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ABSTRACT: Dynamical climate predictions are produced by assimilating observations and running ensemble simulations
of Earth system models. This process is time consuming and by the time the forecast is delivered, new observations are al-
ready available, making it obsolete from the release date. Moreover, producing such predictions is computationally de-
manding, and their production frequency is restricted. We tested the potential of a computationally cheap weighting
average technique that can continuously adjust such probabilistic forecasts}in between production intervals}using newly
available data. The method estimates local positive weights computed with a Bayesian framework, favoring members
closer to observations. We tested the approach with the Norwegian Climate Prediction Model (NorCPM), which assimi-
lates monthly sea surface temperature (SST) and hydrographic profiles with the ensemble Kalman filter. By the time the
NorCPM forecast is delivered operationally, a week of unused SST data are available. We demonstrate the benefit of our
weighting method on retrospective hindcasts. The weighting method greatly enhanced the NorCPM hindcast skill com-
pared to the standard equal weight approach up to a 2-month lead time (global correlation of 0.71 vs 0.55 at a 1-month
lead time and 0.51 vs 0.45 at a 2-month lead time). The skill at a 1-month lead time is comparable to the accuracy of the
EnKF analysis. We also show that weights determined using SST data can be used to improve the skill of other quantities,
such as the sea ice extent. Our approach can provide a continuous forecast between the intermittent forecast production
cycle and be extended to other independent datasets.
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1. Introduction

Climate prediction systems have become essential tools for
climate services and can help mitigate the risks and identify
potential opportunities due to the changing climate (Hewitt
and Lowe 2018; Mariotti et al. 2020; Goutham et al. 2022).
Subseasonal-to-seasonal (S2S) predictions (Vitart et al. 2017;
Vitart and Robertson 2018; Becker et al. 2022)}an activity
developed by the World Weather Research Programme/
World Climate Research Programme S2S Prediction Project}
provide predictions from 14 days up to 2 months, and seasonal
to interannual predictions}e.g., ECMWF (SEAS5), Copernicus
Climate change Service (C3S), North American Multimodel
Ensemble (NMME) (Kirtman et al. 2014), and NorCPM (Wang
et al. 2019)}provide forecasts from from lead month 1 up to a
year (we refer to Meehl et al. 2021 for a detailed specification of
each initiative). For such a time scale, deterministic predictions
cannot be skillful because of the chaotic nature of the atmo-
sphere (Palmer et al. 2014; Zhang et al. 2019). However, weather
events can be modulated by interaction with the slower Earth
system components (ocean, land, and sea ice), for which variabil-
ity can be predicted. Such predictions are provided as ensemble

forecasts that represent the forecast uncertainty. Most of the
time, it assumed that all the members of the ensemble have the
same likelihood, but it was shown that some properties of
the forecast can be used to favor the more likely members
(Thorey et al. 2017; Dobrynin et al. 2018).

The production of climate predictions is computationally ex-
pensive and time-demanding. It includes the collection of ob-
servations, their assimilation into a numerical model (Carrassi
et al. 2018), the production of the ensemble forecast simula-
tions, and a security buffer period to ensure timely delivery.
Although increasing the production frequency of such fore-
casts can enhance their accuracy, it is limited for practical rea-
sons, typically every month as for the European Centre for
Medium-Range Weather Forecasts (ECMWF) (SEAS5), C3S,
the North American Multimodel ensemble (Kirtman et al.
2014), and NorCPM (Wang et al. 2019) for seasonal forecast-
ing systems. Newly available observations are becoming avail-
able during the forecast production, making the forecasts
suboptimal from the moment they are produced. For example,
forecasts are effectively available on the 7th day of the month
for NorCPM, on the 9th day of the month for NMME on the
13th day of the month for C3S, and on the 5th day of the
month for SEAS5, which implies that about 1–2 weeks of
newly available data has been available since the assimilation
step. Here, we propose a novel methodology to update the
seasonal ensemble forecast based on new observations. The
potential of such an approach is nicely exemplified by Lean
et al. (2021), who showed that continuous integration of new
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observations during the assimilation procedure could lead to
an increase of 2–3 h of additional predictive skill in the
ECMWF numerical weather prediction forecast.

In the new method introduced, we test the benefit of adjust-
ing the weights (likelihood) for each member}based on the
observations}and the new ensemble forecast is provided as a
weighted mean of the former, reducing its uncertainty. The up-
date step is computationally cheap and fast as the dynamical
members do not need to be rerun. The forecast can be contin-
uously updated once new observations are made available.

We test the method with the Norwegian Climate Prediction
Model (NorCPM), which can provide skillful forecasts for up to
12 lead months in several regions (Wang et al. 2019). The system
combines the Norwegian Earth System Model (Bentsen et al.
2013) with the ensemble Kalman filter (Evensen 2003) and produ-
ces monthly operational forecast (see https://klimavarsling.no).
The version we use assimilates SST and hydrographic profiles in
the ocean component of the Earth system model with 60 mem-
bers. Here, we demonstrate the potential of our method on exist-
ing seasonal hindcasts (retrospective predictions) that match the
setting of the operational system. Hindcasts are started four times
per year during 1985–2010, and each hindcast runs 60 realizations
(ensemble members) for 13 months initialized from the EnKF re-
analysis. With an EnKF, all members are equally likely. Conse-
quently, the most likely forecast is the ensemble mean, and the
ensemble spreads provide a quantification of the uncertainty of
the forecast (Evensen 2003). We test the benefit of adjusting the
weights (likelihood) for each member based on the new SST ob-
servations. We focus on SST because it is available in near real
time (with a lag of 1 day) and because it has been shown sufficient
to constrain the variability in many regions of the Earth system,
particularly in the tropics (Shukla 1998; Zhu et al. 2017; Wang
et al. 2019). On the contrary, the hydrographic profiles also assimi-
lated in NorCPM are available (in preliminary mode, meaning
without final quality control) with a latency of 1-month delays.
However, our method can be extended to any other observations.

2. Data

In the following, unless stated otherwise, tk denotes the
time of the variables with a regular monthly time period, i.e.,
tk11 2 tk 5 1 month.

a. Observations

We use weekly SST data from the National and Atmo-
spheric Administration (NOAA) Optimum Interpolation SST
(OISST) version 2 (Reynolds et al. 2002), which is made avail-
able by NOAA with one day of delay. SST are gridded at a
18 resolution}the entire field can be stacked into a vector of
size p 5 39 080. The monthly SST (yk 2 R

p) at tk is computed
by averaging the weekly SST observations available during
the month. For the sake of simplicity, we have considered that
a week belongs to a month when the starting day is within the
month. The observations are defined as the anomalies from
the monthly climatology computed from 1982 to 2010. For
simplicity, we refer to SST anomalies observations as “SST
observations” in the following.

For each grid point, OISST also provides an error estimate.
The observation error variance vector (s2

k 2 R
p) is the aver-

age of all the weekly variance error fields. Consistently with
the NorCPM setting (e.g., Wang et al. 2019), we assume that
observation errors are uncorrelated, i.e., the variance–covari-
ance observation error matrix is diagonal}Rk 2 R

p3p as

Rk 5 s2
kIp, (1)

where Ip is the identity matrix of size p.

b. Reanalyses and hindcasts

We use a reanalysis and hindcast dataset from NorCPM,
which combines the Norwegian Earth System Model (Bentsen
et al. 2013) and an ensemble Kalman filter (Evensen 2003).
This system version is comparable to the one providing opera-
tional forecast, namely, it assimilates sea surface temperature
and hydrographic profiles (temperature and salinity) using
60 members and strongly coupled data assimilation between the
ocean and sea ice component (Bethke et al. 2021)}meaning
that the ocean data also correct the sea ice component. We per-
form anomaly assimilation, meaning that the climatological
monthly mean of the observations and the model are removed
before comparing the two. The monthly climatology of the
model is constructed from the 60-member historical ensemble
run (without assimilation) over the period 1982–2010. For the hy-
drographic profiles, it is constructed from EN4 objective analysis
(Good et al. 2013). Only the ocean and sea ice are directly up-
dated by the data assimilation. The other components of the
model (atmosphere, land) are adjusting dynamically through the
coupling in between the monthly assimilation steps. The initial
ensemble at the start of the reanalysis in 1980 is constructed by
selecting 60 random initial conditions from a stable preindustrial
simulation and integrating the ensemble from 1850 to 1980 using
historical forcings from the CoupledModel Intercomparison Pro-
ject version 5 (Taylor et al. 2012).

The seasonal hindcasts start on 15 January, 15 April, 15 July,
and 15 October each year from 1985 to 2010, i.e., in total 104
hindcasts (26 years with four hindcasts per year). This is, there-
fore, less frequent than our operational forecast that is produced
every month, but producing such a dataset is computational and
storage demanding. In the present work, we use a monthly time
sampling by default: for example, if the start date is on 15 January,
the reanalysis month (or lead month 0) is the month of January
from 1 to 31 January and observations from the whole month of
January are used (as a matter of fact we assimilate the monthly
average product from NOAA). Following this, lead month 1 cor-
responds to February. Each hindcast runs 60 realizations (ensem-
ble members) for 13 months, initialized from the corresponding
member in the reanalysis. In the case of a start in January, we esti-
mate that by the time the process of assimilating observations for
Januarymonth and of producing the 60 hindcasts is done, SSTob-
servations from the first week of February are available.

We start by analyzing the capability of our method to predict
anomalies of SST. We also assess the performance for sea ice
extent (see section 4d). For each starting month tk (January,
April, July, and October) between 1985 and 2010 and each
member n (1 # n # N 5 60), the anomaly of the SST at lead
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month 0 is denoted x
f
k,0,n and corresponds to the analysis. The

corresponding hindcast for the lead month h is denoted x
f
k,h,n.

The maximum hindcast lead month considered is 5 (H5 5).
At the date tk, we have the following model states:

Xk,n 5 {xfk,0,n, xfk,1,n, …, xfk,H,n}: (2)

3. Optimal weight (OW) method

a. Main assumptions

To improve a given hindcast, we make use of SST observa-
tions in the first week of the hindcast. We compute a monthly
average of SST observations shifted by one week (yk11w).

Ideally, we would have liked to base the method on weekly
average output, but only monthly outputs were saved (be-
cause of storage limitation) with starting months between
1985 and 2010. We use the following approximation to esti-
mate the SST monthly hindcast shifted by one week:

xk11w,n 5
3
4
x
f
k,0,n 1

1
4
x
f
k,1,n: (3)

Two important assumptions are made. First, we assume that
the EnKF with a finite size ensemble can approximate the sys-
tem state’s probability density function (pdf) as

fpdf(Xk) 5
1
N
∑
N

n51
d(Xk 2 Xk,n), (4)

where fpdf denotes the pdf, Xk is the random variable of the
state with the nth ensemble member Xk,n defined as in Eq. (2),
and d is the Dirac delta measure. The expectation of the state
Xk can thus be expressed by the arithmetic average of the en-
semble and corresponds to the equal weights estimation:

E(Xk) 5
1
N
∑
N

n51
Xk,n: (5)

This result implies that the “equal weights” hindcast (typically
used in seasonal forecasting and hereafter referred to as EW)
is the optimal estimate without other sources of information.
The EW will serve as a benchmark and is defined as follows:

xEWk,h 5
1
N
∑
N

n51
x
f
k,h,n: (6)

Second, as it is done in NorCPM (Wang et al. 2019), we as-
sume the likelihood fpdf(yk11w/Xk) is Gaussian, defined as

fpdf(yk11w|Xk,n) ~ exp 2
1
2
dTk,nR

21
k dk,n

( )
,

where dk,n 5 yk11w 2 xk11w,n is the innovation, and Rk is the
error-covariance observation error defined in Eq. (1)

b. Weight determination

In the optimal weight method (hereafter referred to as
OW), the weights are determined as in the particle filter (see
e.g., van Leeuwen et al. 2019; Evensen et al. 2022, for more

details). The a posteriori density function can be formulated
as follows with Bayes’s formula:

fpdf(Xk|yk11w) 5
fpdf(yk11w|Xk)
fpdf(yk11w)

fpdf(Xk)

5
1
N
∑
N

n51

fpdf(yk11w|Xk)
fpdf(yk11w)

d(Xk 2 Xk,n)

5
1

Nfpdf(yk11w)
∑
N

n51
fpdf(yk11w|Xk,n)d(Xk 2 Xk,n)

~∑
N

n51
exp 2

1
2
dTk,nR

21
k dk,n

( )
d(Xk 2 Xk,n): (8)

We can then define the weighted pdf as

fpdf(Xk|yk11w) 5 ∑
N

n51
wk,nd(Xk 2 Xk,n), (9)

where the weights wk,n ~ exp[2(1/2)dTk,nR21
k dk,n]. The weights

are positive, and their sum is set equal to 1. They are optimal
in the sense that they maximize the a posteriori density func-
tion. Since, in this case, the weights would not vary in space,
they are called “global.”

We have p 5 39080 observations and there is a degeneracy
of the particle filter for big systems}called the “curse of
dimensionality” (Snyder et al. 2008). It means that estimating
weights globally as in Eq. (9) results in having all weights close
to zeros except for one. It is equivalent to selecting only one
member of the ensemble, which strongly alters the reliability of
the ensemble forecast. Therefore, the global weight approach
can only be applied if the dimension of the system is sufficiently
small to avoid this problem, which is not the case here.

Hence, in our case, we estimate localized weights computed
at each grid point from local observations. To do that, we re-
strict the innovation locally around the grid point of interest i
(0, i, p):

d[i]k,n 5 ri + dk,n, (10)

where + is the Schür product and ri is a tapering vector whom
element j is defined as

rij 5 f [d(i, j)/L], (11)

where d(i, j) is the distance between grid points i and j, and L is
the localization radius. The tapering function f is the Gaspari–
Cohn function (Gaspari and Cohn 1999), which decreases from
1 at the target point [d(i, j)5 0] to 0 beyond the localization ra-
dius [d(i, j). L]. It ensures continuity in the estimated weights.
The localization reduces the effective number of observations
used to determine the weights and thus mitigates the degener-
acy described above.

Inflating the observation error by a multiplicative factor l8 is
also used to counteract particle filter degeneracy. If l8 5 1, the
inflation has no effect, while if l8 5 ‘, the observations will
have no influence, and the weight estimate converges to EW.
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When combining localization and inflation, the final expression
of the weight for an initial date tk, a member n, and a grid point i is

wk,n,i ~ exp 2
1
2
(ri + dk,n)T[(lo)2R]21(ri + dk,n)

{ }
: (12)

These weights are used to construct the OW predictions for
an initial date tk and a lead time of hmonths:

[xOW
k,h ]i 5 ∑

N

n51
wk,n,i[xfk,h,n]i, (13)

where [x]i is the component of the vector x corresponding to
the ith grid point.

To illustrate the outcome of this procedure, the optimal
weights of four arbitrarily chosen members corresponding to
one starting date are represented in Fig. A1 in the appendix.)

The localization radius L and the inflation factor l8 need to
be set. Those variables are called “hyperparameters” and are
tuned on the period 1987–2001. The sensitivity of the method to
L and l8 is discussed in section 5a.

c. Validation metrics

For the sake of simplicity, hindcasts are denoted by x in this
section, with no mention of the scheme used (OW, EW), the
lead month, and the location. Two metrics are used to validate
the hindcasts against the future observation y, considered as
ground truth. The metrics are the correlation C and the root-
mean-square error (RMSE) defined as follows:

C 5
∑(x 2 x)(y 2 y)�����������������������������
∑(x 2 x)2∑(y 2 y)2

√ and (14)

RMSE 5

������������
(x 2 y)2

√
, (15)

where the sum ∑(· · ·) and the average (· · ·) can be performed
either over a time period to provide maps, or over a spatial re-
gion to provide time series. If it is performed both spatially
and temporally, it provides a global value. The spatial average
is weighted to account for different cell areas. It is worth re-
stating that here we analyze the SST anomaly (with the sea-
sonal cycle removed).

The uncertainty of these scores is estimated by a bootstrap-
ping method. For each score, an ensemble of 50 metrics is
drawn by random sampling with replacement. Error bars are
produced by considering the quantiles 0.1 and 0.9 of the en-
semble. Differences are considered to be significant when
they are of the same sign for more than 90% of the ensemble
of metrics obtained by bootstrapping.

4. Results

a. Global analysis

In Fig. 1, the correlation between the observations and the
hindcasts is computed globally as a function of lead time,

which is defined in section 2b. It shows that correlation is sig-
nificantly higher with the OW hindcasts than with the EW
hindcasts up to a 2-month lead time. For a 0-month “lead”
time, the OW uses future data (first week of the observation
of the month following lead month 0), which explains the im-
provements compared to the analysis. It exemplifies nicely
the benefit of the smoother method over filter approaches
(Evensen and Van Leeuwen 2000). For a 1-month lead time,
one week out of the four composing the monthly average has
been used to determine the OW, so that the OW is not fully
independent of the observations. It demonstrates that ac-
counting for an extra week of observation with the weighting
approach can improve significantly the forecast skill of the
system.

If one sees the OW method as a “cheap” data assimilation
procedure, the 1-month lead hindcast of the OW can be

FIG. 1. Global correlation between the SST observations and the
hindcast (1985–2010) with the optimal weights (in orange) and the
equal weights (the baseline in green) method at different lead
months. The error bars (black lines) defines the 10%–90% confi-
dence interval estimated by bootstrapping.

FIG. 2. Time evolution of the spatial correlation pattern between
the SST observations and the hindcast computed with the optimal
weights (in orange) and the equal weights (in green) method at
2-month lead time. The filled dots mean that the difference between
OW and EW is significant, and the empty dots mean the difference
is nonsignificant according to the criteria described in section 3c.

WEATHER AND FORECAS T ING VOLUME 381244

Brought to you by UNIVERSITETSBIBLIOTEKET I | Unauthenticated | Downloaded 09/21/23 06:48 AM UTC



considered as an analysis with partial data availability (one
week of data versus one month in the EnKF analysis). It can
be seen in Fig. 1, that the correlation of the OW hindcast at a
1-month lead time is even slightly higher (0.71) than the
EnKF analysis (0.66) at a 0-month lead time. The difference is
small and most likely relates to the fact that OW is trained
solely based on OISST, which is considered perfect for valida-
tion, while the EnKF analysis is based on several independent
observations. The approach was tested with a simple Lorenz
1996 model (Lorenz and Emanuel 1998) andwe found theOW
at a lead time of 1 performs nearly as well as the analysis at a lead
time of 0 (not shown). It is very encouraging that theOWcan sus-
tain a comparable level of accuracy as the analysis with just a
week of additional data with a real prediction system as well.

Figure 2 shows that the improvements in the 2-month lead
time spatial correlation pattern are consistent throughout the
period of 1985–2010. No significant linear trends were found
for both hindcasts. The OW hindcast performs significantly
better than the EW hindcast over 71% of the time and is
never significantly worse. Moreover, we can observe that the
correlation is improved on average by 6.3 3 1022 during the
period used for tuning the hyperparameters (1987–2001),
while it is 7.6 3 1022 during the test period (2002–10). It sug-
gests that the skill is sustained at a comparable level on a pe-
riod independent of the tuning and gives confidence in the
ability of our algorithm to generalize to future periods.

In Fig. 3, we show the pointwise correlation of the OW and
EW hindcasts with SST observations at a 2-month lead time.
The improvement of the OW over EW hindcasts is smaller in
the regions where the EW already achieved good skill (equato-
rial Pacific, western tropical Atlantic, and the entrance of the
Nordic seas). As for the global correlation skill, the OW algo-
rithm is frequently significantly better (20% of the points) and
is rarely worse (0.58% of the points) than the EW algorithm.
We also assessed the skill of the OW et EW hindcast as a func-
tion of the starting date (January, April, July, or October): even
if the correlation itself displays a seasonal variability, the incre-
mental improvement provided by the OW algorithm is very sta-
ble throughout the year (not shown here) and does not depend
significantly on the starting date. More generally, we would like
to stress that the weighting procedure has the effect of improv-
ing an existing forecast system if newly available observations
can be used; but of course, it does not prevent improving the
forecasting system itself by other means (e.g., improving the
model, assimilating other types of observations).

FIG. 3. Pointwise correlation at 2-month lead time between the SST observations and the hindcasts computed with
(top left) equal weights and (top right) with OW. (bottom) The difference between the two, with positive values indi-
cating that OW improves the correlation over the EW.

TABLE 1. Reliability metric for 2-month lead time hindcasts.

Hindcast UMSE Mean spread r

EW 0.17 8.4 3 1022 8.4 3 1022

OW 0.15 6.3 3 1022 9.0 3 1022

B RA J ARD E T A L . 1245AUGUST 2023

Brought to you by UNIVERSITETSBIBLIOTEKET I | Unauthenticated | Downloaded 09/21/23 06:48 AM UTC



b. Reliability of the hindcast

By modifying the weight of each member of an ensemble,
the weighting procedure also modifies the spread s2 of the en-
semble defined as

s2m 5
N 1 1
N 2 1

∑
N

n51
wm,n(xm,n 2 xm)2, (16)

where xm 5∑
N
n51wnxm,n, wm,n, and xm,n are the weight and

the hindcast for the member n of a particular hindcast ensem-
ble indexed by m, 1 , m , M. The term M is the total num-
ber of considered hindcasts both in time and space. Note that
the definition is valid for the OW hindcast with weights de-
fined as in Eq. (13) as well as for the EW hindcast with cons-
tant weights wm,n 5 1/N. Following the formulation of
Rodwell et al. (2016), we decompose the error in two terms:

1
M 2 1

∑
M

m51
(xm 2 ym)2 2

1
(M 2 1)M

(
∑
M

m51
(xm 2 ym)

)2
︸��������������������������������︷︷��������������������������������︸

unbiased mean square error (UMSE)

5
1
M

∑
M

m51
s2m︸���︷︷���︸

mean spread

1 r, (17)

where ym is the observation corresponding to the hindcast xm
and r is a residual depending on the observation error and on
the calibration error of the spread. The hindcast is said to be
reliable if the residual is equal to the observation error, which
means that it has a good estimate of its own uncertainty
through the spread. It was shown in a previous work (Wang
et al. 2017) that the NorCPM EW hindcast was mostly reliable
but slightly underdispersive (i.e., overestimating r) in some re-
gions. In Table 1, UMSE, the mean spread, and the residual r
are shown for the EW and OW hindcast at a 2-month lead
time. Values are averaged over all the grid points and all the
dates. OW displays both a lower UMSE and a lower spread,
which was expected since the OW hindcast was shown to be
significantly better than the EW hindcast at a 2-month lead

time. Nevertheless, the residual of the OW hindcast is 7.5%
higher than the EW hindcast. It means that the OW hindcast
has slightly degraded the reliability of the EW hindcast and
that better skill of OW was achieved with a small underesti-
mation of the spread. It is not surprising since the weighting
procedure discards members that are far from the observation
so that the number of effective members is lower and enhan-
ces sampling error. As for the EnKF data assimilation (e.g.,
Anderson 2001; Raanes et al. 2019), sampling error causes a
spurious reduction of the ensemble spread and a degradation
of the reliability. Nevertheless, we highlight that the degrada-
tion is very small and that the ensemble spread of the OW
hindcast can still be used to assess uncertainty.

c. Regional analysis

We also assess the impact in specific regions. We have se-
lected three regions highlighted in Fig. 4: The Norwegian Sea
(Norw), the Barents Sea (Bar), and the ENSO region. In
Table 2, the correlation and RMSE value of the 2-month lead
time hindcasts are reported globally and in the selected re-
gions. For the global ocean and ENSO, the OW hindcast sig-
nificantly outperforms the EW for correlation and RMSE
following the bootstrapping criteria described in section 3c.
For the Barents Sea, OW gives a higher correlation and a
lower RMSE for more than 80% of the bootstrap samples but
slightly below the significance threshold set to 90%. In the
Norwegian Sea, there are no significant differences between
the EW and the OW hindcasts in terms of correlation and a
nonsignificant degradation in terms of RMSE.

FIG. 4. Selected regions for the regional analysis. The abbreviations describing the regions are
defined in Table 2.

TABLE 2. Correlation and RMSE at a 2-month lead time for
selected regions (bold font highlights the best score).

Region Abbreviation

Correlation RMSE

EW OW EW OW

Global 0.45 0.51 0.54 0.52
ENSO-3.4 index ENSO 0.90 0.93 0.44 0.36
Barents Sea Bar 0.38 0.48 0.61 0.58
Norwegian Sea Norw 0.63 0.64 0.38 0.43
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To illustrate the regional differences between the EW and
the OW hindcast, we present in Fig. 5 the time series of the
Niño-3.4 index (SST anomaly in the region, 58S–58N and
1208–1708W) for the EW hindcast, the OW hindcast and the
observations at a 2-month lead time. Both the EW and OW
hindcasts predict well the observations which lay well within
2 standard deviations. Most of the time the OW and EW means
overlap each other and are barely discernible. Nevertheless, we
can see that the OW captures slightly better the peaks (El Niño
and La Niña) that are sometime too early, too low, or too strong
in EW. Overall the OW prediction is closer to the observation
for 63% of the hindcasts. We can also see that the reliability of
the ensemble is well preserved and that the spread reduction ob-
served in section 4b is very moderate.

d. Sea ice extent

Here, we assess the benefit of the optimal weights estimated
using the new SST observations on another variable, e.g., sea
ice. Sea ice concentration and SST are anticorrelated (Wang
et al. 2019), so we expect that the improved skill for SST will
also yield improved skill for the sea ice concentration. Further-
more, as the ocean data are used to update the sea ice compo-
nent (Bethke et al. 2021), we expect the dynamical consistency
between the ocean and sea ice component to be in good agree-
ment with the forecasted ensemble. In Fig. 6, we show the skill
of predicting the sea ice extent in the Arctic between the EW
and OW forecast. Sea ice extent is defined as the area of grid
cells where the sea ice concentration is greater than 15%. As
we are primarily interested in interannual variability, we have
analyzed the detrended sea ice extent, as in Wang et al. (2019),
Bushuk et al. (2017), Kimmritz et al. (2019). The sea ice extent
hindcast is validated against the one computed from sea ice
concentration observations provided by HadISST2.1.0.0

(Rayner et al. 2003). It can be seen that, even if sea ice con-
centration observations were not used to determine the
weights, the OW procedure leads to a better skill of the sea
ice extent in particular during the transition months: freezing
(around September) and melting (around May). During
these transition periods, changes are relatively quick as the
influence of atmospheric variability becomes more predomi-
nant (Bushuk et al. 2017; Dai et al. 2020; Stroeve et al. 2014;
Kwok and Rothrock 2009; Maslanik et al. 2011). Having ac-
cess to one week of fresh data can therefore be determinant.
For the starting month in July, the OW correlation outper-
forms EW for lead times of 2 and 3 months in September.
Predicting the decline in September sea ice extent is important
for the ecosystem, local communities, and economic activities
in the Arctic, such as tourism, fisheries, shipping, and resource
exploitation (e.g., Liu and Kronbak 2010). Similarly, for a
starting month in April, the skill of OW is significant up to a 2-
month lead time while the skill is only significant (and smaller)
for a 1-month lead time in the EW scheme.

This demonstrates the potential of the method to predict var-
iables that were not used to constrain the weights and provide
consistent hindcasts across several variables and components.

5. Discussion

a. Tuning hyperparameters

The OW method relies on two hyperparameters: the locali-
zation radius L and the inflation factor l8. These parameters

FIG. 5. ENSO-3.4 index for the EW hindcast (in green), the OW
hindcast (in orange), and the observations (in black). The shaded
areas represent the hindcast6 2 times the spread.

FIG. 6. Correlation coefficients between detrended sea ice extent
from the observations in the Arctic and the hindcast from (top)
EW and (bottom) OW. Dots correspond to correlations that are
not statistically significant at a 95% confidence level.
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have been tuned within acceptable ranges. Four different val-
ues of the localization radius have been tested: L (km) 2 {0,
200, 400, 800}, which are typical ranges used in ocean data as-
similation systems (Sakov et al. 2012; Massonnet et al. 2014;
Schiller et al. 2020; Lellouche et al. 2013). For each localiza-
tion radius value, we explored 30 inflation factors between
0.1 and 14. The optimal value has been selected based on
global correlation at a 2-month lead time. The optimization
was done using the Hyperopt Python package (Bergstra
et al. 2013) that implements Bayesian optimization using
the tree-structured Parzen estimator approach (Bergstra
et al. 2011). The principle of the algorithm is to iteratively
update a probability distribution of the hindcast perfor-
mance over the hyperparameters, and use this distribution
to guide the selection of the next set of hyperparameters to
evaluate. Hence, we can efficiently search the hyperpara-
meter for values that are more likely to improve perfor-
mance while controlling the number of different values to
test (“1” markers in Fig. 7).

In Fig. 7, the global correlation at a 2-month lead time is
computed as a function of the localization radius and the
inflation. Except for very small inflation (l8, 1), the corre-
lation of the OW hindcast is better than that of the EW. It
should be emphasized that l8 , 1 counteracts the purpose
of inflation (deflation) to prevent filter degeneracy. It is
also noted that for each explored value of the localization
radius, there are optimal values of l8 which achieve a cor-
relation comparable to the optimal setting. This includes
the hyper-localization version (L 5 0). It implies that we
could have thus tuned only one hyperparameter and that
matching quantitative accuracy can be achieved without lo-
calization. A larger localization only ensures smoothness
in the output. This is clearly an advantage as it avoids in-
troducing dynamical imbalance in the prediction. A larger

localization radius is also associated with a larger optimal
inflation factor. This is expected since the dimension of the
innovation defined in Eq. (10) increases with the localiza-
tion radius. As such, the particle filter is more subject to degen-
eracy, which must be mitigated by the inflation factor. Another
interesting point is that for a larger localization radius, the sensi-
tivity to the inflation factors is reduced (optimal range of l8 is
broadening). The final parameters presented in this work were
L5 400 km and l85 2.84.

We have designed the optimal hyperparameters to be
constant in space and time (which, of course, does not
mean that the weights are constant). In classical ocean as-
similation systems, localization is fixed in time but can vary
spatially}e.g., latitude dependent (Zhang et al. 2005;
Wang et al. 2017). Due to practical constraints related to
development time, it was not implemented in this first ver-
sion of the OW algorithm, but it would be interesting to
test whether the performance would improve with a spa-
tially varying localization that matches that of the assimila-
tion system. The inflation is most often constant in space
and time (e.g., Sakov et al. 2012), even if adaptive schemes
are gaining in popularity (Anderson 2009; El Gharamti
et al. 2019). One could extend the degree of freedom of the
hyperparameters space to allow a search in space and time,
but it could lead to overfitting and impair the generaliza-
tion skill of our model. Given the limited number of data
used to tune the hyperparameters, it is safe to limit the di-
mension of the search space for those parameters to priori-
tize the generalization skill over the accuracy.

b. Ensemble size

Another key parameter of the method is the size of the en-
semble. The computational cost of producing the dynamical
forecast (which dominates the overall cost) increases linearly

FIG. 7. Global correlation between SST observations and the op-
timal weight hindcasts at a 2-month lead for different values of in-
flation l8 and localization radius (L 5 0 km in blue, L 5 200 km in
orange, L 5 400 km in green, and L 5 800 km in red). The “1”

markers indicate the values for which the correlation was com-
puted. The black line reports the performance of the EW hindcasts.
The correlation is computed globally on the whole ocean and for
hindcast starting from January 1987 to October 2000.

FIG. 8. Global correlation between the SST observations and the
OW hindcasts when computed with the full ensemble of N 5 60
members (in orange) and with a reduced ensemble of N 5 30
members (in brown), as a function of lead time. The EW hindcast
correlation is represented in dark green when computed withN5 60
and represented in light green when computed withN5 30. The cor-
relation is computed globally for hindcast started from January 1985
to October 2010.
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with the ensemble size. We benefit from a 60-member ensem-
ble, but it could be worth applying our algorithm to a smaller
ensemble. We performed a sensitivity experiment by ran-
domly removing 30 members from the ensemble and recom-
puting the OW with a reduced ensemble. In Fig. 8, we present
the global correlation with the OW and EWmethod as a func-
tion of the lead time for the original ensemble size of 60 mem-
bers and for an ensemble of size 30. It appears that the skill is
marginally reduced with half the ensemble size, and it is still
substantially better than the EW performance, also reported
in Fig. 8, computed with both 30 and 60 members. It shows
that the algorithm is still applicable to a smaller ensemble.

It should be emphasized that the sensitivity to ensemble
size presented here will differ if we test the approach on a dif-
ferent metric. Atmospheric quantities require a larger ensem-
ble size because it is more sensitive to initial conditions on
these time scales, and an ensemble size larger than 40 mem-
bers are needed to predict skillfully winter North Atlantic Os-
cillation (Dunstone et al. 2016).

The OW enables the possibility to incorporate new observa-
tions by computing weights following Eq. (12), which is cheaper
than recomputing the ensemble forecast, so some computing cost
is saved. Therefore, instead of allocating computing resources to
compute more frequent ensemble forecasts (but with a smaller
ensemble), it is possible to compute bigger ensembles.

6. Conclusions and perspectives

We have presented an algorithm that can improve the accu-
racy of an ensemble forecast by utilizing newly available ob-
servations that were not used for producing the prediction.
The observations are used to estimate weights for the ensem-
ble forecast. The algorithm is computationally cheap, time ef-
ficient (run on a laptop in a few minutes), and easy to
implement. In the case of the Norwegian Climate Prediction
Model, a week of SST observations is available at the time of
the forecast delivery in an operational setting, and we have
shown that it improves the prediction accuracy significantly
up to a 2-month lead time, with a global mean correlation of
0.51 against 0.45 for the equal weight predictions. The im-
provement is significant regionally, such as in the ENSO re-
gion, or to a lesser extent in the Barents Sea. Our algorithm
achieves optimal performance by tuning only one hyperpara-
meter and is likely to be able to generalize to future data.
Weights determined using SST data can also be used to im-
prove the skill of other quantities, such as sea ice extent.

The results presented here demonstrate the potential of the
method to enhance the accuracy of our operational forecast,

and sustain a high level of accuracy in between the production
cycle. Still, the algorithm presented could be further refined.
For example, we could easily adapt the algorithm to consider
all daily observations unused instead of the weekly average.
These modifications could even improve the results since the
model outputs and the observations would be more in phase
and remove the approximation about time resolution cur-
rently made.

The algorithm presented here has been demonstrated using
sea surface temperature observations to determine the weights.
Nevertheless, the approach can be generalized to other observa-
tions or even by considering short-range model forecasts (pro-
vided by numerical weather predictions) as observations. It can
also provide a continuously up-to-date forecast in between the dy-
namical production steps, at the time needed by the stakeholder.

Finally, we have used an ensemble issued by one model,
but future development could be to leverage a multimodel en-
semble to improve the seasonal forecast skill.
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APPENDIX

Example of Optimal Weights

To illustrate how are the weights computed by our algo-
rithm, we have represented a set of weight values in Fig. A1
for a given starting date of January 1987 and for 4 arbitrarily
chosen members (over 60). As a comparison, each EW hind-
cast’s weight is equal to 1/60.
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