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Abstract: The gut microbiota play a crucial role in maintaining host health and have a significant
impact on human health and disease. In this study, we investigated the alpha diversity of gut
microbiota in COVID-19 patients and analyzed the impact of COVID-19 variants, antibiotic treatment,
type 2 diabetes (T2D), and metformin therapy on gut microbiota composition and diversity. We used a
culture-based method to analyze the gut microbiota and calculated alpha-diversity using the Shannon
H′ and Simpson 1/D indices. We collected clinical data, such as the length of hospital stay (LoS),
C-reactive protein (CRP) levels, and neutrophil-to-lymphocyte ratio. We found that patients with T2D
had significantly lower alpha-diversity than those without T2D. Antibiotic use was associated with a
reduction in alpha-diversity, while metformin therapy was associated with an increase. We did not
find significant differences in alpha-diversity between the Delta and Omicron groups. The length of
hospital stay, CRP levels, and NLR showed weak to moderate correlations with alpha diversity. Our
findings suggest that maintaining a diverse gut microbiota may benefit COVID-19 patients with T2D.
Interventions to preserve or restore gut microbiota diversity, such as avoiding unnecessary antibiotic
use, promoting metformin therapy, and incorporating probiotics, may improve patient outcomes.

Keywords: COVID-19; gut microbiota; diversity; diabetes; metformin

1. Introduction

The gut microbiota is a complex and diverse community of microorganisms that reside
in the gastrointestinal tract [1]. It plays a crucial role in the maintenance of the host’s
health and wellbeing by performing important metabolic, immunological, and nutritional
functions [2]. Recent studies have shown that alterations in the composition and diversity
of gut microbiota can have a significant impact on human health and disease [3].

The gut microbiota have been shown to play a crucial role in regulating glucose
metabolism and overall metabolic health in individuals with type 2 diabetes (T2D). Several
studies have found that individuals with T2D have a less diverse gut microbiota, with
a lower abundance of beneficial bacteria, such as Bifidobacterium spp. and Akkermansia
muciniphila, and a higher abundance of harmful bacteria, such as Firmicutes and Proteobacte-
ria [4–8].

Pharmaceuticals 2023, 16, 904. https://doi.org/10.3390/ph16060904 https://www.mdpi.com/journal/pharmaceuticals

https://doi.org/10.3390/ph16060904
https://doi.org/10.3390/ph16060904
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com
https://orcid.org/0000-0002-0860-4445
https://orcid.org/0000-0002-4483-1856
https://orcid.org/0000-0002-5088-3791
https://orcid.org/0000-0001-7716-6955
https://orcid.org/0000-0003-3141-4436
https://doi.org/10.3390/ph16060904
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com/article/10.3390/ph16060904?type=check_update&version=1


Pharmaceuticals 2023, 16, 904 2 of 14

This dysbiosis in the gut microbiota has been linked to impaired glucose metabolism
and insulin resistance in individuals with T2D [9]. The gut microbiota is involved in the
production of short-chain fatty acids (SCFAs), which are important for glucose and lipid
metabolism [10]. SCFAs can promote the release of insulin and improve glucose uptake
by peripheral tissues [11]. Additionally, the gut microbiota can influence host metabolism
through the production of various metabolites, such as bile acids, which are involved in
regulating glucose and lipid metabolism [12].

Metformin therapy, a commonly used drug for the treatment of T2D, has been found
to impact the gut microbiota by increasing the abundance of beneficial bacteria, such as
Akkermansia muciniphila and Faecalibacterium prausnitzii, while reducing the abundance of
harmful bacteria such as Escherichia coli [13,14]. This suggests that metformin may improve
glucose metabolism in individuals with T2D by modulating the gut microbiota [15].

The COVID-19 pandemic has brought the importance of gut microbiota into the spot-
light, as research has suggested that COVID-19 patients with gastrointestinal symptoms
may have a different gut microbiota composition compared to those without such symp-
toms [16–21]. Additionally, individuals with pre-existing conditions such as T2D have been
found to have less diverse gut microbiota, which may contribute to the progression and
severity of COVID-19 [22].

Antibiotic treatment is commonly used to manage bacterial infections, but it can also
affect the gut microbiota by altering their composition and reducing their diversity [23].
Understanding the impact of COVID-19, antibiotic treatment, metformin therapy, and
other factors on gut microbiota composition and diversity could provide valuable insights
into the pathogenesis and management of COVID-19 in patients with T2D, and may lead
to the development of targeted interventions aimed at modulating the gut microbiota to
improve patient outcomes. In this study, we aimed to investigate the alpha diversity of
gut microbiota in patients with COVID-19 and T2D, and to analyze the impact of these
factors on the gut microbiota composition and diversity. We used a culture-based method
to analyze the gut microbiota, which enabled us to identify and quantify bacterial species
present in the gut.

2. Results

We created a cell plot to visualize the average values of Shannon H′, Simpson 1/D, LoS
(length of hospital stay), CRP (C-Reactive Protein), and NLR (Neutrophil-to-Lymphocyte
Ratio) among different groups. The data used for the cell plot was obtained from the
following groups: Delta variant, Omicron variant, antibiotic-treated group, non-antibiotic-
treated group, COVID-19 without T2D, COVID-19 with T2D, metformin-treated patients
with T2D and COVID-19 with antibiotic treatment, and metformin-treated patients with
T2D and COVID-19 without antibiotic treatment (Figure 1).

2.1. Patient Population

The patient population of this study included 120 COVID-19-confirmed patients who
were admitted to the Transcarpathian Regional Infectious Hospital from 2020 to 2022 and
were assigned to eight different study groups. The demographic characteristics of the
patients in each study group are summarized in Table 1. Overall, the mean age of the
patients was 54.1 ± 9.5 years, with a range of 20 to 80 years. Both female (51.7%) and male
(48.3%) patients were included in the study.

The age of patients varied across the different study groups. The mean age of patients
in the Delta variant (Group A), Omicron variant (Group B), and antibiotic-treated groups
(Group C), was similar (55.1 ± 11.4, 56.7 ± 4.9, and 55.3 ± 11.8 years, respectively). In con-
trast, patients in the Non-Antibiotic-Treated group (Group D) were significantly younger,
with a mean age of 43.6 ± 9.7 years. Patients with T2D were also older, with a mean age of
61.5 ± 8.0 years in the COVID-19 with T2D group.
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Table 1. Demographic characteristics of COVID-19 patients by study group.

Group Age (Mean ± SD) Male (%) Female (%)

Delta variant 55.1 ± 11.4 53.4 46.6

Omicron variant 56.7 ± 4.9 46.6 53.4

Antibiotic-treated group 55.3 ± 11.8 46.6 53.4

Non-antibiotic-treated group 43.6 ± 9.7 40.0 60.0

COVID-19 without T2D 55.4 ± 5.0 53.4 46.6

COVID-19 with T2D 61.5 ± 8.0 53.4 46.6

Metformin-treated patients with T2D and COVID-19 with antibiotic treatment 55.2 ± 5.4 53.4 46.6

Metformin-treated patients with T2D and COVID-19 without antibiotic treatment 50.1 ± 6.6 40.0 60.0

Gender distribution was similar across all study groups, with no significant differences
observed between males and females. However, the “metformin-treated patients with
T2D and COVID-19 with antibiotic treatment” group (Group G) had a different gender
distribution, with 53.4% of patients being male and 46.6% female.

Overall, the study population was representative of the intended patient population,
with patients from different age groups and both genders included in the study.

2.2. Alpha-Diversity Analysis

The Kruskal–Wallis test was used to compare the alpha diversity indices (Shannon
H′ and Simpson 1/D) among eight groups: (1) Delta variant (Group A), (2) Omicron
variant (Group B), (3) antibiotic-treated group (Group C), (4) Non-antibiotic-treated group
(Group D), (5) COVID-19 without T2D (Group E), (6) COVID-19 with T2D (Group F),
(7) metformin-treated patients with T2D and COVID-19 with antibiotic treatment (Group G),
and (8) metformin-treated patients with T2D and COVID-19 without antibiotic treatment
(Group H). The results showed significant differences among the groups for both Shannon
H′ (χ2 = 45.3, df = 9, p < 0.001, ε2 = 0.381) and Simpson 1/D (χ2 = 57.3, df = 9, p < 0.001,
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ε2 = 0.482) (Figure 2). The mean and standard deviation values for each group are shown
in Table 2.
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Figure 2. Violin plot depicting the distribution of alpha diversity indices (Shannon H′ and Simpson
1/D) among eight patient groups.

Table 2. Alpha diversity indices (Shannon H′ and Simpson 1/D) among eight groups with means
and standard deviations (SD).

Group Simpson 1/D
(Mean ± SD)

Shannon H′

(Mean ± SD)
LoS

(Mean ± SD)
CRP

(Mean ± SD)
NLR

(Mean ± SD)

Delta variant 13.2 ± 1.19 2.4 ± 0.09 12.6 ± 2.47 5.1 ± 1.54 5.8 ± 2.47

Omicron variant 13.3 ± 0.40 2.4 ± 0.16 9.1 ± 1.56 2.8 ± 0.72 2.4 ± 0.66

Antibiotic-treated group 11.7 ± 0.70 2.2 ± 0.17 16.0 ± 3.54 7.5 ± 2.47 11.9 ± 3.79

Non-antibiotic-treated group 13.1 ± 0.47 2.5 ± 0.09 9.4 ± 1.76 3.4 ± 0.97 4.6 ± 1.26

COVID-19 without T2D 13.2 ± 0.37 2.4 ± 0.12 9.1 ± 1.59 2.8 ± 0.71 2.4 ± 0.64

COVID-19 with T2D 12.5 ± 0.62 2.3 ± 0.15 16.6 ± 1.84 9.5 ± 0.73 14.7 ± 7.95

Metformin-treated patients with T2D and COVID-19
with antibiotic treatment 12.2 ± 0.39 2.2 ± 0.21 12.7 ± 1.33 6.0 ± 0.38 7.3 ± 0.45

Metformin-treated patients with T2D and COVID-19
without antibiotic treatment 13.0 ± 0.48 2.6 ± 0.23 9.9 ± 1.09 3.8 ± 0.89 3.07 ± 0.57

The Shannon H index did not show any significant differences in alpha-diversity
between the Delta and Omicron variant groups (W = 0.588; p = 1.000). The antibiotic-
treated group had significantly lower diversity (W = 5.995; p < 0.001) compared to the
non-antibiotic-treated group. However, there was no significant difference in the Shannon
H index (p = 0.544) between COVID-19 patients with and without T2D, suggesting that
the presence of T2D may not significantly affect alpha-diversity in patients with COVID-19
and T2D.

Significant differences were observed in Shannon H′ index (W = 5.017, p = 0.014)
between “Metformin-treated patients with T2D and COVID-19 with antibiotic treatment
(Group G)” and “Metformin-treated patients with T2D and COVID-19 without antibiotic
treatment (Group H)” groups. The DSCF test revealed a significant difference in Simpson
1/d (W = 5.913; p < 0.001) between the “Antibiotic-Treated” group and the “Non-Antibiotic-
Treated” group. The DSCF test also indicated a significant difference in Simpson 1/d
(p = 0.006) between “Metformin-treated patients with T2D and COVID-19 with antibiotic
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treatment” as well as “Metformin-treated patients with T2D and COVID-19 without antibi-
otic treatment” groups. Furthermore, significant differences in Simpson 1/d were observed
between “COVID-19 patients without T2D” (Group E) and those with T2D (Group F)
(W = −5.352; p = 0.006) (Figure 3).
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Figure 3. Heatmap of Dwass–Steel–Critchlow–Fligner (DSCF) post hoc test p-values for compar-
ison of alpha diversity indices among COVID-19 and T2D patient groups and treatments. The
p-values are color-coded, with higher values displayed in lighter colors and lower values in darker
colors. (Group A—Delta variant; Group B—Omicron variant; Group C—antibiotic-treated group;
Group D—non-antibiotic-treated group; Group E—COVID-19 without T2D; Group F—COVID-19
with T2D; Group G—metformin-treated patients with T2D and COVID-19 with antibiotic treatment;
Group H—metformin-treated patients with T2D and COVID-19 without antibiotic treatment).

2.3. Correlation between Alpha Diversity Indices and Clinical Parameters

In our study, we conducted a correlation analysis between alpha diversity indices
(Shannon H′ and Simpson 1/D), LoS, CRP, and NLR in our patient population. Spear-
man rank correlation was used to analyze the data, and the results are presented in the
correlation matrix.

The Shannon H′ index showed a significant positive correlation with the Simpson 1/D
index (Spearman’s rho = 0.717, p < 0.001). Additionally, there was a significant negative
correlation between the Shannon H′ index and all three clinical variables: LoS (Spearman’s
rho = −0.563, p < 0.001), CRP (r = −0.553, p < 0.001), and NLR (r = −0.519, p < 0.001).
The Simpson 1/D index showed a similar negative correlation with LoS, CRP, and NLR
(Spearman’s rho ranged from −0.727 to −0.748, all p < 0.001) (Figure 4).

These findings suggest that decreased alpha diversity is associated with increased LoS,
higher levels of CRP, and a higher NLR in our patient population. These correlations may
provide insight into the underlying mechanisms and clinical implications of altered gut
microbiota in COVID-19 patients.

2.4. Binary Logistic Regression

A predictive model was developed to estimate the probability of COVID-19 with T2D,
conditioning on Shannon H′ and Simpson 1/D, using binary logistic regression.

P =
1

1 + e−z × 100%, z = 46.959 + 12.787× ShannonH’− 5.989× Simpson 1/D

Here, P represents the probability of a positive result. The resulting regression model
was statistically significant (p < 0.001). Based on the Nagelkerke R2 value, the model
explains 59.1% of the observed COVID-19 with T2D variance. When evaluating the depen-
dence of the probability of a positive result on the value of the logistic function P using
ROC analysis, the resulting curve had an area under the ROC curve of 0.880 ± 0.065 with
95% CI: 0.752–1.000 (Figure 5).
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The resulting model was statistically significant (p < 0.001). The cut-off value of the
logistic function P, which corresponds to the highest Youden’s J statistic, is 0.673. If the
value of the logistic function P was greater than or equal to this value, a positive result was
predicted. The sensitivity and specificity of the method were 73.3% and 100.0%, respectively
(Figure 6).
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3. Discussion

In this study, we investigated alterations in gut microbiota diversity in patients with
COVID-19 and T2D, as well as the potential association between gut microbiota diversity
and clinical parameters. Our findings indicate that the use of antibiotics and the presence of
T2D in COVID-19 patients may have an impact on gut microbiota diversity, as demonstrated
by the significant differences in alpha diversity indices observed among the eight groups.
Specifically, the “Antibiotic-Treated” group (Group C) had significantly lower diversity
compared to the “Non-Antibiotic-Treated” group (Group D), and there was no significant
difference in the Shannon H index between “COVID-19 without T2D” (Group E) and
“COVID-19 with T2D” (Group F), suggesting that T2D may not significantly affect alpha
diversity in “COVID-19 patients with T2D” (Group F). The findings from our study reveal
that there are significant differences in alpha-diversity (Shannon H) between “metformin-
treated patients with T2D and COVID-19 with antibiotic treatment and metformin-treated
patients with T2D” (Group G) and “COVID-19 without antibiotic treatment” (Group H).
Specifically, the alpha-diversity was found to be higher in the group of patients who did
not receive antibiotic treatment (Group H) compared to those who did (Group G).

This observation is of significant interest as it suggests that the use of antibiotics may
have a detrimental effect on the gut microbiome in individuals with T2D and COVID-19
who are being treated with metformin. Previous studies have demonstrated the importance
of a healthy gut microbiome in regulating glucose metabolism and maintaining overall
metabolic health in individuals with T2D. Therefore, the observed differences in alpha-
diversity between the two groups of patients may have important clinical implications. Our
findings are consistent with those reported by other researchers who have investigated the
impact of antibiotics on gut microbiota diversity in various patient populations, including
COVID-19 patients [24–28].

Our study also revealed a significant positive correlation between the Shannon H′

and Simpson 1/D indices and a significant negative correlation between these indices and
clinical parameters such as LoS, CRP, and NLR in our patient population. These findings
suggest that decreased alpha diversity is associated with increased LoS, higher levels of
CRP, and a higher NLR in our patient population. This is in line with previous studies
that have reported similar correlations between gut microbiota and clinical parameters
such as disease severity, inflammation, and immune response in various patient popula-
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tions, including COVID-19 patients [22,29]. Furthermore, our predictive model, which
estimates the probability of COVID-19 with T2D based on Shannon H′ and Simpson 1/D,
demonstrated good predictive accuracy, with an area under the ROC curve of 0.880.

Previous studies have shown the importance of a healthy gut microbiome in regulating
glucose metabolism and maintaining overall metabolic health in individuals with T2D. The
gut microbiota plays a crucial role in glucose metabolism by producing SCFAs, such as
butyrate, which can improve insulin sensitivity and reduce inflammation in the body [30].
Certain bacterial strains can also produce incretin hormones that stimulate insulin secretion,
while others can produce bioactive compounds that affect glucose absorption in the gut [31].
Therefore, alterations in gut microbiota composition and diversity can lead to dysregulation
of glucose metabolism and contribute to the development and progression of T2D.

Dysbiosis of the gut microbiota, characterized by a decrease in SCFA-producing
bacteria and an increase in pro-inflammatory bacteria, has been linked to impaired glucose
metabolism and the development of T2D [32]. Antibiotic treatment has been shown to
reduce microbial diversity and alter the composition of the gut microbiota [23,24,33–35]. In
individuals with T2D, antibiotic treatment has been associated with a decrease in SCFA-
producing bacteria, including Faecalibacterium prausnitzii and Bifidobacterium spp., and an
increase in potentially harmful bacteria, including Enterobacteriaceae spp. and Clostridium
difficile [36–38]. These changes in gut microbiota composition and function could potentially
contribute to impaired glucose metabolism and the development of T2D. Furthermore, it
is well-established that there is a link between gut microbiota and dietary consumption,
and dietary changes can lead to alterations in gut microbiota composition [39]. Therefore,
it is possible that changes in dietary habits of COVID-19 patients with T2D, either due to
illness or hospitalization, may have contributed to the observed changes in gut microbiota
diversity.

Another important factor to consider is the use of metformin, a common medication
used to manage T2D. Metformin has been shown not only to modulate gut microbiota
but also to reduce oxidative stress, a key contributor to the development and progression
of T2D, by activating the enzyme AMP-activated protein kinase (AMPK), which leads to
the increased production of antioxidants and decreased production of reactive oxygen
species (ROS) [40–42]. This mechanism has been well-studied in the context of T2D, but
its potential effects on the gut microbiota are less clear. It has also been suggested that
metformin may have a beneficial effect in patients with COVID-19, as it has been shown
to reduce inflammation and improve lung function in preclinical models of respiratory
infections [43].

In conclusion, our study provides evidence for the potential impact of antibiotics
and T2D on gut microbiota diversity in COVID-19 patients and the potential association
between gut microbiota diversity and clinical parameters [44–49]. The findings of this study
have several potential clinical implications. Firstly, the observed correlations between gut
microbiota diversity and clinical parameters such as LoS, CRP, and NLR in COVID-19
patients with T2D suggest that monitoring gut microbiota diversity may serve as a non-
invasive biomarker for disease severity and the response to treatment. Therefore, future
studies should investigate the potential of gut microbiota diversity as a prognostic tool for
COVID-19 patients with T2D. Secondly, the predictive model developed in this study may
have implications for the development of personalized therapeutic strategies for COVID-19
patients with T2D. The model can potentially be used to identify patients who are at a
high risk of developing severe disease and guide treatment decisions accordingly. Future
research should aim to validate this model in larger patient populations and investigate its
potential for use in clinical practice. Lastly, the observed association between metformin
treatment and gut microbiota diversity in COVID-19 patients with T2D is an important
finding that warrants further investigation. Metformin is a commonly prescribed medica-
tion for the management of T2D and has been shown to have anti-inflammatory effects.
In this study, the group of metformin-treated patients with T2D and COVID-19 without
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antibiotic treatment had a significantly higher gut microbiota diversity compared to the
group of metformin-treated patients with T2D and COVID-19 with antibiotic treatment.

Overall, the findings of this study highlight the importance of considering the gut
microbiota in the management of COVID-19 patients with T2D and provide a basis for
future research in this area. These findings may inform the development of personalized
therapeutic strategies for COVID-19 patients with T2D that target the gut microbiota
and inflammation biomarkers. Further studies are needed to elucidate the mechanisms
underlying the observed associations and to investigate the potential of gut microbiota
modulation as a therapeutic strategy for COVID-19 patients with T2D.

4. Material and Methods
4.1. Study Design and Sample Collection

The study included 120 fecal samples collected from COVID-19-confirmed patients
admitted to the Transcarpathian Regional Infectious Hospital from 2020 to 2022. The
patients were assigned to different groups based on specific criteria. The groups included
the Delta variant, Omicron variant, an antibiotic-treated group, a non-antibiotic-treated
group, COVID-19 without T2D, COVID-19 with T2D, metformin-treated patients (MTP)
with T2D and COVID-19 with antibiotic treatment, and metformin-treated patients with
T2D and COVID-19 without antibiotic treatment (Figure 7).
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Patients were assigned to different groups based on specific criteria. The Delta (Group A)
and Omicron (Group B) groups were assigned based on the predominant strains of SARS-
CoV-2 during the study period. The antibiotic-treated group (Group C) received linezolid,
meropenem, fluoroquinolones (moxifloxacin and ciprofloxacin), or cephalosporins of the III
or IV generations during their hospital stay. The non-antibiotic-treated group (Group D), con-
sisting of patients with COVID-19, did not receive any antibiotics during their hospitalization.
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The COVID-19 without T2D group (Group E) included patients who tested positive
for COVID-19 but did not have T2D. The COVID-19 with T2D group (Group F) included
patients who tested positive for both COVID-19 and T2D. These patients were treated with
glucose-lowering medications as needed, including metformin, insulin, or other drugs.

The metformin-treated patients (MTP) with T2D and COVID-19 with antibiotic treat-
ment group (Group G) included patients with T2D and COVID-19 who were treated with
metformin and received antibiotic treatment during their hospital stay. The metformin-
treated patients with T2D and COVID-19 without antibiotic treatment group (Group H)
included patients with T2D and COVID-19 who were treated with metformin but did not
receive antibiotic treatment during their hospital stay. Metformin-treated patients took a
daily dose of 1000–1500 mg of metformin for at least 3 months prior to admission.

The primary COVID-19 diagnostic method is the real-time reverse transcription–
polymerase chain reaction (RT–PCR) test, which detects the presence of SARS-CoV-2 viral
RNA in respiratory specimens. For T2D, diagnosis is based on medical history. Other
diagnostic parameters, such as physical examination and blood glucose tests, may have
also been used to confirm the diagnosis.

To ensure adequate statistical power, a power analysis was conducted to justify the
sample size used in this study. Based on previous studies and assuming an effect size of 0.5
with a two-sided alpha of 0.05, a sample size of at least 100 was required to achieve 80%
power. Therefore, a sample size of 120 was chosen to ensure adequate power and account
for potential dropouts or missing data.

4.2. Microbiota Analysis and Calculation of Alpha-Diversity

For gut microbiota analysis, the weight of the fecal sample (1.0 g) was recorded,
and 9 mL of isotonic (0.9%) sodium chloride solution was added to a test tube. The
mixture was thoroughly rubbed until a homogeneous mass was formed, creating a 10−1

dilution. Subsequently, a series of dilutions from 10−2 to 10−11 were prepared in the
same way (Figure 7). Using sterile micropipettes, 10 µL was taken from each dilution
and applied to nutrient media for the isolation of specific microorganisms. Commercial
nutrient media was used for the isolation of enterobacteria, Staphylococcus spp., Enterococcus
spp., yeast (Candida spp.), Clostridium spp., Lactobacillus spp., Bifidobacterium spp., and
Bacteroides spp. The identification of microorganisms was carried out based on the Clinical
Microbiology Procedures Handbook, Volume 1–3, 4th Edition [50]. Decimal logarithms of
the quantitative indicator of the grown colonies of microorganisms (lg CFU/g) were used
for the convenience of material presentation and mathematical and statistical processing.

To calculate the alpha-diversity of the gut microbiota, we used the Shannon H′ and
Simpson 1/D indices. The Shannon H′ index was calculated using the formula H′ = −∑ pi
ln(pi), where pi represents the proportion of individuals attributed to each genus within
the gut microbiota. The Simpson 1/D index was calculated using the formula 1/D = ∑ pi2,
where pi represents the proportion of individuals attributed to each genus within the gut
microbiota. We used the Abundance Curve Calculator by Dr. James A. Danoff-Burg and X.
Chen, 27 April 05, to calculate the diversity.

In addition, we collected data on several clinical parameters, including LoS, CRP
levels, and NLR.

4.3. Statistical Analysis

The statistical methods used in the analysis were chosen based on the research ques-
tions and the types of data collected. The data were analyzed using GraphPad Prism (ver-
sion 9), jamovi (version 2.2.5) and JMP 17. Continuous variables were checked for normality
using the Shapiro–Wilk test and descriptive statistics were reported as mean ± standard
deviation. Categorical variables were reported as percentages.

To compare alpha diversity indices between groups, we used a non-parametric test,
the Kruskal–Wallis test, followed by the Dwass–Steel–Critchlow–Fligner (DSCF) post hoc
test. This test was chosen due to the non-normal distribution of the alpha diversity data.
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Alpha diversity indices were calculated using the vegan package in R, which included
Shannon, Simpson, and Chao1 indices. The DSCF post hoc test was used to compare all
pairs of groups, correcting for multiple comparisons. Spearman rank correlation was used
to explore the correlation between LoS, CRP, NLR, and diversity indices. This test was
chosen as it does not require the assumption of normal distribution of the data and is
appropriate for non-parametric data.

To investigate the relationship between COVID-19 with T2D and COVID-19 without
T2D, we used binary logistic regression. The independent variables included in the model
were the alpha diversity indices. We calculated odds ratios and 95% confidence intervals,
and set statistical significance at p < 0.05. All statistical tests were two-tailed, and statistical
significance was set at p < 0.05.

5. Limitation

Although our study contributes to the growing body of literature on the impact of
COVID-19 and T2D on gut microbiota diversity and the potential association between gut
microbiota diversity and clinical parameters, there are some limitations to our study. Firstly,
our study acknowledges that the sample size was relatively small, which may limit the
generalizability of our findings. Secondly, the observed differences in alpha-diversity may
be influenced by several factors such as diet, age, and disease severity, which were not
controlled for in our study. Additionally, the study was limited by the lack of a control
group of patients with T2D who did not have COVID-19.

Regarding the methodology used, the culture-based method has several strengths
that make it a useful tool for analyzing the gut microbiota. One of the main advantages
of this method is that it is relatively inexpensive and straightforward to perform, making
it accessible to researchers with limited resources. However, the culture-based method
also has some weaknesses that need to be considered when interpreting its results. One
limitation is that it may not capture the full diversity of the gut microbiota since some
bacterial species may not grow under laboratory conditions. Additionally, the culture-based
method may be biased towards the growth of certain bacterial species or groups, which
could affect the composition of the microbiota. As a result, sequencing-based methods may
provide more comprehensive information on the microbial composition and diversity of
the gut microbiota.

Another limitation of our study is the lack of information on the dietary habits of the
participants. Diet can play an important role in shaping the composition and diversity
of the gut microbiota, and the absence of dietary data may have influenced our findings.
Future studies should consider collecting data on dietary intake and controlling for its
potential confounding effects.

6. Conclusions

In conclusion, our study demonstrates that metformin therapy is associated with an
increase in gut microbiota alpha-diversity in COVID-19 patients with T2D. These findings
suggest a potential positive impact of metformin on the microbial composition in this
patient group. Further research is needed to understand the underlying mechanisms and
explore the clinical implications. Optimizing the gut microbiota through metformin therapy
may have implications for personalized treatment strategies and improved outcomes in
COVID-19 patients with T2D.
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