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Autoimmune polyendocrine syndrome type I (APS-1) is caused by mutations

in the autoimmune regulator (AIRE) gene and characterised clinically by

multiple autoimmune manifestations and serologically by autoantibodies

against tissue proteins and cytokines. We here hypothesised that lack of

AIRE expression in thymus affects blood immune cells and performed whole-

blood microarray analysis (N = 16 APS-I patients vs 16 controls), qPCR ver-

ification, and bioinformatic deconvolution of cell subsets. We identified B cell

responses as being downregulated in APS-1 patients, which was confirmed by

qPCR; these results call for further studies on B cells in this disorder. The

type I interferon (IFN-I) pathway was also downregulated in APS-1, and the

presence of IFN antibodies is the likely reason for this mild overall downregu-

lation of the IFN-I genes in most APS-1 patients.
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Autoimmune polyendocrine syndrome type I (APS-1)

is a rare monogenic disorder with a prevalence of

1:100 000 in most populations. It is characterised clini-

cally by the triad of autoimmune Addison’s disease,

hypoparathyroidism, and chronic mucocutaneous can-

didiasis [1,2]. The underlying cause is specific muta-

tions in the autoimmune regulator (AIRE) gene, a key

regulator of thymic expression of numerous self-

proteins [3–5]. Consequentially, immune tolerance of

developing T cells is lost, leading to tissue damage.

Highly specific autoantibodies against immunoregula-

tory cytokines and tissue-specific antigens are typical.

Notably, neutralising autoantibodies against type I

interferons (IFN-I), interleukin (IL)-17, and IL�22 are

specific hallmarks of APS-1 and can provide additional

diagnostic support [6–9].
The rarity of APS-1 and inaccessibility of thymic tis-

sue have severely limited immunological studies in

these patients. The devastating consequence of missing

AIRE in tolerance must have implications for periph-

eral T cells, but also B cells, supported by findings of

circulating antibodies against a range of targets [10].

Although a downregulation of regulatory T cells

(Tregs) levels and/or function is consistently found

[11–14], reports on frequencies of T and B cell subsets

have shown conflicting results [13,15–20]. Perri and
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colleagues recently reported that B cells from APS-1

patients display impaired ability to proliferate in

response to CpG in vitro and that patients with long-

standing disease have more disturbed B cell subset

repertoires than patients with less than 15 years of

active (or diagnosed) disease [19]. Sng et al elegantly

showed that the diminished Treg pool in APS-1 patients

correlated with enhanced proliferation and increased

expression in B cells using a surrogate marker for

autoimmune potential (HEp-2-reactive antibodies) [13].

Otherwise, only minor and not verified effects on the

immune repertoire have been examined, including levels

of blood components outside the adaptive immune

response, e.g. monocytes, dendritic cells, and natural

killer (NK) cells [14,17,18,21–23], but again no large

disturbances have been consistently revealed.

We here aimed to identify transcripts and immune

pathways that are up/downregulated in whole blood

from APS-1 patients by a global microarray transcrip-

tomic technique and subsequent designated real-time

PCR. Our data can contribute to understanding of the

deficient immune function in APS-1 patients.

Methods

Ethics approval

This project was conducted in compliance with the Decla-

ration of Helsinki and approved by the Regional Ethical

Committee of Western Norway (approval numbers 2009/

2555 and 2018/1417). All patients were recruited from the

Registry and biobank for organ-specific autoimmune disor-

ders (ROAS), Haukeland University Hospital, Norway,

and gave written informed consent for participation. Con-

trol samples were obtained from the Haukeland University

Hospital blood bank, and these individuals were anon-

ymised when processed and analysed.

Patients and controls

Sixteen Norwegian patients with APS-1 (8 males, 8 females,

mean age 35.9 years +� 16.2) and 16 Norwegian gender

and age-matched controls (�5 years) were included in the

blood microarray expression study. Fourteen of the same

16 patients and 4 additional APS-1 patients were included

in the real-time PCR verification experiments together with

8 additional controls for a total of 18 APS-1 patients and

24 healthy controls.

The included APS-1 patients have all been reported pre-

viously, and diagnosis was always confirmed by the clinical

criteria for this syndrome, AIRE mutational analysis and/

or autoantibody screening against IFN-x [24]. All patients

were additionally analysed for antibodies against organ-

specific targets known for APS-I and most for the cytokine

targets IL-22, IL-17A, IL-17F, IFN-a2, and IFN-a8. None

of them were on immune suppressive treatments except for

glucocorticoids to restore physiological cortisol levels for

patients with autoimmune Addison’s disease. Data of the

patients and degree of overlap between the data sets are

summarised in Table 1.

Both patients and healthy individuals gave blood for

RNA when they were considered to be devoid of infections.

The APS-1 patients are known to be faced with frequent

episodes of Candida albicans infections, but historic

infectious states of fungi or other infections were not

available.

Consent to participate

All patients were recruited from the Registry and biobank

for organ-specific autoimmune disorders (ROAS), Hauke-

land University Hospital, Norway, and gave written

informed consent for participation.

Experimental approach microarray transcriptomics

Sampling of APS-1 patients and controls was performed

in standardised manners in PAXgene blood RNA tubes

(PreAnalytix, Qiagen, Hombrectikon, Switzerland) and

stored at �80 °C until use. Purification of RNA was

achieved by the PAXgene blood RNA kit following the

instructions from the manufacturer. Samples were quality

assessed by Agilent Bioanalyzer, using the Agilent 6000

Nano kit (Agilent, Santa Clara, CA, USA), providing

RNA with RNA integrity numbers (RIN) above 6.0. The

samples were randomly distributed into 4 batches for

RNA extraction, each with 4 patients and 4 sex- and age-

matched controls, and were extracted by the same person

on the same day. Following the procedures from Illumina,

RNA was subsequently transformed to cRNA, and these

constructs were labelled, amplified, and quality-checked

again by the Agilent Bioanalyzer. The cRNAs were then

hybridised to 4 Illumina HumanRef-8 BeadChip microar-

rays, followed by washing and scanning according to the

protocol. Quality control of the arrays was done by

BeadStudio.

Bioinformatic approach microarray transcriptomics

Microarray expression output was analysed using Limma

within R [25]. A list of differentially expressed genes

(GRCh38p13) between patients and controls was then pro-

vided. Genes targeted by multiple probes were collapsed,

and the list comprising 11 441 features was ranked accord-

ing to log2 fold change and interrogated using gene set

enrichment analysis (gsea) [26]. The 26 978 gene sets (GSs)

identified were compiled on 1 March 2021 using the
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resources described in [27]. Permutation number was

deemed adequate at 1000 iterations, 8972 GSs passed the

size thresholds set at >10 and <500 member genes, and for

all other parameters, default values were used.

The contribution of individual genes within each GS is

subsequently addressed via leading edge (LE) analyses.

They identify each GS’s member genes that appear in the

ranked list at or before the point at which the running sum

reaches its maximum deviation from zero. Thus, genes

assigned to a GS’s LE are the specific genes that account

for this GS’s significant enrichment or depletion signal [26].

To interpret gsea results comprehensively, GSs were

mapped using network-based algorithm described previ-

ously [28]. In summary, the latter organise GSs that passed

the significance threshold (FDR < 0.001) using forces of

attraction, i.e., edge-weights, exerted in cases where GSs

share more than or equal to 5% of their member genes.

Consequently, pairwise shared LE members between the

GSs determined their position and organisation within the

network clusters. The emerging transcriptional landscape

was then visualised using the yFiles organic layout in

Cytoscape 3.8.2 [29].

Real-time PCR to verify IFN-I regulated responses

in whole blood

Custom array RT2 profiler PCR plates were ordered from

Qiagen (Hilden, Germany), and the protocol from the man-

ufacturer was followed using 200 ng of RNA as input with

the QuantStudio5 equipment from Thermo Scientific (Wal-

tham, MA, USA). All samples were run in doublets, and

the mean of the results for the three housekeeping genes

GADPH, ACTB, and HPRT1 was used as normalisation

base. The 2�ΔΔCt method was used to provide fold change

values for each gene for each individual relative to the

mean result of the healthy controls. Differences between

groups were analysed by the Student’s t-test in Prism

(Graph Pad Software, Inc., San Diego, CA, USA),

P < 0.05.

Analysis of autoantibodies against interferons,

IL-22, and organ-specific proteins

Binding and neutralising autoantibodies against organ-

specific targets, IFN-a2, IFN-a8, IFN-x, and IL-22 were

analysed by radioimmune assay (RIA) or enzyme-linked

immunosorbent assay (ELISA) and antiviral interferon

neutralisation assay (AVINA), respectively, as described

previously [6–8,30]. The organ-specific targets for autoanti-

body radioimmune analysis included in Table 1 were 21-

hydroxylase, 17-hydroxylase, glutamic acid decarboxylase-

65, NACHT leucine-rich-repeat protein 5, aromatic

L-amino acid decarboxylase, tryptophan hydroxylase, tyro-

sine hydroxylase, and side-chain cleavage enzyme.

Results

Global microarray RNA expression analysis

reveals impairment of B cell and interferon

pathways

To explore immune cell signalling pathways in the blood

of APS-1 patients, we performed transcriptional studies

in whole blood and compared with age- and gender-

matched healthy control subjects. From the microarray

results, the principal component analysis (PCA) revealed

no major clustering of APS-1 nor healthy controls

(Fig. S1). We observed that the individual responses var-

ied to a high degree between individuals, and this was

not affected by the different AIRE mutations. However,

the gene enrichment analysis based on differentially

expressed genes (FDR < 0.05) identified one large clus-

ter of the IFN-I pathway to be downregulated in APS-1

patients while also B cell regulation, the clathrin/endocy-

tic pathway, and “cellular response to pH” were signifi-

cantly less active in patients compared to healthy

controls. Clusters annotated “cell cycle and transcription

activity,” “detection of biotic stimuli,” “responses to

viral/bacterial exposure,” and “mitochondrial activity”

were found to be more activated in APS-1 patients

(Fig. 1A,B, Fig. S3). Raw data from these analyses are

provided online in ArrayExpress (accession E-MTAB-

11630).

To dissect the downregulated pathways further, we

focused on genes characteristic for the IFN-I response

and B cell regulation clusters (Fig. 2A–D). Among the

leading-edge (LE) genes for the IFN-I response, MX1

(Mycovirus resistance 1), Interferon-indusert transmem-

branprotein 3, (IFITM3) and LY6E lymphocyte antigen

6 family member E (Ly6E) were significantly downre-

gulated in APS-1. MX1 is a prototypic IFN-I-

regulated gene and a STAT1-regulated member of the

dynamin-like GTPase family with a broad antiviral

activity against a wide range of viruses [31], and

IFITM3 and Ly6E are also linked to viral immunity.

Some of the characteristic IFN-I genes in the microar-

ray experiment did not appear lower in APS-1

patients, exampled by the interferon regulatory factors

(IRF) 3 and 4, where IRF3 is important for produc-

tion of IFN-I and IRF4 involved in regulating inflam-

matory responses from myeloid cells [32]. Of specific

interest is that patient 13, who is one of two informa-

tive patients without measurable antibodies against

IFNa, had a consistent deviant higher expression of

the whole IFN-I pathway.

Gene expression levels measured by real-time PCR

experiments of genes related to the IFN I pathway

did not confirm a downregulation of the IFN-I
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Fig. 1. Microarray expression analysis based on blood from patients with APS-1 and healthy controls. (A) Whole blood transcriptional land-

scape delineating all gene sets from the gene enrichment analysis of differentially expressed genes found significantly altered in APS-1

patients versus controls. Any gene set yielding a significant FDR-value of <0.1 when comparing the two groups was mapped. Network orga-

nisation and clustering reflect the underlying coordinated changes in gene expression using methodologies we described previously [28,71–

73]. Node size is proportional to the significance reflected by the FDR-value. Node shape denotes the gene set’s database of origin:

spherical = GO, triangular = Msigdb_C2, rhomboid = Reactome, and rectangular = Wikipathways. Once interpreted and annotated, the IFN-1

response and B cell regulation clusters were deemed to be of particular interest. (B) Violin plot of directional and transformed (log10) FDR-

values per cluster defined in B. Error bars indicate the mean � 1 standard deviation.
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Fig. 2. Leading edge (LE) genes underlying the significant depletion of cluster I and II in APS-1 versus controls. (A) Volcano plot of the IFN-I

cluster showing log2 fold change (x-axis) and log10 adjusted p-values (y-axis) of all genes contributing to the significant depletion signal of

IFN-I response-associated genes of interest (GOI). Genes yielding an adjusted P-value of <0.05 were in addition labeled with their HGNC

symbol. (B) Heatmap of the IFN-I cluster with rows scaled and clustered displaying the genes relevant in A and the individuals’ serostatus

(cytokine autoantibodies) is shown above the heat map. (C) Volcano plot of the B cell cluster indicating log2 fold change (x-axis) and log10

adjusted p-values (y-axis) of all genes contributing to the significant depletion signal of B cell regulation-associated genes of interest (GOI).

Genes yielding an adjusted P-value of <0.05 were in addition labeled with their HGNC symbol. (D) Heatmap of the B cell cluster with rows

scaled and clustered displaying the genes relevant in A and individuals’ serostatus (cytokine autoantibodies) is shown above the heat map.

For the cytokine antibody status in (B) and (D), neutralisation and binding results of autoantibodies have been merged.
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pathway in APS-1 patients based on IFI44, IFITM3,

IRF3, CD74, ISG15 analysis (Fig. 3A), although

upregulation of IFN-I gene expression in patient 13

was still consistently found. To be able to differenti-

ate between IFN-I and IFN-II responses, we also

performed real-time PCR on two important genes for

the IFN-II responses, namely IFNGR1 and JAK2.

These were increased in APS-1 patients compared to

controls (Fig. 3B).

In the B-cell regulation cluster (Fig. 2C,D), CD79A

and B, CD19, and IGLL1 were all among the LE

genes from the microarray experiment. Downregula-

tion of B cell pathway genes (CD79A, CD79B, CD83,

JUN, CD19) were also consistently observed in APS-1

patients by real-time PCR, although some of the genes

failed to reach statistical significance (Fig. 3C). It is

worth mentioning that CD74, being involved in both

the IFN-I and B cell pathway (in antigen presenta-

tion), was significantly downregulated in patients in

the microarray experiment, although no large devia-

tions of expression between the groups were noted

from the real-time verification.

At the individual level, heterogeneity was evident

both in the control and the patient group for IFN-I

and B cell responses. As all included APS-1 patients

had measurable IFN-x antibodies in their sera, and

most were confirmed to be able to neutralise IFN

viral responses in vitro, we could not determine the

dependency of the IFN-I responses to IFN-I

autoantibodies.

Real-time PCR of representative genes for the viral/

bacterial exposure pathway (CLEC7A and S100A8)

and the mitochondrial pathway (COX7A) copied find-

ings from the microarray chip and showed upregula-

tion in APS-1 patients (Fig. S2). Genes for

antimicrobial activity showed both increased activity

(S100A8) and no variation (IL23A).

The level and distribution of expressed RNA can

be translated to profile which cells are active or inac-

tive in a person’s blood. Using this approach, we

found that CD4+ central memory T cells, erythroid

CD34� CD71+ cLyA� cells, granulocytes and hema-

topoietic stem cells, megakaryocytes, and monocytes

were upregulated in APS-1 patients compared to

healthy individuals. B cell populations (pro B cells,

mature na€ıve B cells, and mature B cells switched

and able to switch), in addition to basophils and

eosinophils, were downregulated (Fig. 4, Fig. S4).

Notably, the main producers of IFN-I, the plasmacy-

toid dendritic cells (pDCs), showed less profound

expression, though not to statistical significance, in

APS-1 patients.

Discussion

In this comprehensive transcriptional immune profiling

of whole blood from a large cohort of APS-1 patients,

we identified impairment of B cell signalling and a

mildly decreased level of IFN-I responses compared to

healthy controls. Although this has been reported pre-

viously, our data add rigour and details and include a

large number of patients for this rare disease.

Human IFN-Is play pivotal roles in coordinating anti-

viral host defence [33] and are also associated with patho-

logical roles in several autoimmune disorders [34–41]. In
addition, IFN-a treatment can trigger autoimmune dis-

ease [42,43]. Our findings of slightly lower expression of

IFN-I signature genes in APS-1 patients’ whole blood is

in concordance with previous analyses on peripheral

blood mononuclear cells, monocyte-derived DCs, and

pDCs in APS-1 patients [14,44]. It is worth to note that

even though our data do not reveal large differences

between patients and controls, APS-1 is still an outlier

within autoimmune disorders as most other autoimmune

patients show an upregulation of IFN pathways [45]. The

deficient response in APS-1 is probably caused by pres-

ence of high-titre neutralising IFN-I autoantibodies pre-

sent in nearly 100% of APS-1 patients, which limit

systemic IFN-I activity. Importantly, one APS-1 patient

without neutralising IFN-a2 autoantibodies and with the

rare manifestations of type I diabetes and thyroid disease

was found to have a “common autoimmune profile” with

upregulation of at least parts of the IFN-I response (this

study and [44,46,47]). We have also previously shown an

inverse correlation between neutralising IFN-I autoanti-

bodies and type I diabetes, indicating that these anti-

bodies may limit pathological events in the pancreas [46].

Supporting the fact that IFN-I antibodies can be benefi-

cial in specific contexts is also a recent paper by Fillatreau

et al., showing that lupus-patients with neutralising auto-

antibodies against IFN-a had less disease activity com-

pared to those without [48].

Albeit the lower IFN-I activity, frequent severe virus

infections are seldom reported in APS-1 (other than

rare patients in large cohorts [2]). The antibodies

might still compromise host defence in some circum-

stances, as exemplified by the proneness for APS-1

patients to severe COVID-19 and Herpesvirus infec-

tions [49–54]. Another report does however rebut this

view [55], and our own observations through a study

of 36 Norwegian APS-1 patients found that vaccinated

individuals with IFN-I autoantibodies were protected

against severe SARS-CoV2-infections (Wolff et al. sub-

mitted manuscript). This suggests that the presence of

IFN-I autoantibodies is a moderate risk factor rather
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than a determinant for severe COVID-19. Indeed,

IFNs show a high degree of redundancy and other

IFNs may come into play if specific IFNs are neutra-

lised. APS-1 patients rarely have antibodies against

IFN-b with high affinity for the receptors IFNAR1

and IFNAR2 [2,56], which could compensate for defi-

cient IFN-a/x mechanisms. Still, the impact of circu-

lating cytokine antibodies in APS-1-patients, and how

they affect immune activity in tissues, is a mystery.

Thymic defects due to AIRE mutations create a

severe break of T cell tolerance, but B cell tolerance is

also affected since patients develop autoantibodies

against a range of self-molecules [24]. Also, the mere

loss of T cell tolerance directly implicates peripheral B

cell mechanisms as T helper functions in these patients

should be aberrated. B cells are further vital as

antigen-presenting cells in the thymus and periphery

and are necessary to maintain the pool of Tregs in

mice [57–60]. Hence, they are crucial for sustaining

peripheral tolerance [13]. The B cell-specific CD19 was

one of the LE molecules, which lead to the result of

deregulation of B cells in APS-1 in the microarray

analysis, further supported by downregulation of

CD19 in whole blood measured by real-time PCR.

However, previous studies have suggested that CD19+
B cell subset levels are comparable to those in healthy

subjects in immunotyping approaches [14,18,19]. It is

commonly known that RNA levels do not always

match protein levels, but the implications of the

observed deviations are not clear. The transcriptomic

Fig. 4. Significant alterations in immune cell subsets inferred via gene signature-based expression deconvolution. Boxplot of immune cell

subsets comprised in the DMAP signatures of ImmQuant [74], which showed significant differences between APS-1 patients and controls.

Fig. 3. Real-time PCR on designated pathways from the microarray study. (A) Expression of IFN-I regulated transcripts in whole blood from

APS-I patients compared to age-and gender-matched healthy controls using quantitative PCR. (B) Expression of IFN-II regulated transcripts

in whole blood from APS-I patients compared to age-and gender-matched healthy controls (CXCL10 is regulated by both IFN-Is and IFN-II).

All controls and all patients with IFN-a antibodies are labeled by a black circle whereas two odd patients without IFN-a antibodies are labeled

by a red circle. (C) Expression of B cell relevant transcripts in whole blood from APS-I patients compared to age-and gender-matched healthy

controls using quantitative PCR. Differences between groups were analysed using the Student’s t-test, P < 0.01 (although P-values below

0.05 was also annotated) *P < 0.05; **P < 0.01.
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microarray profiling further revealed expression of the

B cell associated CD79A/B, CD74, CD40, and IGLL1

to be reduced in whole blood from APS-1 patients

compared to controls [61–64], supported to some

extent by real-time qPCR. Hence, our data consis-

tently showed lower B cell regulation/activity in APS-1

patients, and although the deconvolution approach

suggests distinct B cell subsets to be affected, this

needs to be verified by proteomic techniques. Indeed,

Sng et al previously published data suggesting that

early B cell development and initial tolerance are intact

in APS-1 individuals and that aberrant T cells cause

the later B cell deviations [13].

The genetic underlying reason for APS-1 is simple

as mutations in only one gene cause disease. However,

the immune functional implications of AIRE deficiency

are extremely complex, as both autoimmune and

immune deficient mechanisms come into play at the

same time and contribute to the pathogenesis and

immune cell disturbances. It might be possible to link

lower B-cell regulation to IFN-I activity as pDCs,

CD38+ CD43+ plasmablasts and early-stage transi-

tional B cells [65–69] can produce IFN-Is in the con-

text of autoimmunity. Also, IFN-a have been found to

induce differentiation of regulatory B cells through

IL10-production [69]. Perpetual IFN-I receptor stimu-

lation can furthermore regulate B cell signalling and

keep it over the “tolerance threshold,” thereby boost-

ing development of autoreactive B cells. Of relevance

is also the strong connection between IFN-I and IFN-II

responses. While the IFN-I responses were decreased or

maintained in APS-1 subjects in our study, the IFN-II

(IFN-c) axis seemed to follow a “regular autoimmune

profile” with increased responses in patients. Indeed,

this fits with the findings of Break et al. [70], where

mucosal fungal infection susceptibility in APS-1 was

shown to be caused by exaggerated local IFN-II

mechanisms.

There are obvious limitations to our study. The

microarray analysis and the real-time PCR are both

executed on a relatively large population of APS-1

patients, and the starting material is whole blood in

both cases. Even though, the results did not replicate

within the two methods, which could be due to differ-

ences in their RNA targeting approach and their sensi-

tivity. The difference in the source of cells/biological

material is probably also the reason why, e.g., the

IFN-I profile is less disturbed found by us here in

whole blood compared to our previous studies focus-

ing on isolated mononuclear cells or even purified cell

suspensions which have profound IFN-I expression

profiles [44,46]. Still, when we here can mirror in

whole blood previous findings regarding normalised or

even decreased IFN-I-responses and decreased number

of B cells in APS-I-patients, this is a strength rather

than a weakness. Unfortunately, we do not have more

material from matched patients taken at the same

time. Studies that combine molecular immune

responses in different compartments, under different

conditions (e.g., after vaccine administrations, in whole

blood vs. peripheral blood mononuclear cells, in iso-

lated cell subsets etc.) and at multiple timepoints,

should follow our study.

To sum up, APS-1 patients show downregulation of

IFN-I and B cell signalling in blood. Further studies

are needed to understand how this may impact the

proteomic and cell level, and how the IFN-I autoanti-

bodies impact on immune cell activity within tissues.
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online in the Supporting Information section at the end
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Fig. S1. Principal component analysis.

Fig. S2. Real-time PCR on designated pathways from

the microarray study for clusters III-VII (not the IFN

and B cell regulation clusters).

Fig. S3. Volcano plots of the leading edge (LE) genes

underlying the significant depletion/up-regulation of

clusters III-VII in APS-1 patients versus controls in

the microarray array.

Fig. S4. All alterations in immune cell subsets inferred

via gene signature-based expression deconvolution.
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