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Abstract

Boolean functions are a central topic in computer science. A subset of Boolean functions, Bent

Boolean functions, provide optimal resistance to various cryptographical attack vectors, making

them an interesting subject for cryptography, as well as many other branches of mathematics

and computer science. In this work, we search for cubic Bent Boolean functions using a novel

characterization presented by Carlet & Villa in [CV23]. We implement a tool for the search of

Bent Boolean functions and cubic-like Bent Boolean functions, allowing for constraints to be set

on the form of the ANF of Boolean functions generated by the tool; reducing the search space

required for an exhaustive search. The tool guarantees efficient traversal of the search space without

redundancies. We use this tool to perform an exhaustive search for cubic-like Bent Boolean functions

in dimension 6. This search proves unfeasible for dimension 8 and higher. We further attempt

to find novel instances of Bent functions that are not Maioarana-McFarland in dimension 10 but

fail to find any interesting results. We conclude that the proposed characterization does not yield

a significant enough reduction of the search space to make the classification of cubic Bent Boolean

functions of dimensions 8 or higher viable; nor could we use it to produce new instances of cubic

Bent Boolean functions in 10 variables.
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Chapter 1

Introduction

Boolean functions, or (n, 1)-functions, are functions that take n bits of input and yield a single bit

of output.

Boolean functions have a wide range of applications, for instance, in complexity theory, electronic

circuits, and, quite notable, in secure and reliable communication. In this thesis, we focus on

Boolean functions for cryptographic applications. Indeed, in cryptography, Boolean functions as

well as vectorial Boolean functions are the foundation for symmetric ciphers and pseudo-random

generators. Vectorial Boolean functions are used as S-Boxes in SPN block ciphers, while Boolean

functions are used as filter or mask functions in pseudo-random number generators and stream

ciphers [Car21, Chapter 3].

For instance, stream ciphers that use Linear Feedback Shift Registers (LFSR) to generate their

keystream can use Boolean functions to increase the keystream’s linear complexity. The Combiner

model relies on an n-variable Boolean function taking input from n LFSRs to generate a keystream

with higher resistance to linear attacks than a single LFSR on its own. The filter model has an

n-variable Boolean function taking n bits from an LFSR state. As with the combiner model, this

gives an increase in the linear complexity of the keystream as compared to the LFSR on its own

[Car21, Section 1.3.1].

For a Boolean function to effectively increase the linear complexity of a generator, it must have

properties suitable for the job. High nonlinearity is an important aspect when selecting a Boolean

function to increase the security of a cipher.

A notable attack vector against ciphers is Linear Cryptanalysis [Can11]: A study of the linear

relations between a cipher’s input plaintext, its keystream and its resulting ciphertext. By approxi-

mating linear relations between the input and output of a cipher, parts of the key can be recovered.

A cipher with high nonlinearity is resistant to this attack, as it cannot be easily approximated using

linear functions.

Thus, using functions with optimal nonlinearity is desirable to achieve the best possible re-



2 Introduction

sistance against linear cryptanalysis. We call Boolean functions with optimal nonlinearity Bent

Boolean functions. These functions are ideal in resisting linear cryptanalysis, as the correlation

between plaintext and ciphertext decreases.

Unfortunately, Bent Boolean functions are sparse, and their behaviour is hard to predict. An

exhaustive search over all Boolean functions is often the only way to find new Bent functions.

The number of Boolean functions one must search through increases exponentially in relation to

the number of input variables n, at a rate of 22
n

; there are 2256 functions of dimension 8. This

makes an exhaustive search over every Boolean function – even at a relatively low number of input

variables – unfeasible [Car21, Section 1.3].

Thus, a good direction in the search for Bent functions is to try reducing this search space by

finding characteristics unique to Bent functions that somehow constrain the form a Bent function

might have. One such method is the use of Equivalence Relations: Classifying Boolean functions

into discrete subclasses that have a common invariant, in this case, bentness. This means that

all Boolean functions in the class are guaranteed to be bent, allowing one to generate new Bent

functions based on the representative function.

Equivalence relations are useful for characterizing many Boolean functions with a single rep-

resentative, but we still have to exhaustively search for Boolean functions to classify them into

equivalence classes. Reducing the search space of all Boolean functions when exhaustively search-

ing through them is what we are interested in.

In [CV23, Proposition 4], we find a proposition about cubic-like Bent Boolean functions that

potentially fits this purpose. In this proposition, it is proven that any Bent function f(x1, . . . , xn)

can be rewritten as

f(x1, . . . , xn)
EA∼ x1x2 + x3x4 + h(x1, . . . , xn)

up to EA-equivalence (which is the most general equivalence relation preserving bentness) . This

means that we can limit the search space of h to n-variable Boolean functions not containing

multiples of x1x2 or x3x4.

In this thesis, we implement a tool for finding cubic-like Bent Boolean functions using Carlet

& Villa’s proposition, and we try to use it for efficient search and classification of Bent Boolean

functions.

The thesis is organized as follows: In chapter 2, we introduce definitions of relevant subjects

and tools, as well as a survey of fully classified Bent Boolean functions of dimensions 6 and 8, as

well as partial classifications of Boolean functions of dimensions 10 and higher. In chapter 3, we

describe the implementation of our tool for the search of Bent Boolean functions using Carlet &

Villa’s proposition and our methodology both for the classification of cubic Bent Boolean functions,

and the search for new Boolean functions. In chapter 4, we discuss the computational searches we

performed with our tool. First, we give a quick outline of the exhaustive searches of 6 and 8

variables cubic Bent Boolean functions, and an attempt to classify cubic Bent Boolean functions by

first searching for all “bentable” Boolean functions. However, we observe that the characterisation
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presented in the proposition does not yield a large enough reduction of the search space to effectively

search for - and classify - Boolean functions of dimension 8 and higher , even when the search space

is further refined by searching for bentable purely cubic Boolean functions first . Finally, we try to

generate new instances of quartic cubic-like Bent Boolean functions in 8 variables, and new cubic

Bent Boolean functions in 10 variables, with the aim of producing new instances of interesting Bent

functions, such as previously unknown Bent functions outside the completed Maiorana-McFarland

class. Unfortunately, the exhaustive search using the characterisation in [CV23, Proposition 4]

proves unsuitable for this purpose.



Chapter 2

Preliminaries

In this chapter, we introduce all preliminary information relevant to this thesis, defining Boolean

functions, Nonlinearity and Bentness, and Equivalence Relationships. We also provide a brief survey

of previous findings relevant to the subject of this thesis.

2.1 Definitions

2.1.1 Boolean Functions

Let F2 denote the finite field with two elements {0, 1}, and Fn
2 the n-dimensional vector space over

F2. A function f taking n binary inputs and producing a single binary output (f : Fn
2 → F2)

is called a Boolean function. A function F : Fn
2 → F2 is called a vectorial Boolean function or

(n,m)-function.

The simplest method for representing a Boolean function is with the use of a Truth Table. A

truth table is a listing of all possible inputs of f and their respective outputs [Car21, Section 2.2.1].

Example 2.1.1. The truth table for a function f : F3
2 → F2.

x1 x2 x3 f(x1, x2, x3)

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1
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It is common to agree on an order for the input of the truth table and omit it, allowing one to

encode the truth table into a binary string.

Example 2.1.2. The truth table in Example 2.1.1, with lexicographic order, would be 10000111.

We also introduce the Hamming weight w(f) of a Boolean function f as the sum of its positive

outputs. Evaluating the Hamming weight of a Boolean function represented as a truth table is

trivial, as all outputs are explicitly displayed.

While truth tables are simple, they do not indicate many useful properties of the Boolean func-

tion they represent. Their size is also tied to the dimension n of the function, growing exponentially

in size relative to n. A more versatile representation is Algebraic Normal Form representation.

2.1.1.1 Algebraic Normal Form

Algebraic Normal Form (ANF) – also known as multivariate representation – is the most common

representation used in the context of cryptography and coding [Car21, Section 2.2.1].

The ANF of an n-variable Boolean function f(x1, . . . , xn) is a multivariate polynomial defined

as

f(x1, . . . , xn) =
⊕

I⊆{1,...,n}

aI

(∏
i∈I

xi

)
=

⊕
I⊆{1,...,n}

aIx
I ∈ F2 [x1, . . . , xn] /

(
x2
1 ⊕ x1, . . . , x

2
n ⊕ xn

)
,

(2.1)

with coefficients aI ∈ {0, 1}.

Example 2.1.3. Consider the Boolean function f from Example 2.1.1.

Its ANF would be f(x1, x2, x3) = 1 + x1x2 + x3.

ANF representations, like truth table representation, can be encoded into a binary string by

listing the coefficients of each term in the ANF. The ordering of the terms in the binary string

encoding must be agreed upon beforehand. For our use-case, the order is reversed; the last digit

of the binary string represents the first term in Fn
2 : the constant term 1. Although this encoding

scheme is no more space-efficient than the one used for truth table representation, it makes it easier

to implement ANFs and switch between the two representations. It sees extensive use in Chapter

3.
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Example 2.1.4. The ANF in Example 2.1.3 can be encoded by parsing its coefficients to a binary

string:

Index Term Coefficient

1 1 1

2 x1 0

3 x2 0

4 x1x2 1

5 x3 1

6 x1x3 0

7 x2x3 0

8 x1x2x3 0

The Boolean function f ’s ANF would be encoded as 10011000 using the lexicographic order.

Converting from ANF to Truth Table representation is trivial. Evaluating the polynomial for

each element of Fn
2 for an n-variable Boolean function gives a complete Truth Table. Converting

from Truth Table to ANF representation is more complex; the binary Möbius transform, described

in [Car21, p. 50] can be used for this purpose.

2.1.1.2 Algebraic Degree

Using ANF representation, the algebraic degree of a Boolean function can be defined as the largest

number of variables in any term with a non-zero coefficient [Car21, Section 2.2.1]:

d(f) = max {|I|; aI ̸= 0} , (2.2)

where |I| denotes the size of I.

Example 2.1.5. The Boolean function f(x1, x2, x3) = x1x2 + x3 + 1 has two terms with non-zero

coefficients: x1x2 and x3, as well as a constant term 1. The term x1x2 has a degree of 2, x3 has a

degree of 1; and the constant term has a degree of 0, as it contains no variables. Then, the algebraic

degree of the whole function is 2.

The Boolean function f ’s degree d(f) = 2.

The algebraic degree is an important property of a Boolean function, especially when considering

implementation. Functions of high algebraic degree are usually harder to implement because more

AND gates are necessary to perform the multiplications in the high-order monomials. Moreover, we

can define some particular classes of Boolean functions based on their degree, which will be useful

throughout this work.

We call affine, quadratic and cubic Boolean functions, all functions that have an algebraic degree

equal to or lower than 1, 2 and 3 respectively. Moreover, if an affine function f is such that f(0) = 0,

we say that f is linear [Car21, Section 2.2.1]. We say that a Boolean function is homogeneous if all

the monomials in its ANF have the same algebraic degree.
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2.1.2 Nonlinearity

The bias of a Boolean function is a measure of its output distribution over {0, 1} [Car21, Section
3.1]:

E(f) =
∑
x∈Fn

2

(−1)f(x) = 2n − 2w(f). (2.3)

A Boolean function is considered balanced if its bias E(f) = 0.

The bias of a Boolean function can be evaluated from its truth table by subtracting the number

of outputs equal to 1 from the number of outputs equal to 0.

Bias is useful in studying a function’s relations with linear and affine functions. Given an n-

variable Boolean function f and some affine function ϕa, one can study the bias of f + ϕa, that is,

the amount of times f and ϕa differ from one another – the distance from f to ϕa. The bias of

f + ϕa can be expressed by the Walsh transform Wf (a) of f , defined as

Wf (a) = E(f + ϕa) =
∑
x∈Fn

2

(−1)f(x)+a·x, (2.4)

where a ∈ Fn
2 [Car21, Definition 16].

With the Walsh transform, we can evaluate the nonlinearity of Boolean functions, the minimum

Hamming distance between a function and any affine function. The nonlinearity nl(f) of a Boolean

function f is defined as [Car21, Section 3.1.3]

nl(f) = 2n−1 − 1

2
max
a∈Fn

2

{Wf (a)} . (2.5)

A Boolean function f is perfectly linear if nl(f) = 0.

2.1.2.1 Cryptographic Meaning of Nonlinearity

The nonlinearity of a Boolean function is an important property in regard to cryptographical

security. Linear cryptanalysis exploits biased linear relations between the keystream and key in a

stream cipher [Can11], meaning that linear functions offer little resistance against such an attack.

A linear function f can be split into component parts f(x+ y) = f(x) + f(y), allowing one to

study the relation between the two components f(x) and f(y), and correlate the input and output

of the function.

Boolean functions with low nonlinearity are similarly vulnerable to linear cryptanalysis, as

they can be easily approximated by linear functions. Boolean functions with high nonlinearity are

difficult to approximate and are therefore desirable in the construction of secure ciphers.
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2.1.3 Bent Boolean Functions

The maximum nonlinearity of any Boolean function is upper bounded [Car21, Theorem 3]. Indeed,

for any n-variable Boolean function f , we have

nl(f) ≤ 2n−1 − 2
n
2 −1. (2.6)

For the bound to be tight, the term 2
n
2 −1 must have an integer value. Therefore, only n-variable

Boolean functions where n is even can have maximal nonlinearity. These Boolean functions are

called Bent functions [Car21, Section 3.1.3], and clearly have nonlinearity nl(f) = 2n−1 − 2
n
2 −1.

Moreover, it is possible to express Bentness in terms of the Walsh transform of a Boolean function

f . Indeed, f is Bent if and only if Wf (a) = ±2
n
2 for every a ∈ Fn

2 [Car21, Section 5.1.1]. One more

interesting result on Bent Boolean functions is that their algebraic degree is upper bounded, that

is, for any n-variable Bent Boolean function f , d(f) ≤ n
2 [Car21, Theorem 13].

Since Bent functions are optimal in the sense of nonlinearity, their search and construction has

been investigated a lot. A very popular approach for constructing Bent Boolean functions is the

Maiorana-McFarland Construction: Let n and r be any positive integers such that r ≤ n. We call

Maiorana-McFarland’s function any n-variable Boolean function of the form

f(x, y) = x · ϕ(y)⊕ g(y); x ∈ Fr
2, y ∈ Fn−r

2 , (2.7)

where ϕ is a permutation from Fn−r
2 to Fr

2 and g is a (n − r)-variable Boolean function [Car21,

Definition 46]. We denote by MMr the corresponding class. A function is part of the more general

MM if it is MMr for some r. We note that Maiorana-McFarland functions make up the majority

of known Bent Boolean functions.

Another class of Bent Boolean functions that we are interested in is called cubic-like Bent

Boolean functions. First, we need to define the derivative of a Boolean function. Let a be a

non-zero element in Fn
2 , we call the derivative of f in direction a, the Boolean function Daf(x) =

f(x+a)+f(x). We say that an n-variable Boolean function f is cubic-like Bent if, for any non-zero

a ∈ Fn
2 , there exists b ∈ Fn

2 such that the second-order derivative DaDbf = Db(Daf) is equal to the

constant function 1 [CV23, Proposition 1]. If a cubic Boolean function is bent, then it is cubic-like

bent [CV23, Proposition 1].

2.1.4 Equivalence Relations

The amount of Boolean functions grows exponentially as the dimension increases, it can therefore

be useful to organize them into classes based on equivalence relations that respect interesting cryp-

tographic properties. These equivalence relations allow partitioning the space of Boolean functions

in classes. We can then choose a representative function from each class and study the interesting

cryptographic properties on the representative alone. We are then ensured that all functions in the

class share the same property. We now introduce some equivalence relations that are useful in the

study of Boolean functions.
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The simplest equivalence relations we define are linear and affine equivalence. We say that two

Boolean functions f and g in n variables are linear equivalent if there exists a linear permutation L

over F2n such that g = f ◦L. If instead of a linear permutation L, we have an affine permutation A

such that g = f ◦A+ c, where c ∈ F2 is a constant, then we say that f and g are affine equivalent.

Note that if f and g are linear equivalent, they are also affine equivalent [Car21, Definition 5].

The second equivalence we introduce is the Extended Affine (EA) equivalence. We say that two

Boolean functions f and g are EA-equivalent if there is an affine permutation A over F2n , and an

affine n-variable Boolean function a, such that g = f ◦A+ a.

The final equivalence relation we introduce is called CCZ-equivalence [Car21, Definition 5]. CCZ-

equivalence differs from the previous equivalences as it does not directly work on the functions being

classified, but rather on their graphs. The graph of a n-variable Boolean function is defined as the

set

Gf = {(x, y) ∈ F2n × F2|y = f(x)} .

We say that two Boolean functions f and g are CCZ-equivalent, if there exists an affine permutation

L over F2n × F2 such that Gg = L (Gf ).
Finally, we note that in the case of Boolean functions, two functions are EA equivalent if and

only if they are CCZ equivalent [Car21, Section 2.1.1]. This fact is particularly useful to us because

it is easy to check two functions for CCZ equivalence using the algorithm presented in [EP09], so

we can test two functions for EA equivalence using the fast algorithm that exists to check for CCZ

equivalence.

2.1.5 A Characterization of Cubic-like Bent Functions

In [CV23], a characterization of cubic-like Bent Boolean functions up to Extended Affine equivalence

is proposed. We report the statement of the proposition here:

Proposition 2.1.1 ([CV23, Proposition 4]). Let f : Fn
2 → F2 be a cubic-like bent function, then

f(x1, . . . , xn)
EA∼ x1x2 + x3x4 + h(x1, . . . , xn), (2.8)

where none of the terms of h are a multiple of x1x2 or x3x4.

The proposition states that the functions f and x1x2+x3x4+h are EA-equivalent. This means

that while the two sides of Equivalence 2.8 might not be the same function, they are part of the

same EA-equivalence class. Bentness is invariant under EA-equivalence [Car21, Section 6.1.1] , that

is, if two functions f and g are EA-equivalent then they are either both bent or they are both not

bent. Thus, this characterization can be used to express all EA-equivalence classes that have the

cubic-like Bent property.
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2.2 Survey

In this section, we present a brief survey of preliminary findings relevant to our thesis. We focus

mainly on previously classified cubic Bent Boolean functions in the dimensions we are interested

in, namely dimensions 6 and 8.

A complete classification up to EA-equivalence for cubic Bent Boolean functions of 6 variables

was given in [Bra+05]. Some preliminary results on the classification of cubic Bent Boolean func-

tions of 8 variables were presented in [Agi05]; completed by Langevin in 2012 [Lan13], although

these results were not published outside of Langevin’s website as far as the authors can tell. For 10

variables and higher, the classification of n-variable cubic Bent Boolean functions is still an open

problem.

2.2.1 Classification of Boolean Functions of Dimension 6

A complete classification up to EA-equivalence of Boolean functions of 6 variables and degree up

to 3 was presented in [Bra+05]. In particular, this includes a complete classification of cubic Bent

Boolean functions of 6 variables. We report the following excerpt, showing the cubic representatives,

using the following notation: fn(x1, . . . , x6) = x1x2x3 + x4 is denoted by fn = 123 + 4.

f Cubic terms Quadratic terms

f2 123 16 + 25 + 34

f3 123 + 245 13 + 15 + 26 + 34

f5 123 + 245 + 346 35 + 26 + 25 + 12

Table 2.1: EA classes of cubic bent functions of 6 variables [Bra+05, Table 9].

In Table 2.1 the cubic and quadratic terms of the class representatives are separated to reflect the

original table in [Bra+05, Table 9]. In order to obtain the complete ANF of the class representative,

one only needs to sum the cubic and quadratic terms.

2.2.2 Classification of Boolean Functions of Dimension 8

Boolean functions of 8 variables and degree of up to 3 were completely classified in [Lan13]. As for

the case of 6 variables, this also includes a complete classification of cubic Bent Boolean functions of

8 variables. We organize the results from the classification presented in [Lan13] in Table 2.2 following

the notation used in Table 2.1, dividing cubic and quadratic terms of the class representatives.

While this separation was of little interest in Table 2.1, it is worth pointing out that for cubic

Bent Boolean functions of 8 variables this highlights that some EA classes only differ in their

quadratic terms. This is a product of the techniques used in [Bra+05] and [Lan13] for classification.

These efforts first consider only Boolean functions with terms of degree three, and find classes of
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functions that can be completed to a Bent function using terms of degree 2. Then, they find suitable

quadratic terms so that the sum of quadratic and cubic terms is a Bent function and classify the

resulting functions.

Class Cubic terms Quadratic terms

f1 124 45 + 36 + 27 + 18

f2 257 + 678
45 + 26 + 37 + 18

12 + 14 + 45 + 26 + 37 + 18

f3
123+124+234+125+235+245+246+

346+256+356+127+357+457+367

13 + 34 + 15 + 16 + 38 + 48 + 58 + 78

12 + 13 + 34 + 15 + 16 + 38 + 48 + 58 + 78

f4 125 + 235 + 145 + 127 + 157

24 + 45 + 36 + 27 + 18

34 + 26 + 56 + 27 + 18

13 + 14 + 24 + 45 + 27 + 68

f5 347 + 267 + 367 + 467 + 578 45 + 36 + 17 + 28

Table 2.2: EA classes of cubic bent functions of 8 variables [Lan13].

2.2.3 Boolean Functions in the Completed Maiorana-MacFarland Class

As mentioned in Section 2.1.3, the Maiorana-McFarland Construction is a method of creating Bent

Boolean functions. Until recently, it was not known whether cubic Bent functions outside the

completed Maiorana-McFarland classM existed. However, in [PP20], it was shown that all cubic

bent Boolean functions of dimension n ∈ {6, 8} can be found in M, while also showing that

for cubic bent Boolean functions of dimension n ≥ 10 this is not the case. In particular, they

produce examples of Bent Boolean functions of dimension n ≥ 10 outsideM. Moreover, in a 2023

paper [Pas+23] many more constructions and infinite families of Bent functions that are not in the

completed Maiorana-McFarland class are produced.
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Method and Implementation

In this chapter, we describe the implementation of our tool for finding new cubic-like Bent Boolean

functions. We describe the implementation of our function generation algorithm, as well as the two

Bentness testing approaches implemented.

3.1 Representation

In our implementation, Boolean functions are represented using both ANF and truth table repre-

sentations, encoded as binary strings or unsigned integers, depending on the situation.

Algebraic Normal Form representation is used mainly in the function generation step of the

program. The characterization in [CV23] is expressed in terms of the ANF, so we need to generate

Boolean functions in this form. It is also easier to limit the degree of generated functions when

represented in ANF form, rather than truth table form.

When testing candidates for Bentness, it is more efficient if the functions are in truth table form,

as it makes it easier to compute the function’s Walsh transform, or evaluate its derivatives. Both

tests implemented in this work require truth table representation to be used.

The two representations can be efficiently converted between using the Fast Möbius transform,

shown in Algorithm 1.

3.2 Boolean Function Generation

The implementation splits the search space into n equally sized parts, which are then iterated

through in parallel to find Boolean functions that match the given criteria; the amount of parts n

depends on the multithreading capabilities of the hardware used. As the program is generally run

with certain invariants in mind, i.e., the [CV23, Proposition 4], it would be inefficient to iterate
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Input: (a[i], 0 ≤ i ≤ n2)

Output: b =Mn(a)

1 for i← 0 to 2n − 1 do

2 b[i]← a[i];

3 end

4 for k ← 0 to n do

5 for i← 0 to 2n−k do

// Compute the image of the i-th 2k-bit block under Mk. for j ← 0 to

2k−1 − 1 do

6 b[2ki+ 2k−1 + j]← b[2ki+ j] + b[2ki+ 2k−1 + j] mod 2;

7 end

8 end

9 end

10 return b;

Algorithm 1: Fast Möbius transform

over all functions in the search space. To efficiently reduce the search space to only functions that

match the initial limits, an ANF Mask is used to iterate over the search space.

3.2.1 ANF Mask

The ANF Mask is responsible for iterating through the ANFs for all Boolean functions generated

by the implementation. The mask guarantees that every function generated matches parameters

specified by the user.

The ANF Mask is primarily composed of two distinct bit-masks: an enabled and disabled mask.

The enabled mask contains terms that should be enabled for every Boolean function generated

by the implementation. For the purposes of this thesis, these terms are usually x1x2 and x3x4, as

specified by the characterization from proposition 2.1.1.

The enabled mask for the terms x1x2 and x3x4 in bit-string form - leading zeros removed - is

1000000001000. Note that this representation uses reverse lexicographical ordering.

x 3
x 4

x 1
x 2
x 4

x 2
x 4

x 1
x 4

x 4 x 1
x 2
x 3

x 2
x 3

x 1
x 3

x 3 x 1
x 2

x 2 x 1 1
· · · 1 0 0 0 0 0 0 0 0 1 0 0 0

Figure 3.1: Enabled mask for terms x1x2 and x3x4.

For conciseness, we use hexadecimal representation when presenting ANF masks, where each
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hexadecimal digit represents four bits, prepending 0’s as required:

0001 0000 0000 1000 → 0x1008

Figure 3.2: Enabled mask from Figure 3.1 in hexadecimal notation

The disabled mask is a combination of two masks. The first mask is a per-term degree limiting

mask. Generally, we are not interested in terms of degree higher than 3, as we are searching for

cubic functions. We are not interested in linear terms either, as EA-equivalence depends on adding

linear terms to functions as part of classification.

1 x1 x2 x1x2

1 1 x1 x2 x1x2

x3 x3 x1x3 x2x3 x1x2x3

x4 x4 x1x4 x2x4 x1x2x4

x3x4 x3x4 x1x3x4 x2x3x4 x1x2x3x4

→

Base 2 Base 16

1 1 1 0 e

1 0 0 0 8

1 0 0 0 8

0 0 0 1 1

→ 0xe881

Table 3.1: Per-term degree limit selection (min=2, max=3) for dimension F4
2.

The second part of the disabled mask is the disabling of multiples of enabled terms. This is

useful for the characterization from proposition 2.1.1.

1 x1 x2 x1x2

1 1 x1 x2 x1x2

x3 x3 x1x3 x2x3 x1x2x3

x4 x4 x1x4 x2x4 x1x2x4

x3x4 x3x4 x1x3x4 x2x3x4 x1x2x3x4

→

Z2 Z16

0 0 0 0 0

0 0 0 1 1

0 0 0 1 1

0 1 1 1 7

→ 0x0117

Table 3.2: Disabled mask selection for multiples of x1x2 and x3x4 for dimension F4
2.

Combining the masks from tables 3.1 and 3.2

1110 1000 1000 0001 ( 0xe881 )

| 0000 0001 0001 0111 ( 0x0117 )

= 1110 1001 1001 0111 ( 0xe997 )

and reversing the order gives us the final disabled mask, which in hexadecimal is 0xe997.

The last notable part of the ANF Mask is the minimum function degree mask. This mask is

responsible for ensuring that any generated function has a set minimum degree, while still allowing

component terms to be of lower degree. The mask enabled all terms of degree higher or equal to

the limit set by the user.

For efficient iteration through the search space, the ANF mask uses the algorithm defined in

Algorithm 2. This algorithm guarantees that all generated Boolean functions will contain the fixed
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terms set by the enabled mask, and none of the terms disabled by the disabled mask, skipping all

invalid ANFs.

Input: The current ANF c, The enabled mask E, The disabled mask D, the minimum

function degree mask M

Output: The next valid ANF n

1 do

2 n← c ∨D;

3 n← n+ 1;

4 n← n ∧ ¬D;

5 n← n ∨ E;

6 while M ̸= 0 and n ∨M = 0;

7 return n;

Algorithm 2: ANF mask iteration algorithm

We give some insight into the mechanism of Algorithm 2, on how it iterates to the next valid

ANF, given the enabled mask E and disabled mask D. First, the algorithm recombines the current

ANF n with the disabled mask using an OR operation and increases the obtained value by 1,

iterating to the next valid ANF. The disabled mask is then removed from the next ANF, using a

logical AND with the negated disabled mask, ensuring that the disabled terms do not appear in

the next valid ANF. By incrementing the ANF after combining it with the disabled mask, and then

removing the disabled mask, we ensure that the new ANF skips over all invalid increments that

may be between the current and the next valid ANF. Finally, since the terms in the enabled mask

E should always be a part of the current ANF, we add E using a logical OR operation, since the

increment performed in the first step of the algorithm might have flipped some bits related to the

enabled terms.

If the minimum degree mask M is set, the algorithm loops until the condition n ∨M ̸= 0, that

is, until the next ANF n contains at least one term enabled in M . Otherwise, the algorithm only

iterates once.

3.3 Tests

The implementation contains two methods of testing Boolean functions for Bentness. The first

approach is naively computing the nonlinearity of the Boolean function and checking if it satisfies

the bound. The second approach involves checking whether the second derivatives of the Boolean

function are constantly equal to 1. Note that the second method only works for finding cubic-like

bent Boolean functions, and may not hold when searching for generic Boolean functions.
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3.3.1 Nonlinearity Test

The first method of testing uses the Walsh transform mentioned in Definition 2.4 to compute the

nonlinearity of a generated Boolean function.

With a naive implementation, i.e., directly implementing the algorithm defined in Definition

2.4, the Walsh Transform has a worst-case complexity of O(22n). We implement the Fast Walsh-

Hadamard Transform algorithm as defined in Algorithm 3, which has a worst-case complexity of

O(2nn). This optimized implementation uses the Butterfly construction, a divide-and-conquer

tactic that divides the input into smaller parts that can be computed in parallel. Figure 3.3 shows

an example of this construction.

Input: (a[i], 0 ≤ i ≤ n2)

Output: b =Wn(a)

1 for i← 0 to 2n − 1 do

2 b[i]← a[i];

3 end

4 for k ← 1 to n+ 1 do

5 for i← 0 to 2n−k do

6 for j ← 0 to 2k−1 do

7 b[2ki+ j]← b[2ki+ j] + b[2ki+ 2k−1 + j];

8 b[2ki+ 2k−1 + j]← b[2ki+ j]− 2b[2ki+ j + 2k−1];

9 end

10 end

11 end

12 return b;

Algorithm 3: Fast Walsh-Hadamard Transform

3.3.2 Constant Derivative Test

The second approach is specific to cubic-like Bent Boolean functions. This test relies on checking

the condition mentioned in section 2.1.3:

∀a ∃b : DaDbf = 1, a, b ∈ Fn
2 , (3.1)

where f is a Boolean function.

This test has a worst-case complexity of O(22n), which is worse than Algorithm 3 used in the

previous section. It is, however, expected that this test will fail early often, as it fails as soon as
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1 1 3 4

1 1 1 2

1 2 -1 0

0 0 1 -2

0 1 1 2

0 1 1 0

1 0 1 2

0 0 1 0

+

+

+

+

+ + +

+ + −

+ − +

+ − −

− + +

− + −

− − +

− − −

Figure 3.3: Butterfly construction working on input 11100010

the condition does not hold for any value of a. The complexity of the test can therefore be as little

as checking the 2n values of b for each a.

In particular, up to half of the values of b may be valid for an arbitrary a [CV23, Proposition 6].

Thus, the constant derivative test is often more efficient than testing the nonlinearity of a function,

even when utilizing a more efficient implementation of the Walsh Transform.

3.3.3 Further Improvements for Cubic Bent Functions

If we restrict ourselves to searching only for cubic Boolean functions, it is possible to more efficiently

traverse the search space. We note that we can divide a function f into cubic and quadratic parts

f = C + Q, where C are terms of degree 3 and Q terms of degree up to 2. In [LL11, Lemma 1]

it is proved that the ANF coefficient of a bent function in 8 variables must respect a number of

conditions. In the case of cubic bent functions, the conditions massively simplify to just one. In

particular, for any W ⊂ {1, . . . , 8} , |W | = 6, we have that⊕
|U |=3

aUaW\U = 0, (3.2)
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where aU are coefficients of the ANF as defined in Equation 2.1. We note that the above condition

does not depend on the quadratic terms, but only on the cubic terms. Then, we say that a

homogeneous cubic function is bentable if the condition in Equation 3.2 holds for its ANF.

We are now ready to give a description of our method. The first step of our search involves

iterating only over the cubic terms C, excluding terms divisible by x1x2 and x3x4. Then, if the

cubic part is bentable, the ANF of the function is stored for the second step of the search. Once all

possible cubic C have been examined, we move to the next step. The second step iterates over the

bentable candidates we stored in the first step, setting their ANF as the new enabled ANF Mask,

and searching for quadratic terms to complete h such that f satisfies Equation (3.1).

3.4 Notes on Practical Implementation

This section briefly outlines some interesting elements of the practical implementation of the tool.

The tool was implemented in the Rust1 programming language.

The implementation utilizes parallelisation by dividing the search space into n equally sized

partitions, where n is the amount of available - or specified - threads on the hardware.

A rudimentary save-load system was implemented, the reasoning being that searches can take

several hours. It is convenient to be able to stop a search and be able to resume it at a later time.

The save format is simply all parameters used, then the indices of all threads; in the format (start,

end, progress).

The implementation can write both ANFs and Truth tables in a variety of formats. It also

has a mode for displaying information about specific functions, as shown in listings 3.1, with a

demonstration in 3.2.

ANF pr in tout mode

Usage : b f s ea r ch . exe anf [OPTIONS] <DIMENSION>

Arguments :

<DIMENSION> Dimension o f ANF

Options :

−f , −−f i xed−terms <ANF> Fixed terms

−i , −−input− f i l e <FILE PATH> The format o f the ANFs provided in the g iven f i l e

−F, −−f i xed−terms−format <FORMAT> Format o f input f i x ed terms [ d e f au l t : b i t s t r i n g ] [

p o s s i b l e va lues : d i g i t , array , b i t s t r i n g , s ub s c r i p t ]

−−ignore−mul t i p l e s Do not d i s ab l e terms that are mu l t i p l e s o f f i x ed

terms

−t , −−input−truth−t ab l e Parse input as a truth tab l e ra the r than an ANF

−h , −−help Pr int help ( see more with ’−−help ’ )

Listing 3.1: ANF display mode parameters

1https://www.rust-lang.org/

https://www.rust-lang.org/


3.4 Notes on Practical Implementation 19

> .\ b f s ea r ch . exe anf 4 −f ”12 + 34” −F d i g i t

x1x2 + x3x4 (

Dimension : 4

Degree : 2

Bias : 4

Algebra i c Normal Form : 0001000000001000

Truth Table : 0111100010001000

Walsh Transform : [ 4 , 4 , 4 , −4, 4 , 4 , 4 , −4, 4 , 4 , 4 , −4, −4, −4, −4, 4 ]

Walsh Spectrum : {4 : 10 , −4: 6}
I s bent : true

Constant d e r i v a t i v e : 1

)

Listing 3.2: ANF printout mode showing Boolean function x1x2 + x3x4

Listing 3.3 shows the help screen printed when running bfsearch.exe search -h, the exhaus-

tive search mode using Walsh-transform nonlinearity testing to identify Bent Boolean functions (if

flag -b is set).
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General search mode

Usage : b f s ea r ch . exe search [OPTIONS] <DIMENSION>

Arguments :

<DIMENSION> Dimension to search

Options :

−m, −−min <N> Minimum al lowed degree

−M, −−max <N> Maximum al lowed degree

−l , −−no−l i n e a r −terms Remove l i n e a r terms

−b , −−bent on ly F i l t e r bent

−f , −−f i xed−terms <ANF> Fixed terms

−i , −−input− f i l e <FILE PATH> The format o f the ANFs provided in the g iven f i l e

−F, −−f i xed−terms−format <FORMAT> Format o f input f i x ed terms [ d e f au l t : b i t s t r i n g ] [

p o s s i b l e va lues : d i g i t , array , b i t s t r i n g , s ub s c r i p t ]

−−ignore−mul t i p l e s Do not d i s ab l e terms that are mu l t i p l e s o f f i x ed

terms

−t , −−input−truth−t ab l e Parse input as a truth tab l e ra the r than an ANF

−o , −−output−path <FILE PATH> F i l e to output to . Standard output i s used by

de f au l t

−O, −−output−format <FORMAT> Format o f output [ d e f au l t : b i t s t r i n g ] [ p o s s i b l e

va lues : d i g i t , array , b i t s t r i n g , s ub s c r i p t ]

−r , −−r ep r e s en t a t i on <REPR.> Boolean function r ep r e s en t a t i on to output [ d e f au l t :

anf ] [ p o s s i b l e va lues : anf , truth−t ab l e ]

−T, −−output−truth−t ab l e Output truth t ab l e s ra the r than an ANF

−c , −−threadcount <N> Amount o f threads to a l l o c a t e for mult i threaded

function genera t i on

−h , −−help Pr int help ( see more with ’−−help ’ )

Listing 3.3: Search mode parameters

Listing 3.4 shows the help screen printed when running bfsearch.exe cubic -h, the exhaustive

search mode using the method described in 3.3.3 to find cubic bentable functions. Note that this

mode does not allow the user to set allowed degrees, as this mode only works on candidate functions

of degree 3.

Search for constant cubic bent d e r i v a t i v e s

Usage : b f s ea r ch . exe cubic [OPTIONS] <DIMENSION>

Arguments :

<DIMENSION> Dimension to search

Options :

−o , −−output−path <FILE PATH> F i l e to output to . Standard output i s used by de f au l t

−O, −−output−format <FORMAT> Format o f output [ d e f au l t : b i t s t r i n g ] [ p o s s i b l e va lues :

d i g i t , array , b i t s t r i n g , s ub s c r i p t ]

−r , −−r ep r e s en t a t i on <REPR.> Boolean function r ep r e s en t a t i on to output [ d e f au l t : anf ]

[ p o s s i b l e va lues : anf , truth−t ab l e ]

−T, −−output−truth−t ab l e Output truth t ab l e s ra the r than an ANF

−c , −−thread−count <N> Amount o f threads to a l l o c a t e for mult i threaded

function genera t i on

−h , −−help Pr int help ( see more with ’−−help ’ )



Chapter 4

Results

In this chapter, we summarize the results of the computational searches we carried out with our

tool. All tests were conducted on a machine running Windows 10. Full system specifications are

available in Table 4.1.

Motherboard MS-7C90

CPU AMD Ryzen 6 5800x 8-Core Processor

GPU NVIDIA GeForce RTX 4080 Ti

Memory 64 GB DDR4 2300MHz

Table 4.1: Hardware used for computation

We use our tool to iterate over the possible candidates and compile a list of functions with the

desired properties. The ANF of functions found using the tool are then stored in CSV files, ready

for further processing. For classification attempts, this means compiling a list of functions that

are EA-inequivalent. For attempts to generate new instances of cubic or cubic-like Bent Boolean

functions, this means checking that a candidate is inequivalent to known cubic or cubic-like bent

functions. In both cases, we need a way to test for EA-equivalence. We do so using the algorithm

presented in [EP09], remembering that for Boolean functions, EA-equivalence and CCZ-equivalence

coincide. For this task, we implement the algorithm in Magma [BCP97]. The code used for the

equivalence is available in Appendix A. We run the Magma code on Kepler, a server owned by the

computer science department at the University of Bergen. Specifications of the Kepler server are

reported in Table 4.2.

Finally, we are ready to see our results in detail in the next few sections.
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Motherboard Dell Inc. Poweredge C4130

CPU Intel Xeon CPU E5-2690 v4 @ 2.60GHz

GPU NVIDIA Tesla K80

Memory 512 GB DDR4 2300MHz

Table 4.2: Hardware of the Kepler server

4.1 Classification Attempts

We first attempt to classify cubic Bent Boolean functions to verify that our implementation returns

correct data, and potentially find new classification results. We remember that if a Bent function is

cubic, then it is also a cubic-like Bent function. So, in our searches, we can test nonlinearity using

the constant derivative check from Section 3.3.2 since this is on average quicker than the check

using the Walsh transform.

We performed two searches, a search of functions of dimension 6, to verify that our implemen-

tation yielded data that matched our survey, and a search of dimension 8, to test whether this

approach was efficient enough to search through higher dimensions. We did not attempt a clas-

sification of dimension 10, as the exhaustive search of dimension 8 did not return any conclusive

results.

4.1.1 Cubic Bent Functions of 6 Variables

We start with an exhaustive search of cubic Boolean functions of dimension 6. Our motivation for

this search is to verify that our results match the findings given in Table 2.1.

For this search, we limit the degree of generated functions to 3 as we are only interested in cubic

Bent functions. However, we note that for dimension 6 this is not restrictive, as 6-variable Bent

functions cannot have degree higher than 3, as mentioned in Section 2.1.3. Moreover, we set a lower

per-term limit of 2, as we are not interested in linear terms; through EA-Equivalence classification,

all Boolean functions f such that f = C +Q+ L are in the same class as f ′ = C +Q.

We fix the terms from the characterization (x1x2 and x3x4) and disable all of their multiples.

Enabled 0000000000001008

Disabled fee8f889f889e997

Table 4.3: ANF Mask used for the search of cubic Boolean functions of dimension 6.

The obtained search space has size 225. We note that some functions are not going to be tested

for bentness since we verify that the degree of the proposed ANF is exactly 3 before checking. The

exhaustive search took 41 seconds to complete, and yielded 178,560 functions. We then classified
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the functions up to EA-equivalence and verified we obtained the three equivalence classes identified

in Table 2.1. The classification task took 5 minutes and 17 seconds on Kepler.

4.1.2 Cubic Bent Functions of 8 Variables

The natural next step was to perform a similar search for Boolean functions of dimension 8. This

was done to further verify our results against the survey, but also as a test of the implementation’s

performance, as the search space for dimension 8 is orders of magnitude larger than the search over

functions of dimension 6.

As in the previous test, we fix the terms from the [CV23] characterization in the enabled mask,

and set all multiples in the disabled mask.

We also limit the degree of generated functions to a maximum of 3, and a minimum of 2.

Enabled 0000000000000000000000000000000000000000000000000000000000001008

Disabled fffffffefffefee8fffefee8fee8f889fffefee8fee8f889fee8f889f889e997

Table 4.4: ANF Mask used for the search of cubic 8 variables Boolean functions.

The obtained search space has size 270. We remind once again that some functions are going

to be excluded immediately at runtime. Unfortunately, this search proved to be unfeasible, as

after 11 hours we examined approximately 24 billion functions. We use this fact to estimate that

testing one function takes about 1.67 µs on average. Thus, traversing the whole search space of 270

functions would require approximately 62 million years.

As we are most interested in the partially classified dimensions 10 and higher, the speed of our

nonlinearity testing implementation is unfeasible. We require a more efficient approach.

4.1.3 Bentable Boolean Functions of Dimension 8

As the naive nonlinearity testing approach failed at higher dimensions, we attempted a two-part

search using the method described in Section 3.3.3. The first step involves searching for homo-

geneous cubic bentable Boolean functions, so we begin with an exhaustive search of all functions

composed only of cubic monomials not divisible by x1x2 and x3x4, to respect the conditions of

Proposition 2.1.1. The enabled mask is left empty, as we do not wish to fix any terms in our gener-

ated functions. The disabled mask consists of terms that are not of degree 3, and terms of degree

3 that are divisible by x1x2 and x3x4.

Enabled 0000000000000000000000000000000000000000000000000000000000000000

Disabled fffffffefffefee9fffefee9fee9e997fffefee9fee9e997fee9e997e997977f

Table 4.5: ANF mask for the search of 8 variable cubic bentable functions.
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Letting the search run for approximately 1 hour yields 3, 206, 370 candidate cubic parts. In that

time, 2, 628, 172, 637 functions were evaluated, giving a ratio of 0.122% candidate functions for each

evaluated function. Extrapolating the data we have, it would take about 279 days for this search

to be completed, yielding an estimated number of 21, 462, 466, 974 candidate functions. We note,

however, that the rate was still slightly dropping when running the experiment. Thus, the actual

number of bentable candidates might be lower.

The second step involves using each result from the first step as the enabled mask, in addition

to the monomials x1x2 and x3x4 to respect the conditions of Proposition 2.1.1. Using these enabled

masks, we run an exhaustive search using the constant derivative test, as in sections 4.1.1 and 4.1.2,

disabling linear terms and terms of too high degree as in the previous searches.

Displayed below is an example ANF Mask using one cubic bentable function acquired in the

last search, where C(x1, . . . , x8) = x1x3x5 (200000 in hexadecimal notation).

Enabled 0000000000000000000000000000000000000000000000000000000000201008

Disabled fffffffefffefee8fffefee8fee8e881fffefee8fee8e881fee8e881e8818117

Table 4.6: ANF mask for the search of 8 variables cubic Bent functions, fixing the cubic terms.

This search, on only one cubic bentable function x1x3x5, found 3, 555, 328 candidate Bent

functions in 2 minutes and 36 seconds.

Extrapolating from this example search, as well as the estimated search time of all candidate

bentable cubics above, it would take approximately 106, 098 years to exhaustively search through

the bentable functions found in our limited run for the first step, with a search space of 226 for each

of the 21, 462, 466, 974 cubic bentable functions, for a total search space size of about 260.

4.2 Attempts to Find New Bent Boolean Functions

As the classification of Bent Boolean functions of higher dimensions proved unfeasible, we at least

attempt to search for new instances of Bent Boolean functions. In particular, we try to generate

new Quartic cubic-like bent Boolean functions in dimension 8, and new cubic bent functions in

dimension 10. These searches can be interesting, as they can produce Bent functions outside the

completed Maiorana-McFarland class M. As we saw in Section 2.2, the search of Bent functions

outsideM is an interesting problem being researched currently.

4.2.1 Cubic Bent Functions of 10 Variables

While a full classification of Bent Boolean functions of 10 variables is not possible with our tool, we

are interested in seeing if we can generate any Bent Boolean functions at all. The search parameters

are virtually unchanged from the ones we use for the classification searches seen above. We have
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a disabled mask removing terms with degree strictly higher than 3, linear terms, and multiples of

the terms from the [CV23] characterization. Moreover, the enabled mask only includes the terms

x1x2 and x3x4. We report the full ANF masks in Table B.1 in the Appendix, as they become quite

large.

The search space for Boolean functions of dimension 10 contains 2147 candidates. After letting

this search run for 1 hour, 2 minutes and 21 seconds , we did not get any meaningful results. The

search space is simply too large, even after applying the characterisation. Indeed, extrapolating our

results, this search would take more than 1030 years to explore the whole search space, highlighting

how small of a fraction of the search space we can realistically explore.

4.2.2 Quartic Cubic-Like Bent Functions of 8 Variables

In Section 2.2 we mentioned that cubic Bent functions of 8 variables were completely classified in

2012. On the other hand, quartic cubic-like bent functions of 8 variables have not been completely

classified. Unfortunately, the search space for quartic cubic-like Bent functions is even larger than

the search space for cubic Bent functions. Since we did not manage to classify even cubic Bent

functions of 8 variables, a complete classification is beyond our reach even in this scenario. However,

as for the previous section, it is still interesting to try generating novel quartic cubic-like Bent

functions.

For this search, we exclude terms of degree 5 or higher, and all terms that are divisible by the

monomials x1x2 and x3x4 to respect the condition in Proposition 2.1.1, while imposing that the

terms x1x2 and x3x4 are enabled. We also exclude linear terms for the reasons already explained

in Section 4.1.1. The complete enabled and disabled masks are in Table 4.7. Moreover, we fix the

minimum function degree to 4, since we are only interested in functions that are at least quartic.

Enabled 0000000000000000000000000000000000000000000000000000000000001008

Disabled fffefee8fee8f888fee8f888f888f889fee8f888f888f889f888f889f889e997

Table 4.7: ANF masks for the search of 8 variables quartic cubic-like Bent functions

The obtained search space has size 2111. Once more, we remind that some functions are not

going to be tested, since we exclude from our search functions of degree strictly less than 4. We

let the search run for 1 hour, 6 minutes and 3 seconds , but we did not get any meaningful results.

Extrapolating the estimated total time of this search, we get approximately 3·1029 years to complete,

suggesting that the search space is still too large even after applying our characterisation.

4.3 Performance Analysis

In Table 4.8 we summarize the runtime of our tool using different parameters, and the estimated

cost of the most expensive operation during a search, namely the check for bentness. Moreover,
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we try running slight variants of the classification for dimension 6. First, we try using the Walsh

transform to check for bentness as described in Section 3.3.1. Although this check is asymptotically

faster, we measure no benefit in the average running time. Moreover, we try to run the test without

imposing that the generated functions have a minimum degree. In this case, the running time is

faster than the previous tests. However, running the search with these parameters also produces

quadratic bent functions, that need to be filtered out after the search.

Dimension Description Search time Search space Average per function

6

Cubic Bent, Walsh Trans-

form Test

41s 225 ∼ 1.22 µs

Cubic Bent, Constant

derivative (CD) Test (Sec-

tion 4.1.1)

41s 225 ∼ 1.22 µs

Cubic Bent, CD, no mini-

mum function degree

37s 225 ∼ 1.12 µs

8

Cubic Bent, CD∗ (Section

4.1.2)

11h12m26s 270 ∼ 1.67 µs

Cubic bentable∗ (Section

4.1.3)

1h2m29s 244 ∼ 1.37 µs

Cubic x1x3x5 + Q, CD 2m36s 226 ∼ 2.50 µs
Cubic + Quadratic search∗ 106, 098y ∼ 244 + 260 N/A

Quartic cubic-like bent,

CD∗
1h6m3s 2111 ∼ 1.22 µs

10 Cubic bent, CD∗ 1h2m21s 2147 ∼ 2.00 µs
∗Total time estimated in Sections 4.1.2, 4.1.3, 4.2.1, and 4.2.2

Table 4.8: Performance Metrics



Chapter 5

Conclusion

In this thesis, we implemented a tool for exhaustively searching Bent Boolean functions and cubic-

like Bent Boolean functions. The tool allows us to set constraints on the ANF of all searched

Boolean functions and efficiently evaluate the cryptographic properties of each Boolean function

searched.

We decided to test our tool using the characterization proposed in [CV23, Proposition 4] to

search for cubic-like Bent Boolean functions, and potentially try to classify cubic Bent Boolean

function in 6 or more variables. We confirmed the functionality of the tool by replicating the

classification of cubic Bent Boolean functions in dimension 6 presented by [Bra+05, Table 9].

We attempted to replicate the classification of cubic-like Bent Boolean functions presented by

[Lan13], but the reduction of the search space yielded by [CV23, Proposition 4], proved to be too

insignificant; at least in combination with our implementation and the computational tools at our

disposal. Trying to divide the search by considering purely cubic bentable functions first proved to

also be insufficient to achieve a classification of 8 variable cubic Bent Boolean functions.

Finally, we tried to use the characterization to generate new instances of cubic Boolean functions

in dimension 10, and cubic-like quartic Boolean functions in dimension 8. However, these searches

did not generate any interesting results, and we failed to find new instances of Bent Boolean

functions in dimensions 8 and 10.

New characterizations that constrain further the ANF of cubic-like Bent Boolean functions

may be necessary for this approach to be viable. Finding such constraints is an interesting open

problem for the future. Studying the derivatives of cubic bentable Boolean functions might also be

investigated as a way to achieve a classification of cubic Boolean functions in 8 or more variables.
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Appendix A

Testing CCZ-Equivalence

// Compute the f i x ed part for the l i n e a r code generator .

// F : (n+1 X 2ˆn) Matrix over F2 . Columns are (1 , x ) for x in F2ˆn ( l ex order )

func t i on CCZ fixed code (n)

F2 := F in i t eF i e l d (2 ) ;

O := Matrix (F2 , 1 , 2ˆn , [ 1 : i in [ 1 . . 2 ˆ n ] ] ) ;

// Use VectorSpace to keep the same orde r ing o f v a r i a b l e s o f C/Rust

F := Matrix (F2 , 2ˆn , n , [ E l t seq ( f ) : f in VectorSpace (F2 , n) ] ) ;

TF := Transpose (F) ;

return Ver t i c a l J o i n (O, TF) ;

end func t i on ;

// Check i f T1 and T2 are CCZ equ iva l en t

// C i s the f i x ed part o f the l i n e a r code precomputed with CCZ fixed code

//

// Returns t rue i f T1 and T2 are CCZ equiva lence , f a l s e o therwi se

//

func t i on CCZeq(C, T1 , T2)

G1 := Ve r t i c a l J o i n (C, Matrix ( F i n i t eF i e l d (2 ) , 1 , Ncols (C) , T1) ) ;

G2 := Ve r t i c a l J o i n (C, Matrix ( F i n i t eF i e l d (2 ) , 1 , Ncols (C) , T2) ) ;

L1 := LinearCode (G1) ;

L2 := LinearCode (G2) ;

r := Is I somorph ic (L1 , L2) ;

return r ;

end func t i on ;

// Example usage

n := 3 ;

T1 := [ 0 , 1 , 0 , 1 , 0 , 1 , 0 , 1 ] ;

T2 := [ 1 , 0 , 1 , 0 , 1 , 0 , 1 , 0 ] ;

C = CCZ fixed code (n) ;

a re T1 T2 equ iva l ent := CCZeq(C, T1 , T2) ;



Appendix B

ANF Masks for 10-variables search

We report here the full enabled and disabled masks used for the search of 10-variables cubic-like

Bent functions.

Enabled ...0000000000000000000000000000000000000000001008

Disabled 5989fb5839895ab51077a96787cc23e9ebbe0ae4a5d7615c5

f8934cf5379ad61d7a3bd2d3a4b8b6a5a0cdd09410612c356

036507cdf6fcad94385e72ded7f2034f562f22988f60b8573

86b068cc793624725f9d8b8e523f34321ff99a76c42ce36f9

d6176b54090a31fc9c08ecd728339b42ffaa7cf28e3b2e24e

cf61b3a3c3b710094b444c37d9c52643d5f004fb5a5690078

c54cfea8f8b2629d5ecdc3fae7aa09cd7393490d1d354faaf

bfd644004befdd7992fa515b9f44a39b5a25fe86c6767dc08

cd15b62164687afd11f2c0890b3f97bfe33f2d4c88460e43e

fb3bd079d09b736306bcceb73dd6209aa4dabd9a1db1006a4

e1d34abff8ff6e31d9fde36b2a94ea3df0057c2bcb42b59f9

c51af7004a3b3ef51292dc1965c59aad0c3d050f0ba8962a8

9fc114e4e3b673c6e078f48e0a261d85369a9873b5ee67abb

2cef11f6b28741da1524560ff42db6452fb8724fe2931f807

70a98837851699035f43e24f86e3d5e78d1b460a650eb70b2

d607f80bd21f4bb9f173b0ef9cc8dbc6c5af9bf6e7843ac37

cafa9e5e4a86564a2cea0e9149db72e075451f7ea46e0c010

49fa97e459ae1e6ff

Table B.1: ANF Mask used for search of cubic Boolean functions of dimension 10.
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