alon and Sudakov [22].
Thus, in terms of FPT approximation, Equal Clustering is surprisingly “simpler”
than its unconstrained variant k- Median, however, our hardness result of Theorem 5
shows that the problems are similarly hard in terms of polynomial-time approximation.

Related work Since the work of Har-Peled and Mazumdar [12] for k-means and k-
median clustering, designing small coresets for clustering has become a flourishing
research direction. For these problems, after a series of interesting works, the best-
known upper bound on coreset size in general metric space is O((k log n)/ε2) [23]
and the lower bound is known to be�((k log n)/ε) [24]. For the Euclidean space (i.e.,
the �2-norm) of dimension d, it is possible to construct coresets of size (k/ε)O(1) [25,
26]. Remarkably, the size of the coresets in this case does not depend on n and d.
For Equal Clustering, the best known coreset size of (kd log n/ε)O(1) (for p = 2)
follows from coresets for the more general capacitated clustering problem [11, 20].

Clustering is undoubtedly one of the most common procedures in unsupervised
machine learning. We refer to the book [27] for an overview on clustering. Algorithms
for k-median and k-means has been one of the most interesting problems in the area
of approximation and led to a plethora of work [28–32]. For k-median, the best known
polynomial-time approximation factor is 2.675 [31] and for k-means, it is 6.356 [32].
Moreover, if one is allowed to use FPT time parameterized by k, then these two factors
can be improved to ≈ (1+ 2/e) ≤ 1.736 and ≈ (1+ 8/e) ≤ 3.944, respectively [10].
Assuming the Gap-ETH [33], these factors are indeed tight [10]. PTASes are known
for Euclidean version of k-median and k-means when the dimension is a constant
[34–38]. Cohen-Addad et al. [39] obtained an no(k) lower bound for k-median when
d ≥ 4. When the dimension d is arbitrary, one can obtain (1 + ε)-approximation in
FPT(k) time where the dependency on n and d are only linear [21]. Feng et al. in
[40] gave a unified framework to design FPT approximation algorithms for clustering
problems.

Equal Clustering belongs to a wide class of clustering with constraints on the
sizes of the clusters. Inmanyapplications of clustering, constraints comenaturally [41].
In particular, there is a rich literature on approximation algorithms for various versions
of capacitated clustering. While for the capacitated version of k-median and k-means
in general metric space, no polynomial time O(1)-approximation is known, bicriteria
constant-approximations violating either the capacity constraints or the constraint on
the number of clusters, by an O(1) factor can be obtained [28, 42–47]. Cohen-Addad
and Li [11] designed FPT ≈ 3- and ≈ 9-approximation with parameter k for the
capacitated version of k-median and k-means, respectively. For these problems in
the Euclidean plane, Cohen-Addad [48] obtained a true PTAS. Moreover, for higher
dimensional spaces (i.e., d ≥ 3), he designed a (1 + ε)-approximation that runs in
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time n(log n/ε)O(d)
[48]. Being a restricted version of capacitated clustering, Equal

Clustering admits all the approximation results mentioned above.

Our approach We briefly sketch the main ideas behind the construction of our lossy
kernel for Parameterized Equal Clustering. The lossy kernel’smain ingredients
are a) a polynomial algorithm based on an algorithm for computing aminimumweight
perfect matching in bipartite graphs, b) preprocessing rules reducing the size and
dimension of the problem, and c) a greedy algorithm. Each of the steps is relatively
simple and easily implementable. However, proving that these steps result in a lossy
kernel with the required properties is not easy.

Recall that for a given budget B, we are looking for a k-clustering of a collection
of points X = {x1, . . . , xn} into k clusters of the same size minimizing the cost. We
also assume that the cost is B + 1 if the instance points do not admit a clustering
of cost at most B. Informally, we are only interested in optimal clustering when its
cost does not exceed the budget. First, if the cluster’s size s = n

k is sufficiently large
(with respect to the budget), we can construct an optimal clustering in a polynomial
time. More precisely, we prove that if s ≥ 4B + 1, then the clusters’ medians could
be selected from X. Moreover, we show how to identify the (potential) medians in a
polynomial time. In this case, constructing an optimal k-clustering could be reduced
to the classical problem of computing a perfect matching of minimum weight in a
bipartite graph.

The case of cluster’s size s ≤ 4B is different. We apply a set of reduction rules.
These rules run in a polynomial time. After exhaustive applications of reduction rules,
we either correctly conclude that the considered instance has no clustering of cost at
most B or constructs an equivalent reduced instance. In the equivalent instance, the
dimension is reduced toO(kB p+1) while the absolute values of the coordinates of the
points are in O(kB2).

Finally, we apply the only approximate reduction on the reduced instance. The
approximation procedure is greedy: whenever there are s equal points, we form a
cluster out of them. For the points remaining after the exhaustive application of the
greedy procedure, we conclude that either there is no clustering of cost at most B or the
number of points is O(B2). This construction leads us to the lossy kernel. However,
the greedy selection of the clusters composed of equal points may not be optimal.
In particular, the reductions used to obtain our algorithmic lower bounds given in
Sections 4 and 5 exploit the property that it may be beneficial to split a block of s
equal points between distinct clusters.

Nevertheless, the greedy clustering of equal points leads to a 2-approximation. The
proof of this fact requires some work. We evaluate the clustering cost obtained from
a given optimal clustering by swapping some points to form clusters composed of
equal points. Further, we upper bound the obtained value by the cost of the optimum
clustering. For the last step, we introduce an auxiliary clustering problem formulated
as a min-cost flow problem. This reduction allows us to evaluate the cost and obtain
the required upper bound.

Organization of the paper The remaining part of the paper is organized as follows.
In Section 2, we introduce basic notation and show some properties of clusterings. In
Section 3, we show ourmain result that Parameterized Equal Clustering admits
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a lossy kernel. In Section 4, we complement this result by proving that it is unlikely that
Decision Equal Clustering admits an (exact) kernel of a polynomial size when
parameterized by B. Still, the problem has a polynomial kernel when parameterized
by B and k. In Section 5, we show that Equal Clustering isAPX-hard.We conclude
in Section 6 by stating some open problems.

2 Preliminaries

In this section, we give basic definitions and introduce the notation used throughout
the paper. We also state some useful auxiliary results.

Parameterized complexity and kernelization We refer to the recent books [8, 49] for
a formal introduction to the area. Here we only define the notions used in our paper.

Formally, a parameterized problem � is a subset of �∗ × N, where � is a finite
alphabet. Thus, an instance of � is a pair (I , k), where I ⊆ �∗ and k is a nonnegative
integer called a parameter. It is said that a parameterized problem� is fixed-parameter
tractable (FPT) if it can be solved in f (k) · |I |O(1) time for some computable function
f (·).
A kernelization algorithm (or kernel) for a parameterized problem� is an algorithm

that, given an instance (I , k) of �, in a polynomial time produces an instance (I ′, k′)
of � such that

(i) (I , k) ∈ � if and only if (I ′, k′) ∈ �, and
(ii) |I ′| + k′ ≤ g(k) for a computable function g(·).

The function g(·) is called the size of a kernel; a kernel is polynomial if g(·) is a
polynomial. Every decidable FPT problem admits a kernel. However, it is unlikely that
all FPT problems have polynomial kernels and the parameterized complexity theory
provides tools for refuting the existence of polynomial kernels up to some reasonable
complexity assumptions. The standard assumption here is that NP � coNP /poly.

We also consider the parameterized analog of optimization problems. Since we
only deal with minimization problems where the minimized value is nonnegative,
we state the definitions only for optimization problems of this type. A parameterized
minimization problem P is a computable function

P : �∗ × N × �∗ → R≥0 ∪ {+∞}.

The instances of a parameterized minimization problem P are pairs (I , k) ∈ �∗ × N,
and a solution to (I , k) is simply a string s ∈ �∗, such that |s| ≤ |I | + k. Then the
function P(·, ·, ·) defines the value P(I , k, s) of a solution s to an instance (I , k). The
optimum value of an instance (I , k) is

OptP (I , k) = min
s∈�∗ s.t. |s|≤|I |+k

P(I , k, s).
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A solution s is optimal if OptP (I , k) = P(I , k, s). A parameterized minimization
problem P is said to be FPT if there is an algorithm that for each instance (I , k) of
P computes an optimal solution s in f (k) · |I |O(1) time, where f (·) is a computable
function. Let α ≥ 1 be a real number. An FPT α-approximation algorithm for P is
an algorithm that in f (k) · |I |O(1) time computes a solution s for (I , k) such that
P(I , k, s) ≤ α · OptP (I , k), where f (·) is a computable function.

It is useful for us to make some comments about defining P(·, ·, ·) for the case
when the considered problem is parameterized by the solution value. For simplicity,
we do it informally and refer to [8] for details and explanations. If s is not a “feasible”
solution to an instance (I , k), then it is convenient to assume that P(I , k, s) = +∞.
Otherwise, if s is “feasible” but its value is at least k + 1, we set P(I , k, s) = k + 1.

Lossy kernels Finally, we define α-approximate or lossy kernels for parameter-
ized minimization problems. Informally, an α-approximate kernel of size g(·) is a
polynomial-time algorithm, that given an instance (I , k), outputs an instance (I ′, k′)
such that |I ′|+k′ ≤ g(k) and any c-approximate solution s′ to (I ′, k′) can be turned in
a polynomial time into a (c · α)-approximate solution s to the original instance (I , k).
More precisely, let P be a parameterized minimization problem and let α ≥ 1. An
α-approximate (or lossy) kernel for P is a pair of polynomial algorithms A and A′
such that

(i) given an instance (I , k), A (called a reduction algorithm) computes an instance
(I ′, k′) with |I ′| + k′ ≤ g(k), where g(·) is a computable function,

(ii) the algorithm A′ (called a solution-lifting algorithm), given the initial instance
(I , k), the instance (I ′, k′) produced byA, and a solution s′ to (I ′, k′), computes
an solution s to (I , k) such that

P(I , k, s)

OptP (I , k)
≤ α · P(I ′, k′, s′)

OptP (I ′, k′)
.

For simplicity, we assume here that P(I ,k,s)
OptP (I ,k) = 1 if OptP (I , k) = P(I , k, s) = 0

and P(I ,k,s)
OptP (I ,k) = +∞ if OptP (I , k) = 0 and P(I , k, s) > 0; the same assumption is

used for P(I ′,k′,s′)
OptP (I ′,k′) . As with classical kernels, g(·) is called the size of an approximate

kernel, and an approximate kernel is polynomial if g(·) is a polynomial.

Vectors and clusters For a vector x ∈ R
d , we use x[i] to denote the i-th element of the

vector for i ∈ {1, . . . , d}. For a set of indices R ⊆ {1, . . . , d}, x[R] denotes the vector
of R

|R| composed by the elements of vector x from set R, that is, if R = {i1, . . . , ir }
with i1 < . . . < ir and y = x[R], then y[ j] = x[i j ] for j ∈ {1, . . . , r}. In our paper,
we consider collections X of points of Z

d . We underline that some points of such a
collection may be equal. However, to simplify notation, we assume throughout the
paper that the equal points ofX are distinct elements ofX assuming that the points are
supplied with unique identifiers. By this convention, we often refer to (sub)collections
of points as (sub)sets and apply the standard set notation.
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Let X be a collection of points of Z
d . For a vector c ∈ R

d , we define the cost of X
with respect to c as

costp(X , c) =
∑
x∈X

‖c − x‖p.

Slightly abusing notation we often refer to c as a (given) median of X . We say that
c∗ ∈ R

d is an optimum median of X if

costp(X) = costp(X , c∗) = min
c∈Rd

costp(X , c).

Notice that the considered collections of points have integer coordinates but the coor-
dinates of medians are not constrained to integers and may be real.

Let X = {x1, . . . , xn} a collection of points of Z
d and let k be a positive inte-

ger such that n is divisible by k. We say that a partition {X1, . . . , Xk} of X is an
equal k-clustering of X if |Xi | = n

k for all i ∈ {1, . . . , k}. For an equal k-clustering
{X1, . . . , Xk} and given vectors c1, . . . , ck , we define the cost of clusteringwith respect
to c1, . . . , ck as

costp(X1, . . . , Xk, c1, . . . , ck) =
k∑

i=1

costp(Xi , ci ).

The cost of an equal k-clustering {X1, . . . , Xk} is

costp(X1, . . . , Xk) = costp(X1, . . . , Xk, c1, . . . , ck),

where c1, . . . , ck are optimum medians of X1, . . . , Xk , respectively. For an integer
B ≥ 0,

costBp (X1, . . . , Xk) =
{
costp(X1, . . . , Xk) if costp(X1, . . . , Xk) ≤ B,

B + 1 otherwise.

We define

Opt(X, k) = min{costp(X1, . . . , Xk) |
{X1, . . . , Xk} is an equal k-clustering of X},

and given a nonnegative integer B,

Opt(X, k, B) = min{costBp (X1, . . . , Xk) |
{X1, . . . , Xk} is an equal k-clustering of X}.

We conclude this section by the observation that, given vectors c1, . . . , ck ∈ R
d ,

we can find an equal k-clustering {X1, . . . , Xk} that minimizes
∑k

i=1 costp(Xi , ci )
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using a reduction to the classical Minimum Weight Perfect Matching problem
on bipartite graphs that is well-known to be solvable in a polynomial time. Recall that
a matching M of a graph G is a set of edges without common vertices. It is said that
a matching M saturates a vertex v if M has an edge incident to v. A matching M is
perfect if every vertex of G is saturated. The task of Minimum Weight Perfect
Matching is, given a bipartite graph G and a weight function w : E(G) → Z≥0,
find a perfect matching M (if it exists) such that its weight w(M) = ∑

e∈M w(e) is
minimum. The proof of the following lemma essentially repeats the proof of Lemma 1
of [50] but we provide it here for completeness.

Lemma 1 Let X = {x1, . . . , xn} be a collection of points of Z
d and k be a positive

integer such that n is divisible by k. Let also c1, . . . , ck ∈ R
d . Then an equal k-

clustering {X1, . . . , Xk} of minimum cost(X1, . . . , Xk, c1, . . . , ck) can be found in a
polynomial time.

Proof Given X and c1, . . . , ck , we construct the bipartite graph G as follows. Let
s = n

k .

• For each i ∈ {1, . . . , k}, we construct a set of s vertices Vi = {vi1, . . . , vis} corre-
sponding to the median ci . Denote V = ⋃k

i=1 Vi .• For each i ∈ {1, . . . , n}, construct a vertex ui corresponding to the vector xi of X
and make ui adjacent to the vertices of V . Denote U = {u1, . . . , un}.

We define the edge weights as follows.

• For every i ∈ {1, . . . , n} and j ∈ {1, . . . , k}, set w(uiv
j
h ) = ‖c j − xi‖p for

h ∈ {1, . . . , s}, that is, the weight of all edges joining ui corresponding to xi with
the vertices of Vj corresponding to the median c j are the same and coincide with
the �p distance between xi and c j .

Observe that G(U , V ) is a complete bipartite graph, where U and V form the bipar-
tition. Note also that |U | = |V | = n.

Notice that we have the following one-to-one correspondence between perfect
matchings of G and k-clusterings of X. In the forward direction, assume that M
is a perfect matching of G. We construct the clustering {X1, . . . , Xk} as follows. For
every h ∈ {1, . . . , n}, uh is saturated byM and, therefore, there are ih ∈ {1, . . . , k} and
jh ∈ {1, . . . s} such that edge uhvihjh ∈ M . We cluster the vectors ofX according to M .
Formally, we place xh in Xih for each h ∈ {1, . . . , n}. Clearly, {X1, . . . , Xk} is a par-
tition of {x1, . . . , xn} and |Xi | = s for all i ∈ {1, . . . , k}. By the definition of weights
of the edges of G, costp(X1, . . . , Xk, c1, . . . , ck) = w(M). For the reverse direction,
consider an equal k-clustering {X1, . . . , Xk} of X. Let i ∈ {1, . . . , k}. Consider the
cluster Xi and assume that Xi = { j1, . . . , js}. Denote by Mi = {u j1v

i
1, . . . , u jsv

i
s}.

Clearly, Mi is a matching saturating the vertices of Vi . We construct Mi for every
i ∈ {1, . . . , k} and set M = ⋃k

i=1 Mi . Since {X1, . . . , Xk} is a partition of {1, . . . , n},
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M is a matching saturating every vertex ofU . By the definition of the weight of edges,
w(M) = costp(X1, . . . , Xk, c1, . . . , ck). Thus, finding a k-clustering {X1, . . . , Xk}
that minimizes costp(X1, . . . , Xk), c1, . . . , ck) is equivalent to computing a perfect
matching of minimum weight in G. Then, because a perfect matching of minimum
weight in G can be found in a polynomial time [51, 52], a k-clustering of minimum
cost can be found in a polynomial time. This completes the proof of the lemma. �

3 Lossy Kernel

In this section, we prove Theorem 1 by establishing a 2-approximate polynomial
kernel for Parameterized Equal Clustering. In Subsection 3.1, we provide
some auxiliary results, and in Subsection 3.2, we prove the main results. Throughout
this section, we assume that p ≥ 0 defining the �p-norm is a fixed constant.

3.1 Technical Lemmata

We start by proving the following results about the medians of clusters when their size
is sufficiently big with respect to the budget.

Lemma 2 Let {X1, . . . , Xk} be an equal k-clustering of a collection of points X =
{x1, . . . , xn} of Z

d of cost at most B ∈ Z≥0, and let s = n
k . Then each cluster Xi for

i ∈ {1, . . . , k} contains at least s − 2B equal points.

Proof The claim is trivial if s ≤ 2B + 1. Let s ≥ 2B + 2. Assume to the contrary
that a cluster Xi has at most s − 2B − 1 equal points for some i ∈ {1, . . . , k}. Let
c1, . . . , ck be optimum medians for the clusters X1, . . . , Xk , respectively. Then we
have that costp(X1, . . . , Xk) = costp(X1, . . . , Xk, c1, . . . , ck).

Let xi0 ∈ Xi be a point at the minimum distance from ci . Since there are at
most s − 2B − 1 points in Xi which are equal to xi0 , there are t = 2B + 1 points
xi1 , . . . , xit ∈ Xi distinct from xi0 . Observe that

∑
xh∈Xi

‖ci − xh‖p ≥
t∑

j=0

‖ci − xi j ‖p ≥
t∑

j=1

‖ci − xi j ‖p. (1)

Because the points have integer coordinates and by the triangle inequality,

1 ≤ ‖xi0 − xi j ‖p ≤ ‖xi0 − ci‖p + ‖xi j − ci‖p (2)

for every j ∈ {1, . . . , t}. Since xi0 is a point of Xi at minimum distance from ci ,

‖xi0 − ci‖p + ‖xi j − ci‖p ≤ 2‖xi j − ci‖. (3)
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From (2) and (3), we get ‖xi j − ci‖p ≥ 1
2 for j ∈ {1, . . . , t}. Thus, from (1), we get

∑
xh∈Xi

‖ci − xh‖p ≥
t∑

j=1

‖ci − xi j ‖p ≥ 1

2
t = 1

2
(2B + 1) > B,

which is a contradiction with costp(X1, . . . , Xk) ≤ B. � This completes the proof.

Lemma 3 Let {X1, . . . , Xk} be an equal k-clustering of a collection of points X =
{x1, . . . , xn} of Z

d of cost at most B ∈ Z≥0, and let s = n
k ≥ 4B + 1. Let also

c1, . . . , ck ∈ R
d be optimum medians for X1, . . . , Xk, respectively. Then for every

i ∈ {1, . . . , k}, ci = x j for x j ∈ Xi such that Xi contains at least s − 2B points that
are equal to x j and the choice of ci is unique.

Proof Consider a cluster Xi with the median ci for arbitrary i ∈ {1, . . . , k}. Since
s ≥ 4B + 1, then by Lemma 2, there is x j ∈ Xi such that Xi contains at least s − 2B
points that are equal to x j . We show that ci = x j . Notice that the choice of the set of at
least s−2B equal points is unique because Xi can contain at most s− (s−2B) = 2B
distinct from x j points, and since s ≥ 4B + 1, s − 2B ≥ 2B + 1 > 2B.

The proof is by contradiction. Assume that ci = x j . Let S ⊆ {1, . . . , n} be the set of
indices of the points xh ∈ Xi that coincide with x j , and denote by T the set of indices
of the remaining points in Xi . We know that |T | ≤ 2B < |S| because s ≥ 4B + 1 and
|S| ≥ 2B + 1. Then

costp(Xi ) =costp(Xi , ci ) =
∑
h∈Xi

‖ci − xh‖p

=
∑
h∈S

‖ci − xh‖p +
∑
h∈T

‖ci − xh‖p

=(|S| − |T |)‖ci − x j‖p +
∑
h∈T

(‖ci − x j‖ + ‖ci − xh‖p).

(4)

On using the triangle inequality, we get

(|S| − |T |)‖ci − x j‖p+
∑
h∈T

(‖ci − x j‖p + ‖ci − xh‖p)

≥(|S| − |T |)‖ci − x j‖p +
∑
h∈T

‖x j − xh‖p.
(5)

We know that (|S|− |T |)‖ci −x j‖p > 0 because |S| > |T | and ci = x j . Then by (5),
we have

(|S| − |T |)‖ci − x j‖p +
∑
h∈T

‖x j − xh‖p >
∑
h∈T

‖x j − xh‖p. (6)

Combining (4)–(6), we conclude that costp(Xi ) >
∑

h∈T ‖x j − xh‖p. Let c′
i = x j .
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Then

costp(Xi , c′
i ) =

∑
h∈Xi

‖c′
i − xh‖p =

∑
h∈S

‖c′
i − xh‖p +

∑
h∈T

‖c′
i − xh‖p

=
∑
h∈T

‖c′
i − xh‖p < costp(Xi )

which contradicts that ci is an optimum median for Xi . This concludes the proof. �

We use the following lemma to identify medians.

Lemma 4 Let {X1, . . . , Xk} be an equal k-clustering of a collection of points X =
{x1, . . . , xn} of Z

d of cost at most B ∈ Z≥0, and let s = n
k ≥ 4B + 1. Suppose that

Y ⊆ X is a collection of at least B + 1 equal points of X. Then there is i ∈ {1, . . . , k}
such that an optimum median of Xi coincides with x j for x j ∈ Y .

Proof Let c1, . . . .ck be optimum medians of X1, . . . , Xk , respectively. Since s ≥
4B + 1, then by Lemma 3, for every i ∈ {1, . . . , k}, ci coincides with some element
xh of the cluster Xi . For the sake of contradiction, assume that c1, . . . , ck are distinct
from x j ∈ Y . This means that ‖x j − ci‖p ≥ 1 because the coordinates of the points
of X are integer. Then

costp(X1, . . . , Xk) =
k∑

i=1

costp(Xi , ci ) ≥
k∑

i=1

∑
xh∈Y∩Xi

‖ci − xh‖p ≥
k∑

i=1

|Xi ∩ Y |

=|Y | ≥ B + 1 > B,

contradicting that costp(X1, . . . , Xk) ≤ B. This proves the lemma. �

We use our next lemma to upper bound the clustering cost if we collect s = n
k equal

points in the same cluster.

Lemma 5 Let {X1, . . . , Xk} be an equal k-clustering of a collection of points X =
{x1, . . . , xn} of Z

d , and let c1, . . . , ck ∈ R
d . Suppose that S is a collection of s = n

k
equal points of X and x j ∈ S. Then there is an equal k-clustering {X ′

1, . . . , X
′
k} of X

with X ′
1 = S such that

costp(X ′
1, . . . , X

′
k, c

′
1, . . . , c

′
k) ≤ costp(X1, . . . , Xk, c1, . . . , ck) + s‖c1 − x j‖p,

where c′
1 = x j and c′

h = ch for h ∈ {2, . . . , k}.
Proof The claim is trivial if S = X1 because we can set X ′

i = Xi for i ∈ {1, . . . , k}.
Assume that this is not the case and there are elements of S that are not in X1; denote by
xi1 , . . . , xit these elements. We assume that xih ∈ Xi ′h , for h ∈ {1, . . . , t} for i ′h ≥ 2.
Because |S| = s, there are x j1 , . . . , x jt ∈ X1 such that x j1 , . . . , x jt /∈ S. We construct
X ′
1, . . . , X

′
k from X1, . . . , Xk by exchanging the points x jh and xih between X1 and

Xi ′h for every h ∈ {1, . . . , t}. Notice that |X ′
1| = · · · = |X ′

k | because the exchanges
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do not modify the sizes of the clusters. Thus, {X ′
1, . . . , X

′
k} is an equal k-clustering.

We claim that {X ′
1, . . . , X

′
k} satisfies the required property.

We have that

cost(X ′
1, . . . , X

′
k, c

′
1, . . . , c

′
k) − cost(X1, . . . , Xk, c1, . . . , ck)

=
k∑

i=1

∑
xh∈X ′

i

‖xh − c′
i‖p −

k∑
i=1

∑
xh∈Xi

‖x − ci‖p

=
∑
xh∈X ′

1

‖xh − c′
1‖p −

∑
xh∈X1

‖xh − c1‖p

+
k∑

i=2

( ∑
xh∈X ′

i

‖xh − c′
i‖p −

∑
xh∈Xi

‖xh − ci‖p
)
.

(7)

Note that
∑

xh∈X ′
1
‖xh − c′

1‖p = 0 and
∑

xh∈X1
‖xh − c1‖p ≥ ∑t

h=1 ‖x jh − c1‖p.

Also by the construction of X ′
1, . . . , X

′
k and because ci = c′

i for i ∈ {2, . . . , k}, we
have that

k∑
i=2

( ∑
xh∈X ′

i

‖xh − c′
i‖p −

∑
xh∈Xi

‖xh − ci‖p
) =

t∑
h=1

‖x jh − c′
ih‖p −

t∑
h=1

‖xih − cih‖p

=
t∑

h=1

‖x jh − cih‖p −
t∑

h=1

‖xih − cih‖p.

Then extending (7) and applying the triangle inequality twice, we obtain that

cost(X ′
1, . . . , X

′
k, c

′
1, . . . , c

′
k) − cost(X1, . . . , Xk, c1, . . . , ck)

≤ −
t∑

h=1

‖x jh − c1‖p +
t∑

h=1

‖x jh − cih‖p −
t∑

h=1

‖xih − cih‖p

=
t∑

h=1

( − ‖x jh − c1‖p + ‖x jh − cih‖p − ‖xih − cih‖p
)

≤
t∑

h=1

(‖xih − cih‖p − ‖c1 − cih‖p
)

≤
t∑

h=1

‖xih − c1‖p ≤ t‖x j − c1‖p ≤ s‖x j − c1‖p

as required by the lemma. �

Our next lemma shows that we can solve Parameterized Equal Clustering
in a polynomial time if the cluster size is sufficiently big with respect to the budget.
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Lemma 6 There is a polynomial-time algorithm that, given a collection X =
{x1, . . . , xn} of n points of Z

d , a positive integer k such that n is divisible by k, and
a nonnegative integer B such that n

k ≥ 4B + 1, either computes Opt(X , k) ≤ B
and produces an equal k-clustering of minimum cost or correctly concludes that
Opt(X, k) > B.

Proof Let X = {x1, . . . , xn} be a collection of n points of Z
d and let k be a positive

integer such that n is divisible by k, and suppose that s = n
k ≥ 4B+1 for a nonnegative

integer B.

First, we exhaustively apply the following reduction rule.

Reduction Rule 1 If X contains a collection of s equal points S, then set X := X \ S
and k := k − 1.

To argue that the rule is safe, let X′ = X \ S, where S is a collection of s equal
points of X, and let k′ = k. Clearly, X′ contains n′ = n − s points and n′

k′ = s. If
{X ′

1, . . . , X
′
k′ } is an equal k′-clustering of X′, then {S, X ′

1, . . . , X
′
k′ } is an equal k-

clustering of X. Note that costp(S) = 0 because the elements of S are the same. Then
costp(S, X ′

1, . . . , X
′
k′) = costp(X ′

1, . . . , X
′
k′). Therefore, Opt(X, k) ≤ Opt(X′, k′).

We show that if Opt(X, k) ≤ B, then Opt(X, k) ≥ Opt(X′, k′).
Suppose that {X1, . . . , Xk} is an equal k-clustering ofXwith costp(X1, . . . , Xk) =

Opt(X , k) ≤ B. Denote by c1, . . . , ck optimum medians of X1, . . . , Xk , respec-
tively. Because |S| = s ≥ 4B + 1 ≥ B + 1, there is a cluster whose optimum
median is x j for x j ∈ S. We assume without loss of generality that X1 is such
a cluster and c1 = x j . By Lemma 5, there is a k-clustering {S, X ′

2, . . . , X
′
k} of

X such that costp(S, X ′
2, . . . , X

′
k, c

′
1, . . . , c

′
k) ≤ costp(X1, . . . , Xk, c1, . . . , ck) +

s‖c1 − x j‖p, where c′
1 = x j and c′

h = ch for h ∈ {2, . . . , k}. Because c1 =
x j , we conclude that costp(X ′

2, . . . , X
′
k) = costp(S, X ′

2, . . . , X
′
k, c

′
1, . . . , c

′
k) ≤

costp(X1, . . . , Xk, c1, . . . , ck) = Opt(X , k). Since {X ′
2, . . . , X

′
k} is a k′-clustering

of X′, we have that Opt(X′, k′) ≤ costp(X ′
2, . . . , X

′
k) ≤ Opt(X , k) as required.

We obtain that either Opt(X, k) = Opt(X′, k′) ≤ B or Opt(X, k) > B and
Opt(X′, k′) > B. Notice also that, given an optimum equal k′-clustering ofX′, we can
construct the optimum k-clustering of X , by making S a cluster. Thus, it is sufficient
to prove the lemma for the collection of points obtained by the exhaustive application
of Reduction Rule 1. Note that if this collection is empty, then Opt(X, k) = 0 and the
lemma holds. This allows us to assume from now that X is nonempty and has no s
equal points.

Suppose that {X1, . . . , Xk} be an equal k-clustering with costp(X1, . . . , Xk) =
Opt(X, k) ≤ B. By Lemma 3, we have that for every i ∈ {1, . . . , k}, the optimum
median ci for Xi is unique and ci = x j for x j ∈ Xi such that Xi contains at least
s − 2B points that are equla to x j . Notice that c1, . . . , ck are pairwise distinct because
a collection of equal points cannot be split between distinct clusters in such a way that
each of these clusters would contain at least s − 2B points. This holds because any
collection of equal points of X contains at most s − 1 elements and 2(s − 2B) > s as
s ≥ 4B + 1. By Lemma 4, we have that if X contains a collection of equal points S
of size B + 1 ≤ s − 2B, then one of the optimum medians should be equal to a point
from S.
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These observations allow us to construct (potential) medians c1, . . . , ct as follows:
we iteratively compute inclusion maximal collections S of equal points of X and if
|S| ≥ B + 1, we set the next median ci be equal to a point of S. If the number of
constructed potential medians t = k, we conclude that X has no equal k-clustering
of cost at most B. Otherwise, if t = k, we have that c1, . . . , ck should be optimum
medians for an equal k-clustering of minimum cost if Opt(X, k) ≤ B.

Thenwe compute in a polynomial time an equal k-clustering {X1, . . . , Xk} ofX that
minimizes costp(X1, . . . , Xk, c1, . . . , ck) using Lemma 1. If costp(X1, . . . , Xk, c1,
. . . , ck) > B, then we conclude that Opt(X, k) > B. Otherwise, we have
that Opt(X, k) = costp(X1, . . . , Xk, c1, . . . , ck) and {X1, . . . , Xk} is an equal k-
clustering of minimum cost. �

Our next aim is to show that we can reduce the dimension and the absolute values
of the coordinates of the points if Opt(X , k) ≤ B. To achieve this, we mimic some
ideas of the kernelization algorithm of Fomin et al. in [53] for the related clustering
problem. However, they considered only points from {0, 1}d and the Hamming norm.

Lemma 7 There is a polynomial-time algorithm that, given a collection X =
{x1, . . . , xn} of n points of Z

d , a positive integer k such that n is divisible by k, and a
nonnegative integer B, either correctly concludes that Opt(X, k) > B or computes a
collection of n points Y = {y1, . . . , yn} of Z

d ′
such that the following holds:

i For every partition {I1, . . . , Ik} of {1, . . . , n} such that |I1| = · · · = |Ik | = n
k ,

either costp(X1, . . . , Xk) > B and costp(Y1, . . . ,Yk) > B or costp(X1, . . . , Xk)

= costp(Y1, . . . ,Yk), where Xi = {xh | h ∈ Ii } and Yi = {yh | h ∈ Ii } for every
i ∈ {1, . . . , k}.

ii d ′ = O(kB p+1).
iii |yi [h]| = O(kB2) for h ∈ {1, . . . , d ′} and i ∈ {1, . . . , n}.
Proof Let X = {x1, . . . , xn} be a collection of n points of Z

d and let k be a positive
integer such that n is divisible by k. Let also B be a nonnegative integer.

We iteratively construct the partition S = {S1, . . . , St } of {x1, . . . , xn} using the
following greedy algorithm. Let j ≥ 1 be an integer and suppose that the sets
S0, . . . , S j−1 are already constructed assuming that S0 = ∅. Let Z = {x1, . . . , xn} \
∪ j−1
i=0 Si . If Z = ∅, then the construction of S is completed. If Z = ∅, we construct S j

as follows:

• set S j := {xh} for arbitrary xh ∈ Z and set Z := Z \ {xh},
• while there is xr ∈ Z such that ‖xr − xr ′ ‖p ≤ B for some xr ′ ∈ S j , set S j :=

S j ∪ {xr } and set Z = Z \ {xr }.

The crucial property of the partition S is that every cluster of an equal k-clustering of
cost at most B is entirely in some part of the partition.

Claim 3.1 Let {X1, . . . , Xk} be an equal k-clustering of X of cost at most B. Then for
every i ∈ {1, . . . , k} there is j ∈ {1, . . . , t} such that Xi ⊆ S j .

Proof of Claim 3.1 Denote c1, . . . , ck ∈ R
d the optimum medians for the clusters

X1, . . . , Xk , respectively. Assume to the contrary that there is a cluster Xi such that
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xu, xv ∈ Xi with xu and xv in distinct collections of the partition {S1, . . . , St }. Then
‖xu − xv‖p > B by the construction of S1, . . . , St and

costp(X1, . . . , Xk) ≥costp(Xi ) = costp(Xi , ci ) ≥ ‖ci − xu‖p + ‖ci − xv‖p

≥‖xu − xv‖p > B

contradicting that costp(X1, . . . , Xk) ≤ B. �

From the above Claim 3.1, we have that if t > k, then X has no equal k-clustering
of cost at most B, that is, Opt(X , B) > B. In this case, we return this answer and
stop. From now on, we assume that this is not the case and t ≤ k.

By Lemma 2, at least n
k − 2B points in every cluster of an equal k-clustering of

cost at most B are the same. Thus, if {X1, . . . , Xk} is an equal k-clustering of cost
at most B, then for each i ∈ {1, . . . , k}, Xi contains at most 2B + 1 distinct points.
By Claim 3.1, we obtain that for every i ∈ {1, . . . , t}, Si should contain at most
k(2B+1) distinct points ifX admits an equal k-clustering of cost at most B. Then for
each i ∈ {1, . . . , t}, we compute the number of distinct points in Si and if this number
is bigger than k(2B+1), we conclude that Opt(X, k) > B. In this case, we return this
answer and stop. From now, we assume that this is not the case ‘ Si for i ∈ {1, . . . , t}
contains at most k(2B + 1) distinct points.

For a collection of points Z ⊆ X, we say that a coordinate h ∈ {1, . . . , d} is uniform
for Z if x j [h] is the same for all xh ∈ Z and h is nonuniform otherwise.

Let �i be the number of nonuniform coordinates for Si for i ∈ {1, . . . , t}, and let
� = max1≤i≤t �i . For each i ∈ {1, . . . , t}, we select a set of indices Ri ⊆ {1, . . . , d}
of size � such that Ri contains all nonuniform coordinates for Si . Note that Ri may
be empty if � = 0. We also define a set of coordinates Ti = {1, . . . , d} \ Ri , for
i ∈ {1, . . . , t}.

For every i ∈ {1, . . . , n} and j ∈ {1, . . . , t} such that xi ∈ S j , we define an (�+1)-
dimensional point x′

i , where x
′
i [1, . . . , �] = xi [R j ] and x′

i [� + 1] = ( j − 1)(B + 1).
This way we obtain a collection of pointsX′ = {x′

1, . . . , x
′
n}. For every j ∈ {1, . . . , t},

we define S′
j = {x′

h | xh ∈ S j }, that is, we construct the partition S′ = {S′
1, . . . , S

′
t }

of {x′
1, . . . , x

′
n} corresponding to S.

For each i ∈ {1, . . . , t}, we do the following:

• For each h ∈ {1, . . . , �}, we find M (i)
h = min{x′

j [h] | x′
j ∈ S′

i }.
• For every x′

j ∈ S′
i , we define a new point y j by setting y j [h] = x′

j [h] − M (i)
h for

h ∈ {1, . . . , �} and y j [� + 1] = x′
j [� + 1] = ( j − 1)(B + 1).

This way, we construct the collection Y = {y1, . . . , yn} of points from Z
�+1. Our

algorithm returns this collection of points.
It is easy to see that the described algorithm runs in a polynomial time. We show

that if the algorithm outputs Y, then this collection of the points satisfies conditions
(i)–(iii) of the lemma.
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To show (i), let {I1, . . . , Ik} be a partition of {1, . . . , n} such that |I1| = · · · =
|Ik | = n

k , and let Xi = {xh | h ∈ Ii } and Yi = {yh | h ∈ Ii } for every i ∈
{1, . . . , k}. We show that either costp(X1, . . . , Xk) > B and costp(Y1, . . . ,Yk) > B
or costp(X1, . . . , Xk) = costp(Y1, . . . ,Yk).

Suppose that costp(X1, . . . , Xk) ≤ B. Consider i ∈ {1, . . . , k} and denote by ci
the optimum median for Xi . By Claim 3.1, there is j ∈ {1, . . . , t} such that Xi ⊆ S j .
We define c′

i ∈ R
�+1 by setting c′

i [1, . . . , �] = ci [R j ] and c′
i [�+1] = ( j −1)(B+1).

Further, we consider c′′
i ∈ R

�+1 such that c′′
i [h] = c′

i [h] − M ( j)
h for h ∈ {1, . . . , �}

and c′′
i [� + 1] = ( j − 1)(B + 1). Then by the definitions of X′

i and Yi , we have that

costp(Xi ) = costp(Xi , ci ) = costp(X ′
i , c

′
i ) = costp(Yi , c′′

i ) ≥ costp(Yi ).

This implies that costp(X1, . . . , Xk) ≥ costp(Y1, . . . ,Yk).
For the opposite direction, assume that costp(X1, . . . , Xk) ≤ B. Similarly to S′, for

every j ∈ {1, . . . , t}, we define S′′
j = {yh | xh ∈ S j }, that is, we construct the partition

S′′ = {S′′
1 , . . . , S′′

t } of Y corresponding to S. We claim that for each i ∈ {1, . . . , k},
there is j ∈ {1, . . . , t} such that Yi ⊆ S j .

The proof is by contradiction and is similar to the proof of Claim 3.1. Assume that
there is i ∈ {1, . . . , k} such that there are yu, yv ∈ Yi belonging to distinct sets of S′′.
Then ‖yu − yv‖p ≥ |yu[� + 1] − yv[� + 1]| > B by the construction of S′′

1 , . . . , S′′
t .

Then

costp(Y1, . . . ,Yk) ≥costp(Yi ) = costp(Yi , ci ) ≥ ‖ci − xu‖p + ‖ci − xv‖p

≥‖xu − xv‖p > B,

where ci is an optimummedian of Yi . However, this contradicts that costp(Y1, . . . ,Yk)
≤ B.

Consider i ∈ {1, . . . , k} and let c′′
i ∈ R

�+1 an optimum median for Yi . Let also
j ∈ {1, . . . , t} be such that Yi ⊆ S j . Notice that c′′

i [� + 1] = ( j − 1)(B + 1)

by the definition of S j . We define c′
i ∈ R

�+1 by setting c′
i [h] = c′′

i [h] + M ( j)
h for

h ∈ {1, . . . , �} and c′
i [� + 1] = c′′

i [� + 1] = ( j − 1)(B + 1). Then we define ci ∈ R
d ,

we setting ci [R j ] = c′
i [1, . . . , �] and ci [Tj ] = xh[Tj ] for arbitrary xh ∈ S j . Because

the coordinates in Tj are uniform for S j , the values in each coordinate h ∈ Tj of the
coordinates of the points of Xi are the same. This implies that

costp(Xi ) ≤ costp(Xi , ci ) = costp(X ′
i , c

′
i ) = costp(Yi , c′′

i ) = costp(Yi ).

Hence, costp(X1, . . . , Xk) ≤ costp(Y1, . . . ,Yk). This completes the proof of (i).
To show (ii), we prove that � ≤ kB p(2B+1). For this, we show that �i ≤ kB p(2B+

1) for every i ∈ {1, . . . , t}. Consider i ∈ {1, . . . , t}. Recall that Si contains at most
k(2B + 1) distinct points. Denote by x j1 , . . . , x jr the distinct points in Xi and assume
that they are numbered in the order in which they are included in Si by the greedy
procedure constructing this set.
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Let Zq = {x j1 , . . . , x jq } for q ∈ {1, . . . , r}.We claim that Zq has at most (q−1)B p

nonuniform coordinates for each q ∈ {1, . . . , r}. The proof is by induction. The claim
is trivial if q = 1. Let q > 1 and assume that the claim is fulfilled for Zq−1. By the
construction of Si , x jq is at distance at most B from x jh for some h ∈ {1, . . . , q − 1}.
Then because ‖x jq − x jh‖p ≤ B, we obtain that the points xiq and xih differ in at
most B p coordinates by the definition of the �p-norm. Then because Zq−1 has at most
(q−2)B p nonuniform coordinates, Zq has at most (q−1)B p nonuniform coordinates
as required.

Because the number of nonuniform coordinates for Si is the same as the number of
nonuniform coordinates for Zr and r ≤ k(2B+1), we obtain that �i ≤ kB p(2B+1).
Then � = max1≤i≤t �i ≤ kB p(2B +1). Because the points ofY are in Z

�+1, we have
the required upper bound for the dimension. This concludes the proof of (ii).

Finally, to show (iii), we again exploit the property that every Si contains at most
k(2B + 1) distinct points. Let i ∈ {1, . . . , t} and h ∈ {1, . . . , d} and denote by
x j1 , . . . , x jr the distinct points in Xi . Leth ∈ {1, . . . , d}.Wecan assumewithout loss of
generality that x j1 [h] ≤ · · · ≤ x jr [h]. We claim that x jr [h]−x j1 [h] ≤ B(k(2B+1)−
1). This is trivial if r = 1. Assume that r > 1. Observe that x jq [h]− xq−1[h] ≤ B for
q ∈ {2, . . . , r}. Otherwise, if there is q ∈ {2, . . . , r} such that x jq [h] − xq−1[h] > B,
then the distance from any point in {x j1, . . . , x jq−1} to any point in {x jq , . . . , x jr } is
more than B but this contradicts that these points are the distinct points of Si . Then
because x jq [h] − xq−1[h] ≤ B for q ∈ {2, . . . , r} and r ≤ k(2B + 1), we obtain that
x jr [h] − x j1 [h] ≤ B(k(2B + 1) − 1).

Then, by the definition of x′
1, . . . , x

′
n , we obtain that for every x

′
q , x

′
r ∈ S′

i for some
i ∈ {1, . . . , t} and every h ∈ {1, . . . , �}, |x′

q [h] − x′
r [h]| ≤ B(k(2B + 1) − 1). By the

definition of M (i)
h for i ∈ {1, . . . , t}, we obtain that |y j [h]| ≤ B(k(2B + 1) − 1) for

every j ∈ {1, . . . , n} and every h ∈ {1, . . . , �}. Because |y j [�+1]| ≤ (k−1)(B+1),
we have that |yi [h]| ≤ B(k(2B + 1)− 1) for h ∈ {1, . . . , d ′} and i ∈ {1, . . . , n}. This
completes the proof of (iii) and the proof of the lemma. �

Finally in this subsection, we show the following lemma that is used to upper bound
the additional cost incurred by the greedy clustering of blocks of equal points.

Lemma 8 LetX = {x1, . . . , xn} be a collection of n points ofZd and set k be a positive
integer such that n is divisible by k. Suppose that S1, . . . , St are disjoint collections
of equal points of X such that |S1| = · · · = |St | = n

k and Y = X \ (
S1 ∪ · · · ∪ St

)
.

Then Opt(Y, k − t) ≤ 2 · Opt(X, k).

Proof Let {X1, . . . , Xk} be an optimumequal k-clustering ofXwith optimummedians
c1, . . . , ck of X1, . . . , Xk , respectively, that is, Opt(X, k) = costp(X1, . . . , Xk) =
costp(X1, . . . , Xk, c1, . . . , ck). Let xih ∈ Sh for h ∈ {1, . . . , t}. Consider a t-tuple of
( j1, . . . , jt ) of distinct indices from {1, . . . , k} such that

‖xi1 − c j1‖p +· · ·+‖xit − c jt ‖p = min
(q1,...,qt )

(‖xi1 − cq1‖p +· · ·+‖xit − cqt ‖p
)
, (8)
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where the minimum in the right part is taken over all t-tuples (q1, . . . , qt ) of distinct
indices from {1, . . . , k}. Denote � = k−t . Iteratively applying Lemma 5 for S1, . . . , St
and the medians c j1 , . . . , c jt , we obtain that there is an equal �-clustering {Y1, . . . ,Y�}
of Y such that

costp(S1, . . . , St ,Y1, . . . ,Y�) ≤ costp(X1, . . . , Xk) + s
t∑

h=1

‖xih − c jh‖p. (9)

Because the points in each Si are the same, costp(Si ) = 0 and, therefore,
costp(S1, . . . , St ,Y1, . . . ,Y�) = costp(Y1, . . . ,Yk). Then by (9),

Opt(Y, �) ≤ costp(Y1, . . . ,Yk) ≤ Opt(X, k) + s
t∑

h=1

‖xih − c jh‖p. (10)

This implies that to prove the lemma, it is sufficient to show that

s
t∑

h=1

‖xih − c jh‖p ≤ Opt(X, k). (11)

To prove (11), we consider the following auxiliary clustering problem. Let Z = S1 ∪
· · · ∪ St and s = n

k . The task of the problem is to find a partition {Z1, . . . , Zk} of Z,
where some sets may be empty and |Zi | ≤ s for every i ∈ {1, . . . , k}, such that

t∑
i=1

∑
xh∈Zi

‖xh − ci‖p (12)

isminimum. Inwords, we cluster the elements ofZ in the optimumway into clusters of
size at most s using the optimum medians c1, . . . , ck for the clustering {X1, . . . , Xk}.
Denote by Opt∗(Z, k) the minimum value of (12). Because in this problem the task is
to cluster a subcollection of points of X and we relax the cluster size constraints, we
have that Opt∗(Z, k) ≤ Opt(X, k). We show the following claim.

Claim 3.2

Opt∗(Z, k) ≥ s · min
(q1,...,qt )

t∑
h=1

‖xih − cqh‖p,

where the minimum is taken over all t-tuples (q1, . . . , qt ) of distinct indices from
{1, . . . , k}.
Proof of Claim 3.2 We show that the considered auxiliary clustering problem can be
reduced to the Min Cost Flow problem (see, e.g., the textbook of Kleinberg and
Tardos [54] for the introduction)2. We construct the directed graph G and define the
cost and capacity functions c(·) and ω(·) on the set of arcs A(G) as follows.

2 Equivalently one may use the ILP statement.
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• Construct two vertices a and b that are the source and target vertices, respectively.
• For every i ∈ {1, . . . , t}, construct a vertex ui (corresponding to Si ) and an arc

(a, ui ) with ω(a, ui ) = 0.
• For every j ∈ {1, . . . , k}, construct a vertex v j (corresponding to Z j ) and and arc

(v j , b) with ω(v j , b) = 0.
• For every h ∈ {1, . . . , t} and every j ∈ {1, . . . , k}, construct an arc (uh, v j ) and
set ω(ui , v j ) = ‖xih − c j‖p (recall that xih ∈ Sh).

• For every arc e of G, set c(e) = s, where s = n
k .

Then the volume of a flow f : A(G) → R≥0 is v( f ) = ∑t
i=1 f (a, ui ) and its cost is

ω( f ) = ∑
a∈A(G) ω(a) · f (a). Let f ∗(·) be a flow of volume st with minimum cost.

We claim that ω( f ∗) = Opt∗(Z, k).
Assume that {Z1, . . . , Zk} is a partition of Z such that |Zi | ≤ s for every i ∈

{1, . . . , k} and Opt∗(Z, k) = ∑t
i=1

∑
xh∈Zi ‖xh − ci‖p. We define the flow f (·) as

follows:

• for every i ∈ {1, . . . , t}, set f (a, ui ) = s,
• for every i ∈ {1, . . . , t} and j ∈ {1, . . . , k}, set f (ui , v j ) = |Si ∩ Z j |, and
• for every j ∈ {1, . . . , t}, set f (v j , b) = |Z j |.

It is easy to verify that f is a feasible flow of volume st and ω( f ) =∑t
i=1

∑
xh∈Zi ‖xh − ci‖p. Thus, ω( f ∗) ≤ ω( f ) = Opt∗(Z, k).

For the opposite inequality, consider f ∗(·). By the well-known property of flows
(see [54]), we can assume that f ∗(·) is an integer flow, that is, f ∗(e) is a nonnegative
integer for every e ∈ A(G). Since v( f ∗) = st , we have that f ∗(a, ui ) = s for
every i ∈ {1, . . . , t}. Then we construct the clustering {Z1, . . . , Zk} as follows: for
every i ∈ {1, . . . , i} and j ∈ {1, . . . , k}, we put exactly f ∗(ui , v j ) points of Si into
Z j . Because f ∗(a, ui ) = s for every i ∈ {1, . . . , t} and c(v j , b) = s for every
j ∈ {1, . . . , k}, we obtain that {Z1, . . . , Zk} is a partition of Z such that |Zi | ≤ s
for every i ∈ {1, . . . , k} and ∑t

i=1
∑

xh∈Zi ‖xh − ci‖p = ω( f ∗). This implies that

Opt∗(Z, k) ≤ ∑t
i=1

∑
xh∈Zi ‖xh − ci‖p = ω( f ∗).

This proves that ω( f ∗) = Opt∗(Z, k). Moreover, we can observe that, given an
integer flow f (·) with v( f ) = st , we can construct a feasible clustering {Z1, . . . , Zk}
of cost ω( f ) such that for every i ∈ {1, . . . , t} and every j ∈ {1, . . . , k}, |Si ∩ Z j | =
f (ui , v j ). Recall that the capacities of the arcs of G are the same and are equal to
s. Then again exploiting the properties of flows (see [54]), we observe that there is a
flow f ∗(·) with v( f ∗) = st of minimum cost such that saturated arcs (that is, arcs e
with f ∗(e) = c(e) = s) compose internally vertex disjoint (a, b)-paths, and the flow
on other arcs is zero. This implies, that for the clustering {Z1, . . . , Zk} constructed for
f ∗(·), for every j ∈ {1, . . . , k}, ether Z j = ∅ or there is i ∈ {1, . . . , t} such that Z j =
Si . Assume that j1, . . . , jt are distinct indices from {1, . . . , k} such that Z jh = Sh for
h ∈ {1, . . . , t}. Then ω( f ∗) = ∑t

i=1
∑

xh∈Zi ‖xh − ci‖p = s
∑t

h=1 ‖xih − c jh‖p and

Opt∗(Z, k) = ω( f ∗) = s
t∑

h=1

‖xih − c jh‖p ≥ s · min
(q1,...,qt )

t∑
h=1

‖xih − cqh‖p,
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where the minimum is taken over all t-tuples (q1, . . . , qt ) of distinct indices from
{1, . . . , k}. This proves the claim. �

Recall that Opt∗(Z, k) ≤ Opt(X, k). By the choice of j1, . . . , jt in (8) and
Claim 3.2, we obtain that inequality (11) holds. Then by (11), we have that
Opt(Y, k − t) ≤ 2 · Opt(X, k) as required by the lemma. �

3.2 Proof of Theorem 1

Now we are ready to show the result about the approximate kernel that we restate.

Theorem 1 For every nonnegative integer constant p, Parameterized Equal
Clustering admits a 2-approximate kernel when parameterized by B, where the
output collection of points has O(B2) points of Z

d ′
with d ′ = O(B p+2), where each

coordinate of a point takes an absolute value of O(B3).

Proof Let (X, k, B) be an instance of Parameterized Equal Clustering with
X = {x1, . . . , xn}, where the points are from Z

d and n is divisible by k. Recall that
a lossy kernel consists of two algorithms. The first algorithm is a polynomial time
reduction producing an instance (X′, k′, B ′) of bounded size. The second algorithm is
a solution-lifting and for every equal k′-clustering {X ′

1, . . . , X
′
k} of X′, this algorithm

produces in a polynomial time an equal k-clustering {X1, . . . , Xk} of X such that

costBp (X1, . . . , Xk)

Opt(X, k, B)
≤ 2 · cost

B′
p (X ′

1, . . . , X
′
k′)

Opt(X′, k′, B ′)
. (13)

We separately consider the cases when n
k ≥ 4B + 1 and n

k ≤ 4B.
Suppose that n

k ≥ 4B + 1. Then we apply the algorithm from Lemma 6. If the
algorithm returns the answer thatX does not admit an equal k-clustering of cost at most
B, then the reduction algorithm returns a trivial no-instance (X′, k′, B ′) of constant
size, that is, an instance such thatX′ has no clustering of cost at most B ′. For example,
we set X′ = {(0), (1)}, k′ = 1, and B ′ = 0. Here and in the further cases when the
reduction algorithm returns a trivial no-instance, the solution-lifting algorithm returns
an arbitrary equal k-clustering of X. Since costBp (X1, . . . , Xk) = Opt(X, k, B) =
B + 1, (13)3 holds. Assume that the algorithm from Lemma 6 produced an equal
k-clustering {X1, . . . , Xk} of minimum cost. Then the reduction returns an arbitrary
instance of Parameterized Equal Clustering of constant size. For example, we
can useX′ = {(0)}, k′ = 1, and B ′ = 0. The solution-lifting algorithms always returns
{X1, . . . , Xk}. Clearly, costBp (X1, . . . , Xk) = Opt(X, k, B) and (13) is fulfilled.

From now on, we assume that n
k ≤ 4B, that is, n ≤ 4Bk. We apply the algorithm

from Lemma 6. If this algorithm reports that there is no equal k-clustering of cost at

3 Note that by our simplifying assumption,
costBp (X1,...,Xk )

Opt(X,k,B)
= 1 ifOpt(X, k, B) = costBp (X1, . . . , Xk ) =

0 and
costBp (X1,...,Xk )

Opt(X,k,B)
= +∞ if Opt(X, k, B) = 0 and costBp (X1, . . . , Xk ) > 0, and the same assumption

is used for
costB

′
p (X ′

1,...,X
′
k′ )

Opt(X′,k′,B′) .
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most B, then the reduction algorithm returns a trivial no-instance and the solution-
lifting algorithm outputs an arbitrary equal k-clustering ofX. Clearly, (13) is satisfied.
Assume that this is not the case. Then we obtain a collection of n ≤ 4Bk points
Y = {y1, . . . , yn} of Z

d ′
satisfying conditions (i)–(iii) of Lemma 7. That is,

(i) for every partition {I1, . . . , Ik} of {1, . . . , n} such that |I1| = · · · =
|Ik | = n

k , either costp(X1, . . . , Xk) > B and costp(Y1, . . . ,Yk) > B or
costp(X1, . . . , Xk) = costp(Y1, . . . ,Yk), where Xi = {xh | h ∈ Ii } and
Yi = {yh | h ∈ Ii } for every i ∈ {1, . . . , k},

(ii) d ′ = O(kB p+1), and
(iii) |yi [h]| = O(kB2) for h ∈ {1, . . . , d ′} and i ∈ {1, . . . , n}.

By (i), for given an equal k-clustering clustering {Y1, . . . ,Yk} ofY, we can compute
the corresponding clustering {X1, . . . , Xk} by setting Xi = {xh | yh ∈ Yi } for i ∈
{1, . . . , k}. Then Opt(X, k, B) = Opt(Y, k, B) and

costBp (X1, . . . , Xk)

Opt(X, k, B)
= costBp (Y1, . . . ,Yk)

Opt(Y, k, B)
. (14)

Hence the instances (X, k, B) and (Y, k, B) are equivalent. We continue with the
compressed instance (Y, k, B).

Now we apply the greedy procedure that constructs clusters S1, . . . , St composed
by equal points. Formally, we initially set X′ := Y , k′ := k, and i := 0. Then we do
the following:

• while X′ contains a collections S of s identical points, set i := i + 1, Si := S,
X′ := X′ \ S, and k′ := k′ − 1.

Denote by X′ the set of points obtained by the application of the procedure and let
S1, . . . , St be the collections of equal points constructed by the procedure. Note that
k′ = k − t . We also define B ′ = 2B. Notice that it may happen that X′ = Y or
X′ = ∅. The crucial property exploited by the kernelization is that by Lemma 8,
Opt(X′, k′) ≤ 2 · Opt(Y, k).

We argue that if k′ > B, then we have no k-clustering of cost at most B. Sup-
pose that k′ > B ′. Consider an arbitrary equal k′-clustering {X ′

1, . . . , X
′
k′ } of X′.

Because the construction of S1, . . . , St stops when there is no collection of s equal
points, each cluster X ′

i contains at least two distinct points. Since all points have
integer coordinates, we have that costp(X ′

i ) ≥ 1 for every i ∈ {1, . . . , k′}. There-
fore, costp(X ′

1, . . . , X
′
k′) = ∑k′

i=1 costp(X
′
i ) ≥ k′ > B ′ = 2B. This means that

2 · Opt(Y , k) ≥ Opt(X′, k′) > 2B and Opt(Y, k) > B. Using this, our reduction
algorithm returns a trivial no-instance. Then the solution-lifting algorithm outputs an
arbitrary equal k-clustering of X and this satisfies (13).

From now on we assume that k′ ≤ B ′ = 2B and construct the reduction and
solution lifting algorithms for this case.

If k′ = 0, then X′ = ∅ and the reduction algorithm simply returns an arbitrary
instance of constant size. Otherwise, our reduction algorithms returns (X′, k′, B ′).
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Observe that since k′ ≤ B ′ = 2B, |X′| ≤ n ≤ 4B2. Recall that d ′ = O(B p+2)

and |x′
i [h]| = O(B3) for h ∈ {1, . . . , d ′} for every point x′

i ∈ X′. We conclude that
the instance (X′, k′, B ′) of Parameterized Equal Clustering satisfies the size
conditions of the theorem.

Nowwe describe the solution-lifting algorithm and argue that inequality (13) holds.
If k′ = 0, then the solution-lifting algorithm ignores the output of the reduction

algorithm which was arbitrary. It takes the equal k-clustering {S1, . . . , Sk} of Y and
outputs the equal k-clustering {X1, . . . , Xk} of X by setting Xi = {xh | yh ∈ Si }
for i ∈ {1, . . . , k}. Clearly, costp(S1, . . . , Sk) = costp(X1, . . . , X p) = 0. Therefore,
(13) holds.

If k′ > 0, we consider an equal k′-clustering {X ′
1, . . . , X

′
k′ } of X′. The solution-

lifting algorithm constructs an equal k-clustering {S1, . . . , St , X ′
1, . . . , X

′
k′ }, that is,

we just add the clusters constructed by our greedy procedure. Since the points in each
set Si are the same, costp(Si ) = 0 for every i ∈ {1, . . . , t}. Therefore,

costp(S1, . . . , St , X ′
1, . . . , X

′
k′) = costp(X ′

1, . . . , X
′
k′).

Notice that since Opt(X′, k′) ≤ 2 · Opt(Y, k), we have that Opt(X′, k′, B ′) ≤ 2 ·
Opt(Y, k, B). Indeed, if Opt(Y, k) ≤ B, then Opt(X′, k′) ≤ 2B = B ′. Hence,
Opt(Y, k, B) = Opt(Y, k), Opt(X′, k′, B ′) = Opt(X′, k′), and Opt(X′, k′, B ′) ≤
2 · Opt(Y, k, B). If Opt(Y, k) > B, then Opt(Y, k, B) = B + 1. In this case, 2 ·
Opt(Y, k, B) = 2B + 2 > Opt(X′, k′, B ′) because Opt(X′, k′, B ′) ≤ B ′ + 1 =
2B + 1. Finally, since costp(S1, . . . , St , X ′

1, . . . , X
′
k′) = costp(X ′

1, . . . , X
′
k′) and

Opt(X′, k′, B ′) ≤ 2 · Opt(Y, k, B), we conclude that

costBp (S1, . . . , St , X ′
1, . . . , X

′
k′)

Opt(Y, k, B)
≤ 2 · cost

B
p (X1, . . . , X ′

k′)

Opt(X′, k′, B ′)
. (15)

Then the solution-lifting algorithm computes the equal k-clustering {X1, . . . , Xk}
for the equal k-clustering {Y1, . . . ,Yk} = {S1, . . . , St , X ′

1, . . . , X
′
k′ } of Y by setting

Xi = {xh | yh ∈ Yi } for i ∈ {1, . . . , k}. Combining (14) and (15), we obtain (13).
This concludes the description of the reduction and solution-lifting algorithms,

as well as the proof of their correctness. To argue that the reduction algorithm is a
polynomial-time algorithm, we observe that the algorithms from Lemmata 6 and 7 run
in a polynomial time. Trivially, the greedy construction of S1, . . . , St , X, and k′ can
be done in a polynomial time. Therefore, the reduction algorithm runs in a polynomial
time. The solution-lifting algorithm is also easily implementable to run in a polynomial
time. This concludes the proof. �

4 Kernelization

In this section, we study (exact) kernelization of clusteringwith equal sizes. In Subsec-
tion 4.1 we prove Theorem 2 claiming that decision version of the problem,Decision
Equal Clustering, does not admit a polynomial kernel being parameterized by B
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only. We also show in Subsection 4.2 that the technical lemmata developed in the
previous section for approximate kernel, can be used to prove that Decision Equal
Clustering parameterized by k and B admits a polynomial kernel.

4.1 Kernelization Lower Bound

In this subsection, we show that it is unlikely that Decision Equal Clustering
admits a polynomial kernel when parameterized by B only. We prove this for the �0
and �1-norms. Our lower bound holds even for points with binary coordinates, that
is, for points from {0, 1}d . For this, we use the result of Dell and Marx [55] about
kernelization lower bounds for the Perfect r - Set Matching problem.

A hypergraphH is said to be r-uniform for a positive integer r , if every hyperedge of
H has size r . Similarly to graphs, a set of hyperedgesM is amatching if the hyperedges
in M are pairwise disjoint, and M is perfect if every vertex ofH is saturated in M , that
is, included in one of the hyperedges of M . Perfect r - Set Matching asks, given
a r -uniform hypergraph H, whether H has a perfect matching. Dell and Marx [55]
proved the following kernelization lower bound.

Proposition 1 ([55]) Let r ≥ 3 be an integer and let ε be a positive real. If
NP ⊆ coNP /poly, then Perfect r - Set Matching does not have kernels with
O(

( |V (H)|
r

)r−ε
) hyperedges.

We need a weaker claim.

Corollary 1 Perfect r - Set Matching admits no polynomial kernel when parame-
terized by the number of vertices of the input hypergraph unless NP ⊆ coNP /poly.

Proof To see the claim, it is sufficient to observe that the existence of a polynomial
kernel for Perfect r - Set Matching parameterized by |V (H)| implies that the
problem has a kernel such that the number of hyperedges is polynomial in |V (H)|with
the degree of the polynomial that does not depend on d contradicting Proposition 1.�

We show the kernelization lower bound for �0 and �1 using the fact that optimum
medians canbe computed by themajority rule for a collection of binary points. Let X be
a collection of points of {0, 1}d .We construct c ∈ {0, 1}d as follows: for i ∈ {1, . . . , d},
consider the multiset Si = {x[i] | x ∈ X} and set c[i] = 0 if at least half of the
elements of Si are zeros, and set c[i] = 1 otherwise. It is straightforward to observe
the following.

Observation 1 Let X be a collection of points of {0, 1}d and let c ∈ {0, 1}d be a vector
constructed by the majority rule. Then for the �0 and �1-norms, c is

We also use the following lemma which is a special case of Lemma 9 of [50].

Lemma 9 ([50]) Let {X1, . . . , Xk} be an equal k-clustering of a collection of
points X = {x1, . . . , xn} from {0, 1}d , and let c1, . . . , ck be optimum medians for
X1, . . . , Xk, respectively. Let also C ⊆ {c1, . . . , ck} be the set of medians coin-
ciding with some points of X. Suppose that every collection of the same points of
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X has size at most n
k . Then there is an equal k-clustering {X ′

1, . . . , X
′
k} of X such

that cost0(X ′
1, . . . , X

′
k, c1, . . . , ck) ≤ cost0(X1, . . . , Xk, c1, . . . , ck) and for every

i ∈ {1, . . . , k}, the following is fulfilled: if ci ∈ C, then each xh ∈ X coinciding with
ci is in X ′

i .

Now we are ready to prove Theorem 2, we restate it here.

Theorem 2 For the �0 and �1-norms, Decision Equal Clustering has no poly-
nomial kernel when parameterized by B unless NP ⊆ coNP /poly, even if the input
points are binary, that is, are from {0, 1}d .
Proof Notice that for any binary vector x ∈ {0, 1}d , ‖x‖0 = ‖x‖1. Since we consider
only instances where the input points are binary, we can assume that the medians
of clusters are binary as well by Observation 1. Then it is sufficient to prove the
theorem for one norm, say �0. We reduce from Perfect r - Set Matching. LetH be
an r -uniform hypergraph. Denote by v1, . . . , vn the vertices and by E1, . . . , Em the
hyperedges ofH, respectively. We assume that n is divisible by r , as otherwiseH has
no perfect matching. We also assume that r ≥ 3 because for r ≤ 2, Perfect r - Set
Matching can be solved in a polynomial time [52].

We construct the instance (X, k, B) of Decision Equal Clustering, where X
is a collection of (r − 1)n + rm points of {0, 1}d , where d = 2rn.

To describe the construction of X, we partition the set {1, . . . , 2rn} of coordinate
indices into n blocks R1, . . . , Rn of size 2r each. For every i ∈ {1, . . . , n}, we select
an index pi ∈ Ri and set R′

i = Ri \ {p1}. Formally,

• Ri = {2r(i − 1) + 1, . . . , 2ri} for i ∈ {1, . . . , n},
• pi = 2r(i − 1) + 1 for i ∈ {1, . . . , n}, and
• R′

i = {2r(i − 1) + 2, . . . , 2ri} for i ∈ {1, . . . , n}.

The set of pointsX consists of n+m blocks of equal points V1, . . . , Vn and F1, . . . , Fm ,
where |Vi | = r − 1 for each i ∈ {1, . . . , n} and |Fi | = r for i ∈ {1, . . . ,m}. Each
block Vi is used to encode the vertex vi , and each block Fi is used to encode the
corresponding hyperedge Ei . An example is shown in Fig. 1.

For each i ∈ {1, . . . , n}, we define the vector vi ∈ {0, 1}2rn corresponding to the
vertex vi of H:

vi [ j] =
{
1 if j ∈ Ri ,

0 otherwise.

Then Vi consists of r − 1 copies of vi that we denote v
(1)
i , . . . , v(r−1)

i .
For every j ∈ {1, . . . ,m}, we define the vector f j ∈ {0, 1}2rn corresponding to the

hyperedge E j = {v
i ( j)1

, . . . , v
i ( j)r

}:

f j [h] =
{
1 if h = ps for some s ∈ {i ( j)1 , . . . , i ( j)r },
0 otherwise.

Then Fj includes r copies of f j denoted by f (1)j , . . . , f (r)j .
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Fig. 1 The construction of X for H with V (H) = {v1, . . . , v6} and the hyperedges E1 = {v1, v2, v3},
E2 = {v4, v5, v6}, E3 = {v1, v3, v5}, and E4 = {v2, v4, v5}. The collection of the points X is shown
here as a matrix, where each column is a point of X. Note that r = 3 here. The blocks of X are shown by
solid lines and the part of X corresponding to the vertices of H is separated from the part corresponding
to hyperedges by a double line. The blocks of coordinates with indices R1, . . . , R6 are separated by solid
lines. The coordinates with the indices p1 = 1, p2 = 7, p3 = 13, p4 = 19, p5 = 25, and p6 = 31 are
underlined by dashed lines
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To complete the construction of the instance of Decision Equal Clustering,
we define

• k = n + m − n
r ,• B = (3r − 2)n.

Recall that n is divisible by r and note that (r−1)n+rm
k = r .

It is straightforward to verify that the construction of (X, k, B) is polynomial. We
claim that the hypergraph H has a perfect matching if and only if (X, k, B) is a yes-
instance of Decision Equal Clustering. The proof uses the following property of
the points of X: for every i ∈ {1, . . . , n} and every j ∈ {1, . . . ,m},

‖vi − f j‖0 =
{
3r − 2 if vi ∈ E j ,

3r if vi /∈ E j .
(16)

For the forward direction, assume thatH has a perfect matching M . Assume without
loss of generality that M = {E1, . . . , Es} for s = n

r . Since M is a prefect matching,
for every i ∈ {1, . . . , n}, there is a unique hi ∈ {1, . . . , s} such that vi ∈ Ehi . We
construct the equal k-clustering {X1, . . . , Xk} as follows.

For every i ∈ {1, . . . , n}, we define Xi = Vi ∪ {f (t)hi
}, where t is chosen from the

set {1, . . . , r} in such a way that X1, . . . , Xn are disjoint. In words, we initiate each
cluster Xi by setting Xi := Vi for i ∈ {1, . . . , n}. This way, we obtain n clusters of
size r − 1 each. Then we consider the blocks of points F1, . . . , Fs corresponding to
the hyperedges of M and split them between the clusters X1, . . . , Xn by including
a single element into each cluster. It is crucial that each Xi = Vi is complemented
by an element of Fhi , that is, by an element of the initial cluster corresponding to
the hyperedge saturating the vertex vi . Since M is a perfect matching, this splitting is
feasible.

Notice that the first s blocks of points F1, . . . , Fs are split between X1, . . . , Xn .
The remaining m − s blocks Fs+1, . . . , Fm have size r each and form clusters
Xn+1, . . . , Xk . This completes the construction of {X1, . . . , Xk}.

To evaluate cost0(X1, . . . , Xk), notice that the optimal median ci = vi for i ∈
{1, . . . , n} by the majority rule. Then, by (16), cost0(Xi ) = ‖vi − fhi ‖0 = 3r − 2.
Since the clusters Xn+1, . . . , Xr consist of equal points, we have that cost0(Xi ) = 0
for i ∈ {1, . . . ,m−s}. Then cost(X1, . . . , Xk) = (3r−2)n = B. Therefore, (X, k, B)

is a yes-instance of Decision Equal Clustering.
For the opposite direction, let {X1, . . . , Xk} be an equal k-clustering of X of cost

at most B. Denote by c1, . . . , cr the optimal medians constructed by the majority
rule. Observe that the choice of a median by the majority rule described above is not
symmetric because if i-th coordinates of the points in a cluster have the same number
of zeros and ones, the rule selects the zero value for the i-coordinate of the median.
We show the following claim.

Claim 4.1 For every i ∈ {1, . . . , k}, either ci ∈ {v1, . . . , vn} or ci [ j] = 0 for all
j ∈ R′

1 ∪ . . . ∪ R′
n . Moreover, the medians of the first type, that is, coinciding with

one of v1, . . . , vn , are distinct.
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Proof of Claim 4.1 Suppose that ci [h] = 0 for some h ∈ R′
j , where j ∈ {1, . . . , n}.

Observe that, by the construction of X, for every point x ∈ X, x[h] = 1 only if
x ∈ Vj . Since ci is constructed by the majority rule, we obtain that more than half of
elements of Xi are from Vj and ci = v j . To see the second part of the claim, notice
that |Vj | = r − 1 and, therefore, at most one cluster Xi of size r can have at least half
of its elements from Vj . �

By Claim 4.1, we assume without loss of generality that ci = vi for i ∈ {1, . . . , �}
for some � ∈ {0, . . . , r} (� = 0 if there is no cluster with themedian from {v1, . . . , vn})
and ci [ j] = 0 for j ∈ R′

1∪ . . .∪R′
n whenever i ∈ {�+1, . . . , k}. Because the medians

c1, . . . , c� are equal to points of X, by Lemma 9, we can assume that Vi ⊂ Xi for
i ∈ {1, . . . , �}.

Claim 4.2 � = n.

Proof of Claim 4.2 The proof is by contradiction. Assume that � < n. Consider the
elements of n − � blocks V�+1, . . . , Vn . Let p be the number of elements of V�+1 ∪
. . .∪Vn included in X1, . . . , X� and the remaining q = (r−1)(n−�)− p elements are
in X�+1, . . . , Xk . By the definition of v1, . . . , vn , if a point v

(t)
h ∈ Vh for some h ∈ {�+

1, . . . , n} is in Xi for some i ∈ {1, . . . , �}, then‖v(t)
h −ci‖0 = ‖vh−vi‖0 = 4r .Alsowe

have that if v(t)
h ∈ Vh for some h ∈ {�+1, . . . , n} is in Xi for some i ∈ {�+1, . . . , r},

then ‖v(t)
h − cI ‖0 = ‖vh − cI ‖0 ≥ |R′

h | = 2r − 1. By (16), if the unique point Xi \ Vi
is f (t)h ∈ Fh for some h ∈ {1, . . . ,m}, then ‖f (t)h − ci‖0 = ‖fh − vi‖0 ≥ 3r − 2.

Then
∑�

i=1 cost0(Xi ) ≥ 4rp+ (3r − 2)(�− p) and
∑k

i=�+1 cost0(Xi ) ≥ (2r − 1)q.
Recall also that r ≥ 3 and, therefore, r + 2 ≤ 2r − 1 and (r + 2)(r − 1) > 3r − 2.
Summarizing, we obtain that

cost0(X1, . . . , Xk) =
�∑

i=1

cost0(Xi ) +
k∑

i=�+1

cost0(Xi )

≥ (
4rp + (3r − 2)(� − p)

) + (
(2r − 1)q

)
= (3r − 2)� + (r + 2)p + (2r − 1)q

≥ (3r − 2)� + (r + 2)(p + q) = (3r − 2)�

+(r + 2)(r − 1)(n − �)

> (3r − 2)n = B,

but this contradicts that cost0(X1, . . . , Xk) ≤ B. This proves the claim. �

By Claim 4.2, we obtain that ci = vi and Xi ⊂ Ii for i ∈ {1, . . . , n}. For every
i ∈ {1, . . . , n}, Xi\Vi contains a unique point. Clearly, this is a point from F1∪· · ·∪Fm .
Denote by f (ti )hi

the point of Xi ⊂ Ii for i ∈ {1, . . . , n}. By (16), ‖ci − f (ti )hi
‖0 =
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‖ci − fhi ‖0 ≥ 3r − 2 for every i ∈ {1, . . . , n}. This means that

B ≥cost0(X1, . . . , Xk) =
n∑

i=1

cost0(Xi ) +
k∑

i=n+1

cost0(Xi ) ≥
n∑

i=1

cost0(Xi )

≥(3d − 2)n = B.

Therefore,
∑k

i=n+1 cost0(Xi ) = 0. Hence, k − n = m − s clusters Xn+1, . . . , Xk ⊆
F1 ∪ · · · ∪ Fm , where s = n

r , consists of equal points. Without loss of generality,
we assume that Fs+1, . . . , Fm form these clusters. Then the elements of F1, . . . , Fs
are split to complement V1, . . . , Vn to form X1, . . . , Xn . In particular, for every i ∈
{1, . . . , n}, there is f (ti )hi

∈ Xi for some hi ∈ {1, . . . ,m} and ti ∈ {1, . . . , r}.
We claim thatM = {E1, . . . , Es} is a perfect matching ofH. To show this, consider

a vertex vi ∈ V (H). We prove that vi ∈ Ehi . For sake of contradiction, assume that

vi /∈ Ehi . Then ‖f (ti )hi
− ci‖0 = ‖fhi − vi‖0 = 3r by (16) and

cost0(X1, . . . , Xk) =
n∑
j=1

cost0(X j ) ≥
n∑
j=1

‖f (t j )h j
− ci‖0 =

n∑
j=1

‖fhi − vi‖0

≥(3r − 2)n + 2 > B;

a contradictionwith cost0(X1, . . . , Xk) ≤ B. Hence, every vertex ofV (H) is saturated
by some hyperedge of M . Since |M | = s = n

r , we have that the hyperedges of M are
pairwise disjoint, that is, M is a matching. Since every vertex is saturated and M is a
matching, M is a perfect matching.

This concludes the proof of our claim that H has a perfect matching if and only if
(X, k, B) is a yes-instance of Decision Equal Clustering.

Observe that B = (3r − 2)n in the reduction meaning that B = O(n2). Since
Decision Equal Clustering is in NP, there is a polynomial reduction form Deci-
sion Equal Clustering to Perfect r - Set Matching. Thus, if Decision Equal
Clustering has a polynomial kernel when parameterized by B, then Perfect r - Set
Matching has a polynomial kernel when parameterized by the number of vertices
of the input hypergraph. This leads to a contradiction with Corollary 1 and completes
the proof of the theorem. �

4.2 Polynomial Kernel for k+ B Parameterization

In this subsection, we prove Theorem 3 that we restate here.

Theorem 3 For every nonnegative integer constant p, Decision Equal Cluster-
ing admits a polynomial kernel when parameterized by k and B, where the output
collection of points hasO(kB) points ofZd ′

with d ′ = O(kB p+1) and each coordinate
of a point takes an absolute value of O(kB2).
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Proof Let (X, k, B) be an instance of Decision Equal Clustering with X =
{x1, . . . , xn}, where the points are from Z

d . Recall that n is divisible by k.
Suppose n

k ≥ 4B + 1. Then we can apply the algorithm from Lemma 6. If the
algorithm returns that there is no equal k-clustering of cost at most B, then the ker-
nelization algorithm returns a trivial no-instance of Decision Equal Clustering.
Otherwise, if Opt(X , k) ≤ B, then the algorithm returns a trivial yes-instance.

Assume fromnow that nk ≤ 4B, that is, n ≤ 4Bk. Thenwe apply the algorithm from
Lemma 7. If this algorithm reports that there is no equal k-clustering of cost at most
B, then the kernelization algorithm returns a trivial no-instance of Decision Equal
Clustering. Otherwise, the algorithm fromLemma 7 returns a collection of n ≤ 4Bk
points Y = {y1, . . . , yn} of Z

d ′
satisfying conditions (i)–(iii) of the lemma. By (i), we

obtain that the instances (X, k, B) and (Y, k, B) of Decision Equal Clustering
are equivalent. By (ii), we have that the dimension d ′ = O(k(B p+1)), and by (iii),
each coordinate of a point takes an absolute value of O(kB2). Thus, (Y, k, B) is a
required kernel. �

5 APX-hardness of EQUAL CLUSTERING

In this section, we prove APX-hardness of Decision Equal Clusteringw.r.t. Ham-
ming (�0) and �1 distances. The constructed hard instances consist of high-dimensional
binary (0/1) points. As the �0 and �1 distances between any two binary points are the
same, we focus on the case of �0 distances. Our reduction is from 3- Dimensional
Matching (3DM), where we are given three disjoint sets of elements X ,Y and Z
such that |X | = |Y | = |Z | = n and a set of m triples T ⊆ X × Y × Z . In addition,
each element ofW := X ∪Y ∪ Z appears in at most 3 triples. A set M ⊆ T is called a
matching if no element of W is contained in more than one triple of M . The goal is to
find a maximum cardinality matching. We need the following theorem due to Petrank
[56].

Theorem 4 (Restatement of Theorem 4.4 from [56]) There exists a constant 0 < γ <

1, such that it is NP-hard to distinguish the instances of the 3DM problem in which
a perfect matching exists, from the instances in which there is a matching of size at
most (1 − γ )n.

Here γ should be seen as a very small constant close to 0. We use the construction
described in Section 4.1, with a small modification.

We are given an instance of 3DM. Let N = 3n, the total number of elements. We
construct a binary matrix A of dimension 6N × (2N + 3m). For each element, we
take 2 columns and for each triple 3 columns. The 6N row indexes are partitioned
into N parts each of size 6. In particular, let R1 = {1, . . . , 6}, R2 = {7, . . . , 12} and
so on. For the i-th element, we construct the column ai of length 6N which has 1
corresponding to the indexes in Ri and 0 elsewhere.

Recall that each element can appear in atmost 3 triples. For each element x , consider
any arbitrary ranking of the triples that contain it. The occurrence of x in a triple with
rank j is called its j-th occurrence for 1 ≤ j ≤ 3. For example, suppose x appears
in three triples tw, ty and tz . One can consider the ranking 1.tw, 2.ty, 3.tz . Then, the
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occurrence of x in ty is called 2-nd occurrence. Let v
j
i be the j-th index of Ri for

1 ≤ i ≤ N , 1 ≤ j ≤ 3. For each triple t with j1-, j2- and j3-th occurrences of the
elements p, q and r in t , respectively, we construct the column bt of length 6N which
has 1 corresponding to the indexes v

j1
p , v

j2
q and v

j3
r , and 0 elsewhere.

The triple columns are defined in a different way in our reduction in Section 4.1
where for each triple and each element, a fixed index is set to 1. But, we set dif-
ferent indexes based on the occurrences of the element. This ensures that for two
different triple columns bs and bt , their Hamming distance dH (bs, bt ) = 6. Note that
dH (ai , bt ) = 7 if the element i is in triple t , otherwise dH (ai , bt ) = 9. Set cluster size
to be 3 and the number of clusters k to be (2N/3) + m. We will prove the following
lemma.

Lemma 10 If there is a perfect matching, there is a feasible clustering of cost 7N.
If all matchings have size at most (1 − γ )n, any feasible clustering has cost at least
7(1 − γ )N + (23/3)γ N.

Note that it is sufficient to prove the above lemma for showing the APX-hardness
of the problem. The proof of the first part of the lemma is exactly the same as in the
previous construction. We will prove the second part. To give some intuition of the
cost suppose there is a matching of the maximum size (1− γ )n. Then we can cluster
the matched elements and triples in the same way as in the perfect matching case by
paying a cost of 7(1−γ )N . Now for each unmatched element, we put its two columns
in a cluster. Now we have γ N clusters with one free slot in each. One can fill in
these slots by columns corresponding to γ N/3 unmatched triples. All the remaining
unmatched triples form their own cluster. Now, consider an unmatched triple s whose
3 columns are used to fill in slots of unmatched elements p, q, and r . As this triple
was not matched, it cannot contain all these three elements, i.e, it can contain at most
2 of these elements. Thus, for at least one element, the cost of the cluster must be 9.
Therefore, the total cost of the three clusters corresponding to p, q, and r is at least
7 + 7 + 9 = 23. The total cost corresponding to all γ N/3 unmatched triples is then
(23/3)γ N . We will show that one cannot find a feasible clustering of lesser cost.

For our convenience,wewill prove the contrapositive of the second part of the above
lemma: if there is a feasible clustering of cost less than 7(1− γ )N + (23/3)γ N , then
there is a matching of size greater than (1 − γ )n. So, assume that there is such a
clustering. Let c1, c2, . . . , ck be the cluster centers.

By Lemma 9, we can assume that if a column f of A is a center of a cluster C , all
the columns equal to f are inC . We will use this in the following. A center ci is called
an element center if ci is an element column. Suppose the given clustering contains �

clusters with element centers for some �. WLOG, we assume that these are the first �
clusters.

Lemma 11 If the cost of the given clustering is less than 7(1 − γ )N + (23/3)γ N,
� > (1 − 2γ /9)N.

Proof Note that if a cluster center is an element column, then by Lemma 9 we can
assume that both element columns are present in the cluster. Thus, in our case, each
of the first � clusters contains two element columns and some other column. Now,
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each of these � other columns can be either a column of some other element or a triple
column. Let �1 of these be element columns and �2 of these be triple columns, where
� = �1 + �2. For each cluster corresponding to these �1 element columns, the cost is
12, as dH (ai , a j ) = 12 for all i, j . Similarly, for each cluster corresponding to the �2
triple columns, the cost is at least 7, as dH (ai , bt ) ≥ 7 for all i, t .

Note that out of 2N element columns, 2� + �1 are in the first � clusters. The rest
of the element columns are in the other clusters. Now there can be two cases: such a
column is in a cluster that contains (i) at least 2 element columns and (ii) exactly one
element column.

Claim 5.1 The cost of each element column which is not in the first � clusters is at
least 5 in the first case.

Proof Consider such a column ai and let c j be the center of the cluster that contains
ai . Note that the only 1 entries in ai are corresponding to the indexes in Ri . We claim
that at most one entry of c j corresponding to the indexes in Ri can be 1. This proves
the original claim, as |Ri | = 6. Consider an index z ∈ Ri such that c j [z] = 1. As c j is
not an element column and the centers are defined based on the majority rule, there is
a column e in the cluster with e[z] = 1. This must be a column of a triple that contains
the element i . By construction, e does not contain 1 corresponding to the indexes in
Ri \ {z}. As the third column in the cluster is another element column (as we are in
the first case), its entries corresponding to the indexes in Ri are again 0. Hence, by
majority rule, at most one entry of c j corresponding to the indexes in Ri can be 1. �

Next, we consider case (ii).

Claim 5.2 Consider a cluster that is not one of the first � clusters and contains exactly
one element column. Then, its cost is at least 5. Moreover, the cost of the element
column is at least 4.

Proof Consider the element column ai of the cluster and let c j be the center of the
cluster. Note that the only 1 entries in ai are corresponding to the indexes in Ri .
Now, if the other two (triple) columns in the cluster are the same, there must be at
most one entry of them corresponding to the indexes in Ri that is 1. This is true
by the construction of triple columns. Hence, in this case, at most one entry of c j
corresponding to the indexes in Ri can be 1 and the cost is at least 5. Otherwise, there
can be two distinct triple columns bs and bt in the cluster and at most two indexes
z1, z2 ∈ Ri such that z1 = z2 and bs[z1] = bt [z2] = 1. By construction of the triple
columns, there are no other indices z ∈ Ri \ {z1, z2} such that bs[z] = 1 or bt [z] = 1.
Thus, by the majority rule, at most two entries of c j corresponding to the indices in
Ri can be 1. Hence, the cost of ai is at least 4. Now, as bs and bt are distinct, the cost
of either one of them must be at least 1. It follows that the cost of this cluster is at least
5. �

Now, again consider the 2N − 2� − �1 element columns that are not in the first �

clusters. Let κ be the number of clusters that are not the first � clusters and contain
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exactly 1 element column. This implies that 2N − 2� − �1 − κ element columns are
contained in the clusters which are not the first � clusters and contain at least 2 element
columns. By Claim 5.1, the cost of each such column is at least 5. By Claim 5.2, the
cost of each of the κ clusters defined above is at least 5.

It follows that the total cost of the clustering is 12�1 + 7�2 + (2N − 2� − �1 −
κ)5 + 5κ = 10N − 3�, as � = �1 + �2. Now, given that the cost is less than 7(1 −
γ )N + (23/3)γ N .

10N − 3� < 7(1 − γ )N + (23/3)γ N = 7N + 2γ N/3

3N − 3� < 2γ N/3

� > (1 − 2γ /9)N

�
Like before, let �2 be the number of clusters out of the first � clusters such that �2

contains a triple column.

Claim 5.3 �2 > (1 − 2γ /3)N .

Proof Again consider the cost of the given clustering. The cost of the �2 clusters is
at least 7. The cost of the remaining � − �2 clusters is exactly 12 as before. Now, as
� > (1 − 2γ /9)N by Lemma 11,

7�2 + 12((1 − 2γ /9)N − �2) < 7(1 − γ )N + (23/3)γ N = 7N + 2γ N/3

7�2 + 12N − 24γ N/9 − 12�2 < 7N + 2γ N/3

5�2 > 5N − 30γ N/9

�2 > (1 − 2γ /3)N

�

We show that out of the �2 elements corresponding to these �2 clusters, more than
(1 − γ )N elements must be matched.

Lemma 12 There is a matching that matches more than (1 − γ )N elements.

Proof Consider the set of elements corresponding to the �2 clusters, each of which
contains a triple column. Let M be a maximum matching involving these elements
and triples that matches μ elements. We will show that μ > (1− γ )N . The total cost
of the clusters corresponding to these matched elements is 7μ. Let �1 be the number of
clusters out of the first � clusters that contain all element columns (see Fig. 2). The total
cost of these clusters is 12�1. Note that 3�1 columns are involved in these clusters.
For the remaining at least 2(N − μ) − 3�1 element columns and correspondingly
at least N − μ − 3�1/2 elements, the corresponding columns can either be in one
cluster along with a triple column or split into two clusters. Let �3 be the number of
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such elements whose columns are in one cluster along with a triple column. Also,
let �4 be the remaining elements whose columns are split into two clusters (see Fig.
2). By Claims 5.2 and 5.1, the cost of each split column is at least 4. Thus, the total
cost corresponding to these �4 elements is at least 8�4. Now, we compute the cost
corresponding to the �3 elements whose columns are in one cluster along with a triple
column. Consider the set of triples involved in these clusters. Also, let T1 be the set of
triples whose three columns appear in these �3 clusters. The cost of such triple columns
is at least 7+ 7+ 9 = 23, as they are not a part of the maximum matching. Let �5 be
the number of clusters among the �3 clusters where the triples in T1 do not appear and
T2 be the set of associated triples. Each triple in T2 thus appears in at most 2 clusters
among the �3 clusters (see Fig. 2). Let T3 ⊆ T2 be the set of triples each of which is
only associated with the clusters of cost 7 and �6 be the number of these clusters. As
these triples are not part of the maximum matching, each of them can cover at most
two unmatched elements. Thus, the size of T3 is at least �6/2. Note that, by definition,
at least one column of each such triple does not belong to the first � clusters. We
compute the cost of these triple columns. If such a triple column appears in all triple
column clusters, the cost of the column is at least 3, by the construction of the triple
columns and noting that two copies of the column cannot appear in the cluster. If such
a triple is in a cluster with only one element column, its cost must be at least 2, as the
element columns’ at most one 1 entry can coincide with the 1 entries of the column.
Now, if such a triple column appears in a cluster with two element columns, then the
cost of the column is at least 1. However, the cost of the element columns must be at
least 10. We charged each such element column a cost of 4 while charging the split
columns corresponding to the �4 elements. So, we can charge 10 − 8 = 2 additional
cost to those element columns. Instead, we charge this to the triple column. Thus, its
charged cost is 1 + 2 = 3. Thus, the total cost corresponding to the triples in T3 is at
least (�6/2) · 2.

Fig. 2 Hierarchy of the clusters. Illustration of the proof of Lemma 12
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The total cost of the clustering is at least,

7μ + 12�1 + 8�4 + (23/3)|T1| + (�5 − �6)((7 + 9)/2) + 7�6 + (�6/2) · 2
=7μ + 12�1 + 8�4 + (23/3)(�3 − �5) + 8�5 (as 3|T1| = �3 − �5)

≥7μ + 12�1 + 8�4 + (23/3)�3
≥7μ + 12�1 + (23/3)(�3 + �4)

≥7μ + 12�1 + (23/3)(N − μ − 3�1/2) (as �3 + �4 ≥ N − μ − 3�1/2)

=7μ + (23/3)(N − μ) + �1/2

≥(23/3)N − (2/3)μ (as �1 ≥ 0)

Now, we know a strict upper bound on this cost. Thus,

(23/3)N − (2/3)μ < 7N + (2/3)γ N

(23/3 − 7)N − (2/3)γ N < (2/3)μ

(2/3)N (1 − γ ) < (2/3)μ

μ > (1 − γ )N

�

We summarize the results of this section in the following theorem.

Theorem 5 There exists a constant εc > 0, such that it isNP-hard to obtain a (1+εc)-
approximation for Equal Clustering with �0 (or �1) distances, even if the input
points are binary, that is, are from {0, 1}d .

6 Conclusion

We initiated the study of lossy kernelization for clustering problems and proved that
Parameterized Equal Clustering admits a 2-approximation kernel. It is natural
to ask whether the approximation factor may be improved. In particular, does the
problem admit a polynomial size approximate kernelization scheme (PSAKS) that
is a lossy kernelization analog of PTAS (we refer to [8] for the definition)? Note
that we proved that Equal Clustering is APX-hard and this refutes the existence
of PTAS and makes it natural to ask the question about PSAKS. We also believe
that it is interesting to consider the variants of the considered problems for means
instead of medians. Here, the cost of a collection of points X ⊆ Z

d is defined as
minc∈Rd

∑
x∈X ‖c − x‖p

p for p ≥ 1. Clearly, if p = 1, that is, in the case of the
Manhattan norm, our results hold. However, for p ≥ 2, we cannot translate our
results directly because our arguments rely on the triangle inequality. We would like
to conclude the paper by underlining our belief that lossy kernelizationmay be a natural
tool for the lucrative area of approximation algorithms for clustering problems.
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