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A B S T R A C T   

Maps of surface water fugacity of CO2 (fCO2) over eastern Fram Strait, south-western Nansen Basin, and the 
north-western Barents Sea (73–84◦N, 5–46◦E) from September 1997 to December 2020 were made and used to 
investigate seasonal and temporal trends. The mapping utilized a neural network technique, the self-organizing 
map (SOM), that was trained with different combinations of satellite/observational/model data of sea surface 
temperature (SST), sea surface salinity (SSS), mixed layer depth (MLD), chlorophyll a (Chl a), sea ice concen-
tration, and atmospheric mole fraction of CO2 (xCO2). The trained SOM was labelled with available surface ocean 
fCO2 data, and the labelled SOM was subsequently used to map the fCO2. The produced maps reveal that fCO2 in 
northern Barents Sea, at the border of the Nansen Basin, has increased significantly over the last decades by 
between 4.2 and 5.5 ± 0.6–1.1 µatm yr− 1 over the winter to summer seasons. These rates are twice the rate of 
atmospheric CO2 increase, which was about 2 µatm yr− 1. The spatial pattern coincides with the strongest de-
creases in sea ice concentration as well as with a salinification of the surface water. The former allows for a 
prolongation of the air-sea CO2 flux with resultant oceanic CO2 uptake in previously ice-covered waters, and the 
latter is caused by a shift from Arctic Water dominance to more saline waters containing more dissolved inor-
ganic carbon, most likely of Atlantic Water origin although brine-release influenced deep water may also 
contribute.   

1. Introduction 

The eastern Fram Strait and the Barents Sea are the gateways for 
Atlantic Water (AW) that enters the central Arctic Ocean. Here, the 
warm AW meets the colder and fresher Arctic Water (ArW), as well as 
the sea ice, which results in a highly dynamic environment. As the 
oceanic heat content has increased, following the anthropogenic 
greenhouse gas induced climate change, the area has undergone 
remarkable changes (Ingvaldsen et al., 2021). The Barents Sea has 
warmed since the 1970s (e.g., Lind et al., 2018; Skagseth et al., 2020), 
which is linked to an increased inflow of warmer AW, and lost sub-
stantial sea ice cover (e.g., 50 % in annual sea ice cover between 1998 
and 2008, Årthun et al., 2012; Smedsrud et al., 2022). At the same time, 

the water column stratification in the northern parts of the Barents Sea 
has weakened (Lind et al., 2018). This also coincides with alterations in 
the atmospheric forcing including an increased cyclone activity in the 
north-western Barents Sea (Wickström et al., 2019). The ongoing 
changes in the marine environment, that extend well into the Eurasian 
Basin of the Arctic Ocean, have been termed an “Atlantification” (Pol-
yakov et al., 2017), and have been projected to expand further north in 
the coming years as the Barents Sea progresses to become sea-ice free 
(Årthun et al., 2019). 

The current transitional state of the area affects air-sea heat and gas 
exchange, and consequently the capacity for CO2 uptake from the at-
mosphere (Fransson et al., 2017; Graham et al., 2019). This highlights 
the need to track changes in the surface water fugacity of CO2 (fCO2) as 
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well as to elucidate how the associated key drivers have changed over 
time and are likely to change in the future. 

Several studies have focused on the spatiotemporal distribution of 
surface water fCO2 and air-sea CO2 fluxes in the Barents Sea (Omar et al., 
2007; Lauvset et al., 2013; Yasunaka et al., 2018; Becker et al., 2021). 
Although underway surface water fCO2 measurements on ships have 
increased the amount of data in the region, they are still quite sparse, in 
particular for the winter and early spring periods. To assess potential 
changes in fCO2 in the area, it is consequently necessary to apply other 
methods. Satellite-, observational-, and model-based data products on 
sea ice concentration, sea surface temperature (SST), sea surface salinity 
(SSS), mixed layer depth (MLD), and chlorophyll a (Chl a), are growing 
in numbers as well as in quality. These products enable the use of al-
gorithms, for instance based on multiple linear regressions (MLRs) or 
self-organizing maps (SOMs), to regionally map the surface water fCO2 
at a high spatiotemporal resolution (e.g., Lefévre et al., 2005; Telszewski 
et al., 2009; Lauvset et al., 2013; Yasunaka et al., 2016,2018). The 
quality of the produced fCO2 maps depends on several factors including 
the spatiotemporal distribution of the fCO2 measurements (Hauck et al., 
2023), the chosen mapping method, and how representative the chosen 

satellite/observational/modelled data products are for the surface 
ocean’s physical and chemical environment. There are several chal-
lenges here, first, the sea-ice cycle in the northern regions results in 
small-scale variability that many gridded satellite/observational/model 
products struggle to resolve. For instance, satellite SSS data have been 
available since 2009 but are limited to the open ocean and are sensitive 
to contamination at the sea-ice edge as well as the land–ocean margin (e. 
g., Xie et al., 2019; Supply et al., 2020). Secondly, the scarcity of fCO2 
measurements in sea-ice covered regions, especially back in time, limits 
the extent to which these methods can be constrained with real data. In 
fact, several studies have included sea ice concentration among the 
larger set of variables used to reconstruct the surface water fCO2 for the 
region (e.g., Yasunaka et al., 2016,2018; Becker et al., 2021), despite 
lack of fCO2 data in regions with high concentrations of sea ice (>70 %) 
before 2012. This is a weakness since the impact of sea ice on fCO2 and 
air-ice-sea CO2 exchange will depend on several factors including sea-ice 
type (i.e., multiyear and first-year ice), and stage in the annual sea-ice 
cycle (Rysgaard et al., 2011). The sea-ice composition in the Barents 
Sea used to be complex as it consisted of a mix of locally produced and 
imported sea ice of various ages (Vinje & Kvambekk, 1991), and the 

Fig. 1. Map over the study area including the currents of AW along the continental margin and over the Barents Sea Opening (red arrows). Blue arrows indicate the 
flow of ArW to the south. The grey solid line shows the Polar Front. 
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import of multiyear ice from the north could be quite variable (Kwok 
et al., 2005). However, the rapidly decreasing sea ice cover, especially in 
the Barents Sea (Årthun et al., 2012), together with a substantial decline 
in the multiyear ice in the Arctic Ocean in general (e.g., >50 % a 
decrease between 1999 and 2017, Kwok, 2018), show that sea-ice 
conditions in recent years are quite different from the conditions 
20 years back in time. 

Here we use observational, satellite, and model data in combination 
with surface ocean measurements of fCO2 to investigate the utility of the 
SOM technique to map the surface water fCO2 in the eastern Fram Strait, 
the south-western Nansen Basin, and the north-western Barents Sea re-
gion (Fig. 1). Seasonal maps of fCO2 are created to evaluate the 
spatiotemporal variability, and drivers are discussed in a context of 
climate change. 

2. Data and methods 

2.1. In-situ data 

This study is based on underway surface ocean fCO2 measurements 
from SOCATv2021 (Surface Ocean CO2 Atlas, covering October 1999 to 
October 2020, for more details see Bakker et al., 2016), and from the R/ 
Vs Lance (data from January to June 2015, Fransson et al., 2017) and 
Kronprins Haakon (measurements from August 2018 to December 2019). 
Measurements from the R/V Kronprins Haakon, were made by an 
autonomous instrument (General Oceanics® with a LI-7000 manufac-
tured by LI-COR) using infrared analysis of headspace samples equili-
brated with surface seawater (Fransson et al., 2023), with a setup and 
fCO2 calculation following Pierrot et al. (2009). In addition, discrete 
measurements from several sources were used. These include data from 
the GLODAPv2.2021 data set (Lauvset et al., 2021) from between March 
1998 and June 2019. Data from the years 2000, 2003 to 2005 from the 
carbon dioxide in the Atlantic Ocean (CARINA) data synthesis project 
(Key et al., 2010; Jutterström et al., 2010), and additional cruise data 
from between June 1999 and September 2019 (Chierici et al., 2019; 
Chierici & Fransson, 2019; Jones et al., 2021; Chierici et al., 2022). Data 
from the region 5◦E <= longitude <= 46◦E and 73◦N <= latitude <=

84◦N were used. The ranges were chosen to capture the area where the 
AW meets the ArW. The southern limit was chosen to avoid the fresh-
ening impact of the Norwegian/Murmansk Coastal Current that flows 
eastwards along the land margin of the Eurasian continent (see Fig. 1). 
The spatial distributions of the data sets are shown in Fig. 2a, b, and the 
temporal distribution in Fig. 2c. 

The combined underway data set contains in total 458,516 fCO2 

measurements. After visual inspection a suspicious spike, consisting of 
four data points with no measurements directly before or after, was 
removed from the SOCAT data set (i.e., at 16:00 on 15 August 2017). All 
data sets included SST and SSS measurements, although the latter 
property is largely missing before 2005. For the SSS, suspicious data 
were removed for several cruises using either visual inspection (i.e., 
typically single points without measurements directly before or after) or 
three scaled median absolute deviations (MAD) away from the local 
median (window size of 6 h) to detect outliers. Also, note that SST data 
were not collected on the R/V Kronprins Haakon (KPH) in 2018. Instead, 
these were estimated from the equilibrator temperature using a mean 
temperature difference of 0.78 ± 0.2 ◦C (determined using KPH data 
collected in the same region in 2019). The uncertainty in the measured 
fCO2 is around 5 µatm or better for the SOCAT data (Bakker et al., 2016) 
and KPH data. The R/V Lance data, which were largely collected in areas 
with sea ice, have a reported uncertainty of 7 µatm (Fransson et al., 
2017). 

The discrete water samples, 1141 measurements in total, were 
collected from Niskin bottles mounted on a rosette system including a 
conductivity, temperature, and depth (CTD) sensor package. Samples 
were analysed for total alkalinity (AT) and total dissolved inorganic 
carbon (CT), and in addition also for nutrients in most cases. Data were 
collected from the upper 15 m (depth < 16 m) to approximate the type of 
water that is sampled at the ship’s sea water inlet, acknowledging that 
ship movement and especially the thrust can result in considerable 
mixing of the upper part of the water column. The AT and CT data were 
quality controlled for outliers using property-property plots with salinity 
as the independent variable. One point in AT was removed (i.e., 
S = 30.54 and AT = 2201 µmol kg− 1). The remaining AT and CT data, 
together with ancillary data of pressure, salinity, temperature, and if 
existent, phosphate and silicate concentrations were used to calculate 
the surface water fCO2 using CO2SYS (van Heuven et al., 2011). When 
nutrient data were missing, they were assumed negligible in terms of 
their contribution to the total alkalinity (i.e., as suggested by the overall 
mean concentrations of 0.3 and 1.5 µmol kg− 1 for phosphate and sili-
cate, respectively). Moreover, the often-recommended constants for K1 
and K2 of Mehrbach et al. (1973) as refitted by Dickson and Millero 
(1987) and the total borate formula of Lee et al. (2010) were used. 
Furthermore, the dissociation constant of bisulphate (KSO4) of Dickson 
(1990) was used. The mean error of the calculated fCO2 data was ± 11 
µatm as estimated using the error function of Orr et al. (2018). This 
result is based on the following uncertainties of ± 4 µmol kg− 1, ±4 µmol 
kg− 1, ±0.01 ◦C and ± 0.05 in AT, CT, SST, and SSS, respectively. For 
phosphate and silicate, we used the standard deviation of 0.2 and 

Fig. 2. (a) Underway surface water fCO2 (µatm), (b) Calculated fCO2 (µatm) from discrete samples, and c) Number of data points (N) per month between 1998 and 
2020 (note the logarithmic scale). 
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1.3 µmol kg− 1, respectively, as a measure of their uncertainties. We also 
used the default errors as suggested by Orr et al. (2018) for the total 
boron concentration and the dissociation constants. Finally, to sort out 
anomalous fCO2 data, the calculated fCO2 was plotted against AT and CT 
and data points with residuals>3 times the root mean square error 
(RMSE) of a robust fit (Fig. 3a, b) were considered outliers. In total 8 
fCO2 data points were thus removed. 

2.2. Observational, satellite, reanalysis, and atmospheric xCO2 data 

Data products for SST, SSS, MLD, Chl a, sea ice concentration, and 
atmospheric mole fraction of CO2 (xCO2), were chosen based on their 
time span in conjunction with the time span of the underway data 
(Table 1). The SST, SSS, MLD, and Chl a data were obtained from 
Copernicus Marine Service (CMEMS). To facilitate the readability, we 
will refer to the SST from ESA SST CCI and C3S as ESA, SST, SSS, and 
MLD data from the Global Ocean Observation-based Product as MUL-
TIOBS, and the SST, SSS, and MLD from the Arctic Ocean Physics 
Reanalysis product as TOPAZ, since the latter is based on the TOPAZ4 
model. 

Note that it has come to our knowledge that there are biased salinity 
profiles in January, with lower salinity than expected for the area at 
about 81-82◦N and 5-7◦E in the World Ocean Database, which affect the 
World Ocean Atlas 2018 (WOA18, James Reagan, personal communi-
cation). WOA18 is used as a first guess in the MULTOBS product and in 
the initialization of the TOPAZ4 model (note that the model is initialized 
in year 1991). This means that the two data products may be biased to 
fresher water in the wintertime in this area. To be transparent about the 
area that may be affected by the potential bias we include monthly mean 
maps of the SSS data for the years: 1998, 2001, 2010, and 2020 (see 
supplement, Figs. A1 and A2). In terms of the TOPAZ SSS, the bias affects 
the Nansen Basin in January, especially in the years before 2001. The 
impact of the bias is minor as the annual cycle progresses to March 
(Fig. A1). The MULTIOBS product is influenced by the low salinities in 
every January month (Fig. A2). Since these data are based on observa-
tions, the WOA18 bias has no influence on the other months. 

In the present study the SSS data is used to train a neural network, 
and subsequently used to find matches between the network and a 
separate labelling data set, with associated fCO2 measurements. These 
steps are based on the same SSS product and consequently we expect the 

Fig. 3. Calculated surface water fCO2 plotted against (a) discrete AT measurements, (b) discrete CT measurements. The red lines are 3 times the RMSE away from the 
fitted black line to show outlying fCO2 data. 

Table 1 
Products used as training data.   

Data Product Resolution References 

SST (◦C) ESA SST CCI (v2.0) and C3S Analyses 0.05◦ × 0.05◦ , daily Good et al. (2019); Merchant et al. 
(2019)  

Global Ocean Observation-based Products, 
MULTIOBS_GLO_PHY_TSUV_3D_MYNRT_015_012 

0.25◦ × 0.25◦ , weekly, 
monthly 

https://doi.org/10.48670/ 
moi-00052  

Arctic Ocean Physics Reanalysis, ARCTIC_MULTIYEAR_PHY_002_003 12.5 km × 12.5 km, daily, 
monthly 

https://doi.org/10.48670/ 
moi-00007 

SSS Global Ocean Observation-based Products, 
MULTIOBS_GLO_PHY_TSUV_3D_MYNRT_015_012 

0.25◦ × 0.25◦ , weekly, 
monthly 

https://doi.org/10.48670/ 
moi-00052  

Arctic Ocean Physics Reanalysis, ARCTIC_MULTIYEAR_PHY_002_003 12.5 km × 12.5 km, daily, 
monthly 

https://doi.org/10.48670/ 
moi-00007 

MLD (m) Global Ocean Observation-based Products, 
MULTIOBS_GLO_PHY_TSUV_3D_MYNRT_015_012 

0.25◦ × 0.25◦ , weekly, 
monthly 

https://doi.org/10.48670/ 
moi-00052  

Arctic Ocean Physics Reanalysis, ARCTIC_MULTIYEAR_PHY_002_003 12.5 km × 12.5 km, daily, 
monthly 

https://doi.org/10.48670/ 
moi-00007 

Chl a (mg m− 3) Copernicus-GlobColour- reprocessed, 
OCEANCOLOUR_GLO_CHL_L4_REP_OBSERVATIONS_009_082 

4 km × 4 km, 
interpolated daily 

Garnesson et al., 2019 

Sea ice 
concentration 
(%) 

OSI-450 OSI SAF Global Sea Ice Concentration 
Climate Data Record/OSI-430-b OSI SAF Global Sea Ice 
Concentration Interim Climate Data Record 

25 km × 25 km, 
daily 

EUMETSAT Ocean and Sea Ice 
Satellite Application Facility (2017; 
2019) 
Lavergne et al. (2019) 

Atm. xCO2 Atmospheric Carbon Dioxide Dry Air Mole Fractions from the NOAA GML Carbon Cycle 
Cooperative Global Air Sampling Network 

Close to weekly, monthly Dlugokencky et al., 
(2021).  
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impacts of the bias in WOA18 on the surface water fCO2 estimation to be 
minor. Since the bias in the TOPAZ SSS is gradually diminishing, we also 
want to highlight that the labelling data set is sampled from the affected 
area in January 2014 and 2015, i.e., when the bias has a negligible 
impact on the SSS (Fig. A1). Still, winter fCO2 estimates within this 
particular area should be interpreted with caution. 

The Chl a data are from the Global Ocean Observation-based Prod-
ucts. These data were gridded all the way to 82.979◦N. Please note, that 
due to light coverage, data are only available between April and 
September. To fill missing data between 82.979 and 84◦N at each lon-
gitudinal grid line over the period with sufficient light, we set the Chl a 
concentration at 84◦N to the minimum value observed between 82.5 and 
83◦N. This reflects that the sea ice concentration most often is higher 
further north and the resultant Chl a typically lower. Then we estimated 
concentrations between 82.979 and 84◦N by using an interpolation of 
the form: 

y = aebx10 (1) 

Where x is the numeric indices, with 1 at the 84◦N latitude and 
increasing in the southward direction, and the a and b coefficients are 
given by the indices and Chl a concentrations at 82.979 and 84◦N. This 
approach was chosen to reflect the rapidly declining Chl a concentration 
surrounding patches with higher algae biomasses, which will not be 
captured by a constant value or a linear approach. 

Over the transitional phases (winter → spring/fall → winter) when 
the satellite coverage is gradually increasing or diminishing over 
approximately a month, we used a similar interpolation with the expo-
nential function described above. This time, the value at 84◦N was set to 
0.025 mg m− 3 and we interpolated values between the northernmost 
point with measurements and 84◦N along each longitudinal grid line. 
Between October and March, data were missing due to the lack of sun-
light. Since some productivity can take place under low light conditions 
(e.g., Randelhoff et al., 2020), we set the Chl a to 0.025 mg m− 3. This is 
the upper limit of concentrations observed by Randelhoff et al. (2018) 
west and north of Svalbard in January 2014. Low values between 
November and April in the northern Barents Sea are further supported 
by the findings of Henley et al. (2020), as well as by Fransson et al. 
(2017), i.e., low values in January throughout April, see Fig. 8a. 

Unfortunately, for 1997 and 2020 the Chl a data were, for an un-
known reason, not gridded all the way up north to 82.979◦N. Both sea 

ice and cloud cover are factors that can explain this data sparsity. During 
the period with sufficient light nothing was done to fill the missing data. 
Over the remaining year we used the same procedures as described 
above. 

Sea ice concentration data were obtained from the Ocean and Sea Ice 
Satellite Application Facility (OSI SAF), which is one of the centres of 
excellence within the European Organisation for the Exploitation of 
Meteorological Satellites (EUMETSAT). The mixing ratio of atmospheric 
CO2 (xCO2) was obtained from the Global Monitoring Laboratory 
(Dlugokencky et al., 2021). These bottle data were collected by the 
University of Stockholm at the Zeppelin Mountain, Ny Ålesund, Sval-
bard (Position: 78.907◦ N, 11.888◦ E, Station height: 474 m), with a near 
weekly or better resolution. Data flagged as bad, either with the rejected 
or selected flags (i.e., an alphanumeric other than a period (.)), were 
removed. Replicate samples were averaged, and outliers were detected 
using a moving median and a limit of three scaled median absolute 
deviations. The window size was half a year. 

2.3. Comparison between SST and SSS from in-situ observations and 
satellite/observational/reanalysis data 

Data from the different products were combined with the in-situ fCO2 
data using the nearest point in time and space. These data were 
compared against the measured in-situ SST and SSS data to identify the 
data product that fits the in-situ data best. The evaluation utilized the 
ranges of the different data sets, the mean difference including its 
associated standard deviation, and orthogonal linear regressions. The 
results are presented in Table 2. Please note that the in-situ data are 
given together with GPS latitude and longitude, which are 

Table 2 
Comparison between measured SST and SSS and corresponding satellite/observational/reanalysis data.  

Properties Mean Difference and STD Linear Fit Min. and max.  

SST (◦C)    
ESA SST at 0.2 m − 0.28 ± 0.83 1.01x + 0.27 

R2 = 0.95 
RMSE = 0.83 

− 2.1, 10.8 

MULTIOBS SST at 0 m − 0.17 ± 1.00  1.01x + 0.15 
R2 = 0.92 
RMSE = 1.00 

− 3.0, 11.0  

MULTIOBS SST at 10 m − 0.09 ± 0.90  1.00x + 0.08 
R2 = 0.94 
RMSE = 0.90 

− 3.0, 10.3 

TOPAZ SST at 0 m − 0.19 ± 0.87  1.00x + 0.19 
R2 = 0.94 
RMSE = 0.87 

− 1.9, 10.3 

SSS    
MULTIOBS SSS at 0 m − 0.16 ± 0.54  0.90x + 3.6 

R2 = 0.50 
RMSE = 0.51 

27.5, 35.4 

MULTIOBS SSS at 10 m − 0.09 ± 0.50   0.95x + 1.7 
R2 = 0.53 
RMSE = 0.49 

27.5, 35.3 

TOPAZ SSS at 0 m 0.07 ± 0.48  1.57x – 19.9 
R2 = 0.41 
RMSE = 0.55 

31.8, 35.1 

Note: Min and max for the in-situ data were for SST − 1.9 and 10.6 ◦C, respectively, and 29.0 and 35.3 for the SSS data. 

Table 3 
Correlation coefficients, associated p-values and degrees of freedom (df) be-
tween trends in sea ice concentration in winter and significant trends in surface 
water fCO2 in winter, spring, summer, and autumn.  

Seasonal fCO2 trends Correlation coefficients p-values df 

Winter  − 0.55  0.000 7895 
Spring  − 0.63  0.000 7393 
Summer  − 0.06  0.000 8488 
Autumn  0.23  0.000 8627  
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georeferenced to the WGS84 datum and its associated ellipsoid. For most 
global observation/satellite-based products the given latitude and 
longitude grid is also based on the WGS84 datum. The TOPAZ-based 
reanalysis model product, on the other hand, is given with spherical 
coordinates on a polar stereographic projection. Consequently, it would 
seem most appropriate to do a datum shift before combining this data set 
with the in-situ data to avoid any latitudinal error (i.e., could be about 
20 km in the mid-latitudes, Cao et al., 2017). However, the model, which 
utilize curvilinear coordinates, assimilates observational input without 
shifting the datum for the observational data (Jiping Xie, personal 
communication). Therefore, a datum shift could introduce more errors, 
and no shift was done in this study. 

2.4. Self-organized map overview 

The SOM technique was developed by Kohonen (2001) and allows 
for non-linear multidimensional relationships that do not require a 
priori knowledge on mechanistic relations. It has been used to map 
surface water fCO2 over a wide range of spatial scales, i.e., coastal, 
regional, and global (Lefévre et al., 2005; Telszewski et al., 2009; 
Landschützer et al., 2013; Yasunaka et al., 2016,2018; Laruelle et al., 
2017). The method has been thoroughly described by Telszewski et al. 
(2009), among others, and here we use a similar approach including the 
SOM Toolbox version 2.1 developed for Matlab 5, as used in their 
contribution (https://www.cis.hut.fi/projects/somtoolbox). In short, 
the SOM is a map of training data comprised of neurons that are, in this 
case, located on a regular flat map grid with a hexagonal lattice. The size 
of the map is given in Table 4 and was determined using the SOM 
Toolbox version 2.1 that calculates a sensible map size based on the 
training data. A smaller map size can increase the labelling success, but 
potentially at the cost of reduced data representation, i.e., important 
features may disappear. Each neuron has an associated prototype vector, 
in this instance, a unique combination of the six variables SST, SSS, 
MLD, Chl a, sea ice concentration, and atmospheric xCO2. After a linear 
initialization, an iterative training process takes place, until neigh-
bouring neurons have similar prototype vectors. A detailed description 
of this process can be found in Telszewski et al. (2009). A labelling data 
set, consisting of vectors of the six variables mentioned above, is sub-
sequently used to find matches in the neural network. When a match is 
found that specific neuron will obtain a label, in this case a fCO2 value. 
The labelled SOM can in turn be used to label the weekly fields that were 
used in the training process, and thus the surface water fCO2 is mapped. 

2.4.1. Training data 
The training data used to precondition the SOM were weekly gridded 

fields of SSS, SST, MLD, Chl a, sea ice concentration, and xCO2 at a 
0.2◦x0.2◦ resolution. Most data products were re-gridded and averaged 
to achieve this (see Table 1 for the spatiotemporal scales of the indi-
vidual data sets). Note that the atmospheric xCO2 data provided the 
network with time variability. These data were unfortunately missing 
for some weeks. A total of 1049 weeks of data between September 1997 
and December 2020 were used, compared to 1218 weeks in total. This 
resulted in about 11 million vectors of the six variables, which should be 
sufficient to cover the regional variability in each of the variables. Both 
MLD and Chl a were logarithmically transformed because of skewness 
and all training data were normalized to obtain an even distribution 
before the actual training. This is important to minimize the influence of 
variables that have a large range of values on the map organization. 

To test the performance of the different products outlined in Table 1 
we created four different training data sets that resulted in four unique 
SOMs. We combined the Chl a, sea ice concentration, and xCO2 data 
with, first, SST, SSS, and MLD from TOPAZ; second, SST from ESA, SSS 
and MLD from TOPAZ; third, SST at 10 m, SSS at 10 m, and MLD from 
MULTIOBS, and finally; SST from ESA, SSS at 10 m, and MLD from 
MULTIOBS. However, we only visualize the results using one of the 
SOMs, that is all produced fCO2 maps, including temporal trends of 

Table 4 
Ranges of training data and SOM, their sizes, and percentage of label coverage, i. 
e., fraction in precent of training data and neurons that received fCO2 labels.  

Ranges 
Training 
Data 

Size of 
training data 

% 
labels 

Ranges of 
SOM  

Size of 
SOM 

% 
labels 

T SST: − 1.9, 
11.6 (99 %) 
T SSS: 29.2, 
35.3 
(100 %) 
T MLD: 2, 
3500 
(99 %) 
Chl a: 0.0, 
42.3 
(100 %) 
Sea ice: 0, 
100 
(100 %) 
Atm. xCO2: 
354, 421 
(97 %) 

6 × 10852683 43 % SST: − 1.9, 
7.1 
SSS: 33.1, 
35.0 
MLD: 7, 
287 
Chl a: 0.0, 
0.4 
Sea ice: 0, 
93 
Atm. 
xCO2: 369, 
411 

162 × 102 33 % 

E SST: − 2.5, 
12.0 
(100 %) 
T SSS: 29.2, 
35.3 
(100 %) 
T MLD: 2, 
3500 
(99 %) 
Chl a: 0.0, 
42.3 
(100 %) 
Sea ice: 0, 
100 
(100 %) 
Atm. xCO2: 
354, 421 
(97 %) 

6 × 10849074 47 % SST: − 1.8, 
7.1 
SSS: 33.1, 
35.0 
MLD: 7, 
273 
Chl a: 0.0, 
0.4 
Sea ice: 0, 
93 
Atm. 
xCO2: 369, 
412 

162 × 102 36 % 

M SST: − 3.0, 
11.9 
(100 %) 
M SSS: 
27.2, 36.0 
(100 %) 
M MLD: 10, 
2814 
(100 %) 
Chl a: 0.0, 
42.3 
(100 %) 
Sea ice: 0, 
100 
(100 %) 
Atm. xCO2: 
354, 421 
(97 %) 

6 × 10883383 48 % SST: − 1.7, 
6.8 
SSS: 31.4, 
35.0 
MLD: 14, 
160 
Chl a: 0.0, 
0.5 
Sea ice: 0, 
94 
Atm. 
xCO2: 
370,414 

160 × 103 32 % 

E SST: − 2.5, 
12.0 
(100 %) 
M SSS: 
27.2, 36.0 
(100 %) 
M MLD: 10, 
2814 
(100 %) 
Chl a: 0.0, 
42.3 
(100 %) 
Sea ice: 0, 
100 
(100 %) 
Atm. xCO2: 
354, 421 
(97 %) 

6 × 10874857 50 % SST: − 1.8, 
6.7 
SSS: 31.4, 
35.0 
MLD: 14, 
160 
Chl a: 0.0, 
0.5 
Sea ice: 0, 
95 
Atm. 
xCO2: 369, 
414 

160 × 103 36 %  
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fCO2, that are presented below are based on the SOM that was trained 
with TOPAZ SST, SSS, and MLD. 

2.4.2. Labelling data 
When the training was completed, the neurons with their unique 

combinations of the six variables were, if possible, labelled with surface 
water fCO2 data (rounded to integers). To achieve this, the surface water 
fCO2 data (see Section 2.1) were combined with the six variables, 
sampled from the nearest point in time and space. We created four 
labelling data sets, using the same combinations of the data products 
described above in Section 2.4.1., although at their original spatiotem-
poral resolution (see Table 1). Note that the fCO2 data used to label the 
SOM included only 26 discrete measurements in areas with high sea ice 
concentration (>70 %) prior to 2012. This can be compared to the 
99,701 measurements obtained in such areas between 2012 and 2020. 
However, we included all data from March 1998 to October 2020, to 
utilize the efforts made to collect fCO2 data. 

Although all fCO2 values were matched with neurons, only a third of 
the neurons received labels (see Table 4). This partly reflects the scarcity 
of fCO2 data in high sea ice concentration areas back in time. When 
several values of fCO2 were assigned to a specific neuron, the most 
common value (i.e., the mode) was used as a label. Note that it is 
important that the data used to label the neurons with the fCO2 values 
cover close to the same ranges as the training data. This was achieved for 
each property with ≥ 97 % of the training data within the ranges of the 
labelling data set (Table 4). 

Finally, the trained and labelled SOM was used to label the weekly 
gridded fields, which were next averaged to map the seasonal surface 
water fCO2 (i.e., winter: December, January, February; spring: March, 
April, May; summer: June, July, August; autumn: September, October, 
November). This temporal averaging procedure increased the spatial 
coverage. The uncertainty in the computed averages is affected by the 
uncertainty in the individual fCO2 estimates, which was approximated 
to 32 µatm by taking the root sum of squares of the algorithm RMSE and 
the fCO2 measurement uncertainty, i.e., 30.5 µatm (see Table 6) and 11 
µatm (see Section 2.1 under discrete measurements), respectively. This 
uncertainty is propagated in the averaging as follows: 

Δf CO2, mean =

̅̅̅̅̅̅̅̅̅̅
n 322

√

n
≥

32
̅̅̅̅̅
14

√

14
= 9 μatm (2) 

where Δ refers to the uncertainty of the seasonal mean and n is the 
number of weekly estimates, which at most can be 14 weeks. Conse-
quently, ΔfCO2,mean ranges between 9 and 32 µatm. 

The lack of weekly fCO2 estimates will also provide an additional 
source of uncertainty, especially when there is only one weekly estimate 
over the entire season. To answer how representative one value is for an 
entire season, the temporal variability must be considered as well. The 
lack of estimates reflects that there were few fCO2 observations made 
historically at that specific time and combination of the six training 
variables. This lack does not necessarily mean that the temporal vari-
ability in the fCO2 is larger than in a comparable season when there are 
many estimates. Consequently, under the assumption that periods with 
little data should have a comparable temporal variability, we can use the 
standard deviation presented in Fig. 4, which was centred around 30 
µatm. Using the root sum of squares of 32 and 30 µatm, the seasonal 
averages based on only one weekly estimate are likely to have an un-
certainty of about 44 µatm. 

2.5. Calculation of air-sea fCO2 gradient 

The seasonal surface water fCO2 maps in combination with the at-
mospheric xCO2 data were used to calculate the air-sea fCO2 gradient (i. 
e., the difference between the mapped surface water fCO2 and the at-
mospheric fCO2). The atmospheric xCO2 data were averaged over sea-
sons and subsequently converted to fCO2 according to Pierrot et al. 
(2009) and references therein e.g., Weiss (1974). 

3. Results 

3.1. Seasonal surface water fCO2 maps 

Fig. 5 shows the seasonal maps for three selected years, 2000, 2010, 
and 2020. Especially the winter maps have grid points that lack labels, 
although this is largely year dependent. Still, it is possible to distinguish 
some important features in the area. In general, the surface water fCO2 is 
higher in the AW influenced south-western part of the investigated area 
than in the ArW influenced parts in the north. The intrusion of AW across 
the Barents Sea Opening and into the southern parts of the Barents Sea is 
quite visible in all seasons (e.g., Fig. 5l). North of the Yermak Plateau, as 
well as north and northeast of Spitsbergen, surface water with lower 
fCO2 is apparent. There is also a strong seasonal signal with generally 

Table 5 
SOM predictability using different training data, including coefficient of deter-
mination (R2), RMSE, and Nash–Sutcliffe model efficiency index (ME, e.g., Stow 
et al., 2007).  

Training data Number of fCO2 

observations 
R2 RMSE 

(µatm) 
ME 

TOPAZ 459,644  0.77  23.2  0.76 
Sea ice 

concentration = 0 % 
332,070  0.77  18.8  0.76 

Sea ice 
concentration > 0 % 

127,574  0.62  31.6  0.57 

Sea ice 
concentration > 70 % 

99,727  0.68  27.4  0.65 

TOPAZ with ESA SST 459,644  0.74  24.7  0.73 
MULTIOBS 459,644  0.72  26.2  0.69 
MULTIOBS with ESA SST 459,644  0.74  24.8  0.72 

Note: Number of surface water fCO2 observations were in total 459,644 in the 
comparisons between produced and observed data. 

Table 6 
SOM predictability using five subsets of test data, including R2, RMSE, and ME.  

Subset Number of fCO2 observations R2 RMSE (µatm) ME 

1 74,783  0.43  34.3  0.30 
2 82,629  0.58  32.6  0.47 
3 84,616  0.58  32.4  0.52 
4 88,271  0.70  28.8  0.66 
5 88,698  0.74  24.7  0.73 
Average 83,799  0.61  30.5  0.54  

Fig. 4. Histogram of the standard deviation of the seasonal averages for sample 
sizes >1. 
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lower fCO2 values in summer than in winter. Regardless, the surface 
water fCO2 is largely undersaturated with respect to the atmosphere in 
all seasons, i.e., only 0.04 % of the labelled data are equal to or higher 
than the atmospheric fCO2 (in total 336 data points essentially all from 
the winter and spring seasons). The difference between the surface water 
and atmospheric fCO2 ranges between − 270 and 24 µatm. These are also 
the ranges during the spring season, which shows the largest variability. 
Apart from this, a noticeable interannual change is observed in the 

surface water fCO2 in all seasons, with increasing fCO2 in recent years. 
This feature will be further investigated in the sections below. 

3.2. Trends in seasonal surface water fCO2 

To assess the potential changes in the seasonal surface water fCO2, 
we calculated temporal trends in all grid points with at least 15 esti-
mated seasonal values in the period between September 1997 and 

Fig. 5. Estimated fCO2 in (a) winter 2000, (b) winter 2010, (c) winter 2020, (d) spring 2000, (e) spring 2010, (f) spring 2020, (g) summer 2000, (h) summer 2010, (i) 
summer 2020, (j) autumn 2000, (k) autumn 2010, (l) autumn 2020. The arrows next to the colour bars point to the atmospheric fCO2 value for the specific years 
and seasons. 
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December 2020 (99 % of these trends extended from 2000 and earlier to 
2019 and later). To account for the uncertainty in the seasonally aver-
aged fCO2 we also applied a simple Monte Carlo approach. Normally 
distributed artificial random errors (n = 1000) with a mean of zero and a 
standard deviation of 44 µatm (see Section 2.4.2) were added to the 
seasonal averages and a thousand linear regressions were performed at 
each grid point. The standard deviation of these trend estimates was 
then used as a measure of the uncertainty, on average 1.4 ± 0.1 µatm 
yr− 1. 

The fCO2 trends presented below are mostly significant (p 
values < 0.05, Figs. B1a-d). Spots with insignifcant trends are also 
scattered over the study area, especially in the area over which the Polar 
Front fluctuates. This is the area where the AW meets the ArW in the 
Barents Sea (Fig. 1), such that interannual variability may obfuscate any 
trend over the time period considered. The signficant fCO2 trends are 
always positive (increasing fCO2). To highligth the regional variability 
we selected three localites where we spatially averaged the significant 
trends, i.e., an AW-influenced site (box A in Fig. 6a-d), a sea-ice influ-
enced site (box B in Fig. 6a-d), and a south-eastern Barents Sea site (box 
C in Fig. 6a-d). Note that as the uncertainity of the individual trends (i.e., 
around 1.4 µatm yr− 1) is propagated in the average calculations, the 
combined uncertainty becomes 0.1 µatm yr− 1 or less (i.e., the sample 
sizes ranged between 228 and 397). Also, note that missing values can 
largely be filled with a lower limit for the linear regressions (e.g., setting 
the limit to 11 estimated seasonal values), this will not change the 
calculated averages. 

In the western locality with AW the significant trends are on average 
1.7 ± 0.3, 1.4 ± 0.2, 1.0 ± 0.2 and 3.1 ± 0.4 µatm yr− 1, in winter, spring, 
summer, and autumn, respectively. In the sea-ice influenced north- 

eastern site, the corresponding increase rates are 4.2 ± 0.6, 5.5 ± 1.1, 
4.2 ± 1.0, and 2.6 ± 0.4 µatm yr− 1, in winter, spring, summer, and 
autumn, respectively. Finally in box C the spatially-averaged significant 
trends are 1.8 ± 0.6, 3.0 ± 0.8, 1.5 ± 0.5, and 1.6 ± 0.3 µatm yr− 1, in 
winter, spring, summer, and autumn, respectively. Note that the stan-
dard deviations given here represent the regional variability in the 
trends. It is clear that the strongest trends occur in the northern and 
north-eastern parts of the region, which are influenced by the sea-ice 
cycle and dominated by ArW with lower salinity due to sea-ice melt. 
This is in particular the case for the winter, spring and summer seasons. 
In autumn the trends are much more comparable across the entire study 
area. 

3.3. Trends in drivers 

The seasonal trends in the atmospheric fCO2 are 2.1, 2.2, 2.2, and 2.1 
µatm yr− 1 in winter, spring, summer, and autumn, respectively. Since 
the atmospheric xCO2 is spatially homogenous in the training data, these 
trends cannot explain the spatial distribution of the trends in the surface 
water fCO2. Fig. 7a-d show trends in the sea ice concentration. Here, 
only negative trends are significant (Figs. B2a-d). The mean sea-ice 
concentration decreases with significant trends at − 1.7 ± 0.7, 
− 1.0 ± 0.6, − 0.8 ± 0.4, and − 1.3 ± 0.7 % yr− 1, in winter, spring, sum-
mer, and autumn, respectively. The standard deviations presented here 
reflect the spatial variability in the sea ice loss. In the AW influenced box 
A there are significantly decreasing trends in spring of on average 
− 0.3 ± 0.2 % yr− 1 close to the continental shelf (Fig. 7b). In the northern 
Barents Sea, i.e., in box B, the sea ice disappears at a rate of on average 
− 1.7 ± 0.2, − 0.8 ± 0.2, and − 2.3 ± 0.3 % yr− 1 in winter, spring, and 

Fig. 6. Trends in surface water fCO2 in (a) winter, (b) spring, (c) summer, and (d) autumn. The selected localities A, B, and C are specificed by the red boxes.  
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autumn, respectively. In summer the trends are insignificant, which 
likely reflect large interannual variability. In the eastern box C, signifi-
cant sea ice losses of on average − 0.7 ± 0.3, − 1.4 ± 0.4, − 0.3 ± 0.0 % 
yr− 1 are observed in winter, spring, and summer, respectively. 

The decreases in sea ice coincide with strong trends in the surface 
water fCO2. However, there appears to be a seasonal lag in the latter in 
such a way that the changes in sea ice in autumn show a similar dis-
tribution as the largest changes estimated in the surface water fCO2 in 
winter. The same feature is also observed in the winter sea-ice distri-
bution compared to changes seen in fCO2 in spring. To illustrate this, we 
show correlations between the trends in winter sea ice concentration 
and significant trends in surface water fCO2 (Table 3). Note that the sea- 
ice reduction observed in spring and summer do not coincide with 
especially strong trends in the surface water fCO2 in summer and 
autumn. 

Null hypothesis is that there is no correlation between the trends in 
the winter sea ice concentration and the seasonal surface water fCO2 
trends (alpha is set to 0.05). 

Fig. 8 shows that there is a trend of increasing salinity in the northern 
Barents Sea and Nansen Basin area. Especially strong trends occur in 
winter in the Nansen Basin, north of Spitsbergen. These trends should be 
interpreted with caution in the light of the biased salinity in WOA18 in 
the area of 81-82◦N and 5-7◦E that affects the TOPAZ4 model. Apart 
from these, the positive trends most likely reflect an increased influence 
of AW, which has a higher fCO2 compared to ArW as shown in Fig. 5. 
This signal of Atlantification can result from increased inflow of AW to 
the area, loss of sea-ice melt water on top of the AW, and/or vertical 
mixing. Increased vertical mixing may also bring CT (e.g. CO2) rich deep 
water impacted by brine release to the surface. The strong salinity trends 

are in general significant (p values < 0.05, see Appendices Figs. B3a-d), 
with mean salinity increases of 0.02 ± 0.01, 0.01 ± 0.01, 0.01 ± 0.01, 
and 0.01 ± 0.01 yr− 1 in winter, spring, summer, and autumn, 
respectively. 

In the western box, A, the SSS is increasing significantly in the 
northern part in spring and summer, although at an order of magnitude 
lower rates than the average trends presented above. In box B, salinity 
increases significantly by 0.01 ± 0.00 yr− 1 in parts of the area 
throughout the year. In box C, there are also patches with significant 
trends in all seasons, but as in box A at very low rates. 

Note that it is not the change in salinity in itself that results in a 
significant change in fCO2, i.e., a change in salinity of 0.01 yr− 1, will 
only have a minor impact on the solubility of CO2 and consequently on 
the surface water fCO2. It is most likely the shift from a less saline water 
mass with lower fCO2 to a more saline water mass with higher fCO2 that 
impact the surface water fCO2. 

Changes in the MLD will affect the chemical compostion of the sur-
face water (e.g., a deepning can reflect increased mixing with subsurface 
layers and a shallowing can reflect sea ice melt water) and have a direct 
impact on the time scale for air-sea equilibrium, which is important for 
the surface water fCO2 evolution. Such changes should also be reflected 
in the TOPAZ MLD data. There are both positive and negative significant 
trends, i.e., deepening and shoaling of the MLD, respectively (Fig. 9a-d, 
Figs. B4a-d). For instance, in winter, spring, and autumn there has been 
a significant deepening of the MLD over the years, especially east of 
Spitsbergen (Fig. 9a, b, d). This distribution agrees to some extent with 
the area where the sea ice concentration has decreased (Fig. 7). In 
summer, there is a deepening of the MLD south of approximately 81◦N, 
except for in an area east of Bear Island (Fig. 9c). The mean values of the 

Fig. 7. Trends in sea ice concentration in (a) winter, (b) spring, (c) summer, and (d) autumn.  
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significiantly increasing trends and their spatial standard deviation are 
1.1 ± 1.3, 1.9 ± 2.9, 0.3 ± 0.1, and 0.5 ± 0.2 m yr− 1 in winter, spring, 
summer, and autumn, respectively (Fig. 9a-d). The deepning is visible in 
the northern box B, with significant trends of on average 0.9 ± 0.1, 
0.5 ± 0.1, 0.4 ± 0.1, and 0.6 ± 0.1 m yr− 1 in winter, spring, summer, and 
autumn, respectively. In the eastern box C, there is a significant deep-
ening in the north-eastern corner of on average 1.4 ± 0.2 and 
2.1 ± 0.6 m yr− 1 in winter and spring. In summer, the deepening is 
widespread but much weaker, with an average of 0.2 ± 0.0 m yr− 1. In 
summer, the deepening is also present in the AW influenced box A, with 
a weak average rate of 0.2 ± 0.0 m yr− 1. 

These positive trends could contribute to the estimated strong trends 
in the surface water fCO2 in the area, i.e., if the freshwater layer on top of 
the AW has dissappeared following the decline in sea ice or if deep water 
with higher CT content is brought to the surface. The changes in MLD 
show similarities to those of SSS, but do not extend as far into the Nansen 
Basin (Fig. 8). This suggests that the trends in SSS not only result from 
increased mixing, but also result from a larger dominance of AW. 
Especially west of the continental margin of Spitsbergen there is a sig-
nificant shoaling of the MLD in winter and spring. The averages of the 
decreasing MLD trends for these two seasons are − 5.7 ± 4.5 and 
− 6.1 ± 4.9 m yr− 1 in winter and spring, respectively. This shoaling is 
also apparent in box A, with significant decrease rates of on average 
− 9.9 ± 2.9 and − 8.8 ± 2.0 in winter and spring, respectively. 

Water column stratification is also dependent on the ocean heat 
content. The SST, which has a direct thermodynamic impact on the 
surface water fCO2, will also indicate changes in the ocean heat balance. 

In the figures below, trends in SST from ESA are shown (Fig. 10a-d). 
This data set, which is based on satellite measurements, was chosen as it 

reflects the actual surface layer the best, see below. The trends, if sig-
nificant, are positive, especially along the western and southern parts of 
Svalbard, but also in the south-eastern area where box C is located 
(Figs. B5a-d). 

In the western box A, signficant trends of on average 
0.05–0.06 ± 0.01–0.02 ◦C yr− 1 are observed, except for the summer 
season. In this particular season there is a patch with significant trends at 
the northern border of on average 0.03 ± 0.01 ◦C yr− 1. These rates can 
be compared to the significant but largely weaker trends in the northern 
box B of on average 0.01 ± 0.00, 0.04 ± 0.01, and 0.03 ± 0.01 ◦C yr− 1 in 
winter, summer, and autumn, respectively. In spring the significant 
trends are an order of magnitude lower. In the eastern box C stronger 
mean trends are observed of between 0.06 and 0.07 ± 0.01 ◦C yr− 1, 
although there were no signficant trends in the summer season. 

In general, the significant trends do not follow the pattern seen in SSS 
and MLD in winter and spring. The summer season differs slightly, since 
the trends mostly are insignificant south of 81◦N (Appendix Fig. B5c). In 
autumn there are similar features in the distribution of strong trends 
compared to that of SSS (Fig. 10d, Fig. 8d). Regardless, the distribution 
of the significant trends in SST cannot explain the strong trends in the 
surface water fCO2, but they contribute to the increases in fCO2 where 
they are positive. The mean values of the significant trends over the 
entire study area are 0.04 ± 0.03, 0.04 ± 0.04, 0.02 ± 0.02, and 
0.04 ± 0.02 ◦C yr− 1, in winter, spring, summer, and autumn, respec-
tively. This will increase the surface water fCO2 with about 0.5 µatm 
yr− 1 (i.e., using the fCO2 and temperature relation by Takahashi et al., 
1993). In areas where the temperature trends are especially strong, the 
change will be>1 µatm yr− 1. 

Because of the lack of light, satellite data cannot be used to detect 

Fig. 8. Trends in SSS in (a) winter, (b) spring, (c) summer, and (d) autumn. Note that this is the modelled reanalysis data from TOPAZ.  
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changes in primary production over the winter season (i.e., December to 
February). Consequently, the spatial homogenous wintertime Chl a that 
is set to 0.025 mg m− 3 cannot explain the spatial distribution of the 
trends in the surface water fCO2 in winter. In spring, there is a patch of 
significantly decreasing trends in Chl a west of Spitsbergen close to the 
continental slope (Fig. 11a, Fig. B6a). These are present in box A with an 
average decrease rate of − 0.01 ± 0.01 mg m3 yr− 1. In the north-western 
corner of the Nansen Basin there are also significantly decreasing trends, 
although closer to zero. This feature is also observed in summer and 
autumn (Fig. 11b-c, Fig. B6b-c). In summer there are patches with 
significantly increasing trends west of Spitsbergen. The average incre-
sase rate in box A is 0.01 ± 0.00 mg m3 yr− 1. In autumn, there is a patch 
with positive trends close to the north-western tip of Spitsbergen. In 
general, all significant trends are weak and the resultant changes in Chl a 
over two decades are less than ± 1 mg m3. 

3.4. SOM performance 

The most successful combinations to label the neurons are the SST 
from the ESA in combination with either the SSS and MLD from TOPAZ 
or the correspondent properties at 10 m from MULTIOBS, i.e., 36 % of 
the neurons are labelled (Table 4). Apart from an offset of − 0.28 ◦C, the 
ESA SST also agrees best with the measured SST (see Table 2). The SST 
from the TOPAZ or MULTIOBS gives fewer labelled neurons, 33 % and 
32 %, respectively. The subsequent labelling of the weekly grids is most 
successful using MULTIOBS, either with the included SST or in combi-
nation with the ESA SST, i.e., 48 and 50 % of the training data are 

labelled, respectively. The corresponding values for TOPAZ using either 
the TOPAZ or ESA SST are 43 and 47 %, respectively. 

Note: The training data extends between September 1997 and 
December 2020. Abbreviations stand for: T = TOPAZ, E = ESA, and 
M =MULTIOBS. Within brackets are the percent of the training data that 
are within ranges of the labelling data set. 

In terms of skill assessment, as revealed by comparisons between 
estimated and observed surface water fCO2 data, the TOPAZ product 
performs better than the MULTIOBS product, i.e., higher R2, ME, and 
lower RMSE (Table 5). This supports the use of TOPAZ over the MUL-
TIOBS product in future studies. The labelling success will be slightly 
improved if the TOPAZ data is used with the SST of ESA, although the 
model performance is better with the TOPAZ SST. Note that this only 
reflects how well the different products combine to estimate fCO2 and 
not how accurate the products are in themselves. Based on this model 
performance result, all figures with produced fCO2 data, as stated in 
Section 2.4, show results from the training data that included the TOPAZ 
data. Fig. 12a and c show histograms of the differences between esti-
mated and observed fCO2 data prior to 2010 and from 2010 and on-
wards. These differences are centred around zero and their distribution 
(Fig. 12b, d) shows no spatial patterns, although large differences are 
found in the area close to the continental margin and land, especially for 
the earlier period. It is also clear that the R2 and ME are considerably 
lower and RMSE higher in ice-covered waters compared to open waters 
(Table 5). The method performs worse in ice-covered waters where the 
concentration is<70 %. This may reflect the uncertainty that results 
from pairing fCO2 measurements with satellite sea ice concentration 

Fig. 9. Trends in MLD in (a) winter, (b) spring, (c) summer, and (d) autumn. Note the different scales on the colorbars. Also, note that this is the modelled reanalysis 
data from TOPAZ. 
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data based on the nearest point in time and space. When the sea ice 
concentration is low the possibility to erroneously combine fCO2 mea-
surements in open waters with ice-covered waters, or the opposite, is 
larger. Low sea ice concentrations also relate to processes such as 
melting and freezing that can result in highly variable fCO2 values due to 
several physical- and biogeochemical processes. 

As a final test of the model performance, we used a K-fold cross- 
validation. This is a data efficient approach, which is preferable 
considering the scarcity of fCO2 observations historically. This also al-
lows for testing the SOM on data with a more comprehensive repre-
sentation of the spatiotemporal distribution in the fCO2. We divided the 
labelling data set into five equally sized subsets. These were created by 
combining segments of 1000 and 50 measurements from the underway 
and discrete measurements, respectively. Note that 50 measurements of 
discrete surface fCO2 typically reflects data from several cruises. In 
terms of 1000 measurements, these can also be from an individual cruise 
data set, but larger data sets will be divided among several subsets. In 
the cross-validation procedure we used one of the subsets as a test set 
and labelled the SOM with the remaining subsets. The labelled SOM was 
then used to label the test set and the model performance was evaluated. 
We repeated this process, each time using another subset as the test set. 
The results from the test steps are presented in Table 6. The average ME 
of 0.54 can be regarded as a good performance (0.5–0.65, Marechal, 
2004), but is lower than the estimated ME for the entire labelling data 
set of 0.76 (Table 5), which corresponds to a very good performance 
(0.65 <ME < 0.85, Marchel, 2004). The average R2 and RMSE are 0.61 
and 30.5 µatm, respectively, which can be compared to 0.77 and 23.2 
µatm, respectively, for the entire labelling data set. Note that the mean 

RMSE of 30.5 µatm can be considered as an approximation of the un-
certainty in the fCO2 estimates using the SOM algorithm. Of course, the 
uncertainty in the estimated fCO2 will also depend on the uncertainty in 
the observed fCO2, which is about 11 µatm or better depending on the 
data source. 

Note: The different sizes of the subsets depend on lack of labels in the 
labelling process of the test data. 

4. Discussion 

4.1. Spatiotemporal distribution in fCO2 

In the present study we found especially strong trends in sea surface 
fCO2 of 4.2–5.5 ± 0.6–1.1 µatm yr− 1 on average, in winter, spring, and 
summer in the northern Barents Sea at the southern border of the Nansen 
Basin (i.e., box B in Fig. 6a-c, approximately for the period 2000 to 
2020). Apart from the autumn season, with an average trend of 2.6 ± 0.4 
µatm yr− 1, these trends are twice as high as the atmospheric increase 
rate in fCO2 of about 2 µatm (Dlugokencky et al., 2021). This means that 
the oceanic capacity for CO2 uptake on average has decreased. Such 
strong trends have not been observed in this part of the Arctic Ocean 
before. For instance, Becker et al. (2021) estimated insignificant trends 
in this north-eastern corner between 1998 and 2016. Over the remaining 
Barents Sea they estimated trends from 0.5 to 1.5 µatm yr− 1, which are 
on the lower side of the trends we estimated for the middle of the Barents 
Sea (i.e., 1.5–3.0 ± 0.3–0.8 µatm yr− 1). On the Atlantic side of the study 
area the spatially averaged trends ranged between 1.0 and 3.1 ± 0.2–0.4 
µatm yr− 1, with the highest rate observed in autumn. These trends are 

Fig. 10. Trends in SST in (a) winter, (b) spring, (c) summer, and (d) autumn. Note that this is the SST from ESA.  
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more comparable to the atmospheric fCO2 rise as well as of oceanic 
trends estimated in AW further south (2.9 µatm yr− 1, Ocean Weather 
Station M in the Norwegian sea, Skjelvan et al., 2022), and in AW in the 
Barents Sea Opening and in the Fram Strait (1.5 and 1.9 µatm yr− 1, 
respectively, Fransner et al., 2022, see Table S11). Note that neither of 
the mean trends in the present study are calculated in the area where we 
see the strong trends in salinity in winter, that may be affected by the 
bias in WOA18 (Fig. 8a). 

The northern Barents Sea and southern Nansen Basin are areas 
largely influenced by the seasonal sea-ice cycle and data are especially 
sparse there. Therefore, it is interesting that Becker at al. (2021) 
determined insignificant trends there. Insignificant trends can reflect 
large interannual variability in the estimated surface water fCO2, little 
interannual variability with no temporal change, or a non-linear evo-
lution of the surface water fCO2. Regardless, the temporal evolution of 
the fCO2 estimated in the present study in this specific area must differ 
from the fCO2 produced with the methods of Becker et al. (2021). This 
illustrates the sensitivity of our different methodologies to the lack of 
data. Becker et al. (2021) hypothesized that the low trends in the Barents 
Sea resulted from an earlier onset of the phytoplankton bloom, in 
particular in the north where sea ice is disappearing, with the potential 
of a longer growth season. A longer growth season may imply higher 
concentrations of Chl a over a longer period, however, there were no 
significant trends in the seasonal Chl a in the parts of the Barents Sea that 
were included in the present study (Fig. 11a-c, B6a-c). Lewis et al. 
(2020) on the other hand did show that Chl a in the Barents Sea 
increased significantly by 0.02 mg m− 3 yr− 1 between 1998 and 2018, 
with the strongest trends in the middle of the Barents Sea. This agrees 
with the strongest, although insignificant, increasing spring trends that 

were estimated in Chl a in the present study (Fig. 11a, Fig. B6a). The 
production of this organic material is likely to have a seasonally 
dampening impact on the rise in surface water fCO2 and may also have 
an annual impact if the carbon is exported to the sediments. In the 
present study in summer and autumn, weaker and even insignificant 
trends were found south of 79◦N in the Barents Sea (Fig. 6c-d). 

We argue that there are several causes for the strong trends in fCO2 
observed in the present study. First, the anthropogenic increase in at-
mospheric CO2 will add to an increase in CT in the surface ocean. This 
has been estimated to be about 0.2 and 0.8 µmol kg− 1 yr− 1 in the Barents 
Sea Opening and the Fram Strait, respectively (Fransner et al., 2022, 
only the latter is significant). For a water mass with a winter CT around 
2160 µmol kg− 1 yr− 1 and a Revelle Factor around 14 (i.e., typical for 
transformed AW in the West Spitsbergen area, Ericson et al., 2019), the 
latter change corresponds to an increase in fCO2 of about 2 µatm or less 
depending on the surface water fCO2 (e.g., fCO2 < 400 µatm). Second, 
the sea ice concentration has decreased considerably, especially in the 
northern parts, which allows the air-sea CO2 gradient to become closer 
to equilibrium with the atmosphere in recent years compared to 20 years 
back in time. It has been shown that sea ice loss in the Canada Basin 
amplifies the increase in the surface water fCO2 (Ouyang et al., 2020; Qi 
et al., 2022), with an estimated trend of 4.6 µatm yr− 1 between 1994 and 
2018 (Ouyang et al., 2020). The importance of sea ice on the surface 
water fCO2 increase rate has also been noted by Smedsrud et al. (2022) 
that estimated that the oceanic uptake of CO2 had increased substan-
tially in the Barents Sea due to loss of sea ice. At the same time, there has 
been noted more wind activity in the northern parts of the study area 
(Wickström et al., 2019), which will increase the air-sea CO2 flux as well 
as the ocean mixing. Increased mixing in the northern part of the Barents 

Fig. 11. Trends in Chl a in (a) spring, (b) summer, and, (c) autumn.  
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Sea has been documented by Lind et al. (2018), and this is also an area 
where there were significantly increasing trends in the TOPAZ reanalysis 
MLD data (Fig. 9a-d, B4a-d). Vertical mixing has been documented to 
contribute to especially strong surface water trends in fCO2 of + 3.6 
to + 4.7 μatm yr− 1 in the Southern Ocean (Metzl, 2009). Lind et al. 
(2018) also observed an increase in salinity in the northern Barents Sea, 
which again was captured in the TOPAZ reanalysis data (Fig. 8a-d). The 
increase in salinity is likely a signal of more AW, either advected or 
mixed up from below (Smedsrud et al., 2022), but can also result from 
brine-impacted deep water that is brought to surface through vertical 
mixing. Both AW and brine-influenced deep water will add more CO2 to 
the surface layer. For instance, a shift from ArW to AW can result in an 
increase in fCO2 from about 30 to>100 µatm depending on the season 
and year (Fig. 5a-l). On the other hand, AW contains higher nutrient 
concentrations, which may contribute to increased primary production 
as suggested by Randelhoff et al. (2018). For instance, high nutrient load 
in the inflowing Pacific Water to the Chukchi Sea likely dampens the 
CO2 rise in these waters (Ouyang et al., 2020). On the other hand, 
Ericson et al. (2019) estimated that an increased influence of AW 
resulted in a decreased net community production in Isfjorden on the 
west coast of Spitsbergen. 

Finally, we observed a warming trend with the strongest increase 
rates in the southern and western parts of the study area. The warming 
rate in the northern Barents Sea (i.e., in box B) was between 0.01 and 
0.04 ◦C yr− 1, except for the summer season when the rates were very 
weak. This warming will also add to the increase in fCO2. One reason for 

the weak warming rate in the northernmost part, if the signal in SSS 
reflects a greater influence of AW, could be that some of the heat in the 
AW is lost to sea-ice melt in this region (e.g., Renner et al., 2018). 

4.2. Evaluation of the technique 

The SOM technique has proven to be a useful tool to map the surface 
water fCO2, that under the right circumstances can perform better in 
terms of predictability than the often-used MLR calculations (Lefévre 
et al., 2005). Both methods have been used in the Barents Sea region 
(Lauvset et al., 2013; Yasunaka et al., 2016,2018; Becker et al., 2021), 
despite the scarcity of data collected in winter and from the northern 
and eastern parts. Although some attempts to compare the reliability of 
the methods using independent measurements have been conducted, 
these are not from areas within the Barents Sea where the data coverage 
is especially sparse such as in areas with high ice concentrations (e.g., 
Lauvset et al., 2013). Consequently, it is difficult to properly validate 
these tools for the entire Barents Sea region, especially back in time 
when the data are considerably sparser. This is quite important, in 
particular considering that the present study found opposing changes to 
those found by Becker et al. (2021) in the northern Barents Sea. Here we 
used a K-fold cross-validation, that accounts for the spatiotemporal 
distribution of the labelling data set, to test the model performance. The 
estimated mean R2, RMSE, and ME were 0.61, 30.5 µatm, and 0.54, 
respectively (Table 6). Altogether the model performance results are 
comparable to the results of Lauvset et al. (2013). Their independent 

Fig. 12. (a) Histogram showing the distribution of the differences between estimated and observed fCO2 before 2010, (b) the spatial distribution of the differences 
between estimated and observed fCO2 before 2010, (c) histogram showing the distribution of the differences between estimated and observed fCO2 from 2010 to 
2020, (d) the spatial distribution of the differences between estimated and observed fCO2 from 2010 to 2020. 
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data tests gave ME estimates of 0.33 and 0.64. The former can be 
considered as a poor model result (<0.50), but the latter is good 
(0.5–0.65, Marechal, 2004). Interestingly, the RMSE of the poor model 
result was about 4.7 µatm compared to 19.3 µatm for the good result, 
reflecting that the ME evaluates the model performance relative to the 
variability in the observations it is trying to reproduce. The high RMSE 
in the present study can reflect a higher amount of data collected in 
waters with sea ice. Apart from uncertainties in the pairing of surface 
fCO2 measurements to satellite sea ice concentrations, it should also be 
noted that during the sea-ice melt season underway measurements can 
overestimate the actual surface water fCO2 due to a collection bias 
(Dong et al., 2021). I.e., the uppermost freshened surface layer that 
potentially lowers the surface fCO2 is not sampled at the ship’s inlet 
(Dong et al., 2021). For the entire data labelling set, the method per-
formance in waters with sea ice was considerably poorer (see Table 5, 
R2 = 0.62, RMSE = 31.6 µatm, ME = 0.57) compared to the situation for 
open waters (R2 = 0.77, RMSE = 18.8 µatm, ME = 0.76). We also note 
the overall the difference in sample points used in this study with close 
to half a million data points compared to about ten thousand in Lauvset 
et al. (2013) as well as the different time scales of the two studies. 

Becker et al. (2021) showed that a higher amount of data can in-
crease the variability and consequently increase the RMSE and decrease 
the R2. In their study the highest amount of data used to construct the 
MLR algorithms, also resulted in the highest RMSE, perhaps not sur-
prising for the complex dynamics of the Baltic Sea, but more intriguing 
when comparing the results in the well-studied North Sea to the results 
in the Barents Sea. In Becker et al. (2021), all MLR algorithms provided 
R2, RMSE, and method efficiency values that supported better model fits 
for the Barents Sea compared to the North Sea, that had nearly three 
times as many data points. The unrealistic fCO2 values found in the 
north-eastern areas of the Barents Sea with little data (Becker et al., 
2021), do illustrate the sensitivity of skill assessment parameters to data 
abundance and distribution. Consequently, parameters such as R2 and 
RMSE do not adequately capture the uncertainty in predicted data when 
data are especially sparse and should be handled with care when un-
certainty estimates are the goal. The gridding of fCO2 data used to 
produce either MLR relationships or SOMs also removes much of the 
variability, which for a dynamic and sea-ice influenced region such as 
the Barents Sea could be important to maintain. Yasunaka et al. (2018) 
obtained a R2 value of 0.82 and a RMSE of 30 µatm in their SOM based 
mapping study of the Arctic Ocean. However, Yasunaka et al. 
(2016;2018) not only gridded the fCO2 data but also removed extreme 
but potentially correct values to remove small-scale variability from the 
large-scale scope of their study. Here we chose to maintain the vari-
ability in the labelling data set, although acknowledging that for neu-
rons with many fCO2 labels only the most common is maintained, and 
used more than three times as many neurons in our SOM as Yasunaka 
et al. (2016;2018) used for the entire Arctic Ocean, to capture as much of 
the variability in the Barents Sea that was possible. 

One of the strengths with the SOM technique, although also a limi-
tation, is that the method cannot predict fCO2 under conditions that it is 
not trained and labelled for. Consequently, to perform well the method 
requires training and labelling data sets that are fully representative for 
the region. In the present study, a large fraction of the neurons lacked 
labels (i.e., only 33 % were labelled with a fCO2 value). Using smaller 
size of the SOM would have increased the labelling success of the neu-
rons and the subsequent labelling of the weekly gridded fields, but at the 
cost of the representation of the variability in the area. Consequently, we 
choose to seasonally average the produced surface water fCO2 maps and 
the resultant maps did show features in the Barents Sea that captured the 
dynamic structure of this oceanic region, such as the Polar Front. The 
averaging procedure may introduce potential biases as it is only the 

labelled neurons that are represented in the resultant map. Since the lack 
of labels reflect the lack of fCO2 data under specific conditions, it is 
difficult to assess the resultant error. Another means to come around the 
problem with neurons that lack labels is to use the closest labelled 
neuron instead as was done by Yasunaka et al., (2018). This will allow 
for a 100 % label coverage but may introduce other biases in the 
resultant fCO2 maps. All of this is difficult to assess. In contrast, the MLR 
method can extrapolate beyond the underlying data used to construct 
the algorithm. This can lead to unrealistic fCO2 values in areas where the 
data are scarce. For instance, Becker et al., (2021) obtained very low and 
even negative fCO2 values in the northern parts of the Barents Sea. This 
also relates to the assumption of linear relationships that underly the 
MLR approach. This is not necessarily valid. An example of this is the use 
of Chl a as predictor. When the spring bloom is initiated, Chl a increases 
while the fCO2 decreases due to the consumption of CO2 by the primary 
producers (Fransson et al., 2017). Typically, the peak values in Chl a 
extends over a couple of weeks (e.g., Wiedmann et al., 2016; Fransson 
et al., 2017). On the other hand, the fCO2 will remain low over the entire 
summer season (e.g., Olsen et al., 2008; Ericson et al., 2018;2019) and 
can consequently be associated with both high and low Chl a. This 
feature relates to the difference in timescales between phytoplankton 
blooms and air-sea CO2 uptake. The latter acts over months and will 
slowly replenish the surface water with CO2. 

To handle the lack of fCO2 measurements in ice-covered waters, we 
encourage more studies to utilize the ever increasing number of fCO2-

measurements to challenge the prevailing maps, using either the SOM 
technique or the MLR algorithms. We also acknowledge that the lack of 
data back in time results in the fact that fCO2 cannot easily be recon-
structed and properly validated historically regardless of the accumu-
lation of recent fCO2 measurements. This is an important note since the 
Barents Sea has changed substantially over the last four decades. Both 
changes in the sea-ice distribution and composition, e.g., the ice edge 
has moved northwards, and the multiyear ice has largely been replaced 
by first year ice, will affect the CO2 cycling. Therefore, using sea-ice 
conditions in the last decade to reconstruct historic fCO2 can intro-
duce substantial biases. 

5. Future perspectives 

For the first time, strong increasing trends in the surface water fCO2 
are shown to occur in the northern Barents Sea and southern Nansen 
Basin. These trends take place in an area where the sea ice is quickly 
diminishing, and the AW is expanding, and confirms that sea ice has a 
strong impact on the oceanic uptake of CO2. The increases in the surface 
water fCO2 result in a reduced oceanic uptake capacity for atmospheric 
CO2 and a lowered surface water pH (i.e., dissolved CO2 reacts with 
water to dissociate into bicarbonate and a proton). Consequently, it is 
expected that ocean acidification is speeding up in this already vulner-
able area, with consequences for the planktonic communities. Especially 
note that the strong trends are observed in the winter to summer seasons 
when many organisms reproduce. 

The differences found in the temporal evolution of the estimated 
surface water fCO2 in the northern Barents Sea between the present 
study and that of Becker et al. (2021), makes it also abundantly clear 
that the current mapping techniques are sensitive to the lack of data in 
this area. More in situ fCO2 measurements in winter and spring when the 
sea ice cover is more extensive, will enhance the capacity of the SOM 
technique to estimate the surface fCO2. This requires that the ice-going 
vessels manage to maintain an open seawater intake in ice-covered 
waters, which is not always the case. The spatial patchiness and often 
time-limited distribution of blooming algae also requires frequent un-
derway measurements over the spring season. Regardless, the SOM 
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technique applied in the present study, cannot fill all missing knowledge 
back in time, but it still manages impressively well to capture fCO2 
variability associated with known physical and biogeochemical features 
in the eastern Fram Strait and north-western Barents Sea area, including 
the dynamic Polar Front. The technique is also sensitive enough to detect 
changes in fCO2 which will help to provide more knowledge on drivers 
of climate change in the rapidly changing High North. 

6. Data availability 

The SOCATv2021 and the R/V Lance data can be downloaded at htt 
ps://www.socat.info, note that the latter are flagged with E and not 
included in some of the products. The Kronprins Haakon data are 
available in the Norwegian Polar Data Centre (https://doi. 
org/10.21334/npolar.2023.8e0afb8b). Data from GLODAPv2.2021 are 
available at https://www.glodap.info. Data from CARINA are available 
at https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data 
-system/oceans/CARINA/. Finally, the remaining cruise data are from: 
Chierici & Fransson (2019, https://doi.org/10.21335/NMDC-154415 
697), Chierici et al. (2022, https://doi.org/10.21335/NMDC-13419 
49456), Chierici et al. (2019, https://doi.org/10.21335/NMDC- 
1738969988), and Jones et al. (2021, https://doi.org/10.1016/j. 
pocean.2021.102708). 
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Appendix A:. Salinity bias 

Monthly mean maps from the Arctic Ocean Physics Reanalysis product based on the TOPAZ4 model and the Global Ocean Observation-based 
Products (MULTIOBS) are shown to clarify where the bias of water with lower salinities in the World Ocean Atlas 2018 affects the two data sets 
(see Figs. A1 and A2).

Fig. A1. Monthly mean SSS from the Arctic Ocean Physics Reanalysis product based on the TOPAZ4 model.  
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Fig. A2. Monthly mean SSS sampled at 10 m from the Global Ocean Observation-based Products (MULTIOBS).  

Appendix B:. p values 

Figs. B1-B6.

Fig. B1. P values of trends in surface water fCO2 in a) winter, b) spring, c) summer, and d) autumn. Null hypothesis is that no relationship between the estimated 
seasonal fCO2 and time in years exist. Boxes A, B, and C, were used to spatially average the trends. 
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Fig. B2. P values of trends in sea ice concentration in a) winter, b) spring, c) summer, and d) autumn. Null hypothesis is that no relationship between the seasonal 
sea ice concentration and time in years exist. 
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Fig. B3. P values of trends in SSS in a) winter, b) spring, c) summer, and d) autumn. Null hypothesis is that no relationship between the seasonal SSS and time in 
years exist. 
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Fig. B4. P values of trends in MLD in a) winter, b) spring, c) summer, and d) autumn. Null hypothesis is that no relationship between the seasonal MLD and time in 
years exist. 
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Fig. B5. P values of trends in SST in a) winter, b) spring, c) summer, and d) autumn. Null hypothesis is that no relationship between the seasonal SST and time in 
years exist. 
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Fig. B6. P values of trends in Chl a in a) spring, b) summer, and c) autumn. Null hypothesis is that no relationship between the seasonal Chl a and time in years exist.  
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