
University of Bergen
Department of Informatics

Gaussian Likelihoods in Bayesian

Neural Networks

Author: Alvar Hønsi

Supervisors: Pekka Parviainen

October, 2023

Abstract

Bayesian neural networks (BNNs) offer a promising probabilistic take on neural networks,

allowing uncertainty quantification in both model predictions and parameters. Being a

relatively new and evolving field of research, many aspects of Bayesian neural networks

still need to be better understood.

In this thesis, we explore the Gaussian likelihood function commonly used when mod-

eling regression problems with Bayesian neural networks. Using variational inference, we

train several Bayesian neural networks on synthetic datasets and investigate the Gaus-

sian variance parameter (σ). We explore how it impacts the training process and shapes

the resulting posterior distribution. We also explore an alternate approach where a prior

distribution is placed on the variance parameter, and its value is inferred from the data.

While the data presented in this thesis is too limited to draw any definitive conclu-

sions, we provide some interesting insights. We demonstrate that extreme values for σ

can lead to tendencies of overfitting or underfitting BNNs. Additionally, inferring the

variance parameter from the data can yield results on par with an ”optimal” fixed pa-

rameterization of the likelihood function. We also showcase that misspecified Bayesian

neural networks can produce overconfident uncertainty estimates and that inferring the

variance parameter can help compensate for this limitation.

Acknowledgements

First of all, I would like to thank my supervisor, Pekka Parviainen, for his guidance and

support throughout the project. Thank you for your patience, understanding, and your

guidance through the scary world of Bayesian statistics. I would also like to thank my

family and my girlfriend for their endless support and encouragement. Special thanks to

my mom for proofreading the thesis and giving me great feedback. My heartfelt thanks

to my fellow students and friends at Jafu for keeping me sane through the ups and downs

of the last year. Lastly, I want to thank Eirik Rekve Thorsheim for always being helpful

with administrative problems and for saving my degree on multiple occasions.

Alvar Hønsi

Monday 2nd October, 2023

Contents

1 Introduction 1

1.1 Thesis structure . 2

2 Background 3

2.1 Artificial Neural Networks (ANNs) . 3

2.1.1 Feed Forward Neural Networks 4

2.1.2 Activation Functions . 5

2.1.3 Supervised Learning . 6

2.1.4 Optimization . 6

2.2 Bayesian Neural Networks . 7

2.3 Inference with Markov Chain Monte Carlo 10

2.3.1 Metropolis Hastings . 11

2.3.2 Advanced MCMC . 13

2.4 Variational Inference (VI) . 13

2.4.1 Mean Field Variational Inference (MFVI) 15

2.4.2 Bayes by Backprop (BBB) . 16

2.4.3 KL reweighting for minibatches 18

2.4.4 Local Reparameterization Trick 18

3 Motivation 20

3.1 Can extremes in the variance parameter cause over- and underfitting in

BNNs? . 21

3.2 Can inferring the variance parameter compensate for misspecified BNNs? 23

4 Experimentation methodology 25

4.1 Datasets . 25

4.1.1 Sinusoidal datagenerating functions 26

4.1.2 Generated Datasets . 27

4.2 Model specification . 27

i

4.3 Model Inference . 29

4.4 Model Selection . 29

4.5 Evaluation Metrics . 30

4.6 Implementation Details . 31

5 Results 33

5.1 Study 1: Can extremes in the variance parameter cause over- and under-

fitting in BNNs? . 33

5.1.1 Results for the sin10-s03 dataset 34

5.1.2 Results for the multisin10-s05 dataset 38

5.1.3 Results for the multisin20-s05 dataset 42

5.2 Study 2: Can inferring the variance parameter compensate for misspecified

BNNs? . 46

5.2.1 Results for the sin10-s03 dataset 47

5.2.2 Results for the multisin10-s05 dataset 52

5.2.3 Results for the multisin20-s05 dataset 56

6 Discussion 61

6.1 Study 1 . 61

6.2 Study 2 . 63

7 Conclusion 65

7.1 Limitations . 66

7.2 Future Work . 68

Bibliography 69

A Modifications to the TyXe Library 75

ii

List of Figures

2.1 A single artificial neuron. 4

2.2 A feedforward neural network with two hidden layers. 5

2.3 Visualizations of predictions on the same dataset using different models.

All models have three layers of 64 neurons each. Figure 2.3b shows the

predictions of a standard neural network. Figure 2.3c shows the predictions

of a Bayesian neural network trained using stochastic variational inference.

Figure 2.3d shows the predictions of a Bayesian neural network trained

using Markov Chain Monte Carlo. The shaded areas represent a 3 ∗ std
confidence interval around the mean prediction. 9

3.1 Illustration of over and underfitting-like behavior caused by a poorly spec-

ified likelihood. The three plots show the same Bayesian neural network

trained using variational inference on the same dataset, but with different

fixed variance parameters. The model in figure 3.1a has a fixed variance

parameter that is too small and is showing signs of overfitting the data.

The model in figure 3.1b has a fixed variance parameter that is too large

and is showing signs of underfitting the data. The model in figure 3.1c has

a fixed variance parameter that is well specified and shows no signs of over

or underfitting. 22

3.2 Linear Bayesian regression model trained on a non-linear dataset using

variational inference. The model is misspecified, and with a fixed variance,

the model presents overconfidence in its predictions. However, when the

variance is inferred, it scales to a large value to express the uncertainty in

the posterior distribution. 24

iii

5.1 Study 1 - Training curves for models trained on the sin10-s03 dataset.

Figure 5.1a shows the elbo loss at each epoch. Figures 5.1b and 5.1c

show the RMSE and log-likelihood metrics, respectively, for both train

and validation data, recorded every 50 epochs. The curves are averaged

over 10 independent runs, and the error bars show a confidence interval of

2 ∗ SD (2 times the standard deviation) to show the differences between

random initializations. The y-axis is log-scaled. 35

5.2 Study 1 - Training curves for models trained on themultisin10-s05 dataset.

Figure 5.2a shows the elbo loss at each epoch. Figures 5.2b and 5.2c

show the RMSE and log-likelihood metrics, respectively, for both train

and validation data, recorded every 50 epochs. The curves are averaged

over 10 independent runs, and the error bars show a confidence interval of

2 ∗ SD (2 times the standard deviation) to show the differences between

random initializations. The y-axis is log-scaled. 39

5.3 Study 1 - Training curves for models trained on themultisin20-s05 dataset.

Figure 5.3a shows the elbo loss at each epoch. Figures 5.3b and 5.3c

show the RMSE and log-likelihood metrics, respectively, for both train

and validation data, recorded every 50 epochs. The curves are averaged

over 5 independent runs, and the error bars show a confidence interval of

2 ∗ SD (2 times the standard deviation) to show the differences between

random initializations. The y-axis is log-scaled. 43

5.4 Study 2 - Training curves for models trained on the sin10-s03 dataset.

Figure 5.4a shows the elbo loss at each epoch. Figures 5.4b and 5.4c

show the RMSE metric for train and validation data, recorded every 50

epochs. Figures 5.4d and 5.4e show the log-likelihood metric for train and

validation data, recorded every 50 epochs. The curves are averaged over 10

independent runs, and the error bars show a confidence interval of 2 ∗ SD
(2 times the standard deviation) to show the differences between random

initializations. The y-axis is log-scaled. 49

5.5 Study 2 - Training curves for models trained on themultisin10-s05 dataset.

Figure 5.5a shows the elbo loss at each epoch. Figures 5.5b and 5.5c

show the RMSE metric for train and validation data, recorded every 50

epochs. Figures 5.5d and 5.5e show the log-likelihood metric for train and

validation data, recorded every 50 epochs. The curves are averaged over 10

independent runs, and the error bars show a confidence interval of 2 ∗ SD
(2 times the standard deviation) to show the differences between random

initializations. The y-axis is log-scaled. 53

iv

5.6 Study 2 - Training curves for models trained on themultisin20-s05 dataset.

Figure 5.6a shows the elbo loss at each epoch. Figures 5.6b and 5.6c

show the RMSE metric for train and validation data, recorded every 50

epochs. Figures 5.6d and 5.6e show the Log Likelihood metric for train

and validation data, recorded every 50 epochs. The curves are averaged

over 5 independent runs, and the error bars show a confidence interval of

2 ∗ SD (2 times the standard deviation) to show the differences between

random initializations. The y-axis is log-scaled. 57

v

List of Tables

4.1 Table of generated datasets. Names of the datasets are reported together

with the relevant data generation function, number of samples, and other

relevant metadata. 27

4.2 Table of selected baseline models for each dataset. 30

5.1 Table of models used in the first study. The table shows the models used

for each dataset. The models are defined by their name and architecture,

as well as the variance of the Gaussian likelihood function. The nota-

tion ∼ Gamma(1.0, 1.0) indicates that the model sets a prior distribution

Gamma(1.0, 1.0) over the likelihood parameter σ and infers its posterior

distribution from the data. 34

5.2 Study 1 - Table of results for models trained on the sin10-s03 dataset.

The table shows the Root Mean Squared Error (RMSE), Mean Absolute

Error (MAE) and log-likelihood (LL) evaluation metrics for each model.

Subtables 5.2a, 5.2b and 5.2c show the results for the train, in-domain

test, and out-of-domain test data, respectively. The results are averaged

over 10 independent runs and presented as the mean value ± 2 ∗ SD (2

times the standard deviation) in order to highlight the differences between

random initializations. 36

5.3 Study 1 - Table of summarized predictive uncertainty for models trained

on the sin10-s03 dataset. Tables 5.3a, 5.3b and 5.3c show the results for

the train, in-domain test, and out-of-domain test data, respectively. The

tables show the mean uncertainty of all predictive distributions (Mean

Predictive SD) for the given dataset, as well as the minimum uncertainty

(Min Predictive SD) and maximum uncertainty (Max Predictive SD) of

all predictive distributions for the given dataset. The results are averaged

over 10 independent runs and presented as the mean value ± 2 ∗ SD (2

times the standard deviation) to highlight the differences between random

initializations. 37

vi

5.4 Study 1 - Table of summarized weight uncertainty for models trained on

the sin10-s03 dataset. The table shows the mean uncertainty of all weight

distributions in the models (Mean Weight SD), as well as the minimum

uncertainty (Min Weight SD) and maximum uncertainty (Max Weight

SD) of all weight distributions in the models. The results are averaged

over 10 independent runs and presented as the mean value ± 2 ∗ SD (2

times the standard deviation) to highlight the differences between random

initializations. 38

5.5 Study 1 - Table of results for models trained on the multisin10-s05 dataset.

The table shows the Root Mean Squared Error (RMSE), Mean Absolute

Error (MAE) and log-likelihood (LL) evaluation metrics for each model.

Subtables 5.5a, 5.5b and 5.5c show the results for the train, in-domain

test, and out-of-domain test data, respectively. The results are averaged

over 10 independent runs, and presented as the mean value ± 2 ∗ SD
(2 times standard deviation) to highlight the differences between random

initializations. 40

5.6 Study 1 - Table of summarized predictive uncertainty for models trained on

the multisin10-s05 dataset. Tables 5.6a, 5.6b and 5.6c show the results for

the train, in-domain test, and out-of-domain test data, respectively. The

tables show the mean uncertainty of all predictive distributions (Mean

Predictive SD) for the given dataset, as well as the minimum uncertainty

(Min Predictive SD) and maximum uncertainty (Max Predictive SD) of

all predictive distributions for the given dataset. The results are averaged

over 10 independent runs, and presented as the mean value ± 2 ∗ SD
(2 times standard deviation) to highlight the differences between random

initializations. 41

5.7 Study 1 - Table of summarized weight uncertainty for models trained on the

multisin10-s05 dataset. The table shows the mean uncertainty of all weight

distributions in the models (Mean Weight SD), as well as the minimum

uncertainty (Min Weight SD) and maximum uncertainty (Max Weight SD)

of all weight distributions in the models. The results are averaged over 10

independent runs, and presented as the mean value ± 2 ∗ SD (2 times

standard deviation) in order to highlight the differences between random

initializations. 42

vii

5.8 Study 1 - Table of results for models trained on the multisin20-s05 dataset.

The table shows the Root Mean Squared Error (RMSE), Mean Absolute

Error (MAE) and log-likelihood (LL) evaluation metrics for each model.

Subtables 5.8a, 5.8b and 5.8c show the results for the train, in-domain test,

and out-of-domain test data, respectively. The results are averaged over

5 independent runs, and presented as the mean value ± 2 ∗ SD (2 times

standard deviation) in order to highlight the differences between random

initializations. 44

5.9 Study 1 - Table of summarized predictive uncertainty for models trained on

the multisin20-s03 dataset. Tables 5.9a, 5.9b and 5.9c show the results for

the train, in-domain test, and out-of-domain test data, respectively. The

tables show the mean uncertainty of all predictive distributions (Mean

Predictive SD) for the given dataset, as well as the minimum uncertainty

(Min Predictive SD) and maximum uncertainty (Max Predictive SD) of all

predictive distributions for the given dataset. The results are averaged over

5 independent runs, and presented as the mean value ± 2 ∗ SD (2 times

standard deviation) in order to highlight the differences between random

initializations. 45

5.10 Study 1 - Table of summarized weight uncertainty for models trained on the

multisin20-s03 dataset. The table shows the mean uncertainty of all weight

distributions in the models (Mean Weight SD), as well as the minimum

uncertainty (Min Weight SD) and maximum uncertainty (Max Weight SD)

of all weight distributions in the models. The results are averaged over 5

independent runs, and presented as the mean value ± 2 ∗ SD (2 times

standard deviation) in order to highlight the differences between random

initializations. 46

5.11 Table of models used in the second study. The table shows the models used

for each dataset. The models are defined by their name and architecture,

as well as the variance of the Gaussian likelihood function. The nota-

tion ∼ Gamma(1.0, 1.0) indicates that the model sets a prior distribution

Gamma(1.0, 1.0) over the likelihood parameter σ and infers its posterior

distribution from the data. 47

viii

5.12 Study 2 - Table of results for models trained on the sin10-s03 dataset.

The table shows the Root Mean Squared Error (RMSE), Mean Absolute

Error (MAE) and log-likelihood (LL) evaluation metrics for each model.

Subtables 5.12a, 5.12b and 5.12c show the results for the train, in-domain

test, and out-of-domain test data, respectively. The results are averaged

over 10 independent runs, and presented as the mean value ± 2 ∗ SD
(2 times standard deviation) in order to highlight the differences between

random initializations. 50

5.13 Study 2 - Table of summarized predictive uncertainty for models trained on

the sin10-s03 dataset. Tables 5.13a, 5.13b and 5.13c show the results for

the train, in-domain test, and out-of-domain test data, respectively. The

tables show the mean uncertainty of all predictive distributions (Mean

Predictive SD) for the given dataset, as well as the minimum uncertainty

(Min Predictive SD) and maximum uncertainty (Max Predictive SD) of all

predictive distributions for the given dataset. The results are averaged over

10 independent runs, and presented as the mean value ± 2 ∗ SD (2 times

standard deviation) in order to highlight the differences between random

initializations. 51

5.14 Study 2 - Table of summarized weight uncertainty for models trained on

the sin10-s03 dataset. The table shows the mean uncertainty of all weight

distributions in the models (Mean Weight SD), as well as the minimum

uncertainty (Min Weight SD) and maximum uncertainty (Max Weight SD)

of all weight distributions in the models. The results are averaged over 10

independent runs, and presented as the mean value ± 2 ∗ SD (2 times

standard deviation) in order to highlight the differences between random

initializations. 52

5.15 Study 2 - Table of results for models trained on the multisin10-s05 dataset.

The table shows the Root Mean Squared Error (RMSE), Mean Absolute

Error (MAE) and log-likelihood (LL) evaluation metrics for each model.

Subtables 5.15a, 5.15b and 5.15c show the results for the train, in-domain

test, and out-of-domain test data, respectively. The results are averaged

over 10 independent runs, and presented as the mean value ± 2 ∗ SD
(2 times standard deviation) in order to highlight the differences between

random initializations. 54

ix

5.16 Study 2 - Table of summarized predictive uncertainty for models trained on

the multisin10-s05 dataset. Tables 5.16a, 5.16b and 5.16c show the results

for the train, in-domain test, and out-of-domain test data, respectively.

The tables show the mean uncertainty of all predictive distributions (Mean

Predictive SD) for the given dataset, as well as the minimum uncertainty

(Min Predictive SD) and maximum uncertainty (Max Predictive SD) of

all predictive distributions for the given dataset. The results are averaged

over 10 independent runs, and presented as the mean value ± 2 ∗ SD
(2 times standard deviation) to highlight the differences between random

initializations. 55

5.17 Study 2 - Table of summarized weight uncertainty for models trained on the

multisin10-s05 dataset. The table shows the mean uncertainty of all weight

distributions in the models (Mean Weight SD), as well as the minimum

uncertainty (Min Weight SD) and maximum uncertainty (Max Weight

SD) of all weight distributions in the models. The results are averaged

over 10 independent runs, and presented as the mean value ± 2 ∗ SD
(2 times standard deviation) to highlight the differences between random

initializations. 56

5.18 Study 2 - Table of results for models trained on the multisin20-s05 dataset.

The table shows the Root Mean Squared Error (RMSE), Mean Absolute

Error (MAE) and log-likelihood (LL) evaluation metrics for each model.

Subtables 5.18a, 5.18b and 5.18c show the results for the train, in-domain

test, and out-of-domain test data, respectively. The results are averaged

over 10 independent runs, and presented as the mean value ± 2 ∗ SD
(2 times standard deviation) in order to highlight the differences between

random initializations. 58

5.19 Study 2 - Table of summarized predictive uncertainty for models trained on

the multisin20-s05 dataset. Tables 5.19a, 5.19b and 5.19c show the results

for the train, in-domain test, and out-of-domain test data, respectively.

The tables show the mean uncertainty of all predictive distributions (Mean

Predictive SD) for the given dataset, as well as the minimum uncertainty

(Min Predictive SD) and maximum uncertainty (Max Predictive SD) of

all predictive distributions for the given dataset. The results are averaged

over 10 independent runs, and presented as the mean value ± 2 ∗ SD
(2 times standard deviation) to highlight the differences between random

initializations. 59

x

5.20 Study 2 - Table of summarized weight uncertainty for models trained on the

multisin20-s05 dataset. The table shows the mean uncertainty of all weight

distributions in the models (Mean Weight SD), as well as the minimum

uncertainty (Min Weight SD) and maximum uncertainty (Max Weight

SD) of all weight distributions in the models. The results are averaged

over 10 independent runs, and presented as the mean value ± 2 ∗ SD
(2 times standard deviation) to highlight the differences between random

initializations. 60

xi

Listings

xii

Chapter 1

Introduction

Since the introduction of the humble perceptron [1] in 1958, the artificial neural network

(ANN) has been a topic of intense research. As a universal function approximator [2], the

ANN has proven to be a powerful tool for solving a wide range of problems, especially in

the last few decades, with large amounts of data and computing power becoming more

readily available and the popularization of deep learning. They have been used to great

effect in a wide range of fields, such as computer vision [3], which also encompasses object

detection [4, 5] and facial recognition [6, 7], natural language processing [8, 9, 10], speech

recognition systems [11] and many more. With the increasing popularity of ANNs, we

have seen in recent years, it has also started to become more common to see them used

in safety-critical applications, such as autonomous vehicles [12] and medical diagnosis

software [13, 14, 15] . In these types of applications, where an erroneous decision made by

a neural network can have severe consequences, it becomes increasingly important for the

ANN to have explainability in its predictions and to be aware of its own uncertainty. This,

however, is not a trivial task. ANNs, especially deep neural networks, are notoriously

prone to overfitting and, when applied to supervised learning tasks [16] they are often

incapable of correctly assessing the uncertainty of their predictions [17]. Introducing

more data and regularization techniques such as dropout [16] can mitigate the overfitting

problem. However, methods for accurately and truthfully assessing the uncertainty of a

neural network is still an open problem.

In the last few years, there has been a resurging interest in the field of Bayesian

neural networks, which will be the focus of this thesis. BNNs [18] are a probabilistic

approach to ANNs, where the network weights are treated as random variables. BNNs

offer a promising approach to the problem of creating neural networks with explainable

1

uncertainty estimates [19]. Much of the recent research has focused on improving the

scalability and performance of approximate Bayesian inference methods suitable for BNNs

[20, 17]. There have also been some deep dives into the impact of different priors on the

resulting posterior distribution [21, 22, 23], which have provided much insight into the

inner workings of BNNs. While there is a rich literature on the topic of BNNs and

the related field of Bayesian deep learning [24], there is still much to be explored. In

this thesis, we will look into the likelihood function of BNNs. We explore the Gaussian

likelihood function used when modeling regression problems with BNNs. We explore how

the choice of the variance parameter (σ) impacts the training process and shapes the

resulting posterior distribution.

Our findings show the critical importance of well-specified likelihood functions, demon-

strating that the choice of σ can have a significant impact on the resulting posterior

distribution. We illustrate that overestimating or underestimating the noise in the like-

lihood function can lead to BNNs exhibiting overfitting or underfitting tendencies. We

also explore the effectiveness of directly inferring a probability distribution over σ from

the data and sampling its value from said distribution. Our findings show that inferred

parameters for the likelihood function yield results on par with an ”optimal” fixed pa-

rameterization of the likelihood function while removing the burden of specifying the

parameter manually. Furthermore, we also show how inferring the likelihood parameter

can help compensate for the often overconfident uncertainty estimates of misspecified

BNNs.

1.1 Thesis structure

In chapter 2, we will give an introduction to the topics of Bayesian inference, artificial

neural networks, and finally, bayesian neural networks. In chapter 3, we will discuss the

motivation for this thesis. Chapter 4 details the experimental methodology used in this

thesis and the implementation of the Bayesian neural network models. We will present

the results of our experiments in chapter 5. Finally, we will discuss the results of our

experiments in chapter 6, and present our conclusions in chapter 7. We will also discuss

the limitations of our study and propose some ideas for future work.

2

Chapter 2

Background

In this chapter, we aim to cover most of the necessary background information needed to

understand the concepts and methods used in this thesis. Section 2.1 introduces the basic

concepts of artificial neural networks (ANNs), followed by section 2.2 which introduces

the concept of Bayesian neural networks (BNNs). Finally sections 2.3 and 2.4 introduces

the two main methods for performing approximate Bayesian inference in BNNs, namely

Markov Chain Monte Carlo and variational inference.

2.1 Artificial Neural Networks (ANNs)

Artificial neural networks (ANNs) are a class of computational models inspired by the

structure of biological nervous systems [25]. The basic building block of an ANN is a

perceptron [1] (or neuron), a simple computational unit that combines a linear transfor-

mation z of the input with a non-linear activation function g. The linear transformation

is defined as the weighted sum of the inputs x and a bias term b, while the activation

function is applied to the result of the linear transformation. The output of the neuron

is then defined as:

z = (
n∑

i=1

wixi) + b,

y = g(z)

(2.1)

3

Figure 2.1: A single artificial neuron.

2.1.1 Feed Forward Neural Networks

Feedforward neural networks (FFNNs), also known as multilayer perceptrons (MLPs),

are the most basic type of artificial neural network. A feedforward neural network aims

to approximate some function f ∗. To this end the network defines a mapping y = f(x; θ)

and learns the value of the parameters θ that result in the best function approximation

[26]. In this context, θ represents the weights and biases of the network, θ = {w, b}. The
term ”feedforward” refers to the fact that the information flows through the network from

the input x through any intermediate computations defined by f and finally to the output

y. A feedforward neural network consists of multiple neurons organized into layers. The

first layer is called the input layer, any intermittent layers are called hidden layers, and

the final layer is called the output layer. The layers are fully connected, meaning that

each neuron in a layer is connected to every neuron in the next layer. The output of each

neuron in a layer is then passed as input to every neuron in the next layer. The output of

the final layer is the output of the network. The weight parameters for a layer are usually

represented as a matrix W where each row represents the weights for a single neuron in

the layer and the bias parameters are then represented as a vector b. The output of a

layer i can then be calculated as:

yi = a(W T
i yi−1 + bi), (2.2)

Where a is the activation function for the layer. The output of the previous layer

Figure 2.2 shows a feedforward neural network with two hidden layers.

4

Figure 2.2: A feedforward neural network with two hidden layers.

2.1.2 Activation Functions

Activation functions are a critical part of the design of ANNs. The activation function

defines how the weighted sum of the inputs is transformed into the output of the neuron.

Sigmoid

The sigmoid function is a commonly used non-linear activation function [27]. It is defined

as:

σ(x) =
1

1 + e−x
. (2.3)

The sigmoid function presents an S-shaped curve, which maps the input to a value

between 0 and 1. Though the sigmoid function is a good choice for binary classification

problems, it has some drawbacks. The gradient of the sigmoid function is small for values

that are far from zero, which can lead to the problem of vanishing gradients during

training.

ReLU

The rectified linear unit (ReLU) is another commonly used activation function and has

been demonstrated to improve training in deep neural networks [28].

5

ReLU(x) = max(0, x). (2.4)

The ReLU function is simple to implement, computationally efficient, and non-linear,

making it a good choice as an activation function. The ReLU function is also less prone

to the problem of vanishing gradients since it has a constant gradient for values greater

than zero.

2.1.3 Supervised Learning

Supervised learning is a type of machine learning where a machine learning model, such as

a neural network, observes several samples of some input x and the corresponding output

y and then learns to predict y from x [26]. This is done by defining some loss function

L(y, ŷ), which measures the difference between the predicted output ŷ and the true output

y. The goal is to minimize the loss function by adjusting the model parameters θ. In

other words, we want to find the optimal parameters θ∗ which minimizes the loss function:

θ∗ = argmin
θ

L(y, ŷ). (2.5)

2.1.4 Optimization

In order to find the optimal parameters θ∗, we need to optimize the existing parameters

θ in order to minimize the loss function L(y, ŷ). The loss function describes how well

the model fits the data, but we need to know how to tweak the parameters in order to

lower the loss. By calculating the gradient of the loss function with respect to the weight

parameters ∇L(θ) we can determine how the loss changes when we change the parameter

[26]. The gradient is a vector that points in the direction of the steepest ascent of the

loss function. Therefore, the loss function can be minimized by moving in the opposite

direction of the steepest ascent. To calculate the gradient we use the backpropagation

algorithm [29] which employs the chain rule to calculate the gradient of the loss function

with respect to each parameter in the network. Rumelhart et al. [29] also introduced a

simple update rule for the parameters by accumulating the gradients over all data points

and then updating the parameters according to the accumulated gradients ∇L(θ) scaled
by a learning rate η:

6

θt+1 ← θt − η∇L(θt). (2.6)

In addition to this procedure, which is named gradient descent, there have been

introduced other optimization algorithms such as Stochastic Gradient Descent (SGD)

[30], which uses stochastic estimates of the gradient in order to increase efficiency and

reduce computational cost. We also have the Adam optimizer [31], which maintains a

learning rate for each parameter and adapts these learning rates during training.

2.2 Bayesian Neural Networks

Typically, when modeling neural networks, the weights are assumed to have a hidden

true value, and the data is assumed to be random variables [19]. Through gradient

optimization, we attempt to find the optimal point estimate of the weights, which is the

most likely value of the weights given the data. This presents the standard frequentist

approach to machine learning. However, from the view of Bayesian statistics, it makes

more sense to treat the weight parameters as random variables, as they are unknown.

We then want to learn the posterior distribution of the weights based on the information

in the seen data. A neural network that is trained in this way, using Bayesian inference,

is called a Bayesian neural network (BNN) [24].

During the learning process of a BNN, the unknown model parameters θ are hidden

(or latent) variables, meaning that their true distributions are unknown. Bayes Theorem

then allows us to represent a distribution over the weights θ given the observed data D,

which results in the posterior distribution p(θ|D).

The joint distribution of the data and the weights can be expressed as p(D, θ), and

is defined by our prior beliefs about the weights p(θ) as well as the choice of model and

likelihood p(D|θ). The likelihood p(D|θ) can be viewed as the likelihood of generating

the data D given the weights θ. If we break the data into a set of corresponding inputs

and outputs D = (x, y), then the likelihood can be expressed as p(D|θ) = p(y|x, θ) - the
probabilistic model by which the inputs generate the outputs given some parameter θ.

For simplification, it is often assumed that all samples from D are independent and

identically distributed (i.i.d.), which allows us to express the joint distribution as:

7

p(D|θ) =
N∏
i=1

p(yi|xi, θ). (2.7)

In the case of BNNs, the likelihood will be defined by the choice of neural network

architecture and loss function. Given a regression task with a mean squared loss and

known Gaussian noise, we can model the likelihood as a Gaussian distribution with the

mean specified by the neural network output and the variance parameter σ, which is

treated as a hyperparameter:

y ∼ N (f(x, θ), σ2), (2.8)

The Bayesian paradigm requires us to specify a prior distribution over the weights

p(θ). The prior distribution encodes our beliefs about the weights before seeing the

data. The most common choice for prior for the weights of a BNN is to use a simple

isotropic Gaussian distribution [21], often due to its mathematical convenience. In the

case of a zero-centered Gaussian with small variance, the prior will encode a bias for

smaller weights centered around zero [32] and promotes sparsity in the model, which is

a desirable property in artificial neural networks [33]. However, the Gaussian prior is by

no means the optimal choice for all problems, as they are shown to be often misspecified,

which can lead to negative consequences during inference [21]. As with other types of

hyperparameters, the choice of prior distribution is often problem-dependent and should

be chosen with care.

After specifying the prior distribution and the likelihood, we can use Bayes Theorem

to calculate the posterior distribution of the weights given the data:

p(θ|D) =
p(D|θ)p(θ)

p(D)
=

p(D|θ)p(θ)r
p(D|θ)p(θ)dθ

. (2.9)

The Bayesian posterior over the parameters of a complex model such as a deep neural

network is an extremely high dimensional and non-convex probability distribution [34].

This makes the posterior intractable and impossible to calculate in closed form, which we

can already observe from the evidence (or marginal likelihood) p(D) =
r
p(D|θ)p(θ)dθ,

requiring us to integrate over the entire parameter space. Because of the intractability of

the posterior, we must instead use approximate inference techniques to approximate the

posterior distribution. There are several useful approximate inference techniques that

8

can be used to approximate an intractable posterior, but the most applicable ones for

BNNs are Markov Chain Monte Carlo and variational inference [24]. These methods are

discussed in detail in sections 2.3 and 2.4, respectively.

(a) Dataset (b) NN

(c) SVI BNN (d) MCMC BNN

Figure 2.3: Visualizations of predictions on the same dataset using different models. All
models have three layers of 64 neurons each. Figure 2.3b shows the predictions of a
standard neural network. Figure 2.3c shows the predictions of a Bayesian neural network
trained using stochastic variational inference. Figure 2.3d shows the predictions of a
Bayesian neural network trained using Markov Chain Monte Carlo. The shaded areas
represent a 3 ∗ std confidence interval around the mean prediction.

The above methods result in an approximate posterior distribution p(θ|D) whose vari-

ance can be seen as a measure of confidence in the model parameters. When performing

predictions, we are interested in formulating a predictive distribution over the target vari-

able yi given the input xi and the training data D. This can be done by marginalizing

the model parameters θ:

p(yi|xi, D) =
w
p(yi|xi, θ)p(θ|D)dθ (2.10)

9

Equation 2.10 represents a Bayesian Model Average (BMA) [35] where the predictive

distribution is a weighted average of the predictive distributions of the individual models

represented by the posterior distribution p(θ|D). This predictive distribution is in practice

sampled indirectly [24] by sampling from the posterior distribution p(θ|D) and then using

the sampled weights to make predictions. Algorithm 1 shows a general inference procedure

for a Bayesian neural network.

Algorithm 1 Inference procedure in a Bayesian Neural Network [24]

Define p(θ|D) = p(D|θ)p(θ)r
p(D|θ)p(θ)dθ ;

for i = 0 to N do
Sample θi ∼ p(θ|D);
yi = f(x, θi);

end for
return Y = {yi|i ∈ [0, N)}, Θ = {θi|i ∈ [0, N)}

Y is the set of predictions, and Θ is the set of sampled weights.

When performing predictions, these sets are usually aggregated to summarize the uncer-

tainty of the model and to obtain an estimate ŷ for the output y. For regression tasks,

we can summarize the predictions by model averaging:

ŷ =
1

|Θ|
∑
θi∈Θ

f(x, θi) (2.11)

2.3 Inference with Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is a class of algorithms (or methods) for sampling

from a probability distribution [36]. They have a wide range of applications but are

especially useful in Bayesian Statistics and other fields where one needs to sample from a

complex probability distribution. Sampling-based methods such as MCMC build on the

idea of Monte Carlo integration [37], where we make us of the fact that the predictive

distribution p(y|x,D) can be expressed as an expectation over the posterior distribution

p(θ|D):

p(y|x,D) =
w
p(y|x, θ)p(θ|D)dθ = Ep(θ|D)[p(y|x, θ)] (2.12)

10

which can then be approximated by sampling from the posterior distribution p(θ|D)

and taking the empirical mean of the samples:

Ep(θ|D)[p(y|x, θ)] ≈
1

N

N∑
i=1

p(y|x, θi), θi ∼ p(θ|D) (2.13)

However, obtaining direct samples from an unknown high-dimensional and complex

posterior distribution is a challenging task. In order to obtain these samples, MCMC

methods make use of Markov chains [38]. Ergodic Markov chains have the property that

they will eventually converge to a stationary distribution from any initial state. Using this

property, MCMC methods construct a Markov chain with a stationary distribution equal

to the posterior distribution p(θ|D). If the Markov chain is simulated for a sufficient

number of steps, the samples will eventually converge to the stationary distribution.

Samples from the chain can then be used to approximate the posterior distribution p(θ|D).

MCMC methods have a significant advantage in that convergence is guaranteed as long

as the chain is simulated for a sufficient number of steps. However, depending on the

complexity of the posterior distribution and the starting state, the chain might take a

very long time to converge. In addition to this, determining when the chain has converged

can be challenging. In addition, early samples from the chain are often autocorrelated

and, therefore, not representative of the target distribution. Because of this, MCMC

methods usually require a burn-in period where the chain is allowed to converge to the

stationary distribution before sampling [38].

2.3.1 Metropolis Hastings

The Metropolis-Hastings algorithm [39, 40] is a versatile and relatively simple MCMC

algorithm which can be used to sample from any general probability distribution. The al-

gorithm constructs a Markov chain with a stationary distribution proportional to a target

distribution by sampling each new state from a proposal distribution and then accepting

or rejecting the proposal based on a probability ratio. Given a target distribution p, a

proposal distribution q and a current state θt, the a proposal state θ∗ is sampled from the

proposal distribution q(θ∗|θt) and then accepted according to a transition probability α

defined as:

α(θ∗|θt) = min

{
1,

p(θ∗)q(θt|θ∗)
p(θt)q(θ∗|θt)

}
(2.14)

11

If the proposal state θ∗ is accepted, it gets added to the Markov chain and used

for the next iteration; otherwise, it is discarded, and the current state θt is reused for

the next iteration. As the algorithm accumulates more samples, the Markov chain will

start converging towards the target distribution p. The Metropolis-Hastings algorithm is

summarized in Algorithm 2.

Algorithm 2 Metropolis-Hastings algorithm [36]

Initialize θ0.
for t = 1 to N do

Sample θ∗ ∼ q(θ∗|θt).
α = min

{
1, p(θ

∗)q(θt|θ∗)
p(θt)q(θ∗|θt)

}
Sample u ∼ U(0, 1).
if u < α then

θt+1 ← θ∗

else
θt+1 ← θt

end if
end for
return θ1, θ2, . . . , θN

When it comes to the proposal distribution q, there are no strict requirements. A

simple choice could be to use a Gaussian random walk proposal distribution centered

around the current state θt [18], where the standard deviation would be chosen so that

the acceptance probability remains reasonably high. However, Neal [18] also brings to

attention some of the problems with this approach. Depending on the properties of the

target distribution p and the proposal distribution, the Metropolis algorithm does not

always produce an ergodic Markov chain, which means that the Markov chain will not visit

all possible states with non-zero probability. Another problem with this configuration is

that for larger high-dimensional distributions, such as Bayesian neural networks, big

changes can quickly lead to regions of low probability in the sample space. Because of

this, the standard deviation of the proposal distribution must often be set to a minimal

value in order to maintain a reasonable acceptance probability. This again leads to

highly correlated samples since many steps must be taken to reach distant points in

the distribution. Due to these problems, which are further worsened by the random

walk nature of the proposal distribution, the Metropolis algorithm is often very slow to

converge for more complex distributions.

12

2.3.2 Advanced MCMC

Seeing as the Metropolis-Hastings algorithm is often very slow to converge for more

complex distributions, several more advanced MCMC algorithms have been developed

to improve on this. The Hamiltonian Monte Carlo (HMC) algorithm [18, 41] improve

on the random walk nature of the Metropolis algorithm By generating proposals for the

Metropolis update by simulating the dynamics of a Hamiltonian system. In practice, when

using MCMC for inference in Bayesian neural networks, one would make use of either

the HMC algorithm or one of its variants, such as the No-U-Turn Sampler (NUTS) [42],

which is a more effective version of the HMC algorithm which also automatically tunes

two key hyperparameters of the algorithm. However, the main problem of the MCMC

algorithms remains, being that Monte Carlo methods turn challenging and infeasible in

high dimensional applications [36]. The following section will look at variational inference,

an alternative approach to approximate Bayesian inference.

2.4 Variational Inference (VI)

Let p be an intractable probability distribution. The main idea of variational inference

methods [43] is to cast inference as an optimization problem over a class of tractable

distributions Q in order to find a distribution qϕ ∈ Q that is as close as possible to p , so

that we can use qϕ as an approximation of p. The approximation qϕ, called the variational

distribution, is parameterized by a set of parameters ϕ that are optimized to minimize

the distance between qϕ and p.

Evidence Lower Bound (ELBO)

Finding the best approximating variational distribution q∗ϕ for a true posterior distribu-

tion p(θ|D) is formalized as minimizing the Kullback-Leibler-Divergance between the two

distributions. The Kullback Leibler Divergence (KL-Divergence) [44] is a non-symmetric

divergence that measures relative entropy or difference in information between two prob-

ability distributions. The KL-Divergence between the variational distribution qϕ and the

posterior distribution p(θ|D) is defined as:

KL [q(θ)||p(θ|D)] =
w
q(θ) log

q(θ)

p(θ|D)
dθ = Eq(θ)

[
log

q(θ)

p(θ|D)

]
(2.15)

13

By using the KL-Divergence as a measure of similarity, the Bayesian inference problem

in equation 2.9 can be reformulated as an optimization problem where we try to find the

best approximation q∗ϕ(θ) ∈ Q to the true posterior distribution p(θ|D) by minimizing

the KL divergence between the two distributions.

q∗ϕ(θ) = argmin
qϕ∈Q

KL [q(θ)||p(θ|D)] (2.16)

One crucial problem with this objective is that the KL-Divergence requires the true

posterior distribution p(θ|D) to be known, which is the distribution we are trying to

approximate in the first place. To overcome this problem, we must instead derive an

alternative objective. As shown in Blei et al. [45] the KL-Divergence can be manipulated

to give the following objective:

KL [q(θ)||p(θ|D)] = −Eq(θ)

[
log

p(θ|D)

q(θ)

]
= −Eq(θ)

[
log

p(θ,D)

p(D)q(θ)

]
= −Eq(θ)

[
log

p(θ,D)

q(θ)
− log p(D)

]
= −Eq(θ)

[
log

p(θ,D)

q(θ)

]
+ log p(D)

(2.17)

The important thing to note here is that the log p(D) term is independent of the varia-

tional distribution qϕ and can therefore be ignored when minimizing the KL-Divergence.

Another essential thing is that the first term in equation 2.17 presents a lower bound

on the log-likelihood of the data D under the variational distribution qϕ. Since the

KL-Divergence is always non-negative, minimizing the KL-Divergence is equivalent to

maximizing the lower bound. The new cost function is called the Evidence Lower Bound

(ELBO), also known as the variational free energy or variational lower bound [46].

LELBO = Eq(θ)

[
log

p(θ,D)

q(θ)

]
(2.18)

The new optimization problem is to maximize the ELBO with respect to the varia-

tional distribution qϕ.

14

q∗ϕ(θ) = argmax
qϕ∈Q

LELBO (2.19)

More insight into the ELBO can be gained by rewriting the ELBO as shown in Blundell

et al. [17]:

LELBO = Eq(θ) [log p(D|θ)]−KL [qϕ(θ)||p(θ)] (2.20)

We can now see that the ELBO consists of a data-dependent term Eq(θ) [log p(D|θ)]
which will describe how well parameters sampled from the variational distribution qϕ

fit the data D, as well as a regularizing prior-dependent term KL(qϕ||p(θ)) which will

describe how close the variational distribution qϕ is to the prior distribution p(θ). The

two terms are often referred to as the likelihood cost (data-dependent) and the complexity

cost (prior-dependent) respectively [17]. We can view the ELBO as a trade-off between

fitting the data while keeping the variational distribution close to the prior distribution.

While the ELBO is independent of the intractable posterior distribution p(θ|D), ex-

actly computing it is still computationally intractable. Therefore, gradient descent and

other optimization methods are used to approximate the true value. Standard gradient-

based optimization techniques, such as Stochastic Gradient Descent (SGD) [30] or Adap-

tive Moment Estimation (Adam) [31] can then be used to maximize the ELBO for a

set of parameters ϕ. The stochastic variational inference algorithm [20], is the SGD

method applied to VI and is currently the most commonly used method for performing

VI on Bayesian Neural Networks [24]. The SVI algorithm uses mini-batches of data to

compute stochastic estimates of the ELBO and its gradients, which allows it to scale to

larger models and datasets. Most implementations use few samples when evaluating the

ELBO, which means that the gradient will be noisy at each iteration and slow to con-

verge. Though SVI gives an attractive and scalable alternative to other sampling-based

methods, it must still be adapted to deep learning.

2.4.1 Mean Field Variational Inference (MFVI)

When choosing a variational distribution qϕ, we want to find a distribution that is flexible

enough to approximate the true posterior distribution p(θ|D) but also simple enough to be

tractable. A common choice is to use a fully factorized Gaussian distribution, also known

15

as a mean-field distribution [47]. A Mean-field distribution follows the assumption that

all latent variables are independent of each other, which greatly simplifies calculations.

A mean-field Gaussian variational distribution would then be defined as:

qϕ(θ) =
N∏
i=1

qϕ(θi) =
N∏
i=1

N (µi, σ
2
i) (2.21)

where µi and σi are the variational parameters for the i’th weight θi.

Because of the simplification in calculations, mean field variational inference is scalable

to large models and datasets and has been successfully applied to neural networks [48,

20, 17]. However, mean field variational inference is also criticized for being too simple of

an approximation, and especially for ignoring the correlations between different variables

[47].

2.4.2 Bayes by Backprop (BBB)

Bayes by Backprop (BBB) [17] is a practical implementation of SVI, which leverages the

Reparameterization trick [46, 49] to make the backpropagation algorithm work properly

for stochastic weights. The main idea is to use a random variable ϵ ∼ q(ϵ) as a source of

noise combined with a deterministic function t(ϕ, ϵ) such that θ = t(ϕ, ϵ). The noise ϵ is

sampled at each iteration, but it can be seen as a constant with regards to the parameters

ϕ. Since the stochasticity has been removed from all other transformations; the gradient

backpropagation algorithm works as usual for the variational parameters ϕ. The resulting

training loop is, therefore, analogous to a normal neural network training loops, with the

addition of sampling the noise ϵ at each iteration. By writing θ = t(ϕ, ϵ) and assuming

q(ϵ)dϵ = q(θ|ϕ)dθ, Blundell et al.[17] prove that:

∂

∂ϕ
Eq(θ|ϕ) [f(θ, ϕ)] = Eq(ϵ)

[
∂

∂ϕ
f(t(ϕ, ϵ), ϕ)

]
= Eq(ϵ)

[
∂f(θ, ϕ)

∂θ

∂θ

∂ϕ
+

∂f(θ, ϕ)

∂ϕ

] (2.22)

The BBB algorithm is derived by applying equation 2.22 to the ELBO optimization

problem and provides an alternate approach to gradient estimation with respect to the

variational parameters ϕ. The cost function itself is approximated with Monte Carlo

16

sampling by drawing i samples θi ∼ q(θ|ϕ) and computing the average cost over all

samples:

F(ϕ) ≈
N∑
i=1

log q(θi|ϕ)− log p(θi)− log p(D|θi) (2.23)

Algorithm 3 shows a general implementation of the BBB algorithm.

Algorithm 3 Bayes by Backprop [17]

Initialize variational parameters ϕ
repeat

Sample ϵ ∼ q(ϵ)
θ = t(ϕ, ϵ)
f(θ, ϕ) = log q(θ|ϕ)− log p(θ)p(D|θ)
∇ϕf = backpropϕ(f)
ϕ = ϕ− α∇ϕf

until convergance

The objective function f corresponds to a stochastic estimate of the ELBO from a

single weight sample θi, and will therefore be noisy.

In the case of a Gaussian variational posterior, the weights can be sampled from a unit

Gaussian distribution and then shifted and scaled by parameters µ and σ respectively. In

this case, the transform function t is given by θ = t(ϕ, ϵ) = µ+σϵ. Since the σ parameter

must always be positive, Blundell et al.[17] instead use the parameters ρ and µ, where

σ = log(1+exp(ρ)). This results in the slightly modified transform function θ = t(ϕ, ϵ) =

µ+ log(1 + exp(ρ)) ◦ ϵ, where ◦ denotes element-wise multiplication. Algorithm 4 shows

the BBB algorithm adapted for a Gaussian variational posterior.

Algorithm 4 Bayes by Backprop for Gaussian variational posterior [17]

Initialize variational parameters ϕ
repeat

Sample ϵ ∼ N (0, I)
θ = µ+ log(1 + exp(ρ)) ◦ ϵ
ϕ = (µ, ρ)
f(θ, ϕ) = log q(θ|ϕ)− log p(θ)p(D|θ)
∇µf = ∂f(θ,ϕ)

∂θ
+ ∂f(θ,ϕ)

∂µ

∇ρf = ∂f(θ,ϕ)
∂θ

ϵ
1+exp(−ρ)

+ ∂f(θ,ϕ)
∂ρ

µ = µ− α∇µf
ρ = ρ− α∇ρf

until convergance

17

2.4.3 KL reweighting for minibatches

When performing gradient descent on larger datasets, it is common to separate the data

into mini-batches as a compromise between fully stochastic gradient descent and full

batch gradient descent. The training data D is split randomly into M mini-batches

D1, D2, ..., DM for each epoch, and a gradient step is performed for each minibatch.

However, the weights, which apply to the compexity cost, are only sampled once per

epoch, while the total error cost is transmitted at each minibatch. To rectify this, Graves

(2011) [48] proposes to reweight the complexity cost for minibatches. For minibatch

i = 1, 2, . . . ,M :

πi =
1

M
,

Fi(Di, ϕ) = πiKL(qϕ||p(θ))− Eqϕ [log p(Di|θ)] .
(2.24)

Blundell et al. [17] proposed an alternative scaling factor for the complexity cost:

πi =
2M−i

2M − 1
(2.25)

By applying this scaling factor, the complexity cost is weighted such that the first

few mini-batches are heavily reliant on the complexity cost, while the later minibatches

almost exclusively rely on the likelihood cost. This is based on the assumption that while

data is scarce, the complexity cost is more important, but as more data becomes available

in the later mini-batches, the data should be more influential than the prior.

2.4.4 Local Reparameterization Trick

The local reparameterization trick [50] is an alternative gradient estimation technique

for variational inference. Not to be confused with the reparameterization trick described

in section 2.4.2, the local reparameterization trick builds on the idea that a factorized

Gaussian posterior over the weights in a layer means that the posterior over the resulting

activations is also a factorized Gaussian.

18

qϕ(θi,j) = N (µi,j, σ
2
i,j)⇒ qϕ(am,j|x) = N (γm,j, δm,j),

where γm,j =
N∑
i=1

xm,iµi,j and δm,j =
N∑
i=1

x2
m,iσ

2
i,j.

(2.26)

Using this assumption, instead of sampling each individual weight and then computing

the activations, the pre-activations can be sampled directly from their implied Gaussian

posterior distribution:

am,j = γm,j +
√
δm,jϵm,j, where ϵm,j ∼ N (0, 1). (2.27)

Since the activations are of a much lower dimensionality than the weights, this leads

to significant computational gains. Kingma et al. (2015) [50] also highlights the fact that

the local reparameterization trick reduces the variance of the gradient estimates, which

leads to faster convergence.

19

Chapter 3

Motivation

This thesis will focus on exploring the use of Bayesian Neural Networks (BNNs) for re-

gression and how the Gaussian likelihood observation model affects training and resulting

posterior distribution of the model. We have a few key points of interest that we wish to

explore in this thesis.

Firstly, we want to explore the Gaussian variance parameter σ. As a thought exper-

iment, if we scale the variance parameter towards zero, we approach a point estimate

similar to that of a standard neural network. Following this logic, we are interested in

whether or not a low value for the variance parameter could cause a BNN to overfit the

training data. Conversely, we are also interested in whether or not a high value for the

variance parameter could cause a BNN to underfit the training data.

Secondly, we want to explore the effectiveness of inferring the variance parameter σ

from the data. As the variance parameter is usually treated as a hyperparameter, we

want to see if inferring it from the data can yield results on par with a well-specified fixed

parameterization of the likelihood function.

Finally, we want to explore the effects of inferring the variance parameter σ for a mis-

specified model. In our experience with BNNs, we have found that misspecified models,

especially smaller models with few parameters, struggle to express reasonable uncertainty

estimates when trained using variational inference. We want to find confirmation of this

behavior, as well as explore if inferring the variance parameter can help alleviate this

issue.

20

3.1 Can extremes in the variance parameter cause

over- and underfitting in BNNs?

When training a BNN regression model with a fixed Gaussian likelihood, the variance

parameter must be set to a reasonable value. BNNs are, in general, very resilient to

overfitting because of the implicit regularization introduced by setting a prior distribution

over the weights. However, a poorly specified variance parameter can lead to behavior

resembling both over- and underfitting.

The posterior distribution of a BNN results from combining the prior distribution

and the likelihood function. When using a Gaussian likelihood, the likelihood width

(variance) directly impacts the shape of the posterior distribution.

If the Gaussian likelihood is too narrow, the model has very specific expectations

about the data. Consequently, the posterior distribution will also be narrow, expressing

a high confidence in the model parameters. This subsequently favors a small subset of the

parameter space. The overconfidence in the learned parameters could cause the model

to overemphasize the observed data and reduce the influence of the prior distribution. In

such cases, the model becomes more prone to overfitting, especially if the data is noisy.

The overconfident model could, for example, misinterpret noise as actual meaningful

features of the data, leading to poor generalization.

If the Gaussian likelihood is too wide, it results in a wider posterior distribution,

which indicates high uncertainty in the model parameters. In this case, the observed

data has less influence on the posterior, while the prior distribution has much more

influence. The heightened uncertainty can prevent the model from converging to optimal

parameter values, making it more prone to underfitting. Unlike the overconfident model,

this underconfident model might misinterpret actual features of the data as noise, failing

to learn the underlying patterns of the data. Even if it manages to learn the optimal

parameters, its predictive distribution lacks the concentration necessary to make accurate

predictions, which diminishes its overall performance. This behavior, as well as the

behavior of the overconfident model, is illustrated in figure 3.1.

Determining an appropriate value for the variance parameter can often be a non-trivial

task, often falling to the user’s discretion. This becomes especially difficult when dealing

with noisy or scarce data. In such cases, deciding what constitutes a ”reasonable” value

for the variance parameter is not always obvious. Making the wrong decision in such

21

cases could lead to suboptimal model performance and unreliable uncertainty estimates.

To address this issue, we wish to explore the effectiveness and reliability of a learnable

variance parameter in the likelihood function. Our objective is to alleviate the burden of

manual specification and instead let the model adapt organically to the inherent variance

of the data. We expect this approach to produce equivalent or better results than a fixed

variance parameter without the susceptibility to human error.

(a) Bnn overfitting due to poorly specified like-
lihood

(b) Bnn underfitting due to poorly specified
likelihood

(c) Bnn with well specified likelihood

Figure 3.1: Illustration of over and underfitting-like behavior caused by a poorly specified
likelihood. The three plots show the same Bayesian neural network trained using varia-
tional inference on the same dataset, but with different fixed variance parameters. The
model in figure 3.1a has a fixed variance parameter that is too small and is showing signs
of overfitting the data. The model in figure 3.1b has a fixed variance parameter that is
too large and is showing signs of underfitting the data. The model in figure 3.1c has a
fixed variance parameter that is well specified and shows no signs of over or underfitting.

22

3.2 Can inferring the variance parameter compen-

sate for misspecified BNNs?

Misspecification of a machine learning model refers to the situation where the model is

specified in a way that it is unable to express the true data-generating process. While

”Knowing when we do not know” is the primary motivation behind using BNNs, the

uncertainty in the posterior distribution becomes unreliable and often meaningless, given

a grossly misspecified model. Misspecification leads to poor estimations of the posterior

distribution, but this is not always obvious to detect. The desirable behavior of a mis-

specified model is to express high uncertainty in the posterior distribution, but this is

not always the case. Sometimes, especially when using variational inference, the model

will express overconfidence in its predictions, even for out-of-domain data. Introducing a

learnable variance parameter in the likelihood function can help remedy this undesirable

behavior. We expect that when a model is misspecified, our assumption of homoskedas-

ticity will be broken. As a result, the learnable variance parameter will be able to scale

to a high value to express this uncertainty.

As shown in figure 3.2, we found that when a linear Bayesian regression model is used

to model non-linear data, the learnable variance parameter in the likelihood function

learns to scale to a high value to fit the data. This results in a significantly increased

uncertainty in the predictive distribution, which correctly expresses that the model is

unable to learn the true data-generating process. We wish to explore this behavior further

and see if it can be generalized to more complex models and data.

23

24

(a) Fixed variance (b) Inferred variance

Figure 3.2: Linear Bayesian regression model trained on a non-linear dataset using varia-
tional inference. The model is misspecified, and with a fixed variance, the model presents
overconfidence in its predictions. However, when the variance is inferred, it scales to a
large value to express the uncertainty in the posterior distribution.

Chapter 4

Experimentation methodology

4.1 Datasets

We present a set of generated synthetic datasets that are used for various experiments.

The datasets are a combination of a data-generating process and a homoscedastic Gaus-

sian noise term. Combining different data-generating processes with different degrees of

Gaussian noise, we can create datasets with varying degrees of complexity and innate

uncertainty. Given a datagenerating process f(x), we can generate a dataset D of size N

as follows:

ϵ ∼ N (0, std2)

D = {(xi, yi)}Ni=1 = {(xi, f(xi) + ϵ)}Ni=1

All values of x are sampled from a uniform distribution with a given interval [a, b]:

x ∼ U(a, b)

To create validation and in-domain test sets, we sample N values from the same

uniform distribution as the training set, and generate a dataset of size N using the same

data-generating process and noise term as the training set. For out-of-domain test sets,

we sample N values from a uniform distribution with a different interval [2a, 2b]/[a, b]

25

4.1.1 Sinusoidal datagenerating functions

We limit ourselves to using a set of sinusoidal data-generating functions, as they are

simple to define and can be used to create datasets of varying complexity. Due to time

constraints, it is best to thoroughly explore the results of a single type of function rather

than trying to cover too many different types. We define the following sinusoidal data-

generating functions:

Ten-dimensional sinusoidal (sin10)

This data-generating function takes a ten-dimensional input vector x and returns a one-

dimensional output y:

x = [x1, x2, . . . , x10]

,

f(x) = 0x1 + 6 sin(x2 · x3) + 6 sin(x4) + 6 sin(x5 · x6) + 6 sin(x7) + 6 sin(x8 · x9) + 0x10

We designed this function to be difficult to learn for small to medium-sized neural

networks. The scaled sine functions will create large waves in the y space, which will be

challenging to learn for a neural network with a small number of hidden units. The terms

x1 and x10 are nulled out and acts as input noise.

Multidiemensional sinusoidal (multisin)

This function is slightly less challenging than the sin10 function, but the number of input

dimensions is variable. This function will be helpful to test whether or not our results

generalize to other similar datasets and higher dimensional spaces.

f(x) =
n−1∑
i=1

mask(i) · 5 · sin(xi + xi+1)

mask(i) =

0 if i mod 10 = 0 or i+ 1 mod 10 = 0

1 otherwise

The mask function makes every tenth input xi exempt from the data-generating

function and acts as input noise.

26

4.1.2 Generated Datasets

Using the data-generating functions and the pattern we described earlier, we generated a

set of synthetic datasets with varying degrees of complexity. The datasets are described

in table 4.1.

Dataset Sample-size Data-func Noise std X-dim Y-dim X-space

sin10-s03 10k tendim-sinusoidal 0.3 10 1 [-2, 2]
multisin10-s05 10k multisin-sinusoidal 0.5 10 1 [-3, 3]
multisin20-s05 20k multisin-sinusoidal 0.5 20 1 [-3, 3]

Table 4.1: Table of generated datasets. Names of the datasets are reported together with
the relevant data generation function, number of samples, and other relevant metadata.

4.2 Model specification

Functional Model

For all experiments, we implement Bayesian feed-forward neural networks of varying

complexities. The models used for the various experiments vary in the number of layers

and number of neurons per layer, and will be presented using the following notation:

model : input− h1 − · · · − hn − output

As an example, a feed-forward Bayesian neural network with a 10-dimensional input,

3 hidden layers with 128 neurons each, and a 1-dimensional output will be presented as:

10-128-128-128-1

Activation Functions

For all models, we use the ReLU activation function for all hidden layers:

ReLU(x) = max(0, x)

27

Variational Posterior

We define the variational posterior distribution over the weights of the neural network as

a product of independent normal distributions with mean µ and standard deviation σ.

qϕ(θ) =
N∏
i=1

N (µi, σ
2
i)

Prior

We define the prior distribution over the weights of the neural network as a product of

independent normal distributions with mean 0 and standard deviation 1.

p(θ) =
N∏
i=1

N (0, 1)

Considering the relative simplicity of our datasets and models, we believe the standard

normal distribution to be a sufficient prior distribution. However, as mentioned in Fortuin

et al. [21] the isotropic Gaussian prior is often misspecified for neural networks and might

be suboptimal even for our simple models.

Likelihood

The model’s likelihood function depends on the type of problem we are trying to solve.

Considering a regression problem, we assume the data to be homoscedastic and the noise

to be Gaussian distributed. Thus, we define the likelihood function as a simple Gaussian

distribution:

y ∼ N (f(x, θ), σ2)

For some models the standard deviation σ is a fixed constant σ ∈ N, while for others,
it will be given a gamma distribution prior σ ∼ Gamma(α, β). During training, the

probability distribution of σ will be inferred from the data.

28

4.3 Model Inference

We train our models using the Stochastic Variational Inference algorithm combined with

the Local Reparameterization Trick. Since our prior and posterior distributions are both

Gaussians, we leverage the fact that the variational posterior distribution is a product of

independent normal distributions to make use of the mean-field assumption and calculate

the KL-divergence in closed form. We perform Mean Field Variational Inference to train

a variational posterior distribution over the weights of the neural network. To reduce

the variance of the gradient estimates, we make use of the local reparameterization trick

mentioned in section 2.4.4.

Hyperparameters

For optimization, we use the Adam [31] optimizer. Following the advice of Bingham et

al. [51] we use a small learning rate of 1e-4 and set the beta parameters to 0.95 and 0.999

respectively, to account for the increased stochasticity of a Bayesian neural network. They

also mention that the variational posterior should be parameterized to have a low variance

at initialization, as high variance in the elbo gradients at the beginning of optimization

can lead to ending up in undesirable regions of the parameter space. We follow their

advice and initialize the variational posterior to have a mean of 0 and a low standard

deviation of 0.01.

We use a batch size of 512 for all experiments and train for 10000 epochs. When ap-

proximating the Gradient of the ELBO, we use 10 samples from the variational posterior

distribution. This requires much more computing power as it requires a forward pass

through the neural network for each sample. However, it greatly reduces the variance of

the gradient estimates, which we found to sometimes be essential for the convergence of

larger models.

4.4 Model Selection

Our approach to model selection might be unorthodox compared to the standard ap-

proach. Using mostly intuition and some trial and error, we found values for the hyper-

parameters that generally work well for all basic Bayesian neural networks. Using these

29

values and a fixed likelihood variance equal to the noise variance of the dataset, we train

several models with different numbers of hidden layers and units and select the model

with the lowest validation loss. This approach aims to find a decently performing model

for each dataset when given an ”optimal” parameterization of the likelihood. We can then

use these models as a baseline to compare against when performing our experiments.

Using the abovementioned approach, we use model selection to find a well-performing

baseline model for each dataset. The final models for each dataset are reported in table

4.2.

Dataset Model name Architecture Likelihood σ

sin10-s03 sin10-3x256-s03 10-256-256-256-1 0.3

multisin10-s05 multisin10-3x64-s05 10-64-64-64-1 0.5

multisin20-s05 multisin20-3x512-s05 20-512-512-512-1 0.5

Table 4.2: Table of selected baseline models for each dataset.

4.5 Evaluation Metrics

We employ a set of metrics to evaluate our models’ performance on the various datasets.

For all models and experiments, we record the Root Mean Squared Error (RMSE), Mean

Absolute Error (MAE) and Log Likelihood (LL) of the model predictions on the train,

validation, in-domain test, and out-of-domain test sets.

In addition to the standard evaluation metrics mentioned above, we also need some

metrics to evaluate the uncertainty of our models. We use the following metrics to

evaluate the uncertainty of our models:

Mean, Min, and Max Weight Uncertainty

Evaluating and quantifying the uncertainty of a Bayesian neural network is a challenging

task, which grows exponentially more difficult with the increasing complexity of the

model. While getting a complete picture of the uncertainty of our Bayesian neural network

is impossible without a full posterior distribution over the weights, we can still get some

idea of overall uncertainty by summarizing the mean, min, and max values of the standard

deviations of the variational posterior distribution over the weights. We can then use these

30

values to compare the uncertainty of different models. Since our variational posterior is

a product of independent normal distributions, we can look at the standard deviation of

each weight independently and summarize the uncertainty of the model by looking at the

mean, min, and max values of these standard deviations. These metrics are presented as

Mean Weight SD, Min Weight SD, and Max Weight SD.

Mean, Min, and Max Prediction Uncertainty

In addition to evaluating the uncertainty of the model weights, we can gain further insight

by evaluating the uncertainty of the model’s predictions. In contrast with the weight

uncertainty, we can get a much better picture of the predictive uncertainty for each

data point, as our output predictive distribution is 1-dimensional Gaussian distribution.

However, due to the high dimensional input space, plotting the predictive distribution for

each data point is impossible. Instead, similarly to the weight uncertainty, we summarize

the uncertainty of the model by looking at the mean, min, and max values for the standard

deviation of the predictive distribution to get a general idea of the overall uncertainty of

the model on a given dataset. These metrics are presented as Mean Predictive SD, Min

Predictive SD, and Max Predictive SD.

4.6 Implementation Details

Hardware

All tests were run on an NVIDIA A100 SXM4 GPU with 80GB VRAM.

Software and Libraries

All the code used for our experiments is available in our public GitHub repository. 1

The code is written in Python 3.9, and an environment file is provided to reproduce the

anaconda environment used for the experiments. We employed a set of different soft-

ware libraries to implement and run our Bayesian neural networks. The most important

libraries are listed below.

1https://github.com/alvarhonsi/master-pipeline

31

https://github.com/alvarhonsi/master-pipeline

Pytorch [52] is an open-source machine-learning framework used for many different

machine learning tasks, like computer vision and natural language processing. Being an

optimized tensor library for deep learning, Pytorch provides two important high-level

features: Tensor computing with strong acceleration via GPUs as well as deep neural

networks built on a tape-based autograd system.

Pyro [53] is a probabilistic programming language built on Python as a platform for

developing advanced probabilistic models in AI research. Pyro provides flexible varia-

tional inference algorithms, MCMC algorithms, and an extensive library of probability

distributions built on top of PyTorch. To accommodate more complex or model-specific

algorithms, Pyro also includes the Poutine library, which includes composable handlers

for modifying the behavior of probabilistic programs.

TyXe [54] is a Bayesian neural network library built on top of pytorch and Pyro. It

provides a simple interface for building and training Bayesian neural networks. TyXe

simplifies KL-reweighting for networks with multiple layers, and most importantly, it

provides implementations of essential BNN-specific event handlers for Pyro, such as the

Local Reparameterization Trick. It is, however, worth noting that TyXe is still in early

development, has little to no documentation, and is not yet a stable library. As such, we

have had to make some minor modifications to the library to accommodate our needs.

Most importantly, we had to alter the homoskedastic Gaussian likelihood and BNN im-

plementations to make the inferred variance parameter work as intended. The relevant

changes are in the appendix A.

32

Chapter 5

Results

In this chapter, we present our experiments and their results. Using the datasets and

baseline models described in chapter 4, we perform two studies in the hopes of gaining

some insight into how subtle changes in the specification of our Gaussian likelihood

function impacts the training process and the resulting posterior distribution.

5.1 Study 1: Can extremes in the variance parame-

ter cause over- and underfitting in BNNs?

From our model selection in chapter 4, we have a set of well-performing baseline models

for each dataset. Using the baseline models as a starting point, we train several iterations

of the same model but with differently parameterized Gaussian likelihoods. Our aim with

this study is to understand more about how deviations in the variance of the Gaussian

likelihood function can impact the training process and the resulting posterior distribu-

tion. Bayesian Neural Networks are intricate and complex models with many moving

parts. This makes observing the impact of a single change in the model specification

difficult as combinations of different factors come into play. While observing the effects

of the likelihood in a vacuum is not possible, we try to create a stable baseline by using

the same architecture, hyperparameters, and priors for all models.

As mentioned in chapter 3, we expect that by making the Gaussian likelihood either

too narrow or too wide, we will observe overfitting and underfitting behavior in our model.

In order to test this hypothesis, we specify models with small and large fixed likelihood

33

variances. We make the likelihood variance lower or higher than the actual noise in

the data by a factor of 10. If our hypothesis has merit, we should observe some clear

overfitting and underfitting behavior in the models. We have a secondary objective of

exploring the effectiveness of inferring the likelihood variance from the data. We expect

that inferring the likelihood variance should yield results close to or on par with the

”optimal” likelihood variance in the baseline model.

We define four models for each dataset: one with a low fixed variance, one with an

”optimal” fixed variance, one with a high fixed variance, and lastly, one with an inferred

variance. The models are defined in table 5.1. Our results for each dataset are presented

in the following sections.

Dataset Model name Architecture Likelihood σ

sin10-s03

sin10-s003

10-256-256-256-1

0.03
sin10-s03 0.3
sin10-s3 3.0
sin10-sl ∼ Gamma(1.0, 1.0)

multisin10-s05

multisin10-s005

10-64-64-64-1

0.05
multisin10-s05 0.5
multisin10-s5 5.0
multisin10-sl ∼ Gamma(1.0, 1.0)

multisin20-s05

multisin20-s005

20-512-512-512-1

0.05
multisin20-s05 0.5
multisin20-s5 5.0
multisin20-sl ∼ Gamma(1.0, 1.0)

Table 5.1: Table of models used in the first study. The table shows the models used
for each dataset. The models are defined by their name and architecture, as well as the
variance of the Gaussian likelihood function. The notation ∼ Gamma(1.0, 1.0) indicates
that the model sets a prior distribution Gamma(1.0, 1.0) over the likelihood parameter
σ and infers its posterior distribution from the data.

5.1.1 Results for the sin10-s03 dataset

This section presents our results for the sin10-s03 dataset. We present the training curves

for the four models in figure 5.1. We present further evaluation metrics in table 5.2. Our

metrics for summarized predictive uncertainty are presented in table 5.3 and our metrics

for summarized weight uncertainty are presented in table 5.4.

34

35

(a)

(b) (c)

Figure 5.1: Study 1 - Training curves for models trained on the sin10-s03 dataset. Figure
5.1a shows the elbo loss at each epoch. Figures 5.1b and 5.1c show the RMSE and log-
likelihood metrics, respectively, for both train and validation data, recorded every 50
epochs. The curves are averaged over 10 independent runs, and the error bars show a
confidence interval of 2 ∗ SD (2 times the standard deviation) to show the differences
between random initializations. The y-axis is log-scaled.

(a) Train data

Model Likelihood σ RMSE MAE LL

sin10-3x256-s003 0.03±0.0 0.06±0.02 0.05±0.02 0.95±0.07
sin10-3x256-s03 0.3±0.0 0.37±0.02 0.29±0.02 -0.5±0.04
sin10-3x256-s3 3.0±0.0 1.31±0.1 0.96±0.07 -2.23±0.02
sin10-3x256-sl 0.75±0.15 0.53±0.11 0.42±0.08 -0.98±0.19

(b) In domain data

Model Likelihood σ RMSE MAE LL

sin10-3x256-s003 0.03±0.0 3.4±0.16 2.59±0.13 -241.82±26.15
sin10-3x256-s03 0.3±0.0 0.58±0.06 0.45±0.04 -0.88±0.11
sin10-3x256-s3 3.0±0.0 1.4±0.1 1.0±0.07 -2.24±0.02
sin10-3x256-sl 0.75±0.15 0.59±0.12 0.47±0.09 -1.02±0.2

(c) Out of domain data

Model Likelihood σ RMSE MAE LL

sin10-3x256-s003 0.03±0.0 18.56±0.62 14.87±0.48 -809.1±147.68
sin10-3x256-s03 0.3±0.0 34.86±3.53 28.65±3.03 -28.01±5.05
sin10-3x256-s3 3.0±0.0 18.4±1.76 14.77±1.39 -4.72±0.19
sin10-3x256-sl 0.75±0.15 31.45±5.8 26.33±4.51 -6.63±1.63

Table 5.2: Study 1 - Table of results for models trained on the sin10-s03 dataset. The
table shows the Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and
log-likelihood (LL) evaluation metrics for each model. Subtables 5.2a, 5.2b and 5.2c show
the results for the train, in-domain test, and out-of-domain test data, respectively. The
results are averaged over 10 independent runs and presented as the mean value ± 2 ∗SD
(2 times the standard deviation) in order to highlight the differences between random
initializations.

36

(a) Train data

Model Likelihood σ
Mean Predictive

SD
Min Predictive

SD
Max Predictive

SD

sin10-3x256-s003 0.03±0.0 0.14±0.0 0.07±0.01 0.26±0.04
sin10-3x256-s03 0.3±0.0 0.47±0.03 0.32±0.0 1.3±0.14
sin10-3x256-s3 3.0±0.0 3.51±0.05 3.03±0.02 5.94±0.57
sin10-3x256-sl 0.75±0.15 0.9±0.17 0.76±0.14 2.04±0.35

(b) In domain data

Model Likelihood σ
Mean Predictive

SD
Min Predictive

SD
Max Predictive

SD

sin10-3x256-s003 0.03±0.0 0.15±0.0 0.07±0.01 0.39±0.15
sin10-3x256-s03 0.3±0.0 0.47±0.03 0.32±0.01 1.28±0.19
sin10-3x256-s3 3.0±0.0 3.51±0.05 3.04±0.03 5.9±0.26
sin10-3x256-sl 0.75±0.15 0.91±0.18 0.76±0.14 2.03±0.33

(c) Out of domain data

Model Likelihood σ
Mean Predictive

SD
Min Predictive

SD
Max Predictive

SD

sin10-3x256-s003 0.03±0.0 0.48±0.04 0.29±0.04 2.05±1.23
sin10-3x256-s03 0.3±0.0 5.01±0.46 2.57±0.27 8.51±1.03
sin10-3x256-s3 3.0±0.0 41.66±10.28 12.88±2.16 104.8±29.43
sin10-3x256-sl 0.75±0.15 14.11±2.39 5.22±1.19 35.44±13.8

Table 5.3: Study 1 - Table of summarized predictive uncertainty for models trained on the
sin10-s03 dataset. Tables 5.3a, 5.3b and 5.3c show the results for the train, in-domain
test, and out-of-domain test data, respectively. The tables show the mean uncertainty
of all predictive distributions (Mean Predictive SD) for the given dataset, as well as the
minimum uncertainty (Min Predictive SD) and maximum uncertainty (Max Predictive
SD) of all predictive distributions for the given dataset. The results are averaged over
10 independent runs and presented as the mean value ± 2 ∗ SD (2 times the standard
deviation) to highlight the differences between random initializations.

37

(a) Model weight data

Model Mean Weight SD Min Weight SD Max Weight SD

sin10-3x256-s003 0.05±0.02 0.0±0.0 1.01±0.0
sin10-3x256-s03 0.87±0.02 0.0±0.0 1.02±0.02
sin10-3x256-s3 0.97±0.0 0.0±0.0 1.0±0.0
sin10-3x256-sl 0.96±0.0 0.0±0.0 1.01±0.01

Table 5.4: Study 1 - Table of summarized weight uncertainty for models trained on the
sin10-s03 dataset. The table shows the mean uncertainty of all weight distributions in
the models (Mean Weight SD), as well as the minimum uncertainty (Min Weight SD) and
maximum uncertainty (Max Weight SD) of all weight distributions in the models. The
results are averaged over 10 independent runs and presented as the mean value ± 2∗SD (2
times the standard deviation) to highlight the differences between random initializations.

5.1.2 Results for the multisin10-s05 dataset

This section presents our results for the multisin10-s05 dataset. We present the training

curves for the four models in figure 5.2. We present further evaluation metrics in table

5.5. Our metrics for summarized predictive uncertainty are presented in table 5.6 and

our metrics for summarized weight uncertainty are presented in table 5.7.

38

(a)

(b) (c)

Figure 5.2: Study 1 - Training curves for models trained on the multisin10-s05 dataset.
Figure 5.2a shows the elbo loss at each epoch. Figures 5.2b and 5.2c show the RMSE and
log-likelihood metrics, respectively, for both train and validation data, recorded every 50
epochs. The curves are averaged over 10 independent runs, and the error bars show a
confidence interval of 2 ∗ SD (2 times the standard deviation) to show the differences
between random initializations. The y-axis is log-scaled.

39

(a) Train data

Model Likelihood σ RMSE MAE LL

multisin10-3x64-s005 0.05±0.0 0.27±0.01 0.21±0.01 -4.72±0.74
multisin10-3x64-s05 0.5±0.0 0.56±0.01 0.45±0.01 -0.85±0.02
multisin10-3x64-s5 5.0±0.0 1.21±0.04 0.94±0.03 -2.6±0.01
multisin10-3x64-sl 0.69±0.05 0.61±0.02 0.48±0.02 -0.97±0.03

(b) In domain data

Model Likelihood σ RMSE MAE LL

multisin10-3x64-s005 0.05±0.0 1.11±0.06 0.87±0.04 -94.23±8.42
multisin10-3x64-s05 0.5±0.0 0.68±0.02 0.54±0.02 -1.05±0.04
multisin10-3x64-s5 5.0±0.0 1.28±0.04 0.99±0.03 -2.6±0.01
multisin10-3x64-sl 0.69±0.05 0.69±0.02 0.54±0.01 -1.05±0.02

(c) Out of domain data

Model Likelihood σ RMSE MAE LL

multisin10-3x64-s005 0.05±0.0 11.87±0.31 9.47±0.23 -1750.7±87.14
multisin10-3x64-s05 0.5±0.0 11.96±0.41 9.56±0.33 -33.61±5.05
multisin10-3x64-s5 5.0±0.0 9.48±0.13 7.61±0.11 -3.85±0.04
multisin10-3x64-sl 0.69±0.05 11.66±0.29 9.32±0.25 -17.3±6.98

Table 5.5: Study 1 - Table of results for models trained on the multisin10-s05 dataset.
The table shows the Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and
log-likelihood (LL) evaluation metrics for each model. Subtables 5.5a, 5.5b and 5.5c show
the results for the train, in-domain test, and out-of-domain test data, respectively. The
results are averaged over 10 independent runs, and presented as the mean value ± 2∗SD
(2 times standard deviation) to highlight the differences between random initializations.

40

(a) Train data

Model Likelihood σ
Mean Predictive

SD
Min Predictive

SD
Max Predictive

SD

multisin10-3x64-s005 0.05±0.0 0.08±0.0 0.05±0.0 0.19±0.06
multisin10-3x64-s05 0.5±0.0 0.58±0.01 0.5±0.0 0.86±0.08
multisin10-3x64-s5 5.0±0.0 5.24±0.03 4.99±0.02 5.84±0.25
multisin10-3x64-sl 0.69±0.05 0.76±0.02 0.69±0.01 1.08±0.1

(b) In domain data

Model Likelihood σ
Mean Predictive

SD
Min Predictive

SD
Max Predictive

SD

multisin10-3x64-s005 0.05±0.0 0.08±0.0 0.05±0.0 0.28±0.34
multisin10-3x64-s05 0.5±0.0 0.59±0.01 0.5±0.0 0.9±0.08
multisin10-3x64-s5 5.0±0.0 5.24±0.03 5.01±0.03 5.8±0.32
multisin10-3x64-sl 0.69±0.05 0.76±0.02 0.69±0.01 1.14±0.1

(c) Out of domain data

Model Likelihood σ
Mean Predictive

SD
Min Predictive

SD
Max Predictive

SD

multisin10-3x64-s005 0.05±0.0 0.2±0.01 0.11±0.01 1.48±1.87
multisin10-3x64-s05 0.5±0.0 1.46±0.13 0.86±0.11 2.45±0.46
multisin10-3x64-s5 5.0±0.0 6.47±0.24 5.8±0.08 8.43±1.63
multisin10-3x64-sl 0.69±0.05 2.06±0.5 1.24±0.18 4.42±2.48

Table 5.6: Study 1 - Table of summarized predictive uncertainty for models trained on
the multisin10-s05 dataset. Tables 5.6a, 5.6b and 5.6c show the results for the train,
in-domain test, and out-of-domain test data, respectively. The tables show the mean
uncertainty of all predictive distributions (Mean Predictive SD) for the given dataset,
as well as the minimum uncertainty (Min Predictive SD) and maximum uncertainty
(Max Predictive SD) of all predictive distributions for the given dataset. The results are
averaged over 10 independent runs, and presented as the mean value ± 2 ∗ SD (2 times
standard deviation) to highlight the differences between random initializations.

41

(a) Model weight data

Model Mean Weight SD Min Weight SD Max Weight SD

multisin10-3x64-s005 0.0±0.0 0.0±0.0 0.73±0.69
multisin10-3x64-s05 0.69±0.04 0.0±0.0 1.0±0.0
multisin10-3x64-s5 0.9±0.01 0.0±0.0 1.0±0.0
multisin10-3x64-sl 0.81±0.02 0.0±0.0 1.0±0.0

Table 5.7: Study 1 - Table of summarized weight uncertainty for models trained on the
multisin10-s05 dataset. The table shows the mean uncertainty of all weight distributions
in the models (Mean Weight SD), as well as the minimum uncertainty (Min Weight SD)
and maximum uncertainty (Max Weight SD) of all weight distributions in the models.
The results are averaged over 10 independent runs, and presented as the mean value
± 2 ∗ SD (2 times standard deviation) in order to highlight the differences between
random initializations.

5.1.3 Results for the multisin20-s05 dataset

This section presents our results for the multisin20-s05 dataset. We present the training

curves for the four models in figure 5.3. We present further evaluation metrics in table

5.8. Our metrics for summarized predictive uncertainty are presented in table 5.9 and

our metrics for summarized weight uncertainty are presented in table 5.10.

42

(a)

(b) (c)

Figure 5.3: Study 1 - Training curves for models trained on the multisin20-s05 dataset.
Figure 5.3a shows the elbo loss at each epoch. Figures 5.3b and 5.3c show the RMSE and
log-likelihood metrics, respectively, for both train and validation data, recorded every 50
epochs. The curves are averaged over 5 independent runs, and the error bars show a
confidence interval of 2 ∗ SD (2 times the standard deviation) to show the differences
between random initializations. The y-axis is log-scaled.

43

(a) Train data

Model Likelihood σ RMSE MAE LL

multisin20-3x512-s005 0.05±0.0 0.1±0.04 0.08±0.03 0.46±0.1
multisin20-3x512-s05 0.5±0.0 0.52±0.01 0.41±0.01 -0.82±0.02
multisin20-3x512-s5 5.0±0.0 1.85±0.19 1.37±0.12 -2.73±0.02
multisin20-3x512-sl 1.29±0.23 0.84±0.1 0.67±0.07 -1.52±0.16

(b) In domain data

Model Likelihood σ RMSE MAE LL

multisin20-3x512-s005 0.05±0.0 2.68±0.56 2.1±0.46 -58.28±20.12
multisin20-3x512-s05 0.5±0.0 0.86±0.02 0.69±0.02 -1.34±0.03
multisin20-3x512-s5 5.0±0.0 1.98±0.2 1.47±0.13 -2.73±0.03
multisin20-3x512-sl 1.29±0.23 1.04±0.11 0.83±0.08 -1.6±0.14

(c) Out of domain data

Model Likelihood σ RMSE MAE LL

multisin20-3x512-s005 0.05±0.0 16.06±0.63 12.85±0.53 -283.74±9.08
multisin20-3x512-s05 0.5±0.0 15.23±2.23 12.17±1.79 -5.11±0.13
multisin20-3x512-s5 5.0±0.0 14.18±0.18 11.35±0.13 -4.39±0.12
multisin20-3x512-sl 1.29±0.23 15.48±2.1 12.33±1.57 -4.73±1.04

Table 5.8: Study 1 - Table of results for models trained on the multisin20-s05 dataset.
The table shows the Root Mean Squared Error (RMSE), Mean Absolute Error (MAE)
and log-likelihood (LL) evaluation metrics for each model. Subtables 5.8a, 5.8b and 5.8c
show the results for the train, in-domain test, and out-of-domain test data, respectively.
The results are averaged over 5 independent runs, and presented as the mean value
± 2 ∗ SD (2 times standard deviation) in order to highlight the differences between
random initializations.

44

(a) Train data

Model Likelihood σ
Mean Predictive

SD
Min Predictive

SD
Max Predictive

SD

multisin20-3x512-s005 0.05±0.0 0.23±0.01 0.11±0.01 0.57±0.15
multisin20-3x512-s05 0.5±0.0 0.67±0.01 0.53±0.01 1.59±0.19
multisin20-3x512-s5 5.0±0.0 5.8±0.11 5.15±0.09 14.31±4.69
multisin20-3x512-sl 1.29±0.23 1.6±0.32 1.33±0.25 5.23±2.64

(b) In domain data

Model Likelihood σ
Mean Predictive

SD
Min Predictive

SD
Max Predictive

SD

multisin20-3x512-s005 0.05±0.0 0.25±0.01 0.13±0.02 0.6±0.12
multisin20-3x512-s05 0.5±0.0 0.67±0.0 0.53±0.01 1.45±0.63
multisin20-3x512-s5 5.0±0.0 5.85±0.13 5.18±0.11 14.17±5.55
multisin20-3x512-sl 1.29±0.23 1.61±0.28 1.34±0.26 4.21±2.72

(c) Out of domain data

Model Likelihood σ
Mean Predictive

SD
Min Predictive

SD
Max Predictive

SD

multisin20-3x512-s005 0.05±0.0 0.7±0.02 0.41±0.03 1.79±0.83
multisin20-3x512-s05 0.5±0.0 66.9±8.6 19.67±4.64 175.7±42.53
multisin20-3x512-s5 5.0±0.0 9.24±0.36 6.55±0.64 36.72±19.99
multisin20-3x512-sl 1.29±0.23 41.86±87.11 14.37±30.63 142.81±273.18

Table 5.9: Study 1 - Table of summarized predictive uncertainty for models trained on
the multisin20-s03 dataset. Tables 5.9a, 5.9b and 5.9c show the results for the train,
in-domain test, and out-of-domain test data, respectively. The tables show the mean
uncertainty of all predictive distributions (Mean Predictive SD) for the given dataset,
as well as the minimum uncertainty (Min Predictive SD) and maximum uncertainty
(Max Predictive SD) of all predictive distributions for the given dataset. The results are
averaged over 5 independent runs, and presented as the mean value ± 2 ∗ SD (2 times
standard deviation) in order to highlight the differences between random initializations.

45

(a) Model weight data

Model Mean Weight SD Min Weight SD Max Weight SD

multisin20-3x512-s005 0.32±0.07 0.0±0.0 1.01±0.0
multisin20-3x512-s05 0.97±0.0 0.0±0.0 1.01±0.0
multisin20-3x512-s5 0.99±0.0 0.0±0.0 1.0±0.0
multisin20-3x512-sl 0.98±0.0 0.0±0.0 1.01±0.0

Table 5.10: Study 1 - Table of summarized weight uncertainty for models trained on the
multisin20-s03 dataset. The table shows the mean uncertainty of all weight distributions
in the models (Mean Weight SD), as well as the minimum uncertainty (Min Weight SD)
and maximum uncertainty (Max Weight SD) of all weight distributions in the models.
The results are averaged over 5 independent runs, and presented as the mean value
± 2 ∗ SD (2 times standard deviation) in order to highlight the differences between
random initializations.

5.2 Study 2: Can inferring the variance parameter

compensate for misspecified BNNs?

This study explores how inferring the likelihood variance can help compensate for mis-

specified models. As explained in chapter 3, we often find that misspecified Bayesian

neural networks exhibit overconfident uncertainty estimates and an inability to recognize

their misspecification. In the case of a severely misspecified model, we ideally want it to

express high uncertainty so that we at least know not to trust its predictions. However, as

we have experienced, and as shown in the linear Bayesian regression example in chapter

3, misspecified models often express low uncertainty and high confidence in their predic-

tions. This is undesirable in a Bayesian model, where we want to produce high-quality

uncertainty estimates. This is where we believe inferring the likelihood variance can help.

We believe inferring the likelihood variance can help compensate for misspecified models

by allowing the model to express higher uncertainty in its predictions. Our goals for

this study are, therefore, twofold. Firstly, we want confirmation that misspecified models

express overconfident uncertainty estimates. Secondly, we want to explore if inferring the

likelihood variance can help compensate for misspecified models.

We use the same datasets and baseline models from chapter 4 and the previous study.

Starting with the baseline models, we attempt to specify increasingly misspecified models

by incrementally decreasing the number of parameters and depth of the Bayesian neural

network, ending with a linear Bayesian regression model. For each model architecture,

46

we specify two models, one with a fixed ”optimal” likelihood variance and one with an

inferred likelihood variance. We believe we can gain some insight by comparing the

performance of the two likelihoods on increasingly misspecified models. Our results for

each dataset are presented in the following sections. The models are defined in table 5.11.

Our results for each dataset are presented in the following sections.

Dataset Model name Architecture Likelihood σ

sin10-s03

sin10-3x256-s03 10-256-256-256-1 0.3
sin10-3x256-sl 10-256-256-256-1 ∼ Gamma(1.0, 1.0)
sin10-2x128-s03 10-128-128-1 0.3
sin10-2x128-sl 10-128-128-1 ∼ Gamma(1.0, 1.0)
sin10-1x64-s03 10-64-1 0.3
sin10-1x64-sl 10-64-1 ∼ Gamma(1.0, 1.0)

sin10-linear-s03 10-1 0.3
sin10-linear-sl 10-1 ∼ Gamma(1.0, 1.0)

multisin10-s05

multisin10-3x64-s03 10-64-64-64-1 0.5
multisin10-3x64-sl 10-64-64-64-1 ∼ Gamma(1.0, 1.0)
multisin10-2x32-s03 10-32-32-1 0.5
multisin10-2x32-sl 10-32-32-1 ∼ Gamma(1.0, 1.0)
multisin10-1x16-s03 10-16-1 0.5
multisin10-1x16-sl 10-16-1 ∼ Gamma(1.0, 1.0)

multisin10-linear-s03 10-1 0.5
multisin10-linear-sl 10-1 ∼ Gamma(1.0, 1.0)

multisin20-s05

multisin20-3x512-s03 20-512-512-512-1 0.5
multisin20-3x512-sl 20-512-512-512-1 ∼ Gamma(1.0, 1.0)
multisin20-2x256-s03 20-256-256-1 0.5
multisin20-2x256-sl 20-256-256-1 ∼ Gamma(1.0, 1.0)
multisin20-1x128-s03 20-128-1 0.5
multisin20-1x128-sl 20-128-1 ∼ Gamma(1.0, 1.0)
multisin20-linear-s03 20-1 0.5
multisin20-linear-sl 20-1 ∼ Gamma(1.0, 1.0)

Table 5.11: Table of models used in the second study. The table shows the models used
for each dataset. The models are defined by their name and architecture, as well as the
variance of the Gaussian likelihood function. The notation ∼ Gamma(1.0, 1.0) indicates
that the model sets a prior distribution Gamma(1.0, 1.0) over the likelihood parameter
σ and infers its posterior distribution from the data.

5.2.1 Results for the sin10-s03 dataset

This section presents our results for the sin10-s03 dataset. We start by presenting the

training curves for the models in figure 5.4. We present further evaluation metrics in

47

table 5.12. Our metrics for summarized predictive uncertainty are presented in table 5.13

and our metrics for summarized weight uncertainty are presented in table 5.14.

48

(a)

(b) (c)

(d) (e)

Figure 5.4: Study 2 - Training curves for models trained on the sin10-s03 dataset. Figure
5.4a shows the elbo loss at each epoch. Figures 5.4b and 5.4c show the RMSE metric for
train and validation data, recorded every 50 epochs. Figures 5.4d and 5.4e show the log-
likelihood metric for train and validation data, recorded every 50 epochs. The curves are
averaged over 10 independent runs, and the error bars show a confidence interval of 2∗SD
(2 times the standard deviation) to show the differences between random initializations.
The y-axis is log-scaled.

49

(a) Train data

Model σ RMSE MAE LL

sin10-3x256-s03 0.3±0.0 0.37±0.02 0.29±0.02 -0.5±0.04
sin10-3x256-sl 0.75±0.15 0.53±0.11 0.42±0.08 -0.98±0.19
sin10-2x128-s03 0.3±0.0 0.45±0.05 0.36±0.04 -0.66±0.1
sin10-2x128-sl 0.66±0.07 0.51±0.04 0.41±0.03 -0.88±0.08
sin10-1x64-s03 0.3±0.0 2.46±0.12 1.86±0.07 -28.7±2.71
sin10-1x64-sl 2.79±0.2 2.61±0.09 1.96±0.06 -2.39±0.03
sin10-linear-s03 0.3±0.0 6.68±0.01 5.41±0.01 -247.02±0.45
sin10-linear-sl 6.66±0.42 6.68±0.01 5.41±0.01 -3.32±0.0

(b) In domain data

Model σ RMSE MAE LL

sin10-3x256-s03 0.3±0.0 0.58±0.06 0.45±0.04 -0.88±0.11
sin10-3x256-sl 0.75±0.15 0.59±0.12 0.47±0.09 -1.02±0.2
sin10-2x128-s03 0.3±0.0 1.21±0.61 0.93±0.46 -2.71±1.96
sin10-2x128-sl 0.66±0.07 0.6±0.05 0.47±0.04 -0.95±0.08
sin10-1x64-s03 0.3±0.0 2.8±0.11 2.09±0.07 -36.88±2.94
sin10-1x64-sl 2.79±0.2 2.85±0.08 2.12±0.05 -2.46±0.03
sin10-linear-s03 0.3±0.0 6.69±0.01 5.46±0.01 -247.76±0.5
sin10-linear-sl 6.66±0.42 6.69±0.01 5.46±0.01 -3.32±0.0

(c) Out of domain data

Model Likelihood σ RMSE MAE LL

sin10-3x256-s03 0.3±0.0 34.86±3.53 28.65±3.03 -28.01±5.05
sin10-3x256-sl 0.75±0.15 31.45±5.8 26.33±4.51 -6.63±1.63
sin10-2x128-s03 0.3±0.0 25.43±8.82 20.52±7.22 -81.47±25.47
sin10-2x128-sl 0.66±0.07 37.95±3.56 30.97±3.03 -14.03±2.81
sin10-1x64-s03 0.3±0.0 21.03±1.1 17.3±0.92 -1264.77±147.21
sin10-1x64-sl 2.79±0.2 21.26±0.92 17.48±0.78 -17.99±1.63
sin10-linear-s03 0.3±0.0 18.94±0.02 15.39±0.01 -1963.27±3.41
sin10-linear-sl 6.66±0.42 18.84±0.01 15.31±0.01 -6.77±0.01

Table 5.12: Study 2 - Table of results for models trained on the sin10-s03 dataset. The
table shows the Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and
log-likelihood (LL) evaluation metrics for each model. Subtables 5.12a, 5.12b and 5.12c
show the results for the train, in-domain test, and out-of-domain test data, respectively.
The results are averaged over 10 independent runs, and presented as the mean value
± 2 ∗ SD (2 times standard deviation) in order to highlight the differences between
random initializations.

50

(a) Train data

Model Likelihood σ
Mean Predictive

SD
Min Predictive

SD
Max Predictive

SD

sin10-3x256-s03 0.3±0.0 0.47±0.03 0.32±0.0 1.3±0.14
sin10-3x256-sl 0.75±0.15 0.9±0.17 0.76±0.14 2.04±0.35
sin10-2x128-s03 0.3±0.0 0.53±0.07 0.35±0.03 0.97±0.1
sin10-2x128-sl 0.66±0.07 0.78±0.07 0.67±0.06 1.5±0.2
sin10-1x64-s03 0.3±0.0 0.32±0.0 0.3±0.0 0.35±0.0
sin10-1x64-sl 2.79±0.2 2.96±0.09 2.8±0.09 3.21±0.13
sin10-linear-s03 0.3±0.0 0.3±0.0 0.29±0.0 0.31±0.0
sin10-linear-sl 6.66±0.42 6.67±0.0 6.49±0.05 6.85±0.03

(b) In domain data

Model Likelihood σ
Mean Predictive

SD
Min Predictive

SD
Max Predictive

SD

sin10-3x256-s03 0.3±0.0 0.47±0.03 0.32±0.01 1.28±0.19
sin10-3x256-sl 0.75±0.15 0.91±0.18 0.76±0.14 2.03±0.33
sin10-2x128-s03 0.3±0.0 0.53±0.07 0.35±0.03 0.95±0.07
sin10-2x128-sl 0.66±0.07 0.78±0.07 0.67±0.06 1.46±0.15
sin10-1x64-s03 0.3±0.0 0.32±0.0 0.3±0.0 0.35±0.0
sin10-1x64-sl 2.79±0.2 2.96±0.09 2.8±0.08 3.2±0.11
sin10-linear-s03 0.3±0.0 0.3±0.0 0.29±0.0 0.31±0.0
sin10-linear-sl 6.66±0.42 6.67±0.0 6.49±0.03 6.84±0.03

(c) Out of domain data

Model Likelihood σ
Mean Predictive

SD
Min Predictive

SD
Max Predictive

SD

sin10-3x256-s03 0.3±0.0 5.01±0.46 2.57±0.27 8.51±1.03
sin10-3x256-sl 0.75±0.15 14.11±2.39 5.22±1.19 35.44±13.8
sin10-2x128-s03 0.3±0.0 2.1±0.67 1.17±0.16 5.86±4.6
sin10-2x128-sl 0.66±0.07 8.13±0.72 3.87±0.48 13.75±1.27
sin10-1x64-s03 0.3±0.0 0.42±0.01 0.36±0.01 0.49±0.02
sin10-1x64-sl 2.79±0.2 3.8±0.12 3.3±0.12 4.43±0.28
sin10-linear-s03 0.3±0.0 0.3±0.0 0.29±0.0 0.31±0.0
sin10-linear-sl 6.66±0.42 6.71±0.0 6.53±0.03 6.89±0.03

Table 5.13: Study 2 - Table of summarized predictive uncertainty for models trained
on the sin10-s03 dataset. Tables 5.13a, 5.13b and 5.13c show the results for the train,
in-domain test, and out-of-domain test data, respectively. The tables show the mean
uncertainty of all predictive distributions (Mean Predictive SD) for the given dataset,
as well as the minimum uncertainty (Min Predictive SD) and maximum uncertainty
(Max Predictive SD) of all predictive distributions for the given dataset. The results are
averaged over 10 independent runs, and presented as the mean value ± 2 ∗ SD (2 times
standard deviation) in order to highlight the differences between random initializations.

51

(a) Model weight data

Model Mean Weight SD Min Weight SD Max Weight SD

sin10-3x256-s03 0.87±0.02 0.0±0.0 1.02±0.02
sin10-3x256-sl 0.96±0.0 0.0±0.0 1.01±0.01
sin10-2x128-s03 0.21±0.17 0.0±0.0 1.0±0.01
sin10-2x128-sl 0.86±0.01 0.0±0.0 1.0±0.0
sin10-1x64-s03 0.0±0.0 0.0±0.0 0.01±0.0
sin10-1x64-sl 0.17±0.07 0.01±0.0 0.96±0.0
sin10-linear-s03 0.0±0.0 0.0±0.0 0.0±0.0
sin10-linear-sl 0.08±0.0 0.08±0.0 0.09±0.0

Table 5.14: Study 2 - Table of summarized weight uncertainty for models trained on the
sin10-s03 dataset. The table shows the mean uncertainty of all weight distributions in
the models (Mean Weight SD), as well as the minimum uncertainty (Min Weight SD)
and maximum uncertainty (Max Weight SD) of all weight distributions in the models.
The results are averaged over 10 independent runs, and presented as the mean value
± 2 ∗ SD (2 times standard deviation) in order to highlight the differences between
random initializations.

5.2.2 Results for the multisin10-s05 dataset

This section presents our results for the multisin10-s05 dataset. We start by presenting

the training curves for the models in figure 5.5. We present further evaluation metrics

in table 5.15. Our metrics for summarized predictive uncertainty are presented in table

5.16 and our metrics for summarized weight uncertainty are presented in table 5.17.

52

(a)

(b) (c)

(d) (e)

Figure 5.5: Study 2 - Training curves for models trained on the multisin10-s05 dataset.
Figure 5.5a shows the elbo loss at each epoch. Figures 5.5b and 5.5c show the RMSE
metric for train and validation data, recorded every 50 epochs. Figures 5.5d and 5.5e
show the log-likelihood metric for train and validation data, recorded every 50 epochs.
The curves are averaged over 10 independent runs, and the error bars show a confidence
interval of 2∗SD (2 times the standard deviation) to show the differences between random
initializations. The y-axis is log-scaled.

53

(a) Train data

Model Likelihood σ RMSE MAE LL

multisin10-3x64-s05 0.5±0.0 0.56±0.01 0.45±0.01 -0.85±0.02
multisin10-3x64-sl 0.69±0.05 0.61±0.02 0.48±0.02 -0.97±0.03
multisin10-2x32-s05 0.5±0.0 0.59±0.01 0.47±0.01 -0.9±0.03
multisin10-2x32-sl 0.69±0.05 0.62±0.03 0.5±0.03 -0.98±0.05
multisin10-1x16-s05 0.5±0.0 1.19±0.04 0.94±0.03 -2.96±0.18
multisin10-1x16-sl 1.23±0.11 1.2±0.08 0.95±0.06 -1.6±0.06
multisin10-linear-s05 0.5±0.0 6.73±0.0 5.29±0.0 -90.67±0.13
multisin10-linear-sl 6.71±0.42 6.73±0.0 5.29±0.0 -3.33±0.0

(b) In domain data

Model Likelihood σ RMSE MAE LL

multisin10-3x64-s05 0.5±0.0 0.68±0.02 0.54±0.02 -1.05±0.04
multisin10-3x64-sl 0.69±0.05 0.69±0.02 0.54±0.01 -1.05±0.02
multisin10-2x32-s05 0.5±0.0 0.7±0.01 0.56±0.01 -1.13±0.03
multisin10-2x32-sl 0.69±0.05 0.71±0.03 0.56±0.02 -1.08±0.04
multisin10-1x16-s05 0.5±0.0 1.25±0.04 0.99±0.03 -3.23±0.21
multisin10-1x16-sl 1.23±0.11 1.26±0.08 1.0±0.06 -1.65±0.07
multisin10-linear-s05 0.5±0.0 6.8±0.01 5.29±0.01 -92.44±0.21
multisin10-linear-sl 6.71±0.42 6.8±0.01 5.29±0.01 -3.34±0.0

(c) Out of domain data

Model Likelihood σ RMSE MAE LL

multisin10-3x64-s05 0.5±0.0 11.96±0.41 9.56±0.33 -33.61±5.05
multisin10-3x64-sl 0.69±0.05 11.66±0.29 9.32±0.25 -17.3±6.98
multisin10-2x32-s05 0.5±0.0 11.71±0.34 9.36±0.3 -75.21±8.53
multisin10-2x32-sl 0.69±0.05 11.9±0.3 9.54±0.25 -44.7±5.98
multisin10-1x16-s05 0.5±0.0 9.6±0.1 7.67±0.09 -146.72±3.34
multisin10-1x16-sl 1.23±0.11 9.59±0.24 7.67±0.19 -25.42±2.23
multisin10-linear-s05 0.5±0.0 19.41±0.02 15.67±0.02 -743.57±1.57
multisin10-linear-sl 6.71±0.42 19.41±0.02 15.67±0.02 -6.95±0.01

Table 5.15: Study 2 - Table of results for models trained on the multisin10-s05 dataset.
The table shows the Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and
log-likelihood (LL) evaluation metrics for each model. Subtables 5.15a, 5.15b and 5.15c
show the results for the train, in-domain test, and out-of-domain test data, respectively.
The results are averaged over 10 independent runs, and presented as the mean value
± 2 ∗ SD (2 times standard deviation) in order to highlight the differences between
random initializations.

54

(a) Train data

Model Likelihood σ
Mean Predictive

SD
Min Predictive

SD
Max Predictive

SD

multisin10-3x64-s05 0.5±0.0 0.58±0.01 0.5±0.0 0.86±0.08
multisin10-3x64-sl 0.69±0.05 0.76±0.02 0.69±0.01 1.08±0.1
multisin10-2x32-s05 0.5±0.0 0.56±0.0 0.5±0.0 0.7±0.04
multisin10-2x32-sl 0.69±0.05 0.76±0.03 0.69±0.03 0.91±0.04
multisin10-1x16-s05 0.5±0.0 0.51±0.0 0.49±0.0 0.53±0.0
multisin10-1x16-sl 1.23±0.11 1.25±0.08 1.21±0.08 1.3±0.08
multisin10-linear-s05 0.5±0.0 0.5±0.0 0.49±0.0 0.51±0.0
multisin10-linear-sl 6.71±0.42 6.72±0.0 6.54±0.05 6.91±0.03

(b) In domain data

Model Likelihood σ
Mean Predictive

SD
Min Predictive

SD
Max Predictive

SD

multisin10-3x64-s05 0.5±0.0 0.59±0.01 0.5±0.0 0.9±0.08
multisin10-3x64-sl 0.69±0.05 0.76±0.02 0.69±0.01 1.14±0.1
multisin10-2x32-s05 0.5±0.0 0.56±0.0 0.5±0.0 0.7±0.03
multisin10-2x32-sl 0.69±0.05 0.76±0.03 0.69±0.03 0.92±0.05
multisin10-1x16-s05 0.5±0.0 0.51±0.0 0.49±0.0 0.53±0.0
multisin10-1x16-sl 1.23±0.11 1.25±0.08 1.21±0.08 1.3±0.09
multisin10-linear-s05 0.5±0.0 0.5±0.0 0.49±0.0 0.51±0.0
multisin10-linear-sl 6.71±0.42 6.72±0.0 6.55±0.03 6.9±0.03

(c) Out of domain data

Model Likelihood σ
Mean Predictive

SD
Min Predictive

SD
Max Predictive

SD

multisin10-3x64-s05 0.5±0.0 1.46±0.13 0.86±0.11 2.45±0.46
multisin10-3x64-sl 0.69±0.05 2.06±0.5 1.24±0.18 4.42±2.48
multisin10-2x32-s05 0.5±0.0 0.96±0.05 0.67±0.05 1.46±0.3
multisin10-2x32-sl 0.69±0.05 1.27±0.07 0.91±0.05 1.83±0.15
multisin10-1x16-s05 0.5±0.0 0.56±0.0 0.52±0.01 0.61±0.0
multisin10-1x16-sl 1.23±0.11 1.38±0.09 1.28±0.09 1.51±0.09
multisin10-linear-s05 0.5±0.0 0.5±0.0 0.49±0.0 0.52±0.0
multisin10-linear-sl 6.71±0.42 6.76±0.0 6.58±0.03 6.94±0.03

Table 5.16: Study 2 - Table of summarized predictive uncertainty for models trained on
the multisin10-s05 dataset. Tables 5.16a, 5.16b and 5.16c show the results for the train,
in-domain test, and out-of-domain test data, respectively. The tables show the mean
uncertainty of all predictive distributions (Mean Predictive SD) for the given dataset,
as well as the minimum uncertainty (Min Predictive SD) and maximum uncertainty
(Max Predictive SD) of all predictive distributions for the given dataset. The results are
averaged over 10 independent runs, and presented as the mean value ± 2 ∗ SD (2 times
standard deviation) to highlight the differences between random initializations.

55

(a) Model weight data

Model Mean Weight SD Min Weight SD Max Weight SD

multisin10-3x64-s05 0.69±0.04 0.0±0.0 1.0±0.0
multisin10-3x64-sl 0.81±0.02 0.0±0.0 1.0±0.0
multisin10-2x32-s05 0.08±0.04 0.0±0.0 1.0±0.01
multisin10-2x32-sl 0.28±0.1 0.0±0.0 1.0±0.0
multisin10-1x16-s05 0.01±0.0 0.0±0.0 0.01±0.01
multisin10-1x16-sl 0.02±0.0 0.01±0.0 0.04±0.01
multisin10-linear-s05 0.0±0.0 0.0±0.0 0.01±0.0
multisin10-linear-sl 0.06±0.0 0.05±0.0 0.09±0.0

Table 5.17: Study 2 - Table of summarized weight uncertainty for models trained on
the multisin10-s05 dataset. The table shows the mean uncertainty of all weight dis-
tributions in the models (Mean Weight SD), as well as the minimum uncertainty (Min
Weight SD) and maximum uncertainty (Max Weight SD) of all weight distributions in
the models. The results are averaged over 10 independent runs, and presented as the
mean value ± 2 ∗ SD (2 times standard deviation) to highlight the differences between
random initializations.

5.2.3 Results for the multisin20-s05 dataset

This section presents our results for the multisin20-s05 dataset. We start by presenting

the training curves for the models in figure 5.6. We present further evaluation metrics

in table 5.18. Our metrics for summarized predictive uncertainty are presented in table

5.19 and our metrics for summarized weight uncertainty are presented in table 5.20.

56

(a)

(b) (c)

(d) (e)

Figure 5.6: Study 2 - Training curves for models trained on the multisin20-s05 dataset.
Figure 5.6a shows the elbo loss at each epoch. Figures 5.6b and 5.6c show the RMSE
metric for train and validation data, recorded every 50 epochs. Figures 5.6d and 5.6e
show the Log Likelihood metric for train and validation data, recorded every 50 epochs.
The curves are averaged over 5 independent runs, and the error bars show a confidence
interval of 2∗SD (2 times the standard deviation) to show the differences between random
initializations. The y-axis is log-scaled.

57

(a) Train data

Model Likelihood σ RMSE MAE LL

multisin20-3x512-s05 0.5±0.0 0.52±0.01 0.41±0.01 -0.82±0.02
multisin20-3x512-sl 1.33±0.25 0.87±0.11 0.69±0.08 -1.56±0.18
multisin20-2x256-s05 0.5±0.0 0.58±0.01 0.47±0.01 -0.89±0.01
multisin20-2x256-sl 0.98±0.06 0.8±0.02 0.64±0.01 -1.29±0.01
multisin20-1x128-s05 0.5±0.0 0.89±0.01 0.71±0.01 -1.6±0.01
multisin20-1x128-sl 1.08±0.07 0.94±0.01 0.74±0.01 -1.41±0.01
multisin20-linear-s05 0.5±0.0 9.85±0.01 7.8±0.01 -193.94±0.58
multisin20-linear-sl 9.79±0.61 9.85±0.01 7.8±0.01 -3.71±0.0

(b) In domain data

Model Likelihood σ RMSE MAE LL

multisin20-3x512-s05 0.5±0.0 0.85±0.02 0.68±0.01 -1.33±0.03
multisin20-3x512-sl 1.33±0.25 1.08±0.13 0.85±0.1 -1.63±0.17
multisin20-2x256-s05 0.5±0.0 0.92±0.01 0.74±0.01 -1.51±0.03
multisin20-2x256-sl 0.98±0.06 1.01±0.03 0.8±0.02 -1.44±0.02
multisin20-1x128-s05 0.5±0.0 1.22±0.02 0.96±0.01 -2.68±0.06
multisin20-1x128-sl 1.08±0.07 1.2±0.01 0.95±0.01 -1.6±0.01
multisin20-linear-s05 0.5±0.0 9.96±0.01 7.86±0.01 -198.11±0.31
multisin20-linear-sl 9.79±0.61 9.96±0.01 7.86±0.01 -3.72±0.0

(c) Out of domain data

Model Likelihood σ RMSE MAE LL

multisin20-3x512-s05 0.5±0.0 15.6±2.6 12.45±2.04 -4.97±0.4
multisin20-3x512-sl 1.33±0.25 15.19±2.49 12.09±1.88 -5.56±2.99
multisin20-2x256-s05 0.5±0.0 16.02±0.28 12.76±0.26 -55.42±8.37
multisin20-2x256-sl 0.98±0.06 15.16±0.25 12.07±0.21 -31.94±1.55
multisin20-1x128-s05 0.5±0.0 13.37±0.07 10.7±0.07 -127.69±1.19
multisin20-1x128-sl 1.08±0.07 13.35±0.07 10.67±0.08 -29.59±0.45
multisin20-linear-s05 0.5±0.0 28.35±0.02 22.55±0.02 -1585.62±2.8
multisin20-linear-sl 9.79±0.61 28.35±0.02 22.55±0.02 -7.34±0.01

Table 5.18: Study 2 - Table of results for models trained on the multisin20-s05 dataset.
The table shows the Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and
log-likelihood (LL) evaluation metrics for each model. Subtables 5.18a, 5.18b and 5.18c
show the results for the train, in-domain test, and out-of-domain test data, respectively.
The results are averaged over 10 independent runs, and presented as the mean value
± 2 ∗ SD (2 times standard deviation) in order to highlight the differences between
random initializations.

58

(a) Train data

Model Likelihood σ
Mean Predictive

SD
Min Predictive

SD
Max Predictive

SD

multisin20-3x512-s05 0.5±0.0 0.67±0.01 0.52±0.01 1.7±0.32
multisin20-3x512-sl 1.33±0.25 1.67±0.33 1.39±0.28 4.68±2.8
multisin20-2x256-s05 0.5±0.0 0.63±0.01 0.52±0.01 0.85±0.04
multisin20-2x256-sl 0.98±0.06 1.12±0.01 1.01±0.01 1.36±0.19
multisin20-1x128-s05 0.5±0.0 0.56±0.0 0.52±0.0 0.62±0.01
multisin20-1x128-sl 1.08±0.07 1.21±0.01 1.11±0.01 1.33±0.01
multisin20-linear-s05 0.5±0.0 0.5±0.0 0.49±0.0 0.52±0.0
multisin20-linear-sl 9.79±0.61 9.81±0.01 9.53±0.03 10.08±0.04

(b) In domain data

Model Likelihood σ
Mean Predictive

SD
Min Predictive

SD
Max Predictive

SD

multisin20-3x512-s05 0.5±0.0 0.66±0.01 0.53±0.01 1.4±0.23
multisin20-3x512-sl 1.33±0.25 1.67±0.3 1.4±0.29 3.52±1.28
multisin20-2x256-s05 0.5±0.0 0.63±0.01 0.52±0.01 0.87±0.13
multisin20-2x256-sl 0.98±0.06 1.12±0.01 1.01±0.01 1.28±0.03
multisin20-1x128-s05 0.5±0.0 0.56±0.0 0.52±0.0 0.62±0.01
multisin20-1x128-sl 1.08±0.07 1.21±0.01 1.12±0.02 1.31±0.01
multisin20-linear-s05 0.5±0.0 0.5±0.0 0.49±0.0 0.51±0.0
multisin20-linear-sl 9.79±0.61 9.81±0.01 9.54±0.07 10.07±0.05

(c) Out of domain data

Model Likelihood σ
Mean Predictive

SD
Min Predictive

SD
Max Predictive

SD

multisin20-3x512-s05 0.5±0.0 57.93±23.13 19.59±8.45 150.58±54.83
multisin20-3x512-sl 1.33±0.25 32.91±94.77 10.77±27.2 121.73±320.92
multisin20-2x256-s05 0.5±0.0 1.54±0.15 1.17±0.08 2.3±0.33
multisin20-2x256-sl 0.98±0.06 1.93±0.02 1.65±0.04 4.43±1.18
multisin20-1x128-s05 0.5±0.0 0.84±0.0 0.74±0.01 0.95±0.02
multisin20-1x128-sl 1.08±0.07 1.77±0.02 1.56±0.02 2.02±0.02
multisin20-linear-s05 0.5±0.0 0.5±0.0 0.49±0.0 0.52±0.0
multisin20-linear-sl 9.79±0.61 9.87±0.02 9.62±0.04 10.12±0.02

Table 5.19: Study 2 - Table of summarized predictive uncertainty for models trained on
the multisin20-s05 dataset. Tables 5.19a, 5.19b and 5.19c show the results for the train,
in-domain test, and out-of-domain test data, respectively. The tables show the mean
uncertainty of all predictive distributions (Mean Predictive SD) for the given dataset,
as well as the minimum uncertainty (Min Predictive SD) and maximum uncertainty
(Max Predictive SD) of all predictive distributions for the given dataset. The results are
averaged over 10 independent runs, and presented as the mean value ± 2 ∗ SD (2 times
standard deviation) to highlight the differences between random initializations.

59

(a) Model weight data

Model Mean Weight SD Min Weight SD Max Weight SD

multisin20-3x512-s05 0.97±0.0 0.0±0.0 1.01±0.0
multisin20-3x512-sl 0.98±0.0 0.0±0.0 1.0±0.01
multisin20-2x256-s05 0.9±0.01 0.0±0.0 1.0±0.0
multisin20-2x256-sl 0.95±0.0 0.0±0.0 1.0±0.0
multisin20-1x128-s05 0.01±0.0 0.0±0.0 0.05±0.01
multisin20-1x128-sl 0.13±0.03 0.0±0.0 0.99±0.0
multisin20-linear-s05 0.0±0.0 0.0±0.0 0.0±0.0
multisin20-linear-sl 0.06±0.0 0.06±0.0 0.1±0.0

Table 5.20: Study 2 - Table of summarized weight uncertainty for models trained on
the multisin20-s05 dataset. The table shows the mean uncertainty of all weight dis-
tributions in the models (Mean Weight SD), as well as the minimum uncertainty (Min
Weight SD) and maximum uncertainty (Max Weight SD) of all weight distributions in
the models. The results are averaged over 10 independent runs, and presented as the
mean value ± 2 ∗ SD (2 times standard deviation) to highlight the differences between
random initializations.

60

Chapter 6

Discussion

6.1 Study 1

After observing the training curves in figures 5.1, 5.2, and 5.3, we see that all models

seem to converge very consistently to the same elbo value, independently of random

initialization. While this generally is a good sign and indicates that the models are not

getting stuck in local minima, it could easily result from our prior choice being very

restrictive and not allowing the models to explore the parameter space. We can also

see that the Elbo curves seem to have little to no noise during optimization. While the

reader should note that the y-axis is log normalized, the lack of noise is still surprising.

We could assign this to the fact that we take several samples of our Elbo estimate and

our large batch size of 512. The lack of noise could also result from our hyperparameter

choices being too restrictive and not allowing the model to explore the parameter space.

While we have not seen any evidence of this in our experiments, we should be aware of

this possibility when discussing our results further.

Another oddity we observe in our training curves is that the model with a high

fixed likelihood σ converges to a lower elbo value than the model with the optimal fixed

likelihood σ, at least for the larger models (This is not the case for the smaller models

used for the multisin10 dataset). It is counterintuitive that a worse-performing model

should converge to a lower elbo value than a better-performing one. This indicates that,

at least for the larger models, the prior has a higher influence on the elbo value than the

likelihood. If the larger models favor regularization from the prior overfitting the data,

then it makes sense that the model with a higher likelihood variance converges to a lower

61

Elbo value. A solution could be to tweak the KL scaling factor to favor the likelihood

more, which could lead to better predictive accuracy. However, Predictive accuracy is

not the focus of this study, and we do not believe this oddity will invalidate our results.

Looking at the RMSE curves and the evaluation metrics in tables 5.2, 5.5, and 5.8,

we see indications of our hypothesis being correct. Viewing the RMSE and MAE values,

we see that the models with a small fixed likelihood σ consistently achieve the lowest

error on the train data by a large margin while performing horribly on in-domain test

data. This is a clear indication of overfitting. Similarly, the models with a large fixed

likelihood σ consistently achieve the highest error on the train data, failing to fit the

data properly. We also see very similar performance on the in-domain test data, which

clearly indicates underfitting. Examining the weight uncertainty in tables 5.4, 5.7 and

5.10, we can see that the average weight uncertainty (Mean Weight SD) is much lower

for the models with a small fixed likelihood σ than for the other models, indicating that

too small values of σ also leads to overconfidence in the posterior. Viewing the average

weight uncertainty of the models with a large fixed σ, we do not see a large increase in

weight uncertainty. This is not exactly unexpected, as underfitting does not directly lead

to higher weight uncertainty. Also, since the model is unable to fit the data properly,

it has likely only been able to optimize the complexity cost of the Elbo by keeping the

posterior distribution as close as possible to the original prior.

Once again, examining the evaluation metrics, we see that the models with a fixed

”optimal” likelihood σ score the lowest RMSE and MAE values on both train and in

domain test data, as expected. What is interesting, however, is that the models with an

inferred likelihood σ perform comparably to the models with a fixed ”optimal” likelihood

σ. While the error on train data is slightly worse, the RMSE, MAE, and LL values on

in-domain test data are almost equivalent. This is a promising result, as it indicates that

one can infer the likelihood variance from the data with little to no loss in performance.

As one would expect, all models for all datasets score very high RMSE and MAE

values on out-of-domain test data. While poor out-of-domain performance is expected, a

Bayesian neural network is also expected to be able to express high uncertainty in such

cases. Examining the predictive uncertainty estimates presented in tables 5.3, 5.6, and

5.9, we can see that the models with a small fixed likelihood σ have low average predictive

uncertainties (Mean Predictive SD), and are therefore very confident in their predictions,

even on out of domain data. We can also see that the models with inferred likelihood

σ are able to express higher uncertainty on out-of-domain data than the models with a

fixed ”optimal” likelihood σ.

62

We must also examine an oddity we observed in the sin10 dataset. Looking at the

evaluation metrics for models trained on the sin10 dataset in table 5.2, we see that the

models with a small fixed likelihood σ and a high fixed likelihood σ score significantly

lower RMSE and MAE values on out of domain data than the two other models. This

is highly unexpected. After examining samples of the predictive distributions for the

models, we believe that this oddity is a result of a quirk in the data. The sin10 dataset

combines differently scaled sine waves, all centered around 0. Consequently, the y-space

of the dataset is limited to a set interval around 0 and is identical for in-domain and out-

of-domain data. The underfitted model always seems to output a predictive distribution

centered around 0, which covers the entire y-space. Because of this, it often predicts

values close to 0 and within the y-space of the out-of-domain data. The overfitted model,

on the other hand, has a very narrow predictive distribution. However, it always predicts

a value within the y-space of the train data, which is also the y-space of the out-of-domain

data. We can see that while the overfitted model has a lower RMSE on the out-of-domain

data, it still has a very low log-likelihood, which tells us that the predictive distribution

seldom overlaps with the true data distribution. While the out-of-domain RMSE values

are strange and unexpected in this case, we believe it to be a quirk of the dataset and

not descriptive of the model’s ability to generalize to out-of-domain data.

6.2 Study 2

Just like the previous experiments, when examining the Elbo curves in figures 5.4a, 5.5a

and 5.6a, we see that the models converge consistently, with little variance between

runs. This is a good indication that our models converge to the same solution and that

our results are consistent across random initializations. However, as with the previous

experiment, we should be wary that the lack of noise in the Elbo curves could result from

our models being too restricted to explore the full space of possible solutions.

Examining the evaluation metrics in tables 5.12, 5.15 and 5.18, we can observe that

the smaller misspecified models produce predictions with high RMSE and MAE values

across all datasets, which is to be expected. Looking closer at the log-likelihood (LL)

metrics, we can see that the smaller models with a fixed σ have very low log-likelihood

values and high error, indicating that the model produces wrong predictions with high

confidence. The smaller models with a learnable σ, however, have much higher log-

likelihood values, indicating that while the model produces wrong predictions, it also

produces a higher uncertainty in the predictions, leading to more overlap with the true

63

data distribution and thus a higher log-likelihood. We can see the reason for the higher

uncertainty by examining the likelihood σ values. For the smaller models with a learnable

σ, the likelihood σ values have scaled to a high value, growing higher as the number of

parameters decreases.

Examining the summarized weight uncertainty in tables 5.14, 5.17 and 5.20. We can

see that the mean weight uncertainty (Mean Weight SD) falls drastically as the number

of parameters decreases. While a reduction in uncertainty is expected as the models

grow smaller just from the fact that there are fewer weights to be uncertain about, the

maximum weight uncertainty falls to near zero for the smallest models. This is a clear

indication that we have created overconfident posterior distributions. Further examining

the summarized predictive uncertainty in tables 5.13, 5.16 and 5.19, we can see that the

mean predictive uncertainty (Mean Predictive SD), minimum predictive uncertainty (Min

Predictive SD) and maximum predictive uncertainty (Max Predictive SD) for the smaller

misspecified models vary little between train, in-domain test and out-of-domain test data.

We can also see that almost all of the uncertainty in the predictive distributions of the

smaller models stem from the σ values in the likelihood, which makes sense considering

the low weight uncertainty. This also means that, at least for the very misspecified

models, the learnable σ values have aided significantly in expressing a higher uncertainty

more in line with the error in their predictions.

On another note, examining once again the evaluation metrics we can see that for the

multisin10 and multisin20 datasets, the first reduction in model size (from multisin10-

3x64-* to multisin10-2x32-* and from multisin20-3x512-* to multisin20-2x256-*) con-

sistently lead to very little loss in performance. This is unexpected and could point to

a shortcoming in our model selection. Since we can obtain almost the same result with

a significantly smaller model, we could have saved much computing time had we used

these models from the start. It would also have made training with MCMC much more

feasible. However, looking closer at the models for the sin10 dataset in table 5.12, we can

see that the results differ slightly. The sin10-2x128-s03 model with a fixed σ performs

noticeably worse than the sin10-3x256-s03 model on the train data, and much worse on

the in-domain data, with a high variance between random initializations. This issue is

not present in the sin10-2x128-sl model with a learnable σ, which performs almost the

same as the sin10-3x256-s03 and sin10-3x256-sl models. This could indicate that the

learnable σ helps to stabilize the training of the smaller models, at least with our setup.

However, seeing as this result is not present in the other two datasets, it could easily be

another quirk of this dataset, which we have seen in previous experiments. Therefore, we

are weary of drawing conclusions from this particular result.

64

Chapter 7

Conclusion

In this thesis, we have explored regression with Bayesian neural networks and the impact

of the likelihood function on the performance of the model. More specifically, we have

investigated the Gaussian likelihood function commonly used in regression tasks and the

impact of the variance parameter σ on the resulting posterior and predictive distributions.

We have also investigated the feasibility of setting a prior over the σ parameter and

inferring its probability distribution from the data.

Through experiments where we have trained several Bayesian neural network regres-

sors using variational inference on three different synthetic datasets, we have showcased

the importance of a well-specified Gaussian likelihood function. Our results indicate that

very narrow Gaussian likelihood functions parameterized by a low σ parameter leads to

overfitting. Similarly, very wide Gaussian likelihood functions parameterized by a high σ

parameter show signs of underfitting.

Additionally, our results show that models that inferred the σ parameter from the

data performed on par when compared with models parameterized with an ”optimal”

fixed σ parameter, set to the true noise level of the data. This indicates that the inferred

σ parameter is a good alternative, removing the need to set the σ parameter manually

while causing little to no loss in performance.

Furthermore, through additional experiments, we have gained further insight into how

the inferred σ parameter affects the posterior distribution and the uncertainty estimates

of misspecified Bayesian neural networks. Our results indicate that misspecified Bayesian

neural networks, at least when trained using variational inference, struggle to express any

meaningful uncertainty in their weight posterior distributions. Therefore, misspecified

65

models with a fixed σ parameter tend to produce overconfident predictive distributions.

However, when the σ parameter is inferred from the data, its value scales to higher

values for misspecified models, which in turn helps compensate for their overconfident

uncertainty estimates. For Bayesian neural networks, knowing when we do not know is

just as important as knowing, and the inferred σ parameter helps us achieve this. This

property is indeed exciting and warrants further investigation.

It is important to note that our experiments are far from perfect, and our study has

some limitations, which we will discuss in the next section. We want to reiterate that

our findings are not conclusive. Bayesian neural networks are intricate and challenging to

train and tune, and our experiments are limited in scope and size. Furthermore, creating

a stable environment for our study proved difficult, considering the stochastic nature of

Bayesian neural networks and their sensitivity to hyperparameters. We have done our best

to create a stable environment for our experiments, but we can not guarantee that some

unknown factor will not affect our results. In order to draw any meaningful conclusions

about our findings, we would need to conduct more experiments and gather more data.

Most importantly, we would need to conduct experiments on more complex models and

datasets, as well as other types of data functions and prior distributions, to see if our

results generalize to other setups than our own. Additionally, we would also need to run

the experiments using MCMC sampling. Unlike variational inference, which only creates

a simplified approximation of the posterior, MCMC sampling lets us sample directly

from the posterior distribution. Therefore, we can assume that MCMC sampling would

produce models with more expressive posterior distributions, which could challenge some

of our findings. Unfortunately, we were unable to do this due to complications during

development and the time and computational resources required to run MCMC sampling.

We can, however, say that our findings do give further insight into the Gaussian

likelihood function and its impact on model performance and learning, as well as the

feasibility of inferring the σ parameter from the data and the possible benefits of doing

so. While our findings are inconclusive, we have laid the groundwork for further research

and understanding of this topic.

7.1 Limitations

MCMC Implementation and Missing Experiments

Originally, we intended to run all experiments using Variational Inference and MCMC.

However, due to problems with our selected MCMC implementation and time constraints,

66

we could only run the experiments using Variational Inference. Our issues stemmed from

compatibility issues between the Pyro MCMC implementation and our compute server.

We also needed more flexibility in the Pyro MCMC implementation, which made it

difficult to run the experiments we wanted to run. We could have avoided many of these

issues if we had instead used the Numpyro MCMC framework, a more recent MCMC

framework built on top of JAX and Numpy. However, this would have required us to

rewrite much of the TYXE codebase, which we decided was not worth the effort given

the time constraints.

Imperfect metrics for evaluating model uncertainty and assumptions about

the posterior distribution from limited data

The evaluation metrics we have used to evaluate the uncertainties of our model posteriors

are simple averages of the uncertainty of individual weight parameters. While the metric

offers some insight into the uncertainty of the model, it is a limited view of the true model

uncertainty. A more thorough analysis of the posterior distribution would be required

to draw any meaningful conclusions, but this proves to be a significant challenge due

to the high dimensional nature of the Bayesian neural network posterior distribution.

Many of the conclusions we have drawn in this thesis are based on a combination of this

limited analysis of the posterior distribution and our other metrics primarily based on

the predictive distribution.

While we can get some meaningful insight into the posterior by looking at the pre-

dictive distribution, it is important to note that we are making assumptions based on a

limited picture of the true posterior distribution. Therefore, we underline that our results

are inconclusive and that either a more thorough analysis of the posterior distribution or

more data is required to draw meaningful conclusions.

Small variances in predictive distribution uncertainty metrics

The metrics we have used to evaluate the uncertainty of the predictive distribution are

based on samples drawn from the predictive distribution. We have used 10,000 samples

from the predictive distribution to calculate the mean and standard deviation of the

predictive distribution. This number is insufficient to produce a perfect estimate, so

minor variances occur in the metrics. This is not especially noticeable or problematic

when comparing models to each other. It can, however, cause some strange results.

67

Generally, it causes the uncertainty metrics for the predictive distribution to be slightly

lower than expected. Because of this, we have been careful not to draw any conclusions

based on these metrics alone. Instead, we use them as an indication of overall predictive

uncertainty and as a supplement to our other metrics.

7.2 Future Work

As discussed in the previous section, some parts of our study were left out due to time

constraints and other issues.

Firstly, it would be interesting to see the results of our experiments using MCMC

sampling instead of variational inference. While stochastic variational inference is a very

efficient way of training Bayesian neural networks, it only creates a simplified approxima-

tion of the true posterior distribution. It would be interesting to see if our results persist

for MCMC inference, or if the observed results are limited to variational inference. The

NumPyro framework [55] is a more recent MCMC framework built on top of JAX and

Numpy, which boasts a more flexible and stable implementation than Pyro, as well as

significant improvements in speed and performance. Making use of the improvements in

NumPyro would make running similar experiments with MCMC sampling much more

feasible.

It would also be interesting to see similar experiments run on more models and dif-

ferent datasets. Seeing more data and results would help to draw more meaningful con-

clusions and to see if the results presented in this thesis generalize to other settings.

Similarly, experimenting with more complex model priors other than mean-field Gaus-

sian would also be interesting.

68

Bibliography

[1] Frank Rosenblatt. The perceptron: a probabilistic model for information storage

and organization in the brain. Psychological review, 65 6:386–408, 1958.

[2] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics

of Control, Signals and Systems, 2(4):303–314, Dec 1989. ISSN 1435-568X. doi:

10.1007/BF02551274. URL https://doi.org/10.1007/BF02551274.

[3] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-

sification with deep convolutional neural networks. In F. Pereira, C.J.

Burges, L. Bottou, and K.Q. Weinberger, editors, Advances in Neu-

ral Information Processing Systems, volume 25. Curran Associates, Inc.,

2012. URL https://proceedings.neurips.cc/paper files/paper/2012/file/

c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[4] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hier-

archies for accurate object detection and semantic segmentation, 2014.

[5] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look

once: Unified, real-time object detection, 2016.

[6] Chaochao Lu and Xiaoou Tang. Surpassing human-level face verification perfor-

mance on lfw with gaussianface, 2014.

[7] Florian Schroff, Dmitry Kalenichenko, and James Philbin. FaceNet: A unified em-

bedding for face recognition and clustering. In 2015 IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR). IEEE, jun 2015. doi: 10.1109/

cvpr.2015.7298682. URL https://doi.org/10.1109%2Fcvpr.2015.7298682.

[8] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of

word representations in vector space, 2013.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding, 2019.

69

https://doi.org/10.1007/BF02551274
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1109%2Fcvpr.2015.7298682

[10] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-

fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,

Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon

Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-

pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,

Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and

Dario Amodei. Language models are few-shot learners, 2020.

[11] W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu, and

G. Zweig. The microsoft 2016 conversational speech recognition system. In

2017 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP). IEEE, mar 2017. doi: 10.1109/icassp.2017.7953159. URL https:

//doi.org/10.1109%2Ficassp.2017.7953159.

[12] Jiwoong Choi, Dayoung Chun, Hyun Kim, and Hyuk-Jae Lee. Gaussian yolov3:

An accurate and fast object detector using localization uncertainty for autonomous

driving, 2019.

[13] Daniel Kermany, Michael Goldbaum, Wenjia Cai, Carolina Valentim, Hui-Ying

Liang, Sally Baxter, Alex McKeown, Ge Yang, Xiaokang Wu, Fangbing Yan, Justin

Dong, Made Prasadha, Jacqueline Pei, Magdalena Ting, Jie Zhu, Christina Li, Sierra

Hewett, Jason Dong, Ian Ziyar, and Kang Zhang. Identifying medical diagnoses and

treatable diseases by image-based deep learning. Cell, 172:1122–1131.e9, 02 2018.

doi: 10.1016/j.cell.2018.02.010.

[14] Victoria Mar and Peter Soyer. Artificial intelligence for melanoma diagnosis: How

can we deliver on the promise? Annals of oncology : official journal of the European

Society for Medical Oncology, 29, 05 2018. doi: 10.1093/annonc/mdy193.

[15] Dmitrii Bychkov, Nina Linder, Riku Turkki, Stig Nordling, Panu Kovanen, Clare

Verrill, Margarita Walliander, Mikael Lundin, Caj Haglund, and Johan Lundin.

Deep learning based tissue analysis predicts outcome in colorectal cancer. Scientific

Reports, 8, 02 2018. doi: 10.1038/s41598-018-21758-3.

[16] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.

J. Mach. Learn. Res., 15(1):1929–1958, jan 2014. ISSN 1532-4435.

[17] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight

uncertainty in neural networks, 2015.

70

https://doi.org/10.1109%2Ficassp.2017.7953159
https://doi.org/10.1109%2Ficassp.2017.7953159

[18] Radford M. Neal. Monte Carlo Implementation, pages 55–98. Springer New York,

New York, NY, 1996. ISBN 978-1-4612-0745-0. doi: 10.1007/978-1-4612-0745-0 3.

URL https://doi.org/10.1007/978-1-4612-0745-0 3.

[19] Ethan Goan and Clinton Fookes. Bayesian neural networks: An introduction and

survey. In Case Studies in Applied Bayesian Data Science, pages 45–87. Springer

International Publishing, 2020. doi: 10.1007/978-3-030-42553-1 3. URL https:

//doi.org/10.1007%2F978-3-030-42553-1 3.

[20] Matt Hoffman, David M. Blei, Chong Wang, and John Paisley. Stochastic variational

inference, 2013.

[21] Vincent Fortuin, Adrià Garriga-Alonso, Sebastian W. Ober, Florian Wenzel, Gunnar

Rätsch, Richard E. Turner, Mark van der Wilk, and Laurence Aitchison. Bayesian

neural network priors revisited, 2022.

[22] Daniele Silvestro and Tobias Andermann. Prior choice affects ability of bayesian

neural networks to identify unknowns, 2020.

[23] Mariia Vladimirova, Jakob Verbeek, Pablo Mesejo, and Julyan Arbel. Understanding

priors in Bayesian neural networks at the unit level. In Kamalika Chaudhuri and

Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference on

Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages

6458–6467. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/

vladimirova19a.html.

[24] Laurent Valentin Jospin, Hamid Laga, Farid Boussaid, Wray Buntine, and Mo-

hammed Bennamoun. Hands-on bayesian neural networks—a tutorial for deep learn-

ing users. IEEE Computational Intelligence Magazine, 17(2):29–48, may 2022. doi:

10.1109/mci.2022.3155327. URL https://doi.org/10.1109%2Fmci.2022.3155327.

[25] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent

in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, Dec

1943. ISSN 1522-9602. doi: 10.1007/BF02478259. URL https://doi.org/10.1007/

BF02478259.

[26] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016.

[27] Shiv Ram Dubey, Satish Kumar Singh, and Bidyut Baran Chaudhuri. Activation

functions in deep learning: A comprehensive survey and benchmark, 2022.

71

https://doi.org/10.1007/978-1-4612-0745-0_3
https://doi.org/10.1007%2F978-3-030-42553-1_3
https://doi.org/10.1007%2F978-3-030-42553-1_3
https://proceedings.mlr.press/v97/vladimirova19a.html
https://proceedings.mlr.press/v97/vladimirova19a.html
https://doi.org/10.1109%2Fmci.2022.3155327
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259

[28] Abien Fred Agarap. Deep learning using rectified linear units (relu), 2019.

[29] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning rep-

resentations by back-propagating errors. Nature, 323(6088):533–536, 1986. doi:

10.1038/323533a0. URL https://doi.org/10.1038/323533a0.

[30] Sebastian Ruder. An overview of gradient descent optimization algorithms.

ArXiv, abs/1609.04747, 2016. URL https://api.semanticscholar.org/CorpusID:

17485266.

[31] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,

2017.

[32] Daniele Silvestro and Tobias Andermann. Prior choice affects ability of bayesian

neural networks to identify unknowns, 2020.

[33] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste.

Sparsity in Deep Learning: Pruning and growth for efficient inference and training

in neural networks, 2021.

[34] Pavel Izmailov, Sharad Vikram, Matthew D. Hoffman, and Andrew Gordon Wilson.

What are bayesian neural network posteriors really like?, 2021.

[35] Jennifer A. Hoeting, David Madigan, Adrian E. Raftery, and Chris T. Volinsky.

Bayesian model averaging: A tutorial. Statistical Science, 14(4):382–401, 1999. ISSN

08834237. URL http://www.jstor.org/stable/2676803.

[36] Martin Magris and Alexandros Iosifidis. Bayesian learning for neural networks: an

algorithmic survey, 2022. URL https://arxiv.org/abs/2211.11865.

[37] Charles J. Geyer. Practical markov chain monte carlo. Statistical Science, 7(4):

473–483, 1992. ISSN 08834237. URL http://www.jstor.org/stable/2246094.

[38] Charles J. Geyer. Introduction to Markov Chain Monte Carlo, pages 3–48. CRC

Press, May 2011. ISBN 9781420079418. doi: 10.1201/b10905-2.

[39] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.

Teller, and Edward Teller. Equation of state calculations by fast computing ma-

chines. The Journal of Chemical Physics, 21(6):1087–1092, 1953. doi: 10.1063/

1.1699114. URL http://link.aip.org/link/?JCP/21/1087/1.

[40] W. K. Hastings. Monte carlo sampling methods using markov chains and their

applications. Biometrika, 57(1):97–109, 1970. ISSN 00063444. URL http:

//www.jstor.org/stable/2334940.

72

https://doi.org/10.1038/323533a0
https://api.semanticscholar.org/CorpusID:17485266
https://api.semanticscholar.org/CorpusID:17485266
http://www.jstor.org/stable/2676803
https://arxiv.org/abs/2211.11865
http://www.jstor.org/stable/2246094
http://link.aip.org/link/?JCP/21/1087/1
http://www.jstor.org/stable/2334940
http://www.jstor.org/stable/2334940

[41] Radford Neal. Mcmc using hamiltonian dynamics. Handbook of Markov Chain Monte

Carlo, 06 2012. doi: 10.1201/b10905-6.

[42] Matthew D. Hoffman and Andrew Gelman. The no-u-turn sampler: Adaptively

setting path lengths in hamiltonian monte carlo, 2011. URL https://arxiv.org/

abs/1111.4246.

[43] Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K. Saul.

An introduction to variational methods for graphical models. Machine Learning,

37(2):183–233, Nov 1999. ISSN 1573-0565. doi: 10.1023/A:1007665907178. URL

https://doi.org/10.1023/A:1007665907178.

[44] S. Kullback and R. A. Leibler. On Information and Sufficiency. The Annals of

Mathematical Statistics, 22(1):79 – 86, 1951. doi: 10.1214/aoms/1177729694. URL

https://doi.org/10.1214/aoms/1177729694.

[45] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational inference: A

review for statisticians. Journal of the American Statistical Association, 112(518):

859–877, apr 2017. doi: 10.1080/01621459.2017.1285773. URL https://doi.org/

10.1080%2F01621459.2017.1285773.

[46] Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2014.

[47] Cheng Zhang, Judith Butepage, Hedvig Kjellstrom, and Stephan Mandt. Advances

in variational inference, 2018.

[48] Alex Graves. Practical variational inference for neural networks. In J. Shawe-

Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Weinberger, editors, Advances

in Neural Information Processing Systems, volume 24. Curran Associates, Inc.,

2011. URL https://proceedings.neurips.cc/paper files/paper/2011/file/

7eb3c8be3d411e8ebfab08eba5f49632-Paper.pdf.

[49] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic back-

propagation and approximate inference in deep generative models, 2014.

[50] Diederik P. Kingma, Tim Salimans, and Max Welling. Variational dropout and the

local reparameterization trick, 2015.

[51] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Prad-

han, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D.

Goodman. SVI Part IV: Tips and Tricks, 2021. Available: https://pyro.ai/

examples/svi part iv.html [Accessed: July 8th, 2023].

73

https://arxiv.org/abs/1111.4246
https://arxiv.org/abs/1111.4246
https://doi.org/10.1023/A:1007665907178
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1080%2F01621459.2017.1285773
https://doi.org/10.1080%2F01621459.2017.1285773
https://proceedings.neurips.cc/paper_files/paper/2011/file/7eb3c8be3d411e8ebfab08eba5f49632-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/7eb3c8be3d411e8ebfab08eba5f49632-Paper.pdf
https://pyro.ai/examples/svi_part_iv.html
https://pyro.ai/examples/svi_part_iv.html

[52] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-

maison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani,

Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.

Pytorch: An imperative style, high-performance deep learning library, 2019. URL

https://arxiv.org/abs/1912.01703.

[53] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Prad-

han, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D.

Goodman. Pyro: Deep universal probabilistic programming, 2018. URL https:

//arxiv.org/abs/1810.09538.

[54] Hippolyt Ritter and Theofanis Karaletsos. Tyxe: Pyro-based bayesian neural nets

for pytorch, 2021. URL https://arxiv.org/abs/2110.00276.

[55] Du Phan, Neeraj Pradhan, and Martin Jankowiak. Composable effects for flexible

and accelerated probabilistic programming in numpyro, 2019.

74

https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1810.09538
https://arxiv.org/abs/1810.09538
https://arxiv.org/abs/2110.00276

Appendix A

Modifications to the TyXe Library

As mentioned in section 4.6, we had to modify the TyXe library in order to use learnable

variance parameters in the Gaussian likelihood function. While being able to set a prior

distribution on the variance parameter is an intended feature of the library, seeing as it

was briefly mentioned in the original paper [54], we found that this particular feature was

ignored at prediction time, causing the likelihood function to draw samples from the prior

distribution instead of the posterior. Because of this, we had to make some modifications

to the library in order to use it for our purposes.

The most significant change we made was to the VariationalBNN class in the TyXe

library. The original implementation gathered predictions from only the neural network,

and then, using the sigma value from the likelihood, they calculated the mean and stan-

dard deviation of the predictive distribution directly. This did not pose a problem for a

fixed sigma value, but when we introduced a learnable sigma parameter with a variance

of its own, the calculations were no longer correct. We have modified the code to gather

predictions from the predictive distribution directly by passing predictions through the

likelihood function. This also lets us pass the guide trace to the likelihood function, which

is necessary for the learnable sigma parameter to work. After gathering predictions, we

calculate the mean and standard deviation of the predictive distribution and return these

values. However, this approach requires a large number of samples from each predictive

distribution to get a reasonable estimate of the mean and standard deviation.

75

class VariationalBNN(_SupervisedBNN):

...

def guided_forward(self, *args, guide_tr=None, **kwargs):

if guide_tr is None:

guide_tr = poutine.trace(self.guide).get_trace(*args, **kwargs)

pred = poutine.replay(self.net, trace=guide_tr)(*args, **kwargs)

pred = poutine.replay(self.likelihood, trace=guide_tr)(pred)

return pred

def predict(self, *input_data, num_predictions=1000, guide_traces=None):

if guide_traces is None:

guide_traces = [None] * num_predictions

preds = []

with torch.autograd.no_grad():

for trace in guide_traces:

pred = self.guided_forward(*input_data, guide_tr=trace)

preds.append(pred)

predictions = torch.stack(preds)

mean = predictions.mean(dim=0)

std = predictions.std(dim=0)

return mean, std

...

76

	Introduction
	Thesis structure

	Background
	Artificial Neural Networks (ANNs)
	Feed Forward Neural Networks
	Activation Functions
	Supervised Learning
	Optimization

	Bayesian Neural Networks
	Inference with Markov Chain Monte Carlo
	Metropolis Hastings
	Advanced MCMC

	Variational Inference (VI)
	Mean Field Variational Inference (MFVI)
	Bayes by Backprop (BBB)
	KL reweighting for minibatches
	Local Reparameterization Trick

	Motivation
	Can extremes in the variance parameter cause over- and underfitting in BNNs?
	Can inferring the variance parameter compensate for misspecified BNNs?

	Experimentation methodology
	Datasets
	Sinusoidal datagenerating functions
	Generated Datasets

	Model specification
	Model Inference
	Model Selection
	Evaluation Metrics
	Implementation Details

	Results
	Study 1: Can extremes in the variance parameter cause over- and underfitting in BNNs?
	Results for the sin10-s03 dataset
	Results for the multisin10-s05 dataset
	Results for the multisin20-s05 dataset

	Study 2: Can inferring the variance parameter compensate for misspecified BNNs?
	Results for the sin10-s03 dataset
	Results for the multisin10-s05 dataset
	Results for the multisin20-s05 dataset

	Discussion
	Study 1
	Study 2

	Conclusion
	Limitations
	Future Work

	Bibliography
	Modifications to the TyXe Library

