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Longitudinal studies have become more common in the past years due to

their superiority over cross-sectional samples. In light of the ongoing replication

crisis, the factors that may introduce variability in resting-state networks have

been widely debated. This publication aimed to address the potential sources of

variability, namely, time of day, sex, and age, in longitudinal studieswithin individual

resting-state fMRI data. DCM was used to analyze the fMRI time series, extracting

EC connectivity measures and parameters that define the BOLD signal. In addition,

a two-way ANOVA was used to assess the change in EC and parameters that

define the BOLD signal between data collection waves. The results indicate that

time of day and gender have significant model evidence for the parameters that

define the BOLD signal but not EC. From the ANOVA analysis, findings indicate

that there was a significant change in the two nodes of the DMN and their

connections with the fronto-parietal network. Overall, these findings suggest that

in addition to age and gender, which are commonly accounted for in the fMRI data

collection, studies should note the time of day, possibly treating it as a covariate

in longitudinal samples.
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1. Introduction

Resting-state functional magnetic resonance imaging (fMRI) has been exponentially

used in both research and clinical studies (1). The resting-state paradigm has become a part

of standard fMRI acquisition protocols and has been included in large-scale neuroimaging

studies such as the Human Connectome Project, UK Biobank, and ABCD study (2–4). Many

of the large-scale data initiatives as the examples mentioned in addition to investigating the

neural correlates of behavior, cognition, and mental health in part want to address the issues

of reliability, that have been brought up during the recent years (5). It is broadly agreed that

there are many factors that may funnel into the so-called replication crisis in neuroimaging

(6). It is stressed that there is a pressing need for more open protocols, data and code sharing,

clear communication, and rigorous and comparable procedures across studies (7, 8).

Up until quite recently, the majority of resting-state fMRI studies relied on cross-

sectional samples even though it is noted that longitudinal data allowing for within-

individual comparison is by far superior (9). As a result, the majority of large-scale data

collection and consortium initiatives involved repeated measures, which are collected on

Frontiers inNeurology 01 frontiersin.org

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2023.1166200
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2023.1166200&domain=pdf&date_stamp=2023-07-05
mailto:liucija.vaisvilaite@uib.no
https://doi.org/10.3389/fneur.2023.1166200
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fneur.2023.1166200/full
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Vaisvilaite et al. 10.3389/fneur.2023.1166200

multiple occasions not only for the neuroimaging samples

but also health, cognitive, and neuropsychological testing (2–

4). The longitudinal data allows for addressing developmental

changes in more detail and has been extremely informative

for studies investigating both healthy or pathological aging and

child development (10, 11). One example of such data collection

initiatives is the BETULA, a longitudinal study on aging, memory,

and dementia (12), which is an ongoing longitudinal study on

aging, memory, and dementia in Umeå, Sweden.

Analyzing longitudinal data allows for tracking individual

changes over time, where time usually spans from days and months

to years. The changes observed are then conventionally attributed

to aging, development, pathology progression, or similar factors.

For example, a study by Oschmann and Gawryluk (11) looked

at longitudinal data between network connectivity changes in

pathology-free aging, where they report a decline in functional

connectivity (FC) in the fronto-parietal network and saliency

network (SN), with stable connectivity for the default mode

network (DMN) (11).

However, there may be additional factors that may introduce

change or variability in the data, that are rarely accounted for

in the data acquisition protocols (13). A previously published

study indicates that time of day (TOD), i.e., time of the image

acquisition, influences the blood oxygen level-dependent (BOLD)

signal throughout the day (14). In addition, it has been shown

that the low-frequency fluctuations vary based on the time of the

fMRI acquisition (15). It is important to note that all the referenced

studies relied on between-individuals cross-sectional designs, and

the results highlighted are based on between-group comparisons.

The diurnal changes are not limited to functional studies.

Research using structural MRI reports that there were significant

time of day-dependent local gray and white matter changes,

which can be attributed to circadian-related processes (16).

These findings are supported by others, comparing morning and

evening scans of healthy volunteers (17). In addition, a large

longitudinal comparison of clinical populations yields similar

findings—time of day-dependent volume changes in individuals

with dementia (18).

However, the assumption of circadian rhythms’ involvement

in brain dynamics is challenged by Fafrowicz et al. (15). The

authors report that individual circadian preference (early vs. late

phenotype) did not yield any significant difference in the resting-

state network organization. While these are somewhat theoretically

conflicting findings, they are not in conflict with the time of image

acquisition-dependent changes but rather stress that the individual

circadian preference does not play a significant role. From this and

earlier studies, a common conclusion can be drawn—time of day as

meant in the sense of time of image acquisition seems to be a factor

that influences the organization and morphological metrics of the

human brain.

To date, only a handful of studies investigated the circadian

mechanisms and time of image acquisition in within-individual

samples of healthy volunteers. A study by Shannon et al. (19) has

indicated that the functional brain organization is not static over

the course of the day (19) while using within-individual design,

a comparison was made between evening and morning data. The

publication “time of day matters” similarly compared individual

scans acquired during the morning session and evening session

(16). Finally, one recent study investigated the physiological factors,

such as blood pressure, circadian rhythms, hydration, and caffeine

levels in healthy controls over 3 weeks (20). While the authors of

the mentioned study report minimal time of day effects, they note

that the difference between scanning occasions was short, which

may be the reason for the lack of significant effects of time of day.

It is important to note that many of the studies mentioned relied

on repeated measure design rather than longitudinal data per se,

as the time between data collection occasions in the span of days,

aside from the study by Zahid et al. (20). Therefore, given the vastly

different temporal aspects, these results cannot be straightforwardly

generalized to longitudinal samples, where data collection waves

may span from months to years.

The current publication, therefore, addresses the existing gap

in the academic literature. The study focuses on additional factors,

namely time of day, sex, and years of age changes in a longitudinal

sample, with a specific focus on the consistency of the image

acquisition time per individual. We believe that maintaining the

same acquisition time span may remove the added variability in

effective connectivity (EC) and BOLD signal measures, which, if

kept, would allow for a more precise track of differences over time

in longitudinal samples, especially studies addressing aging.

2. Materials and methods

2.1. Participants

The data used in the present study have been collected as a

part of the BETULA project on memory, health, and aging (12).

The BETULA study is a currently ongoing longitudinal project at

Umeå University, Umeå, Sweden. To date, there have been a total

of seven data collection occasions [time point of collection (T)]; for

the purposes of the current publication, the data from collection

waves T5 and T6 were used. The data collection waves T5 and T6

were done approximately 4 years apart, specifically T5 during 2009–

2010 and T6 during 2013–2014. The data collection, selection, and

further processing descriptions in the Methods section will only

refer to these particular data collection occasions unless explicitly

otherwise stated.

Structural and functional MRI scans were collected from a

total of 375 participants during the T5 data collection wave.

A total of 37 scans were excluded from the total samples due

to technical error and/or severe motion within the scanner. In

addition, 84 participants had to be excluded because of pre-

existing neuropsychological illness and/or dementia (21). Finally,

56 participant scans were removed after the data were quality

checked for mean framewise displacement (FD) in the scanner,

with a conservative threshold of FD < 0.2 (22). The final sample

of neuropsychologically healthy and quality-checked participants

was 236.

For the data collection wave T6, a total of 301 participant data

were available. After the quality check, 44 participant data were

removed based on the selected FD threshold of FD < 0.2 (22). In

addition, data from 55 participants were excluded based on the

diagnosis of neuropsychological illness and/or dementia (21).

Given the aims of the current study, the additional sorting of

the participant data was done as follows:
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TABLE 1 Group sizes and participant information.

Group N (F) Age at T5 Age at T6

Congruent time
(morning group)

25 (F= 11) 36–77 40–81

Congruent time
(afternoon group)

11 (F= 5) 26–75 30–80

Incongruent time
(morning–afternoon)

24 (F= 8) 25–70 29–74

Incongruent time
(afternoon–morning)

13 (F= 3) 30–79 34–83

Only subjects that participated in both data collection waves T5

and T6 were selected. These were subsequently allocated into four

groups based on image acquisition time and test wave. The final

groups were as follows:

• Congruent time (morning group) scanned in the morning

sessions from 7:30 to 9:30 during both t5 and t6

• Congruent time (afternoon group) scanned in the afternoon

sessions from 14:00 to 18:00 during both t5 and t6

• Incongruent time (morning–afternoon) (swapped times of

image acquisition) participants scanned in the morning

session on t5 and afternoon session on t6

• Incongruent time (afternoon–morning) (swapped times of

image acquisition) participants scanned in the afternoon

session on t5 and morning session on t6

Complete information about the participant gender, age, and

group sizes (N = total number of participants and F = number of

females) is summarized in Table 1.

2.2. Data acquisition

A 3-T General Electric scanner equipped with a 32-channel

head coil was used to acquire the scans. For the resting-state

fMRI gradient, the echo-planar imaging sequence was used with

the following specifications: 37 transaxial slices, thickness; 3.4mm,

gap; 0.5mm, repetition time (TR); 2000ms, echo time (TE); 30ms,

flip angle; 80◦, field of view; 25 × 25 cm, 170 volumes. A total

of 10 dummy scans were collected and then discarded before the

experimental procedure. A 3D fast spoiled gradient-echo sequence

was used to collect high-resolution T1-weighted structural images,

with the following specifications: 180 slices; thickness, 1mm; TR,

8.2ms; TE, 3.2ms; flip angle, 12◦; field of view, 25 × 25 cm. The

pCASL sequence was set using a stack of spiral fast spin-echo

read-out, with 512 sampling points on eight spirals, FOV, 240 ×

240 mm2; slice thickness 4mm; arterial labeling at the cerebellar

base; and 1500ms labeling duration, 1525ms post labeling delay,

and 30 control/label pairs. Cerebral blood flow (CBF) maps were

computed, showing tissue CBF in ml/min/100 g (12).

During the MRI session, the participants were instructed to lay

as still as possible with their eyes open, looking at a white fixation

cross on the dark screen.

2.3. Preprocessing

The Statistical ParametricMapping software (SPM12;Welcome

Department of Cognitive Neurology, University College London,

London, United Kingdom) was used to preprocess the data

(http://store.elsevier.com/product.jsp?isbn=9780123725608). The

pre-processing steps are listed in the order they have been

performed: slice-timing correction, realign, and un-warp; co-

registration of the structure with the functional scans; segmentation

of the structural scan; normalization of the functional scan; and,

finally, smoothing of the data. The temporal middle slice (number

2 in an interleaved slice acquisition) was used as the reference

image for the slice-timing correction. The data were then realigned

and un-warped. For the co-registration of functional scans with

the structural T1 images, the estimated mean images across the

time series were used. The co-registered structural images were

segmented for the gray matter, white matter, and cerebrospinal

fluid. Thereafter, all functional volumes were normalized into MNI

space using the segmented deformation fields. Finally, data were

smoothed with a Gaussian kernel of 8 mm.

In addition to the standard pre-processing pipeline, the data

were further processed for the DCM analysis. The packages

implemented in SPM12 were used. A general linear model was used

to regress out 12 head movement parameters together with the

signals from the white matter and cerebrospinal fluid areas from

the fMRI time series for each individual. In order to do so, the

time course from a spherical volume with a radius of 6mm at MNI

coordinates (0-24-10) and (0-40-5), was extracted. Thereafter, these

time courses and the movement parameters were incorporated into

a general linear model. This then formed the basis for extracting the

time courses for the following DCM analyses.

2.4. ROI selection

In total, 10 regions of interest (ROIs) were selected for a spectral

DCM analysis. The coordinates for DMN, fronto-parietal, and SN

networks were selected based on previous literature (23–25). The

coordinates and anatomical locations for all ROIs are displayed in

Table 2.

2.5. Analysis

2.5.1. Dynamic causal modeling
The effective connectivity and parameters defining the blood

oxygen level-dependent signal (BOLD) signal, epsilon, decay, and

transit, were estimated using spectral dynamic causal modeling

(DCM). This was done for data items, i.e., per individual per each

data collection wave.

2.5.2. Parametric empirical bayes
The Parametric Empirical Bayes (PEB) framework was used

to create a design matrix modeling repeated measures, i.e., two

data items per each individual. In addition, four separate groups

based on the participant sorting were specified, i.e., congruent
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TABLE 2 MNI coordinates for selected ROIs.

x y z Anatomical
location

SN 44 36 20 Dorsolateral prefrontal
cortex (DLPFC)

SN 38 26 −10 Orbital frontoinsula (FI)

DMN 3 54 −2 Medial prefrontal cortex
(mPFC)

DMN 0 −52 26 Posterior cingulate
cortex (PCC)

DMN 48 −69 35 Right inferior parietal
cortex (RIPC)

DMN −50 −63 32 left inferior parietal
cortex (LIPC)

Fronto-
parietal

−52 −49 47 Left anterior parietal

Fronto-
parietal

52 −46 46 Right anterior parietal

Fronto-
parietal

−36 57 9 Left anterior prefrontal
cortex (PFC)

Fronto-
parietal

34 52 10 Right anterior prefrontal
cortex (PFC)

TABLE 3 List of models specified for PEB analysis.

1. Time of image acquisition

2. Gender

3. Age

4. Time of image acquisition and sex

5. Time of image acquisition and age

6. Sex and age

7. Time of image acquisition, sex, and age

8. Null model: expectation that none of the
models explain the variability in the data

morning, congruent afternoon, incongruent morning–afternoon,

and incongruent afternoon–morning. Finally, the joint effective

connectivity and BOLD parameters defining the signal were

estimated per specified group (26, 27).

2.5.3. Bayesian model comparison
Bayesian Model Comparison (BMC) was used to estimate the

model fit to the group data. Model fit to the data, in detail, means

that predefined variable or combination of variables values vary in

synchrony with the fMRI time series. All the predefined models are

summarized in Table 3. There were eight models in total. Briefly,

they included all the variables addressed, namely, age, sex, and time

of day with all the combinations of the three as well as the null

model. All the models with the best fit were explored at a cutoff

of the posterior probability (pp) >0.95.

The BMC and posterior probability estimation were conducted

for the effective connectivity matrix (A-matrix, 10× 10 parameter).

The same procedure was repeated for the parameters defining the

BOLD signal of the Balloon model, specifically transit time, epsilon,

decay, and parameters α, which represented the amplitude and

β, which reflected the spectral density of the neural fluctuations.

Transit time was estimated for each of the ten ROIs. The parameters

decay, epsilon, α, and β were global parameters.

In total, there are eight models specified and listed in Table 3.

2.5.4. Two-way ANOVA analysis
A two-way ANOVA analysis was used to estimate the

significant changes in the EC of individual ROIs and the

connections between them. The change was calculated by

subtracting the T6 EC values from the T5 EC values, as generated

by DCM. The resulting values were then analyzed using Statistical

Package for Social Sciences (SPSS). The dependent variables in

ANOVA analysis were all the ROIs and connections between

them, where sex and age at T5 were added as covariates, and

the TOD group and congruence of image acquisition between

T5 and T6 were fixed factors, i.e., independent variables in the

ANOVA analysis.

The same procedure was applied for analyzing the parameters

defining the BOLD signal, namely, decay and epsilon, which were

global parameters as well as the BOLD signal per each ROI. The

change between T5 and T6 in the mentioned parameters was

calculated by subtracting T6 values from the T5 values as generated

by DCM. The dependent variables in ANOVA analysis were

averaged BOLD signal per each ROI, and two of the parameters

defining the BOLD signal, namely, decay and epsilon. Age at T5

and gender were added as covariates, whereas the TOD group and

congruence were fixed factors, i.e., independent variables in the

ANOVA analysis.

3. Results

3.1. E�ective connectivity

The results from PEB indicate that the model with the best fit

to the data for effective connectivity parameters was model no. 8,

which is the null model, at the posterior probability level of >0.95.

3.2. Parameters defining the BOLD signal

The results for the parameters defining the BOLD signal,

namely, transit time, epsilon, decay, indicate that the overall

winning model was model no. 4, time of day and sex. Models no.

2, sex; no. 7, time of day, sex, and age; and no. 6, sex and age exhibit

a weak model fit with the data. The null model yielded no model

evidence with the data.

3.3. ANOVA

The results from EC two-way ANOVA indicated that there were

three significant connections:

• LIPC to right anterior PFC, F (5)= 2.705, p= 0.028
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• Right anterior parietal to mPFC, F (5)= 3.188, p= 0.012

• Right anterior parietal (to itself), F (5)= 2.429, p= 0.044

There were no significant results from the parameters defining

the BOLD signal, specifically global parameters of decay and

epsilon, and BOLD signal parameters for each ROI.

4. Discussion

The findings from the current study suggest that the predefined

models, namely age, time of day, and sex, and any combination of

the three do not have a significant influence on the longitudinal EC

data, as suggested by the PEB results. However, there are effects on

the parameters that define the BOLD signal, transit time, epsilon,

and decay, as the Bayesian model comparison indicated that PEB

models including time of day and sex show the highest model

evidence. This indicates that the specific combination of time of day

and sex in this case exhibits a mirroring variability with the fMRI

time series. These findings are in line with our previous study, in

which we found no EC change throughout the day; however, we did

report significant variation in the parameters defining the BOLD

signal (14). We speculate that this is due to cardiovascular factors

being more sensitive to circadian mechanisms in comparison to

neural dynamics (28). While previous studies report a significant

correlation between the regional blood flow and FC measures and

their variability from morning to evening (29), this is only in part

supported by our findings, where the parameters that define the

BOLD signal exhibit variability based on the time of day.We largely

attribute this contrast due to methodological differences, i.e., DCM

vs. seed-based connectivity analysis of a previous publication.

Levels of hemoglobin have been shown to affect brain

connectivity, differential for gender. We believe that these findings

can be reflected in our findings on the parameters that define the

BOLD signal, i.e., time of day and gender model (30).

The results from the ANOVA analysis indicated that in terms of

change between the data collection waves, there were no significant

group differences in the parameters that define the BOLD signal.

There were, however, few significant EC connections, each ROI

to itself and ROI to ROI (10∗10), between the nodes of the

fronto-parietal network and DMN, specifically the right anterior

parietal network (fronto-parietal network) to itself and the mPFC

(DMN) and RIPC (DMN) to the left anterior PFC (fronto-parietal

network). A recent study that found variability in resting-state

networks was affected by blood pressure, levels of hemoglobin, and

hematocrit (13), mostly so in the DMN and its connections to other

networks. The current publication has found that the EC in nodes

of DMN and the fronto-parietal networks exhibit a significant

change in connections between the test waves based on the time-

of-day group and congruence between scanning times. While the

current and mentioned study investigated different factors that

may contribute to variation in resting-state networks, it can be

concluded that DMN itself and its connectivity to other networks

appear to be susceptible to endogenous and exogenous factors.

These findings are in partial agreement with previously reported

changes in the healthy elderly population, where the fronto-parietal

network and SN exhibit changes in over 4 years (11); however, there

were no significant changes in the DMN.

While it is difficult to directly compare and contrast with the

majority of previously published studies due to methodological

differences, specifically how FC is inferred from the fMRI time

series using the mainstream analyses, i.e., correlating voxel

intensities over time, where voxel intensities rely on the levels

of oxy- and deoxyhemoglobin, we believe that our findings are

complementary to previously reported findings on time of day

variability in FC and low-frequency fluctuations (15, 19). Provided

that we do observe variability in the parameters that define the

BOLD signal, which can be explained by time of day and gender,

we conclude that these factors should be accounted for in resting-

state analyses.

Previous studies have indicated that time of day affects

cognitive performance and resting-state network dynamics in fMRI

paradigms in older adults, while the same results are not observed

in younger individuals (31). The authors, therefore, suggest that the

time of image acquisition in fMRI studies, especially in older adults,

should be noted (31). Due to the restricted timespans in the current

publication, the age of the participants was not strictly limited, i.e.,

the age span for the participants varied from 25 to 80 years of age;

however, we have not observed age-dependent variability in neither

EC nor the parameters defining the BOLD signal. It is plausible that

broad age distribution and the small number of data points per each

age in the current sample may have hindered the possible age effects

in EC and parameters that define the BOLD signal.

In terms of brain morphology, the majority of findings

consistently report brain volume changes throughout the day (16–

18). This has been shown not to be the case in the longitudinal

sample, where the authors of the publication report a minimal

influence of the time of day, blood pressure, hydration, and caffeine

intake on brain morphometric measures (20). However, in terms

of the time of day, these contradictory findings are explained

by minimal differences in the scanning time of the mentioned

study compared to previously published reports. A review of blood

pressure levels and brain morphology indicates that high blood

pressure can lead to reductions in brain volume (32, 33).

To the best of our knowledge, this is the first publication

addressing the importance of time of image acquisition and its

congruence in longitudinal data collection procedures. With these

findings, we want to express our strong suggestion for controlling

the time of image acquisition in future fMRI studies. More

importantly, we believe that reporting the data acquisition time in

research reports, for example in the Methods section, may decrease

the variability observed in the reported findings.

The overarching limitation of the current study is that the data

used for the analysis were not collected with the aim of assessing

the circadian mechanisms in the aging population; therefore, the

study sample was relatively small and broadly distributed age-

wise, as a result of predefined image acquisition times. In addition,

the afternoon group timespan had to be broader, in comparison

with the morning timespan, in order to achieve an appropriate

sample size.

While the current study did not include information about

the individual circadian chronotype, there seems to be a lack of

consensus in the literature on whether the effects observed in

resting-state measures are time of day/time of image acquisition

dependent or driven by the individual circadian rhythmicity.

Future studies investigating the circadian/time of day effects, ideally
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should include biological measures, such as blood pressure and

levels of hemoglobin, in addition to individual circadian profiles

and aim for longitudinal within individual sample collection.
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