
Pierre Gillot

Scalable Learning of Bayesian
Networks Using Feedback Arc
Set-Based Heuristics

2023

Thesis for the degree of Philosophiae Doctor (PhD)
University of Bergen, Norway



at the University of Bergen

Pierre Gillot

Scalable Learning of Bayesian Networks
Using Feedback Arc Set-Based Heuristics

Thesis for the degree of Philosophiae Doctor (PhD)

Date of defense: 10.11.2023



The material in this publication is covered by the provisions of the Copyright Act.

Print:     Skipnes Kommunikasjon / University of Bergen

© Copyright Pierre Gillot

Name:        Pierre Gillot

Title: Scalable Learning of Bayesian Networks Using Feedback Arc Set-Based Heuristics

Year:          2023



i

Scientific environment

The work for this PhD was funded by the University of Bergen and was conducted at

the Machine Learning Group, part of the Department of Informatics at the University

of Bergen.

Parts of this work have been done in the context of CEDAS (Center for Data Science, Uni-

versity of Bergen, UiB). Some of the computations were performed on resources provided

by UNINETT Sigma2 - the National Infrastructure for High Performance Computing

and Data Storage in Norway.



ii Scientific environment



iii

Acknowledgements

I would like to address my deepest thanks and appreciation to my PhD supervisor, Pekka

Parviainen, for his great advising and generosity throughout the duration of my PhD.

This long journey was certainly not without challenge for the both of us, yet I believe

it contributed to shaping us into better versions of ourselves. Patience, communication,

empathy, trust, openness were some of the values I’d like to believe we’ve come to develop

during this very special time.

I also extend my gratitude to the members of the Machine Learning Group who were like

a real family for me: Ketil Malde for his drive and enthusiasm, Pekka Parviainen and

Nello Blaser for their selfless commitment to the wellness of the group, Troels Arnfred

Bojesen and Ricardo Guimarāes for their kindness and altruism, Odin Hoff Gard̊a for his

calm and sharp sense of humour and great taste in beverage, Philip Andreas Turk for his

collected self and communicative positive energy, Erlend Raa V̊agset and Victor Lacerda

Botelho for their good heart, humanity and hilarious never-ending debates, Emmanuel

Sam for his humility and for being such a great office-mate, Madhumita Kundu for her

wit and endearing blend of sensibility and bluntness, Cosimo Damiano Persia for his

inspiring brightness and strong sense of morality, and Natacha Galmiche for her deep

empathy and the mutual trust we have built over the past years.

Most importantly, my deepest gratitude goes to Margaux Susman for her unwavering

faith, support, respect, loyalty and appreciation. I will always keep very fond memories

of our adventures here in Bergen. Thank you so much !



iv Acknowledgements



v

Abstract in English

Bayesian networks form an important class of probabilistic graphical models. They

consist of a structure (a directed acyclic graph) expressing conditional independencies

among random variables, as well as parameters (local probability distributions). As

such, Bayesian networks are generative models encoding joint probability distributions

in a compact form.

The main difficulty in learning a Bayesian network comes from the structure itself, ow-

ing to the combinatorial nature of the acyclicity property; it is well known and does

not come as a surprise that the structure learning problem is NP-hard in general. Exact

algorithms solving this problem exist: dynamic programming and integer linear program-

ming are prime contenders when one seeks to recover the structure of small-to-medium

sized Bayesian networks from data. On the other hand, heuristics such as hill climb-

ing variants are commonly used when attempting to approximately learn the structure

of larger networks with thousands of variables, although these heuristics typically lack

theoretical guarantees and their performance in practice may become unreliable when

dealing with large scale learning.

This thesis is concerned with the development of scalable methods tackling the Bayesian

network structure learning problem, while attempting to maintain a level of theoreti-

cal control. This was achieved via the use of related combinatorial problems, namely

the maximum acyclic subgraph problem and its dual problem the minimum feedback

arc set problem. Although these problems are NP-hard themselves, they exhibit signifi-

cantly better tractability in practice. This thesis explores ways to map Bayesian network

structure learning into maximum acyclic subgraph instances and extract approximate so-

lutions for the first problem, based on the solutions obtained for the second.

Our research suggests that although increased scalability can be achieved this way, main-

taining theoretical understanding based on this approach is much more challenging. Fur-

thermore, we found that learning the structure of Bayesian networks based on maximum

acyclic subgraph/minimum feedback arc set may not be the go-to method in general,

but we identified a setting - linear structural equation models - in which we could exper-



vi Abstract in English

imentally validate the benefits of this approach, leading to fast and scalable structure

recovery with the ability to learn complex structures in a competitive way compared to

state-of-the-art baselines.



vii

Abstract in Norwegian

Bayesianske nettverk er en viktig klasse av probabilistiske grafiske modeller. De best̊ar

av en struktur (en rettet asyklisk graf) som beskriver betingede uavhengighet mellom

stokastiske variabler og deres parametere (lokale sannsynlighetsfordelinger). Med andre

ord er Bayesianske nettverk generative modeller som beskriver simultanfordelingene p̊a

en kompakt form.

Den største utfordringen med å lære et Bayesiansk nettverk skyldes selve strukturen, og

p̊a grunn av den kombinatoriske karakteren til asyklisitetsegenskapen er det ingen over-

raskelse at strukturlæringsproblemet generelt er NP-hardt. Det eksisterer algoritmer som

løser dette problemet eksakt: dynamisk programmering og heltalls lineær programmer-

ing er de viktigste kandidatene n̊ar man ønsker å finne strukturen til små til mellomstore

Bayesianske nettverk fra data. P̊a den annen side er heuristikk som bakkeklatringsvari-

anter ofte brukt n̊ar man forsøker å lære strukturen til større nettverk med tusenvis av

variabler, selv om disse heuristikkene vanligvis ikke har teoretiske garantier og ytelsen i

praksis kan bli uforutsigbar n̊ar man arbeider med storskala læring.

Denne oppgaven tar for seg utvikling av skalerbare metoder som takler det struk-

turlæringsproblemet av Bayesianske nettverk, samtidig som det forsøkes å opprettholde

et niv̊a av teoretisk kontroll. Dette ble oppn̊add ved bruk av relaterte kombinatoriske

problemer, nemlig det maksimale asykliske subgrafproblemet (maximum acyclic sub-

graph) og det duale problemet (feedback arc set). Selv om disse problemene er NP-harde

i seg selv, er de betydelig mer h̊andterbare i praksis. Denne oppgaven utforsker måter å

kartlegge Bayesiansk nettverksstrukturlæring til maksimale asykliske subgrafforekomster

og trekke ut omtrentlige løsninger for det første problemet, basert p̊a løsninger oppn̊add

for det andre.

V̊ar forskning tyder p̊a at selv om økt skalerbarhet kan oppn̊as p̊a denne måten, er det ad-

skillig mer utfordrende å opprettholde den teoretisk forst̊aelsen med denne tilnærmingen.

Videre fant vi ut at å lære strukturen til Bayesianske nettverk basert p̊a maksimal asyk-

lisk subgraf kanskje ikke er den beste metoden generelt, men vi identifiserte en kontekst

- lineære strukturelle ligningsmodeller - der vi eksperimentelt kunne validere fordelene



viii Abstract in Norwegian

med denne tilnærmingen, som fører til rask og skalerbar identifisering av strukturen og

med mulighet til å lære komplekse strukturer p̊a en måte som er konkurransedyktig med

moderne metoder.



ix

Articles

I. Pierre Gillot & Pekka Parviainen, Scalable Bayesian Network Structure Learning

via Maximum Acyclic Subgraph, Proceedings of the 10th International Conference

on Probabilistic Graphical Models, PMLR 138:209-220, 2020.

II. Pierre Gillot & Pekka Parviainen, Learning Large DAGs by Combining Continuous

Optimization and Feedback Arc Set Heuristics, Proceedings of the AAAI Confer-

ence on Artificial Intelligence, 36(6):6713-6720, 2022.

III. Pierre Gillot & Pekka Parviainen, Convergence of Feedback Arc Set-Based Heuris-

tics for Linear Structural Equation Models, Proceedings of the 11th International

Conference on Probabilistic Graphical Models, PMLR 186:157-168, 2022.

The published papers are reprinted with permission from the Proceedings of Machine

Learning Research (PMLR) and from the Association for the Advancement of Artificial

Intelligence (AAAI). All rights reserved.



x Articles



xi

Algorithms

2.1 Greedy permutation for weighted MAS (outscore-based) . . . . . . . . . 38

2.2 Greedy permutation for weighted FAS (outscore-based) . . . . . . . . . . 38

2.3 Greedy permutation for weighted MAS (inscore-based) . . . . . . . . . . 38

2.4 Greedy permutation for weighted FAS (inscore-based) . . . . . . . . . . . 38

2.5 Advanced greedy permutation for weighted MAS . . . . . . . . . . . . . 39

2.6 Vectorized greedy permutation for weighted MAS (outscore-based) . . . . 40

2.7 Vectorized greedy permutation for weighted FAS (outscore-based) . . . . 40

2.8 Vectorized greedy permutation for weighted MAS (inscore-based) . . . . 40

2.9 Vectorized greedy permutation for weighted FAS (inscore-based) . . . . . 40

2.10 Vectorized advanced greedy permutation for weighted MAS . . . . . . . . 41

2.11 Topological order-based acyclic projection . . . . . . . . . . . . . . . . . 41

2.12 ISTA (constant step) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.13 FISTA (constant step) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.14 Nesterov (constant step) . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1 AALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 BNSL2MAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 OptiMAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Greedy square-weighted MAS . . . . . . . . . . . . . . . . . . . . . . . . 57



xii Algorithms

3.5 ProxiMAS (analyzed in Article III) . . . . . . . . . . . . . . . . . . . . . 58



xiii

Figures

1.1 The Sprinkler BN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Elementary structures in a DAG . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Chain rule decomposition viewed as DAGs . . . . . . . . . . . . . . . . . 5

1.4 Illustration of d-separation . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 BNs cannot represent all dependencies . . . . . . . . . . . . . . . . . . . 7

1.6 The naive Bayes’ DAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7 Illustration of scored-based structure learning from local scores . . . . . . 11

2.1 Illustration of Lemma 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Illustration of the weighted MAS problem . . . . . . . . . . . . . . . . . 25

2.3 Visualization of every cycle in a complete digraph with 4 nodes . . . . . 32

2.4 Visualization of the number of cycles in randomly generated digraphs . . 33

2.5 Temporal scalability assessment of ILPs for solving weighted MAS and

FAS problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 Visualization of the four greedy MAS and FAS variants whose pseudo-

codes are given in Algorithms 2.1-2.4 . . . . . . . . . . . . . . . . . . . . 37

2.7 Illustration of the greedy strategy used in Algorithm 2.5 . . . . . . . . . 39

2.8 Empirical comparison of the five greedy MAS and FAS variants whose

pseudo-codes are given in Algorithms 2.1-2.5 . . . . . . . . . . . . . . . . 42



xiv Figures

2.9 Visualization of various optimizers used to minimize composite convex

functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1 Illustration of linear structural equation models . . . . . . . . . . . . . . 55

5.1 Representation of a convex set and a non-convex set . . . . . . . . . . . . 64

5.2 Illustration of Lemmas 13, 14 . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Representation of a convex function . . . . . . . . . . . . . . . . . . . . . 66

5.4 Illustration of the second clause of Lemma 18 . . . . . . . . . . . . . . . 72

5.5 Illustration of Lemma 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.6 Illustration of Lemma 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.7 Illustration of Lemma 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



xv

Tables

2.1 Number of binary variables and linear constraints needed to model various

ILPs solving a weighted MAS problem . . . . . . . . . . . . . . . . . . . 34

3.1 Heuristics developed in this thesis and corresponding articles(s) . . . . . 51

3.2 Worst case cardinality of different sets of scores used in Bayesian network

structure learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



xvi Tables



xvii

Symbols

• Trace on R
n×n:

T r : X ∈ R
n×n �→

n−1∑
k=0

X[k, k]

• Scalar product on R
n:

〈·, ·〉 : (x, y) ∈ (Rn)2 �→ xty =
n−1∑
k=0

x[k]y[k]

• Scalar product on R
m×n:

〈·, ·〉 : (X, Y ) ∈ (Rm×n)2 �→ T r(X tY ) =
m−1∑
i=0

n−1∑
j=0

X[i, j]Y [i, j]

• L2 norm on R
n (Euclidean norm):

‖ · ‖ : x ∈ R
n �→

√
〈x, x〉 =

√√√√n−1∑
k=0

(
x[k]

)2

• L2 norm on R
m×n (Frobenius norm):

‖ · ‖ : X ∈ R
m×n �→

√
〈X,X〉 =

√√√√m−1∑
i=0

n−1∑
j=0

(
X[i, j]

)2

• L1 norm on R
n (Manhattan norm):

‖ · ‖1 : x ∈ R
n �→

n−1∑
k=0

∣∣x[k]∣∣



xviii Symbols

• L1 norm on R
m×n:

‖ · ‖1 : X ∈ R
m×n �→

m−1∑
i=0

n−1∑
j=0

∣∣X[i, j]
∣∣

• Integer interval from m to m+ n:

�m,m+ n� := {m,m+ 1, . . . ,m+ n− 1,m+ n}

• Open ball in the metric space
(
R

n, ‖ · ‖
)
centered at x ∈ R

n with radius r > 0:

B(x, r) :=
{
y ∈ R

n, ‖y − x‖ < r
}

• Interior of a set S in the metric space
(
R

n, ‖ · ‖
)
:

◦
S :=

⋃
O open:
O⊂S

O =
{
x ∈ R

n : ∃r > 0 such that B(x, r) ⊂ S
}

• Closure of a set S in the metric space
(
R

n, ‖ · ‖
)
:

S :=
⋂

C closed:
S⊂C

C =
{
x ∈ R

n : ∃(xk)k ∈ SN such that ‖x− xk‖ −→
k→+∞

0
}

• Gradient at point x ∈ R
n of a differentiable function f : Rn → R:

∇f(x) := v ∈ R
n such that lim

‖h‖→0

f(x+ h)− f(x)− 〈v, h〉
‖h‖ = 0

• (uk)k is a small “o” of (is negligible compared to) (vk)k asymptotically:

uk = o(vk) ⇐⇒ lim
k→+∞

uk

vk
= 0

• (uk)k is a big “o” of (is dominated by) (vk)k asymptotically:

uk = O(vk) ⇐⇒ ∃c > 0, ∃k0 ∈ N : ∀k ≥ k0 |uk| ≤ c|vk|



xix

Contents

Scientific environment i

Acknowledgements iii

Abstract in English v

Abstract in Norwegian vii

Articles ix

Algorithms xi

Figures xiii

Tables xv

Symbols xvii

Contents xix

1 Introduction 1

1.1 Bayesian networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Learning Bayesian networks . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Constraint-based methods for structure learning . . . . . . . . . . 9



xx Contents

1.2.2 Score-based methods for structure learning . . . . . . . . . . . . . 10

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Background 15

2.1 Acyclicity property for directed graphs . . . . . . . . . . . . . . . . . . . 16

2.2 Maximum acyclic subgraph and minimum feedback arc set . . . . . . . . 22

2.3 On the theoretical complexity of MAS and FAS . . . . . . . . . . . . . . 29

2.4 Basics on integer linear programming . . . . . . . . . . . . . . . . . . . . 30

2.5 ILPs for weighted MAS and FAS problems . . . . . . . . . . . . . . . . . 31

2.6 Greedy heuristics for weighted MAS and FAS problems . . . . . . . . . . 36

2.7 Proximal gradient descent . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.8 Accelerated proximal gradient descent . . . . . . . . . . . . . . . . . . . 48

3 Scalable learning of BNs using FAS-based heuristics 51

3.1 BNSL2MAS (Article I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 OptiMAS and ProxiMAS (Articles II, III) . . . . . . . . . . . . . . . . . 54

4 Conclusion 59

5 Appendix 63

5.1 Basics on convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Extended-real-valued convex functions . . . . . . . . . . . . . . . . . . . 71

5.3 Real-valued convex functions . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Gradient’s Lipschitz continuity . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5 Proximal operator: closed-form examples . . . . . . . . . . . . . . . . . . 93

5.6 Frobenius norm and spectral norm of matrices . . . . . . . . . . . . . . . 99



Contents xxi

5.7 Stability analysis of ProxiMAS . . . . . . . . . . . . . . . . . . . . . . . . 103

Bibliography 111

Article I. Scalable Bayesian Network Structure Learning via Maximum Acyclic Subgraph 125

Article II. Learning Large DAGs by Combining Continuous Optimization and Feedback Arc Set Heuristics 139

Article III. Convergence of Feedback Arc Set-Based Heuristics for Linear Structural Equation Models 149



xxii Contents



1

Chapter 1

Introduction

Machine learning is the field concerned with the design of computer programs solving

specific tasks (usually, real-world problems that one would like to handle automatically

when human expertise is limited or expensive or simply better used elsewhere), that

are able to learn (improve in performance as measured by some metrics) via a learning

process (an algorithmic and/or mathematical mechanism) when exposed to some form

of knowledge/experience (typically, data) [Mitchell, 1997]. It has become an ubiquitous

field in modern science, to the point that even the general public has become acquainted

to it via the daily usage of (and interaction with) modern technologies and services that

integrate machine learning through and through.

A prominent paradigm is machine learning is to adopt a probabilistic point of view:

in such setting, phenomena are assumed to exhibit a level of uncertainty (that may be

caused by noisy perturbations, lack of knowledge, etc. . . ) and are conveniently repre-

sented as random variables. The goal of the machine learner is then to observe how these

phenomena interact with one another in an attempt to understand and replicate holis-

tically these interactions. Formally, one considers a set of phenomena {X0, . . . , Xd−1}
each represented as a random variable; the machine learner then aims at learning the

joint probability distribution P (X0, . . . , Xd−1): corresponding models are called genera-

tive and are strictly more general than the so-called discriminative models that merely

learn a conditional probability distribution P (Xqueried|Xobserved).

Of course, we know from the chain rule in probability theory that one can always de-

compose the joint probability distribution into a product of conditional probability dis-



2 Chapter 1. Introduction

tributions. Assuming random variables are all binary, the chain rule yields:

P (X0, . . . , Xd−1) = P (X0|X1, . . . , Xd−1)× P (X1, . . . , Xd−1)

... (1.1)

= P (X0|X1, . . . , Xd−1)︸ ︷︷ ︸
2d−1 parameters

× · · · × P (Xd−2|Xd−1)︸ ︷︷ ︸
21 parameters

× P (Xd−1)︸ ︷︷ ︸
20 parameters

,

for a total of
∑d−1

i=0 2
i = 2d − 1 parameters to be learned, a number that grows exponen-

tially in the number of random variables and quickly becomes intractable. Fortunately,

simplifications occur in the presence of conditional independencies among random vari-

ables: for instance, if X0 is conditionally independent from variables X1, . . . , Xd−2 given

variable Xd−1

(
we will write X0 ⊥⊥ {X1, . . . , Xd−2} | Xd−1

)
, then the corresponding con-

ditional probability distribution simplifies: P (X0|X1, . . . , Xd−1) = P (X0|Xd−1) and the

number of parameters for this particular factor goes down from 2d−1 to only 21.

Probabilistic graphical models are generative machine learning models encoding a joint

probability distribution in a compact form, in the sense that these models include a graph-

ical structure encompassing conditional independencies among random variables, thus

enabling aforementioned simplification of the conditional probability distribution factors.

Two major classes of probabilistic graphical models are Markov random fields (MRFs

[Kindermann, 1980]) and Bayesian networks (BNs [Neapolitan, 1990; Pearl, 1989]), which

importantly differ in that the former uses undirected graphs whereas the latter uses di-

rected acyclic graphs (DAGs) to encode conditional independencies; consequently, MRFs

and BNs are used to model different types of dependencies among random variables. The

interested reader may refer to Koller and Friedman [2009]’s book for a complete tour on

probabilistic graphical models.

1.1 Bayesian networks

In this work, we are interested in the study of Bayesian networks. Formally, a BN is a

mathematical object consisting of two components:

• A graphical structure (more precisely, a DAG) encoding conditional independencies

among random variables: every random variable is represented by a node and

two random variables are conditionally independent given a set of other random

variables if there is no arc (directed edge) between the corresponding two nodes.

Elementary structures in DAGs are depicted in Figure 1.2. The acyclicity property

of DAGs is discussed in Section 2.1.



1.1. Bayesian networks 3

• Parameters (defining a set of conditional probability distributions): every random

variable is parameterized by a probability distribution that is conditioned on its

parent variables in the DAG.

A classical example of a Bayesian network is the Sprinkler model depicted in Figure 1.1.

Several DAGs may exist factoring the joint probability distribution while encoding the

same set of conditional independencies and such structures are said to be Markov equiv-

alent (the two elementary Markov equivalence classes are depicted in Figure 1.2); the

set of all possible chain rule decompositions (see Figure 1.3) forms a Markov equiva-

lence class whose cardinality grows as a factorial of the number of nodes. As implied

earlier, some dependencies among random variables cannot be expressed using a BN:

Figure 1.5 gives an example where no DAG exists encoding a certain set of conditional

independencies.

Although this may seem counter-intuitive owing to their directed graphical representa-

tion, BNs are not necessarily causal: an arc going from variable A to variable B does not

imply that A causes B, but merely that the two random variables may be dependent

(note that the “may” matters: one can always construct a BN where two nodes A and

B are connected via an arc in the DAG, then set the parameters so as to ensure that

P (A|B) = P (A), such that A and B become independent). More precisely, Bayesian

networks satisfy the so-called Markov property : “every variable is conditionally indepen-

dent from its non-descendants given its parents”. The exact mechanism revolves around

a graphical concept named d-separation: given any V-structure (the blue structure in

Figure 1.2), call the middle node a collider ; now, given a DAG and three disjoint sets of

nodes S1, S2 and S3, the sets S1 and S2 are said to be d-separated by the separating set

S3 (we will write S1 ⊥⊥d S2 | S3) if all paths connecting nodes in S1 to nodes in S2 are

blocked by S3, where a path is blocked if one of the following two assertions holds:

• At least one collider in the path and all its descendants are not in S3.

• At least one non-collider in the path is in S3.

Figure 1.4 illustrates d-separation. The Markov property satisfied by BNs essentially

states that d-separation entails conditional independence:

∀S1,S2,S3 disjoints, [S1 ⊥⊥d S2 | S3 =⇒ S1 ⊥⊥ S2 | S3] . (1.2)

Very importantly, the converse statement (the so-called faithfulness assumption) does

not hold in general. When both the Markov property and the faithfulness assumption

are satisfied, it is known that the true Markov equivalent class can be inferred from



4 Chapter 1. Introduction

samples drawn from the joint probability distribution as the sample size reaches infinity;

the GES [Chickering, 2002; Meek, 1997] and PC [Spirtes et al., 2000] algorithms are two

existing structure learning algorithms satisfying this guarantee (the former also requires

the embedded scoring function to be consistent and the property that all DAGs in an

equivalence class have the same number of parameters, while the latter additionally

requires the absence of latent confounders).

CCC

WWW

SSSRRR

P (C,R, S,W ) =P (C,R, S,W ) =P (C,R, S,W ) =

P (W |R, S) · P (R|C) · P (S|C) · P (C)P (W |R, S) · P (R|C) · P (S|C) · P (C)P (W |R, S) · P (R|C) · P (S|C) · P (C)

P (C = 0)P (C = 0)P (C = 0) P (C = 1)P (C = 1)P (C = 1)

0.50.50.5 0.50.50.5

CCC P (R = 0|C)P (R = 0|C)P (R = 0|C) P (R = 1|C)P (R = 1|C)P (R = 1|C)

000 0.80.80.8 0.20.20.2

111 0.20.20.2 0.80.80.8

CCC P (S = 0|C)P (S = 0|C)P (S = 0|C) P (S = 1|C)P (S = 1|C)P (S = 1|C)

000 0.50.50.5 0.50.50.5

111 0.90.90.9 0.10.10.1

RRR SSS P (W = 0|R, S)P (W = 0|R, S)P (W = 0|R, S) P (W = 1|R, S)P (W = 1|R, S)P (W = 1|R, S)

000 000 1.01.01.0 0.00.00.0

111 000 0.10.10.1 0.90.90.9

000 111 0.10.10.1 0.90.90.9

111 111 0.010.010.01 0.990.990.99

Figure 1.1: The Sprinkler BN is a simple Bayesian network consisting of four random
binary variables: clouds (C), rain (R), sprinkler (S) and wet (W ). Its structure encodes
the two conditional independencies W ⊥⊥ C | {R, S} and R ⊥⊥ S | C, i.e. the follow-
ing simplifications occur: P (W |C,R, S) = P (W |R, S) and P (R|C, S) = P (R|C). The
DAG provides a convenient way of writing the factorization of the joint probability dis-
tribution in a bottom-up fashion: reading nodes from the bottom up to the top, write
the probability distribution factor of that node conditioned on its parents. Parameters
correspond to the probability entries in the conditional probability tables.

Bayesian networks were largely studied and popularized in the celebrated work of Judea

Pearl [1989] and they form a general framework encompassing widely used machine learn-

ing models, including naive Bayes [Zhang, 2004] (see Figure 1.6), hidden Markov models

[Baum and Petrie, 1966], latent Dirichlet allocation [Blei et al., 2003] and mixture models

[Lindsay, 1995]. Since their introduction, Bayesian networks have become a framework

of choice for problems that require reasoning under uncertainty. Indeed, humans alone

do not handle reasoning in systems with limited or conflicting information very well,

hence the need for machine learning frameworks designed for uncertainty management.



1.1. Bayesian networks 5

AAA

BBB

CCC

AAA

BBB

CCC

AAA

BBB

CCC

AAA

BBB

CCC

Figure 1.2: Elementary structures in a DAG: DAGs consist of four possible elementary
structures corresponding to two elementary Markov equivalence classes. Structures in
red are Markov equivalent i.e. they entail the same set of conditional independencies
{A ⊥⊥ C | B}. The structure in blue is called a V-structure (sometimes called immorality
instead) and is the unique member of its Markov equivalence class which entails the set
of conditional independencies {A ⊥⊥ C | ∅}.

AAA

BBB

CCC

P (A|B,C) · P (B|C) · P (C)P (A|B,C) · P (B|C) · P (C)P (A|B,C) · P (B|C) · P (C)

“ABCABCABC”

AAA

BBB

CCC

P (A|B,C) · P (C|B) · P (B)P (A|B,C) · P (C|B) · P (B)P (A|B,C) · P (C|B) · P (B)

“ACBACBACB”

AAA

BBB

CCC

P (B|A,C) · P (A|C) · P (C)P (B|A,C) · P (A|C) · P (C)P (B|A,C) · P (A|C) · P (C)

“BACBACBAC”

AAA

BBB

CCC

P (B|A,C) · P (C|A) · P (A)P (B|A,C) · P (C|A) · P (A)P (B|A,C) · P (C|A) · P (A)

“BCABCABCA”

AAA

BBB

CCC

P (C|A,B) · P (A|B) · P (B)P (C|A,B) · P (A|B) · P (B)P (C|A,B) · P (A|B) · P (B)

“CABCABCAB”

AAA

BBB

CCC

P (C|A,B) · P (B|A) · P (A)P (C|A,B) · P (B|A) · P (A)P (C|A,B) · P (B|A) · P (A)

“CBACBACBA”

Figure 1.3: Chain rule decomposition viewed as DAGs: applying the chain rule is equiv-
alent to choosing an ordering of the nodes and can be represented as a dense DAG (also
called acyclic tournament, see Section 2.1). Assuming there are d random variables,
there are d! possible acyclic tournaments/chain rule decompositions. These DAGs are
Markov equivalent since they encode the same set of conditional independencies: the
empty set.



6 Chapter 1. Introduction

AAA

BBB CCC DDD

EEE FFF

GGG HHHIII

A ⊥⊥d I | {B,C}A ⊥⊥d I | {B,C}A ⊥⊥d I | {B,C}

Figure 1.4: Illustration of d-separation: there are three (colored) paths connecting nodes
A and I in the depicted DAG and all must be blocked to deduce a set of nodes d-
separating A and I: in the orange path A ···→ B →··· I (respectively the cyan path
A ···← C →··· I), node B (respectively C) is a non-collider hence adding it to the
separating set will block that path; in the magenta path A ···→ D ←··· I, node D is
a collider hence removing it and all its descendants E,F,G (i.e. removing the shaded
nodes) from the separating set will block that path. We note that here node H has no
influence: the d-separation statements A ⊥⊥d I | {B,C} and A ⊥⊥d I | {B,C,H} are
both encoded by the DAG.

BNs can deal with various tasks such as prediction, reasoning, anomaly detection, diag-

nostics, automated insight and decision making under uncertainty. Bayesian networks

have been applied for spam filters [Sahami et al., 1998], information retrieval [de Cam-

pos et al., 2004], semantic search [Koumenides, 2013], computational biology [Su et al.,

2013], document classification [Denoyer and Gallinari, 2004], turbo code [McEliece et al.,

1998], among many others.

Once a Bayesian network has been learned, it can be used for inference. Denoting V

the node set of a BN, inference is the act of computing, given a set of queried variables

Q ⊂ V and a (disjoint) set of observed variables O ⊂ V , conditional probabilities of

the form P (Q = q|O = o). Since learning a BN corresponds to learning the joint

probability distribution, one can use a learned BN to infer every possible conditional

probability of that form. Unfortunately, inference in Bayesian networks in general is a

NP-hard problem both in its exact [Cooper, 1990] and approximate [Dagum and Luby,

1993] form. Classic inference algorithms are the Variable Elimination and the Junction

Tree algorithms for exact inference and the Belief Propagation [Pearl, 1982] algorithm

for approximate inference (note that Belief Propagation is exact for polytrees). These

algorithms are known to be fixed-parameter tractable in the DAG’s treewidth, i.e. more

efficient inference can be achieved for those BNs whose structure have lower treewidth.



1.1. Bayesian networks 7

AAA

BBB CCC

DDD

Not a DAG !

AAA

BBB CCC

DDD

Not a DAG !

AAA

BBB CCC

DDD

A ⊥⊥ D | CA ⊥⊥ D | CA ⊥⊥ D | C
B ⊥⊥ C | {A,D}B ⊥⊥ C | {A,D}B ⊥⊥ C | {A,D}

AAA

BBB CCC

DDD

A ⊥⊥ D | CA ⊥⊥ D | CA ⊥⊥ D | C
B ⊥⊥ C | {A,D}B ⊥⊥ C | {A,D}B ⊥⊥ C | {A,D}

AAA

BBB CCC

DDD

A ⊥⊥ D | CA ⊥⊥ D | CA ⊥⊥ D | C
B ⊥⊥ C | {A,D}B ⊥⊥ C | {A,D}B ⊥⊥ C | {A,D}

AAA

BBB CCC

DDD

A ⊥⊥ D | {B,C}A ⊥⊥ D | {B,C}A ⊥⊥ D | {B,C}
B ⊥⊥ C | AB ⊥⊥ C | AB ⊥⊥ C | A

AAA

BBB CCC

DDD

A ⊥⊥ D | {B,C}A ⊥⊥ D | {B,C}A ⊥⊥ D | {B,C}
B ⊥⊥ C | AB ⊥⊥ C | AB ⊥⊥ C | A

AAA

BBB CCC

DDD

A ⊥⊥ D | {B,C}A ⊥⊥ D | {B,C}A ⊥⊥ D | {B,C}
B ⊥⊥ C | AB ⊥⊥ C | AB ⊥⊥ C | A

AAA

BBB CCC

DDD

A ⊥⊥ D | BA ⊥⊥ D | BA ⊥⊥ D | B
B ⊥⊥ C | {A,D}B ⊥⊥ C | {A,D}B ⊥⊥ C | {A,D}

AAA

BBB CCC

DDD

A ⊥⊥ D | BA ⊥⊥ D | BA ⊥⊥ D | B
B ⊥⊥ C | {A,D}B ⊥⊥ C | {A,D}B ⊥⊥ C | {A,D}

AAA

BBB CCC

DDD

A ⊥⊥ D | BA ⊥⊥ D | BA ⊥⊥ D | B
B ⊥⊥ C | {A,D}B ⊥⊥ C | {A,D}B ⊥⊥ C | {A,D}

AAA

BBB CCC

DDD

A ⊥⊥ D | {B,C}A ⊥⊥ D | {B,C}A ⊥⊥ D | {B,C}
B ⊥⊥ C | DB ⊥⊥ C | DB ⊥⊥ C | D

AAA

BBB CCC

DDD

A ⊥⊥ D | {B,C}A ⊥⊥ D | {B,C}A ⊥⊥ D | {B,C}
B ⊥⊥ C | DB ⊥⊥ C | DB ⊥⊥ C | D

AAA

BBB CCC

DDD

A ⊥⊥ D | {B,C}A ⊥⊥ D | {B,C}A ⊥⊥ D | {B,C}
B ⊥⊥ C | DB ⊥⊥ C | DB ⊥⊥ C | D

AAA

BBB CCC

DDD

A ⊥⊥ D | ∅A ⊥⊥ D | ∅A ⊥⊥ D | ∅
B ⊥⊥ C | {A,D}B ⊥⊥ C | {A,D}B ⊥⊥ C | {A,D}

AAA

BBB CCC

DDD

A ⊥⊥ D | {B,C}A ⊥⊥ D | {B,C}A ⊥⊥ D | {B,C}
B ⊥⊥ C | ∅B ⊥⊥ C | ∅B ⊥⊥ C | ∅

Figure 1.5: BNs cannot represent all dependencies: the set of conditional independencies{
A ⊥⊥ D | {B,C}, B ⊥⊥ C | {A,D}

}
is not encoded by any DAG. Such structure would

have no arc between A and D and between B and C. This leaves 24 = 16 possible
orientations of the remaining 4 arcs. Orange, cyan, magenta structures respectively
contain 0, 1, 2 collider(s) (colliders are the shaded nodes).



8 Chapter 1. Introduction

P (C,X1, . . . , Xd) = P (X1|C)× P (X2|C)× · · · × P (Xd|C)× P (C)P (C,X1, . . . , Xd) = P (X1|C)× P (X2|C)× · · · × P (Xd|C)× P (C)P (C,X1, . . . , Xd) = P (X1|C)× P (X2|C)× · · · × P (Xd|C)× P (C)

CCC

X1X1X1 X2X2X2 XdXdXd◦◦◦ ◦◦◦ ◦◦◦ ◦◦◦ ◦◦◦

Figure 1.6: The naive Bayes’ DAG: naive Bayes is a probabilistic classification model
which is based on the naive assumption that features (Xi)i∈�1,d� describing an instance
are conditionally mutually independent given the instance’s class C. It is a special case
of Bayesian network where the DAG encodes the following set of conditional indepen-
dencies:

{
Xi ⊥⊥ {Xj}j �=i | C

}
i∈�1,d�

. Since every probability distribution factor P (Xi|C)

is conditioned on a single random variable (the class), the number of parameters de-
scribing the model grows linearly rather than exponentially in the number of features d,
making naive Bayes very scalable.

1.2 Learning Bayesian networks

The process of learning a Bayesian network is twofold: first, one searches for a DAG

structure fitting best the learning data, which is referred to as structure learning ; sec-

ond, one aims to estimate the parameters for every conditional probability distribution

fitting best the learning data and the learned DAG, which is referred to as parame-

ter learning. This twofold process is summarized by the following factorization of the

Bayesian network’s posterior probability given some data:

Maximize
B

P (B|D) =

full learning︷ ︸︸ ︷
P (S,Θ|D) (1.3)

= P (Θ|D,S)︸ ︷︷ ︸
parameter learning

× P (S|D)︸ ︷︷ ︸
structure learning

,

where D represents the learning data and B = (S,Θ) is the Bayesian network composed

of its DAG structure S and its parameters Θ.

Learning parameters is a well-understood counting problem which can be solved adopting

both the frequentist (maximum likelihood computation) or the Bayesian point of view

(maximum a-posteriori computation); in the presence of missing data, the Expectation-

Maximization [Dempster et al., 1977] algorithm can be used. Learning the structure

of a BN on the other hand is a difficult task: it was proved to be NP-hard even for

networks constrained to have in-degree at most 2 [Chickering, 1995] and for polytrees

(singly-connected DAGs) [Dasgupta, 1999]. In the current literature, two predominant



1.2.1. Constraint-based methods for structure learning 9

paradigms exist for the Bayesian network structure learning (BNSL) problem, namely:

constraint-based and score-based methods (combining these paradigms is possible, in

which case the method is referred to as hybrid). We give a short summary of these

paradigms.

1.2.1 Constraint-based methods for structure learning

Constraint-based methods attempt to learn the structure of a BN through a set of

statistical tests performed on the learning data and referred to as constraints. They

originate from the so-called Inductive Causation (IC) algorithm developed by Pearl [1989]

which then led to the development of the now famous PC algorithm [Spirtes et al.,

2000] named after its two first authors: Peter and Clark. These methods rely on the

faithfulness assumption, which in conjunction with the Markov property entails there

is equivalence between d-separation and conditional independence. As a consequence,

statistical tests can be used to assess conditional independencies among random variables

and the structure of the DAG is then deduced. Commonly used statistical tests include

linear correlation, mutual information, G-tests, Pearson [1900]’s χ2 test, Fisher [1992]’s

exact test as well as Barnard [1945]’s and Boschloo [1970]’s tests.

Major advances in constraint-based structure learning have usually taken the form of

extensions or variants of the original IC algorithm: the Fast Causal Inference [Spirtes

et al., 1995] algorithm is designed to handle latent variables; the Grow-Shrink [Mar-

garitis, 2003], Incremental Association [Tsamardinos and Aliferis, 2003] and Min-Max

[Tsamardinos et al., 2003] Markov Blanket algorithms all estimate the so-called Markov

blanket of each node (that is, the minimal set of nodes d-separating that node from all

other nodes that are not in that set), which is analogous to selecting strongly relevant

features and is reported to yield improved scalability while achieving higher structural

accuracy in practice compared to the regular PC algorithm [Pellet and Elisseeff, 2008];

order independence was investigated [Colombo and Maathuis, 2014] by detailing every

possible occurrence of order dependence in the IC algorithm due to violations of the

faithfulness assumption and by proposing small modifications of the original code to

remove order dependence at each stage of the algorithm; parallelization was studied

[Scutari, 2017] as a mean to get rid of the backtracking optimization commonly used

in IC-based algorithms, thus increasing stability while providing significant speedup on

parallel architectures; recently, the Dual PC [Giudice et al., 2022] algorithm changed the

traditional ordering by which conditional independence tests are performed (low to high

cardinality): the algorithm processes conditioning sets starting first with sets of mini-

mal and maximal cardinality and finishing with average-sized conditioning sets. Many



10 Chapter 1. Introduction

constraint-based algorithms have been implemented in the bnlearn [Scutari, 2010] pack-

age.

1.2.2 Score-based methods for structure learning

Score-based methods try to find a DAG which maximises a criterion given some learning

data. They rely on two components:

1. A search scheme to efficiently select the different DAG candidates, since high-

dimensionality of the full DAG search space makes exhaustive search generally

not feasible. Different search schemes may return exact or approximate solutions,

either in the full DAG space or in smaller spaces such as the space of Markov

equivalence classes.

2. A scoring function to evaluate how well the candidate structures fit the learning

data, with the property of being decomposable, that is the global score of a BN

can be decomposed into a sum of local scores over elementary substructures (typ-

ically, node-parent set pairs). Scores are traditionally selected among Bayesian

scoring functions (e.g. K2 [Cooper and Herskovits, 1992], BD/BDe/BDeu [Hecker-

man et al., 1995], BDs [Scutari, 2016]. . . ) or among information-theoretic scoring

functions (e.g. AIC [Akaike, 1974], BIC [Schwarz, 1978], MIT [de Campos, 2006],

NML [Roos et al., 2008]. . . ). The former score category computes the posterior

distribution of the BN given a prior on the model’s parameters, whereas the latter

score category is akin to evaluating the achievable compression over the data with

an optimal code induced by the DAG structure of the BN.

Generally speaking, score-based structure learning consists in first scoring local substruc-

tures, then combining these local substructures into a global structure constrained to be

acyclic and whose global score is optimal with respect to the scoring function: assum-

ing the local scores were precomputed, this second and most difficult part (illustrated in

Figure 1.7) can be formalized as follows:

Definition 1. Let V the node set of a BN and S a decomposable scoring function. For

any node-parent set pair (I, j) where j ∈ V and I ⊂ V \{j}, denote S(I, j) ∈ R the local

score of the substructure I → j = {i → j : i ∈ I}. Also denote Sj the set of available

local scores for which j ∈ V is the child node. Given a set of local scores S =
⋃

j∈V Sj

such that ∀j ∈ V, Sj �= ∅, the score-based Bayesian network structure learning



1.2.2. Score-based methods for structure learning 11

(score-based BNSL) problem is the following optimization problem:

Maximize⊗
j∈V

{
Ij : S(Ij ,j)∈Sj

}
global score︷ ︸︸ ︷∑

j∈V
S(Ij, j)

s.t.
⋃
j∈V

(Ij → j) is a DAG.

(1.4)

This optimization problem is non-convex in nature owing to the acyclicity property of

DAGs. This non-convexity does not come as a surprise: learning the structure of a BN

is NP-hard and so is non-convex optimization in general.

X0X0X0

X1X1X1

X2X2X2

S∗ = −20S∗ = −20S∗ = −20

X0X0X0

S(∅, 0) = −10S(∅, 0) = −10S(∅, 0) = −10

X0X0X0

X1X1X1

S({1}, 0) = −8S({1}, 0) = −8S({1}, 0) = −8

X0X0X0

X2X2X2

S({2}, 0) = −7S({2}, 0) = −7S({2}, 0) = −7

X0X0X0

X1X1X1

X2X2X2

S({1, 2}, 0) = −4S({1, 2}, 0) = −4S({1, 2}, 0) = −4

X1X1X1

S(∅, 1) = −10S(∅, 1) = −10S(∅, 1) = −10

X0X0X0

X1X1X1

X2X2X2

S({0, 2}, 1) = −3S({0, 2}, 1) = −3S({0, 2}, 1) = −3

X2X2X2

S(∅, 2) = −10S(∅, 2) = −10S(∅, 2) = −10

X0X0X0

X1X1X1

X2X2X2

S({0, 1}, 2) = −2S({0, 1}, 2) = −2S({0, 1}, 2) = −2

Figure 1.7: Illustration of scored-based structure learning from local scores: for every
node, one must select a substructure with that node as a child, in such a way that com-
bining these selected substructures yields a DAG whose sum of local scores is maximized.
The list of precomputed local scores is represented on the left (it may not include all
possible node-parent set pairs); the optimal DAG solution built from the set of available
local scores is represented on the right along with its optimal global score, denoted S∗.

Extensive efforts have been made regarding score-based structure learning and many

innovative methods have been developed. On the approximate side, greedy methods

such as the K2 [Cooper and Herskovits, 1992], the GES [Meek, 1997] and the ubiqui-

tous Hill-climbing heuristics are local search methods that explore efficiently the space

of DAGs (or the space of Markov equivalent classes for GES). On the exact side, dy-

namic programming had been the go-to approach in the early 2000’s following pioneering

and independent works from Singh and Moore [2004], Ott et al. [2004] and Koivisto and

Sood [2004] that led to further important contributions [Parviainen and Koivisto, 2010;



12 Chapter 1. Introduction

Silander and Myllymäki, 2006], until integer programming was successfully applied to

score-based structure learning and became the new dominant exact approach for that

problem. Integer programming methods express the problem of finding an optimal DAG

structure as an optimization problem involving a linear objective function and a set of

linear constraints on integral variables. The first efforts in this direction were made

by Hemmecke et al. [2012] with the usage of binary vectors giving an algebraic repre-

sentation of BNs (the so-called characteristic imsets), as well as Jaakkola et al. [2010]

and Cussens [2011] who independently used the so-called family-variable representation.

From a practical standpoint, while dynamic programming methods typically scale up

to a few dozen of nodes, integer programming methods on the other hand can scale up

to a few hundred nodes, albeit with significant structural restrictions (e.g. bounded in-

degree). GOBNILP is an integer programming-based implementation of Cussens [2011]’

method that has been under development for more than a decade and still achieves to this

day state-of-the-art performance for exact score-based structure learning. Score-based

methods addressing specifically the structure learning problem of continuous Bayesian

networks exist as well: notably, the NOTEARS [Zheng et al., 2018] algorithm is based on

continuous optimization and achieves state-of-the-art performance assuming linear de-

pendencies among continuous random variables (the so-called structural equation models

setting, discussed in more details in Section 3.2); it was later extended to handle non-

linear dependencies [Zheng et al., 2020].

1.3 Outline

The present work fits into the scored-based structure learning paradigm and more pre-

cisely, aims at developing and analysing new heuristics that would improve the scalability

of structure learning, that is the ability to learn larger networks (typically measured by

the number of nodes). A common theme found in every publication produced in the con-

text of this research is the integration of a classic combinatorial problem - the so-called

maximum acyclic subgraph problem - as a key ingredient to achieve the desired increase

in scalability. Beyond the present introductory chapter, the rest of this thesis is orga-

nized with the intent to instil the necessary mathematical tools required to properly

understand the methods, techniques and design choices that led to the development of

scalable (score-based) structure learning heuristics:

• Chapter 2 gives the necessary mathematical background to understand important

notions such as (directed) acyclicity, maximum acyclic subgraph and convex opti-

mization. These are core concepts in our publications.



1.3. Outline 13

• Chapter 3 summarizes the main contributions of this research by briefly introducing

two new heuristics that we developed in the context of this research: BNSL2MAS

(Article I) and ProxiMAS (Articles II, III).

• An appendix is provided in order to ensure that the reader fully grasps various

concepts explored in the thesis and the published articles.

This thesis was written with the purpose of being a self-contained read: it complements

the regular body of text with mathematical definitions, proofs and foundations, algo-

rithms’ pseudo-codes, as well as illustrating experiments and explanatory figures.



14 Chapter 1. Introduction



15

Chapter 2

Background

Score-based structure learning is a difficult problem in several aspects. The trained

mathematician will understand this statement in terms of the NP-hardness property

from complexity theory while the seasoned computer scientist will implement various al-

gorithms and notice hard limitations both in scalability and in the ability to reach global

extrema. An overlooked aspect of the inherent difficulty of the problem is its intersection

between two orthogonal mathematical worlds: graph theory and optimization.

This background section aims first at providing the reader a tour encompassing key

notions lying at the intersection of these worlds, what one could call combinatorial opti-

mization. Specifically, Section 2.1 uses notions from graph theory to characterize acyclic-

ity in directed graphs; Section 2.2 recalls how three combinatorial optimization problems

involving acyclicity - maximum acyclic subgraph, minimum feedback arc set and max-

imum acyclic tournament problems - are interconnected; Section 2.3 follows and adds

more context on the theoretical aspects behind the maximum acyclic subgraph and the

minimum feedback arc set problems; Sections 2.4, 2.5 provide basic knowledge on inte-

ger programming and explain how maximum acyclic subgraph problems can be solved

exactly based on that framework: this knowledge is at the core of Article I.

In a second time, this background section deviates from combinatorial optimization

and explores in Section 2.6 greedy heuristics designed to approximately solve maximum

acyclic subgraph problems, then sums up important notions from convex optimization

in Sections 2.7, 2.8: those are the main ingredients for Articles II, III.



16 Chapter 2. Background

2.1 Acyclicity property for directed graphs

This section is devoted to the characterization of acyclicity, a key graph property at the

core of the definition of Bayesian networks. The combinatorial nature of acyclicity is a

primary reason behind the complexity (both theoretical and practical) in learning the

structure of these probabilistic graphical models; understanding acyclicity is therefore

an important step in order to develop new efficient learning strategies.

We begin with definitions for the graphical objects will we use throughout the thesis:

Definition 2. A graph is a mathematical object representing connections (edges) be-

tween discrete entities (nodes). Formally, a graph with d nodes is a pair G = (V,E)

where V = �0, d−1� is the node set and E ⊂ V 2 is the edge set. Given two nodes i, j:

• An edge {i, j} is an undirected connection between nodes i and j
(
i.e. {i, j} and

{j, i} represent the same edge
)
.

• An arc (i, j) is a directed connection from the parent node i to the child node j(
i.e. (i, j) and (j, i) represent opposite arcs

)
.

Convention 1. We will call graph instead of undirected graph any graph

whose connections are exclusively edges. We will call digraph instead of

directed graph any graph whose connections are exclusively arcs. In di-

graphs, the edge set will be called arc set.

Definition 3. The skeleton of a digraph is the graph constructed by adding {i, j} to

the graph’s edge set if (i, j) or (j, i) are in the digraph’s arc set.

Definition 4. Given an edge set (respectively arc set) E, an associated score function

is a mapping s : E → R encoding edge weights (respectively arc weights).

Definition 5. Graphs and digraphs can be expressed in matrix form as well:

• A graph (respectively digraph) with d nodes is equivalently represented by the so-

called adjacency matrix A ∈ {0, 1}d×d, where A[i, j] = 1 if {i, j} (respectively

(i, j)) is in the graph’s edge set (respectively the digraph’s arc set) and A[i, j] = 0

otherwise.

• A weighted graph (respectively weighted digraph) with d nodes and an associated

score function s is equivalently represented by the so-called weighted adjacency

matrix W ∈ R
d×d, where W [i, j] = s(i, j) if {i, j} (respectively (i, j)) is in the

graph’s edge set (respectively the digraph’s arc set) and W [i, j] = 0 otherwise.



2.1. Acyclicity property for directed graphs 17

Definition 6. Two edges are said to be adjacent if they share a single end-point; a path

is a sequence of consecutive adjacent edges. Analogously in the directed case: two arcs

are said to be adjacent if an arc’s child node is the other arc’s parent node; a directed

path is a sequence of consecutive adjacent arcs. A loop (respectively cycle) is a path

(respectively directed path) whose end-points are the same node. A loop (respectively

cycle) consisting of l edges (respectively arcs) is said to have length l and is called

l-loop (respectively l-cycle).

Convention 2. In all that follows and unless stated otherwise, we will always

assume digraphs to be simple, that is without any 111-cycle (equivalently,

whose corresponding adjacency matrices have a diagonal full of zeros).

Definition 7. A directed acyclic graph or DAG is a digraph containing no cycle.

Now that we have defined DAGs, we are ready to characterize them (Lemmas 2, 3).

Intuitively, nodes in a DAG are ordered : they have a top and a bottom (see Lemma 1):

Definition 8. In a digraph, a source (respectively sink) is a node without any parent

(respectively child).

Lemma 1. Let G = (V,E) a DAG. Then G has a source and a sink.

Proof. We conduct the proof for the source and note that the exact same line of reasoning

can be used for the sink. Clearly, if G contains no arc the claim trivially follows i.e. we

can assume without loss of generality that there is an arc (v1, v0) ∈ E (where v0 and v1

are distinct). By way of contradiction, suppose G does not have a source. A digraph

with d = 2 nodes and no source is a 2-cycle, so we can assume without loss of generality

that V = �0, d− 1� where d > 2. Since v1 is not a source, G is acyclic and (v1, v0) ∈ E,

there must exist v2 ∈ V \ {v0, v1} such that (v2, v1) ∈ E, implying v2 → v1 → v0 ⊂ G. In
fact, since no node is a source and G is acyclic we can use the same argument recursively

and obtain that for all i ∈ �2, d− 1�:

vi−1 → · · · → v0 ⊂ G =⇒ ∃vi ∈ V \ {v0, . . . , vi−1} : vi → · · · → v0 ⊂ G.

In particular, the path vd−1 → · · · → v0 spans G. Furthermore, vd−1 is not a source so

there exists j ∈ �0, d − 2� such that (vj, vd−1) ∈ E. But then one would get that the

cycle vj → vd−1 → · · · → vj is contained in G, a contradiction.

Definition 9. Let G = (V,E) a digraph. We say that G has a topological order if

there is a permutation operator π : V → V such that:

∀(i, j) ∈ E, π(i) < π(j). (2.1)



18 Chapter 2. Background

Remark 1. We note that Definition 9 can be equivalently restated with a permutation

operator π′ : V → V such that:

∀(i, j) ∈ E, π′(i) > π′(j). (2.2)

Indeed, assume (without loss of generality) that V = �0, d−1� and consider the permuta-

tion operator reversing nodes order, i.e.
←
π : i ∈ �0, d−1� �→ d−1− i. Then π′ :=

←
π ◦π is

a permutation of V if and only if π is a permutation of V . Moreover, for all (i, j) ∈ E:

π(i) < π(j) ⇐⇒ d− 1− π(i) > d− 1− π(j)

⇐⇒ ←
π ◦ π(i) > ←

π ◦ π(j)
⇐⇒ π′(i) > π′(j).

Lemma 2. Let G = (V,E) a digraph. Then G is a DAG if and only if G has a topological

order.

Proof. In what follows we will assume without loss of generality that G has d nodes, i.e.

V = �0, d− 1�.

⇒. We construct the topological order recursively. First, G is a DAG hence Lemma 1

guarantees it has a source, let us call it v0 ∈ V . Now, consider the digraph G \{v0}
constructed by removing from G its source v0 and every arc with v0 as a parent.

Since removing arcs cannot introduce any cycle, necessarily G\{v0} is itself a DAG

and due to Lemma 1 it must have a source, let us call it v1 ∈ V \ {v0}. Let us

then use the notations Vi := V \ {v0, . . . , vi−1} and Gi := G \ {v0, . . . , vi−1}, with
the convention V0 := V and G0 := G. Applying the previous argument recursively,

one gets that for all i ∈ �1, d− 1�:

Gi−1 is a DAG with a source vi−1 ∈ Vi−1 =⇒ Gi is a DAG with a source vi ∈ Vi.

Now, consider the operator π : i ∈ �0, d − 1� �→ vi. Clearly by construction, π is

a permutation of V and so is its inverse π−1; additionally, notice (vi, vj) ∈ E =⇒
i < j (otherwise, vj would not be a source at step j). We conclude that G has a

topological order, since:

∀(vi, vj) ∈ E, π−1(vi) = i < j = π−1(vj).

⇐. We proceed by way of contradiction. Suppose G has a topological order and there

is a cycle v0 → · · · → vl−1 → v0 contained in G, where l ≥ 2 and (v0, . . . , vl−1) ∈ V l.

But then, since G has a topological order we know there is a permutation operator



2.1. Acyclicity property for directed graphs 19

π : V → V that causes a contradiction:

π(v0) < · · · < π(vl−1) < π(v0).

Lemma 3. Let G = (V,E) a digraph with d nodes and A the adjacency matrix of G.
Then G is a DAG if and only if there is a permutation operator π : V → V and a strictly

upper-triangular matrix T such that A =
(
T [π(i), π(j)]

)
(i,j)∈�0,d−1�2

.

Proof. Due to Lemma 2, we can replace the statement “G is a DAG” by “G has a

topological order”.

⇒. Suppose G has a topological order, i.e. there is a permutation operator π : V → V

such that for all (i, j) ∈ E, π(i) < π(j). As a permutation, π is invertible and we

can define the matrix T :=
(
A[π−1(i), π−1(j)]

)
(i,j)∈�0,d−1�2

. Clearly:

∀(i, j) ∈ �0, d− 1�2, A[i, j] = A
[
π−1

(
π(i)

)
, π−1

(
π(j)

)]
= T [π(i), π(j)].

Besides, notice the topological order property satisfied by π with respect to G can

be equivalently rewritten:

∀(i, j) ∈ �0, d− 1�2,
[
π(i) ≥ π(j) =⇒ (i, j) /∈ E

]
.

It follows that for all (i, j) ∈ �0, d− 1�2:

i ≥ j ⇐⇒ π
(
π−1(i)

)
≥ π

(
π−1(j)

)
=⇒

(
π−1(i), π−1(j)

)
/∈ E

⇐⇒ A[π−1(i), π−1(j)] = 0

⇐⇒ T [i, j] = 0,

proving T is strictly upper-triangular as desired.

⇐. Conversely, suppose there is a permutation operator π : V → V and a strictly

upper-triangular matrix T such that A =
(
T [π(i), π(j)]

)
(i,j)∈�0,d−1�2

. Then π clearly

satisfies the topological order property with respect to G, since we have that for



20 Chapter 2. Background

all (i, j) ∈ �0, d− 1�2:

(i, j) ∈ E ⇐⇒ A[i, j] = 1

⇐⇒ T [π(i), π(j)] = 1

=⇒ π(i) < π(j).

Remark 2. We note that due to Remark 1, Lemma 3 can be equivalently restated with

a strictly lower-triangular matrix T .

Of particular interest are those DAGs that are dense: Lemma 4 states that their acyclic-

ity property can be characterized looking at 2 and 3-cycles only:

Definition 10. A tournament is a digraph with a complete skeleton and no 2-cycle,

i.e. a digraph obtained by assigning a single direction to every edge in a complete graph.

Lemma 4. Let G = (V,E) a digraph with d nodes. Then G is an acyclic tournament if

and only if the two following assertions hold:

1. G has a complete skeleton and no 2-cycle:

∀(i, j) ∈ �0, d− 1�2 : i, j distinct,
[
(i, j) ∈ E ⇐⇒ (j, i) /∈ E

]
. (2.3)

2. G has no 3-cycle:

∀(i, j, k) ∈ �0, d− 1�3 : i, j, k distinct,[
(i, j) ∈ E and (j, k) ∈ E =⇒ (k, i) /∈ E

]
. (2.4)

Proof.

⇒. Trivial since 1. is by definition of tournament and 2. follows immediately from

being acyclic.

⇐. By hypothesis we know that G contains no 2 or 3-cycle, i.e. all is left to prove

is that G does not contain any l-cycle where l > 3. By way of contradiction,

suppose there is an l-cycle v0 → · · · → vl−1 → v0 contained in G, where l > 3 and

(v0, . . . , vl−1) ∈ V l = �0, d − 1�l. Notice v0 → v1 → v2 ⊂ G such that (v2, v0) /∈ E

(otherwise, we would have the 3-cycle v0 → v1 → v2 → v0 contained in G). This

ensures we have (v0, v2) ∈ E since by hypothesis the skeleton of G is complete.



2.1. Acyclicity property for directed graphs 21

Then, (v2, v3) ∈ E entails v0 → v2 → v3 ⊂ G. Applying this argument recursively

yields for all i ∈ �2, l − 2�:

v0 → vi−1 → vi ⊂ G =⇒ (vi, v0) /∈ E

=⇒ (v0, vi) ∈ E

=⇒ v0 → vi → vi+1 ⊂ G.

In particular we deduce that v0 → vl−2 → vl−1 ⊂ G holds, but then the 3-cycle

v0 → vl−2 → vl−1 → v0 is contained in G which is a contradiction. An illustration

of this line of reasoning is provided in Figure 2.1.

Figure 2.1: Illustration of Lemma 4: a tournament with no 3-cycle is necessarily acyclic.
If (by way of contradiction) such type of tournament were to contain a cycle (represented
in magenta), then one could iteratively construct two sequences of arcs, one included in
and one disjoint from the tournament (represented in cyan and orange, respectively).
Ultimately, the construction ends up in a contradiction: the two arcs in the orange 2-
cycle would both induce a 3-cycle in the tournament, hence they cannot belong to the
tournament, a contradiction since the skeleton of a tournament is complete.



22 Chapter 2. Background

2.2 Maximum acyclic subgraph and minimum feed-

back arc set

In this section we recall basic mathematical facts regarding two fundamental combina-

torial problems, the so-called maximum acyclic subgraph (MAS) and minimum feedback

arc set (FAS) problems, both belonging to the famous Karp [1972]’s 21 NP-hard prob-

lems. These two combinatorial problems are at the heart of this thesis, hence we take the

time to precisely define them, see how they are related and even re-establish a connec-

tion with another combinatorial problem - the so-called maximum acyclic tournament

(MAT) problem - giving more insight on the acyclicity property and its potential scal-

ability. In this thesis, we are interested in the weighted versions of the aforementioned

combinatorial problems.

We start off by defining the weighted MAS and FAS problems:

Definition 11. Given a weighted digraph G = (V,E, s) as input, the weighted max-

imum acyclic subgraph (weighted MAS) problem is to find a weighted subgraph

(V,E∗, s) of G whose sum of arc weights is maximized under the constraint that (V,E∗)

is a DAG. We will say:

• A weighted digraph (V,E ′, s) is MAS(G)-admissible if E ′ ⊂ E, (V,E ′) is a DAG

and s|E′ > 0.

• A weighted digraph (V,E∗, s) is MAS(G)-optimal if:

E∗ = argmax
E′

∑
(i,j)∈E′ s(i, j)

s.t. (V,E ′, s) is MAS(G)-admissible.
(2.5)

Remark 3. We note that an optimal weighted MAS solution cannot contain an arc with

a strictly negative weight, otherwise a strictly better DAG solution would be found by

simply removing that arc (removing arcs cannot introduce any cycle). In Definition 11,

one could have dropped the constraint s|E′ > 0, in which case the implicit constraint

s|E′ ≥ 0 would hold instead, resulting in an equally optimal solution but possibly less

sparse. In machine learning, one usually seeks sparse solutions, hence our choice to

explicitly enforce the constraint s|E′ > 0.

Definition 12. Given a weighted digraph G = (V,E, s) as input, the weighted (min-

imum) feedback arc set (weighted FAS) problem is to find a weighted subgraph

(V,E∗, s) of G whose sum of arc weights is minimized under the constraint that (V,E\E∗)

is a DAG. We will say:



2.2. Maximum acyclic subgraph and minimum feedback arc set 23

• A weighted digraph (V,E ′, s) is FAS(G)-admissible if E ′ ⊂ E, (V,E \E ′) is a DAG

and s|E\E′ > 0.

• A weighted digraph (V,E∗, s) is FAS(G)-optimal if:

E∗ = argmin
E′

∑
(i,j)∈E′ s(i, j)

s.t. (V,E ′, s) is FAS(G)-admissible.
(2.6)

From an optimization standpoint, the weighted MAS and FAS problems are dual in

the sense that a valid (respectively optimal) solution for one yields a valid (respectively

optimal) solution for the other, as showed in Lemma 5:

Lemma 5. Let G = (V,E, s) a weighted digraph. The following holds:

1. If (V,E∗, s) is MAS(G)-optimal, then (V,E \ E∗, s) is FAS(G)-optimal.

2. If (V,E∗, s) is FAS(G)-optimal, then (V,E \ E∗, s) is MAS(G)-optimal.

Proof. Notice that given any E ′ ⊂ E, one also has E \E ′ ⊂ E; in particular this allows

us to write E ′ = E \ (E \ E ′) and it clearly follows that:{
(V,E ′, s) is MAS(G)-admissible =⇒ (V,E \ E ′, s) is FAS(G)-admissible

(V,E ′, s) is FAS(G)-admissible =⇒ (V,E \ E ′, s) is MAS(G)-admissible.

1. Suppose by way of contradiction that (V,E∗, s) is MAS(G)-optimal and (V,E\E∗, s)

is not FAS(G)-optimal. With (V,E∗, s) MAS(G)-admissible, (V,E \E∗, s) must be

FAS(G)-admissible; then, (V,E \ E∗, s) is not FAS(G)-optimal means there exists

(V,E ′
∗, s) FAS(G)-admissible with strictly smaller sum of arc weights compared to

(V,E \ E∗, s), such that:∑
(i,j)∈E

s(i, j)−
∑

(i,j)∈E\E′∗

s(i, j) =
∑

(i,j)∈E\(E\E′∗)

s(i, j)

=
∑

(i,j)∈E′∗

s(i, j)

<
∑

(i,j)∈E\E∗

s(i, j)

=
∑

(i,j)∈E
s(i, j)−

∑
(i,j)∈E∗

s(i, j).

After simplification, we deduce:∑
(i,j)∈E\E′∗

s(i, j) >
∑

(i,j)∈E∗

s(i, j).



24 Chapter 2. Background

Now, with (V,E ′
∗, s) FAS(G)-admissible, (V,E\E ′

∗, s) must be MAS(G)-admissible.

But then (V,E\E ′
∗, s) is MAS(G)-admissible with strictly larger sum of arc weights

compared to (V,E∗, s), contradicting the fact that (V,E∗, s) is MAS(G)-optimal.

2. The proof for this statement follows the exact same reasoning as in 1. (simply

swap in the proof “MAS”/“FAS”, “smaller”/“larger” and “<”/“>”).

We now define the weighted MAT problem:

Definition 13. Given a weighted digraph G = (V,E, s) as input, the weighted maxi-

mum acyclic tournament (weighted MAT) problem is to find a weighted subgraph

(V,E∗, s) of G whose sum of arc weights is maximized under the constraint that (V,E∗)

is an acyclic tournament. We will say:

• A weighted digraph (V,E ′, s) is MAT(G)-admissible if E ′ ⊂ E and (V,E ′) is an

acyclic tournament.

• A weighted digraph (V,E∗, s) is MAT(G)-optimal if:

E∗ = argmax
E′

∑
(i,j)∈E′ s(i, j)

s.t. (V,E ′, s) is MAT(G)-admissible.
(2.7)

Remark 4. We note that the weighted MAS and MAT problems differ in two important

ways, caused by the fact that tournaments have complete skeletons:

• The weighted MAS problem always has an admissible solution, whereas the weighted

MAT problem has none if the skeleton of the input weighted digraph is not complete.

• Unlike the weighted MAS problem, the weighted MAT problem does not implicitly

enforce the constraint s|E′ ≥ 0. If a weighted digraph has a complete skeleton and

all its arc weights are non-negative (strictly if the constraint s|E′ > 0 is enforced

in the weighted MAS problem), then the two problems share an identical optimal

solution given this weighted digraph as input (see Figure 2.2).

The rest of the section aims at establishing an important connection between the

weighted MAS and MAT problems: Lemma 6 first shows how a DAG with strictly

non-negative weights can be extended into (or recovered from) an acyclic tournament

with non-negative weights in such a way that the sum of arc weights in the acyclic tour-

nament exceeds the sum of arc weights in the DAG; Lemma 7 finally establishes that

solving the weighted MAS problem reduces to solving a related weighted MAT problem:



2.2. Maximum acyclic subgraph and minimum feedback arc set 25

Figure 2.2: Illustration of the weighted MAS problem (left figures: complete weighted
digraphs; right figures: corresponding weighted MAS optimal solutions). Given as input
a weighted digraph with d nodes having a complete skeleton: if all arc weights are strictly
non-negative, a weighted MAS optimal solution must contain d(d−1)

2
arcs (it is an acyclic

tournament) and its sum of arc weights is strictly smaller than the sum of arc weights in
the input (top figures); if some of the arc weights are negative or null, a weighted MAS

optimal solution may contain less than d(d−1)
2

arcs and its sum of arc weights may be
larger than the sum of arc weights in the input (bottom figures), due to the fact that a
weighted MAS optimal solution cannot contain an arc with negative or null weight.



26 Chapter 2. Background

Lemma 6. Let G = (V,E, s) a weighted digraph containing at least one arc with strictly

non-negative weight. Construct the complete weighted digraph G = (V, V 2, s) as follows:

∀(i, j) ∈ V 2, s(i, j) =

{
max

(
0, s(i, j)

)
if (i, j) ∈ E

0 otherwise.
(2.8)

Then:

1. For every acyclic tournament (V,E
′
) such that E

′ ⊂ V 2 and s|E′ �= 0, one can

construct a DAG (V,E ′) such that E ′ ⊂ E and s|E′ > 0, satisfying:

E ′ ⊂ E
′

and
∑

(i,j)∈E′
s(i, j) =

∑
(i,j)∈E′

s(i, j). (2.9)

2. For every DAG (V,E ′) such that E ′ ⊂ E and s|E′ > 0, one can construct an acyclic

tournament (V,E
′
) such that E

′ ⊂ V 2 and s|E′ �= 0, satisfying:

E ′ ⊂ E
′

and
∑

(i,j)∈E′
s(i, j) ≤

∑
(i,j)∈E′

s(i, j). (2.10)

Proof. We start with the important remark that by construction, s ≥ 0. Additionally,

due to our assumption that G contains an arc with strictly non-negative weight, we know

as well that s �= 0 must hold.

1. Let (V,E
′
) an acyclic tournament such that E

′ ⊂ V 2 and s|E′ �= 0. Now, consider

the set of arcs E ′ :=
{
(i, j) ∈ E

′
: s(i, j) > 0

}
⊂ E

′
(we remark that E ′ is non-

empty due to the properties s|E′ �= 0 and s ≥ 0). Since s ≥ 0, by construction

both s|E′\E′ = 0 and s|E′ > 0 are satisfied. By hypothesis we know as well that

s|V 2\E = 0, which combined with s|E′ > 0 necessarily yields E ′ ⊂ E. Then, for all

(i, j) ∈ E ′ ⊂ E:

0 < s(i, j) = max
(
0, s(i, j)

)
=⇒ s(i, j) = s(i, j) > 0,

i.e. s|E′ = s|E′ > 0 holds; along with s|E′\E′ = 0, we deduce:

∑
(i,j)∈E′

s(i, j) =
∑

(i,j)∈E′\E′

s(i, j) +
∑

(i,j)∈E′
s(i, j)

= 0 +
∑

(i,j)∈E′
s(i, j)

=
∑

(i,j)∈E′
s(i, j).



2.2. Maximum acyclic subgraph and minimum feedback arc set 27

Finally, proving that (V,E ′) is a DAG is trivial: it is a subgraph of the acyclic

tournament (V,E
′
) and removing arcs cannot introduce any cycle.

2. Let (V,E ′) a DAG such that E ′ ⊂ E and s|E′ > 0. Without loss of generality,

let us assume (V,E ′) has d nodes. Denoting A′ the adjacency matrix of the DAG

(V,E ′), Lemma 3 ensures there is a permutation operator π : V → V and a strictly

upper-triangular matrix T satisfying A′ =
(
T [π(i), π(j)]

)
(i,j)∈�0,d−1�2

. Now, define

the following matrices:

T :=

⎡⎢⎢⎢⎢⎢⎣
0 1 . . . 1
...

. . . . . .
...

...
. . . 1

0 . . . . . . 0

⎤⎥⎥⎥⎥⎥⎦ and A
′
:=

(
T [π(i), π(j)]

)
(i,j)∈�0,d−1�2

.

With T strictly upper-triangular, Lemma 3 ensures the digraph (V,E
′
) with adja-

cency matrix A
′
is a DAG (where E

′ ⊂ V 2). It is in fact an acyclic tournament

since for all (i, j) ∈ �0, d− 1�2 where i, j are distinct:

A
′
[i, j] = 0 ⇐⇒ T [π(i), π(j)] = 0

⇐⇒ T [π(j), π(i)] = 1

⇐⇒ A
′
[j, i] = 1.

Notice as well that for all (i, j) ∈ �0, d− 1�2:

A′[i, j] = 1 ⇐⇒ T [π(i), π(j)] = 1

=⇒ T [π(i), π(j)] = 1

⇐⇒ A
′
[i, j] = 1,

i.e. E ′ ⊂ E
′
. Finally, with E ′ ⊂ E and s|E′ > 0 it is clear by construction of s

that s|E′ = s|E′ > 0 holds (and the latter combined with E ′ ⊂ E
′
also ensures that

s|E′ �= 0); along with s ≥ 0, we conclude:

∑
(i,j)∈E′

s(i, j) =
∑

(i,j)∈E′\E′

s(i, j) +
∑

(i,j)∈E′
s(i, j)

≥
∑

(i,j)∈E′
s(i, j)

=
∑

(i,j)∈E′
s(i, j).



28 Chapter 2. Background

Lemma 7. Let G = (V,E, s) a weighted digraph containing at least one arc with strictly

non-negative weight. Construct the complete weighted digraph G = (V, V 2, s) as follows:

∀(i, j) ∈ V 2, s(i, j) =

{
max

(
0, s(i, j)

)
if (i, j) ∈ E

0 otherwise.
(2.11)

Also let (V,E∗, s) MAT
(
G
)
-optimal (which is certain to exist since G is complete). Then,

one can construct (V,E∗, s) MAS(G)-optimal satisfying:

E∗ ⊂ E∗ and
∑

(i,j)∈E∗

s(i, j) =
∑

(i,j)∈E∗

s(i, j). (2.12)

Proof. Due to the fact that (V,E∗, s) is MAT
(
G
)
-optimal, we get in particular that

(V,E∗, s) is MAT
(
G
)
-admissible and s|E∗ �= 0: to see the latter, suppose by way of con-

tradiction that s|E∗ = 0; but then one could construct an acyclic tournament containing

one of those arcs in G with strictly non-negative weight, effectively contradicting the

optimality of (V,E∗, s). The first clause of Lemma 6 then ensures one can construct

(V,E∗, s) MAS(G)-admissible satisfying:

E∗ ⊂ E∗ and
∑

(i,j)∈E∗

s(i, j) =
∑

(i,j)∈E∗

s(i, j).

All is left is to show that (V,E∗, s) is in fact optimal for the weighted MAS problem given

G as input. Suppose by way of contradiction that (V,E∗, s) is not MAS(G)-optimal,

i.e. there exists (V,E ′
∗, s) MAS(G)-admissible with strictly larger sum of arc weights

compared to (V,E∗, s). Now, the second clause of Lemma 6 ensures one can construct

(V,E
′
∗, s) MAT

(
G
)
-admissible satisfying:

E ′
∗ ⊂ E

′
∗ and

∑
(i,j)∈E′∗

s(i, j) ≤
∑

(i,j)∈E′
∗

s(i, j).

Combining results, we thus get:∑
(i,j)∈E∗

s(i, j) =
∑

(i,j)∈E∗

s(i, j)

<
∑

(i,j)∈E′∗

s(i, j)

≤
∑

(i,j)∈E′
∗

s(i, j).

But then, (V,E
′
∗, s) is MAT

(
G
)
-admissible with strictly larger sum of arc weights com-

pared to (V,E∗, s), a contradiction since (V,E∗, s) is MAT
(
G
)
-optimal.



2.3. On the theoretical complexity of MAS and FAS 29

2.3 On the theoretical complexity of MAS and FAS

In light of Lemma 2 which equivalently restates acyclicity as having a topological order,

it is clear that at their core both MAS and FAS are permutation problems: given an

input digraph (V,E), a brute-force strategy solving these problems would involve testing

every possible permutation of the nodes for a naive complexity of O
(
|V |!

)
.

Non-trivial exact algorithms are fortunately known: it was showed by Bodlaender et al.

[2012] that several vertex ordering problems (including FAS) could be solved in O∗(2|V |)
time and O∗(2|V |) space using dynamic programming (similar to the work of Held and

Karp [1961] for the travelling salesman problem), or O∗(4|V |) time and polynomial space

using divide-and-conquer (similar to the work of Gurevich and Shelah [1987] for the

travelling salesman problem); it was also showed by Raman and Saurabh [2007] that

MAS and FAS could be solved in O∗(2|V |) time and O∗(2|V |) space. In fact, a trade-

off between time and space exists for permutation problems (including MAS and FAS)

[Koivisto and Parviainen, 2010]: more precisely, the authors showed that permutation

problems (on n elements) could be solved in O∗(T n
)
time and O∗(Sn

)
space where

TS < 4 and
√
2 < S < 2. Importantly, an exact algorithm solving the minimum feedback

vertex set (FVS) problem in O∗(1.9977|V |) time and polynomial space was introduced

[Razgon, 2007], which readily gives a O∗(1.9977|E|) time and polynomial space exact

algorithm for FAS, via a linear time reduction from FVS to FAS [Festa et al., 1999].

From the perspective of parameterized complexity (see Downey and Fellows [2013]’s book

for further reference on this topic), we note that fixed-parameter tractable algorithms

exist for FAS (parameterized by the size of the minimum feedback arc set [Chen et al.,

2008] or by treewidth [Bonamy et al., 2018]) and for MAS (parameterized by the size of

the maximum acyclic subgraph [Fernau and Raible, 2008; Raman and Saurabh, 2007]).

More singular is the existence of Monte-Carlo randomized algorithms solving FAS in

polynomial time with arbitrary probability [Kudelic, 2016; Kudelic and Ivkovic, 2019].

Special classes of digraphs exist for which solving MAS and FAS is easier: polynomial

time algorithms solving FAS were found for planar digraphs [Lucchesi and Younger,

1978], weakly acyclic digraphs [Grötschel et al., 1985] reducible flow digraphs [Ramachan-

dran, 1988] and more recently on resolvable digraphs [Hecht, 2018]. Moreover, an exact

algorithm solving MAS for (1, n)-graphs was proposed [Fernau and Raible, 2008] with

an advantageous time complexity of O∗(1.1871|E|).
In addition to being NP-hard problems [Karp, 1972], MAS and FAS are known to be

APX-hard [Papadimitriou and Yannakakis, 1991]; remember that unless P = NP, no

APX-hard problem (including MAS and FAS) has a polynomial time approximation



30 Chapter 2. Background

scheme (PTAS) [Ausiello et al., 1995]. We note however that a PTAS exists for FAS

restricted to tournaments [Kenyon-Mathieu and Schudy, 2006]. Best known approxima-

tion algorithms for MAS and FAS have an approximation factor of 1
2
+ Ω
(
log(|V |)−1

)
[Charikar et al., 2007] and O

(
log(|V |) log log(|V |)

)
[Seymour, 1995], respectively.

2.4 Basics on integer linear programming

This short section gives a synthetic presentation of an important class of optimization

problems, the so-called mixed-integer linear programs (MILPs), which given a matrix

A ∈ R
m,n and two vectors b ∈ R

m and c ∈ R
n take the following form:

argmin
x∈Rn

ctx (2.13)

s.t.

⎧⎪⎨⎪⎩
Ax = b

x = [xreal|xint]

xreal ⊂ R, xint ⊂ Z.

Essentially, a MILP is a linear program (LP) where some of the variables are constrained

to take integer values only (when all variables are constrained that way, we simply call it

an ILP). This difference is critical: while it is well known that regular linear programming

is solvable in polynomial time [Karmarkar, 1984; Khachiyan, 1979], (mixed-)integer linear

programming on the other hand is NP-hard (the particular case of 0-1 integer linear

programming in fact belongs to Karp [1972]’s 21 NP-hard problems).

A competitive strategy for solving MILPs is to use a branch and cut procedure (a branch

and bound algorithm [Land and Doig, 2010] combined with cutting planes) embedding

an efficient LP solver. A high level and simplified description of the procedure follows:

first the integrality constraint on the integer variables xint is relaxed which gives a linear

program efficiently solvable (two state-of-the-art LP solvers are the simplex [Dantzig,

1990] and certain interior point [Gondzio, 2012] algorithms); second, every relaxed integer

variable xint[i] taking value
◦
xint[i] is inspected. If this value is fractional, linear constraints

are added to remove it from the search space, which corresponds to the cutting part:

◦
xint[i] /∈ Z =⇒ Add linear constraints

⎧⎪⎪⎨⎪⎪⎩
xint[i] ≤

⌊◦
xint[i]

⌋
xint[i] ≥

⌈◦
xint[i]

⌉
.

(2.14)

Since these two constraints cannot hold at the same time, two new linear programs are

created, each receiving one of the two constraints: this is the branching part. Repeat-



2.5. ILPs for weighted MAS and FAS problems 31

ing this branching process yields a search tree of LPs that are relaxations of the original

MILP. As a byproduct, assuming the MILP is a minimization problem, the largest opti-

mal score among LP relaxations in the search tree is the tightest lower bound available

on the MILP’s optimal score; besides, when all relaxed integer variables do take integral

values, a valid integral solution is found which yields an upper bound on the MILP’s

optimal score. The algorithm stops when the lower bound and the upper bound on the

MILP’s optimal score coincide, that is the algorithm is exact.

2.5 ILPs for weighted MAS and FAS problems

This section builds upon Section 2.2, translating the mathematical framework behind the

weighted maximum acyclic subgraph problem into various exact optimization strategies.

In order for the reader to better assess the practical cost of acyclicity, these different

strategies were implemented as integer linear programs (briefly introduced in Section 2.4)

and a scalability experiment was conducted (see Figure 2.5).

Weighted MAS problems (as presented in Definition 11) can be formulated as ILPs.

Formally, given a weighted digraph G = (V,E, s) and denoting E+ the set of arcs with

strictly non-negative weights, we create the set of binary variables I =
{
I(i, j) ∈ {0, 1} :

(i, j) ∈ E+

}
, where I(i, j) takes value 1 if the corresponding arc is in the solution, 0

otherwise. Then, the weighted MAS problem as formulated in Equation 2.5 (given G as

input) can be equivalently rewritten:

I∗ = argmax
I

∑
(i,j)∈E+

s(i, j)I(i, j)

s.t. I represents a DAG,
(2.15)

where the global constraint “I represents a DAG” must be formalized into a set of linear

constraints. Based on Definition 7, an immediate formalization is to add constraints

removing every existing cycle in the input digraph. Formally, let C(G) denote the set

of all cycles contained in G; given a l-cycle of the form v0 → · · · → vl−1 → v0 ∈ C(G),
one can ensure this cycle is cut from the search space by enforcing the following integer

linear constraint:
l−1∑
k=0

I(vk, vk+1 mod l) ≤ l − 1. (2.16)

This follows immediately from the fact that the left hand-side in the previous constraint is

a sum of l binary variables, such that at least one of these variables is forced to take value

0; but then, I(vk, vk+1 mod l) = 0 means exactly that the arc (vk, vk+1 mod l) is not in the

solution, effectively cutting the cycle v0 → · · · → vl−1 → v0. Although easily formalized,



32 Chapter 2. Background

this approach has an important drawback in practice: the number of cycles in a digraph

may grow super-exponentially with the number of nodes (see Figure 2.3 in which the

extreme case of complete digraphs is discussed). In fact, even sparse digraphs may

contain a prohibitive amount of cycles, as emphasized in Figure 2.4. It is well-known that

counting cycles in a digraph is a #P-hard problem [Valiant, 1979] and the best available

algorithms for cycle enumeration have time complexity O
(
(|V |+ |E|)× (|C|+ 1)

)
given

an input digraph with |V | nodes, |E| arcs and |C| (elementary) cycles [Johnson, 1975;

Tarjan, 1973].

2-cycles2-cycles2-cycles 3-cycles3-cycles3-cycles 4-cycles4-cycles4-cycles

Figure 2.3: Visualization of every cycle in a complete digraph with 4 nodes. In general, a
complete digraph with d nodes has (l− 1)! ·

(
d
l

)
l-cycles. If l ≤ 2, (l− 1)! = 1 i.e. l-cycles

where l ≤ 2 have a single orientation (represented in green for l = 2); otherwise, 2 is a
divisor of (l − 1)! i.e. l-cycles where l > 2 have two orientations (represented in red and
blue for l = 3, 4). The total number of cycles grows super-exponentially in the number
of nodes. Assuming all orientations are depicted on the same subplot, one would need
in order to visualize every cycle in a complete digraph with 5 (respectively 6) nodes a
total of 47 (respectively 212) subplots.

Fortunately, one does not need to enforce cycle constraints for every cycle in the in-

put digraph in order to guarantee acyclicity, rendering exhaustive cycle enumeration

unnecessary: indeed, state-of-the-art ILP solvers [Bestuzheva et al., 2021; Gurobi Op-

timization, LLC, 2023; ILOG CPLEX Optimization Studio, 2022; MOSEK ApS, 2022]

offer the possibility to lazily add constraints to the optimization model during the opti-

mization process. In practice, without the global constraint “I represents a DAG”, an



2.5. ILPs for weighted MAS and FAS problems 33

ILP solver may return an optimal solution to Equation 2.15 that contains a fraction of

the cycles found in the input digraph; when this happens, it suffices to invalidate the

current optimal solution by injecting linear constraints (as described in Equation 2.16)

cutting this fraction of the cycles. The optimization process is then resumed with the

newly added constraints; this strategy is repeated until an acyclic optimal solution is

returned by the ILP solver. This so-called lazy strategy was recently investigated [Ba-

harev et al., 2021; Grötschel et al., 2022] and proved to scale significantly better than

the classical approach relying on exhaustive cycle enumeration.

Figure 2.4: Visualization of the number of cycles in randomly generated digraphs. Di-
graphs are generated starting from a complete digraph with d nodes; for every arc in
the complete digraph, that arc has probability k

d
to be kept, resulting in sparse digraphs

with average in-degree converging to k as d increases. Bar plots and error bars rep-
resent the mean and the standard deviation of the number of cycles in 50 randomly
generated digraphs for every tested pair (d, k). We note v0 → · · · → vl−1 → v0 and
vi → · · · → vl−1 → v0 → · · · → vi are counted as a single cycle. Both the mean and
the standard deviation quickly explode even when the number of nodes is small and the
generated digraphs are sparse.

It turns out that one can in fact model weighted MAS problems as ILPs with a number of

linear constraints independent from the number of cycles contained in the input digraph.



34 Chapter 2. Background

This other implementation relies on the fact that solving a weighted MAS instance

reduces to solving a related weighted MAT instance, as demonstrated in Lemma 7.

Formally, given a weighted digraph G = (V,E, s) we construct the complete weighted

digraph G = (V, V 2, s) satisfying Equation 2.11; we also create the set of binary variables

I =
{
I(i, j) ∈ {0, 1} : (i, j) ∈ V 2

}
, where I(i, j) takes value 1 if the corresponding arc

is in the solution, 0 otherwise. Then, the weighted MAT problem as formulated in

Equation 2.7 (given G as input) can be equivalently rewritten:

I∗ = argmax
I

∑
(i,j)∈V 2 s(i, j)I(i, j)

s.t. I represents an acyclic tournament,
(2.17)

where the global constraint “I represents an acyclic tournament” must be formalized

into a set of linear constraints. This set is readily given by Lemma 4, which tells us

that acyclic tournaments are exactly those digraphs with a complete skeleton and no 2

or 3-cycle. The following set of linear constraints ensures these properties are satisfied

when G has d nodes:{
∀(i, j) ∈ �0, d− 1�2 : i, j distinct, I(i, j) + I(j, i) = 1

∀(i, j, k) ∈ �0, d− 1�3 : i, j, k distinct, I(i, j) + I(j, k) + I(k, i) ≤ 2.
(2.18)

As desired, the cardinality of the previous set of constraints is independent from the

number of cycles in G (and G). It is however dominated by the number of 3-cycles in a

complete digraph with d nodes, precisely 2 ·
(
d
3

)
(i.e. resulting in a number of constraints

that is cubic in the number of nodes and irrespective of the sparsity of the initial digraph

G; see Table 2.1). Now, Lemmas 6, 7 ensure that an optimal solution for the weighted

MAS problem given G as input is I∗ =
{
I∗(i, j) := I∗(i, j) · 1|s(i,j)>0 : (i, j) ∈ V 2

}
.

MAS ILP type # Binary variables # Linear constraints

Acyclic tournament |V |2 − |V | 2 ·
(|V |

3

)
+
(|V |

2

)
Full cycle set cover |E+| |C|
Lazy cycle set cover |E+| ≤ |C|

Table 2.1: Number of binary variables and linear constraints needed to model various
ILPs solving a weighted MAS problem given as input a weighted digraph with node set
V , strictly non-negative arc set E+ and cycle set cover C.

Figure 2.5 illustrates the practical difference between the acyclic tournament and the

lazy cycle set cover MAS ILP formulations. We empirically showed that:

• Setting the acyclic tournament MAS ILP formulation scales very unfavorably com-

pared to setting the lazy cycle set cover MAS ILP formulation.



2.5. ILPs for weighted MAS and FAS problems 35

• Solving the acyclic tournament MAS ILP formulation scales poorly compared to

solving the lazy cycle set cover MAS ILP formulation, although the difference in

scalability becomes less pronounced as input digraphs become denser.

Figure 2.5: Temporal scalability assessment of ILPs for solving weighted MAS and FAS
problems. Both the tournament-based approach (“T”) and the lazy cycle set cover ap-
proach (“L”) were compared. These ILPs were applied on randomly generated weighted
digraphs with d nodes, k×d arcs on average (where the hyperparameter k controls spar-
sity) and arc weights sampled from a uniform distribution with range [0, 1]

(
50 instances

for every pair (d, k)
)
. Bar plots represent the runtime (in seconds) for setting and solv-

ing ILPs averaged across instances and error bars depict the variance; ordinate axis is
represented in logarithmic scale for clarity. When the number of nodes d increases by an
order of magnitude, both the setting and solving runtime in the tournament-based vari-
ant increase by 3 to 4 orders of magnitude, whereas the setting and solving runtime in
the lazy cycle set cover variant merely increase by 1 to 2 orders of magnitude. ILPs for
MAS and FAS exhibit very similar temporal scalability. Hardware: Intel Core i7-9750H
CPU 2.6GHz × 12; Software: Gurobi 10.0.1.



36 Chapter 2. Background

2.6 Greedy heuristics for weighted MAS and FAS

problems

The exponential complexity of exact algorithms for MAS and FAS (see Section 2.3)

renders these algorithms unsuited for large input digraphs. Instead, one typically resorts

to using heuristics [Simpson et al., 2016]: these include DFS-based [Even and Even,

2012] and sort-based [Ailon et al., 2008; Brandenburg and Hanauer, 2011] heuristics,

but also the well known Berger and Shor [1990] and Eades et al. [1993] heuristics. The

latter (Eades’) is a class of greedy algorithms approximately solving FAS and the original

heuristic [Eades et al., 1993] is guaranteed to return solutions with at most 1
2
|E| − 1

6
|V |

arcs given an input (unweighted) digraph (V,E), although Simpson et al. [2016] report

that greedy heuristics tend to perform significantly better than the worst case in practice.

Greedy heuristics for solving weighted MAS and FAS problems build upon the idea that

the acyclicity property in digraphs can be equivalently restated as identifying a permu-

tation of the nodes and a strictly upper-triangular matrix obtained by permuting the

adjacency matrix of the digraph with that permutation (see Lemma 3). In other words,

one will be able to identify a large acyclic subgraph (respectively a small feedback arc

set) by finding a permutation of the nodes such that the image of the weighted adja-

cency matrix by this permutation would mostly have arcs with large weights (respectively

small weights) in the top-right corner, also called forward arcs: this first step is described

in Algorithms 2.1-2.4, where the permutation is sequentially constructed based on lo-

cally optimal decisions as illustrated in Figure 2.6; then, as a consequence of Lemma 3

(and Remark 2) it suffices to project on the top-right corner (respectively bottom-left

corner) in order to recover the approximate maximum acyclic subgraph: this second

step is described in Algorithm 2.11. Notice that in the aforementioned first step, Algo-

rithms 2.1, 2.2 greedily construct the permutation by inspecting the sum of weights of

outgoing arcs (outscores) whereas Algorithms 2.3, 2.4 greedily construct the permutation

by inspecting the sum of weights of incoming arcs (inscores).

Alternatively, a more involved procedure can be used for the first step: by attempting to

maximize the absolute difference between outscores and inscores as in Algorithm 2.5, one

can hope to identify more efficiently these structures in the input weighted digraph where

breaking a potential cycle can be achieved while retaining most of the arc weights (see

Figure 2.7 for an illustration of this idea). Although very similar in their implementation,

Algorithms 2.1-2.5 result in heuristics whose practical behavior may be surprisingly

different depending on the properties of the weighted digraph they receive as input, as

illustrated in Figure 2.8. In short, greedy FAS variants (Algorithms 2.2, 2.4) noticeably

outperform other greedy heuristics given sufficiently sparse instances. This matters in



2.6. Greedy heuristics for weighted MAS and FAS problems 37

the context of Bayesian network structure learning, where sparsity is often a desired

property.

Figure 2.6: Visualization of the four greedy MAS and FAS variants whose pseudo-codes
are given in Algorithms 2.1-2.4. MAS (respectively FAS) variants attempt to fill as
much (respectively little) weight inside the top-right corner of the matrix (representing
the input weighted digraph permuted by the permutation operator greedily constructed);
they are depicted on the left (respectively on the right) with a red (respectively blue)
colormap. Colormaps indicate the order in which greedy heuristics fill the matrix based
on the iteration (there are always d− 1 iterations given an input digraph with d nodes):
outscore-based (respectively inscore-based) variants are depicted at the top (respectively
at the bottom), filling the top-right corner of the matrix from the top rows up to the
bottom ones (respectively from the right columns up to the left ones).



38 Chapter 2. Background

Algorithm 2.1 Greedy permutation for

weighted MAS (outscore-based)

Input: G = (V,E, s) : V = �0, d− 1�

Output: Permutation π : V → V

1: V1 = V

2: for r from 1 to d do

3: vr = argmax
i∈Vr

∑
j∈Vr\{i} s(i, j)

4: π : vr �→ r − 1

5: Vr+1 = Vr \ {vr}
6: end for

7: return π

Algorithm 2.2 Greedy permutation for

weighted FAS (outscore-based)

Input: G = (V,E, s) : V = �0, d− 1�

Output: Permutation π : V → V

1: V1 = V

2: for r from 1 to d do

3: vr = argmin
i∈Vr

∑
j∈Vr\{i} s(i, j)

4: π : vr �→ r − 1

5: Vr+1 = Vr \ {vr}
6: end for

7: return π

Algorithm 2.3 Greedy permutation for

weighted MAS (inscore-based)

Input: G = (V,E, s) : V = �0, d− 1�

Output: Permutation π : V → V

1: V1 = V

2: for r from 1 to d do

3: vr = argmax
j∈Vr

∑
i∈Vr\{j} s(i, j)

4: π : vr �→ d− r

5: Vr+1 = Vr \ {vr}
6: end for

7: return π

Algorithm 2.4 Greedy permutation for

weighted FAS (inscore-based)

Input: G = (V,E, s) : V = �0, d− 1�

Output: Permutation π : V → V

1: V1 = V

2: for r from 1 to d do

3: vr = argmin
j∈Vr

∑
i∈Vr\{j} s(i, j)

4: π : vr �→ d− r

5: Vr+1 = Vr \ {vr}
6: end for

7: return π

We remark that the naive algorithmic complexity of Algorithms 2.1-2.5 is O
(
|V |2

)
, since

these heuristics consist of |V | iterations, where every iteration itself has complexity

O
(
|V |

)
. An implementation relying on efficient data structures was proposed [Simpson

et al., 2016] to bring the complexity down to O
(
|V |+ |E|

)
in both time and space, effec-

tively taking advantage of the input digraph’s sparsity (in terms of the number of arcs).

When dealing with weighted instances however, it may happen that the input digraph

is complete, yet only a small portion of arcs have significant weight. In this context, one

should resort to using vectorized implementations (see vectorized Algorithms 2.6-2.10)

whose scalability will only depend on the number of nodes in the input digraph, irrespec-

tive of its arc set; we stress that greedy heuristics can only be partially vectorized owing

to their sequential nature. As a byproduct, the possibility to (partially) vectorize greedy

heuristics enables to approximately solve combinatorial problems such as weighted MAS



2.6. Greedy heuristics for weighted MAS and FAS problems 39

and FAS on specialised hardware capable of handling parallelism, notably GPUs.

Algorithm 2.5 Advanced greedy permutation for weighted MAS

Input: G = (V,E, s) : V = �0, d− 1�

Output: Permutation π : V → V

1: V1 = V , rstart = 0, rend = 0

2: for r from 1 to d do

3: fr : k ∈ Vr �→
∑

j∈Vr\{k} s(k, j)−
∑

i∈Vr\{k} s(i, k)

4: vr = argmax
k∈Vr

|fr(k)|
5: if fr(vr) > 0 then

6: rstart += 1

7: π : vr �→ rstart − 1

8: else

9: rend += 1

10: π : vr �→ d− rend

11: end if

12: Vr+1 = Vr \ {vr}
13: end for

14: return π

in MAS

in FAS

in FAS

in MAS

Figure 2.7: Illustration of the greedy strategy used in Algorithm 2.5: the heuristic priori-
tizes in finding those nodes for which the absolute difference between outscores (depicted
in cyan) and inscores (depicted in magenta) is large. When the outscores dominate (left),
outgoing arcs are placed inside the maximum acyclic subgraph whereas incoming arcs
are placed inside the minimum feedback arc set; when the inscores dominate (right), in-
coming arcs are placed inside the maximum acyclic subgraph whereas outgoing arcs are
placed inside the minimum feedback arc set. Doing so, any cycle passing through the
node is cut while retaining as much weight as possible in the maximum acyclic subgraph.



40 Chapter 2. Background

Algorithm 2.6 Vectorized greedy permu-

tation for weighted MAS (outscore-based)

Input: W ∈ R
d×d

Output: Permutation vector π

1: π = zeros(d), I = identity(d)

2: W [I] = 0

3: outscores = W .sum(dim=1)

4: for r from 1 to d do

5: vr = argmax(outscores)

6: π[r − 1] = vr

7: outscores[vr] = −∞
8: outscores −= W [:, vr]

9: end for

10: return π

Algorithm 2.7 Vectorized greedy permu-

tation for weighted FAS (outscore-based)

Input: W ∈ R
d×d

Output: Permutation vector π

1: π = zeros(d), I = identity(d)

2: W [I] = 0

3: outscores = W .sum(dim=1)

4: for r from 1 to d do

5: vr = argmin(outscores)

6: π[r − 1] = vr

7: outscores[vr] = +∞
8: outscores −= W [:, vr]

9: end for

10: return π

Algorithm 2.8 Vectorized greedy permu-

tation for weighted MAS (inscore-based)

Input: W ∈ R
d×d

Output: Permutation vector π

1: π = zeros(d), I = identity(d)

2: W [I] = 0

3: inscores = W .sum(dim=0)

4: for r from 1 to d do

5: vr = argmax(inscores)

6: π[d− r] = vr

7: inscores[vr] = −∞
8: inscores −= W [vr, :]

9: end for

10: return π

Algorithm 2.9 Vectorized greedy permu-

tation for weighted FAS (inscore-based)

Input: W ∈ R
d×d

Output: Permutation vector π

1: π = zeros(d), I = identity(d)

2: W [I] = 0

3: inscores = W .sum(dim=0)

4: for r from 1 to d do

5: vr = argmin(inscores)

6: π[d− r] = vr

7: inscores[vr] = +∞
8: inscores −= W [vr, :]

9: end for

10: return π



2.6. Greedy heuristics for weighted MAS and FAS problems 41

Algorithm 2.10 Vectorized advanced greedy permutation for weighted MAS

Input: W ∈ R
d×d

Output: Permutation vector π

1: π = zeros(d), I = identity(d)

2: W [I] = 0

3: Wdiff = W − transpose(W )

4: scores = Wdiff.sum(dim=1)

5: squared-scores = power(scores, 2)

6: rstart = 0, rend = 0

7: for r from 1 to d do

8: vr = argmax(squared-scores)

9: if scores[vr] > 0 then

10: rstart += 1

11: π[rstart − 1] = vr

12: else

13: rend += 1

14: π[d− rend] = vr

15: end if

16: squared-scores[vr] = −∞
17: s = Wdiff[:, vr]

18: squared-scores −= multiply(s, 2 · scores− s)

19: scores −= s

20: end for

21: return π

Algorithm 2.11 Topological order-based acyclic projection

Input: G = (V,E) : V = �0, d − 1� with adjacency matrix Ã, permutation operator

π : V → V , projection corner

Output: Acyclic projection A of Ã

1: T =
(
Ã[π−1(i), π−1(j)]

)
(i,j)∈�0,d−1�2

2: if projection corner = top-right then

3: ∀i ≥ j : set T [i, j] = 0

4: else if projection corner = bottom-left then

5: ∀i ≤ j : set T [i, j] = 0

6: end if

7: A =
(
T [π(i), π(j)]

)
(i,j)∈�0,d−1�2

8: return A



42 Chapter 2. Background

Figure 2.8: Empirical comparison of the five greedy MAS and FAS variants whose pseudo-
codes are given in Algorithms 2.1-2.5. These heuristics were applied on randomly gen-
erated weighted digraphs with d = 50 nodes, k × d arcs on average (where the hyper-
parameter k controls sparsity) and arc weights sampled from various Beta distributions
(50 instances for every pair of k and Beta distribution). Heuristics were compared using
the MAS ratio metric, that is the ratio between the sum of arc weights in the approxi-
mate MAS solution and the sum of arc weights in the input weighted digraph. Bar plots
represent MAS ratios averaged across instances and error bars depict the variance; addi-
tionally, colored horizontal lines provide optimal MAS ratios averaged across instances
and were obtained using an exact MAS algorithm. In extreme sparsity setting (k = 1),
Algorithms 2.2, 2.4 (greedy FAS variants) significantly outperform Algorithms 2.1, 2.3
(greedy MAS variants) and slightly outperform Algorithm 2.5 (advanced greedy MAS
variant). As k increases, the performance of Algorithms 2.1-2.4 becomes more similar,
while Algorithm 2.5 takes the lead.



2.7. Proximal gradient descent 43

2.7 Proximal gradient descent

In this section, we provide theoretical background from convex optimization, more specif-

ically the problem of minimizing a composite convex function where both components

are convex but only one of the components is smooth. Such functions are typically en-

countered in machine learning in the presence of a non-smooth but convex regularizer,

as in LASSO [Tibshirani, 1996] where the L1 norm is used to promote sparsity.

The proximal gradient descent algorithm is a tailored optimizer for aforementioned op-

timization problems and we recall some of its theoretical analysis; the famous iterative

shrinkage-thresholding algorithm (ISTA, described in Algorithm 2.12) is the classical

(non-accelerated) variant of proximal gradient descent. In particular, a key result that

is used in this thesis (see Lemma 42) is the so-called descent lemma (Lemma 10), which

states that the sequence generated by proximal gradient descent is guaranteed to decrease

function value when minimizing a function of the aforementioned class.

This section assumes the reader is familiar with the field of convex analysis and notably

with the notion of subgradient (represented by the functional operator g �→ ∂g), gener-

alizing gradients to convex functions even at points of non-differentiability. A refresher

on important notions from convex analysis is provided in Appendix (Sections 5.1-5.4).

Proximal gradient descent, much like gradient descent, is an iterative process for updating

parameters in order to decrease function value. Every update consists in minimizing a

least-squared-regularized subproblem, also called a proximal operator :

Definition 14. Let g : Rn → R a convex function and a ∈ R
n. The proximal operator

at point aaa of g is defined as:

Prox(g)(a) = argmin
x∈Rn

(
g(x) +

1

2
‖x− a‖2

)
.

Definition 15. Let f : Rn → R a convex differentiable function with an L-Lipschitz con-

tinuous gradient and g : Rn → R a convex function. The proximal gradient descent

algorithm is the optimizer generating new parameters xk from previous parameters xk−1

as follows:

xk = argmin
x∈Rn

(
g(x) +

γ−1
k

2

∥∥x− (
xk−1 − γk∇f(xk−1)

)∥∥2
)

where γk ∈
]
0, L−1

]
. (2.19)

An equivalent definition is:

xk = Prox(γkg)
(
xk−1 − γk∇f(xk−1)

)
where γk ∈

]
0, L−1

]
. (2.20)



44 Chapter 2. Background

Lemmas 8, 9, quite technical, are needed for the convergence analysis of the (non-

accelerated) proximal gradient descent:

Lemma 8. Let f : Rn → R a function differentiable at xk−1, g : Rn → R a convex

function and γk > 0. Then the following holds:

xk = Prox(γkg)
(
xk−1−γk∇f(xk−1)

)
⇐⇒ γ−1

k (xk−1−xk)−∇f(xk−1) ∈ ∂g(xk). (2.21)

Proof. Let us write h : x �→ γ−1
k

2

∥∥x−(
xk−1−γk∇f(xk−1)

)∥∥2
. The function h is clearly con-

vex and differentiable; its gradient at xk is ∇h(xk) = γ−1
k

(
xk−xk−1+γk∇f(xk−1)

)
. Now,

by definition of the proximal operator and using the three first clauses from Lemma 27,

we deduce:

xk = Prox(γkg)
(
xk−1 − γk∇f(xk−1)

)
⇐⇒ xk = argmin

x∈Rn

(
g(x) + h(x)

)
⇐⇒ 0 ∈ ∂(g + h)(xk)

⇐⇒ 0 ∈ ∂g(xk) + ∂h(xk)

⇐⇒ 0 ∈ ∂g(xk) + {∇h(xk)}
⇐⇒ 0 ∈ ∂g(xk)

+
{
γ−1
k

(
xk − xk−1 + γk∇f(xk−1)

)}
⇐⇒ − γ−1

k

(
xk − xk−1 + γk∇f(xk−1)

)
∈ ∂g(xk)

⇐⇒ γ−1
k (xk−1 − xk)−∇f(xk−1) ∈ ∂g(xk).

Lemma 9. Let f : Rn → R a convex differentiable function with an L-Lipschitz con-

tinuous gradient and g : Rn → R a convex function. Consider φ = f + g and generate

xk = Prox(γkg)
(
xk−1 − γk∇f(xk−1)

)
where γk ∈ ]0, L−1]. Then the following holds:

∀x ∈ R
n, φ(xk) ≤ φ(x) + γ−1

k 〈xk−1 − xk, xk−1 − x〉 − γ−1
k

2
‖xk − xk−1‖2. (2.22)

Proof. Fix x ∈ R
n. Firstly, since f is differentiable with an L-Lipschitz continuous

gradient we can use Lemma 33 and obtain:

f(xk) ≤ f(xk−1) +
〈
∇f(xk−1), xk − xk−1

〉
+

L

2
‖xk − xk−1‖2

≤ f(xk−1) +
〈
∇f(xk−1), xk − xk−1

〉
+

γ−1
k

2
‖xk − xk−1‖2.

Secondly, since f is convex and differentiable, Lemma 28 yields:

f(x)− f(xk−1) ≥
〈
∇f(xk−1), x− xk−1

〉
,



2.7. Proximal gradient descent 45

that is:

f(xk−1) ≤ f(x) +
〈
∇f(xk−1), xk−1 − x

〉
.

Combined with the previous result, we get:

f(xk) ≤ f(xk−1) +
〈
∇f(xk−1), xk − xk−1

〉
+

γ−1
k

2
‖xk − xk−1‖2

≤ f(x) +
〈
∇f(xk−1), xk−1 − x

〉
+
〈
∇f(xk−1), xk − xk−1

〉
+

γ−1
k

2
‖xk − xk−1‖2

= f(x) +
〈
∇f(xk−1), xk − x

〉
+

γ−1
k

2
‖xk − xk−1‖2.

Thirdly, since f is differentiable and g is convex, Lemma 8 guarantees that one has

γ−1
k (xk−1 − xk)−∇f(xk−1) ∈ ∂g(xk). By definition of subgradient, this implies:

g(x)− g(xk) ≥
〈
γ−1
k (xk−1 − xk)−∇f(xk−1), x− xk

〉
,

that is:

g(xk) ≤ g(x) +
〈
γ−1
k (xk−1 − xk)−∇f(xk−1), xk − x

〉
.

Combined with the previous result, we finally get:

φ(xk) = f(xk) + g(xk)

≤ f(x) +
〈
∇f(xk−1), xk − x

〉
+

γ−1
k

2
‖xk − xk−1‖2

+ g(x) +
〈
γ−1
k (xk−1 − xk)−∇f(xk−1), xk − x

〉
= φ(x) + γ−1

k 〈xk−1 − xk, xk − x〉+ γ−1
k

2
‖xk − xk−1‖2

= φ(x) + γ−1
k

〈
xk−1 − xk, xk−1 − x− (xk−1 − xk)

〉
+

γ−1
k

2
‖xk − xk−1‖2

= φ(x) + γ−1
k

(
〈xk−1 − xk, xk−1 − x〉 − 〈xk−1 − xk, xk−1 − xk〉

)
+

γ−1
k

2
‖xk − xk−1‖2

= φ(x) + γ−1
k 〈xk−1 − xk, xk−1 − x〉 − γ−1

k ‖xk − xk−1‖2 +
γ−1
k

2
‖xk − xk−1‖2

= φ(x) + γ−1
k 〈xk−1 − xk, xk−1 − x〉 − γ−1

k

2
‖xk − xk−1‖2.

Lemma 10 is the very important descent lemma, guaranteeing decrease in function value:

Lemma 10. Let f : Rn → R a convex differentiable function with an L-Lipschitz con-

tinuous gradient and g : Rn → R a convex function. Consider φ = f + g and generate



46 Chapter 2. Background

xk = Prox(γkg)
(
xk−1 − γk∇f(xk−1)

)
where γk ∈ ]0, L−1]. Then the following holds:

φ(xk) ≤ φ(xk−1)−
γ−1
k

2
‖xk − xk−1‖2. (2.23)

Proof. This trivially follows from Lemma 9 applied with x = xk−1.

Lemma 11 crucially bounds the difference between function value at the current param-

eters estimate and the global minimum by a telescopic term:

Lemma 11. Let f : Rn → R a convex differentiable function with an L-Lipschitz con-

tinuous gradient and g : Rn → R a convex function. Consider φ = f + g and generate

xk = Prox(γkg)
(
xk−1 − γk∇f(xk−1)

)
where γk ∈ ]0, L−1]. Then, given any global mini-

mizer x∗ of φ, the following holds:

φ(xk)− φ(x∗) ≤ γ−1
k

2

(
‖xk−1 − x∗‖2 − ‖xk − x∗‖2

)
. (2.24)

Proof. Applying Lemma 9 with x = x∗ yields:

φ(xk)− φ(x∗) ≤ γ−1
k 〈xk−1 − xk, xk−1 − x∗〉 −

γ−1
k

2
‖xk − xk−1‖2

= γ−1
k 〈xk−1 − xk, xk−1 − xk + xk − x∗〉 −

γ−1
k

2
‖xk − xk−1‖2

= γ−1
k ‖xk−1 − xk‖2 + γ−1

k 〈xk−1 − xk, xk − x∗〉 −
γ−1
k

2
‖xk − xk−1‖2

=
γ−1
k

2
‖xk−1 − xk‖2 + γ−1

k 〈xk−1 − xk, xk − x∗〉.

Now, we also have:

‖xk−1 − x∗‖2 − ‖xk − x∗‖2 = ‖xk−1 − xk + xk − x∗‖2 − ‖xk − x∗‖2

= ‖xk−1 − xk‖2 + 2〈xk−1 − xk, xk − x∗〉+ ‖xk − x∗‖2

− ‖xk − x∗‖2

= ‖xk−1 − xk‖2 + 2〈xk−1 − xk, xk − x∗〉,

hence:

φ(xk)− φ(x∗) ≤
γ−1
k

2
‖xk−1 − xk‖2 + γ−1

k 〈xk−1 − xk, xk − x∗〉

=
γ−1
k

2

(
‖xk−1 − xk‖2 + 2〈xk−1 − xk, xk − x∗〉

)
=

γ−1
k

2

(
‖xk−1 − x∗‖2 − ‖xk − x∗‖2

)
.



2.7. Proximal gradient descent 47

We are now ready to re-establish in Lemma 12 the well known O( 1
k
) convergence rate

(where k is the number of iterations) of the (non-accelerated) proximal gradient descent

algorithm described in Definition 15. More precisely, we focus on the ISTA optimization

scheme with constant learning rate (Algorithm 2.12):

Algorithm 2.12 ISTA [Beck and Teboulle, 2009] (constant step)

Input: φ = f + g : Rn �→ R convex with global minimizer x∗, where f convex differen-

tiable with L-Lipschitz continuous gradient, g convex; x0 ∈ R
n

Output: xk −→
k→+∞

x∗
1: for k from 1 to . . . do

2: zk = xk−1 − L−1∇f(xk−1)

3: xk = Prox(L−1g)(zk)

4: end for

5: return (xk)k

Lemma 12. Let f : Rn → R a convex differentiable function with an L-Lipschitz con-

tinuous gradient and g : Rn → R a convex function. Consider φ = f + g, let x∗ denote a

global minimizer of φ and generate the parameters sequence (xk)k with Algorithm 2.12.

Then the following holds:

∀k > 0, φ(xk)− φ(x∗) ≤
L

2k
‖x0 − x∗‖2. (2.25)

Proof. Fix k > 0. Applying Lemma 11 for every j ∈ �1, k� yields:

∀j ∈ �1, k�, φ(xj)− φ(x∗) ≤
γ−1
j

2

(
‖xj−1 − x∗‖2 − ‖xj − x∗‖2

)
=

L

2

(
‖xj−1 − x∗‖2 − ‖xj − x∗‖2

)
.

Notice that the right-hand side in the last equation is a telescopic term; additionally,

Lemma 10 clearly ensures that φ(xk) ≤ φ(xj) for all j ∈ �1, k�. These two remarks



48 Chapter 2. Background

combined let us conclude:

φ(xk)− φ(x∗) ≤
1

k

k∑
j=1

(
φ(xj)− φ(x∗)

)
≤ 1

k

k∑
j=1

L

2

(
‖xj−1 − x∗‖2 − ‖xj − x∗‖2

)
=

L

2k

(
‖x0 − x∗‖2 − ‖xk − x∗‖2

)
≤ L

2k
‖x0 − x∗‖2.

2.8 Accelerated proximal gradient descent

In this brief section we summarize important achievements in terms of developing efficient

(both theoretically and practically) optimization schemes for the problem of minimizing

composite convex functions.

In a celebrated work, Nesterov [1983] was able to bring the convergence rate of gradient

descent (the smooth special case of proximal gradient descent) algorithm down from

O( 1
k
) to O( 1

k2
) (where k is the number of iterations). Devising accelerated optimization

schemes has since become a popular line of research in the optimization community.

An other landmark is Beck and Teboulle [2009]’s acceleration scheme for the proximal

gradient descent algorithm, achieving the optimal convergence rate of O( 1
k2
) in the non-

smooth case of composite convex functions with their fast iterative shrinkage-thresholding

algorithm (FISTA, described in Algorithm 2.13). With a slight modification of FISTA,

Chambolle and Dossal [2015] managed to maintain the same (function value) convergence

rate while proving the convergence of the parameters sequence, for which nothing was

known with FISTA.

An important property that is exploitable to ensure a fast descent is for the objective

function to be strongly convex (see Definition 24). Nesterov [2004] gives an optimization

scheme that guarantees an optimal linear convergence rate when the objective function

is strongly convex; this results was also extended to the non-smooth composite case

[Liang et al., 2022] (described in Algorithm 2.14): when the composite objective function

is ρ-strongly convex and its smooth component has L-Lipschitz continuous gradient,

one achieves the linear convergence rate O
((

1−
√

L−1ρ
)k)

. We note that in practice,

strong convexity of the problem may be unknown or too expensive to estimate. In such



2.8. Accelerated proximal gradient descent 49

cases, one can resort instead to using adaptative variants of the FISTA algorithm and/or

restarting techniques [Liang et al., 2022; O’Donoghue and Candès, 2015].

Algorithm 2.13 FISTA [Beck and

Teboulle, 2009] (constant step)

Input: φ = f + g : Rn �→ R convex with

global minimizer x∗, where f convex

differentiable with L-Lipschitz contin-

uous gradient, g convex; x0 ∈ R
n

Output: xk −→
k→+∞

x∗
1: t0 = 1, y0 = x0

2: for k from 1 to . . . do

3: zk = yk−1 − L−1∇f(yk−1)

4: xk = Prox(L−1g)(zk)

5: tk =
1+
√

1+4t2k−1

2

6: yk = xk +
tk−1−1

tk
(xk − xk−1)

7: end for

8: return (xk)k

Algorithm 2.14 Nesterov [Liang et al.,

2022; Nesterov, 2004] (constant step)

Input: φ = f + g : R
n �→ R ρ-strongly

convex with global minimizer x∗, where

f convex differentiable with L-Lipschitz

continuous gradient, g convex; x0 ∈ R
n

Output: xk −→
k→+∞

x∗
1: t0 = 1, y0 = x0

2: for k from 1 to . . . do

3: zk = yk−1 − L−1∇f(yk−1)

4: xk = Prox(L−1g)(zk)

5: yk = xk +
√
L−√

ρ√
L+

√
ρ
(xk − xk−1)

6: end for

7: return (xk)k

The superiority of accelerated proximal gradient descent over its non-accelerated coun-

terpart and gradient-based methods when minimizing composite convex functions (with

a non-smooth component) was empirically validated in Figure 2.9.



50 Chapter 2. Background

Figure 2.9: Visualization of various optimizers used to minimize composite convex func-
tions of the form φ : w ∈ R

d �→ 1
2n
‖Aw − b‖2 + λ‖w‖1 + ρ

2
‖w‖2, where A ∈ R

n×d and
b ∈ R

n were randomly generated from Gaussian noise (50 instances). The displayed loss
is averaged across instances and the variance is represented by the shaded regions. The
hyperparameter λ controls how non-smooth the functions are at 0 and the hyperparam-
eter ρ controls the degree of strong convexity of the functions. Tested solvers include the
(non-accelerated) convex optimizer ISTA (Algorithm 2.12) as well as the accelerated con-
vex optimizers FISTA (Algorithm 2.13) and Nesterov (Algorithm 2.14, designed to take
advantage of the strong convexity property); the gradient-based adaptative optimizer
Adam was also tested. Adam is always slower than convex optimizers at minimizing this
class of function and fails at minimizing non-smooth functions (when λ is large); ISTA
is always outperformed by its accelerated variants; FISTA is consistently fast, but Nes-
terov is the best alternative when strong convexity is important (when ρ is large).



51

Chapter 3

Scalable learning of BNs using

FAS-based heuristics

In this short chapter, we summarize the main contributions of this thesis in the form of

two different heuristics - BNSL2MAS and ProxiMAS - tailored for Bayesian network

structure learning at large scale, both revolving around the use of maximum acyclic

subgraph/minimum feedback arc set problems. The purpose of the section is to give a

high level overview of these heuristics while providing more context about how they fit

within the mathematical notions encountered in Chapter 2.

Article Conference Heuristic

I Scalable Bayesian Network Structure Learning via

Maximum Acyclic Subgraph
PGM 2020 BNSL2MAS

II Learning Large DAGs by Combining Continuous Op-

timization and Feedback Arc Set Heuristics
AAAI 2022 ProxiMAS

III Convergence of Feedback Arc Set-Based Heuristics

for Linear Structural Equation Models
PGM 2022 ProxiMAS

Table 3.1: Heuristics developed in this thesis and corresponding article(s).

3.1 BNSL2MAS (Article I)

In a seminal paper, Cussens [2011] proposed an ILP-based exact solver for the score-

based structure learning problem, where for every node-parent set pair (having a local

score) a binary variable is created and this variable takes value 1 if and only if the

corresponding node-parent set pair is in the solution. Although mathematically elegant

and easy to formalize, the large amount of binary variables (see Table 3.2) limits the



52 Chapter 3. Scalable learning of BNs using FAS-based heuristics

practical scalability of this approach to at most a few hundred nodes and only a few

parents per node.

Scores set Cardinality w.r.t. # nodes ddd

Local scores O(d2d−1)

Local scores (parent sets size ≤ k) O(dk+1)

Arc scores O(d2)

Table 3.2: Worst case cardinality of different sets of scores used in Bayesian network
structure learning. The cardinality of local scores grows exponentially in the number of
nodes, which is why restrictions on the number of parents are typically used in score-
based structure learning. The cardinality of arc scores on the other hand is at most
quadratic, independently of parent sets size.

The BNSL2MAS heuristic introduced in Article I aims at addressing the aforementioned

scalability limitations and consists of two steps:

1. Local scores are compactified into a set of arc scores (always quadratic in cardinal-

ity), under the (strong) assumption that local scores are additive in nature: contri-

butions from individual parents are assumed to add-up together to form local scores

with parent sets of any size. This compactification step occurs in Algorithm 3.2:

line 1 and relies on Algorithm 3.1.

2. Given the weighted digraph constructed from the AALS (in Algorithm 3.2: line 2),

a maximum acyclic subgraph problem is solved exactly for that instance (this MAS

step occurs in Algorithm 3.2: line 3).

Although the difficulty in enforcing acyclicity remains, the reduced number of binary

variable effectively makes ILP MAS problems scale more favorably than ILP BNSL

problems and this holds especially true when the maximum number of parents is large.

The determinant factor in ensuring that BNSL2MAS scales itself favorably thus lies in an

efficient computation of the AALS. Looking more closely, we note that the optimization

problems being solved at every iteration of the outer for loop (in Algorithm 3.1: line 6) are

in fact independent of one another, such that the corresponding models can be initialized

and solved in parallel, increasing the scalability of the method. Common choices for the

distance D passed as input in Algorithm 3.1 are the absolute loss (x, y) �→ |x−y| and the

squared loss (x, y) �→ (x − y)2, resulting in linear optimization problems for the former

and quadratic optimization problems for the latter.



3.1. BNSL2MAS (Article I) 53

Algorithm 3.1 AALS

Input: Local scores S =
⋃d−1

j=0 Sj (see Definition 1), distance D
Output: Approximate additive local scores

1: for j in �0, d− 1� do

2: Create continuous bias variable bj

3: for i in �0, d− 1� \ {j} do

4: Create continuous arc score variable si,j

5: end for

6: Solve the continuous optimization problem:

b∗j , {s∗i,j}i = argmin
bj ,{si,j}i

∑
I: S(I,j)∈Sj

D
(
S(I, j), Ŝ(I, j)

)
s.t. ∀I : S(I, j) ∈ Sj,

{
Ŝ(I, j) = bj +

∑
i∈Isi,j

Ŝ(I, j) ≥ S(I, j)

7: end for

8: return {b∗j}j, {s∗i,j}i,j

Algorithm 3.2 BNSL2MAS

Input: Local scores S =
⋃d−1

j=0 Sj (see Definition 1), distance D
Output: Approximate BNSL solution, upper bound on the optimal BNSL score

1: Extract AALS: {b∗j}j, {s∗i,j}i,j = Algorithm 3.1(S,D)

2: Convert arc scores {s∗i,j}i,j into a weighted digraph G̃
3: Solve exactly the weighted MAS problem given G̃ as input: G = MAS

(
G̃
)

4: Compute BNSL score upper bound: SBNSL =
∑d−1

j=0 b
∗
j +

∑
(i,j)∈G s

∗
i,j

5: Extract best subset from G w.r.t. S:

G = argmax
d−1⊗
j=0

{
Ij : S(Ij ,j)∈Sj

}
d−1∑
j=0

S(Ij, j)

s.t.
d−1⋃
j=0

(Ij → j) ⊂ G

6: return G, SBNSL

On the theoretical side, we proved in Article I that enforcing the constraints that AALS

upper-bound true local scores is sufficient to ensure that the sum of arc weights in the

optimal MAS solution obtained via BNSL2MAS provides an upper bound on the optimal



54 Chapter 3. Scalable learning of BNs using FAS-based heuristics

BNSL score (see Algorithm 3.2: line 4). On the practical side, the obtained optimal MAS

solution tends to be overly dense but it is trivial to extract from it a subset (necessarily

acyclic) with the highest possible BNSL score (this is achieved in Algorithm 3.2: line 5).

Based on the empirical study in Article I, the resulting approximate BNSL solutions

are comparable in quality to solutions returned by hill-climbing heuristics, limiting the

attractiveness of the BNSL2MAS approach on the qualitative side.

3.2 OptiMAS and ProxiMAS (Articles II, III)

A crucial difference between general BNSL problems and MAS problems is that the

latter’s scoring function scores arcs whereas the former’s scoring function scores node-

parent set pairs which form a much richer set. This partly explains the difficulty in

obtaining good BNSL solutions using the BNSL2MAS heuristic. The question then

becomes: Can we find a less general framework in which structure learning and MAS

explore the space of DAGs using a similar scoring function, enabling us to bridge the two

problems more efficiently ?

The most simplistic framework satisfying this requirement is the so-called linear struc-

tural equation models (abbreviated linear SEMs) setting, in which one seeks to recover

from data the structure of a continuous Bayesian network, where nodes are assumed to

be linearly dependent on their parents plus some noise (see Figure 3.1): this is a classical

example of a linear additive noise model.

An important question in structure learning concerns identifiability : In which case is it

possible to learn the true DAG from observational data only, that is without interventional

experiments ? Many results have been found in the case of continuous structure recov-

ery: while non-linear additive noise models are known to be identifiable [Peters et al.,

2011], linear additive models are not identifiable in general, with linear non-Gaussian

models being identifiable [Shimizu et al., 2006] and linear Gaussian models requiring ex-

tra conditions (e.g. equal variance [Peters and Bühlmann, 2013] or approximately known

variance [Loh and Bühlmann, 2014]) to become identifiable.

From an optimization perspective, given a data matrix X ∈ R
n×d consisting of n sam-

ples obtained from a continuous Bayesian network with d nodes, linear SEMs structure

recovery corresponds to the following minimization problem:

W∗ = argmin
W∈Rd×d

1
2n
||XW −X||2 + λg(W )

s.t. W represents a DAG
(3.1)



3.2. OptiMAS and ProxiMAS (Articles II, III) 55

where W is the weighted adjacency matrix of the DAG, g is a regularizer (usually enforc-

ing sparsity) tuned by the hyperparameter λ and the quadratic term corresponds to the

linear SEMs fitness and represents aforementioned linear dependencies between random

variables. We note that using least squares for the fitness term is not mandatory: one

can for instance use the (negative) log-likelihood instead [Ng et al., 2020] (under some

assumption on the noise distribution).

X0X0X0

X1X1X1

X2X2X2

W
[1
,
0
]

W
[1
,
0
]

W
[1
,
0
]

W [2, 0
]

W [2, 0
]

W [2, 0
]

W
[1, 2]

W
[1, 2]

W
[1, 2]

P (X0, X1, X2) = P (X0|X1, X2) · P (X1) · P (X2|X1)

X0 = W [1, 0] ·X1 +W [2, 0] ·X2 + ε0

X1 = ε1

X2 = W [1, 2] ·X1 + ε2

P (X0, X1, X2) = P (X0|X1, X2) · P (X1) · P (X2|X1)

X0 = W [1, 0] ·X1 +W [2, 0] ·X2 + ε0

X1 = ε1

X2 = W [1, 2] ·X1 + ε2

P (X0, X1, X2) = P (X0|X1, X2) · P (X1) · P (X2|X1)

X0 = W [1, 0] ·X1 +W [2, 0] ·X2 + ε0

X1 = ε1

X2 = W [1, 2] ·X1 + ε2

Figure 3.1: Illustration of linear structural equation models: in linear SEMs, random
variables are continuous and every node is expressed as a linear combination of its parents
plus some noise (represented by ε in the equations). Linear SEMs structure recovery is
the problem of finding optimal arc weights

(
W [i, j]

)
(i,j)∈E, that is finding the optimal

weighted adjacency matrix W , under the constraint that W represents a DAG.

Solving optimally the minimization problem in Equation 3.1 is particularly challenging as

it involves solving a mixed-integer quadratic program [Lazimy, 1982], where a quadratic

objective function is being minimized while integer linear constraints are added to the

model in order to enforce acyclicity much in the same way as in ILPs for MAS (see

Section 2.5). Such coupling limits greatly the scalability of exact linear SEMs structure

recovery in practice [Manzour et al., 2021], but a recent breakthrough gave a push

on the practical side: Zheng et al. [2018] formulated the acyclicity constraint using a

smooth function, effectively transferring the combinatorial nature of structure learning

into a pure gradient-based optimization procedure. Although the resulting optimization

problem remains highly non-convex, they managed to empirically validate their method

when learning small-scale DAGs. Unfortunately, large scale learning remains out of reach

with this approach as well, owing to the cubic complexity of the introduced acyclicity

function (which involves computing a matrix exponential).

The OptiMAS heuristic introduced in Article II tries to overcome these difficulties in

an attempt to achieve better scalability: first by decoupling the minimization of the

loss from acyclicity enforcement; second by replacing the smooth acyclicity function

[Zheng et al., 2018] by a quadratic acyclicity regularization term acting as a proxy that

is much easier to compute and differentiate. More precisely, this works by constructing

in an online fashion a sequence of loss functions with stationary properties (composite

form, strong convexity and smoothness, see Lemma 41) that can be exploited, each loss

differing only in a quadratic term that contains structural information of the previously



56 Chapter 3. Scalable learning of BNs using FAS-based heuristics

discovered DAG. At every iteration, the heuristic:

1. Makes an unconstrained optimization step on a newly constructed loss function

(Algorithm 3.3: line 4).

2. Converts the obtained (cyclic) solution into a close acyclic solution by approxi-

mately solving a weighted maximum acyclic subgraph/minimum feedback arc set

problem using a greedy heuristic (Algorithm 3.3: line 5, see Section 2.6 for details

on greedy MAS/FAS heuristics).

3. Constructs a new loss function by adding the structural information of the previ-

ously found acyclic solution to the linear SEMs loss (Algorithm 3.3: line 3).

The scalability potential of this process was empirically established in Article II.

ProxiMAS corresponds to Algorithm 3.3 where the optimizer passed as input is a prox-

imal gradient descent optimizer (for instance, one of Algorithms 2.12-2.14), effectively

exploiting the composite convex form of the sequence of objective functions (see Algo-

rithm 3.5: line 4). In Article III, a theoretical convergence analysis of the ProxiMAS

algorithm was conducted assuming:

• The optimizer is the non-accelerated proximal gradient descent algorithm ISTA

(Algorithm 2.12).

• The embedded weighted maximum acyclic subgraph greedy heuristic is the inscore-

based weighted FAS variant (Algorithm 2.4 combined with a weighted version of

Algorithm 2.11 where the projection corner is set to “bottom-left”), with the par-

ticularity that squared arc weights are used by Algorithm 2.4 in order to construct

a permutation (rather than regular arc weights); this greedy MAS heuristic is sum-

marized in Algorithm 3.4.

The ProxiMAS variant analyzed in Article III is detailed in Algorithm 3.5. The complete

ProxiMAS stability proof from Article III can be found in Appendix (Section 5.7), where

by stability, we mean here that ProxiMAS eventually constructs the same permutation

with the embedded weighted MAS greedy heuristic, ensuring the same acyclic structures

will be found after enough iterations.



3.2. OptiMAS and ProxiMAS (Articles II, III) 57

Algorithm 3.3 OptiMAS

Input: X ∈ R
n×d, ρ > 0, λ > 0, optimizer

Output: Sequence of acyclic weighted adjacency matrices (Wk)k

1: W0, W̃0 = zeros(d, d)

2: for k from 1 to . . . do

3: New objective function:

φk : W ∈ R
d×d �→ 1

2n
‖XW −X‖2 + ρ

2
‖W −Wk−1‖2 + λ‖W‖1

4: Optimization step: W̃k = step(φk, optimizer)

5: MAS projection: Wk = weighted MAS
(
W̃k

)
6: end for

7: return (Wk)k

Algorithm 3.4 Greedy square-weighted MAS

Input: G = (V,E, s) : V = �0, d− 1� with weighted adjacency matrix W̃

Output: Weighted acyclic projection W of W̃ approximately maximizing ‖W‖2
1: V1 = V

2: for r from 1 to d do

3: Greedy node selection based on squared weights:

vr = argmin
j∈Vr

∑
i∈Vr\{j}

(
s(i, j)

)2
= argmin

j∈Vr

∑
i∈Vr\{j}

(
W̃ [i, j]

)2
(
= argmin

j∈Vr

∥∥W̃ [
Vr \ {j}, j

]∥∥2
in vectorized form

)
4: π : vr �→ d− r

(
π[d− r] = vr in vectorized form

)
5: Vr+1 = Vr \ {vr}
6: end for

7: T =
(
W̃ [π−1(i), π−1(j)]

)
(i,j)∈�0,d−1�2

8: ∀i ≤ j : set T [i, j] = 0

9: W =
(
T [π(i), π(j)]

)
(i,j)∈�0,d−1�2

10: return W



58 Chapter 3. Scalable learning of BNs using FAS-based heuristics

Algorithm 3.5 ProxiMAS (analyzed in Article III)

Input: X ∈ R
n×d, ρ > 0, λ > 0

Output: Sequence of acyclic weighted adjacency matrices (Wk)k

1: W0, W̃0 = zeros(d, d)

2: Preprocessing (see Lemma 41): L = 1
n
‖X tX + nρI‖∗

3: for k from 1 to . . . do

4: New objective function:

φk : W ∈ R
d×d �→

linear SEMs fitness︷ ︸︸ ︷
1
2n
‖XW −X‖2 +

acyclicity regularizer︷ ︸︸ ︷
ρ
2
‖W −Wk−1‖2︸ ︷︷ ︸

:=fk (smooth, convex)

+

sparsity regularizer︷ ︸︸ ︷
λ‖W‖1︸ ︷︷ ︸

:=g (non-smooth, convex)

5: Non-accelerated proximal gradient descent step (see Definition 15):

i Update learning rate γk ∈ ]0, L−1], then compute:

Zk = W̃k−1 − γk∇fk
(
W̃k−1

)
= W̃k−1 − γk

( 1
n
X t
(
XW̃k−1 −X

)
+ ρ
(
W̃k−1 −Wk−1

))
ii Update parameters (apply Lemma 37):

W̃k = Prox(γkg)(Zk)

= Prox
(
γkλ‖ · ‖1

)
(Zk)

=
(
Prox

(
γkλ| · |

)(
Zk[i, j]

))
(i,j)∈�0,d−1�2

i.e. ∀(i, j) ∈ �0, d− 1�2:

W̃k[i, j] =

⎧⎨⎩
(∣∣Zk[i, j]

∣∣− γkλ
)
· Zk[i,j]∣∣Zk[i,j]

∣∣ if
∣∣Zk[i, j]

∣∣ > γkλ

0 if
∣∣Zk[i, j]

∣∣ ≤ γkλ

6: MAS projection: Wk = Algorithm 3.4
(
W̃k

)
7: end for

8: return (Wk)k



59

Chapter 4

Conclusion

In this thesis we tackled the problem of Bayesian network structure learning viewed

under the score-based standpoint. More specifically, the goal was to develop scalable

heuristics addressing this challenging problem, for which exact methods (traditionally

relying on dynamic programming or integer linear programming) seldom scale beyond a

few hundred nodes in practice and usually necessitate strong structural restrictions such

as a small limit on the maximum number of parents in order to remain tractable.

A recurring theme in the research conducted for this thesis is the integration of maximum

acyclic subgraph/minimum feedback arc set problems as key components of heuristics

specifically designed with the purpose of approximately solving Bayesian network struc-

ture learning problem at significantly larger scale (beyond thousand nodes). Two such

heuristics were developed in this thesis:

• BNSL2MAS (Article I) is a 2-step ILP-based heuristic for general BNSL, which

1. transforms a potentially very large set of local scores into a significantly more

compact set of arc scores (of quadratic size) by solving a sequence of independent

linear or quadratic problems (one per node in the DAG), these arc scores are then

encapsulated in a weighted digraph; 2. solves exactly a weighted maximum acyclic

subgraph problem given the constructed weighted digraph as input. We proved

that the MAS score of an exact MAS solution of the aforementioned weighted MAS

instance provides an upper-bound on the optimal BNSL score. Moreover, from the

computed exact MAS solution, the best possible subgraph (with respect to the

BNSL score function) can be trivially extracted, leading in practice to solutions

comparable in quality to those returned by a hill-climbing heuristic.

• ProxiMAS (Articles II, III) is a non-convex optimization scheme for linear SEMs

structure recovery. It is based on the idea that optimizing the loss function and



60 Chapter 4. Conclusion

enforcing acyclicity should be decoupled in order to achieve superior scalability.

It achieves this goal by repeating an unconstrained (acyclicity-wise) optimization

step followed by an acyclic projection of the current cyclic solution using a greedy

weighted maximum acyclic subgraph heuristic. The scalability potential of this pro-

cess was empirically established in Article II and a theoretical analysis of the sta-

bility of the method was conducted in Article III. On the empirical side, Article III

also demonstrates that combining a convex optimizer and an adaptative gradient-

based non-convex optimizer can dramatically speedup convergence in practice (in

the sense that less iterations are needed before the heuristic stabilizes).

Developing more scalable methods for Bayesian network structure learning has become

a recent focus in the field [Aragam et al., 2017; Dong and Sebag, 2022; Scanagatta et al.,

2015; Yu et al., 2021; Zhu et al., 2021], and both BNSL2MAS and ProxiMAS contribute

to that endeavor: the former (BNSL2MAS) exploits the compactness of ILPs for MAS

compared to ILPs for BNSL and BNSL2MAS can be applied to learning significantly

larger and denser DAGs compared to state-of-the-art exact BNSL solvers; the latter

(ProxiMAS) uses a trick (alternating proximal gradient descent steps and approximate

MAS projections) such that one no longer needs to rely on the computation and differ-

entiation of a costly smooth acyclicity function [Zheng et al., 2018] in order to explore

acyclic structures. Besides, the ability to partially vectorize greedy MAS heuristics (see

Section 2.6) means one can run ProxiMAS on a GPU and achieve significant speed-up

(we note that the proximal gradient descent step itself is embarrassingly parallel, ow-

ing to the fully vectorizable closed-form solution of the proximal operator derived in

Lemma 37). The low memory footprint of ProxiMAS means even very large DAGs can

be learned using a GPU with this heuristic, and that medium-to-large networks can be

learned even using a laptop with a low-end GPU, significantly streamlining the process

of learning DAGs at large scale.

The methods presented in this thesis are not without shortcoming: on the one hand,

in its current state BNSL2MAS relies on the computation of an exact solution for a

weighted MAS problem and therefore the scalability of this heuristic is at the moment

tied to the scalability of solving the lazy cycle set cover ILP implementation of MAS, i.e.

this scalability is highly dependent on the input weighted digraph due to the fact that

solving optimally integer programs is NP-hard. Additionally, the upper-bound returned

by BNSL2MAS, while theoretically valid, is rarely useful in practice based on the exper-

iments conducted in Article I. Worse: our attempts at tightening this upper bound led

to largely reduced scalability, defying the purpose of the approach; on the other hand,

while ProxiMAS provides an optimistic scalability scenario when learning DAGs assum-

ing linear dependencies between (continuous) random variables (linear SEMs setting),



Chapter 4. Conclusion 61

real world data typically involve a degree of non-linearity which ProxiMAS would fail

to capture properly in its current design. Besides, although we could formulate the-

oretical understanding regarding the stability of ProxiMAS (the optimization point of

view), currently there is no theoretical understanding on which acyclic structures are be-

ing explored by the heuristic and ultimately on the quality of found DAGs (the machine

learning point of view), i.e. one could argue ProxiMAS is merely a useful black box for

approximately learning large and sparse DAGs.

Based on the research conducted in the context of this thesis, it appears unlikely that

feedback arc set-based heuristics for learning DAGs will become the dominant strategy

for general use, although they constitute an elegant approach to large scale learning.

This approach was left - to the best of our knowledge - surprisingly unexplored (with

the exception of the recent work from Park and Klabjan [2017]) and shows potential

in terms of practical scalability, although we found difficulties in achieving theoretical

understanding. We believe key aspects of the proposed methods can still be improved:

BNSL2MAS currently solves exactly a single weighted MAS instance, such that one

may want instead to sequentially solve approximately several weighted MAS instances,

although the process by which these MAS instances should evolve in the sequence is

not yet understood. Generalizing ProxiMAS to handle non-linearity is straightforward

assuming non-linearities take the form of linear combinations of smooth non-linear func-

tions, yet it is unclear how this would perform in practice (especially at large scale). A

third interesting route would be to replace the L1 norm by the L0 norm in order to en-

force sparsity in ProxiMAS, motivated by the fact that L0 regularization gives the same

score to Markov equivalent DAGs, which is not true of L1 regularization. Unlike the L1

norm, the L0 norm is non-convex such that clever adjustments of ProxiMAS would be

needed. A recent contribution [Nhat et al., 2018] in the context of difference of convex

functions optimization showed how accelerated optimizers could be designed for that

class of problems, with an application to approximately minimizing the L0 norm. It

would then be interesting to replace the accelerated proximal gradient descent optimizer

embedded in ProxiMAS by an accelerated difference of convex functions optimizer [Nhat

et al., 2018], assess the cost on scalability and potential gain in terms of the quality of

found sparse solutions.



62 Chapter 4. Conclusion



63

Chapter 5

Appendix

This chapter offers complementary knowledge that should prove useful in order to fully

grasp the concepts behind the ProxiMAS heuristic (Section 3.2) developed in this thesis:

• Sections 5.1-5.4 provide the necessary notions from convex analysis for the theo-

retical analysis of the proximal gradient descent optimization scheme presented in

Section 2.7.

• Sections 5.5, 5.6 use analysis and calculus in order to better understand the way

proximal gradient descent is integrated into the ProxiMAS heuristic.

• Section 5.7 gives the full proof of a theorem we proposed in Article III regarding

the stability of the ProxiMAS heuristic.

5.1 Basics on convexity

In this section, the reader is reminded of key knowledge surrounding the notion of con-

vexity. This property exists both for sets and functions and both have a geometrical in-

terpretation as illustrated in Figures 5.1, 5.3, respectively. A fundamental consequence

of convexity is the so-called Jensen property (Lemma 16).

Additionally, topological properties of convex sets are established (Lemmas 13, 14).

Convex hulls form an important family of convex sets characterized in Lemma 17; a

topological result for convex hulls is given in Lemma 18. These topological notions will

come in handy when working with more advanced tools from convex analysis later in the

Appendix (particularly in Section 5.2).



64 Chapter 5. Appendix

Definition 16. Let Ω ⊂ R
n. We say Ω is a convex (sub)set (of RnR

n
R

n) if:

∀(x, y) ∈ Ω2, ∀t ∈ [0, 1] , tx+ (1− t)y ∈ Ω. (5.1)

ΩΩΩ

xxx

yyy
z �∈ Ωz �∈ Ωz �∈ Ω

ΩΩΩ xxx

yyy

z ∈ Ωz ∈ Ωz ∈ Ω

Figure 5.1: Representation of a convex set (left) and a non-convex set (right). Geomet-
rically, a convex set contains all segments between two points in the set.

Lemma 13. Let Ω ⊂ R
n a convex set. If

◦
Ω is non-empty, then

◦
Ω is a convex set.

Proof. Fix (x, y) ∈
( ◦
Ω
)2

and t ∈ [0, 1]. We want to show that tx + (1 − t)y ∈
◦
Ω. By

definition of the interior,
◦
Ω is the union of all open subsets of Ω thus it suffices to identify

an open subset of Ω containing tx+ (1− t)y. Now, since (x, y) ∈
( ◦
Ω
)2

we know:{
∃rx > 0 : B(x, rx) ⊂ Ω

∃ry > 0 : B(y, ry) ⊂ Ω.

We prove that the set S :=
⋃

t′∈[0,1]
{
t′B(x, rx) + (1− t′)B(y, ry)

}
works:

• S contains tx+ (1− t)y. This follows trivially from the definition of S.

• S is a subset of Ω. Indeed, we have B(x, rx) ⊂ Ω and B(y, ry) ⊂ Ω where Ω is

a convex set, hence t′x′ + (1 − t′)y′ ∈ Ω for all (x′, y′) ∈ B(x, rx) × B(y, ry) and

t′ ∈ [0, 1].

• S is open. To see this fix t′ ∈ ]0, 1[, then notice t′B(x, rx) = B(t′x, t′rx) and

(1− t′)B(y, ry) = B
(
(1− t′)y, (1− t′)ry

)
; the sum of two open sets remains open,

so the set B(t′x, t′rx) + B
(
(1 − t′)y, (1 − t′)ry

)
is open. We can therefore write S

as a union of open sets, proving S is open:

S = B(x, rx) ∪B(y, ry) ∪
⋃

t′∈]0,1[

{
B(t′x, t′rx) + B

(
(1− t′)y, (1− t′)ry

)}
.



5.1. Basics on convexity 65

Lemma 14. Let Ω ⊂ R
n a convex set. If

◦
Ω is non-empty, then Ω =

◦
Ω.

Proof. The inclusion Ω ⊂
◦
Ω is clear since Ω ⊂

◦
Ω, thus we simply need to show that

Ω ⊂
◦
Ω. Noting that the boundary of Ω is defined as ∂Ω := Ω\

◦
Ω, we then have Ω =

◦
Ω∪∂Ω

and the claim reduces to ∂Ω ⊂
◦
Ω. Now fix x ∈ ∂Ω and pick y ∈

◦
Ω (y must exist by

hypothesis). Our strategy will be to prove the set inclusion
⋃

t∈]0,1[
{
tx+ (1− t)y

}
⊂

◦
Ω;

x ∈
◦
Ω will follow. For that purpose, fix z := tx+(1−t)y where t ∈ ]0, 1[; in order to show

that z ∈
◦
Ω, we will identify an open subset of Ω containing z. Let us first remember that

y ∈
◦
Ω, i.e. there is ry > 0 such that B(y, ry) ⊂ Ω. Now, consider the following mapping:

fz : y
′ �→ z − (1− t)y′

t
.

It is straightforward to show that fz is a bijection from the open ball B(y, ry) to the open

ball B(x, rx), where rx := 1−t
t
ry. From a geometric standpoint, fz maps every point y′ in

B(y, ry) to a unique corresponding point x′ in B(x, rx) in such a way that the segment

[x′, y′] passes through z
(
formally, one has z = tx′ + (1 − t)y′

)
. Then, since x ∈ ∂Ω we

deduce that Ω and B(x, rx) necessarily intersect i.e. we can pick w ∈ Ω ∩ B(x, rx). We

now can identify the desired set. We show S :=
⋃

t′∈[0,1[
{
t′{w}+(1− t′)B(y, ry)

}
works:

• S contains z. This follows from the construction of the mapping fz: w is in the

ball B(x, rx) and is therefore uniquely mapped to f−1
z (w) ∈ B(y, ry) in such a way

that z = tw + (1− t)f−1
z (w) holds.

• S is a subset of Ω. Indeed, we have w ∈ Ω and B(y, ry) ⊂ Ω where Ω is a convex

set, hence t′w + (1− t′)y′ ∈ Ω for all y′ ∈ B(y, ry) and t′ ∈ [0, 1[.

• S is open. To see this fix t′ ∈ [0, 1[, then notice one has the following set equality:

t′{w}+ (1− t′)B(y, ry) = B
(
t′w + (1− t′)y, (1− t′)ry

)
. We can therefore write S

as a union of open sets, proving S is open:

S =
⋃

t′∈[0,1[
B
(
t′w + (1− t′)y, (1− t′)ry

)
.

Definition 17. Let f : Ω → R∪ {+∞} a function defined on a convex set Ω ⊂ R
n. We

say f is convex on ΩΩΩ if:

∀(x, y) ∈ Ω2, ∀t ∈ [0, 1] , f
(
tx+ (1− t)y

)
≤ tf(x) + (1− t)f(y). (5.2)



66 Chapter 5. Appendix

rxrxrx

ryryry

xxx

yyy

zzz

SSS

ΩΩΩ

ΩΩΩ

SSS xxx

yyy

zzz

www

f−1
z (w)f−1
z (w)f−1
z (w)

rxrxrx
ryryry

Figure 5.2: Illustration of Lemmas 13, 14: construction of an open subset S of the convex

set Ω ⊂ R
n such that S contains z ∈ ]x, y[ (left: Lemma 13 where (x, y) ∈

( ◦
Ω
)2
; right:

Lemma 14 where (x, y) ∈ ∂Ω ×
◦
Ω). On the left, the same open set S is valid for all

z ∈ ]x, y[ whereas on the right, the open set S is constructed for z ∈ ]x, y[ fixed.

TTT

CCC

xxx yyytx+ (1− t)ytx+ (1− t)ytx+ (1− t)y

f(x)f(x)f(x)

f(y)f(y)f(y)
f
(
tx+ (1− t)y

)
f
(
tx+ (1− t)y

)
f
(
tx+ (1− t)y

)

tf(x) + (1− t)f(y)tf(x) + (1− t)f(y)tf(x) + (1− t)f(y)

Figure 5.3: Representation of a convex function. The geometrical interpretation of con-
vexity is that chords between two points in the graph of a convex function (represented
by the orange line C) always lie above the graph; equivalently, the epigraph of a convex
function (represented by the pink surface) is a convex set (see Lemma 23). Another geo-
metrical interpretation is that hyperplanes tangential to the graph of a convex function
(represented by the green line T ) always lie below the graph (see Lemma 26).

Lemma 15. Let Ω ⊂ R
n a convex set, f1, . . . , fk : Ω → R ∪ {+∞} k functions convex

on Ω and α1, . . . , αk > 0. Then the function
∑k

j=1 αjfj is convex on Ω.



5.1. Basics on convexity 67

Proof. For convenience, let us write f :=
∑k

j=1 αjfj. Fix (x, y) ∈ Ω2 and t ∈ [0, 1]. Due

to the convexity of the fj on Ω we have:

∀j ∈ �1, k�, fj
(
tx+ (1− t)y

)
≤ tfj(x) + (1− t)fj(y).

The previous property combined with the positivity of the αj then yields:

f
(
tx+ (1− t)y

)
=

k∑
j=1

αjfj
(
tx+ (1− t)y

)
≤

k∑
j=1

αj

(
tfj(x) + (1− t)fj(y)

)
= t ·

k∑
j=1

αjfj(x) + (1− t) ·
k∑

j=1

αjfj(y)

= tf(x) + (1− t)f(y),

which proves that f is convex on Ω.

Lemma 16. Let Ω ⊂ R
n a convex set and f : Ω → R ∪ {+∞} a function convex on

Ω. Then for all k ∈ N
∗, for all (xj)j∈�1,k� ∈ Ωk, for all (tj)j∈�1,k� ∈ [0, 1]k satisfying∑k

j=1 tj = 1, the following holds:

k∑
j=1

tjxj ∈ Ω and f

( k∑
j=1

tjxj

)
≤

k∑
j=1

tjf(xj). (5.3)

Proof. We proceed by induction on k. The case k = 1 is trivial. Now assume the claim

holds for k − 1, we then prove that it holds for k as well. Let us fix (xj)j∈�1,k� ∈ Ωk and

(tj)j∈�1,k� ∈ [0, 1]k satisfying
∑k

j=1 tj = 1. Note that the claim trivially follows if tk = 1,

since in that case
∑k−1

j=1 tj = 1 − tk = 0 such that tj = 0 for all j ∈ �1, k − 1�. We can

therefore assume that tk < 1 and define (t′j)j∈�1,k−1� where t
′
j :=

tj
1−tk

for all j ∈ �1, k−1�.

Notice that (t′j)j∈�1,k−1� ∈ [0, 1]k−1:

∀j ∈ �1, k − 1�, 0 ≤ tj
1− tk

=
tj∑k−1
i=1 ti

≤ 1.



68 Chapter 5. Appendix

Additionally, the t′j sum to 1:

k−1∑
j=1

t′j =
k−1∑
j=1

tj
1− tk

=
1

1− tk
·
k−1∑
j=1

tj

=
1

1− tk
· (1− tk)

= 1.

Now, define x :=
∑k−1

j=1 t
′
jxj. By induction hypothesis, (xj)j∈�1,k−1� ∈ Ωk−1 implies that

x ∈ Ω and f(x) ≤ ∑k−1
j=1 t

′
jf(xj). Next, let us derive:

k∑
j=1

tjxj = (1− tk) ·
k−1∑
j=1

tj
1− tk

xj + tkxk

= (1− tk) ·
k−1∑
j=1

t′jxj + tkxk

= (1− tk)x+ tkxk.

On the one hand, since Ω is a convex set we deduce:

k∑
j=1

tjxj = (1− tk)x+ tkxk ∈ Ω.

On the other hand, since f is convex on Ω we deduce:

f

( k∑
j=1

tjxj

)
= f

(
(1− tk)x+ tkxk

)
≤ (1− tk)f(x) + tkf(xk)

≤ (1− tk) ·
k−1∑
j=1

t′jf(xj) + tkf(xk)

= (1− tk) ·
k−1∑
j=1

tj
1− tk

f(xj) + tkf(xk)

=
k∑

j=1

tjf(xj).

The claim follows since we proved the induction.

Definition 18. Let Ω ⊂ R
n. We define the convex hull of ΩΩΩ to be the set of all convex



5.1. Basics on convexity 69

combinations of elements in Ω, that is:

CH(Ω) =

{ k∑
j=1

tjxj : k ∈ N
∗, (xj)j∈�1,k� ∈ Ωk, (tj)j∈�1,k� ∈ [0, 1]k ,

k∑
j=1

tj = 1

}
. (5.4)

Lemma 17. Let Ω ⊂ R
n. Then CH(Ω) is the smallest convex set containing Ω.

Proof.

• Ω ⊂ CH(Ω). This follows trivially from the definition of the convex hull.

• CH(Ω) is a convex set. To verify this, let us fix (x, y) ∈
(
CH(Ω)

)2
and r ∈ [0, 1].

We want to show that z := rx + (1− r)y ∈ CH(Ω), that is we want to prove that

z is a convex combination of elements in Ω. Now, since x ∈ CH(Ω) we can write:

x =

k1∑
j=1

sjxj : k1 ∈ N
∗, (xj)j∈�1,k1� ∈ Ωk1 , (sj)j∈�1,k1� ∈ [0, 1]k1 ,

k1∑
j=1

sj = 1.

Similarly for y ∈ CH(Ω):

y =

k2∑
j=1

tjyj : k2 ∈ N
∗, (yj)j∈�1,k2� ∈ Ωk2 , (tj)j∈�1,k2� ∈ [0, 1]k2 ,

k2∑
j=1

tj = 1.

Define k := k1 + k2 ∈ N
∗ and consider the sequence (zj)j∈�1,k�:

∀j ∈ �1, k�, zj :=

{
xj if j ∈ �1, k1�

yj−k1 if j ∈ �k1 + 1, k�.

Consider as well the sequence (uj)j∈�1,k�:

∀j ∈ �1, k�, uj :=

{
rsj if j ∈ �1, k1�

(1− r)tj−k1 if j ∈ �k1 + 1, k�.

Clearly we have (zj)j∈�1,k� ∈ Ωk and (uj)j∈�1,k� ∈ [0, 1]k. Besides, the uj sum to 1:

k∑
j=1

uj =

k1∑
j=1

rsj +
k∑

j=k1+1

(1− r)tj−k1

= r ·
k1∑
j=1

sj + (1− r) ·
k2∑
j=1

tj

= r · 1 + (1− r) · 1
= 1.



70 Chapter 5. Appendix

We conclude that z is indeed a convex combination of elements in Ω:

z = rx+ (1− r)y

= r ·
k1∑
j=1

sjxj + (1− r) ·
k2∑
j=1

tjyj

=

k1∑
j=1

rsjxj +
k∑

j=k1+1

(1− r)tj−k1yj−k1

=
k∑

j=1

ujzj.

• Ω ⊂ C where C is a convex set =⇒ CH(Ω) ⊂ C. To see this, fix x ∈ CH(Ω):

x =
k∑

j=1

tjxj : k ∈ N
∗, (xj)j∈�1,k� ∈ Ωk, (tj)j∈�1,k� ∈ [0, 1]k ,

k∑
j=1

tj = 1.

By hypothesis, we have (xj)j∈�1,k� ∈ Ωk ⊂ Ck where C is a convex set, therefore

Lemma 16 ensures that x =
∑k

j=1 tjxj ∈ C as desired.

Lemma 18. Let (ek)k∈�1,n� an orthonormal basis of Rn, x ∈ R
n and r > 0. Define the

set Sr :=
{
x± rek : k ∈ �1, n�

}
. Then the following holds:

1. r′ ∈ [0, r] =⇒ Sr′ ⊂ CH(Sr).

2. B
(
x, r

n

)
⊂ CH(Sr).

Proof.

1. Fix y ∈ Sr′ , i.e. y = x ± r′ek where k ∈ �1, n�. First we notice that x ∈ CH(Sr),

due to the fact that one can write x = 1
2
(x + re1) +

1
2
(x − re1) i.e. x is a convex

combination of elements in Sr; besides, by definition of the convex hull, one has

Sr ⊂ CH(Sr) such that x± rek ∈ CH(Sr). Now, r
′ ∈ [0, r] means there is t ∈ [0, 1]

such that r′ = tr. Let us then write:

y = x± r′ek

= (1− t)x+ tx± trek

= (1− t)x+ t(x± rek).

We know from Lemma 17 that CH(Sr) is a convex set, hence y ∈ CH(Sr).



5.2. Extended-real-valued convex functions 71

2. Fix y ∈ B
(
x, r

n

)
. Equivalently, this means that y = x + r

n
z where ‖z‖ ≤ 1. Since

(ek)k∈�1,n� is an orthonormal basis of Rn, we can write:

z =
n∑

k=1

zkek and ‖z‖ =

√√√√ n∑
k=1

z2k.

We can then decompose y as follows:

y = x+
r

n
z

= x+
r

n

n∑
k=1

zkek

=
n∑

k=1

1

n
(x+ zkrek).

Now, the square-root function is non-decreasing and we have:

∀k ∈ �1, n�, |zk| =
√

z2k

≤

√√√√ n∑
j=1

z2j

= ‖z‖
≤ 1,

implying that |zk|r ∈ [0, r] for all k ∈ �1, n�; the first claim of the Lemma thus

entails x+ zkrek ∈ S|zk|r ⊂ CH(Sr) for all k ∈ �1, n�. This shows that y is a convex

combination of elements in the convex set CH(Sr), hence using Lemma 16 finally

yields y ∈ CH(Sr).

5.2 Extended-real-valued convex functions

In this section, convex functions taking value on the extended real line are analysed. We

note that this framework is larger than that which truly matters in this thesis, namely

convex functions taking value on the real line (addressed specifically in Section 5.3).

Working in this more general framework yields a better understanding of the notion of

function convexity via the introduction of two sets, namely the effective domain and the



72 Chapter 5. Appendix

Figure 5.4: Illustration of the second clause of Lemma 18: B
(
x, r

n

)
⊂ CH(Sr) where

Sr :=
{
x ± rek : k ∈ �1, n�

}
with (ek)k∈�1,n� an orthonormal basis of Rn, x ∈ R

n and
r > 0. In both figures, x = 0 and (ek)k∈�1,n� is the canonical orthonormal basis of Rn

(left: R2; right: R3). The set B
(
x, r

n

)
is depicted in red and the edges of the boundary

of the set CH(Sr) are depicted in blue.

epigraph of a convex function taking value on the extended real line. More precisely,

useful characterizations of function convexity based on the effective domain and the

epigraph are presented to the reader in Lemmas 19, 23, respectively.

In a second time, the crucial notion of subgradient is developed; subgradients are a

generalization of the gradients of differentiable functions to convex functions taking value

on the extended real line. Using our knowledge of convexity acquired in Section 5.1 as

well as a series of three technical lemmas describing the topology of the effective domain

and the epigraph (Lemmas 20-22), this section culminates with two fundamental results

from convex analysis:

1. Lemma 24 gives conditions guaranteeing the existence of subgradients of convex

functions taking value on the extended real line.

2. Lemma 25 gives conditions allowing to decompose subgradients of a sum of convex

functions taking value on the extended real line into sums of subgradients of the

functions taken separately.

Definition 19. The extended real-line is the set R ∪ {+∞} equipped with the usual

arithmetical operations on R, with the addition of the following axioms:



5.2. Extended-real-valued convex functions 73

1. ∀α ∈ R ∪ {+∞}, α + (+∞) = (+∞) + α = +∞.

2. ∀α ∈ R+ ∪ {+∞}, α · (+∞) = (+∞) · α = +∞.

Definition 20. Let f : Rn → R ∪ {+∞} a function. The effective domain of f is

defined as:

Dom(f) = {x ∈ R
n : f(x) < +∞}. (5.5)

When Dom(f) is non-empty, f is said to be proper.

Lemma 19. Let f : Rn → R∪{+∞} a proper function. Then f is convex on R
n if and

only if Dom(f) is a convex set and f is convex on Dom(f).

Proof.

⇒. It suffices to show that Dom(f) is a convex set: indeed, one will then have that

f is convex on Dom(f) since it is convex on R
n and Dom(f) ⊂ R

n. Fix (x, y) ∈(
Dom(f)

)2
and t ∈ [0, 1]. By definition of the effective domain we have f(x) < +∞

and f(y) < +∞. But since f is convex on R
n, we have as well:

f
(
tx+ (1− t)y

)
≤ tf(x) + (1− t)f(y) < +∞,

hence tx+ (1− t)y ∈ Dom(f). This proves that Dom(f) is a convex set.

⇐. By hypothesis, the convexity property satisfied by f is valid on Dom(f) and we

want to show it extends to the whole domain R
n, that is it suffices to show:

∀(x, y) ∈
(
R

n \ Dom(f)
)
× R

n, f
(
tx+ (1− t)y

)
≤ tf(x) + (1− t)f(y).

Fix (x, y) ∈
(
R

n\Dom(f)
)
×R

n and t ∈ [0, 1]. With t ≥ 0 we get that tf(x) = +∞
(Definition 19: axiom 2). If y ∈ Dom(f), then (1 − t)f(y) ∈ R; otherwise, with

1 − t ≥ 0 we get that (1 − t)f(y) = +∞ (Definition 19: axiom 2). In both cases

we obtain tf(x) + (1− t)f(y) = +∞ (Definition 19: axiom 1). It must then hold

that f
(
tx+ (1− t)y

)
≤ tf(x) + (1− t)f(y), as desired.

Lemma 20. Let f : Rn → R ∪ {+∞} a proper function convex on R
n and x ∈ R

n. If

x ∈
◦

Dom(f), then f is upper-bounded on a closed ball centered at x:

∃r > 0, ∃λ ∈ R : ∀y ∈ B(x, r), f(y) ≤ λ.1 (5.6)
1One could formulate a much stronger lemma: any function f : Rn → R ∪ {+∞} that is proper and

convex on R
n is in fact continuous on the whole interior of its effective domain,

◦
Dom(f) (assuming it is

not empty). Rockafellar [1970]’s book discusses extensively of the continuity of convex functions.



74 Chapter 5. Appendix

Proof. Since x ∈
◦

Dom(f), we can find r > 0 such that B(x, r) ⊂ Dom(f). Let (ek)k∈�1,n�

denote an orthonormal basis of Rn and choose any r′ in the open interval ]0, r[, then

define the following set:

Sr′ :=
{
x± r′ek : k ∈ �1, n�

}
.

Notice Sr′ is a finite set and all its elements are in B(x, r) ⊂ Dom(f). Indeed:

∀k ∈ �1, n�,
∥∥x± r′ek − x

∥∥ = r′‖ek‖ = r′ < r.

In particular, one can find λ ∈ R such that f(y) ≤ λ for all y ∈ Sr′ . Now, due to

Lemma 18 we know that B
(
x, r

′
n

)
⊂ CH(Sr′). Given a fixed y ∈ B

(
x, r

′
n

)
, the last

statement entails that y is a convex combination of elements in Sr′ :

y =
k∑

j=1

tjyj : k ∈ N
∗, (yj)j∈�1,k� ∈ Sk

r′ , (tj)j∈�1,k� ∈ [0, 1]k ,
k∑

j=1

tj = 1.

Moreover, with (yj)j∈�1,k� ∈ Sk
r′ we must have f(yj) ≤ λ for all j ∈ �1, k�. Since f is

convex on R
n, using Lemma 16 yields:

f(y) = f

( k∑
j=1

tjyj

)

≤
k∑

j=1

tjf(yj)

≤
k∑

j=1

tjλ

= λ ·
k∑

j=1

tj

= λ.

We have just showed that f is upper-bounded by λ on the closed ball B
(
x, r

′
n

)
.

Definition 21. Let f : Rn → R ∪ {+∞} a proper function. The epigraph of f is

defined as:

Epi(f) = {(x, λ) ∈ R
n × R : f(x) ≤ λ}. (5.7)

Lemma 21. Let f : Rn → R ∪ {+∞} a proper function and x ∈ R
n. If x ∈ Dom(f),

then
(
x, f(x)

)
∈ Epi(f) \

◦
Epi(f).

Proof. Since x ∈ Dom(f) =⇒
(
x, f(x)

)
∈ Epi(f), clearly it only remains to show that



5.2. Extended-real-valued convex functions 75

(
x, f(x)

)
/∈

◦
Epi(f). By way of contradiction, suppose

(
x, f(x)

)
∈

◦
Epi(f), that is:

∃r > 0 : B
((
x, f(x)

)
, r
)
⊂ Epi(f).

Consider the sequence (λk)k where λk := f(x) − 1
k
. Clearly, one always has λk < f(x).

But at the same time, (x, λk) −→
k→+∞

(
x, f(x)

)
, therefore one can find a large enough k

such that (x, λk) ∈ B
((
x, f(x)

)
, r
)
⊂ Epi(f). By definition of the epigraph, this would

entail f(x) ≤ λk < f(x) which is a contradiction.

Lemma 22. Let f : Rn → R ∪ {+∞} a proper function convex on R
n. If

◦
Dom(f) is

non-empty, then
◦

Epi(f) is non-empty.

Proof. Let x ∈
◦

Dom(f) (x must exist by hypothesis). Since f is convex on R
n, by

Lemma 20 we know that there is r > 0 such that f is upper-bounded on the closed ball

B(x, r), that is we can find λ < +∞ such that f(y) ≤ λ for all y ∈ B(x, r). We will now

show that
(
x, 2|λ|

)
∈

◦
Epi(f): we will find r′ > 0 such that B

((
x, 2|λ|

)
, r′

)
⊂ Epi(f), or

equivalently, such that for all (y, μ) ∈ R
n × R:

∥∥(y, μ)− (
x, 2|λ|

)∥∥ < r′ =⇒ (y, μ) ∈ Epi(f).

Fix (y, μ) ∈ R
n × R and define r′ := min

(
r, |λ|

)
. This choice of r′ gives us the desired

result:

∥∥(y, μ)− (
x, 2|λ|

)∥∥ < r′ ⇐⇒
∥∥(y − x, μ− 2|λ|

)∥∥2
< r′2

⇐⇒ ‖y − x‖2 +
(
μ− 2|λ|

)2
< r′2

=⇒
{

‖y − x‖2 < r2(
μ− 2|λ|

)2
< |λ|2

⇐⇒
{

‖y − x‖ < r∣∣μ− 2|λ|
∣∣ < |λ|

=⇒
{

y ∈ B(x, r)

−|λ| < μ− 2|λ|

=⇒
{

f(y) ≤ λ

|λ| < μ

=⇒ f(y) < μ

=⇒ (y, μ) ∈ Epi(f).



76 Chapter 5. Appendix

f(y)f(y)f(y)

λλλ

|λ||λ||λ|

2|λ|2|λ|2|λ|

≤≤≤

xxxyyy

(
x, 2|λ|

)(
x, 2|λ|

)(
x, 2|λ|

)r′r′r′

|λ||λ||λ|

rrr

000

Figure 5.5: Illustration of Lemma 22: construction of an open ball included in Epi(f),
where f is a (proper) function convex on R

n and x ∈
◦

Dom(f). The figure depicts

the function f : t �→ −
√
t if t ≥ 0, +∞ otherwise: Dom(f) = [0,+∞[ and

◦
Dom(f) =

]0,+∞[. The existence of r > 0 and λ < +∞ such that f(y) ≤ λ for all y ∈ [x− r, x+ r]
is a consequence of Lemma 20; the constructed ball has radius r′ := min

(
r, |λ|

)
. The

pink surface corresponds to Epi(f).

Lemma 23. Let f : Rn → R∪{+∞} a proper function. Then f is convex on R
n if and

only if Epi(f) is a convex set.

Proof.

⇒. Fix
(
(x, λ), (y, μ)

)
∈
(
Epi(f)

)2
and t ∈ [0, 1]. We want to prove that:

t(x, λ) + (1− t)(y, μ) =
(
tx+ (1− t)y, tλ+ (1− t)μ

)
∈ Epi(f),

that is we must show that f
(
tx+ (1− t)y

)
≤ tλ+ (1− t)μ < +∞. But since f is

convex on R
n and

(
(x, λ), (y, μ)

)
∈
(
Epi(f)

)2
, we get as desired:

f
(
tx+ (1− t)y

)
≤ tf(x) + (1− t)f(y)

≤ tλ︸︷︷︸
<+∞

+(1− t)μ︸ ︷︷ ︸
<+∞

< +∞.

⇐. Due to Lemma 19, it suffices to show that Dom(f) is a convex set and f is convex

on Dom(f). Fix (x, y) ∈
(
Dom(f)

)2
and t ∈ [0, 1]. Notice that x ∈ Dom(f)

clearly implies
(
x, f(x)

)
∈ Epi(f); likewise,

(
y, f(y)

)
∈ Epi(f). Now, since Epi(f)



5.2. Extended-real-valued convex functions 77

is a convex set we have:

t
(
x, f(x)

)
+ (1− t)

(
y, f(y)

)
=

(
tx+ (1− t)y, tf(x) + (1− t)f(y)

)
∈ Epi(f),

that is by definition of the epigraph:

f
(
tx+ (1− t)y

)
≤ tf(x) + (1− t)f(y) < +∞.

This proves both Dom(f) is a convex set and f is convex on Dom(f).

Definition 22. Let f : Rn → R ∪ {+∞} a proper function and x ∈ Dom(f). A vector

v ∈ R
n is called a subgradient at point xxx of f if:

∀y ∈ Dom(f), f(y)− f(x) ≥ 〈v, y − x〉. (5.8)

The set of all subgradients at point x of f is called the subdifferential at point xxx of

f and is denoted ∂f(x).

Lemma 24. Let f : Rn → R ∪ {+∞} a proper function convex on R
n and x ∈ R

n. If

x ∈
◦

Dom(f), then ∂f(x) is non-empty.

Proof. Our strategy will be to use the so-called supporting hyperplane theorem (see for

instance Boyd and Vandenberghe [2014]’s book) on the set Epi(f). Remember that

this fundamental theorem ensures that given a non-empty convex set and a point lying

on its boundary, there exists an hyperplane containing that point such that the set is

entirely contained in one of the two closed half-spaces bounded by the hyperplane: this

hyperplane is said to support the set at that point.

We proceed to show the requirements for the supporting hyperplane theorem are satisfied:

• We first show that Epi(f) is non-empty and
(
x, f(x)

)
lies on the boundary of

Epi(f). This follows clearly from Lemma 21: one has x ∈
◦

Dom(f) ⊂ Dom(f),

such that
(
x, f(x)

)
∈ Epi(f) \

◦
Epi(f).

• We then show that Epi(f) is convex. This is immediate due to Lemma 23, since

by hypothesis f is convex on R
n.

We can therefore use the supporting hyperplane theorem which guarantees the existence

of an hyperplane (in R
n+1) supporting the set Epi(f) at point

(
x, f(x)

)
. Formally, this



78 Chapter 5. Appendix

translates into the following hyperplane inequality:

∃(v, α) ∈ R
n × R : (v, α) �= 0 and ∀(y, λ) ∈ Epi(f), 〈v, x〉+ αf(x) ≤ 〈v, y〉+ αλ.

Notice that α ≥ 0 must hold. Indeed, suppose by way of contradiction that α < 0.

Given any λ > f(x) we have (x, λ) ∈ Epi(f), hence the hyperplane inequality yields

〈v, x〉 + αf(x) ≤ 〈v, x〉 + αλ, i.e. we get αf(x) ≤ αλ. Dividing by (negative) α we

would obtain f(x) ≥ λ > f(x) which is a contradiction. We have just showed that the

hyperplane inequality reduces to:

∃v ∈ R
n, ∃α ≥ 0 : (v, α) �= 0 and ∀(y, λ) ∈ Epi(f), 〈v, x〉+ αf(x) ≤ 〈v, y〉+ αλ.

Since y ∈ Dom(f) =⇒
(
y, f(y)

)
∈ Epi(f), let us now focus on the following restriction

of the hyperplane inequality:

∃v ∈ R
n, ∃α ≥ 0 : (v, α) �= 0 and ∀y ∈ Dom(f), 〈v, x〉+ αf(x) ≤ 〈v, y〉+ αf(y).

It turns out that α �= 0. To see this, suppose by way of contradiction that α = 0. The

restricted hyperplane inequality simplifies as such:

∃v ∈ R
n : v �= 0 and ∀y ∈ Dom(f), 〈v, x〉 ≤ 〈v, y〉.

Since by hypothesis x ∈
◦

Dom(f), we have:

∃r > 0 : B(x, r) ⊂ Dom(f).

Consider the sequence (xk)k where xk := x− v
k
. Due to v �= 0, one can easily check that

〈v, xk〉 < 〈v, x〉 holds for all k. But at the same time xk converges to x, therefore one

can find a large enough k such that xk ∈ B(x, r) ⊂ Dom(f). The restricted hyperplane

inequality would then yield 〈v, x〉 ≤ 〈v, xk〉 < 〈v, x〉 which is a contradiction. We have

just showed that the restricted hyperplane inequality reduces to:

∃v ∈ R
n, ∃α > 0 : ∀y ∈ Dom(f), 〈v, x〉+ αf(x) ≤ 〈v, y〉+ αf(y).

Rearranging terms and dividing by (positive) α, this can be equivalently rewritten:

∃v ∈ R
n, ∃α > 0 : ∀y ∈ Dom(f), f(y)− f(x) ≥

〈 v

α
, x− y

〉
=

〈
− v

α
, y − x

〉
,

which by definition of subgradient entails − v
α
∈ ∂f(x).



5.2. Extended-real-valued convex functions 79

c1c1c1 c2c2c2000

Figure 5.6: Illustration of Lemma 24: representation of hyperplanes supporting Epi(f),
where f is a (proper) function convex on R

n (supporting hyperplanes are represented by
dashed lines and Epi(f) is represented by the pink surface). Given 0 < c1 < c2, the fig-
ure depicts the function f : t �→ 1√

c1

(
|t− c2|+ c1− c2

)
if t ≥ c1, 2

(√
c1−

√
t
)
if t ∈ [0, c1],

+∞ otherwise. Supporting hyperplanes are carried by subgradients and always exist at

points in
◦

Dom(f), but may not exist at points on ∂
(
Dom(f)

)
:= Dom(f)\

◦
Dom(f). Here,

Dom(f) = [0,+∞[ and
◦

Dom(f) = ]0,+∞[, so 0 ∈ ∂
(
Dom(f)

)
and one can easily check

that ∂f(0) = ∅ (intuitively, the slope of the supporting hyperplane at 0 is infinitely steep
and cannot correspond to a subgradient). At differentiable points, a unique support-
ing hyperplane/subgradient exists (represented in magenta, see Lemma 27: clause 2); at
non-differentiable points, several supporting hyperplanes/subgradients may exist (repre-
sented in cyan). Also notice that the horizontal line passing at

(
c2, f(c2)

)
lies below the

curve of f , i.e. 0 ∈ ∂f(c2) and c2 is the global minimizer of f (see Lemma 27: clause 1).



80 Chapter 5. Appendix

Lemma 25. Let f, g : Rn → R ∪ {+∞} two proper functions convex on R
n such that

◦
Dom(f) ∩

◦
Dom(g) is non-empty and let x ∈ R

n. If x ∈ Dom(f) ∩ Dom(g), then

∂(f + g)(x) ⊂ ∂f(x) + ∂g(x).

Proof. We begin the proof with a preliminary part. Note that if ∂(f + g)(x) is empty,

the claim trivially follows. Let us then fix v ∈ ∂(f + g)(x). By definition of subgradient,

we have:

∀y ∈ Dom(f + g) = Dom(f) ∩ Dom(g), (f + g)(y)− (f + g)(x) ≥ 〈v, y − x〉.

Let us define the function h : y �→ −g(y)+〈v, y−x〉+(f+g)(x). Clearly by construction,

f(x) = h(x). Moreover, the previous property entails:

∀y ∈ Dom(g), f(y) ≥ h(y).

Let us then define the so-called hypograph of the function h:

Hypo(h) = {(y, λ) ∈ R
n × R : h(y) ≥ λ}.

By considering the symmetry operator S : (y, λ) ∈ R
n × R �→ (y,−λ), we can easily

establish the relationship between the sets Hypo(h) and Epi(−h):

Hypo(h) = {(y, λ) ∈ R
n × R : h(y) ≥ λ}

= S
(
{(y, λ) ∈ R

n × R : − h(y) ≤ λ}
)

= S
(
Epi(−h)

)
.

The main part of the proof begins. Our strategy will be to use the so-called separating

hyperplane theorem (see for instance Boyd and Vandenberghe [2014]’s book) on the sets
◦

Epi(f) and Hypo(h). Remember that this fundamental theorem ensures that given two

non-empty convex sets that are disjoint, there exists an hyperplane such that the first

set is entirely contained in one of the two half-spaces bounded by the hyperplane, while

the second set is entirely contained in the other half-space: this hyperplane is said to

separate the sets. Also, if one of the sets is open, its corresponding half-space is open.

We proceed to show the requirements for the separating hyperplane theorem are satisfied:

• We first show that
◦

Epi(f) and Hypo(h) are non-empty. By hypothesis we have

that x ∈ Dom(f)∩Dom(g) ⊂ Dom(g) = Dom(−h), therefore we trivially get that(
x,−h(x)

)
∈ Epi(−h). Knowing that Hypo(h) = S

(
Epi(−h)

)
, clearly Hypo(h) is

non-empty. Again by hypothesis, we know
◦

Dom(f)∩
◦

Dom(g) is non-empty and in



5.2. Extended-real-valued convex functions 81

particular so is
◦

Dom(f). With f being convex on R
n, we get from Lemma 22 that

◦
Epi(f) is non-empty.

• We then show that
◦

Epi(f) and Hypo(h) are convex. By hypothesis f is convex

on R
n thus by Lemma 23 we get that Epi(f) is a convex set. Combined with

Lemma 13, this entails that
◦

Epi(f) is a convex set as well. Now, we have from

Lemma 15 that the function −h is convex on R
n, since it is the sum of the affine

function y �→ −〈v, y−x〉−(f+g)(x) and the function g, both convex on R
n. Using

Lemma 23 once more yields that Epi(−h) is a convex set; so is Hypo(h) since the

symmetry operator S preserves convexity.

• We finally show that
◦

Epi(f) and Hypo(h) are disjoint. By way of contradiction,

suppose there exists (y, λ) ∈
◦

Epi(f) ∩ Hypo(h). Due to Lemma 21, one clearly

has (y, λ) ∈
◦

Epi(f) =⇒ λ > f(y); (y, λ) ∈ Hypo(h) translates h(y) ≥ λ and

necessarily one must have y ∈ Dom(g), which in turn lets us deduce f(y) ≥ h(y)

must hold as was showed in the preliminary part of the proof. Combining results,

we would obtain λ > f(y) ≥ h(y) ≥ λ which is a contradiction.

We can therefore use the separating hyperplane theorem which guarantees the existence

of an hyperplane (in R
n+1) separating the open set

◦
Epi(f) and the setHypo(h). Formally,

this translates into the following hyperplane inequality:

∃β ∈ R, ∃(w, α) ∈ R
n×R : (w, α) �= 0 and

{
∀(y, λ) ∈

◦
Epi(f), 〈w, y〉+ αλ > β

∀(z, μ) ∈ Hypo(h), 〈w, z〉+ αμ ≤ β.

Note that since Epi(f) is a convex set and
◦

Epi(f) is non-empty, Lemma 14 ensures that

every element of Epi(f) can be approximated by a sequence of elements in
◦

Epi(f). We

can therefore rewrite the hyperplane inequalities as follows:

∃β ∈ R, ∃(w, α) ∈ R
n×R : (w, α) �= 0 and

{
∀(y, λ) ∈ Epi(f), 〈w, y〉+ αλ ≥ β

∀(z, μ) ∈ Hypo(h), 〈w, z〉+ αμ ≤ β.

Now, notice that α ≥ 0 must hold. Indeed, suppose by way of contradiction that α < 0.

By hypothesis we know that x ∈ Dom(f) ∩ Dom(g), so we can find (λ, μ) ∈ R
2 such

that (x, λ) ∈ Epi(f), (x, μ) ∈ Hypo(h) and λ �= μ. Using the hyperplane inequalities we

deduce that 〈w, x〉 + αλ ≥ β ≥ 〈w, x〉 + αμ, hence dividing by (negative) alpha yields

λ ≤ μ. But at the same time we have by construction λ ≥ f(x) = h(x) ≥ μ, i.e. λ ≥ μ.

This would entail that λ = μ which is a contradiction. We have just showed that the



82 Chapter 5. Appendix

hyperplane inequalities reduce to:

∃β ∈ R, ∃w ∈ R
n, ∃α ≥ 0 : (w, α) �= 0 and

{
∀(y, λ) ∈ Epi(f), 〈w, y〉+ αλ ≥ β

∀(z, μ) ∈ Hypo(h), 〈w, z〉+ αμ ≤ β.

Since y ∈ Dom(f) =⇒
(
y, f(y)

)
∈ Epi(f) and similarly z ∈ Dom(g) =⇒

(
z, h(z)

)
∈

Hypo(h), let us now focus on the following restriction of the hyperplane inequalities:

∃β ∈ R, ∃w ∈ R
n, ∃α ≥ 0 : (w, α) �= 0 and

{
∀y ∈ Dom(f), 〈w, y〉+ αf(y) ≥ β

∀z ∈ Dom(g), 〈w, z〉+ αh(z) ≤ β.

We next prove that α �= 0. Again by way of contradiction, suppose α = 0. The restricted

hyperplane inequalities then simplify as follows:

∃β ∈ R, ∃w ∈ R
n : w �= 0 and

{
∀y ∈ Dom(f), 〈w, y〉 ≥ β

∀z ∈ Dom(g), 〈w, z〉 ≤ β.

Let us pick z ∈
◦

Dom(f) ∩
◦

Dom(g) (z must exist by hypothesis). This means:{
∃r1 > 0 : B(z, r1) ⊂ Dom(f)

∃r2 > 0 : B(z, r2) ⊂ Dom(g).

Consider the sequences (zk)k and (z′k)k where zk := z− w
k
and z′k := z+ w

k
. Owing to the

fact that w �= 0, one can easily check that 〈w, z′k〉 > 〈w, z〉 > 〈w, zk〉 holds for all k. At

the same time, the sequences (zk)k and (z′k)k converge to z so we can find a large enough

k such that both zk ∈ B(z, r1) ⊂ Dom(f) and z′k ∈ B(z, r2) ⊂ Dom(g) hold. Using

the restricted hyperplane inequalities we deduce 〈w, zk〉 ≥ β ≥ 〈w, z′k〉, but combining

results we would obtain that 〈w, z〉 > 〈w, zk〉 ≥ 〈w, z′k〉 > 〈w, z〉 which is a contradiction.

We have just showed that the restricted hyperplane inequalities reduce to:

∃β ∈ R, ∃w ∈ R
n, ∃α > 0 :

{
∀y ∈ Dom(f), 〈w, y〉+ αf(y) ≥ β

∀z ∈ Dom(g), 〈w, z〉+ αh(z) ≤ β.

We now have the necessary tools to finish the demonstration:

• On the one hand, using the fact that α > 0 and f(x) = h(x), the restricted

hyperplane inequalities applied to x ∈ Dom(f) ∩ Dom(g) ⊂ Dom(g) yield:

y ∈ Dom(f) =⇒ 〈w, y〉+ αf(y) ≥ 〈w, x〉+ αh(x)

⇐⇒ f(y)− h(x) ≥
〈w
α
, x− y

〉
⇐⇒ f(y)− f(x) ≥

〈
− w

α
, y − x

〉
,



5.2. Extended-real-valued convex functions 83

that is −w
α
∈ ∂f(x).

• On the other hand, using again α > 0 and the definition of h, the restricted

hyperplane inequalities applied to x ∈ Dom(f) ∩ Dom(g) ⊂ Dom(f) yield:

y ∈ Dom(g) =⇒ 〈w, x〉+ αf(x) ≥ 〈w, y〉+ αh(y)

⇐⇒
〈w
α
, x− y

〉
≥ h(y)− f(x)

⇐⇒
〈w
α
, x− y

〉
≥ −g(y) + 〈v, y − x〉+ (f + g)(x)− f(x)

⇐⇒
〈w
α
, x− y

〉
≥ 〈v, y − x〉+ g(x)− g(y)

⇐⇒ g(y)− g(x) ≥
〈w
α

+ v, y − x
〉
,

that is w
α
+ v ∈ ∂g(x). We finally conclude:

v =

∈∂f(x)︷︸︸︷
−w

α
+

∈∂g(x)︷ ︸︸ ︷
w

α
+ v ∈ ∂f(x) + ∂g(x).

fff

ggg

fff +++ ggg

hhh

xxx

Figure 5.7: Illustration of Lemma 25: given two (proper) functions f and g convex on

R
n such that

◦
Dom(f) ∩

◦
Dom(g) �= ∅ , x ∈ Dom(f) ∩ Dom(g) and vf+g ∈ ∂(f + g)(x)

(identified with the slope of the magenta dashed line), one can construct a concave
function h such that: 1. Hypo(h) is a rotated and shifted image of Epi(g); 2. Epi(f) and
Hypo(h) (represented by the pink and orange surfaces, respectively) can be separated by
an hyperplane corresponding to vf ∈ ∂(f)(x) (identified with the slope of the red dashed
line). Then, one can construct vg := vf+g − vf ∈ ∂(g)(x) (identified with the slope of the
blue dashed line): geometrically, the slope of the magenta dashed line equals the sum of
the slopes of the red and blue dashed lines. Note that the constructed function h is only
unique when both f and g are differentiable at x.



84 Chapter 5. Appendix

5.3 Real-valued convex functions

This section focuses on characterizing convexity of real-valued convex functions, which

form a special case of the setting of extended-real-valued convex functions studied in

Section 5.2. As such, the fundamental results obtained for the latter are inherited which

helps us:

1. Characterize function convexity using subgradients in Lemma 26 with the help of

Lemma 24 from Section 5.2.

2. Establish subgradient properties in the case of real-valued convex functions in

Lemma 27, including: relation to the argmin; relation to the gradient in case of

differentiability; calculus rules with the help of Lemma 25 from Section 5.2.

These subgradient properties are essential in order to understand the proximal gradient

descent analysis in Section 2.7 (particularly in Lemma 8).

The section finishes with two additional characterizations of function convexity: the

characterization from Lemma 26 is used to obtain a second characterization that holds

for differentiable functions (Lemma 28); the characterization from Lemma 28 is in turn

used to obtain a third characterization that holds for continuously differentiable functions

(Lemma 29). These two new characterizations will come in handy later in the Appendix

(Section 5.4).

Convention 3. In all that follows, we will write f : Rn → Rf : Rn → Rf : Rn → R to denote a

(proper) function whose effective domain is Dom(f) = R
nDom(f) = R
nDom(f) = R
n. If fff is convex

on the entire domain R
nR
n

R
n we will simply write that fff is convex. We do the

same with other properties (e.g. strong convexity, differentiability, etc. . . ).

Lemma 26. Let f : Rn → R a function. Then f is convex if and only if ∂f(x) is

non-empty for all x ∈ R
n.

Proof.

⇒. This follows immediately from Lemma 24, noting that Dom(f) = R
n (see Conven-

tion 3), such that
◦

Dom(f) = R
n.

⇐. Fix (x, y) ∈ (Rn)2 and t ∈ [0, 1]; write z := tx + (1 − t)y. We want to show that

f(z) ≤ tf(x) + (1− t)f(y). By hypothesis ∂f(z) is non-empty, that is:

∃v ∈ R
n : ∀z′ ∈ R

n, f(z′)− f(z) ≥ 〈v, z′ − z〉.



5.3. Real-valued convex functions 85

With z′ = x, we get:

f(z) ≤ f(x) +
〈
v, tx+ (1− t)y − x

〉
= f(x) +

〈
v, (1− t)(y − x)

〉
= f(x) + (1− t)〈v, y − x〉.

Similarly with z′ = y:

f(z) ≤ f(y) +
〈
v, tx+ (1− t)y − y

〉
= f(y) +

〈
v, t(x− y)

〉
= f(y)− t〈v, y − x〉.

Combining these results, we obtain as desired:

f(z) = tf(z) + (1− t)f(z)

≤ t
(
f(x) + (1− t)〈v, y − x〉

)
+ (1− t)

(
f(y)− t〈v, y − x〉

)
= tf(x) + (1− t)f(y) + t(1− t)〈v, y − x〉 − t(1− t)〈v, y − x〉
= tf(x) + (1− t)f(y).

Lemma 27. Let f, g : Rn → R two convex functions, x ∈ R
n and α > 0. Then the

following holds:

1. x = argmin
y∈Rn

f(y) ⇐⇒ 0 ∈ ∂f(x).

2. f differentiable at x =⇒ ∂f(x) = {∇f(x)}.

3. ∂(f + g)(x) = ∂f(x) + ∂g(x).

4. ∂(αf)(x) = α∂f(x).

Proof.

1. We have the following:

x = argmin
y∈Rn

f(y) ⇐⇒ ∀y ∈ R
n, f(y)− f(x) ≥ 0

⇐⇒ ∀y ∈ R
n, f(y)− f(x) ≥ 〈0, y − x〉

⇐⇒ 0 ∈ ∂f(x).



86 Chapter 5. Appendix

2. We first verify that ∇f(x) is a subgradient of f at x, i.e. we want to show that

∀y ∈ R
n, f(y)− f(x) ≥

〈
∇f(x), y−x

〉
. By definition of the gradient of f at x, we

know that:

lim
‖h‖→0

f(x+ h)− f(x)−
〈
∇f(x), h

〉
‖h‖ = 0.

Let us write h = t(y − x) such that ‖h‖ −→
t→0

0 . Clearly one has:

lim
t→0

f
(
x+ t(y − x)

)
− f(x)−

〈
∇f(x), t(y − x)

〉∥∥t(y − x)
∥∥ = 0.

But owing to the convexity of f , one has as well that for all t ∈ ]0, 1]:

f
(
x+ t(y − x)

)
− f(x)−

〈
∇f(x), t(y − x)

〉∥∥t(y − x)
∥∥

=
f
(
(1− t)x+ ty

)
− f(x)−

〈
∇f(x), t(y − x)

〉∥∥t(y − x)
∥∥

≤ (1− t)f(x) + tf(y)− f(x)−
〈
∇f(x), t(y − x)

〉∥∥t(y − x)
∥∥

=
t
(
f(y)− f(x)

)
− t

〈
∇f(x), y − x

〉
t‖y − x‖

=
f(y)− f(x)−

〈
∇f(x), y − x

〉
‖y − x‖ .

Thus, taking the limit t −→ 0 on both sides yields:

0 ≤ f(y)− f(x)−
〈
∇f(x), y − x

〉
‖y − x‖

and we obtain f(y)− f(x) ≥
〈
∇f(x), y − x

〉
as expected. The second part of the

proof is to show that ∇f(x) is in fact the only element of ∂f(x). For that purpose,

let us fix v ∈ ∂f(x), we then proceed to show that v = ∇f(x) must hold. Again,

by definition of the gradient of f at x written with quantification we have:

∀ε > 0, ∃δ > 0 :
[
‖h‖ < δ =⇒

∣∣f(x+ h)− f(x)−
〈
∇f(x), h

〉∣∣ < ε‖h‖
]
.

But since v ∈ ∂f(x), we have as well:

∣∣f(x+ h)− f(x)−
〈
∇f(x), h

〉∣∣ ≥ f(x+ h)− f(x)−
〈
∇f(x), h

〉
≥ 〈v, x+ h− x〉 −

〈
∇f(x), h

〉
= 〈v, h〉 −

〈
∇f(x), h

〉
=

〈
v −∇f(x), h

〉
,



5.3. Real-valued convex functions 87

such that:

∀ε > 0, ∃δ > 0 :
[
‖h‖ < δ =⇒

〈
v −∇f(x), h

〉
< ε‖h‖

]
.

Now, it is straightforward to check that for fixed ε > 0 and δ > 0, the condition[
‖h‖ < δ =⇒ 〈w, h〉 < ε‖h‖

]
entails ‖w‖ < ε

(
to verify this, choose h = δ

2
w

‖w‖
)
.

Therefore, substituting w := v −∇f(x) we obtain ‖v −∇f(x)‖ < ε for all ε > 0,

implying v = ∇f(x).

3. We prove inclusions separately:

⊂. This follows immediately from Lemma 25, noting that Dom(f) = Dom(g) =

R
n (see Convention 3), such that Dom(f) ∩ Dom(g) =

◦
Dom(f) ∩

◦
Dom(g) =

R
n.

⊂. Let v ∈ ∂f(x) + ∂g(x), i.e. v = v1 + v2 where (v1, v2) ∈ ∂f(x) × ∂g(x). We

have by definition:

∀y ∈ R
n, f(y)− f(x) ≥ 〈v1, y − x〉 and g(y)− g(x) ≥ 〈v2, y − x〉,

hence we get by adding these two inequalities:

∀y ∈ R
n, (f + g)(y)− (f + g)(x) ≥ 〈v1, y − x〉+ 〈v2, y − x〉

= 〈v1 + v2, y − x〉
= 〈v, y − x〉,

that is v ∈ ∂(f + g)(x).

4. Using the fact that α > 0, we can write:

v ∈ ∂(αf)(x) ⇐⇒ ∀y ∈ R
n, αf(y)− αf(x) ≥ 〈v, y − x〉

⇐⇒ ∀y ∈ R
n, f(y)− f(x) ≥

〈 v

α
, y − x

〉
⇐⇒ v

α
∈ ∂f(x)

⇐⇒ v ∈ α∂f(x).

Lemma 28. Let f : Rn → R a differentiable function. Then f is convex if and only if:

∀(x, y) ∈ (Rn)2, f(y)− f(x) ≥
〈
∇f(x), y − x

〉
. (5.9)



88 Chapter 5. Appendix

Proof. By definition of subgradients we have:

[
∀x ∈ R

n, ∇f(x) ∈ ∂f(x)
]

⇐⇒
[
∀(x, y) ∈ (Rn)2, f(y)− f(x) ≥

〈
∇f(x), y − x

〉]
.

⇒. The second clause of Lemma 27 guarantees ∇f(x) ∈ ∂f(x) for all x ∈ R
n.

⇐. We have that ∇f(x) ∈ ∂f(x) for all x ∈ R
n and in particular ∂f(x) is non-empty

for all x ∈ R
n. Due to Lemma 26, this entails that f is convex.

Lemma 29. Let f : Rn → R a continuously differentiable function. Then f is convex if

and only if:

∀(x, y) ∈ (Rn)2,
〈
∇f(x)−∇f(y), x− y

〉
≥ 0. (5.10)

Proof.

⇒. Due to Lemma 28, we have that for all (x, y) ∈ (Rn)2:

f(y)− f(x) ≥
〈
∇f(x), y − x

〉
and f(x)− f(y) ≥

〈
∇f(y), x− y

〉
,

therefore we get by combining these inequalities:

0 = f(y)− f(x) + f(x)− f(y)

≥
〈
∇f(x), y − x

〉
+
〈
−∇f(y), y − x

〉
=

〈
∇f(x)−∇f(y), y − x

〉
.

Multiplying both sides by −1 yields the desired result.

⇐. Since f is continuously differentiable, we have access to its (multivariate) Taylor

expansion with remainder of first order:

∀(x, y) ∈ (Rn)2, f(y)− f(x) =

∫ 1

0

〈
∇f

(
x+ t(y − x)

)
, y − x

〉
dt.

Now, writing z := x+ t(y − x) we have when t > 0 that y − x = 1
t
(z − x), hence:

∀t > 0,
〈
∇f

(
x+ t(y − x)

)
, y − x

〉
=

〈
∇f(z), y − x

〉
=

〈
∇f(z)−∇f(x) +∇f(x), y − x

〉
=

1

t

〈
∇f(z)−∇f(x), z − x

〉
+
〈
∇f(x), y − x

〉
.



5.4. Gradient’s Lipschitz continuity 89

From the latter and since by hypothesis we have
〈
∇f(z) −∇f(x), z − x

〉
≥ 0 for

all (x, z) ∈ (Rn)2, we deduce by positivity of the integral:

∀(x, y) ∈ (Rn)2, f(y)− f(x) =

∫ 1

0

〈
∇f

(
x+ t(y − x)

)
, y − x

〉
dt

=

∫ 1

0

1

t

〈
∇f(z)−∇f(x), z − x

〉
dt

+

∫ 1

0

〈
∇f(x), y − x

〉
dt

=

∫ 1

0

1

t

〈
∇f(z)−∇f(x), z − x

〉
︸ ︷︷ ︸

≥0

dt+
〈
∇f(x), y − x

〉
≥ 0 +

〈
∇f(x), y − x

〉
=

〈
∇f(x), y − x

〉
.

Applying Lemma 28, we conclude f is convex.

5.4 Gradient’s Lipschitz continuity

Lipschitz continuity of the gradient is a crucial smoothness property intervening in the

context of convex optimization. It is intimately tied to the theoretical analysis of the

proximal gradient descent optimization scheme (see Section 2.7, notably Lemma 9).

More precisely, we show in this section that differentiable functions with a Lipschitz

continuous gradient satisfy an important inequality (Lemma 33). In order to reach that

goal, a technical lemma is needed (Lemma 30), as well as some additional knowledge

about the strong convexity property (see in particular Lemma 31).

Definition 23. Let f : Rn → R a differentiable function and L > 0. We say that f has

an LLL-Lipschitz continuous gradient if:

∀(x, y) ∈ (Rn)2,
∥∥∇f(x)−∇f(y)

∥∥ ≤ L‖x− y‖. (5.11)

Lemma 30. Let f : Rn → R a differentiable function with an L-Lipschitz continuous

gradient. Then the function gρ : x �→ ρ
2
‖x‖2 − f(x) is convex for all ρ ≥ L.

Proof. Fix ρ ≥ L. By hypothesis, f has an L-Lipschitz continuous gradient; in particular

it is continuously differentiable and the same is true of gρ. By Lemma 29, we know that



90 Chapter 5. Appendix

to prove the convexity of gρ it suffices to show:

∀(x, y) ∈ (Rn)2,
〈
∇gρ(x)−∇gρ(y), x− y

〉
≥ 0.

The gradient of gρ at x is ∇gρ(x) = ρx−∇f(x) so we have:

∀(x, y) ∈ (Rn)2,
〈
∇gρ(x)−∇gρ(y), x− y

〉
=

〈
ρx− ρy +∇f(y)−∇f(x), x− y

〉
= ρ‖x− y‖2 −

〈
∇f(x)−∇f(y), x− y

〉
≥ L‖x− y‖2 −

〈
∇f(x)−∇f(y), x− y

〉
.

Now, notice that one can apply the Cauchy-Schwarz inequality and use the L-Lipschitz

continuous property of the gradient of f to get:

∀(x, y) ∈ (Rn)2,
〈
∇f(x)−∇f(y), x− y

〉
≤

∥∥∇f(x)−∇f(y)
∥∥‖x− y‖

≤ L‖x− y‖2,

thus we conclude:

∀(x, y) ∈ (Rn)2,
〈
∇gρ(x)−∇gρ(y), x− y

〉
≥ L‖x− y‖2 −

〈
∇f(x)−∇f(y), x− y

〉
≥ L‖x− y‖2 − L‖x− y‖2

= 0,

proving gρ is convex.

Definition 24. Let f : Rn → R a function and ρ ≥ 0. We say that f is ρρρ-strongly

convex if:

∀x ∈ R
n, ∂f(x) is non-empty and ∀(v, y) ∈ ∂f(x)× R

n,

f(y)− f(x) ≥
〈
v, y − x

〉
+

ρ

2
‖x− y‖2. (5.12)

Lemma 31. Let f : Rn → R a function and ρ ≥ 0. Then f is ρ-strongly convex if and

only if the function g : x �→ f(x)− ρ
2
‖x‖2 is convex.

Proof. We know from the third clause of Lemma 27 that the subdifferential is additive,

such that ∂f(x) = ∂g(x)+∂
(
ρ
2
‖·‖2

)
(x). Moreover, the second clause of the same Lemma

tells us that ∂
(
ρ
2
‖ · ‖2

)
(x) =

{
∇
(
ρ
2
‖ · ‖2

)
(x)

}
= {ρx}, hence ∂f(x) = ∂g(x) + {ρx}. By

Lemma 26 we know that g is convex if and only if ∂g(x) = ∂f(x) − {ρx} is non-empty

for all x ∈ R
n, which can be equivalently rewritten as:

∀x ∈ R
n, ∂f(x) is non-empty and ∀(v, y) ∈ ∂f(x)× R

n, g(y)− g(x) ≥ 〈v − ρx, y − x〉.



5.4. Gradient’s Lipschitz continuity 91

Now, g(y)− g(x) ≥ 〈v − ρx, y − x〉 if and only if:

f(y)− f(x) ≥ ρ

2
‖y‖2 − ρ

2
‖x‖2 + 〈v − ρx, y − x〉

=
ρ

2

(
‖y‖2 − ‖x‖2

)
+ 〈v, y − x〉 − ρ〈x, y〉+ ρ‖x‖2

= 〈v, y − x〉+ ρ

2

(
‖x‖2 − 2〈x, y〉+ ‖y‖2

)
= 〈v, y − x〉+ ρ

2
‖x− y‖2.

We therefore conclude that g is convex if and only if:

∀x ∈ R
n, ∂f(x) is non-empty and ∀(v, y) ∈ ∂f(x)× R

n,

f(y)− f(x) ≥
〈
v, y − x

〉
+

ρ

2
‖x− y‖2.

The latter is exactly the definition of f being ρ-strongly convex.

Lemma 32. Let f : Rn → R a function and ρ ≥ 0. Then f is ρ-strongly convex if and

only if there is a ∈ R
n such that the function ga : x �→ f(x)− ρ

2
‖x− a‖2 is convex.

Proof. Due to Lemma 31 it is equivalent to show that the function g : x �→ f(x)− ρ
2
‖x‖2

is convex if and only if there is a ∈ R
n such that the function ga : x �→ f(x)− ρ

2
‖x− a‖2

is convex.

⇒. Trivial with a = 0.

⇐. Assume there is a ∈ R
n such that the function ga : x �→ f(x)− ρ

2
‖x−a‖2 is convex.

Clearly one has that:

∀x ∈ R
n, g(x) = f(x)− ρ

2
‖x‖2

= f(x)− ρ

2
‖x− a+ a‖2

= f(x)− ρ

2
‖x− a‖2 − ρ〈x− a, a〉 − ρ

2
‖a‖2

= ga(x) +
ρ

2
‖a‖2 − ρ〈x, a〉,

that is g = ga + ha where ha : x �→ ρ
2
‖a‖2 − ρ〈x, a〉 is an affine function and

is therefore convex. Since ga is convex as well by hypothesis, Lemma 15 lets us

conclude that g is convex as the sum of two convex functions.

Lemma 33. Let f : Rn → R a differentiable function with an L-Lipschitz continuous



92 Chapter 5. Appendix

gradient. Then the following holds:

∀(x, y) ∈ (Rn)2, f(y) ≤ f(x) +
〈
∇f(x), y − x

〉
+

L

2
‖x− y‖2. (5.13)

Proof. First notice that due to Lemma 30, the hypothesis that f is differentiable with

an L-Lipschitz continuous gradient entails the function g : x �→ L
2
‖x‖2 − f(x) is convex.

Moreover, since g is itself differentiable we know from Lemma 28 that the convexity of

g can be restated as:

∀(x, y) ∈ (Rn)2, g(y)− g(x) ≥
〈
∇g(x), y − x

〉
.

With g(x) = L
2
‖x‖2 − f(x) and ∇g(x) = Lx−∇f(x), this means:

∀(x, y) ∈ (Rn)2,
L

2
‖y‖2 − L

2
‖x‖2 + f(x)− f(y) ≥

〈
Lx−∇f(x), y − x

〉
.

Rearranging terms, this becomes:

∀(x, y) ∈ (Rn)2, f(y) ≤ f(x) +
〈
∇f(x)− Lx, y − x

〉
+

L

2
‖y‖2 − L

2
‖x‖2.

Now clearly, by Lemma 31 the function x �→ L
2
‖x‖2 is L-strongly convex, its gradient at

y is equal to Ly, so we have by definition of strong convexity:

∀(x, y) ∈ (Rn)2,
L

2
‖x‖2 − L

2
‖y‖2 ≥ 〈Ly, x− y〉+ L

2
‖x− y‖2.

We thus deduce:

∀(x, y) ∈ (Rn)2,
L

2
‖y‖2 − L

2
‖x‖2 ≤ 〈Ly, y − x〉 − L

2
‖x− y‖2

= 〈Ly − Lx+ Lx, y − x〉 − L

2
‖x− y‖2

= L〈y − x, y − x〉+ 〈Lx, y − x〉 − L

2
‖x− y‖2

= L‖x− y‖2 − L

2
‖x− y‖2 + 〈Lx, y − x〉

=
L

2
‖x− y‖2 + 〈Lx, y − x〉.



5.5. Proximal operator: closed-form examples 93

Combining results, we finally get:

∀(x, y) ∈ (Rn)2, f(y) ≤ f(x) +
〈
∇f(x)− Lx, y − x

〉
+

L

2
‖y‖2 − L

2
‖x‖2

≤ f(x) +
〈
∇f(x)− Lx, y − x

〉
+

L

2
‖x− y‖2 + 〈Lx, y − x〉

= f(x) +
〈
∇f(x) + Lx− Lx, y − x

〉
+

L

2
‖x− y‖2

= f(x) +
〈
∇f(x), y − x

〉
+

L

2
‖x− y‖2.

5.5 Proximal operator: closed-form examples

In this section we want to derive closed-form solutions to proximal operators (see Sec-

tion 2.7) of certain convex functions. The key ingredients of the section are the sub-

differentials of the Euclidean norm (see Lemma 34). These subdifferentials enable the

computation of a closed-form solution to the proximal operator of the (scaled) Euclidean

norm in Lemma 35. A closed-form solution to a more general proximal operator is com-

puted in Lemma 37, with the help of a technical lemma (Lemma 36).

The proximal operator from Lemma 37 is of interest, since it generalizes as well the

proximal operator whose closed-form solution is computed in the ProxiMAS algorithm

(Algorithm 3.5: line 5.ii).

Lemma 34. The Euclidean norm on R
n has the following subdifferentials:

∀x ∈ R
n, ∂

(
‖ · ‖
)
(x) =

⎧⎪⎨⎪⎩
{

x
‖x‖
}

if x �= 0

B(0, 1) if x = 0.

(5.14)

Proof. We first remark that the Euclidean norm satisfies the triangular inequality and

in particular it is convex, thus from Lemma 26 we know that ∂
(
‖ · ‖
)
(x) is non-empty

for all x ∈ R
n. Notice as well that the Euclidean norm can be written as the following

composition of functions: ‖ · ‖ =
√· ◦ ‖ · ‖2. We know that the squared Euclidean norm

‖ · ‖2 is differentiable on R
n and ‖x‖2 > 0 for all x �= 0. Since

√· is differentiable on

R
∗
+, we deduce that 0 is the only point of non-differentiability of ‖ · ‖ and separate our

analysis accordingly. Fix x ∈ R
n; two cases should be discussed:

• x �= 0: ‖·‖ is convex and differentiable at x, thus by the second clause of Lemma 27

we know that ∂
(
‖ · ‖
)
(x) =

{
∇
(
‖ · ‖
)
(x)
}
. Now, consider the differential operator



94 Chapter 5. Appendix

d, defined as follows:

∀y ∈ R
n, ∀f : Rn → R differentiable at y, d(f)(y) : h ∈ R

n �→
〈
∇f(y), h

〉
.

We have:⎧⎨⎩ ∀h ∈ R
n, d
(
‖ · ‖2

)
(x)(h) =

〈
∇
(
‖ · ‖2

)
(x), h

〉
= 〈2x, h〉

∀h ∈ R, d
(√·
)(
‖x‖2

)
(h) =

〈
∇
(√·
)(
‖x‖2

)
, h
〉
= h

2
√

‖x‖2 = h
2‖x‖ .

Applying the differential chain rule then yields:

∀h ∈ R
n, d
(
‖ · ‖
)
(x)(h) = d

(√
· ◦ ‖ · ‖2

)
(x)(h)

= d
(√

·
)(
‖x‖2

)(
d
(
‖ · ‖2

)
(x)(h)

)
= d
(√

·
)(
‖x‖2

)(
〈2x, h〉

)
=

〈2x, h〉
2‖x‖

=
〈 x

‖x‖ , h
〉
,

that is we have just showed ∇
(
‖ · ‖
)
(x) = x

‖x‖ and ∂
(
‖ · ‖
)
(x) =

{
x

‖x‖
}
.

• x = 0: We prove that ∂
(
‖ · ‖
)
(0) = B(0, 1) by double inclusion:

⊂. Let v ∈ ∂
(
‖ · ‖
)
(0), i.e. ‖y‖ − ‖0‖ ≥ 〈v, y − 0〉 for all y ∈ R

n. Setting y = v,

we get in particular ‖v‖ ≥ 〈v, v〉 = ‖v‖2, implying ‖v‖ ≤ 1.

⊂. Let v ∈ B(0, 1), i.e. ‖v‖ ≤ 1. Applying the Cauchy-Schwarz inequality

immediately yields:

∀y ∈ R
n, 〈v, y − 0〉 = 〈v, y〉

≤ ‖v‖‖y‖
≤ ‖y‖
= ‖y‖ − ‖0‖,

proving that v ∈ ∂
(
‖ · ‖
)
(0).

Lemma 35. Let ‖ · ‖ denote the Euclidean norm on R
n and let α > 0. The proximal

operator of α‖ · ‖ at point a ∈ R
n has the following closed-form solution:

Prox
(
α‖ · ‖

)
(a) =

{ (
‖a‖ − α

)
· a
‖a‖ if ‖a‖ > α

0 if ‖a‖ ≤ α.
(5.15)



5.5. Proximal operator: closed-form examples 95

Proof. By definition of the proximal operator and using all clauses from Lemma 27, we

can write:

x∗ = Prox
(
α‖ · ‖

)
(a) ⇐⇒ x∗ = argmin

x∈Rn

(
α‖x‖+ 1

2
‖x− a‖2

)
⇐⇒ 0 ∈ ∂

(
α‖ · ‖+ 1

2
‖ · −a‖2

)
(x∗)

⇐⇒ 0 ∈ α∂
(
‖ · ‖
)
(x∗) + ∂

(1
2
‖ · −a‖2

)
(x∗)

⇐⇒ 0 ∈ α∂
(
‖ · ‖
)
(x∗) +

{
∇
(1
2
‖ · −a‖2

)
(x∗)
}

⇐⇒ 0 ∈ α∂
(
‖ · ‖
)
(x∗) +

{
x∗ − a

}
.

In fact, due to Lemma 34 we have the following set equality:

α∂
(
‖ · ‖
)
(x∗) +

{
x∗ − a

}
=

⎧⎪⎨⎪⎩
α
{

x∗
‖x∗‖
}
+
{
x∗ − a

}
=
{
α x∗

‖x∗‖ + x∗ − a
}

if x∗ �= 0

αB(0, 1) +
{
x∗ − a

}
= B(−a, α) if x∗ = 0.

In particular, we have:

x∗ = Prox
(
α‖ · ‖

)
(a) =⇒ 0 ∈

⎧⎪⎨⎪⎩
{
α x∗

‖x∗‖ + x∗ − a
}

if x∗ �= 0

B(−a, α) if x∗ = 0.

The proof will thus be complete if we can establish:

0 ∈

⎧⎪⎨⎪⎩
{
α x∗

‖x∗‖ + x∗ − a
}

if x∗ �= 0

B(−a, α) if x∗ = 0

=⇒ x∗ =

{ (
‖a‖ − α

)
· a
‖a‖ if ‖a‖ > α

0 if ‖a‖ ≤ α.

Assume the left-hand side holds. Now, notice that a simple derivation yields:

x∗ �= 0 =⇒ α + ‖x∗‖ =
( α

‖x∗‖
+ 1
)
‖x∗‖

=
∥∥∥( α

‖x∗‖
+ 1
)
x∗
∥∥∥,

hence we deduce:

x∗ �= 0 =⇒ 0 ∈
{
α

x∗
‖x∗‖

+ x∗ − a
}
and α + ‖x∗‖ =

∥∥∥( α

‖x∗‖
+ 1
)
x∗
∥∥∥

=⇒ a =
( α

‖x∗‖
+ 1
)
x∗ and ‖a‖ = α + ‖x∗‖.

We can then easily show that x∗ = 0 ⇐⇒ ‖a‖ ≤ α:



96 Chapter 5. Appendix

⇒. This is immediate:

x∗ = 0 =⇒ 0 ∈ B(−a, α)

⇐⇒
∥∥0− (−a)

∥∥ = ‖a‖ ≤ α.

⇐. To see this, we proceed by way of contradiction. Suppose ‖a‖ ≤ α and x∗ �= 0. We

noticed previously that x∗ �= 0 entails ‖a‖ = α + ‖x∗‖, but then ‖x∗‖ > 0 causes

‖a‖ > α which is a contradiction.

Finally, the previous analysis lets us investigate the case ‖a‖ > α:

‖a‖ > α ⇐⇒ x∗ �= 0

=⇒ a =
( α

‖x∗‖
+ 1

)
x∗ and ‖a‖ = α + ‖x∗‖

=⇒ x∗ =
( α

‖a‖ − α
+ 1

)−1

a

⇐⇒ x∗ =
( ‖a‖
‖a‖ − α

)−1

a

⇐⇒ x∗ =
(
‖a‖ − α

)
· a

‖a‖ .

Lemma 36. Consider a decomposition of Rn, in the following sense:

y ∈ R
n ⇐⇒

{
y = (y1, . . . , yk) ∈ R

n1 × · · · × R
nk∑k

j=1 nj = n.
(5.16)

For all j ∈ �1, k�, let fj : Rnj → R a function. Construct f : x ∈ R
n �→ ∑k

j=1 fj(xj).

Then the following holds:

∀(v, x) ∈ (Rn)2,
[
v ∈ ∂f(x) ⇐⇒ ∀j ∈ �1, k�, vj ∈ ∂fj(xj)

]
. (5.17)

Proof. Fix (v, x) ∈ (Rn)2 and write (v1, . . . , vk)
(
respectively (x1, . . . , xk)

)
the decompo-

sition of v (respectively x) in R
n1 × · · · × R

nk .

⇒. Fix j ∈ �1, k�. For all yj ∈ R
nj , define ŷj := (x1, . . . , xj−1, yj, xj+1, . . . , xk) ∈ R

n.

We have:

v ∈ ∂f(x) ⇐⇒ ∀y ∈ R
n, f(y)− f(x) ≥ 〈v, y − x〉

=⇒ ∀yj ∈ R
nj , f(ŷj)− f(x) ≥ 〈v, ŷj − x〉,



5.5. Proximal operator: closed-form examples 97

where by definition of f and by property of 〈·, ·〉:⎧⎨⎩ f(ŷj)− f(x) = fj(yj) +
∑k

i=1
i �=j

fi(xi)−
∑k

i=1 fi(xi) = fj(yj)− fj(xj)

〈v, ŷj − x〉 = 〈vj, yj − xj〉+
∑k

i=1
i �=j

〈vi, xi − xi〉 = 〈vj, yj − xj〉.

We thus obtain:

v ∈ ∂f(x) =⇒ ∀yj ∈ R
nj , f(ŷj)− f(x) ≥ 〈v, ŷj − x〉

⇐⇒ ∀yj ∈ R
nj , fj(yj)− fj(xj) ≥ 〈vj, yj − xj〉

⇐⇒ vj ∈ ∂fj(xj).

⇐. For all j ∈ �1, k�, define f j : x ∈ R
n �→ fj(xj) and vj := (0, . . . , 0, vj, 0, . . . , 0) ∈ R

n.

Clearly, f =
∑k

j=1 f j and v =
∑k

j=1 vj. Again by property of 〈·, ·〉, we can write

that for all j ∈ �1, k�:

∀z ∈ R
n, 〈vj, z〉 = 〈vj, zj〉+

k∑
i=1
i �=j

〈0, zi〉 = 〈vj, zj〉,

and one can easily check that for all j ∈ �1, k�:

[
∀y ∈ R

n, f j(y)− f j(x) ≥ 〈vj, y − x〉
]

⇐⇒[
∀yj ∈ R

nj , fj(yj)− fj(xj) ≥ 〈vj, yj − xj〉
]
.

We finally obtain:

v ∈ ∂f(x) ⇐⇒ ∀y ∈ R
n, f(y)− f(x) ≥ 〈v, y − x〉

⇐⇒ ∀y ∈ R
n,

k∑
j=1

f j(y)−
k∑

j=1

f j(x) ≥
〈 k∑

j=1

vj, y − x

〉

⇐⇒ ∀y ∈ R
n,

k∑
j=1

(
f j(y)− f j(x)

)
≥

k∑
j=1

〈vj, y − x〉

⇐= ∀j ∈ �1, k�, ∀y ∈ R
n, f j(y)− f j(x) ≥ 〈vj, y − x〉

⇐⇒ ∀j ∈ �1, k�, ∀yj ∈ R
nj , fj(yj)− fj(xj) ≥ 〈vj, yj − xj〉

⇐⇒ ∀j ∈ �1, k�, vj ∈ ∂fj(xj).

Lemma 37. Given l,m, n ∈ N
∗, let ‖ · ‖ (respectively ‖ · ‖′) denote the Euclidean norm

on R
n (respectively R

lmn); also let α > 0 and define the function g : W ∈ R
l×m×n �→∑l−1

i=0

∑m−1
j=0

∥∥W [i, j, :]
∥∥. Then, the proximal operator of αg at point A ∈ R

l×m×n has the



98 Chapter 5. Appendix

following closed-form solution:

Prox(αg)(A) =
(
Prox

(
α‖ · ‖

)(
A[i, j, :]

))
(i,j)∈�0,l−1�×�0,m−1�

. (5.18)

More precisely, one has for all (i, j) ∈ �0, l − 1� × �0,m− 1�:

Prox(αg)(A)[i, j, :] =

⎧⎨⎩
(∥∥A[i, j, :]∥∥− α

)
· A[i,j,:]∥∥A[i,j,:]

∥∥ if
∥∥A[i, j, :]∥∥ > α

0 if
∥∥A[i, j, :]∥∥ ≤ α.

(5.19)

Proof. In what follows, due to the fact that the metric spaces Rlmn and R
l×m×n (equipped

with their respective Euclidean norm) are isometric, we will use the same notation ‖ · ‖′
to denote their respective Euclidean norm. Now, consider the function:

h : W ∈ R
l×m×n �→ αg(W ) +

1

2
‖W − A‖′2.

Notice that the function h can be written as a sum of functions over a decomposition of

R
lmn (up to isometry):

∀W ∈ R
l×m×n, h(W ) = α

l−1∑
i=0

m−1∑
j=0

∥∥W [i, j, :]
∥∥+ 1

2

l−1∑
i=0

m−1∑
j=0

∥∥W [i, j, :]− A[i, j, :]
∥∥2

=
l−1∑
i=0

m−1∑
j=0

(
α
∥∥W [i, j, :]

∥∥+ 1

2

∥∥W [i, j, :]− A[i, j, :]
∥∥2)

=
l−1∑
i=0

m−1∑
j=0

hi,j

(
W [i, j, :]

)
,

where:

∀(i, j) ∈ �0, l − 1� × �0,m− 1�, hi,j : x ∈ R
n �→ α‖x‖+ 1

2

∥∥x− A[i, j, :]
∥∥2.

We can therefore apply Lemma 36 to obtain:

∀(V,W ) ∈ (Rl×m×n)2,[
V ∈ ∂h(W ) ⇐⇒ ∀(i, j) ∈ �0, l − 1� × �0,m− 1�, V [i, j, :] ∈ ∂hi,j

(
W [i, j, :]

)]
.

Setting V = 0 and W = W∗ in the previous statement, combined with the definition of



5.6. Frobenius norm and spectral norm of matrices 99

the proximal operator and the first clause of Lemma 27 thus gives:

W∗ = Prox(αg)(A) ⇐⇒ W∗ = argmin
W∈Rl×m×n

(
αg(W ) +

1

2
‖W − A‖′2

)
⇐⇒ 0 ∈ ∂

(
αg +

1

2
‖ · −A‖′2

)
(W∗)

⇐⇒ 0 ∈ ∂h(W∗),

⇐⇒ ∀(i, j) ∈ �0, l − 1� × �0,m− 1�, 0 ∈ ∂hi,j

(
W∗[i, j, :]

)
⇐⇒ ∀(i, j) ∈ �0, l − 1� × �0,m− 1�,

0 ∈ ∂
(
α‖ · ‖+ 1

2

∥∥ · −A[i, j, :]
∥∥2
)(

W∗[i, j, :]
)

⇐⇒ ∀(i, j) ∈ �0, l − 1� × �0,m− 1�,

W∗[i, j, :] = argmin
x∈Rn

(
α‖x‖+ 1

2

∥∥x− A[i, j, :]
∥∥2
)

⇐⇒ ∀(i, j) ∈ �0, l − 1� × �0,m− 1�,

W∗[i, j, :] = Prox
(
α‖ · ‖

)(
A[i, j, :]

)
.

We have just showed that:

Prox(αg)(A) =
(
Prox

(
α‖ · ‖

)(
A[i, j, :]

))
(i,j)∈�0,l−1�×�0,m−1�

.

Finally, the precise closed-form solution is obtained directly from Lemma 35.

5.6 Frobenius norm and spectral norm of matrices

In this short section, we reestablish the sub-multiplicativity of the Frobenius norm, that

is, the Frobenius norm of a product of matrices is upper-bounded by the product of the

Frobenius norms of these matrices. In fact, a finer analysis (conducted in Lemma 39)

reveals that a tighter upper-bound is the product of the spectral norm of the first matrix

with the Frobenius norm of the second matrix.

The spectral norm is a matrix norm that can be defined in two very different ways:

it corresponds to the largest singular value of a matrix as well as the operator norm

associated with the Euclidean norm (this dual form is proved in Lemma 38).

The sub-multiplicativity of the Frobenius norm is important in that it naturally arises

while showing that the smooth component of a LASSO-like objective function has an

L-Lipschitz continuous gradient (as in Lemma 41). A smaller Lipschitz constant for

the gradient is equivalent to a larger learning rate using proximal gradient descent (see



100 Chapter 5. Appendix

Section 2.7) and is therefore of prime importance, hence why using the spectral norm to

get a tighter sub-multiplicativity upper-bound matters.

Definition 25. The spectral norm of a matrix A ∈ R
m×n, denoted ‖A‖∗, is defined

to be the largest singular value of A, that is the square root of the largest eigenvalue of

the matrix AtA:

‖A‖∗ =
√
λmax(AtA). (5.20)

Lemma 38. In finite dimensions, the spectral norm coincides with the operator norm

associated with the Euclidean norm:

∀A ∈ R
m×n, ‖A‖∗ = sup

x∈Rn\{0}

‖Ax‖
‖x‖ . (5.21)

Proof. In this proof, we will use the fact that AtA ∈ R
n×n is a positive semi-definite

matrix such that its eigenvalues (λk)k∈�1,n� are non-negative; for convenience we can

assume the eigenvalues are sorted in increasing order, that is:

λmax(A
tA) = λn ≥ · · · ≥ λ1 ≥ 0.

Besides, AtA ∈ R
n×n is a real and symmetric matrix, so the spectral theorem [Hawkins,

1975] ensures there is an orthonormal basis of Rn made of eigenvectors (ek)k∈�1,n�:{
∀k ∈ �1, n�, AtAek = λkek and ‖ek‖ = 1

∀(j, k) ∈ �1, n�2 : j, k distinct, 〈ej, ek〉 = 0.

≥. Fix x ∈ R
n. We can write x in the orthonormal basis (ek)k∈�1,n�:

x =
n∑

k=1

μkek and ‖x‖2 =
n∑

k=1

μ2
k.

Now, we have:

‖Ax‖2 = 〈Ax,Ax〉
= 〈x,AtAx〉

=

〈 n∑
j=1

μjej, A
tA

n∑
k=1

μkek

〉

=

〈 n∑
j=1

μjej,
n∑

k=1

μkA
tAek

〉

=

〈 n∑
j=1

μjej,
n∑

k=1

μkλkek

〉
,



5.6. Frobenius norm and spectral norm of matrices 101

hence by bilinearity of the scalar product:

‖Ax‖2 =
n∑

j=1

n∑
k=1

μjμkλk〈ej, ek〉

=
n∑

k=1

μ2
kλk

≤
n∑

k=1

μ2
kλn

= λn ·
n∑

k=1

μ2
k

= ‖A‖2∗ · ‖x‖2,

therefore:

∀x ∈ R
n \ {0}, ‖A‖∗ ≥

‖Ax‖
‖x‖ ,

which implies that:

‖A‖∗ ≥ sup
x∈Rn\{0}

‖Ax‖
‖x‖ .

≤. On the one hand, we have:

‖A‖2∗ = λn

= λn‖en‖
= ‖λnen‖
= ‖AtAen‖.

On the other hand, since (ek)k∈�1,n� is an orthonormal basis we can use Parseval’s

identity, that is:

∀x ∈ R
n, ‖x‖2 =

n∑
k=1

〈x, ek〉2.

Substituting x := AtAen, we deduce:

‖AtAen‖2 =
n∑

k=1

〈AtAen, ek〉2

=
∑
k �=n

(
λn〈en, ek〉

)2
+ 〈AtAen, en〉2

= 0 + 〈Aen, Aen〉2

= ‖Aen‖4.

Combining the two previous results yields ‖A‖∗ =
√
‖AtAen‖ = ‖Aen‖. But since



102 Chapter 5. Appendix

‖en‖ = 1, we clearly get:

‖A‖∗ =
‖Aen‖
‖en‖

≤ sup
x∈Rn\{0}

‖Ax‖
‖x‖ .

Lemma 39. The Frobenius norm is sub-multiplicative. More precisely, one has:

∀(A,B) ∈ R
m×n × R

n×p, ‖AB‖ ≤ ‖A‖∗ · ‖B‖ ≤ ‖A‖ · ‖B‖. (5.22)

Proof. From Lemma 38, we know that for a matrix A ∈ R
m×n, its spectral norm ‖A‖∗

coincides with its operator norm associated with the Euclidean norm:

‖A‖∗ = sup
x∈Rn\{0}

‖Ax‖
‖x‖ .

One therefore has that ‖Ax‖ ≤ ‖A‖∗ · ‖x‖ for all x ∈ R
n. Now, given two matrices

(A,B) ∈ R
m×n × R

n×p, the j-th column of AB is Abj where bj ∈ R
n is the j-th column

of B. From this we deduce:

‖AB‖2 =
p−1∑
j=0

∥∥(AB)[:, j]
∥∥2

=

p−1∑
j=0

‖Abj‖2

≤
p−1∑
j=0

‖A‖2∗ · ‖bj‖2

= ‖A‖2∗ ·
p−1∑
j=0

∥∥B[:, j]
∥∥2

= ‖A‖2∗ · ‖B‖2,

proving that ‖AB‖ ≤ ‖A‖∗ · ‖B‖. Finally, by definition the spectral norm of ‖A‖∗ is

equal to the largest singular value of A, i.e. ‖A‖∗ =
√
λmax(AtA) where λmax(A

tA) is

the largest eigenvalue of AtA. Let (λk)k∈�1,n� denote the eigenvalues of A
tA (again, these

eigenvalues are non-negative since AtA is positive semi-definite). Since the trace of a



5.7. Stability analysis of ProxiMAS 103

matrix is equal to the sum of the eigenvalues of that matrix, we can write:

‖A‖2 = 〈A,A〉
= T r(AtA)

=
n∑

k=1

λk

≥ λmax(A
tA)

= ‖A‖2∗,

i.e. ‖A‖∗ ≤ ‖A‖. Combining results, we conclude ‖AB‖ ≤ ‖A‖∗ · ‖B‖ ≤ ‖A‖ · ‖B‖.

5.7 Stability analysis of ProxiMAS

In this section we write down for completeness the full theoretical convergence analysis

of the ProxiMAS heuristic described in Algorithm 3.5, which had to be shortened in

Article III due to space limitations.

More precisely: Lemma 40 gives a necessary condition for the sequence of permuta-

tions constructed by ProxiMAS to become constant after a finite number of iterations;

Lemma 41 shows that the objective functions constructed by ProxiMAS have stationary

properties that will be exploited in Lemma 42; the latter lemma gives a set of sufficient

conditions for the sequence of cyclic solutions constructed by ProxiMAS to admit a con-

verging subsequence. Finally, Theorem 1 gives a set of sufficient conditions ensuring

certain subsequences of permutations constructed by ProxiMAS become constant after

a finite number of iterations. The proof is slightly intricate and recursively applies an

intermediary stability lemma (Lemma 43).

Lemma 40. Let
(
W̃k

)
k
, (Wk)k and (πk)k respectively denote the sequence of cyclic solu-

tions, acyclic solutions and permutations in ProxiMAS. Assume permutations stabilize,

i.e. ∃k1 : ∀k ≥ k1, πk = π. Then the following convergence condition necessarily holds:

∃k0 : ∀k ≥ k0,
∥∥W̃k −Wk

∥∥ ≤
∥∥W̃k −Wk−1

∥∥. (5.23)

Proof. We start by writing:

∥∥W̃k −Wk−1

∥∥2
=

∥∥W̃k −Wk +Wk −Wk−1

∥∥2

=
∥∥W̃k −Wk

∥∥2
+ 2

〈
W̃k −Wk,Wk −Wk−1

〉
+
∥∥Wk −Wk−1

∥∥2
,



104 Chapter 5. Appendix

but since W̃k −Wk and Wk are orthogonal by construction, this implies:

∥∥W̃k −Wk

∥∥2 ≤
∥∥W̃k −Wk−1

∥∥2 ⇐⇒ 2
〈
W̃k −Wk,Wk −Wk−1

〉
+
∥∥Wk −Wk−1

∥∥2 ≥ 0

⇐⇒ 2
〈
W̃k −Wk,−Wk−1

〉
+
∥∥Wk −Wk−1

∥∥2 ≥ 0

⇐⇒
∥∥Wk −Wk−1

∥∥2 ≥ 2
〈
W̃k −Wk,Wk−1

〉
.

Now due to our assumption, there exists k1 such that for all k ≥ k0 := k1 + 1, πk =

πk−1 = π. Seeing π as a permutation operator, we get by construction of Algorithm 3.4

that for all (i, j) ∈ �0, d− 1�2:

∀k ≥ k0,

{
W̃k[i, j]−Wk[i, j] �= 0 =⇒ πk(i) ≤ πk(j) ⇐⇒ π(i) ≤ π(j)

Wk−1[i, j] �= 0 =⇒ πk−1(i) > πk−1(j) ⇐⇒ π(i) > π(j),

such that for all (i, j) ∈ �0, d− 1�2:

∀k ≥ k0,
[
W̃k[i, j]−Wk[i, j] �= 0 =⇒ Wk−1[i, j] = 0

]
.

The last result entails:

∀k ≥ k0,
〈
W̃k −Wk,Wk−1

〉
= 0,

therefore
∥∥Wk−Wk−1

∥∥2 ≥ 2
〈
W̃k−Wk,Wk−1

〉
trivially holds when k ≥ k0, and the claim

follows.

Lemma 41. Let (φk)k denote the sequence of objective functions in ProxiMAS. Then

the functions φk are composite ρ-strongly convex functions of the form φk = fk+g where

both the fk and g are convex and the fk are differentiable with an L-Lipschitz continuous

gradient where L = 1
n
‖X tX + nρI‖∗ does not depend on k.

Proof. The functions φk have the following form:

φk : W ∈ R
d×d �→ 1

2n
‖XW −X‖2 + ρ

2
‖W −Wk−1‖2 + λ‖W‖1.

The fact that the φk are ρ-strongly convex follows immediately from Lemma 32, since

the functions W ∈ R
d×d �→ φk(W )− ρ

2
‖W −Wk−1‖2 are convex. Now, define the fk and

g as such:

fk : W ∈ R
d×d �→ 1

2n
‖XW −X‖2 + ρ

2
‖W −Wk−1‖2 and g : W ∈ R

d×d �→ λ‖W‖1.

We clearly have that φk = fk + g where both the fk and g are convex and the fk are



5.7. Stability analysis of ProxiMAS 105

differentiable. Moreover, the gradient of the fk at W takes the form:

∇fk(W ) =
1

n
X t(XW −X) + ρ(W −Wk−1)

=
( 1
n
X tX + ρI

)
W + Ck,

where I is the identity matrix and Ck := −
(
1
n
X tX + ρWk−1

)
is constant with respect to

the variable W . All is left is to investigate the Lipschitz continuity of the gradient of the

smooth components fk. Fix k and (W,W ′) ∈ (Rd×d)2; we have thanks to Lemma 39:

∥∥∇fk(W )−∇fk(W
′)
∥∥ = ∥∥∥∥( 1nX tX + ρI

)
W + Ck −

( 1
n
X tX + ρI

)
W ′ − Ck

∥∥∥∥
=

1

n

∥∥(X tX + nρI)(W −W ′)
∥∥

≤ 1

n
‖X tX + nρI‖∗ · ‖W −W ′‖,

which shows that the functions fk have L-Lipschitz continuous gradient where L :=
1
n
‖X tX + nρI‖∗ does not depend on k.

Lemma 42. Let
(
W̃k

)
k
, (Wk)k and (γk)k respectively denote the sequence of cyclic solu-

tions, acyclic solutions and learning rates in ProxiMAS. Assume Lemma 40’s condition

holds: ∃k0 : ∀k ≥ k0,
∥∥W̃k−Wk

∥∥ ≤ ∥∥W̃k−Wk−1

∥∥. Also assume one of the two following

conditions on the learning rate:⎧⎪⎪⎨⎪⎪⎩
γk = O

(
1
kα

)
where α > 2

or

γk = O
(

1
kα

)
where α > 1 and kγ−1

k

∥∥W̃k − W̃k−1

∥∥2 −→
k→+∞

l ∈ R+ ∪ {+∞}.
(5.24)

Then
(
W̃k

)
k
admits a convergent subsequence.

Proof. We know from Lemma 41 that the φk have stationary properties, namely they are

composite convex functions of the form φk = fk+g with g = λ‖·‖1 and the differentiable

components fk have L-Lipschitz continuous gradient where L does not depend on k. Now,

the W̃k are generated according to Algorithm 3.5: line 5, that is:

∀k ≥ 1, W̃k = Prox(γkg)
(
W̃k−1 − γk∇fk

(
W̃k−1

))
where γk ∈

]
0, L−1

]
,

hence applying Lemma 10 (the so-called descent lemma) to every φk at step k yields:

∀k ≥ 1, φk

(
W̃k

)
≤ φk

(
W̃k−1

)
− γ−1

k

2

∥∥W̃k − W̃k−1

∥∥2.
In particular, φk

(
W̃k

)
≤ φk

(
W̃k−1

)
holds for all k ≥ 1. Furthermore, notice that by



106 Chapter 5. Appendix

definition of the φk one has:

φk

(
W̃k−1

)
= φk−1

(
W̃k−1

)
+

ρ

2

(∥∥W̃k−1 −Wk−1

∥∥2 −
∥∥W̃k−1 −Wk−2

∥∥2
)
.

Now due to Lemma 40’s condition, we have:

∀k ≥ k1 := k0 + 1,
∥∥W̃k−1 −Wk−1

∥∥2 −
∥∥W̃k−1 −Wk−2

∥∥2 ≤ 0,

hence we get that φk

(
W̃k

)
≤ φk

(
W̃k−1

)
≤ φk−1

(
W̃k−1

)
for all k ≥ k1. The latter implies

that the (non-negative) sequence
(
φk

(
W̃k

))
k
converges to a limit l ≥ 0. Additionally,

this lets us write as well:

∀k ≥ k1,
γ−1
k

2

∥∥W̃k − W̃k−1

∥∥2 ≤ φk

(
W̃k−1

)
− φk

(
W̃k

)
≤ φk−1

(
W̃k−1

)
− φk

(
W̃k

)
.

We then use the fact that the right-hand side in the last inequality is a telescopic term,

along with φk

(
W̃k

)
−→

k→+∞
l, to deduce that the infinite series

∑
k γ

−1
k

∥∥W̃k − W̃k−1

∥∥2

converges. In particular, γ−1
k

∥∥W̃k − W̃k−1

∥∥2
= o(1) holds, such that

∥∥W̃k − W̃k−1

∥∥ =

O
(√

γk
)
; with the additional assumption that kγ−1

k

∥∥W̃k−W̃k−1

∥∥2 −→
k→+∞

l ∈ R+∪{+∞},

then γ−1
k

∥∥W̃k−W̃k−1

∥∥2
= o

(
1
k

)
must hold instead (due to the fact that the harmonic series

diverges), in which case
∥∥W̃k − W̃k−1

∥∥ = O
(√

γk
k

)
. In the first case, with γk = O

(
1
kα

)
where α > 2 we have

√
γk = O

(
1

kα/2

)
, hence

∥∥W̃k − W̃k−1

∥∥ = O
(

1
kβ

)
where β := α

2
> 1.

In the second case (with the additional assumption) α > 1 suffices to recover the same

upper bound: we now have
√

γk
k

= O
(

1
k(α+1)/2

)
, hence

∥∥W̃k − W̃k−1

∥∥ = O
(

1
kβ

)
where

β := α+1
2

> 1. In both cases, we obtain that the infinite series S :=
∑

k

∥∥W̃k − W̃k−1

∥∥
converges. The triangular inequality finally yields:

∀k ≥ 1,
∥∥W̃k − W̃0

∥∥ =

∥∥∥∥ k∑
j=1

W̃j − W̃j−1

∥∥∥∥
≤

k∑
j=1

∥∥W̃j − W̃j−1

∥∥
≤ S < +∞,

thus sup
k≥1

∥∥W̃k

∥∥ < +∞. The Bolzano-Weierstrass theorem concludes the proof.

Lemma 43. Let
(
W̃k

)
k
and (πk)k respectively denote the sequence of cyclic solutions

and permutations in ProxiMAS. Assume
(
W̃k

)
k
admits a converging subsequence: W̃∗ :=

lim
k→+∞

W̃ψ(k). Define π∗ to be the permutation constructed by Algorithm 3.4 given W̃∗

as input. Given r ∈ �1, d�, let Vψ(k),r and V∗,r denote the set of remaining nodes from



5.7. Stability analysis of ProxiMAS 107

which Algorithm 3.4 will select the r-th rightmost elements πψ(k)[d − r] and π∗[d − r],

respectively. Assume the two following assumptions hold:

• Algorithm 3.4 makes a strictly optimal decision when constructing π∗[d − r] (i.e.

argmin in Algorithm 3.4: line 3 is strict at step r given W̃∗ as input).

• ∃k′
r−1 : ∀k ≥ k′

r−1, Vψ(k),r = V∗,r.

Then, the r-th rightmost elements of the permutations constructed by ProxiMAS in the

subsequence ψ stabilize after a finite number of iterations:

∃k′
r ≥ k′

r−1 : ∀k ≥ k′
r, πψ(k)[d− r] = π∗[d− r]. (5.25)

Proof. For convenience, write jr := π∗[d−r]. By construction of Algorithm 3.4, it suffices

to show:

∃k′
r ≥ k′

r−1 : ∀k ≥ k′
r, ∀j ∈ Vψ(k),r \ {jr},∥∥W̃ψ(k)

[
Vψ(k),r \ {jr}, jr

]∥∥2
<

∥∥W̃ψ(k)

[
Vψ(k),r \ {j}, j

]∥∥2
.

Since by assumption Vψ(k),r = V∗,r when k ≥ k′
r−1, we can write that for all k ≥ k′

r−1:∥∥W̃ψ(k)

[
Vψ(k),r \ {j}, j

]∥∥2
=

∥∥W̃ψ(k)

[
V∗,r \ {j}, j

]∥∥2

=
∥∥(W̃∗ + W̃ψ(k) − W̃∗

)[
V∗,r \ {j}, j

]∥∥2

=
∥∥W̃∗

[
V∗,r \ {j}, j

]∥∥2
+
∥∥(W̃ψ(k) − W̃∗

)[
V∗,r \ {j}, j

]∥∥2

+ 2
〈
W̃∗

[
V∗,r \ {j}, j

]
,
(
W̃ψ(k) − W̃∗

)[
V∗,r \ {j}, j

]〉
.

Applying the Cauchy-Schwarz inequality thus yields for all k ≥ k′
r−1:{ ∥∥W̃ψ(k)

[
Vψ(k),r \ {j}, j

]∥∥2 ≥ x2
j + y2ψ(k),j − 2Myψ(k),j ∀j ∈ Vψ(k),r \ {jr}∥∥W̃ψ(k)

[
Vψ(k),r \ {jr}, jr

]∥∥2 ≤ x2
jr + y2ψ(k),jr + 2Myψ(k),jr ,

where xj :=
∥∥W̃∗

[
V∗,r\{j}, j

]∥∥, yψ(k),j := ∥∥(W̃ψ(k)−W̃∗
)[
V∗,r\{j}, j

]∥∥, M :=
∥∥W̃∗

∥∥ < ∞.

It is therefore stronger to show instead:

∃k′
r ≥ k′

r−1 : ∀k ≥ k′
r, ∀j ∈ Vψ(k),r\{jr}, x2

jr+y2ψ(k),jr+2Myψ(k),jr < x2
j+y2ψ(k),j−2Myψ(k),j.

Rearranging the terms and using again that Vψ(k),r = V∗,r for all k ≥ k′
r−1, the last

condition becomes:

∃k′
r ≥ k′

r−1 : ∀k ≥ k′
r, ∀j ∈ V∗,r \ {jr}, y2ψ(k),jr − y2ψ(k),j + 2M(yψ(k),jr + yψ(k),j) < x2

j − x2
jr .



108 Chapter 5. Appendix

Let us now formalize our assumption that Algorithm 3.4 makes a strictly optimal decision

when constructing π∗[d− r]. This means:

x2
jr =

∥∥W̃∗
[
V∗,r \ {jr}, jr

]∥∥2

< min
j∈V∗,r\{jr}

∥∥W̃∗
[
V∗,r \ {j}, j

]∥∥2

= min
j∈V∗,r\{jr}

x2
j ,

which can be rewritten δr := min
j∈V∗,r\{jr}

x2
j − x2

jr > 0. Now, it is clearly sufficient for us to

satisfy the even stronger condition:

∃k′
r ≥ k′

r−1 : ∀k ≥ k′
r, ∀j ∈ V∗,r \ {jr}, y2ψ(k),jr − y2ψ(k),j + 2M(yψ(k),jr + yψ(k),j) < δr.

But the last condition holds since δr > 0, the set V∗,r is finite and yψ(k),j −→
k→+∞

0 for all

j in V∗,r.

Theorem 1. Let
(
W̃k

)
k
and (πk)k respectively denote the sequence of cyclic solutions

and permutations in ProxiMAS. Assume
(
W̃k

)
k
admits a converging subsequence: W̃∗ :=

lim
k→+∞

W̃ψ(k). Define π∗ to be the permutation constructed by Algorithm 3.4 given W̃∗ as

input. Assume the following assumption holds:

• For all r ∈ �1, d�, Algorithm 3.4 makes a strictly optimal decision when construct-

ing π∗[d − r] (i.e. argmin in Algorithm 3.4: line 3 is strict at every step r given

W̃∗ as input).

Then the permutations constructed by ProxiMAS in the subsequence ψ stabilize after a

finite number of iterations:

∃k′ : ∀k ≥ k′, πψ(k) = π∗. (5.26)

Proof. Given r ∈ �1, d�, let Vψ(k),r and V∗,r denote the set of remaining nodes from

which Algorithm 3.4 will select the r-th rightmost elements πψ(k)[d − r] and π∗[d − r],

respectively. The proof will be complete if we can establish the following:

∀r ∈ �1, d�, ∃k′
r : ∀k ≥ k′

r, πψ(k)[d− r:] = π∗[d− r:].

Indeed, one will then have that πψ(k) = π∗ for all k ≥ k′
d. The proof uses a recursive

argument. For the initialization (i.e. r = 1), notice one always has that Vψ(k),1 = V∗,1 = V

for all k ≥ k′
0 := 1 where V is the full node set. By assumption, Algorithm 3.4 makes a



5.7. Stability analysis of ProxiMAS 109

strictly optimal decision when constructing π∗[d− 1], thus Lemma 43 yields:

∃k′
1 ≥ k′

0 : ∀k ≥ k′
1, πψ(k)[d− 1] = π∗[d− 1],

hence πψ(k)[d− 1:] = π∗[d− 1:] for all k ≥ k′
1. Now we proceed with the recursion itself:

assume there is k′
r−1 such that πψ(k)[d − (r − 1):] = π∗[d − (r − 1):] for all k ≥ k′

r−1. In

particular, Vψ(k),r = V∗,r for all k ≥ k′
r−1. Again by assumption, Algorithm 3.4 makes a

strictly optimal decision when constructing π∗[d− r], thus Lemma 43 yields:

∃k′
r ≥ k′

r−1 : ∀k ≥ k′
r, πψ(k)[d− r] = π∗[d− r],

hence πψ(k)[d − r:] = π∗[d − r:] for all k ≥ k′
r. The recursion is proved and the claim

follows.



110 Chapter 5. Appendix



111

Bibliography

N. Ailon, M. Charikar, and A. Newman. Aggregating inconsistent information: Ranking

and clustering. J. ACM, 55(5):23:1–23:27, 2008. doi: 10.1145/1411509.1411513. URL

https://doi.org/10.1145/1411509.1411513.

H. Akaike. A new look at the statistical model identification. IEEE Transactions

on Automatic Control, 19(6):716–723, 1974. doi: 10.1109/TAC.1974.1100705. URL

https://doi.org/10.1109/TAC.1974.1100705.

B. Aragam, J. Gu, and Q. Zhou. Learning Large-Scale Bayesian Networks with the

sparsebn Package. CoRR, abs/1703.04025, 2017. URL http://arxiv.org/abs/1703.

04025.

G. Ausiello, P. Crescenzi, and M. Protasi. Approximate Solution of NP Optimiza-

tion Problems. Theor. Comput. Sci., 150(1):1–55, 1995. doi: 10.1016/0304-3975(94)

00291-P. URL https://doi.org/10.1016/0304-3975(94)00291-P.

A. Baharev, H. Schichl, A. Neumaier, and T. Achterberg. An Exact Method for the

Minimum Feedback Arc Set Problem. ACM J. Exp. Algorithmics, 26:1.4:1–1.4:28,

2021. doi: 10.1145/3446429. URL https://doi.org/10.1145/3446429.

G. A. Barnard. A New Test for 2 × 2 Tables. Nature, 156:177, 1945. doi: 10.1038/

156177a0.

L. E. Baum and T. Petrie. Statistical Inference for Probabilistic Functions of Finite State

Markov Chains. The Annals of Mathematical Statistics, 37(6):1554 – 1563, 1966. doi:

10.1214/aoms/1177699147. URL https://doi.org/10.1214/aoms/1177699147.

A. Beck and M. Teboulle. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear

Inverse Problems. SIAM J. Imaging Sci., 2(1):183–202, 2009. doi: 10.1137/080716542.

URL https://doi.org/10.1137/080716542.

B. Berger and P. W. Shor. Approximation Algorithms for the Maximum Acyclic Sub-

graph Problem. In D. S. Johnson, editor, Proceedings of the First Annual ACM-



112 Bibliography

SIAM Symposium on Discrete Algorithms, 22-24 January 1990, San Francisco, Cali-

fornia, USA, pages 236–243. SIAM, 1990. URL http://dl.acm.org/citation.cfm?

id=320176.320203.

K. Bestuzheva, M. Besançon, W.-K. Chen, A. Chmiela, T. Donkiewicz, J. van Doorn-

malen, L. Eifler, O. Gaul, G. Gamrath, A. Gleixner, L. Gottwald, C. Graczyk, K. Hal-

big, A. Hoen, C. Hojny, R. van der Hulst, T. Koch, M. Lübbecke, S. J. Maher, F. Mat-

ter, E. Mühmer, B. Müller, M. E. Pfetsch, D. Rehfeldt, S. Schlein, F. Schlösser,

F. Serrano, Y. Shinano, B. Sofranac, M. Turner, S. Vigerske, F. Wegscheider, P. Well-

ner, D. Weninger, and J. Witzig. The SCIP Optimization Suite 8.0. ZIB-Report

21-41, Zuse Institute Berlin, 2021. URL http://nbn-resolving.de/urn:nbn:de:

0297-zib-85309.

D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet Allocation. J. Mach. Learn.

Res., 3:993–1022, 2003. URL http://jmlr.org/papers/v3/blei03a.html.

H. L. Bodlaender, F. V. Fomin, A. M. C. A. Koster, D. Kratsch, and D. M. Thilikos. A

Note on Exact Algorithms for Vertex Ordering Problems on Graphs. Theory Comput.

Syst., 50(3):420–432, 2012. doi: 10.1007/s00224-011-9312-0. URL https://doi.org/

10.1007/s00224-011-9312-0.

M. Bonamy, L. Kowalik, J. Nederlof, M. Pilipczuk, A. Socala, and M. Wrochna.

On Directed Feedback Vertex Set Parameterized by Treewidth. In A. Brandstädt,

E. Köhler, and K. Meer, editors, Graph-Theoretic Concepts in Computer Science

- 44th International Workshop, WG 2018, Cottbus, Germany, June 27-29, 2018,

Proceedings, volume 11159 of Lecture Notes in Computer Science, pages 65–78.

Springer, 2018. doi: 10.1007/978-3-030-00256-5\ 6. URL https://doi.org/10.

1007/978-3-030-00256-5_6.

R. D. Boschloo. Raised conditional level of significance for the 2 × 2-table when testing

the equality of two probabilities. Statistica Neerlandica, 24(1):1–9, 1970. doi: https://

doi.org/10.1111/j.1467-9574.1970.tb00104.x. URL https://onlinelibrary.wiley.

com/doi/abs/10.1111/j.1467-9574.1970.tb00104.x.

S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,

2014. ISBN 978-0-521-83378-3. doi: 10.1017/CBO9780511804441. URL https://

web.stanford.edu/%7Eboyd/cvxbook/.

F.-J. Brandenburg and K. Hanauer. Sorting Heuristics for the Feedback

Arc Set Problem. Technical report, University of Passau, 2011. URL

https://www.fim.uni-passau.de/fileadmin/dokumente/fakultaeten/fim/

forschung/mip-berichte/mip1104.pdf.



Bibliography 113

A. Chambolle and C. Dossal. On the Convergence of the Iterates of the “Fast It-

erative Shrinkage/Thresholding Algorithm”. J. Optim. Theory Appl., 166(3):968–

982, 2015. doi: 10.1007/s10957-015-0746-4. URL https://doi.org/10.1007/

s10957-015-0746-4.

M. Charikar, K. Makarychev, and Y. Makarychev. On the Advantage over Random

for Maximum Acyclic Subgraph. In 48th Annual IEEE Symposium on Foundations

of Computer Science (FOCS 2007), October 20-23, 2007, Providence, RI, USA, Pro-

ceedings, pages 625–633. IEEE Computer Society, 2007. doi: 10.1109/FOCS.2007.47.

URL https://doi.org/10.1109/FOCS.2007.47.

J. Chen, Y. Liu, S. Lu, B. O’Sullivan, and I. Razgon. A fixed-parameter algorithm

for the directed feedback vertex set problem. J. ACM, 55(5):21:1–21:19, 2008. doi:

10.1145/1411509.1411511. URL https://doi.org/10.1145/1411509.1411511.

D. M. Chickering. Learning Bayesian Networks is NP-Complete. In D. Fisher and

H. Lenz, editors, Learning from Data - Fifth International Workshop on Artificial

Intelligence and Statistics, AISTATS 1995, Key West, Florida, USA, January, 1995.

Proceedings, pages 121–130. Springer, 1995. doi: 10.1007/978-1-4612-2404-4\ 12. URL

https://doi.org/10.1007/978-1-4612-2404-4_12.

D. M. Chickering. Optimal Structure Identification With Greedy Search. J. Mach. Learn.

Res., 3:507–554, 2002. URL http://jmlr.org/papers/v3/chickering02b.html.

D. Colombo and M. H. Maathuis. Order-independent constraint-based causal structure

learning. J. Mach. Learn. Res., 15(1):3741–3782, 2014. doi: 10.5555/2627435.2750365.

URL https://dl.acm.org/doi/10.5555/2627435.2750365.

G. F. Cooper. The Computational Complexity of Probabilistic Inference Using Bayesian

Belief Networks. Artif. Intell., 42(2-3):393–405, 1990. doi: 10.1016/0004-3702(90)

90060-D. URL https://doi.org/10.1016/0004-3702(90)90060-D.

G. F. Cooper and E. Herskovits. A Bayesian Method for the Induction of Probabilistic

Networks from Data. Mach. Learn., 9:309–347, 1992. doi: 10.1007/BF00994110. URL

https://doi.org/10.1007/BF00994110.

J. Cussens. Bayesian network learning with cutting planes. In F. G. Cozman and A. Pfef-

fer, editors, UAI 2011, Proceedings of the Twenty-Seventh Conference on Uncertainty

in Artificial Intelligence, Barcelona, Spain, July 14-17, 2011, pages 153–160. AUAI

Press, 2011. URL https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=

1&smnu=2&article_id=2197&proceeding_id=27.



114 Bibliography

P. Dagum and M. Luby. Approximating Probabilistic Inference in Bayesian Belief Net-

works is NP-Hard. Artif. Intell., 60(1):141–153, 1993. doi: 10.1016/0004-3702(93)

90036-B. URL https://doi.org/10.1016/0004-3702(93)90036-B.

G. B. Dantzig. Origins of the Simplex Method, page 141–151. Association for Computing

Machinery, 1990. ISBN 0201508141. URL https://doi.org/10.1145/87252.88081.

S. Dasgupta. Learning Polytrees. In K. B. Laskey and H. Prade, editors, UAI

’99: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelli-

gence, Stockholm, Sweden, July 30 - August 1, 1999, pages 134–141. Morgan Kauf-

mann, 1999. URL https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=

1&smnu=2&article_id=162&proceeding_id=15.

L. M. de Campos. A Scoring Function for Learning Bayesian Networks based on Mutual

Information and Conditional Independence Tests. J. Mach. Learn. Res., 7:2149–2187,

2006. URL http://jmlr.org/papers/v7/decampos06a.html.

L. M. de Campos, J. M. Fernández-Luna, and J. F. Huete. Bayesian networks and

information retrieval: an introduction to the special issue. Inf. Process. Manag., 40

(5):727–733, 2004. doi: 10.1016/j.ipm.2004.03.001. URL https://doi.org/10.1016/

j.ipm.2004.03.001.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from Incom-

plete Data Via the EM Algorithm. Journal of the Royal Statistical Society: Se-

ries B (Methodological), 39(1):1–22, 1977. doi: https://doi.org/10.1111/j.2517-6161.

1977.tb01600.x. URL https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/

j.2517-6161.1977.tb01600.x.

L. Denoyer and P. Gallinari. Bayesian network model for semi-structured document

classification. Inf. Process. Manag., 40(5):807–827, 2004. doi: 10.1016/j.ipm.2004.04.

009. URL https://doi.org/10.1016/j.ipm.2004.04.009.

S. Dong and M. Sebag. From Graphs to DAGs: A Low-Complexity Model and

a Scalable Algorithm. In M. Amini, S. Canu, A. Fischer, T. Guns, P. K. No-

vak, and G. Tsoumakas, editors, Machine Learning and Knowledge Discovery in

Databases - European Conference, ECML PKDD 2022, Grenoble, France, Septem-

ber 19-23, 2022, Proceedings, Part V, volume 13717 of Lecture Notes in Computer

Science, pages 107–122. Springer, 2022. doi: 10.1007/978-3-031-26419-1\ 7. URL

https://doi.org/10.1007/978-3-031-26419-1_7.

R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Texts

in Computer Science. Springer, 2013. ISBN 978-1-4471-5558-4. doi: 10.1007/

978-1-4471-5559-1. URL https://doi.org/10.1007/978-1-4471-5559-1.



Bibliography 115

P. Eades, X. Lin, and W. F. Smyth. A Fast and Effective Heuristic for the Feedback

Arc Set Problem. Inf. Process. Lett., 47(6):319–323, 1993. doi: 10.1016/0020-0190(93)

90079-O. URL https://doi.org/10.1016/0020-0190(93)90079-O.

S. Even and G. Even. Graph Algorithms, Second Edition. Cam-

bridge University Press, 2012. ISBN 978-0-521-73653-4. URL

http://www.cambridge.org/us/academic/subjects/computer-science/

algorithmics-complexity-computer-algebra-and-computational-g/

graph-algorithms-2nd-edition.

H. Fernau and D. Raible. Exact Algorithms for Maximum Acyclic Subgraph on a Su-

perclass of Cubic Graphs. In S. Nakano and M. S. Rahman, editors, WALCOM: Algo-

rithms and Computation, Second International Workshop, WALCOM 2008, Dhaka,

Bangladesh, February 7-8, 2008, volume 4921 of Lecture Notes in Computer Sci-

ence, pages 144–156. Springer, 2008. doi: 10.1007/978-3-540-77891-2\ 14. URL

https://doi.org/10.1007/978-3-540-77891-2_14.

P. Festa, P. M. Pardalos, and M. G. C. Resende. Feedback Set Problems. In D. Du

and P. M. Pardalos, editors, Handbook of Combinatorial Optimization, pages 209–

258. Springer, 1999. doi: 10.1007/978-1-4757-3023-4\ 4. URL https://doi.org/10.

1007/978-1-4757-3023-4_4.

R. A. Fisher. Statistical Methods for Research Workers, pages 66–70. Springer New

York, 1992. ISBN 978-1-4612-4380-9. doi: 10.1007/978-1-4612-4380-9 6. URL https:

//doi.org/10.1007/978-1-4612-4380-9_6.

E. Giudice, J. Kuipers, and G. Moffa. The Dual PC Algorithm for Structure Learn-

ing. In A. Salmerón and R. Rumı́, editors, International Conference on Probabilis-

tic Graphical Models, PGM 2022, 5-7 October 2022, Almeŕıa, Spain, volume 186

of Proceedings of Machine Learning Research, pages 301–312. PMLR, 2022. URL

https://proceedings.mlr.press/v186/giudice22a.html.

J. Gondzio. Interior point methods 25 years later. Eur. J. Oper. Res., 218(3):587–

601, 2012. doi: 10.1016/j.ejor.2011.09.017. URL https://doi.org/10.1016/j.ejor.

2011.09.017.

M. Grötschel, M. Jünger, and G. Reinelt. On the acyclic subgraph polytope. Math.

Program., 33(1):28–42, 1985. doi: 10.1007/BF01582009. URL https://doi.org/10.

1007/BF01582009.

M. Grötschel, M. Jünger, and G. Reinelt. Comments on “An Exact Method for the

Minimum Feedback Arc Set Problem”. ACM J. Exp. Algorithmics, 27:1.3:1–1.3:4,

2022. doi: 10.1145/3545001. URL https://doi.org/10.1145/3545001.



116 Bibliography

Y. Gurevich and S. Shelah. Expected Computation Time for Hamiltonian Path Problem.

SIAM J. Comput., 16(3):486–502, 1987. doi: 10.1137/0216034. URL https://doi.

org/10.1137/0216034.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL https:

//www.gurobi.com.

T. Hawkins. Cauchy and the spectral theory of matrices. Historia Mathematica, 2(1):1–

29, 1975. ISSN 0315-0860. doi: https://doi.org/10.1016/0315-0860(75)90032-4. URL

https://www.sciencedirect.com/science/article/pii/0315086075900324.

M. Hecht. Exact Localisations of Feedback Sets. Theory Comput. Syst., 62(5):1048–

1084, 2018. doi: 10.1007/s00224-017-9777-6. URL https://doi.org/10.1007/

s00224-017-9777-6.

D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian Networks: The

Combination of Knowledge and Statistical Data. Mach. Learn., 20(3):197–243, 1995.

doi: 10.1007/BF00994016. URL https://doi.org/10.1007/BF00994016.

M. Held and R. M. Karp. A dynamic programming approach to sequencing problems.

In T. C. Rowan, editor, Proceedings of the 16th ACM national meeting, ACM 1961,

USA, page 71. ACM, 1961. doi: 10.1145/800029.808532. URL https://doi.org/10.

1145/800029.808532.

R. Hemmecke, S. Lindner, and M. Studený. Characteristic imsets for learning Bayesian

network structure. Int. J. Approx. Reason., 53(9):1336–1349, 2012. doi: 10.1016/j.

ijar.2012.04.001. URL https://doi.org/10.1016/j.ijar.2012.04.001.

ILOG CPLEX Optimization Studio. The CPLEX Python API Reference Manual.

Version 22.1.1, 2022. URL https://www.ibm.com/docs/en/icos/22.1.1?topic=

optimizers-cplex-python-api-reference-manual.

T. S. Jaakkola, D. A. Sontag, A. Globerson, and M. Meila. Learning Bayesian Net-

work Structure using LP Relaxations. In Y. W. Teh and D. M. Titterington, ed-

itors, Proceedings of the Thirteenth International Conference on Artificial Intelli-

gence and Statistics, AISTATS 2010, Chia Laguna Resort, Sardinia, Italy, May 13-

15, 2010, volume 9 of JMLR Proceedings, pages 358–365. JMLR.org, 2010. URL

http://proceedings.mlr.press/v9/jaakkola10a.html.

D. B. Johnson. Finding All the Elementary Circuits of a Directed Graph. SIAM J.

Comput., 4(1):77–84, 1975. doi: 10.1137/0204007. URL https://doi.org/10.1137/

0204007.



Bibliography 117

N. Karmarkar. A new polynomial-time algorithm for linear programming. Comb.,

4(4):373–396, 1984. doi: 10.1007/BF02579150. URL https://doi.org/10.1007/

BF02579150.

R. M. Karp. Reducibility Among Combinatorial Problems. In R. E. Miller and J. W.

Thatcher, editors, Proceedings of a symposium on the Complexity of Computer Com-

putations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Cen-

ter, Yorktown Heights, New York, USA, The IBM Research Symposia Series, pages

85–103. Plenum Press, New York, 1972. doi: 10.1007/978-1-4684-2001-2\ 9. URL

https://doi.org/10.1007/978-1-4684-2001-2_9.

C. Kenyon-Mathieu and W. Schudy. How to rank with few errors: A PTAS for Weighted

Feedback Arc Set on Tournaments. Electron. Colloquium Comput. Complex., TR06-

144, 2006. URL https://eccc.weizmann.ac.il/eccc-reports/2006/TR06-144/

index.html.

L. G. Khachiyan. A polynomial algorithm in linear programming. Doklady Akademii

Nauk SSSR, 244:1093–1096, 1979. ISSN 0002-3264. URL https://zbmath.org/?q=

an:0414.90086.

R. Kindermann. Markov random fields and their applications. Contemporary mathe-

matics v. 1. American Mathematical Society, 1980. ISBN 0-8218-5001-6.

M. Koivisto and P. Parviainen. A Space-Time Tradeoff for Permutation Problems. In

M. Charikar, editor, Proceedings of the Twenty-First Annual ACM-SIAM Symposium

on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages

484–492. SIAM, 2010. doi: 10.1137/1.9781611973075.41. URL https://doi.org/10.

1137/1.9781611973075.41.

M. Koivisto and K. Sood. Exact Bayesian Structure Discovery in Bayesian Networks.

J. Mach. Learn. Res., 5:549–573, 2004. URL http://jmlr.org/papers/volume5/

koivisto04a/koivisto04a.pdf.

D. Koller and N. Friedman. Probabilistic Graphical Models - Principles and Tech-

niques. MIT Press, 2009. ISBN 978-0-262-01319-2. URL http://mitpress.mit.

edu/catalog/item/default.asp?ttype=2&tid=11886.

C. L. Koumenides. A Bayesian network model for entity-oriented semantic web search.

PhD thesis, University of Southampton, UK, 2013. URL http://eprints.soton.ac.

uk/362651/.

R. Kudelic. Monte-Carlo randomized algorithm for minimal feedback arc set problem.

Appl. Soft Comput., 41:235–246, 2016. doi: 10.1016/j.asoc.2015.12.018. URL https:

//doi.org/10.1016/j.asoc.2015.12.018.



118 Bibliography

R. Kudelic and N. Ivkovic. Ant inspired Monte Carlo algorithm for minimum feedback

arc set. Expert Syst. Appl., 122:108–117, 2019. doi: 10.1016/j.eswa.2018.12.021. URL

https://doi.org/10.1016/j.eswa.2018.12.021.

A. H. Land and A. G. Doig. An Automatic Method for Solving Discrete Program-

ming Problems. In M. Jünger, T. M. Liebling, D. Naddef, G. L. Nemhauser,

W. R. Pulleyblank, G. Reinelt, G. Rinaldi, and L. A. Wolsey, editors, 50 Years

of Integer Programming 1958-2008 - From the Early Years to the State-of-the-Art,

pages 105–132. Springer, 2010. doi: 10.1007/978-3-540-68279-0\ 5. URL https:

//doi.org/10.1007/978-3-540-68279-0_5.

R. Lazimy. Mixed-integer quadratic programming. Math. Program., 22(1):332–349, 1982.

doi: 10.1007/BF01581047. URL https://doi.org/10.1007/BF01581047.

J. Liang, T. Luo, and C. Schönlieb. Improving “Fast Iterative Shrinkage-Thresholding

Algorithm”: Faster, Smarter, and Greedier. SIAM J. Sci. Comput., 44(3):1069, 2022.

doi: 10.1137/21m1395685. URL https://doi.org/10.1137/21m1395685.

B. G. Lindsay. Mixture models : theory, geometry, and applications. NSF-CBMS re-

gional conference series in probability and statistics ; v. 5. Institute of Mathematical

Statistics, 1995. ISBN 0940600323.

P. Loh and P. Bühlmann. High-dimensional learning of linear causal networks via inverse

covariance estimation. J. Mach. Learn. Res., 15(1):3065–3105, 2014. doi: 10.5555/

2627435.2697063. URL https://dl.acm.org/doi/10.5555/2627435.2697063.

C. L. Lucchesi and D. H. Younger. A Minimax Theorem for Directed Graphs. Journal

of the London Mathematical Society, s2-17(3):369–374, 1978. doi: https://doi.org/

10.1112/jlms/s2-17.3.369. URL https://londmathsoc.onlinelibrary.wiley.com/

doi/abs/10.1112/jlms/s2-17.3.369.

H. Manzour, S. Küçükyavuz, H.-H. Wu, and A. Shojaie. Integer Programming for Learn-

ing Directed Acyclic Graphs from Continuous Data. INFORMS Journal on Optimiza-

tion, 3(1):46–73, 2021. doi: 10.1287/ijoo.2019.0040. URL https://doi.org/10.

1287/ijoo.2019.0040.

D. Margaritis. Learning Bayesian Network Model Structure from Data. PhD thesis,

Carnegie-Mellon University, 2003.

R. J. McEliece, D. J. C. MacKay, and J. Cheng. Turbo Decoding as an Instance of Pearl’s

“Belief Propagation” Algorithm. IEEE J. Sel. Areas Commun., 16(2):140–152, 1998.

doi: 10.1109/49.661103. URL https://doi.org/10.1109/49.661103.



Bibliography 119

C. Meek. Graphical Models: Selecting causal and statistical models. PhD thesis, Carnegie-

Mellon University, 1997.

T. M. Mitchell. Machine learning, International Edition. McGraw-Hill Series in Com-

puter Science. McGraw-Hill, 1997. ISBN 978-0-07-042807-2. URL https://www.

worldcat.org/oclc/61321007.

MOSEK ApS. The MOSEK Optimizer API for Python. Version 10.0., 2022. URL

https://docs.mosek.com/10.0/pythonapi/index.html.

R. E. Neapolitan. Probabilistic reasoning in expert systems - theory and algorithms.

Wiley, 1990. ISBN 978-0-471-61840-9.

Y. Nesterov. A method for solving the convex programming problem with convergence

rate O(1/k2). Doklady Akademii Nauk SSSR, 269:543–547, 1983. URL https://

zbmath.org/?q=an:0535.90071.

Y. E. Nesterov. Introductory Lectures on Convex Optimization - A Basic Course, vol-

ume 87 of Applied Optimization. Springer, 2004. ISBN 978-1-4613-4691-3. doi:

10.1007/978-1-4419-8853-9. URL https://doi.org/10.1007/978-1-4419-8853-9.

I. Ng, A. Ghassami, and K. Zhang. On the Role of Sparsity and DAG Constraints

for Learning Linear DAGs. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan,

and H. Lin, editors, Advances in Neural Information Processing Systems 33: Annual

Conference on Neural Information Processing Systems 2020, NeurIPS 2020, Decem-

ber 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/

hash/d04d42cdf14579cd294e5079e0745411-Abstract.html.

P. D. Nhat, H. M. Le, and H. A. L. Thi. Accelerated Difference of Convex functions Al-

gorithm and its Application to Sparse Binary Logistic Regression. In J. Lang, editor,

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intel-

ligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, pages 1369–1375. ijcai.org,

2018. doi: 10.24963/ijcai.2018/190. URL https://doi.org/10.24963/ijcai.2018/

190.

B. O’Donoghue and E. J. Candès. Adaptive Restart for Accelerated Gradient Schemes.

Found. Comput. Math., 15(3):715–732, 2015. doi: 10.1007/s10208-013-9150-3. URL

https://doi.org/10.1007/s10208-013-9150-3.

S. Ott, S. Imoto, and S. Miyano. Finding Optimal Models for Small Gene Networks.

In R. B. Altman, A. K. Dunker, L. Hunter, T. A. Jung, and T. E. Klein, editors,

Biocomputing 2004, Proceedings of the Pacific Symposium, Hawaii, USA, 6-10 Jan-

uary 2004, pages 557–567. World Scientific, 2004. URL http://psb.stanford.edu/

psb-online/proceedings/psb04/ott.pdf.



120 Bibliography

C. H. Papadimitriou and M. Yannakakis. Optimization, Approximation, and Complexity

Classes. J. Comput. Syst. Sci., 43(3):425–440, 1991. doi: 10.1016/0022-0000(91)

90023-X. URL https://doi.org/10.1016/0022-0000(91)90023-X.

Y. W. Park and D. Klabjan. Bayesian Network Learning via Topological Order. J. Mach.

Learn. Res., 18:99:1–99:32, 2017. URL http://jmlr.org/papers/v18/17-033.html.

P. Parviainen and M. Koivisto. Bayesian structure discovery in Bayesian networks with

less space. In Y. W. Teh and D. M. Titterington, editors, Proceedings of the Thir-

teenth International Conference on Artificial Intelligence and Statistics, AISTATS

2010, Chia Laguna Resort, Sardinia, Italy, May 13-15, 2010, volume 9 of JMLR Pro-

ceedings, pages 589–596. JMLR.org, 2010. URL http://proceedings.mlr.press/

v9/parviainen10a.html.

J. Pearl. Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach. In

D. L. Waltz, editor, Proceedings of the National Conference on Artificial Intelligence,

Pittsburgh, PA, USA, August 18-20, 1982, pages 133–136. AAAI Press, 1982. URL

http://www.aaai.org/Library/AAAI/1982/aaai82-032.php.

J. Pearl. Probabilistic reasoning in intelligent systems - networks of plausible inference.

Morgan Kaufmann series in representation and reasoning. Morgan Kaufmann, 1989.

K. Pearson. On the criterion that a given system of deviations from the proba-

ble in the case of a correlated system of variables is such that it can be reason-

ably supposed to have arisen from random sampling. The London, Edinburgh, and

Dublin Philosophical Magazine and Journal of Science, 50(302):157–175, 1900. doi:

10.1080/14786440009463897. URL https://doi.org/10.1080/14786440009463897.

J. Pellet and A. Elisseeff. Using Markov Blankets for Causal Structure Learning. J.

Mach. Learn. Res., 9:1295–1342, 2008. doi: 10.5555/1390681.1442776. URL https:

//dl.acm.org/doi/10.5555/1390681.1442776.

J. Peters and P. Bühlmann. Identifiability of Gaussian structural equation models with

equal error variances. Biometrika, 101(1):219–228, 2013. ISSN 0006-3444. doi: 10.

1093/biomet/ast043. URL https://doi.org/10.1093/biomet/ast043.

J. Peters, J. M. Mooij, D. Janzing, and B. Schölkopf. Identifiability of Causal

Graphs using Functional Models. In F. G. Cozman and A. Pfeffer, editors,

UAI 2011, Proceedings of the Twenty-Seventh Conference on Uncertainty in Ar-

tificial Intelligence, Barcelona, Spain, July 14-17, 2011, pages 589–598. AUAI

Press, 2011. URL https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=

1&smnu=2&article_id=2216&proceeding_id=27.



Bibliography 121

V. Ramachandran. Finding a Minimum Feedback Arc Set in Reducible Flow Graphs.

J. Algorithms, 9(3):299–313, 1988. doi: 10.1016/0196-6774(88)90022-3. URL https:

//doi.org/10.1016/0196-6774(88)90022-3.

V. Raman and S. Saurabh. Improved fixed parameter tractable algorithms for two “edge”

problems: MAXCUT and MAXDAG. Inf. Process. Lett., 104(2):65–72, 2007. doi:

10.1016/j.ipl.2007.05.014. URL https://doi.org/10.1016/j.ipl.2007.05.014.

I. Razgon. Computing Minimum Directed Feedback Vertex Set in O∗(1.9977n). In G. F.

Italiano, E. Moggi, and L. Laura, editors, Theoretical Computer Science, 10th Italian

Conference, ICTCS 2007, Rome, Italy, October 3-5, 2007, Proceedings, pages 70–81.

World Scientific, 2007.

R. T. Rockafellar. Convex Analysis. Princeton Landmarks in Mathematics and Physics.

Princeton University Press, 1970. ISBN 978-1-4008-7317-3.

T. Roos, T. Silander, P. Kontkanen, and P. Myllymaki. Bayesian network structure

learning using factorized NML universal models. In 2008 Information Theory and

Applications Workshop, pages 272–276, 2008. doi: 10.1109/ITA.2008.4601061.

M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz. A Bayesian Approach to Filtering

Junk E-Mail. AAAI’98 Workshop on Learning for Text Categorization, 62, 1998.

M. Scanagatta, C. P. de Campos, G. Corani, and M. Zaffalon. Learning

Bayesian Networks with Thousands of Variables. In C. Cortes, N. D. Lawrence,

D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Infor-

mation Processing Systems 28: Annual Conference on Neural Information Pro-

cessing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pages

1864–1872, 2015. URL https://proceedings.neurips.cc/paper/2015/hash/

2b38c2df6a49b97f706ec9148ce48d86-Abstract.html.

G. Schwarz. Estimating the Dimension of a Model. The Annals of Statistics, 6(2):461

– 464, 1978. doi: 10.1214/aos/1176344136. URL https://doi.org/10.1214/aos/

1176344136.

M. Scutari. Learning Bayesian Networks with the bnlearn R Package. Journal of

Statistical Software, 35(3):1–22, 2010. doi: 10.18637/jss.v035.i03. URL https:

//www.jstatsoft.org/index.php/jss/article/view/v035i03.

M. Scutari. An Empirical-Bayes Score for Discrete Bayesian Networks. In A. Antonucci,

G. Corani, and C. P. de Campos, editors, Probabilistic Graphical Models - Eighth In-

ternational Conference, PGM 2016, Lugano, Switzerland, September 6-9, 2016. Pro-

ceedings, volume 52 of JMLR Workshop and Conference Proceedings, pages 438–448.

JMLR.org, 2016. URL http://proceedings.mlr.press/v52/scutari16.html.



122 Bibliography

M. Scutari. Bayesian Network Constraint-Based Structure Learning Algorithms: Parallel

and Optimized Implementations in the bnlearn R Package. Journal of Statistical Soft-

ware, 77(2):1–20, 2017. doi: 10.18637/jss.v077.i02. URL https://www.jstatsoft.

org/index.php/jss/article/view/v077i02.

P. D. Seymour. Packing Directed Circuits Fractionally. Comb., 15(2):281–288, 1995.

doi: 10.1007/BF01200760. URL https://doi.org/10.1007/BF01200760.

S. Shimizu, P. O. Hoyer, A. Hyvärinen, and A. J. Kerminen. A Linear Non-Gaussian

Acyclic Model for Causal Discovery. J. Mach. Learn. Res., 7:2003–2030, 2006. URL

http://jmlr.org/papers/v7/shimizu06a.html.

T. Silander and P. Myllymäki. A Simple Approach for Finding the Globally Optimal

Bayesian Network Structure. In UAI ’06, Proceedings of the 22nd Conference in

Uncertainty in Artificial Intelligence, Cambridge, MA, USA, July 13-16, 2006. AUAI

Press, 2006. URL https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=

1&smnu=2&article_id=1256&proceeding_id=22.

M. Simpson, V. Srinivasan, and A. Thomo. Efficient Computation of Feedback Arc Set

at Web-Scale. Proc. VLDB Endow., 10(3):133–144, 2016. doi: 10.14778/3021924.

3021930. URL http://www.vldb.org/pvldb/vol10/p133-simpson.pdf.

A. P. Singh and A. W. Moore. Finding optimal Bayesian networks by

dynamic programming. , 2004. doi: 10.1184/R1/6605669.v1. URL

https://kilthub.cmu.edu/articles/journal_contribution/Finding_optimal_

Bayesian_networks_by_dynamic_programming/6605669.

P. Spirtes, C. Meek, and T. S. Richardson. Causal Inference in the Presence of La-

tent Variables and Selection Bias. In P. Besnard and S. Hanks, editors, UAI ’95:

Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelli-

gence, Montreal, Quebec, Canada, August 18-20, 1995, pages 499–506. Morgan Kauf-

mann, 1995. URL https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=

1&smnu=2&article_id=469&proceeding_id=11.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search, Second

Edition. Adaptive computation and machine learning. MIT Press, 2000. ISBN 978-0-

262-19440-2.

C. Su, A. S. Andrew, M. R. Karagas, and M. E. Borsuk. Using Bayesian networks to

discover relations between genes, environment, and disease. BioData Min., 6:6, 2013.

doi: 10.1186/1756-0381-6-6. URL https://doi.org/10.1186/1756-0381-6-6.



Bibliography 123

R. E. Tarjan. Enumeration of the Elementary Circuits of a Directed Graph. SIAM

J. Comput., 2(3):211–216, 1973. doi: 10.1137/0202017. URL https://doi.org/10.

1137/0202017.

R. Tibshirani. Regression Shrinkage and Selection Via the Lasso. Journal of the Royal

Statistical Society: Series B (Methodological), 58(1):267–288, 1996. doi: https://doi.

org/10.1111/j.2517-6161.1996.tb02080.x. URL https://rss.onlinelibrary.wiley.

com/doi/abs/10.1111/j.2517-6161.1996.tb02080.x.

I. Tsamardinos and C. F. Aliferis. Towards Principled Feature Selection: Relevancy, Fil-

ters and Wrappers. In C. M. Bishop and B. J. Frey, editors, Proceedings of the Ninth

International Workshop on Artificial Intelligence and Statistics, AISTATS 2003, Key

West, Florida, USA, January 3-6, 2003. Society for Artificial Intelligence and Statis-

tics, 2003. URL http://research.microsoft.com/en-us/um/cambridge/events/

aistats2003/proceedings/133.pdf.

I. Tsamardinos, C. F. Aliferis, and A. R. Statnikov. Time and sample efficient discov-

ery of Markov blankets and direct causal relations. In L. Getoor, T. E. Senator, P. M.

Domingos, and C. Faloutsos, editors, Proceedings of the Ninth ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining, Washington, DC, USA,

August 24 - 27, 2003, pages 673–678. ACM, 2003. doi: 10.1145/956750.956838. URL

https://doi.org/10.1145/956750.956838.

L. G. Valiant. The Complexity of Enumeration and Reliability Problems. SIAM J.

Comput., 8(3):410–421, 1979. doi: 10.1137/0208032. URL https://doi.org/10.

1137/0208032.

Y. Yu, T. Gao, N. Yin, and Q. Ji. DAGs with No Curl: An Efficient DAG Structure

Learning Approach. In M. Meila and T. Zhang, editors, Proceedings of the 38th In-

ternational Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual

Event, volume 139 of Proceedings of Machine Learning Research, pages 12156–12166.

PMLR, 2021. URL http://proceedings.mlr.press/v139/yu21a.html.

H. Zhang. The Optimality of Naive Bayes. In V. Barr and Z. Markov, editors, Proceed-

ings of the Seventeenth International Florida Artificial Intelligence Research Society

Conference, Miami Beach, Florida, USA, pages 562–567. AAAI Press, 2004. URL

http://www.aaai.org/Library/FLAIRS/2004/flairs04-097.php.

X. Zheng, B. Aragam, P. Ravikumar, and E. P. Xing. DAGs with NO TEARS:

Continuous Optimization for Structure Learning. In S. Bengio, H. M. Wallach,

H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in

Neural Information Processing Systems 31: Annual Conference on Neural Informa-

tion Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada,



124 Bibliography

pages 9492–9503, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/

e347c51419ffb23ca3fd5050202f9c3d-Abstract.html.

X. Zheng, C. Dan, B. Aragam, P. Ravikumar, and E. P. Xing. Learning Sparse Nonpara-

metric DAGs. In S. Chiappa and R. Calandra, editors, The 23rd International Con-

ference on Artificial Intelligence and Statistics, AISTATS 2020, 26-28 August 2020,

Online [Palermo, Sicily, Italy], volume 108 of Proceedings of Machine Learning Re-

search, pages 3414–3425. PMLR, 2020. URL http://proceedings.mlr.press/v108/

zheng20a.html.

R. Zhu, A. Pfadler, Z. Wu, Y. Han, X. Yang, F. Ye, Z. Qian, J. Zhou, and B. Cui.

Efficient and Scalable Structure Learning for Bayesian Networks: Algorithms and

Applications. In 37th IEEE International Conference on Data Engineering, ICDE

2021, Chania, Greece, April 19-22, 2021, pages 2613–2624. IEEE, 2021. doi: 10.1109/

ICDE51399.2021.00292. URL https://doi.org/10.1109/ICDE51399.2021.00292.



125

Article I

Scalable Bayesian Network Structure Learning via

Maximum Acyclic Subgraph

Pierre Gillot & Pekka Parviainen

Proceedings of the 10th International Conference on Probabilistic Graphical Models,

PMLR 138:209-220, 2020



Scalable Bayesian Network Structure Learning via Maximum Acyclic
Subgraph

Pierre Gillot PIERRE.GILLOT@UIB.NO

Department of Informatics, University of Bergen, Norway

Pekka Parviainen PEKKA.PARVIAINEN@UIB.NO

Department of Informatics, University of Bergen, Norway

Abstract
Learning the structure of a Bayesian network is an NP-hard problem and exact learning algorithms that are

guaranteed to find an optimal structure are not feasible with large number of variables. Thus, large-scale

learning is usually done using heuristics that do not provide any quality guarantees. We present a heuristic

method that scales up to networks with hundreds of variables and provides quality guarantees in terms of

an upper bound for the score of the optimal network. The proposed method consists of two parts. First, we

simplify the problem by approximating local scores using so-called edge scores. With the edge scores learning

an optimal Bayesian network structure is equivalent to finding the maximum acyclic subgraph. Second,

we solve the maximum acyclic subgraph problem fast using integer linear programming. Additionally, we

choose the approximation in a specific way so that an upper bound for the score of an optimal network can be

obtained.

Keywords: Bayesian networks; Structure learning; Integer Linear Programming.

1. Introduction

Bayesian networks are a type of probabilistic graphical model widely used in machine learning. They were

originally introduced by Pearl (1988). Bayesian networks consist of two parts: a structure and parameters.

The structure, represented by a directed acyclic graph (DAG), expresses conditional independencies between

variables and the parameters specify local conditional distributions.

Often, the Bayesian network is not given but we learn it from data. The process of learning a Bayesian

network is twofold: first, we learn the structure and then we learn the parameters of the local distributions. In

this paper, we will study learning the structure of a Bayesian network. Specifically, we solve the Bayesian

network structure learning (BNSL) problem using the so-called score-based approach where each structure is

assigned a score based on how well it fits to the data and the goal is to find a structure that maximizes the

score.

Exact structure learning algorithms are guaranteed to find an optimal structure, that is, a structure that

maximizes the score. Exact structure learning is NP-hard (Chickering, 1996) so it is unlikely that exact

algorithms scale-up to large networks in worst case scenarios. Even though sometimes even networks with

few dozens of variables are too large for state-of-the-art exact algorithms (Cussens, 2011), they can solve

easy instances with up to few hundred variables. When the exact algorithms cannot handle a dataset, one

typically resorts to various scalable heuristics (Scanagatta et al., 2015; Tsamardinos et al., 2006). A downside

of using heuristics is that they do not provide any guarantees for the quality of the result.

We present a new structure learning algorithm that attempts to bridge the gap between these two extremes.

Specifically, we speed up the algorithm by relaxing the requirement of guaranteeing the optimal DAG. At the

same time, we are still able to give an estimate of the quality of the found solution.

Our method builds upon GOBNILP (Cussens, 2011), the state-of-the-art exact algorithm, which is

based on integer linear programming (ILP). In score-based structure learning, it is common to use so-called

decomposable scores which means that the score of a structure is a sum of local scores for node-parent set

1



pairs. Many algorithms, including GOBNILP, require that these local scores are computed as a preprocessing

step and given as an input to an optimization algorithm. One of the challenges using GOBNILP is that a

large number of local scores makes solving the integer linear program slower. We tackle this problem by

approximating local scores with approximate scores for each potential edge and thereby restricting the size of

the input to a quadratic number of scores. Given edge scores, finding the optimal structure reduces to the

maximum acyclic subgraph (MAS) problem; hence, we call our method BNSL2MAS. Also the MAS problem

is NP-hard (Karp, 1972) but in practice it is much faster to solve.

A key challenge in our approach is the quality of the approximation. To enable us to assess the quality of

the found network, we learn the approximate scores under the constraint that the approximate score (sum

of the edge scores) for each node-parent set pair upper bounds the local score. This guarantees that the

approximate score of the optimal solution of the MAS problem gives an upper bound for the score of the

optimal solution of the BNSL problem.

The above-described version of BNSL2MAS is fast but it has a considerable weakness: It returns networks

that are dense and upper bounds are too high to have any practical value. To get tighter upper bounds, we

can add various additional constraints (described in Section 3.3). However, tightening the upper bound does

not come for free. It leads to a tradeoff between speed and tightness of the bound. Our empirical results are

mixed: We observed that the variants of BNSL2MAS that were fast did not give usable upper bounds. On the

other hand, the variants that gave non-trivial upper bounds were slow and sometimes returned graphs which

were of poorer quality.

Related work. There is limited amount of “approximate” algorithms for Bayesian network structure

learning. Most notably, while integer linear programming (ILP) -based algorithms (Jaakkola et al., 2010;

Cussens, 2011) are usually used as exact algorithms, they can be used as anytime algorithms. That is, it is

possible to interrupt the algorithm at any time and output the best DAG found so far. Furthermore, ILP solves

relaxations and optimal solutions for the relaxations give upper bounds for the score of the optimal DAG.

Other works include an approximation algorithm developed by Ziegler (2008). The algorithm gives

k-approximation where k is the maximum size of the parent set. Also greedy equivalence search (GES)

(Chickering, 2002) can be seen as a heuristic with quality guarantees. However, the guarantees hold only

asymptotically.

Recently, there has also been work on developing anytime algorithms for Bayesian network structure

learning (see, e.g., Lee and van Beek (2017); Scanagatta et al. (2017)). These algorithms typically consist of

sampling node orders and then finding a best DAG that is compatible with the order.

2. Preliminaries

2.1 Score-based Structure Learning

Let G = (N,A) be a DAG where N is the node set and A is the arc set. We denote the parent set of node v
in G by Av. Let n denote the cardinality of N .

The score of a DAG measures how well the DAG fits to the data. A score is decomposable, if the score of

a DAG G can be written as

S(G) =
∑
v∈N

Sv(Av),

where Sv(Av) is the local score of node v given the parent set Av. Commonly used scores such as BDe,

BDeu, and BIC are decomposable. Our approach works for any decomposable score.

The Bayesian network structure learning (BNSL) problem with a decomposable score can be defined as

argmax
G

∑
v

Sv(Av)

2



s.t. Av representing a DAG.

Note that Av refers to the parent set of v in the graph G.

Without any restrictions, the input of the BNSL problem would be 2n−1 local scores for every v. Generally,

computing such a number of local scores is not feasible. Thus, one typically restricts the number of local

scores. To this end, let Fv denote the set of potential parent sets of the node v. We treat Sv(Av) = −∞ for

all Av �∈ Fv. One common way to restrict the size of Fv is pruning, that is, removing or not computing local

scores for parent sets that cannot be a part of an optimal DAG. A commonly used pruning rule is based on the

observation that if Sv(W ) > Sv(W
′) and W ⊂ W ′ then W ′ cannot be the parent set v in the optimal graph.

Another way to restrict the number of local scores is to assume that the maximal size of the parent sets is

bounded by a small integer k.

We note that for large data sets, the number of local scores to compute becomes quickly restrictive

even for a small k. For example, with 500 nodes and k = 3 one would need to compute approximately

5004 ≈ 6× 1010 local scores. Thus, heuristics that scale up to thousands of nodes, such as Scanagatta et al.

(2015), compute local scores greedily online. We concentrate on slightly smaller networks and assume that

the local scores are given (though we do assume that they have been pre-pruned).

2.2 Integer Linear Programming Formulation

The state of the art in exact score-based structure learning in Bayesian networks is based on integer linear

programming (ILP) (Jaakkola et al., 2010; Cussens, 2011). In an integer linear programming formulation,

one introduces a set of binary variables. The current state of the art involves the so-called “family variables”;

a family variable Iv(W ) takes value 1 if W is the parent set of v in the DAG, and 0 otherwise. Now the

optimization problem can be written as

argmax
Iv(W )

∑
v,W

Sv(W )Iv(W )

s.t. the variables Iv(W ) represent a DAG.

We note that the constraints guaranteeing that the family variables Iv(W ) represent a DAG can be formulated

in several different ways. GOBNILP uses so-called cluster constraints to guarantee acyclicity1.

We note that the ILP formulation has one variable for each potential parent set in Fv. The number of ILP

variables can affect the optimization speed drastically and be the performance bottleneck in practice when the

number of potential parent sets is large. This is a serious challenge because with a large number of nodes we

tend to have lots of potential parent sets even when indegrees are small. Next, we will present edge scores

that are designed to alleviate this problem.

3. Proposed Method

In this section, we will introduce the BNSL2MAS method for the BNSL problem. As mentioned in

Section 2.1, we assume that we are given local scores Sv(Av) for v ∈ N and Av ∈ Fv and our goal is to find

a DAG G that maximizes the sum of local scores. We do not directly solve the BNSL problem but we first

approximate the local scores using edge scores and thereby convert the problem to the maximum acyclic

subgraph problem which is easier to solve in practice.

1. These constraints are based on the observation that in a DAG, every subset of nodes has at least one node that does not have any

parents in that subset.

3



3.1 Edge Scores

The core idea of our work is to approximate local scores Sv(W ) using a sum of edge scores ev(w). The

rationale behind this approximation is that the resulting ILP formulation has only a quadratic number of

variables instead of potentially an exponential number of variables. Therefore, it is expected that finding the

DAG that maximizes the approximate score is faster than finding the DAG that maximizes the original score.

Formally, we define an approximate local score for a node v and a parent set W by S̃v(W ) = bv +∑
w∈W ev(w) where bv is the bias of v and ev(w) are the edge scores. This approximate score is additive,

that is, each approximate local score is a sum of individual edge score contributions from the parent nodes w
with respect to the node v, plus a bias that represents the score estimation of v having no parent at all.

Given local scores Sv(W ), we want to estimate the values taken by the variables bv and ev(w). To

this end, we define a loss function L
(
Sv(W ), S̃v(W )

)
. In our experiments, we have used the absolute loss:

L
(
Sv(W ), S̃v(W )

)
= |Sv(W )− S̃v(W )| and the squared loss: L

(
Sv(W ), S̃v(W )

)
= (Sv(W )− S̃v(W ))2.

However, other loss functions are also possible. Furthermore, in order to get approximation guarantees, we

constrain the approximate local scores to always upper bound the true local scores.

Now, for each node v its bias and edge scores can be estimated solving

argmin
bv ,ev(w)

∑
W∈Fv

L
(
Sv(W ), S̃v(W )

)

s.t. Sv(W ) ≤ S̃v(W ) ∀W ∈ Fv (1)

where S̃v(W ) = bv +
∑

w∈W ev(w).

The approximation guarantees hold for any loss function. The tightness of the bounds and the time

requirements of solving the optimization problem, however, may be affected by the choice of the loss function.

The quadratic loss function results in a quadratic optimization problem which can be solved efficiently

with solvers like GUROBI. In practice, even for large and dense datasets, the estimation of approximate

scores is very fast compared to solving the structure learning problem itself. This is mainly due to the bias

and edge scores being continuous variables, as well as the models for each child node v being independent

meaning we can easily parallelize them.

There are at most n(n− 1) edge scores. We note that the above formulation yields a non-zero edge score

ev(w) only when w is a member of at least one potential parent set, that is, ev(w) is non-zero only if w ∈ W
for some W ∈ Fv. This can further simplify the following structure learning problem, especially when the

underlying DAG is sparse.

3.2 Maximum Acyclic subgraph

Given the edge scores, solving BNSL reduces to solving an instance of the maximum acyclic subgraph (MAS)

problem which is still NP-hard, as mentioned before. In practice, however, MAS can be solved significantly

faster than BNSL.

Formally, the maximum acyclic subgraph (MAS) problem is defined as follows. We are given a directed

graph G′ = (N,A′) with a weight s(a) assigned for each arc a ∈ A′. The goal is to find a directed acyclic

graph G = (N,A) such that A ⊆ A′ with maximum total weight
∑

a∈A s(a). We note that solving MAS is

equivalent to solving the feedback arc set (FAS) problem where one is given a directed weighted graph and

the goal is to remove the lightest set of arcs to make the graph acyclic2.

We solve MAS using integer linear programming. Our ILP formulation of MAS is as follows: consider

the weighted graph whose edges are weighted by the edge scores ev(w). Now, for each directed edge (w, v)

2. MAS and FAS are complementary: the feedback arc set equals to A′ \A.

4



define a binary variable Jv(w) which takes value 1 if w is a parent of v in the DAG, 0 otherwise. Then the

optimization problem can be written as

argmax
Jv(w)

∑
v,w

ev(w)Jv(w)

s.t. the Jv(w) representing a DAG.

There are several alternative ways to guarantee that the resulting graph is a DAG. We solve MAS using

the lazy set cover ILP formulation as in Baharev et al. (2015)3.

The constraints to guarantee acyclicity can be formulated as follows. Let c be a directed cycle with length

|c|. Let C be the set of cycles in G′. If G is a DAG then at least one arc of each cycle has to be absent from G.

Therefore, to ensure that G is a DAG, we can add the following constraints: for each cycle c ∈ C it holds that

∑
(w,v)∈c

Jv(w) ≤ |c| − 1.

One challenge with this formulation is that the ILP contains one constraint for each cycle in G′. In large

or dense graphs there are potentially lots of cycles and it is usually not feasible to explicitly include all of

them. In this case, we use the same approach as Cussens (2011) and add constraints lazily as cutting planes.

That is, we start with a relaxation and whenever we find a feasible solution for the relaxation, it is checked

whether the solution is acyclic. If not, we use the cutting plane approach and add at least one cycle constraint

that make the found solution infeasible. In this approach, finding good cutting planes is essential for solving

the problem quickly. We use a simple heuristical approach: for each edge in the found graph, we find the

shortest cycle that goes through the edge (if the edge is a part of a cycle).

In Section 3.1, we constrained the approximate local scores to upper bound the local scores. Theorem 1

implies that the approximate score of the DAG found by solving the MAS problem upper bounds the (true)

score of the DAG found by solving the BNSL problem.

Theorem 1 Let Gopt be the optimal DAG of the BNSL problem and G̃opt be the optimal DAG of the MAS
problem. Furthermore, let Sv(W ) ≤ S̃v(W ) ∀v ∈ N ∀W ∈ Fv. Then,

S(Gopt) ≤ C + S̃(G̃opt),

where C =
∑

v∈N bv is the sum of bias terms.

Proof For any graph G = (N,A), we have that

S(G) =
∑
v∈N

Sv(Av)

≤
∑
v∈N

S̃v(Av)

=
∑
v∈N

(
bv +

∑
w∈Av

ev(w)
)

= C +
∑
v∈N

∑
w∈Av

ev(w)

= C + S̃(G).

3. Baharev et al. (2015) give their formulation for FAS problem but we adapt it for the MAS problem.

5



Because G̃opt maximizes the approximate score S̃, it follows that S̃(Gopt) ≤ S̃(G̃opt). Finally, because the

approximate score upper bounds the local score, we get the upper bound guarantee

S(Gopt) ≤ C + S̃(G̃opt).

3.3 Tightening the Upper Bound

One challenge with the MAS formulation above is that the obtained networks tend to be dense. This happens

because the edge scores do not penalize complexity and thus MAS keeps adding edges with positive weights

as long as they do not induce cycles.

This denseness has two negative consequences. First, the found network G̃opt, which is optimal with

respect to approximate scores S̃, may not have a high score with respect to the true scores S. Second, the

upper bound depends on the weights of the included edges, adding an extra edge makes the bound looser. As

a result, the upper bounds provided by the naive formulation above are usually not very useful.

Fortunately, we can alleviate these problems. First, we note that if the parent set of v in G̃opt is not among

the candidate parent sets, that is, Av �∈ Fv, we can improve the score by replacing Av by its highest-scoring

subset with respect to true local scores, that is, argmaxA′
v⊂Av Sv(A

′
v). In other words, given G̃opt = (N,A)

we can construct a graph G̃′
opt = (N,A′) such that G̃′

opt maximizes the score S(G̃′
opt) subject to A′ ⊆ A.

Because removing edges cannot make an acyclic graph cyclic, we can select the parent set of each node

independently and therefore the running time is proportional to the size of Fv. We refer to this variant of the

BNSL2MAS method as BNSL2MAS (Base).
Second, we can tighten the upper bound by adding additional constraints. A simple way is to bound the

maximum indegree of G̃opt. If the size of the largest parent set in Fv is k then we can add constraints

∑
w∈N\{v}

Jv(w) ≤ k

for all v. A weakness of this approach is that it is still possible that the parent set of v in G̃opt is not among

the candidate parent sets: Av �∈ Fv. We refer to this variant as BNSL2MAS (Bounded parent set).
A more sophisticated approach is to restrict the solutions of the MAS problem to be DAGs whose parent

sets are among candidate parents sets. That is, Av can be the parent set of v in G̃opt only if Av ∈ Fv. To

achieve this, we can add an additional binary variable Kv(W ) for all W ∈ Fv. The variable Kv(W ) equals

to 1 if and only if W is the parent set of v. This can be achieved by adding the following constraints:∑
w∈W

Jv(w) ≥ |W |Kv(W ),

∑
w �∈W

Jv(w) ≤ n− nKv(W ).

Then, we add a constraint that each node has exactly one parent set, that is,
∑

W∈Fv
Kv(W ) = 1. We refer

to the variant of BNSL2MAS that includes all the candidate parent set constraints as BNSL2MAS (Complete
candidate parent).

Another way to restrict the parent sets to candidate parent sets is to add the following constraints: ∀v ∈ N
and ∀W �∈ Fv it is required ∑

w∈W
Jv(w) ≤

∑
w′∈Ŵ\W

Jv(w
′) + |W | − 1,

6



Name n Local scores Name n Local scores

autos 26 25,238 letter 17 18,841

carpo 100 60 5,068 mushroom 23 13,025

carpo 10000 60 16,391 Pigs 10000 441 304,219

Diabetes 1000 413 21,493 wdbc Bde 31 13,473

Diabetes 10000 413 262,129 wdbc BIC 31 14,613

Table 1: Data sets with the number of nodes n and the number of local scores

where

Ŵ =
⋃

W ′∈Fv :W ′⊃W

W ′.

Intuitively, this means that if the parent set of v contains a set W �∈ Fv then the parent set must include

at least one additional node. The additional node must be a member of some candidate parent set that is a

superset of W . We note Ŵ = N \W would be also a valid constraint but the above mentioned constraint

is tighter. The previous formulation is not completely unproblematic: We need to have one constraint for

every W �∈ Fv which means that usually we will have exponential number of constraints. Thus, adding all

of them is typically not possible. Fortunately, we can again add the constraints as cutting planes during the

optimization process. Whenever we find a graph G with Av �∈ Fv, we can add the corresponding constraint.

We refer to the variant that adds candidate parent set constraints lazily as cutting planes as BNSL2MAS (Lazy
candidate parent).

It should be noted that removing the constraint Sv(W ) ≤ S̃v(W ) in Equation 1 that forces the approxi-

mate score to be an upper bound for the corresponding true score would make the loss smaller and thereby

the approximation would be tighter. However, the constraint is essential for the quality guarantees and after

removing it we could not guarantee that the solution of the MAS problem would upper bound the score of the

optimal solution of the BNSL problem.

4. Experiments

4.1 Test Setup

4.1.1 IMPLEMENTATION

The method was implemented using Python. We used Gurobi (version 9.0) to solve linear, quadratic, and

integer linear programs.

4.1.2 DATA SETS

We use a subset of the data sets listed in the GOBNILP home page4. As we are interested in scalability of

our method, we restrict our analysis to the most challenging data sets. To this end, we selected data sets for

which GOBNILP used at least 100 seconds (or GOBNILP was not able to find the optimal network at all).

The selected data sets can be seen in Table 1.

We used the same scoring criteria that were used in the original data sets, that is, either BDe or BIC. For

wdbc, we have two versions, one for each scoring criterion.

4. https://www.cs.york.ac.uk/aig/sw/gobnilp/

7



4.1.3 EXPERIMENTS

In Section 3, we proposed several different variants. The goal of this experiment is to investigate which of the

variants of the proposed method work well. We consider the following variants.

For computing edge scores, we compare two loss functions: absolute loss and squared loss.

For different variants of BNSL2MAS, we consider BNSL2MAS (Base), BNSL2MAS (Bounded parent

sets), BNSL2MAS (Complete candidate parents), BNSL2MAS (Lazy candidate parents). As mentioned

in Section 3.2, we can solve one of the two equivalent optimization problems: maximum acyclic subgraph

(MAS) or feedback arc set (FAS). Both formulations give the same result (if we run them long enough to the

optimality) but the running time can be different. Therefore, if we run the algorithms for a fixed time and at

least one of them does not finish then we can also get different graphs. Thus, we compare both MAS and

FAS formulations.

Performance measures. In all of the experiments, we measured the performance of the methods by

scores of found DAGs and running time. For ILP-based methods, we also recorded upper bounds. For the

proposed method, we computed both the approximate score S̃ and the “true” score S for each DAG.

All methods had a time limit of one hour of running time. We evaluated methods in anytime fashion:

Whenever a method found a DAG that has higher score than any of the previously found DAGs, we recorded

the score and time of the newly found DAG. Furthermore, all algorithms were given pre-computed local

scores5 as an input and computing the local scores did not count towards the running time except for hill

climbing, for which raw datasets were used.

Benchmarks. We benchmark the proposed method against both an exact algorithm and two heuristic

algorithms. As the exact benchmark, we use GOBNILP (Bartlett and Cussens, 2017) which can scale up to

networks with few hundred variables if the network is sparse.

As another benchmark we use the greedy hill climbing. In greedy hill climbing, there are three operators

that are used to improve the DAG: adding a new edge, removing an existing edge or flipping an edge. The

greedy hill climbing starts with an empty DAG and greedily applies the operator that increases the score most.

This is continued until none of the operators increases the score of the DAG. We benchmarked hill climbing

from bnlearn (Scutari, 2010), an optimized implementation that uses score caching for maximized efficiency.

Our last benchmark is WINASOBS (Scanagatta et al., 2017), where an ordering-based search algo-

rithm is coupled with an iterated local search meta-heuristic that uses a custom window insertion operator.

WINASOBS currently yields state-of-the-art performance on large graphs with several thousands of nodes.

Computer. Tests were conducted using a computer with Intel(R) Core(TM) i5-7500 processor with four

3.40GHz cores. The computer had 32Gb RAM and its operating system was Ubuntu 18.04.4 LTS (64bit).

4.2 Results

4.2.1 COMPUTING EDGE SCORES

We computed edge scores with both squared and absolute loss. We observed that computing the edge scores

is very fast. In the case of squared loss, for all but two of our data sets computing edge scores took less than 2

seconds in total. The two most time-consuming data sets were Diabetes 10000 and Pigs 10000 for which

computing the edge scores took 35 and 72 seconds, respectively. Computing edge scores with absolute loss is

even faster: computing edge scores for any data set took always less than 2 seconds.

4.2.2 BNSL2MAS

Next, we will review some of the experimental results. Due to space constraints, we show only part of the

results. Let us start by analysing the BNSL2MAS (Base). Results from selected data sets are shown in

5. Loaded from https://www.cs.york.ac.uk/aig/sw/gobnilp/data/.

8



(a) (b)

(c) (d)

(e)

Figure 1: Scores and running times for BNSL2MAS (Base) and BNSL2MAS (Lazy candidate parents) with

the benchmarks. Scores are the score of the best DAG found at a given data point. Edge scores were

computed using squared loss. Marker at the end of a curve denotes that the method has finished

(otherwise, the execution was stopped at the time limit). Data sets: (a) autos, (b) Diabetes 10000,

(c) mushroom, (d) Pigs 10000, and (e) wdbc.

Figure 1. To help us to put the scores and bounds in perspective, we compare them to naive bounds. As a

naive lower bound we use the score of the empty graph. To get a naive upper bound for the optimal DAG, we

select the highest scoring parent set for each node and compute the sum. Clearly, there cannot be a DAG

that has a higher score. Furthermore, we show the hill climbing algorithm, WINASOBS, and GOBNILP as

9



(a) (b)

(c)

Figure 2: Score and running times for BNSL2MAS (Complete candidate parents) and BNSL2MAS (Lazy

candidate parent) with benchmarks. Scores are the score of the best DAG found at a given data

point. Edge scores were computed using squared loss. Marker at the end of a curve denotes that

the method has finished (otherwise, the execution was stopped at the time limit). Datasets: (a)

carpo 100, (b) mushroom, and (c) Pigs 10000.

benchmarks. In the plots, whenever a curve for some method is missing that means that the method did not

find any feasible solutions before the time limit.

Our first observation is that BNSL2MAS (Base) is very fast. With the absolute loss, the slowest cases were

the networks with over 400 nodes. Solving the MAS problem took less than 11 seconds for Diabetes 10000

and less than 25 seconds for Pigs 10000. With squared loss, the algorithm was even faster: running times for

Diabetes 10000 and Pigs 10000 were less than 3 seconds and 13 seconds, respectively.

If we take a look at the DAGs found, we can see that, indeed, as mentioned in Section 3.3, solving

BNSL2MAS without additional constraints for parent sets leads to dense networks. For example, the

mushroom data set which consist of 23 nodes. The DAG found has 228 edges (average in-degree is 9.9) and

maximum in-degree is 20. A graph with 23 nodes can have at most 253 edges. Thus, the found graph is

almost complete. In comparison, the optimal graph found by GOBNILP has only 67 edges and maximum

in-degree 4. As each edge that is added has a positive score, the upper bound is always much higher than the

naive upper bound. Thus, in this case we cannot really claim that the base version has quality guarantees.

To evaluate the quality of the DAGs found by BNSL2MAS (Base), we selected the highest scoring

candidate parent set for each node among the parents in the found graph and computed the true score of

this DAG. The base version seems to perform roughly as well as the hill climbing heuristic: With squared

10



loss, the base version found a higher scoring network 4 times out of 10. WINASOBS found a higher-scoring

DAG for all of the data sets. WINASOBS also finds good solutions very fast. We observe that the curves for

WINASOBS in Figure 1 are almost horizontal indicating that there is no significant improvement after the

initial phase.

To get tighter bounds, we can use either bounded parent set constraints or candidate parent set constraints.

Selected results comparing BNSL2MAS (Complete candidate parent) and BNSL2MAS (Lazy candidate

parent) are shown in Figure 2. The results are mixed. Still sometimes the upper bound is higher than

the naive upper bound. Both of the versions are significantly slower than BNSL2MAS (Base). However,

neither of them consistently overperforms the other. As a rule of thumb, BNSL2MAS (Complete candidate

parent) seems to perform better on small data sets and significantly slow down with larger data sets; this is

natural because it has one constraint for every existing node-parent set pair in the local scores. Furthermore,

sometimes BNS2MAS (Complete candidate parent) and BNSL2MAS (Lazy candidate parent) are faster than

GOBNILP and sometimes they are slower. We also note that in many cases BNSL2MAS (Base) finds better

solutions than both BNSL2MAS (Complete candidate parent) and BNSL2MAS (Lazy candidate parent).

Due to space constraints, we do not show any plots about the performance of BNSL2MAS (Bounded

parent sets). However, in general BNSL2MAS (Bounded parent sets) ends up somewhere in the middle of

BNSL2MAS (Base) and the candidate parent set variants with respect to speed and loses to BNSL2MAS

(Base) almost always with respect to the score. We also compared MAS and FAS version of BNSL2MAS

(Plots not shown). There were no systematic differences, one was faster than the other for about half of the

time. We also note that the differences between MAS and FAS were reasonably small.

5. Discussion

On the positive side, we observed that approximating local scores with edge scores and converting BNSL to

MAS can significantly speed up learning Bayesian network structures. BNSL2MAS (Base) is very fast and

could work with even larger data sets than what were considered in this paper. However, in practice the base

version behaves like an order-finding heuristic and does not have quality guarantees.

Our empirical results are somewhat disappointing with respect to quality guarantees. The main result

is that developing a scalable method with good quality guarantees seems to be a difficult task. There is a

clear tradeoff: Adding seemingly simple constraints to tighten the upper bounds makes the optimization

dramatically more difficult increasing the running time by several orders of magnitude even though the size

of the search space decreases. We also observed that having quality guarantees can actually decrease the

quality of the found solutions! The observation that additional constraints can significantly slow down ILP is

not unique. For example, ILP-based methods of learning bounded tree-width Bayesian networks (Parviainen

et al., 2014; Scanagatta et al., 2016) are orders of magnitude slower than GOBNILP even though bounded

tree-width Bayesian networks are a small subset of all Bayesian networks. These results seem to suggest that

the most practical version of BNSL2MAS is BNSL2MAS (Base).

We also note that the state-of-the-art anytime algorithm WINASOBS clearly outperformed BNSL2MAS.

The main weakness of BNSL2MAS seems to be that the additive approximation is rather limiting. Thus,

making BNSL2MAS really competitive would require finding a less restrictive approximate score without

significantly increasing running time.

Acknowledgments

We thank James Cussens for fruitful conversations. The authors are affiliated with the CEDAS center in

Bergen.

11



References

A. Baharev, H. Schichl, and A. Neumaier. An exact method for the minimum feedback arc set problem. 2015.

M. Bartlett and J. Cussens. Integer linear programming for the Bayesian network structure learning problem.

Artificial Intelligence, 244:258–271, 2017.

D. M. Chickering. Learning Bayesian Networks is NP-Complete, pages 121–130. Springer-Verlag, learning

from data: artificial intelligence and statistics v edition, January 1996.

D. M. Chickering. Optimal Structure Identification With Greedy Search. Journal of Machine Learning
Reseach, 3:507–554, 2002.

J. Cussens. Bayesian network learning with cutting planes. In Proceedings of the 27th Conference on
Uncertainty in Artificial Intelligence (UAI 2011), pages 153–160, 2011.

T. Jaakkola, D. Sontag, A. Globerson, and M. Meila. Learning Bayesian network structure using lp relaxations.

In Y. W. Teh and M. Titterington, editors, Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine Learning Research, pages

358–365, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR.

R. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher, editors, Complexity of
Computer Computations, pages 85–103. Plenum Press, 1972.

C. Lee and P. van Beek. Metaheuristics for score-and-search Bayesian network structure learning. In

Proceedings of the 30th Canadian Conference on Artificial Intelligence, 2017.

P. Parviainen, H. S. Farahani, and J. Lagergren. Learning Bounded Tree-width Bayesian Networks using

Integer Linear Programming. In Proceedings of the Seventeenth International Conference on Artificial
Intelligence and Statistics, pages 751–759, 2014.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 1988. ISBN 0-934613-73-7.

M. Scanagatta, C. P. de Campos, G. Corani, and M. Zaffalon. Learning Bayesian networks with thousands

of variables. In Advances in Neural Information Processing Systems 28: Annual Conference on Neural
Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pages 1864–

1872, 2015.

M. Scanagatta, G. Corani, C. P. de Campos, and M. Zaffalon. Learning treewidth-bounded Bayesian networks

with thousands of variables. In Advances in Neural Information Processing Systems 29, pages 1462–1470.

2016.

M. Scanagatta, G. Corani, and M. Zaffalon. Improved local search in Bayesian networks structure learning.

In Proceedings of The 3rd International Workshop on Advanced Methodologies for Bayesian Networks,

volume 73 of Proceedings of Machine Learning Research, pages 45–56, 2017.

M. Scutari. Learning Bayesian networks with the bnlearn R package. Journal of Statistical Software, 35(3):

1–22, 2010.

I. Tsamardinos, L. E. Brown, and C. F. Aliferis. The max-min hill-climbing Bayesian network structure

learning algorithm. Machine Learning, 65:31–78, 2006.

V. Ziegler. Approximation algorithms for restricted Bayesian network structures. Information Processing
Letters, 108(2):60–63, Sept. 2008.

12



138 Article I. Scalable Bayesian Network Structure Learning via Maximum Acyclic Subgraph



149

Article III

Convergence of Feedback Arc Set-Based Heuristics

for Linear Structural Equation Models

Pierre Gillot & Pekka Parviainen

Proceedings of the 11th International Conference on Probabilistic Graphical Models,

PMLR 186:157-168, 2022



Convergence of FAS-Based Heuristics for Linear SEMs

Convergence of Feedback Arc Set-Based Heuristics for
Linear Structural Equation Models

Pierre Gillot Pierre.Gillot@uib.no

Pekka Parviainen Pekka.Parviainen@uib.no

University of Bergen HIB - Thormøhlens gate 55 Postboks 7803 5020 Bergen

Abstract

Score-based structure learning in Bayesian networks, where local structures in the graph
are given a score and one seeks to recover a high-scoring DAG from data, is an NP-hard
problem. While the general learning problem is combinatorial, the more restricted frame-
work of linear structural equation models (SEMs) enables learning Bayesian networks using
continuous optimization methods. Large scale structure learning has become an important
problem in linear SEMs and many approximate methods have been developed to address
it. Among them, feedback arc set-based methods learn the DAG by alternating between
unconstrained gradient descent-based step to optimize an objective function and solving a
maximum acyclic subgraph problem to enforce acyclicity. In the present work, we build
upon previous contributions on such heuristics by first establishing mathematical conver-
gence analysis, previously lacking; second, we show empirically how one can significantly
speed-up convergence in practice using simple warmstarting strategies.

Keywords: Bayesian networks; Structure learning; Linear structural equation models;
Convex optimization; Maximum acyclic subgraph.

1. Introduction

Bayesian networks are a class of probabilistic graphical models where the conditional inde-
pendencies between variables are expressed using a directed acyclic graph (DAG). We are
interested in the structure learning problem, that is, how to construct the DAG based on
data. We take a score-based approach to structure learning where every DAG is assigned
a score based on how well it fits to the data and one tries to find a DAG that optimizes
the score. Typically, the score decomposes into a sum of local scores that are computed for
node-parent set pairs. This yields a combinatorial optimization problem where one picks a
parent set for each node and tries to maximize the sum of the local scores while constraining
the resulting graph to be acyclic. This problem is known to be NP-hard (Chickering, 1996).

In this paper, we concentrate on linear structural equation models (linear SEMs) which
are a subclass of Bayesian networks. They are used to model continuous variables and the
value of a variable depends linearly on values of its parents. From the learning perspective,
linear SEMs simplify the optimization because the score function depends only on the arc
weights and not the node-parent set pairs. However, the structure learning problem remains
combinatorial due to the acyclicity constraint imposed to the graph.

Recently, Zheng et al. (2018) introduced a continuous acyclicity constraint that enables
learning SEMs with continuous optimization instead of combinatorial optimization. How-
ever, learning DAGs using the acyclicity function proposed in Zheng et al. (2018) proves
impractical in large scale settings owing to the complexity of the matrix exponential, which

1



Gillot et al.

exhibits cubic time complexity and quadratic space complexity with respect to the number
of nodes. Various methods have been recently developed in order to circumvent this prob-
lem and enable learning large structures. As a rule, these methods avoid encoding acyclicity
with hard constraints and instead formulate alternative problems that can be solved with
lower complexity per iteration. We note however that these new problems remain largely
non-convex in nature and one cannot hope to find a global minimizer in general. In Yu
et al. (2021), a cyclic solution is first computed and then projected to the DAG space using
a novel characterization based on Hodge decomposition of graphs. In Zhu et al. (2021), the
hard constraint encoded by the acyclicity function is relaxed and an upped-bound on the
spectral radius of a non-negative adjacency matrix of the graph is derived instead. In Dong
and Sebag (2022), low-rank solutions are combined with an efficient approximation for the
computation of the gradient of the acyclicity function.

Alternatively, combining feedback arc set heuristics with continuous optimization schemes
has proved successful in learning large scale DAGs. Such methods consist in decoupling the
optimization of the objective function from acyclicity itself by alternating between fast
gradient-based optimization steps without acyclicity and projection of cyclic solutions to
“close” acyclic approximations; while Park and Klabjan (2017) greedily fit parameters of
a newly discovered acyclic structure at every step, instead Gillot and Parviainen (2022)
dynamically construct a sequence of convex objective functions penalized to remain in the
vicinity of a trail of acyclic solutions discovered online, resulting in better scalability but
losing theoretical guarantees on the convergence of their method.

The present paper has two contributions. The first contribution is theoretical. We show
that the ProxiMAS algorithm presented in Gillot and Parviainen (2022) converges under
certain conditions (Lemma 2, Theorem 3). We note that the conditions are stronger than
for the GD algorithm by Park and Klabjan (2017). Second, we analyse the convergence
of ProxiMAS empirically. We also show that clever warmstarting strategies can lead to
substantially faster convergence for feedback arc set heuristic-based structure learning.

2. Background

2.1 Linear Structural Equation Models and Bayesian Network Structure
Learning

Let V be a node set. Furthermore, let G = (V,A) be a DAG where A is the arc set. The
parent set of node v in G is denoted by Av.

Formally, a Bayesian network is a pair (G,Θ) where its structure G is a DAG and Θ
are its parameters. The joint distribution factorizes as follows:

P (V ) =
∏
v∈V

P (v|Av, θv)

where θv are parameters of the conditional distribution of v given its parents.

Linear SEMs are a special case of Bayesian networks. To specify a model, we have
a weight matrix W ∈ R

d×d, where d is the cardinality of the node set V . The weight
matrix specifies both the structure and parameters of the Bayesian network. Specifically,
W (i, j) = 0 entails there is an arc going from i to j in the DAG. Given a d-dimensional

2



Convergence of FAS-Based Heuristics for Linear SEMs

data vector x, a linear SEM can be written as

x = xW + ε

where ε is a d-dimensional error vector. The elements of ε are independent. The data
consists of n such samples x, forming a data matrix X ∈ R

n×d. We note that when the
errors are Gaussian, linear SEMs encode multivariate Gaussian distributions.

To learn a linear SEM, we need to constrain W to represent an acyclic graph. Fur-
thermore, one typically uses the least squares loss and adds a regularization term inducing
sparsity in the structure. Thus, the objective function in structure learning becomes

argmin
W

1

2n
||XW −X||2 + λg(W ) s.t. W is acyclic (1)

where ‖·‖ is the Frobenius norm and g(W ) is for regularization, whose strength is controlled
by the hyperparameter λ>0.

2.2 Feedback Arc Set-Based Structure Learning

At a general level, feedback arc set-based methods learn a DAG (under the linear SEMs
framework) by iteratively repeating the following steps:

• Given an acyclic graph, find a graph (possibly cyclic) which is better in terms of the
objective function value.

• Given a cyclic graph, find a close acyclic graph by approximately solving a maximum
acyclic subgraph instance.

In particular, these methods entirely decouple acyclicity from the optimization process
itself, via the integration of (weighted) maximum acyclic subgraph (MAS) problems, whose
definition we recall now: given a directed graph G = (V,E) and a weight function w(e)
that assigns a weight for each arc e ∈ E, the goal is to find an acyclic graph G′ = (V,E′)
such that E′ ⊂ E and

∑
e∈E′ w(e) is maximized. The dual problem is called the feedback

arc set (FAS) problem: given a directed graph G = (V,E) and a weight function w(e), the
goal is to find an arc set E′′ ⊂ E such that G′′ = (V,E \ E′′) is acyclic and

∑
e∈E′′ w(e) is

minimized. Given a cyclic graph G as input, it is well known that G′ is an optimal solution
of MAS if and only if G \ G′ is an optimal solution of FAS. Moreover, both problems are
NP-hard (Karp, 1972).

Intuitively, using the maximum acyclic subgraph problem in order to learn linear SEMs
DAGs is sensible, in that given any acyclic solution to linear SEMs, one can always extend
this solution into a tournament (a dense acyclic graph) having the exact same score, by
completing the solution with zero-weight arcs. Unlike traditional approaches that involve
a smooth characterization of acyclicity (Zheng et al., 2018; Ng et al., 2020; Yu et al., 2021;
Zhu et al., 2021; Dong and Sebag, 2022), feedback arc set-based methods also offer the clear
advantage that they return strictly acyclic solutions, in the sense that one never needs to
threshold a solution as a form of postprocessing in order to recover a DAG.

Two variants have been studied so far. In Park and Klabjan (2017), the authors propose
the GD algorithm which works by repeating the following steps:

3



Gillot et al.

1. Fix the structure of the last obtained acyclic solution, then fit the linear SEMs objec-
tive constrained by this structure to get a new fitted acyclic solution.

2. Make an unconstrained optimization step on the linear SEMs loss at the previously
obtained fitted acyclic solution to get a new cyclic solution.

3. Project the previously obtained cyclic solution to its maximum acyclic subgraph ap-
proximation to get a new acyclic solution.

The key design choice in GD lies in the fact that unconstrained optimization steps are only
performed after a newly found structure has been fitted with respect to the linear SEMs
objective. From a theoretical perspective, this leads to a simplified convergence analysis
and GD is guaranteed to converge in a fix number of iterations under mild conditions (see
(Park and Klabjan, 2017), Lemma 1). On the practical side however, the GD algorithm
“greedily” explores the search space which can lead to overfitting and incurs solving a
LASSO subproblem for every node in the graph at every iteration, heavily impacting the
scalability of the algorithm. In Gillot and Parviainen (2022), an alternative approach is
proposed that would fix the scalability concern observed in GD. This new variant changes
steps 1 and 2 from GD (step 3 is left unchanged) as follows:

1’. Construct a new objective function as the sum of the linear SEMs loss plus a least-
squared term penalizing deviation from the last obtained acyclic solution.

2’. Make an unconstrained optimization step on the previously constructed objective
function to get a new cyclic solution.

In other words, this second approach jumps from an acyclic structure to another, with-
out fitting these structures to optimality. As a trade-off, the optimization process now
evolves dynamically, making a convergence analysis less straightforward (and such analy-
sis is presently missing, to the best of our knowledge). The pseudocode of this variant is
described in Algorithm 1.

Algorithm 1 (Gillot and Parviainen, 2022)

Input: X∈R
n×d, λ > 0, μ > 0

1: W̃0,W0 = 0d×d

2: for 1 ≤ k ≤ . . . do
3: New objective function: φk : W �→ 1

2n‖XW −X‖2 + μ
2‖W −Wk−1‖2 + λ‖W‖1

4: Optimization step: W̃k = step(φk, optimizer)

5: MAS projection: Wk = MAS
(
W̃k

)

In short, the algorithm keeps track of both cyclic and acyclic solutions, represented
respectively by W̃k and Wk. At every iteration, a new objective function is constructed: let
f : W �→ 1

2n‖XW−X‖2 and g : W �→ λ‖W‖1 represent the linear SEMs loss and the sparsity
inducing penalization term respectively; let fk : W �→ f(W ) + μ

2‖W − Wk−1‖2 represent
the linear SEMs loss penalized to remain in the vicinity of the previously discovered acyclic
structure; then the new objective function is φk = fk + g, where both fk and g are convex,

4



Convergence of FAS-Based Heuristics for Linear SEMs

the fk are differentiable and their gradient share the same optimal Lipschitz constant L =
1
n‖XtX+nμId‖∗ (where ‖·‖∗ is the spectral norm). From a practical standpoint, this means
that one can exploit the stationary properties of the φk in order to make fast progress with
a proximal gradient-based optimizer, though Algorithm 1 can embed instead any gradient-
based first-order optimizer. The authors dub the former ProxiMAS and the latter OptiMAS.
We note that while the objective functions φk are all convex, the overall optimization scheme
itself remains largely non-convex, in that every function φk carries structural information
which can evolve in a non-convex fashion from an iteration to another. This structural
information is encapsulated within the acyclic solutions Wk. In order to construct them a
feedback arc set heuristic is used, which at every iteration k constructs a topological order πk
from the cyclic solution W̃k; the acyclic projectionWk is obtained by nullifying those weights
in W̃k corresponding to feedback arc set arcs (with respect to πk). Both Park and Klabjan
(2017) and Gillot and Parviainen (2022) make use of a variant of the greedy feedback arc set
heuristic originally presented in Eades et al. (1993). More specifically, this variant iteratively
constructs a topological order from its last/rightmost up to its first/leftmost element. A
node is greedily selected if it has the smallest sum of incoming squared weights among the
remaining nodes. In other words, this heuristic treats forward arcs (with respect to the
constructed topological order) as feedback arc set arcs. It is described in Algorithm 2.

Algorithm 2 Greedy feedback arc set heuristic

Input: W̃ ∈R
d×d

1: V1 = {0, . . . , d− 1}, π = 0d×1

2: for 1 ≤ r ≤ d do
3: π[−r] = argmin

j∈Vr

∥∥W̃ [:, j]
∥∥2
Vr\{j}

4: Vr+1 = Vr \ π[−r]
5: return π

3. Convergence Analysis

Minimizing a composite convex function is a standard problem in convex analysis: let
φ := f + g : U �→ R denote a composite convex function on a convex open set U ⊂ R

m such
that: f and g are convex on U , f is differentiable and its gradient is Lipschitz-continuous
with constant L on U . Then it is well known that the non-accelerated proximal gradient
descent optimizer generating the sequence (xk)k defined as

xk = argmin
x∈U

{
γ−1
k
2

∥∥x− (
xk−1 − γk∇f(xk−1)

)∥∥2 + g(x)
}

where 0 < γk ≤ L−1 (2)

achieves O(
1
k

)
convergence rate in function value (where k is the number of iterations)

(Beck and Teboulle, 2009a). A key aspect of the convergence analysis is to show that one
in fact always has (see for instance (Beck and Teboulle, 2009a), Lemma 1.6):

0 < γk ≤ L−1 =⇒ φ(xk) ≤ φ(xk−1)− γ−1
k
2 ‖xk − xk−1‖2, (3)

that is the proximal gradient descent update generates a sequence guaranteed to decrease
the objective function value. Algorithm 1 equipped with the same convex optimizer subtly

5



Gillot et al.

differs from this framework, in that at every iteration a convex descent step is performed
on a new composite convex function φk = fk + g: this describes a dynamic system and the
notion of optimal solution is ill-defined, thus the O(

1
k

)
convergence rate in function value

is lost. In the rest of this section, by ProxiMAS we refer to Algorithm 1 equipped with
both Algorithm 2 for the FAS heuristic and the non-accelerated proximal gradient descent
optimizer described above, i.e. ProxiMAS makes convex descent steps of the form:

W̃k = argmin
W∈Rd×d

{
γ−1
k
2

∥∥∥W−
(
W̃k−1−γk∇fk

(
W̃k−1

))∥∥∥2+λ‖W‖1
}

where 0 < γk ≤ L−1, (4)

where all fk have Lipschitz-continuous gradient with the same constant L. We aim to derive
a set of conditions such that ProxiMAS converges to a fixed acyclic structure in a finite
number of iterations, that is the acyclic solutions Wk have the same support, or equivalently
the topological orders πk constructed by Algorithm 2 are the same. Lemma 1 provides a
necessary condition, agnostic from the choice of the optimizer (in Algorithm 1: line 4):

Lemma 1 Let
(
W̃k

)
k
, (Wk)k and (πk)k respectively denote the sequence of cyclic solutions,

acyclic solutions and topological orders in Algorithm 1. Assume topological orders stabilize,
i.e. ∃k1 : ∀k ≥ k1, πk = π. Then the following convergence condition necessarily holds:

∃k0 : ∀k ≥ k0,
∥∥W̃k −Wk

∥∥ ≤ ∥∥W̃k −Wk−1

∥∥. (5)

Proof Notice that
∥∥W̃k−Wk

∥∥2 ≤ ∥∥W̃k−Wk−1

∥∥2 ⇐⇒ ∥∥Wk−Wk−1

∥∥2 ≥ 2
〈
W̃k−Wk,Wk−1

〉
.

Assuming that for large k, πk = π, one must then have
〈
W̃k − Wk,Wk−1

〉
= 0. Indeed,

non-zero values in W̃k − Wk must correspond to forward arcs whereas non-zero values in
Wk−1 must correspond to backward arcs (both with respect to π for large enough k).

In order to get the convergence of acyclic solutions Wk, we must first ensure we get the
convergence of cyclic solutions W̃k. We stress that by convergence we imply toward a local
extremum and that converging does not guarantee good performance of found solutions,
that is we are concerned with the stability of ProxiMAS. We prove the following:

Lemma 2 Let
(
W̃k

)
k
, (Wk)k and (γk)k respectively denote the sequence of cyclic solutions,

acyclic solutions and learning rates in ProxiMAS. Assume the learning rate decreases with
rate O(

1
kα

)
where α > 2, and assume the convergence condition from Lemma 1 holds:

∃k0 : ∀k ≥ k0,
∥∥W̃k −Wk

∥∥ ≤ ∥∥W̃k −Wk−1

∥∥. Then W̃k admits a convergent subsequence.

Proof Notice the φk have stationary properties (composite convex functions, same optimal
Lipschitz constant L for the gradient of smooth components) hence Equation 3 holds for

every φk at step k: ∀k ≥ 1, 0 < γk ≤ L−1 =⇒ φk

(
W̃k

) ≤ φk

(
W̃k−1

)− γ−1
k
2

∥∥W̃k − W̃k−1

∥∥2.
Now, by definition: φk

(
W̃k−1

)
= φk−1

(
W̃k−1

)
+ μ

2

(∥∥W̃k−1 −Wk−1

∥∥2 − ∥∥W̃k−1 −Wk−2

∥∥2).
Due to the convergence condition, we thus get φk

(
W̃k

) ≤ φk

(
W̃k−1

) ≤ φk−1

(
W̃k−1

)
for large

k, implying the (non-negative) sequence
(
φk

(
W̃k

))
k
converges to a limit l. Furthermore,

we can now write that for large k,
γ−1
k
2

∥∥W̃k − W̃k−1

∥∥2 ≤ φk−1

(
W̃k−1

) − φk

(
W̃k

)
. We then

use the fact that the right-hand side in the previous inequality is a telescopic term, along
with φk

(
W̃k

) −→
k→+∞

l, to deduce that the infinite series
∑

k γ
−1
k

∥∥W̃k − W̃k−1

∥∥2 converges;

6



Convergence of FAS-Based Heuristics for Linear SEMs

necessarily, γ−1
k

∥∥W̃k − W̃k−1

∥∥2 = o(1) 1 holds, which in turn implies
∥∥W̃k − W̃k−1

∥∥ =

O(√
γk
)
. Now by assumption

√
γk = O(

1
kα/2

)
where α > 2, hence

∥∥W̃k − W̃k−1

∥∥ = O(
1
kβ

)
where β > 1 such that the infinite series S :=

∑
k

∥∥W̃k − W̃k−1

∥∥ converges. The triangular
inequality finally yields:

∀K,
∥∥W̃K − W̃0

∥∥ =
∥∥∑

k≤KW̃k − W̃k−1

∥∥ ≤ ∑
k≤K

∥∥W̃k − W̃k−1

∥∥ ≤ S < +∞,

therefore sup
k

∥∥W̃k

∥∥ < +∞. The Bolzano-Weierstrass theorem concludes the proof.

We are now ready to present our main result:

Theorem 3 Let
(
W̃k

)
k
and (πk)k respectively denote the sequence of cyclic solutions and

topological orders in ProxiMAS. Assume
(
W̃k

)
k
admits a converging subsequence: W̃∗ :=

lim
k→+∞

(
W̃ψ(k)

)
k
. Define π∗ to be the topological order constructed by Algorithm 2 given W̃∗

as input and assume for all r ∈ [1, d], Algorithm 2 makes a strictly optimal decision when

constructing π∗[−r] (i.e. argmin in Algorithm 2: line 3 is strict at every step r given W̃∗ as
input). Then the topological orders constructed by ProxiMAS in the subsequence ψ stabilize
after a finite number of iterations: ∃k′ : ∀k ≥ k′, πψ(k) = π∗.

Proof idea The proof is technical and revolves around a similar argument as in Park and
Klabjan (2017): Lemma 1. Due to space constraints, we leave out the full proof.

We note that the assumption in Theorem 3 is mild: although one never has access to the
limit of a converging subsequence, arc weights are continuous thus Algorithm 2 easily makes
strictly optimal choices. However, columns of zeros can occur in practice (e.g. when learning
sparse structures), in which case convergence cannot be guaranteed. We also comment on
Lemma 2’s assumptions: the convergence condition from Lemma 1 ensures feedback arc set
costs eventually become less than the distance between past acyclic solutions and new cyclic
solutions; the learning rate must decrease sufficiently fast which can deteriorate the quality
of found solutions. These two assumptions are not needed in the theoretical convergence of
GD (Park and Klabjan, 2017), meaning the theoretical convergence of ProxiMAS (Gillot
and Parviainen, 2022) is weaker. This was expected since unlike GD, ProxiMAS does not
solve LASSO subproblems at every iteration.

4. Experiments

We now conduct an empirical study of feedback arc set-based heuristics for linear SEMs.
This study is divided into three experiments. First, we empirically validate the convergence
analysis of ProxiMAS by investigating the stability of the method in various settings; second,
we assess the influence of the MAS penalization hyperparameter μ with different convex
optimizers in ProxiMAS; third, we compare different warmstarting strategies in order to
speed-up the practical convergence of feedback arc set-based heuristics.

1. If kγ−1
k

∥∥W̃k − W̃k−1

∥∥2
has a limit in R+ ∪{+∞}, one in fact has γ−1

k

∥∥W̃k − W̃k−1

∥∥2
= o

(
1
k

)
(due to the

divergence of the harmonic series); in that case γk = O(
1
kα

)
where α > 1 suffices for Lemma 2 to hold.

7



Gillot et al.

4.1 Setup

We consider a setup similar to that found in Zheng et al. (2018). Data generation is as
follows: we start by generating an undirected graph with d nodes from two classes of random
graphs, namely Erdős-Rényi (“ER”) and scale-free (“SF”). Assuming the graph is sampled
to have average degree δ, we refer to this graph as “ERδ” (respectively “SFδ”). A random
permutation is then sampled and assigned to the graph which yields a DAG. Next, arc
weights W are uniformly sampled in the range [−2,−0.5] ∪ [0.5, 2]. The last step is to
generate linear SEMs samples X=E(I −W )−1, where E ∈ R

n×d represents n noise samples,
with n=0.1×d (low sample count) or n=10×d (large sample count). We restrict E to be
generated from Gaussian noise only and study both the equal variance setting (“EV”: all σ
equal 1.0) and the non-equal variance setting (“NV”: all σ uniformly sampled in [0.5, 1.5]).
In all considered experiments, 20 instances are randomly generated as described above; we
represent variance in our figures with shaded regions.

We always fix the sparsity-inducing hyperparameter λ to 0.1, as in Gillot and Parviainen
(2022). The number of iterations allowed for tested methods is always set to ten times the
number of nodes (e.g. 10000 iterations when d=1000). Every 100 iterations a snapshot is
recorded and different metrics are extracted, such as the loss (Equation 1) of the current
acyclic solution and its average precision with respect to the true DAG (Markov equivalence
is ignored). We consider as well metrics to assess the convergence of tested heuristics,
such as: the order matching metric which gives the percentage of matching nodes in two
consecutive topological orders constructed by Algorithm 2; the convergence condition metric
which evaluates the quantities

∥∥W̃k−Wk

∥∥−∥∥W̃k−Wk−1

∥∥ (remember that these quantities
must remain negative after a finite number of iterations to guarantee structural convergence,
see Lemma 1). Both the order matching and the convergence condition metrics are averaged
over the past 100 iterations to get smoother estimates. Implementation is based on pytorch
1.10 and experiments were run on a cluster with Intel Xeon-Gold 6138 2.0 GHz / 6230R
2.1 GHz CPU cores. Table 1 lists the hyperparameters for each experiment. To save space
we only show a subset of all figures.

Exp d δ μ Convex opti Const lr % Cyclic % Convex %

1 1000 1, 2, 4 10δ I, F 0, 50, 100 0 100

2 1000 4 10i, 1 ≤ i ≤ δ I, F, G, N 100 0 100

3 2000 4, 8 10δ F 100 0, 50 0, 20, . . . , 100

Table 1: Experiments hyperparameters (I: ISTA; F: FISTA; G: Greedy FISTA; N: Nesterov)

4.2 Experiment 1

In the first experiment we consider the classical iterative shrinkage-thresholding algorithm
(ISTA) implementing in closed-form Equation 2 and its well known accelerated variant
FISTA (Beck and Teboulle, 2009b), with different learning rate strategies. The learning rate
is implemented to decrease with rate 1

k1.001
, but remains constant for x% of the total number

of iterations before decreasing (x varies as described in Table 1: column “Const lr %”). Fig-

8



Convergence of FAS-Based Heuristics for Linear SEMs

ure 1 illustrates Experiment 1. Looking at the average precision curves, clearly ProxiMAS
stabilizes once the learning rate starts decreasing (orange curves). When applied too early,
decrease in learning rate hurts performance (pink curves). Comparing the optimizers, ISTA
is a much slower learner than FISTA and fails to learn denser graphs (δ=4). Looking at
the convergence condition metric, a decreasing learning rate yields infinitesimal quantities∥∥W̃k − Wk

∥∥ − ∥∥W̃k − Wk−1

∥∥ for ISTA. With constant learning rate (teal curves) FISTA

learns fast and eventually satisfies the convergence condition
∥∥W̃k −Wk

∥∥ ≤ ∥∥W̃k −Wk−1

∥∥.
Experiment 1 suggests that ProxiMAS is stable in practice: even when the convex optimizer
is accelerated, the learning rate is constant and the convergence condition from Lemma 1
does not exactly hold, ProxiMAS reaches a performance plateau.

Convergence condition metric Average precision

Figure 1: Experiment 1: learning rate policy varies (d=1000, n=10000, NV).

4.3 Experiment 2

In the second experiment we compare the behaviour of various convex optimizers with
respect to the hyperparameter μ controlling the strength of the MAS penalization terms. In
addition to the classical ISTA and FISTA optimizers, we consider the Greedy FISTA variant
described in Liang et al. (2022) that relies on restarting. We consider as well the Nesterov
variant outlined in Nesterov (2014) (refer to “Constant Step Scheme, III”) which unlike
aforementioned optimizers exploits the fact that the objective functions φk are μ-strongly
convex rather than just convex. We focus on denser graphs (δ=4) for which obtaining good
solutions is challenging. Figure 2 illustrates Experiment 2. We notice that no matter the
choice of μ, ISTA satisfies the convergence condition but fails to learn anything significant.
Both FISTA and its greedy variant display similar behavior and performance as they learn
significantly better solutions when μ is set high. This explains the lower performance of
ProxiMAS in Gillot and Parviainen (2022) for denser graphs (δ=4) since the authors used
FISTA with μ = 20 in all experiments. As a rule, we observe that the larger the μ the
more the convergence condition

∥∥W̃k −Wk

∥∥ ≤ ∥∥W̃k −Wk−1

∥∥ is satisfied. Interestingly, the
behavior of the Nesterov optimizer is opposite to that of FISTA: it learns better DAGs when

9



Gillot et al.

μ is set smaller. Our hypothesis is that since it accounts for the μ-strong convexity of the
φk objectives, it optimizes too well the MAS penalization terms μ

2‖W −Wk−1‖2, preventing
progress due to new cyclic solutions W̃k remaining too close to last acyclic solutions Wk−1.

Convergence condition metric Average precision

Figure 2: Experiment 2: convex optimizer and μ vary (d=1000, n=10000, NV).

4.4 Experiment 3

In the third experiment, we investigate different warmstarting strategies in order to speed-
up practical convergence of FAS-based heuristics. A first form of warmstarting consists in
presolving Algorithm 1 without enforcing acyclicity (⇐⇒ μ=0); a second form is to first use
a convex optimizer, then use a non-convex one. The hyperparameter “Cyclic %” controls
the ratio of iterations dedicated to “cyclic presolving”; “Convex %” controls the ratio of
iterations (excluding cyclic presolving) that use the FISTA optimizer before swapping for the
adaptative optimizer Adam (Kingma and Ba, 2014) (see Table 1). For instance, assuming
20000 iterations in total, Cyclic %=50 and Convex %=20 means cyclic presolving occurs up
to iteration 10000, FISTA is used up to iteration 12000, after which we use Adam. Figure 3
illustrates Experiment 3. Based on the empirical study in Gillot and Parviainen (2022),
cyclic presolving is ideal when learning very sparse DAGs (δ≤ 2). Experiment 3 suggests
that when δ ≥ 4, an hybrid optimizer strategy yields superior performance boost. These
boosts are more pronounced when both the number of nodes d and the number of samples
n are sufficiently large. We suspect the non-linear nature of Adam makes it efficient at
learning complex structures, but the non-differentiability of the φk in Algorithm 1 could
explain why Adam benefits from warmstarting instead of starting from the zero matrix.

5. Discussion

We have studied theoretical convergence and demonstrated that FAS-based heuristics as
presented in Gillot and Parviainen (2022) with a non-accelerated convex optimizer have

10



Convergence of FAS-Based Heuristics for Linear SEMs

Average precision
n = 200 n = 20000

Figure 3: Experiment 3: warmstarting strategy varies (d=2000, NV).

provable structural convergence (of subsequences) in a finite number of iterations, albeit a
weaker form than in Park and Klabjan (2017). More specifically, additional assumptions are
necessary, in the form of a) a learning rate decreasing sufficiently fast and b) a convergence
condition ensuring feedback arc set costs eventually become less than the distance between
past acyclic solutions and new cyclic solutions. Our empirical study provides evidence that
these assumptions are mild: in practice, FAS-based heuristics are sufficiently stable in that
they tend to reach a performance plateau even with constant learning rate and using an
accelerated convex optimizer, thus one can decrease the learning rate only at a later stage,
as a safeguard. Moreover, our study suggests that setting the hyperparameter μ sufficiently
high helps satisfying the convergence condition, especially when learning denser acyclic
structures. Finally, we investigated different forms of warmstarting strategies to speed-
up the practical convergence of FAS-based heuristics. We uncovered an interesting effect,
in that an hybrid optimizer strategy (convex optimizer followed by non-convex optimizer)
consistently provides tangible acceleration when learning sufficiently dense and large DAGs.

Acknowledgments

Parts of this work have been done in the context of CEDAS (Center for Data Science,
University of Bergen, UiB). The computations were performed on resources provided by
UNINETT Sigma2 - the National Infrastructure for High Performance Computing and
Data Storage in Norway. We thank Madhumita Kundu for her valuable input.

References

A. Beck and M. Teboulle. Gradient-based algorithms with applications to signal-recovery
problems. In Convex Optimization in Signal Processing and Communications, page 42–88.

11



Gillot et al.

Cambridge University Press, 2009a.

A. Beck and M. Teboulle. A fast Iterative Shrinkage-Thresholding Algorithm with appli-
cation to wavelet-based image deblurring. In 2009 IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 693–696, 2009b.

D. M. Chickering. Learning Bayesian Networks is NP-Complete. In Learning from Data:
Artificial Intelligence and Statistics V, pages 121–130. Springer New York, 1996.

S. Dong and M. Sebag. From graphs to DAGs: a low-complexity model and a scalable
algorithm. CoRR, 2022.

P. Eades, X. Lin, and W. Smyth. A fast and effective heuristic for the feedback arc set
problem. In Information Processing Letters, volume 47, pages 319–323, 1993.

P. Gillot and P. Parviainen. Learning Large DAGs by Combining Continuous Optimiza-
tion and Feedback Arc Set Heuristics. In Proceedings of the 36th AAAI Conference on
Artificial Intelligence, 2022.

R. M. Karp. Reducibility among Combinatorial Problems. In Complexity of Computer
Computations, pages 85–103. Springer US, 1972.

D. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In International
Conference on Learning Representations, 2014.

J. Liang, T. Luo, and C.-B. Schönlieb. Improving “Fast Iterative Shrinkage-Thresholding
Algorithm”: Faster, Smarter, and Greedier. In SIAM Journal on Scientific Computing,
volume 44, pages A1069–A1091, 2022.

Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Springer
New York, 2014.

I. Ng, A. Ghassami, and K. Zhang. On the Role of Sparsity and DAG Constraints for
Learning Linear DAGs. In Advances in Neural Information Processing Systems, 2020.

Y. W. Park and D. Klabjan. Bayesian Network Learning via Topological Order. In Journal
of Machine Learning Research, volume 18, pages 1–32, 2017.

Y. Yu, T. Gao, N. Yin, and Q. Ji. DAGs with No Curl: An Efficient DAG Structure
Learning Approach. In Proceedings of the 38th International Conference on Machine
Learning, volume 139, pages 12156–12166, 2021.

X. Zheng, B. Aragam, P. Ravikumar, and E. P. Xing. DAGs with NO TEARS: Continuous
Optimization for Structure Learning. In Advances in Neural Information Processing
Systems, 2018.

R. Zhu, A. Pfadler, Z. Wu, Y. Han, X. Yang, F. Ye, Z. Qian, J. Zhou, and B. Cui. Efficient
and Scalable Structure Learning for Bayesian Networks: Algorithms and Applications.
In IEEE 37th International Conference on Data Engineering (ICDE), pages 2613–2624,
2021.

12





uib.no

ISBN: 9788230869017 (print)
9788230857007 (PDF)


	110640 Pierre Gillot_v1.2_Elektronisk
	110640 Pierre Gillot_korrekturfil
	110640 Pierre Gillot_v1.2_innmat
	110640 Pierre Gillot_v1.2Elektronsk_bakside
	110640 Pierre GillotElektronsk_bakside

