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Abstract

Cystatin C, a cysteine protease inhibitor, is used as a biomarker of renal function. It offers

several advantages compared to creatinine, and formulas for the estimation of the glomeru-

lar filtration rate based on cystatin C have been developed. Recently, several proteoforms of

cystatin C have been discovered, including an intact protein with a hydroxylated proline at

the N-terminus, and N-terminal truncated forms. There is little knowledge about the biologi-

cal significance of these proteoforms.

Methods

Cross-sectional study of patients with different stages of chronic renal disease (pre-dialysis

n = 53; hemodialysis n = 51, renal transplant n = 53). Measurement of cystatin C proteo-

forms by MALDI-TOF MS, assessment of medicine prescription using the first two levels of

the Anatomical Therapeutic chemical system from patients’ records.

Results

Patients receiving hemodialysis had the highest cystatin C concentrations, followed by

pre-dialysis patients and patients with a renal transplant. In all groups, the most com-

mon proteoforms were native cystatin C and CysC 3Pro-OH while the truncated forms

made up 28%. The distribution of the different proteoforms was largely independent of

renal function and total cystatin C. However, the use of corticosteroids (ATC-L02)

and immunosuppressants (ATC-H04) considerably impacted the distribution of

proteoforms.

Conclusion

The different proteoforms of cystatin C increased proportionally with total cystatin C in patients

with chronic kidney disease. Prescription of corticosteroids and immunosuppressants had a
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significant effect on the distribution of proteoforms. The biological significance of these proteo-

forms remains to be determined.

Introduction

Chronic kidney disease (CKD) is affecting about 11–13% of the general population and its

prevalence increases with age [1]. It is defined as “abnormalities of kidney structure or func-

tion, present for at least three months, with implications of health” [2]. Usually, the estimated

glomerular filtration rate (eGFR) is used for the classification of CKD into different stages,

from the least severe stage 1 to the most severe stage 5. At stage 5, also called end-stage renal

disease (ESRD), the renal function is diminished to a point where survival in most patients

becomes dependent on renal replacement therapy (RRT). RRT consists of hemo- or peritoneal

dialysis or renal transplantation. Renal transplantation is the treatment of choice, with its

enhanced patient survival, better quality of life and lower costs compared to dialysis treatment

[3].

eGFR is usually estimated by equations including age, sex, and race, in addition to measures

of serum creatinine [4]. The use of serum creatinine as a marker of renal function has been

criticized, as muscle mass and dietary intake also influence serum levels of creatinine [5]. In

recent years, formulas for eGFR based on cystatin C (CysC) or both CysC and creatinine have

been developed and tested [6, 7]. It has been shown that CysC based formulas of eGFR can

improve the risk prediction associated with kidney function [8].

CysC is a cysteine protease inhibitor that belongs to the type 2 cystatin gene family, encoded

by the CST3 gene. The physiological role of cystatins is to regulate the activity of endogenous

proteinases, which are often secreted or leaked from the lysosomes of dying or diseased cells.

CysC was discovered in 1961, first in cerebrospinal fluid and the complete amino acid

sequence was determined in 1981. It is non-glycosylated and consists of 120 amino acids and

has a molecular mass of 13,343 Da. At the N-terminus, CysC has a conserved glycine at posi-

tion 11 that is common to all cystatins [9]. The N-terminal segment of cystatin is of great

importance for both binding affinity and inhibition specificity. Truncation of human CysC by

10 peptides at the N-terminal reduces the inhibition of cathepsin B and cathepsin H by more

than 1,000-fold and 50-fold, respectively [10, 11].

All nucleated cells produce CysC at a constant rate and the protein is freely filtered in the

renal glomeruli with no re-absorption. The proximal tubular cells in the kidney are also the

main catabolic site of CysC. The protein is almost completely cleared from the circulation by

glomerular ultrafiltration. In urine, the content of CysC is negligible in physiological condi-

tions but raises due to damage of proximal tubular cells [9]. Due to the free filtration, CysC

may reflect renal function more precisely than serum creatinine, especially in mildly decreased

renal function, and several studies have shown that use of CysC-based equations for estimating

GFR resembles closer to measured GFR than creatinine- based equations [7, 9]. Additionally,

CysC is less influenced by muscle mass and dietary intake than serum creatinine [12]. Several

drugs, however, have been described to affect CysC production, among these are corticoste-

roids, often used in patients who have received a renal transplant [13].

Protein biomarkers and protein heterogeneity have attracted attention during the past

years in the purpose of diagnostics, risk assessment, and therapy for diseases. Post-transla-

tional modifications (PTMs) of proteins, resulting in proteoforms is one of the processes that

increase the protein heterogeneity that may vary between both individuals and diseases. A

PLOS ONE Cystatin C proteoforms

PLOS ONE | https://doi.org/10.1371/journal.pone.0269436 February 1, 2023 2 / 13

Abbreviations: CKD, Chronic kidney disease; CVD,

Cardiovascular disease; CysC 3Pro-OH, 3-proline

hydroxylated cystatin C; CysC des-S 3Pro-OH, N-

terminal serine truncated and 3-proline

hydroxylated cystatin C; CysC des-S, N-terminal

serine truncated cystatin C; CysC des-SSP, N-

terminal serine-serine-proline truncated cystatin C;

CysC native, unmodified cystatin C; CysC, Cystatin

C; eGFR, estimated glomerular filtration rate;

eGFRcrea, eGFR based on creatinine; eGFRcysc,

eGFR based on cystatin C.

https://doi.org/10.1371/journal.pone.0269436


better understanding of PTMs may be key to personalized diagnostics, treatment, and prog-

nostics [14]. In recent years, more than 12 different proteoforms of CysC have been identi-

fied [15, 16], and five of these are commonly detected in plasma or serum, including three

N-truncated proteoforms and two prolyl- hydroxylated proteoforms [17–20]. However, it is

unclear at present whether these proteoforms increase proportionally with the severity of

CKD, and whether they may affect the use of CysC as a marker of kidney disease. It was

therefore the aim of the current study to measure proteoforms of CysC in patients with vari-

ous stages of CKD and to relate these proteoforms to disease severity, mode of treatment,

and eGFR.

Materials and methods

A cross-sectional, single-center observational study was carried out at Haukeland University

Hospital in Bergen, Norway. The study was conducted in accordance with principles of the

Declaration of Helsinki and was approved by the Reginal Committee for Medical and Health

Research Ethics at the University of Bergen (REK Vest, No. 2014/1790).

Adult patients at different treatment stages of CKD were included in the study; pre-dialytic

CKD-patients stage 3–5 (CKD 3–5), ESRD patients receiving hemodialysis (HD), and patients

after renal transplantation (KTX). Patients were recruited from November 2014 until July

2018. To be included the patients had to be 18 years or older, speak and understand English or

Norwegian, be able to give informed consent, and should be clinically stable, and in case of

HD patients, in steady state. Written informed consent was obtained from all patients.

Information about medical history and lifestyle factors was obtained from the patients by

questionnaires. Further, anthropometric measurements were conducted by trained personnel.

A non-fasting blood sample was obtained, in patients receiving hemodialysis pre-dialysis and

after the long interval, and in the other patients at the outpatient clinic. Additional informa-

tion, especially on prescribed medicines, was retrieved from the patient’s electronic medical

record. Prescribed medicines were grouped according to the Anatomical Therapeutic Chemi-

cal (ATC) classification system using the first and second level [21]. Laboratory analysis of rou-

tine variables and the eGFR was performed by the Central Laboratory at Haukeland

University hospital, using the CKD-EPI equation based on creatinine measurements. In addi-

tion, we applied eGFR calculations based on equations including CysC or both CysC and cre-

atinine [6]. Serum CysC and its proteoforms were quantified by immuno-MALDI-TOF MS by

Bevital AS [19]. Briefly, CysC antibodies were immobilized onto C18 reversed-phase tips (Zip-

tips, Millipore; Billerica, MA), washed intensely with Phosphate buffered saline and water, and

the antigen was finally eluted with 7ul of 1% Trifluoroacetic acid. The sample was mixed with

5ul of 2,5- dihydroxyacetonephenone matrix and the mixture was analyzed by MALDI-TOF

MS. CysC was quantified using a poly-histidine tagged recombinant variant of CysC as inter-

nal standard.

The following forms were analyzed:

Total CysC: sum of all proteoforms

CysC native: unmodified CysC

CysC 3Pro-OH: 3-proline hydroxylated CysC

CysC des-S: N-terminal serine truncated CysC

CysC des-S 3Pro-OH: N-terminal truncated serine and 3-proline hydroxylated CysC

CysC des-SSP: N-terminal serine-serine-proline truncated CysC

We present both absolute concentrations of the proteoforms and their proportion of total

CysC, to correct for increasing total CysC concentrations at lower renal function.
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Statistical analysis

Descriptive statistics including the CysC proteoforms are presented for all patients, and for

each patient group (CKD 3–5, HD, KTX) separately. We calculated proportions of proteo-

forms of total CysC, to take into account the compositional nature of these data, and to be able

to look at distributions in addition to the absolute concentrations.

We calculated whether differences in eGFR based on formulas using either creatinine or

CysC differed across the range of eGFR (Bland-Altman plot) and whether these differences

were related to the different proteoforms by linear regression and Pearson correlation analysis.

To evaluate the compositional change in the CysC proteoforms across different levels of

eGFR (based on creatinine) as an indicator for disease status, we performed a Dirichlet regres-

sion adjusted for patient group, use of medications from the ATC classes H02 (corticosteroids)

and L04 (immunosuppressants), and C-reactive protein (CRP) as a marker for inflammation.

Patients with ESRD were excluded from these analyses. The predicted proportions from the

model were plotted as a function of decreasing eGFR, superimposed on the observed propor-

tions. Additionally, each proteoform was considered separately by beta regression analyses to

identify associations of the proportion of proteoforms with eGFR (as an indicator for disease

status), patients’ group, medications, and CRP.

We did additional beta regression analyses for different medications, according to the first

two levels of the ATC classification for those drug classes used by at least 10% of the patients

[21].

All statistical analyses were made using R version 4.03 (R Foundation for Statistical Com-

puting, Vienna, Austria), and the packages within the Tidyverse, DirichletReg, betareg, and

blandr.

Results

1. Characteristics

In total, 157 patients were included in the study, of which 53 (34%) patients were CKD 3–5

patients, 51 (32%) HD patients, and 53 (34%) KTX patients. The majority of the patients were

male (72%) and the age ranged from 21–89 years. The lowest total CysC-values were observed

in KTX patients, and the highest in HD patients. The characteristics and the concentration of

the different CysC proteoforms per patients’ group are presented in Table 1, per stage of esti-

mated GFR in S1 Table.

2. Association of patients’ group, prescribed medicines and eGFR with

proportion of CysC proteoforms

Patients’ group. Native CysC and CysC 3Pro-OH were the major proteoforms in all

patients’ groups, followed by the truncated proteoforms. The proportion of the proteoforms

for all patients and for each treatment group and the explained variance by treatment group by

Beta regression is shown in Table 2. Further adjustment for age, sex, BMI, CRP and eGFR did

not substantially change the explained variance of the native CysC-forms and increased the

explained variance of the truncated forms from 28% to 35% for CysC des-S, from 62% to 65%

for CysC des-S 3Pro-OH and from 15% to 22% for CysC des-SSP. While the variance of the

proportion of native CysC was explained to a large extent (72% in the unadjusted model and

42% for CysC 3Pro-OH, respectively), the variance in the proportion of the truncated forms

was explained to a much lower extent (28% of the variance for CysC des-S, 62% for CysC des-S

3Pro-OH, and 15% for CysC des-SSP).
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Prescribed medicines. We investigated further whether prescribed medicines were associ-

ated with the differences in the proportion of the different proteoforms. The frequency of pre-

scription of medicines belonging to the different ATC first level differed among the groups (S2

Table). Table 3a shows the effect of drugs belonging to ATC-classification (first level) on the

Table 1. Characteristics of the study population.

Variable Total CKD 3–5 HD KTX

N 157 53 51 53

Age, years 58.9 (16.3) 59.6 (16.5) 59.9 (18.3) 57.3 (14.1)

Female patients, n (%) 44 (28.0) 15 (28.3) 12 (23.5) 17 (32.1)

BMI, kg/m2 26.1 (4.8) 28.1 (5.5) 24.1 (3.9) 25.9 (4)

Prescribed medicines, n (%)

ATC-H02 65 (41.4) 5 (9.4) 9 (17.6) 51 (96.2)

ATC-L04 63 (40.1) 3 (5.7) 7 (13.7) 53 (100.0)

eGFR, mL/min/1.73m2

Creatinine 30.4 (24) 31.5 (12.2) 6.25 (1.78) 52.6 (22.3)

Creatinine & CysC 26.5 (21.4) 27.4 (12) 6.61 (1.64) 44.8 (22.3)

CysC 25.2 (19.9) 25.7 (12.8) 8.72 (3.19) 40.5 (22.4)

Creatinine, μmol/L 375 (318) 216 (117) 775 (221) 144 (70)

Urea, mmol/L 16.6 (7.8) 15.4 (6) 22.8 (6.6) 11.9 (6.3)

CRP, mg/L 5.0 (12.9) 3.4 (3.9) 8.8 (21.2) 3.0 (3.7)

Total CysC, mg/L 3.49 (2.16) 2.68 (1.1) 5.63 (1.7) 2.26 (1.82)

CysC native 1.19 (0.72) 0.89 (0.37) 1.84 (0.56) 0.87 (0.7)

CysC 3Pro-OH 1.41 (0.93) 0.99 (0.41) 2.36 (0.73) 0.92 (0.79)

CysC des-S 0.26 (0.17) 0.23 (0.1) 0.42 (0.18) 0.14 (0.1)

CysC des-S 3Pro-OH 0.38 (0.24) 0.34 (0.14) 0.61 (0.22) 0.2 (0.14)

CysC des-SSP 0.25 (0.17) 0.22 (0.1) 0.4 (0.16) 0.14 (0.11)

Continuous variables presented as means (SD) and categorical variables reported as counts (%). eGFR based on

equations for creatinine and/or cystatin C by CKD-EPI [6].

BMI, body mass index; CKD 3–5, pre-dialysis chronic kidney disease stage 3–5; CysC, Cystatin C; CysC native,

unmodified CysC; CysC 3, Pro-OH: 3-proline hydroxylated CysC; CysC des-S, N-terminal serine truncated CysC;

CysC des-S 3Pro-OH, N-terminal truncated serine and 3-proline hydroxylated CysC; CysC des-SSP, N-terminal

serine-serine-proline truncated CysC; eGFR, estimated glomerular filtration rate; HD, end-stage renal disease

hemodialysis; KTX, renal transplant recipient. ATC-H02 –corticosteroids, ATC-L04—immunosuppressants

https://doi.org/10.1371/journal.pone.0269436.t001

Table 2. Beta regression analysis of the proportion of CysC proteoforms among patients’ groups. The table shows the proportion (%, 95% CI) of total CysC and the

explained variance by patients’ group (R2).

Proteoform % CKD 3–5 HD KTX p R2

CysC native 33.4 (32.9, 33.8) 32.8 (32.1, 33.4) 38.6 (37.9, 39.2) <0.001 0.72

CysC 3Pro-OH 37.1 (36.5, 37.7) 42.0 (41.0, 42.9) 40.2 (39.3, 41.1) <0.001 0.42

CysC des-S 8.9 (8.4, 9.3) 7.3 (6.7, 7.9) 6.5 (6.0, 7.1) <0.001 0.28

CysC des-S 3Pro-OH 12.6 (12.2, 12.9) 10.8 (10.4, 11.2) 9.0 (8.6, 9.3) <0.001 0.62

CysC des-SSP 8.4 (7.8, 9.0) 6.9 (6.2, 7.7) 5.8 (5.2, 6.5) <0.001 0.15

CysC, Cystatin C; CysC native, unmodified CysC; CysC 3, Pro-OH: 3-proline hydroxylated CysC; CysC des-S, N-terminal serine truncated CysC; CysC des-S 3Pro-OH,

N-terminal truncated serine and 3-proline hydroxylated CysC; CysC des-SSP, N-terminal serine-serine-proline truncated CysC; CKD 3–5, pre-dialysis chronic kidney

disease stage 3–5, HD, end-stage renal disease hemodialysis; KTX, renal transplant recipients

https://doi.org/10.1371/journal.pone.0269436.t002
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Table 3. Beta regression on the association of prescribed drugs with the proportion of CysC proteoforms.

A

ATC group No. of patients taking at least one drug of this group Native CysC CysC 3Pro-OH CysC des-S CysC des-S 3Pro-OH CysC des-SSP

A: Alimentary tract and metabolism 139 0.01

-0.8

0.05

+2.1

0

-0.3

0.01

-0.5

0.01

-1.0

B: Blood and blood forming organs 107 0.09

-2.0

0.06

+1.6

0.01

+0.3

0.01

+0.3

0.01

-0.7

C: Cardiovascular system 145 0

-0.6

0

+0.1

0.01

+0.7

0

+0.1

0

-0.7

G: Genito-urinary system and sex hormones 18 0

-0.1

0

+0.3

0

+0.1

0

-0.1

0.01

-0.6

H: Systemic hormonal preparations 84 0.32

+3.5

0.05

+1.4

0.17

-1.5

0.33

-2.2

0.04

-1.1

L: Antineoplastic and immunomodulating agents 65 0.51

+4.4

0.03

+1.0

0.15

-1.4

0.41

-2.4

0.08

-1.5

M: Musculo-skeletal system) 47 0.01

+0.7

0

-0.3

0

+0.1

0

-0.3

0.01

-0.4

N: Nervous system 50 0.03

-1.1

0.02

+1.0

0

+0.0

0

+0.3

0

-0.1

R: Respiratory system 17 0

-0.3

0

+0.3

0

-0.3

0

-0.0

0.01

+0.8

V: Various 51 0.21

-3.0

0.17

+2.7

0.01

-0.3

0.01

+0.3

0

+0.4

B

ATC group No of patients with at least one prescription Native CysC CysC 3Pro-OH CysC des-S CysC des-S 3Pro-OH CysC des-SSP

A10: Drugs used in diabetes 22 0.02

-1.2

0

+0.2

0.13

+1.8

0.02

+0.7

0.17

-2.5

A11: Vitamins 85 0.19

-2.7

0.02

+1.0

0

+0.2

0.03

+0.7

0.01

+0.6

A12: Mineral supplements 74 0.07

+1.6

0.12

+2.1

0.07

-1.6

0.19

-1.6

0.06

-1.3

B01: Antithrombotic agents 98 0.05

-1.4

0.06

+1.6

0

+0.2

0

+0.1

0.03

-0.9

B03: Antianemic preparations 58 0.18

-2.7

0.16

+2.6

0

+0.0

0.01

+0.3

0

+0.2

C03: Diuretics 54 0.06

-1.5

0.03

+1.0

0.01

+0.4

0.01

+0.4

0.01

-0.6

C09: Agents acting on the RAA system 88 0

-0.3

0.04

-1.3

0.06

+0.9

0.03

+0.6

0

-0.0

C10: Lipid-modifying agents 98 0

+0.3

0.03

+1.0

0

+0.2

0.02

-0.6

0.05

-1.3

H02: Corticosteroids 65 0.54

+4.6

0.02

+0.8

0.12

-1.3

0.41

-2.4

0.09

-1.6

L04: Immunosuppressants� 63 0.56

+4.7

0.02

+0.9

0.16

-1.5

0.42

-2.4

0.09

-1.6

N05: Psycholeptics 37 0.05

-1.6

0

+0.4

0

+0.3

0.03

+0.8

0.01

+0.6

V03: Various 51 0.21

+2.7

0.17

+2.7

0.01

-0.3

0.01

+0.3

0

+0,4

A:

Each cell provides the explained variance (R2) by ATC classification (first level, in bold) and the mean difference (in %) between drug users and non-users for the

unadjusted model.

CysC, Cystatin C; CysC native, unmodified CysC; CysC 3, Pro-OH: 3-proline hydroxylated CysC; CysC des-S, N-terminal serine truncated CysC; CysC des-S 3Pro-OH,

N-terminal truncated serine and 3-proline hydroxylated CysC; CysC des-SSP, N-terminal serine-serine-proline truncated CysC;

B:

Each cell provides the explained variance (R2) by ATC classification (second level, in bold) and the mean difference between drug users and non-users for the

unadjusted model. Only ATC subgroups that have been prescribed to at least 10% of patients (n = 16) and that had significant associations (p<0.05) with at least 2

proportions are presented. The full overview on prescribed drugs is presented as S2 Table)

� �n = 40 on mycophenolate mofetil, n = 21 on tacrolimus, n = 27 on cyclosporin.

CysC, Cystatin C; CysC native, unmodified CysC; CysC 3, Pro-OH: 3-proline hydroxylated CysC; CysC des-S, N-terminal serine truncated CysC; CysC des-S 3Pro-OH,

N-terminal truncated serine and 3-proline hydroxylated CysC; CysC des-SSP, N-terminal serine-serine-proline truncated CysC;

https://doi.org/10.1371/journal.pone.0269436.t003
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explained variance by a certain drug group and the change in the proportion of the proteoforms

in those patients with such a medicine (unadjusted values). Table 3b shows the effect of drugs

(ATC classification 2nd level, only those with at least one prescription from this level, on the

explained variance and the change in the proportion of the proteoforms (unadjusted values).

eGFR. We further explored the association of eGFR (based on creatinine) with the pro-

portion of the different proteoforms by Dirichlet regression in 102 patients with complete data

on all covariates, not including patients receiving hemodialysis. Results are shown in Fig 4. In

general, a decrease in eGFR was associated with a reduced proportion of the native and the

hydroxylated (3Pro-OH) proteoforms and increased proportions of the truncated forms (des-

S, des-S 3Prd-OH, and des-SSP). Beta-regression of the individual proteoforms demonstrated

the same associations and suggested that the effect was primarily driven by the differences in

medication between the patient groups (S3 Table). While a reduction of eGFR was strongly

associated with % changes in the proportion of proteoforms in the unadjusted model, this

association disappeared for all forms except CysC des-SSP after adjustment in all models. Pre-

scription of drugs was different among the patients’ groups (Table 1, S2 Table).

3. Association of proteoforms with differences in eGFR in CKD and TX

patients

The association of total CysC with eGFR in both CKD and TX patients is shown in Fig 1.

Patients receiving hemodialysis were left out since there are uncertainties associated with the

Fig 1. The association between total cystatin C and eGFR calculated based on creatinine, cystatin C, or both in CKD patients (CKD 3–5 and

transplant). The individual data points are colored according to patient group, and the overall association is superimposed as a smoothed spline (95%

CI).

https://doi.org/10.1371/journal.pone.0269436.g001
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calculation of eGFR in this patient group. Fig 1 shows the association with eGFR based on the

CKD-EPI equation based on creatinine, CysC, and the combination of CysC and creatinine,

respectively.

We further explored whether the difference between the eGFRcysc and eGFRcrea was associ-

ated with the different proteoforms. First, we estimated whether the difference between eGFR-

cysc and eGFRcrea and was associated with the magnitude of eGFR (Bland-Altman-plot). The

mean difference was -9.0 ml/min (eGFRcysc was lower), with a 95% confidence interval of -6.8

to -11.1 ml/min. The disagreement between the methods was slightly larger for higher eGFR

values (Pearson’s r -0.11, p = 0.27, Fig 2).

The differences between the two formulas (eGFRcysc—eGFRcrea) were associated with the

proportion of the different proteoforms, with a positive correlation between the (mostly nega-

tive) difference and the truncated proteoforms (indicating that the more the eGFRcysc deviated

from eGFRcrea, the lower the proportion of truncated proteoforms) and a negative correlation

between the difference and the native proteoforms (Fig 3).

Discussion

In this study, we have measured total CysC and its proteoforms in patients at different stages

of CKD, including patients with mild CKD, and end-stage renal disease receiving hemodialysis

and after receiving a renal transplant. The total CysC concentration is increasing by decreasing

renal function. Also, the absolute concentrations of the different proteoforms are increasing at

decreasing renal function, in line with earlier findings [17, 18]. However, even though eGFR

was associated with the proportion of the different proteoforms in the unadjusted models,

other factors as patients’ group and prescription of corticosteroids and immunosuppressants

Fig 2. Bland-Altman plot on the differences between eGFRcysc and eGFRcrea in CKD patients (CKD 3–5 and transplant). The

superimposed regression line indicates the association between the differences and the mean value.

https://doi.org/10.1371/journal.pone.0269436.g002
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had stronger effects which became apparent after adjustment. These factors have not been

investigated so far and may question the clinical importance of the different proteoforms of

CysC.

In line with earlier findings, native CysC and CysC 3Pro-OH were the most abundant pro-

teoforms in the patients, and both forms contributed to about 70–80% of total CysC. All

patients had measurable N-terminal truncated CysC proteoforms (CysC des-S and des-SSP)

and CysC-des-S that contained a hydroxylated proline residue at the N-terminus. The differ-

ences in the proportion of these forms among the groups was not explained by eGFR but dif-

fered according to prescribed medicines. This has not been shown before.

The biological significance of the observed proteoforms is unclear at present. Both prolyl

hydroxylation and N-terminal truncations posttranslational modifications and may have

important regulatory functions and implications. Prolyl hydroxylation in collagen, for exam-

ple, is required for collagen maturation and formation of stable collagen fibrils [22]. In the

hypoxia-inducible factor (HIF), prolyl hydroxylation is related to the stability of the protein

[23]. However, even if the amino acid sequence in CysC is compatible with prolyl hydroxyl-

ation by prolyl-4-hydroxylase which acts on proline residues on growing and newly synthe-

sized polypeptide chains [22], there is hardly any information on the consequences of prolyl

hydroxylation of CysC. Truncations at the N-terminal site of CysC have revealed that the N-

terminus is critical for the binding of cystatins to the target, and that there is a highly con-

served glycine residue at position 11. Removal of the N-terminus before or after this residue

leads to a marked reduction in the affinity for target proteins [24], but these studies investi-

gated longer truncations than the 3 amino acid residues that lack in the CysC des-SSP. In fact,

the effect of the removal of these three amino acids on CysC activity or binding has not been

investigated at all.

We investigated whether different proportions of proteoforms are associated with differ-

ences in estimated GFR, calculated with formulas based on either creatinine or CysC. It is

known that CysC-based equations may predict true GFR better than creatinine-based equa-

tions, especially in mild chronic renal disease [6]. Thus, the rationale behind this was that

Fig 3. Pearson correlation between the proportion of the different proteoforms and the difference in eGFR based on creatinine and cystatin C

(eGFRcysc–eGFRcrea) in CKD patients (CKD 3–5 and transplant). The individual data points are colored according to patient group.

https://doi.org/10.1371/journal.pone.0269436.g003
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posttranslational modifications may either affect the measurement of CysC or association of

CysC with CKD. It has to be taken into account that in the present study, cystatin C was mea-

sured by immuno-MALDI-TOF MS, as opposed to nephelometric methods which are used in

clinical routine [19]. However, good agreement of the immune-MALDI-TOF assay with the

nephelometric methods has been shown earlier [19, 20]. Indeed, we observed strong correla-

tions of both the native and the truncated forms with the difference between eGFRcysc and

eGFRcrea. Higher proportion of the truncated forms were associated with lower differences in

the eGFR, while higher proportion of the native forms were associated with larger differences

in the eGFR (compare Fig 3). However, there was no obvious underlying explanation for these

associations.

The observation that patients with similar eGFR but belonging to different patients groups

had different proportions of proteoforms lead us to investigate the differences among the

patient groups. Two candidate factors should be mentioned here, including inflammation and

medication use. Inflammation was measured by plasma CRP concentrations, and revealed no

major effect on the proportion of proteoforms, neither in the Dirichlet or in the beta-regres-

sion models (Fig 4, S3 Table). Even though inflammation could have been measured by other

biomarkers also, the lack of association with CRP supposes that inflammation does not play a

major role for the proportion of the different proteoforms.

Fig 4. Dirichlet regression on the association of eGFR with proteoforms of cystatin C in CKD patients (n = 102, CKD 3–5 and transplant). The

dots show the observed data while the lines show the fitted data. The model shows the linear estimates with adjustment for patients’ group, ATC-H02,

ATC-L04 and CRP.

https://doi.org/10.1371/journal.pone.0269436.g004
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Prescribed medicines had a rather strong association with the distribution of the differ-

ent proteoforms. Indeed, immunosuppressants and especially corticosteroids (ATC-H02)

were associated with a relative increase in the native forms and a relative decrease in the

truncated forms. In addition, prescription of these medications explained the variance

especially of the native CysC and the CysC des-S 3Pro-OH form. It has been described that

corticosteroids are also associated with differences in eGFR based on CysC or creatinine in

a dose dependent manner [25], a finding that is in line with our finding that larger differ-

ences between the calculated eGFR were associated with higher proportions of native

CysC which were more often observed in KTX patients who also are more likely to take

corticosteroids. In contrast, there are no studies investigating an association of immuno-

suppressants and CysC in comparison to either measured GFR or creatinine based eGFR

in adults.

Other studies have also determined proteoforms of CysC. Trenchevska et al. have measured

total CysC levels and four of the five proteoforms presented in this paper in a healthy popula-

tion (excluding CysC des-S 3Pro-OH) [16]. Mean concentration of total CysC was around 1.0

mg/L, which was lower than in our CKD patients, and in agreement with earlier reports (26).

The most abundant forms were CysC native and CysC 3Pro-OH, while concentrations of the

truncated forms were lower. The distribution of the proteoforms was, however, consistent

with our results, even if we did not include a healthy control group.

The same research group published a further study on patients with diabetes and CKD [17],

describing the same proteoforms that we describe. Unfortunately, they did not describe the

proportion of each proteoform, but only absolute values, and reported highest values of all

CysC proteoforms in patients with reduced eGFR. They suggested that especially the truncated

proteoforms increased independently of native CysC and could serve as a biomarker for pro-

gression of kidney disease. Our results, however, would not support this conclusion, as the

proportion of proteoforms was largely independent of eGFR.

Conclusion

In conclusion, our study showed that the concentration of proteoforms of CysC increased

with decreasing renal function, however, the distribution of proteoforms was largely indepen-

dent of renal function. The most important single factor that we determined that explained the

distribution of proteoforms was medicine prescription. Especially prescription of corticoste-

roids was associated with higher native CysC levels. As this was a cross-sectional study, the

clinical implications of proteoforms remain to be determined, but are, extrapolated from our

findings, possibly not of crucial relevance.
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