
Nidhi Purohit

Multivariate Analysis of
Clustering Problems with
Constraints

2023

Thesis for the degree of Philosophiae Doctor (PhD)
University of Bergen, Norway

at the University of Bergen

Nidhi Purohit

Multivariate Analysis of Clustering
Problems with Constraints

Thesis for the degree of Philosophiae Doctor (PhD)

Date of defense: 14.12.2023

The material in this publication is covered by the provisions of the Copyright Act.

Print: Skipnes Kommunikasjon / University of Bergen

© Copyright Nidhi Purohit

Name: Nidhi Purohit

Title: Multivariate Analysis of Clustering Problems with Constraints

Year: 2023

Acknowledgements

I would like to express my sincere gratitude to my advisor, Professor Petr A. Golovach, for

being patient and calm throughout the whole time. Your encouragement and patience

were essential, especially during the review and editing of manuscript drafts multiple

times. Your mentorship, valuable insights throughout the research process, availability

for discussions and guidance, encouragement of collaborations and support have been

instrumental in completing this work. Also, Thank you for checking my progress and

taking the necessary steps towards my growth as a researcher. I would also like to thank

my co-advisor, Professor Fedor V. Fomin, for his time, valuable suggestions and for

always being open for discussions.

I am incredibly grateful to Professor Saket Saurabh for playing a pivotal role in my

scientific development by providing me with immense opportunities and resources, such

as arranging research visits and courses that enhanced my learning. Your presence filled

everything around you with energy and enthusiasm. I am deeply thankful to you for

everything.

I express my gratitude to all my co-authors. This work would not have been possible

without your contribution. Thanks, Sayan Bandyapadhyay, for being the cooperative

office mate and great teacher I could hope for at the beginning of my PhD. Thanks,

Kirill Simonov, for our scientific conversations over the coffee pantry. William Lochet,

thanks for your valuable insight early in the morning. Thanks, Tanmay, for sharing

your scientific insights and patiently answering my doubts. I would also like to thank

the rest of my co-authors, Jayakrishnan Madathil, Édouard Bonnet, Lawqueen Kanesh,

Madhumita Kundu, Komal Muluk, and Avinandan Das. I am fortunate to have worked

alongside you all.

It has been an immense pleasure to be part of the Algorithmic group of the Department

of Informatics. The seminars and workshops helped me learn about a variety of topics.

I would like to acknowledge the financial support provided by the department, which

enable me to pursue this research. I especially wish to thank those I have spent time

with outside work. Matthias, your vibrant and helpful presence in our office made a huge

ii Acknowledgements

difference. Thanks for the suggestions, which helped me improve my thesis’s quality. I

am grateful to Jan Arne, and Kari for a fantastic host. Talking to Kari is always been

a pleasure. My heartiest thanks to Paloma and Lars for being a support system and

source of guidance ranging from research to practical information during the initial days

in Bergen. Thanks to the department’s administrative staff for their assistance, which

greatly facilitated the administrative aspects of my thesis.

I am thankful to my friends whose friendship and the countless moments of laughter and

shared experiences have provided a much-needed respite from the challenges of research

and study. Thank you, Athira, for being a family away from home. Your delicious

homemade meals provided sustenance, warmth, and moments of joy. Your conscious

effort to be there for me, whether through a kind word or a comforting gesture, has meant

the world to me. Thanks, Prithvi, for being an extremely cooperative and considerate

flatmate and for the mutual respect that has allowed us to coexist harmoniously. My

heartfelt thanks to Mohanapriya, with whom I had one of the most beautiful research

experiences, engaging scientific discussions, and a lot of fun. Thanks, Madhumita, for

our dinners, study sessions, and impromptu trips. I cherish the memories we have created

together. Thanks, Farhad, for the long, funny discussions in the corridor and common

area. Thanks, Sakshi, for just being there for me. Thanks, Sushmita, for nourishing

my soul with your culinary creations and thoughtful conversations during my visit to

IMSc. I would also like to thank Megha and Neeraj for their consideration and friendly

atmosphere. Thank you, Svein, for the last-minute help.

Finally, I would like to express my gratitude towards the Divine God, my grandpar-

ents, parents, in-laws, and siblings for their unconditional love, constant belief in my

abilities and enduring support that helped me reach this significant milestone. Thanks,

Abhishek, Kavita, Aakanksha, and Arvind, for providing affection in every possible way.

Thanks, Aria, Vedica, Nyra, and Rudransh, for being a constant bundle of joy. Thanks,

Nisha, Shubham, Nikita, and Karan, for our fun time during my visits home. Last but

certainly not least, I express my profound appreciation to Jitu, my husband, for his love,

understanding, and a listening ear whenever I needed it most. This academic pursuit

would not have been possible without you. I am forever grateful for his presence in my

life and his role in making this journey beautiful. This thesis represents not only my

academic achievements but also a result of your love, affection and support. I dedicate

this thesis to you all.

Abstract

The k-median clustering problem is one of the most well-studied clustering problems. In

this problem, we are given a set X of n points in a space M with a distance measure

function dist : M×M → R≥0, a description of a set F ⊆ M of possible centers, and an

integer k, and the task is to find a pair (X , C), where X is a partition of X into k subsets

{X1, . . . , Xk} called clusters, and C = {c1, . . . , ck} ⊆ F is a set of k centers. Here, Xi

is the cluster corresponding to the cluster center ci ∈ C. The goal is to minimize the

following cost over all pairs (C,X)

cost(C,X) =
k∑

i=1

∑
x∈Xi

dist(ci,x).

In this thesis, we give a multivariate analysis of the problem subject to various con-

straints on cluster’s size, metric spaces and choice of centers. First, we systematically

study exact algorithms for the k-median clustering problem in the case of general met-

ric, where the candidate center set is either the same as the point set or is selected from

a prescribed finite set given as an input. Further, we study the variant of the k-median

problem known as the categorical k-median clustering problem where metric space is Σm

for a finite alphabet Σ and dist is defined by the Hamming measure. In particular, we

provide fixed-parameter algorithm for the variant of the problem with size constraints

on the clusters. Finally, we consider the k-median clustering problem with an additional

equal-size constraint on the clusters from the approximate parameterized preprocessing

perspective. The result includes the first 2-approximate polynomial kernel for this prob-

lem parameterized by the cost of clustering in the �p-norm. We also complement this

result by establishing lower bounds for the problem that eliminates the existence of an

exact kernel of polynomial size and a Polynomial-Time Approximation Scheme.

iv Abstract

Abstract in Norwegian

k-median klyngeproblemet er et av best studerte klyngeproblemene. I dette problemet er

vi gitt et sett X av n punkt i et rom M med en avstandsfunksjon dist : M×M → R≥0,

en beskrivelse av en mengde F ⊆ M av mulige sentre, og et heltall k, og oppgaven er

å finne et par (X , C), der X er en partisjon av X i k delsett {X1, . . . , Xk} kalt klynger,

og C = {c1, . . . , ck} ⊆ F er et sett med k-sentre. Her er Xi klyngen som tilsvarer

klyngesenteret ci ∈ C. Målet er å minimere følgende kostnad over alle parene (C,X)

cost(C,X) =
k∑

i=1

∑
x∈Xi

dist(ci,x).

I denne oppgaven gir vi en multivariat-analyse av problemet underlagt ulike begren-

sninger p̊a klyngens størrelse, metriske rom og valg av sentre. Først studerer vi sys-

tematisk eksakte algoritmer for k-median klynge-problemet med vilk̊arlig metrikk, der

mengden av kandidater for senter enten er det samme som punktmengden eller velges

fra en gitt, endelig mengde gitt som input. Videre studerer vi varianten av k-median-

problemet kjent som det kategoriske k-median klyngeproblemet, der det metriske rommet

er Σm for et endelig alfabet Σ og dist er definert ved Hamming-avstand. Spesielt gir vi

parameteriserte algoritmer for varianten av problemet med begrensninger p̊a størrelsen

p̊a klyngene. Til slutt ser vi p̊a k-median klyngeproblemet med tilleggsbegrensningen

at alle klyngene har lik størrelse, fra perspektivet av tilnærmelig parametrisert prepros-

essering. Resultater inkluderer den første 2-tilnærmede polynomiske kernelen for dette

problemet parametrisert av kostnadene ved klynging i �p-normen. Vi utfyller ogs̊a dette

resultatet ved å etablere nedre grenser for problemet som viser at en eksakt kjerne av

polynomisk størrelse og et tilnærmingsprogram i polynomisk tid ikke finnes.

vi Abstract in Norwegian

List of Publications

The results included in the thesis have been published in the papers numbered with 1,

2, and 3. We refer to these papers in the thesis as the Article 1, Article 2 and Article

3. Note that the authors are listed in alphabetical order as is customary in Theoretical

Computer Science.

1. Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, Nidhi Purohit, Saket

Saurabh. Exact Exponential Algorithms for Clustering Problems. The Interna-

tional Symposium on Parameterized and Exact Computation (IPEC). 13 : 1− 13 :

14, 2022.

2. Fedor V. Fomin, Petr A. Golovach, Nidhi Purohit. Parameterized Complexity

of Categorical Clustering with Size Constraints. Journal of Computer and System

Sciences (JCSS). 136 : 171− 194, 2023.

3. Sayan Bandyapadhyay, Fedor V. Fomin, Petr A. Golovach, Nidhi Purohit, Kirill

Simonov. Lossy Kernelization of Same-Size Clustering. The Theory of Computing

Systems (TOCS). 67 : 785− 824, 2023.

4. Sayan Bandyapadhyay, Fedor V. Fomin, Petr A. Golovach, William Lochet, Nidhi

Purohit, Kirill Simonov. How to Find a Good Explanation for Clustering?. Arti-

ficial Intelligence, Volume 322 : 103948, 2023.

5. Tanmay Inamdar, Lawqueen Kanesh, Madhumita Kundu, Nidhi Purohit, Saket

Saurabh. Fixed-Parameter Algorithms for Fair Hitting Set Problems. Mathemati-

cal Foundations of Computer Science (MFCS). 55 : 1− 55 : 14. 2023.

6. Sayan Bandyapadhyay, Fedor V. Fomin, Petr A. Golovach, Nidhi Purohit, Kirill

Simonov. FPT Approximation for Fair Minimum-Load Clustering. The Interna-

tional Symposium on Parameterized and Exact Computation (IPEC). 4 : 1 − 4 :

14, 2022.

viii List of Publications

7. Avinandan Das, Lawqueen Kanesh, Jayakrishnan Madathil, Komal Muluk, Nidhi

Purohit, Saket Saurabh. On the complexity of singly connected vertex deletion.

Theoretical Computer Science (TCS). 934 : 47− 64, 2022.

8. Édouard Bonnet,Nidhi Purohit. Metric Dimension Parameterized By Treewidth.

Algorithmica. 83(8) : 2606− 2633, 2021.

Contents

Acknowledgements i

Abstract iii

Abstract in Norwegian v

List of Publications vii

1 Introduction 1

1.1 Known and Related Results . 3

1.2 Our Results . 6

1.3 Overview of the Thesis . 10

2 Basic Notions 11

2.1 Numbers . 11

2.2 Metric Spaces . 11

2.3 Complexity Theory . 12

2.3.1 Approximation Algorithms . 12

2.3.2 Parameterized Complexity . 14

2.3.3 Lower Bounds . 15

2.3.4 Parameterized Approximation and Lossy Kernels 17

x CONTENTS

3 Problem Definitions 19

3.1 Clustering . 19

3.2 Common Result . 22

4 Exact Exponential Algorithms for Clustering Problems 25

4.1 Exact Algorithm for Restricted k-Median Clustering. 29

4.2 ETH Hardness . 34

4.3 SeCoCo Hardness . 36

4.4 A 2n · (mn)O(1) Time Algorithm for k-Median Facility Location 38

5 Parameterized Categorical Capacitated Clustering 41

5.1 Hardness of Clustering . 44

5.2 FPT Algorithm for Parameterization by B and the Alphabet Size 45

5.2.1 Definitions and Technical Lemmata 46

5.2.2 Algorithm . 52

5.3 Clustering with Size Constraints . 70

5.4 Kernelization for Clustering with Size Constraints 71

6 FPT Approximation Schemes/ Lossy Kernelization for Clustering 79

6.1 Lossy Kernel for Parameterized �p-Equal k-Median Clustering . 81

6.1.1 Technical Lemmata . 82

6.1.2 Construction of the Lossy Kernel 95

6.2 Kernelization . 98

6.2.1 Kernelization Lower Bound . 98

6.2.2 Polynomial Kernel for k +B Parameterization 105

6.3 APX-Hardness of �p-Equal k-Median Clustering 106

CONTENTS xi

7 Discussions and Open Problems 113

xii CONTENTS

Chapter 1

Introduction

Data analysis with no prior knowledge is indispensable in understanding various phe-

nomena. The data could be database records, graph nodes, texts, words, images, or any

collection where a set of features describes individuals. One of the means to organise

data is to classify or group them into subsets of similar objects known as clusters. For

example, clustering is an unsupervised machine-learning tool that plays a significant role

in analyzing data and making decisions [3, 13, 42].

The k-median clustering problem is one of the most fundamental and well-studied clus-

tering problems [6, 17, 53, 63]. In its most general form, the problem is defined as

follows. Given a set X of n points in a space M with a distance measure function

dist : M×M → R≥0, a description of a set F ⊆ M of possible centers and an integer k,

the task is to find a pair (X , C), where X is a partition of X into k subsets {X1, . . . , Xk},
called clusters, and C = {c1, . . . , ck} ⊆ F is a set of k centers. Here, Xi is the cluster

corresponding to the cluster center ci ∈ C. The goal is to minimize the following cost

over all pairs (C,X)

cost(C,X) =
k∑

i=1

∑
x∈Xi

dist(ci,x).

When F = M, that is, we allow picking centers anywhere in the metric space, we call

the problem k-Median Clustering. In the literature, this problem is also known

as Continuous k-Median Clustering. For example, if M is a Euclidean space,

one can pick any point in the space which is infinite as a potential center. When F

is a finite set given as part of the input, we call the problem Discrete k-Median

Clustering. This variant could be seen as a special case of k-Median Facility

Location. Here each center corresponds to a facility to be built from the set of possible

facility locations F, and the input X of points corresponds to the set of clients that need

to be served by these facilities. The cost of establishing a facility is zero, but we have

2 Introduction

an upper bound on the number of facilities and one wishes to minimize the total cost of

serving the clients. These problems have many applications in operational research and

network design problems such as placing warehouses and hospitals [46]. When M is a

d-dimensional Euclidean space Rd and dist is the Euclidean distance, then we call the

problem Euclidean k-Median Clustering. The problem has gained much attention

from the theory community [1, 9, 31, 60].

There is a large class of problems about learning from categorical data. The term

categorical data refers to data type whose values are discrete and belong to a specific

finite set of categories. It could be text, some numeric values, or even unstructured data

like images. A prominent example of categorical data is binary data, where the points are

binary vectors, each of whose coordinates can take a value of either 0 or 1. For example,

in electronic commerce, each transaction can be modelled as a binary vector (known

as market-based data), each of whose coordinates denotes whether a particular item is

purchased or not [62, 83]. In document clustering, each document can be modelled as

a binary vector, each of whose coordinates denotes whether a specific word is present

or not in the document [62, 83]. For categorical data, Hamming distance is believed

to be more useful. When M is the set of strings of length m over a finite alphabet Σ

equipped with the Hamming distance, we call the problem Categorical k-Median

Clustering.

Sometimes we have access to “some” information about the data, for example, class

labels of the object, whether the two points must or cannot be placed together, the

preference of the users about how the data must be grouped, or information about the

minimum and maximum sizes of the clusters. The constraint clustering problem is an

approach to cluster data while incorporating such domain knowledge (when available).

In many applications of clustering, constraints come naturally. For example, the lower

bound on the size of a cluster ensures certain anonymity of data and is often required

for data privacy [74]. Moreover, the survey of Banerjee and Ghosh [12] contains various

examples of clustering with balancing constraints in Direct Marketing [82], Category

Management, Clustering of Documents [67], and Energy Aware Sensor Networks [44, 47]

among others. It can be possible that the solution of unconstrained clustering algorithms

is consistent with the given information. However, studying what happens if the answer

is not aligned with existing knowledge is fascinating. We refer to the book by Basu

et al. [13] for an overview. Here, we consider a variant of the constrained version of

k-Median Clustering called Capacitated k-Median clustering, where the size

of each cluster is specified, that is, required to lie within a given interval.

1.1 Known and Related Results 3

1.1 Known and Related Results

The problems are well-known to be NP-hard [32, 70]. Researchers have therefore inves-

tigated these in terms of approximation algorithms, and lots of work has been done on

producing good approximation algorithms for these problems [7, 8, 15, 18, 19, 45, 54,

55, 61, 75].

There are other algorithmic paradigms to cope with the NP-hardness of the problem;

one such is parameterized complexity. Here, the input comes with an additional param-

eter k ∈ N, which describes some property of the input I and is believed to be small in

practical applications. The aim is to restrict the exponential part of the running time to

this parameter and have only a polynomial dependence on the input size |I|. A param-

eterized problem is said to be fixed-parameter tractable (FPT) if it admits an algorithm

computing an optimal solution in time f(k) · |I|O(1), where f is some computable func-

tion that depends solely on k, and the algorithm is correspondingly referred as an FPT

algorithm. Naturally, the k-median problem is “multivariate” in the sense that in addi-

tion to the input size n, there are also parameters like the number of clusters k or the

cost of clustering B and the dimension of space d. The choice of k as a parameter is very

natural because, in many real-world applications, the problem requires a small number

of clusters.

Over the years, the researchers studied the k-median clustering problem in the domain

of approximation algorithms and parameterized complexity in parallel. It naturally gave

rise to the study of the problem in the recently developed field of FPT-approximation

where the above two paradigms are combined. This allowed for intriguing discoveries in

the intersection of the two worlds. We refer to the survey by Feldmann et al. [35] for an

overview of the area.

The complexity of the above problems heavily depends on the underlying metric space

and the considered version of the k-median problem. Discrete k-Median Cluster-

ing in general metric space, when distance only needs to satisfy triangle inequality is

known to be NP-hard for k = 2 [32] and for Euclidean norm even for the dimension

d = 2 (k is large) [70]. The best-known approximation factor in polynomial time for

the problem in the general metric is 2.6705 [22]. In the Euclidean metric, a 2.406-factor

approximation is known [21]. In this result, the analysis heavily relies on the structure

of the Euclidean space. It is therefore not believed to extendable to any other metric

space. Moreover, for both of the above metric spaces, the factor cannot be approxi-

mated better than (1 + 2
e
) 1 unless P �= NP, that is, the best lower bound is still the

1Here, the value of e is 2.71828. It is also known as Euler’s number.

4 Introduction

(1 + 2
e
)-hardness from Guha and Kuller [45]. For the algorithmic designer, the contin-

uous version of the k-median problem appears computationally more manageable than

the discrete case, as it allows to place centers anywhere in the metric space. In the Eu-

clidean metric space, it is shown that an α-approximation to the discrete case can be

used to obtain (1+ε) ·α-approximation for the continuous case under the Euclidean dis-

tance for any ε > 0 [69]. However, in the general metric space, Continuous k-Median

Clustering admits a 2-factor approximation and it is NP-hard to approximate up to

a factor of 2–o(1) [24] improving the inapproximability (1 + 1
e
)-factor derived from the

approach in [45]. Further, we know that the upper and lower bound for the discrete ver-

sion are tight even if “more” time is allowed [23]. The polynomial time approximation

schemes, that is, algorithms finding solutions very close to the optimal are known for

the Euclidean k-Median Clustering when d is a constant [6, 25, 58].

The next question is whether we can do better than the approximation results mentioned

above if we have more resources, that is, when we allow a running time of f(k) ·nO(1) (i.e.

in the fixed-parameter tractability setting) for arbitrary computable functions f . The

reduction by Guha and Kuller [45] showed that in the general metric space Discrete

k-Median Clustering is W [2]-hard when parameterized by k. In other words, it is

unlikely to be solvable optimally in FPT time when parameterized by the number of

clusters in the solution. For Euclidean space and d = 2, Cohen-Addad et al. in [20]

showed that there does not exist a nO(
√
k)-time algorithm unless the Exponential Time

Hypothesis (ETH) fails. The authors in the same paper [20] showed that the problem

is even harder when d ≥ 4. That is, unless the ETH fails, there is no f(k) · no(k)-time

algorithm for any computable function f solving Euclidean k-Median Clustering

strictly in the settings where the set of potential candidate centers is explicitly given

as input. Moreover, approximating Discrete k-Median Clustering in FPT time

when parameterized by k is studied by Cohen-Addad et al. [23]. In their paper, the

authors give an FPT-time algorithm with approximation factor (1+ 2
e
). However, in the

same paper, the authors showed that even after allowing ourselves FPT time, one can

not achieve a better approximation factor than (1 + 2
e
) (assuming standard complexity-

theoretic conjectures) concluding that in the setting of FPT, the upper and lower bounds

are tight.

Coreset constructions is one of the essential advances in FPT-approximation concern-

ing clustering problems. It is an approach for data compression for obtaining FPT-

approximation for clustering. The notion of coresets originated from computational

geometry. In the language of parameterized complexity, a coreset is essentially an ap-

proximate kernel. Informally, a coreset summarises the data that for every set of k cen-

ters, approximately (within (1 ± ε) factor) preserves the optimal clustering cost. Feng

et al. in [36] gave a unified framework to design FPT approximation algorithms for clus-

1.1 Known and Related Results 5

tering problems. Har-Peled and Mazumdar gave a (1 + ε)-approximation algorithm for

the k-median clustering problem using coreset constructions [48]. After a series of in-

teresting works, the best-known upper bound on coreset size in general metric space is

O((k log n)/ε2) [33] and the lower bound is known to be Ω((k log n)/ε) [10].

For the Euclidean space of dimension d, it is possible to construct coresets of size (k/ε)O(1)

[34, 76]. Remarkably, the size of the coresets does not depend on n and d in this case.

Hence, they can be used to obtain an (1 + ε)-factor approximate scheme parameterized

by k in time f(k, ε) · nd. One can obtain an approximation scheme by enumerating all

possible partitions of the coreset points into k parts, evaluating the cost of each of them

and outputting the one of minimum cost.

Another important tool for constructing an FPT randomized algorithm is sampling. Ku-

mar et al. gave a (1+ ε)-approximation scheme in f(k, ε) · nd-time, with an exponential

dependence on k [60]. When the dimension d is arbitrary, one can obtain a (1 + ε)-

approximation in FPT time when parameterized by k where the dependency on n and d

are only linear. We give a brief explanation of this result in Section 1.2.

Feige in [32] proved that the Categorical k-Median Clustering (for binary points)

is NP-hard for k = 2. However, in the case of categorical data, we have more pos-

sibilities for parameterization. In particular, it makes sense to consider parameteri-

zation by the budget B. In the domain of parameterized algorithms, Fomin, Golo-

vach, and Panolan [37] gave two parameterized algorithms for the binary case of

Categorical k-Median Clustering with running times 2O(B logB) · (nm)O(1) and

2O(
√

kB log (k+B) log k) · (nm)O(1), respectively. Fomin, Golovach and Simonov in [38] stud-

ied k-clusterings with various distance norms in the categorical clustering problem. They

showed that the problem is W[1]-hard parameterized by d + B under the �0-norm (but

the size of the alphabet Σ is unbounded), where d is the dimension of input points and

B is the cost of clustering. They also showed that for the �p norm, the problem admits

FPT algorithms if 0 < p ≤ 1 or p = 2, and the problem is W[1]-hard for p = ∞, when

parameterized by B.

The capacitated variants of the k-median clustering problem are generally more difficult.

In particular, all hardness results of uncapacitated hold for the capacitated variant of

the k-median problem. On the positive side, Capacitated k-Median clustering ad-

mits a O(log(k)) approximation in general metric space and high dimensional Euclidean

space [17] . From the negative side, similar to the uncapacitated variant of the problem,

it is hard to obtain an approximation factor better than (1 + 2
e
) [45]. For the capaci-

tated k-median clustering problem, Cohen-Addad et al. gave a (3 + ε)-approximation

scheme in general metric with general capacities using coresets constructions [26]. The

6 Introduction

same paper also showed a (1 + ε)-approximation for the Euclidean metrics of arbitrary

dimensions, surprisingly obtaining a better approximation factor than (1+ 2
e
). However,

in general metric spaces, obtaining an FPT approximation algorithm for the uncapac-

itated k-median clustering problem with approximation guarantee less than (1 + 2
e
) is

impossible assuming the GAP-ETH 2 [23].

1.2 Our Results

The k-median clustering problem received much attention in terms of Euclidean metric

space setting and parameterization by k [1, 9, 33, 60]. However, forDiscrete k-Median

Clustering the brute force approach of trying all the possible subsets of centers was

the best exact algorithm (with running time
(
n
k

) · nO(1)) known in general metric space.

The algorithm enumerates all sets of centers of size k, and the corresponding partition of

X into clusters is obtained by assigning each point to its nearest center. Then, we simply

return the solution with the minimum cost. However, note that when k belongs to the

range n/2±o(n), then
(
n
k

)
 2n. Thus, the näıve algorithm has running time O∗(2n) 3 in

the worst case. Hence, we ask whether the discrete k-median clustering in general metric

space admit moderately exponential-time algorithms, i.e., algorithms with running time

cn · nO(1) for a constant c < 2.

In the first part of the thesis, we study exact algorithms for the discrete k-median

clustering problem in general metric spaces. In particular, we study the two variants of

Discrete k-Median Clustering. First, when F = X, that is, any point in the set of

input points X is allowed to be picked as a center, we give an exact algorithm running

in O(1.89)n-time, where n is the number of input points. Second, we consider the case

where the set of candidate centers F is a finite set given as part of the input and distinct

from the input set X. We provide an algorithm with running 2n · (mn)O(1)-time which

solves the problem exactly, where n is the number of input points and m is the number

of candidate centers. We also complement both results by showing that the running time

of the algorithm is asymptotically optimal upto the base of the exponent. The results

appeared in Article 1.

Motivated by Cohen-Addad et al. [20], Fomin et al. studied Categorical k-Median

Clustering, mainly when the input points are binary and with Hamming distance [37].

They proved that the problem is fixed-parameter tractable by giving an algorithm that

2The GAP-ETH states that no 2o(n)-time algorithm can distinguish between a satisfiable 3-CNF
formula and a 3-CNF formula in which each assignment satisfies at most (1− ε) fraction of all clauses
for some constant ε > 0.

3O∗(·) hides polynomial factors in the instance size

1.2 Our Results 7

solves the problem in time f(B) · |I|O(1), where B is the cost of clustering and |I| is
the size of the input instance. The natural question is to analyze the complexity of the

problem on a significantly more general model of the capacitated clustering, where the

sizes of the clusters should satisfy certain constraints. More precisely, in Categorical

Capacitated k-Median Clustering, we are given two non-negative integers p and

q and seek a k-median clustering with each cluster’s size between the given numbers p

and q.

In the next part of the thesis, we conclude that these additional constraints do not

impact the problem’s parameterized complexity. We give an algorithm that solves the

problem in f(B) · |Σ|B · |I|O(1) time. Hence, the problem is fixed-parameter tractable

with respect to the combined parameter B + |Σ|. In some applications, the cluster

size is approximately equal; see, e.g. [78]. We consider two variants of Categorical

Capacitated k-Median Clustering. In the first variant, the input consists of a

set of points, positive integers k and B, and a non-negative integer δ. The task is to

find a k-median clustering of cost at most B such that the sizes of the resulting clusters

should differ by at most δ, we call the problem Balanced Categorical k-Median

Clustering. In the second variant, we are given a set of points, positive integers k and

B, and a real α ≥ 1, and the goal is to obtain a k-median clustering of cost at most B such

that the ratio of the resulting cluster’s sizes is upper bound by α, we call the problem

Factor-Balanced Categorical k-Median Clustering. The NP-hardness and

fixed-parameter tractability parameterized by B + |Σ| of both the problems follow the

hardness and FPT results for Categorical Capacitated k-Median Clustering.

Moreover, we show that Balanced Categorical k-Median Clustering admits a

polynomial kernel with respect to the combined parameter k +B + δ. However, for the

binary case, we conclude that unless some complexity theoretic hypothesis fails, neither

of the considered problems admits a polynomial kernel parameterized by B. The results

appeared in Article 2.

In many real-life scenarios, it is desirable to cluster data into clusters of exactly equal

sizes. For example, to tailor teaching methods to meet the specific needs of various stu-

dents, one would be interested in allocating k fair class sizes by grouping students with

homogeneous abilities and skills [49]. In scheduling, the standard task is to distribute

n jobs to k machines while keeping identical workloads on each machine and simultane-

ously reducing the configuration time. In designing a conference program, one might be

interested in allocating n scientific papers according to their similarities to k “balanced”

sessions [78].

The next part of the thesis is an attempt to capture such scenarios. Towards this, we

study a variant of Capacitated k-Median clustering, where the input points are

8 Introduction

in Zd, dist is the �p-norm for p ≥ 0, and the goal is to find a k-median clustering of cost

at most B such that the size of each cluster is equal. We call this problem �p-Equal k-

Median Clustering. The results appeared in Article 3. We study the parameterized

complexity of �p-Equal k-Median Clustering when parameterized by the cost of

clustering B.

Before stating our results, let us first discuss some limitations and advantages of param-

eterization of the problem by the budget B. We believe that restricting the input to

integral values is the most natural model for studying the complexity of the problem

with respect to the parameter B. Moreover, considering B as a parameter only makes

sense when input values are suitably discretized and not scaleable, which is quite com-

mon when the data is categorical. The most drastic effect of compression occurs when B

is small. Intuitively, this means that many of the data points are the same. Such a con-

dition is common in handling personal data that cannot be re-identified. For example,

the k-anonymity property requires each person in the data set to be undistinguishable

from at least k individuals whose information appears in the release [77].

�p-Equal k-Median Clustering is known to be NP-hard and, moreover, when it

comes to approximation in polynomial time, we show that it is NP-hard to obtain a

(1 + ε)-approximation with �0 (or �1) distances for some ε > 0. However, parameterized

by k and ε, standard techniques yield (1 + ε)-approximation in FPT time. For the

�2 norm, there is a general framework by Ding and Xu [31] for designing algorithms

for the k-median clustering problem with an additional constraints on cluster sizes.

The best-known improvements by Bhattacharya et al. [14] achieve a running time of

2
˜O(k/εO(1)) · nO(1)d in the case of �2-Equal k-Median Clustering, where Õ hides

polylogarithmic factors.

A seminal work of Kumar et al. [60] achieves a (1 + ε)-approximation for �2-Equal

k-Median Clustering with the similar running time of 2
˜O(k/εO(1)) ·nd. The algorithm

proceeds as follows. First, take a small uniform sample of the input points, and by

guessing assure that the sample is taken only from the largest cluster. Second, estimate

the optimal center of this cluster from the sample. In the case of the equal k-median

clustering problem, Theorem 5.4 of Kumar et al. [60] guarantees that from a sample of

size (1/ε)O(1) one can compute in time 2(1/ε)
O(1) · d a set of candidate centers such that

at least one of them provides a (1 + ε)-approximation to the cost of the cluster. Finally,

“prune” the set of points so that the next largest cluster contains at least a Ω(1/k)

fraction of the remaining points and continue the same process with one less cluster.

One can observe that in the case of �2-Equal k-Median Clustering, a simplification

of the above algorithm suffices. One does not need to perform the “pruning” step, as

we are only interested in clusterings where all the clusters have size exactly n/k. Thus,

1.2 Our Results 9

(1/ε)O(1)-sized uniform samples from each of the clusters can be computed immediately

in total time 2
˜O(k/εO(1)) ·nd. This achieves (1+ε)-approximation for �2-Equal k-Median

Clustering with the same running time as the algorithm of Kumar et al. [60]. In fact,

the same procedure works for the �0 norm as well, where for estimating the cluster center

it suffices to compute the optimal center of a sample of size O(1/ε2) as proven by Alon

and Sudakov [4].

In another line of work, FPT-time approximation is achieved via constructing small-sized

coresets of the input points. The work of Bandyapadhyay et al. guarantees an ε-coreset

for �2-Equal k-Median Clustering of size (kd log n/ε)O(1), and consequently a (1+ε)-

approximation algorithm with running time 2
˜O(k/εO(1))(nd)O(1) [11] . Thus, in terms of an

FPT approximation, �2-Equal k-Median Clustering is surprisingly “simpler” than

its unconstrained variant k-Median Clustering. However, our hardness result shows

that the problems are similarly hard in terms of polynomial-time approximation.

An another successful attempt of combining kernelization with approximation algorithms

is lossy kernelization. This notion was introduced by Lokshtanov et al. [65]. Informally,

in lossy kernelization, given an instance of the problem and a parameter, we would

like the kernelization algorithm to output a reduced instance of size polynomial in the

parameter. However, the notion of equivalence is relaxed in the following way. Given a

c-approximate solution (i.e., one with the cost within c-factor of the optimal cost) to the

reduced instance, it should be possible in polynomial time to find an αc-approximate

solution to the original instance. The factor α is the loss occured while going from

the reduced instance to the original instance. Lossy kernels and coresets have a lot of

similarities in the sense that both compress the space compared to the original data,

and any algorithm applied on a coreset or kernel to efficiently retrieve a solution with a

gurantee almost the same as the one provided by the algorithm on the original input. The

crucial difference is that coreset constructions result in a small set of weighted points.

The weights could be as large as the input size n. Thus, a coreset of size polynomial in

k/ε, is not a polynomial-size lossy kernel for parameters k, ε because of the log n bits

required to encode the weights. Moreover, usually coreset constructions do not bound

the number of coordinates or the dimension of the points.

While the notion of lossy kernelization proved to be useful in the design of graph al-

gorithms, we are not aware of its applicability in clustering. This brings us to the

following question: What can lossy kernelization offer to clustering? We make the first

step towards the development of lossy kernels for clustering problems. In particular, we

study the Parameterized optimization version of �p-Equal k-Median Clustering,

parameterized by the cost B of clustering. We show that the problem admits a 2-factor

approximate polynomial kernel. The natural question is whether the factor is optimal,

10 Introduction

unfortunately, we do not have an answer to it. However, we complement the result by es-

tablishing the lower bounds for the problem that eliminate the existence of exact kernel

of polynomial size.

1.3 Overview of the Thesis

The thesis is organized as follows. In Chapter 2, we define common notation used re-

peatedly throughout the thesis and discuss some standard background in algorithmic

complexity. In Chapter 3, we define our models and give a common result relevant

for the remaining chapters. In Chapter 4, we show the exact algorithms for the vari-

ants of Discrete k-Median Clustering (see Article 1). In Chapter 5, we study the

parameterized complexity of Categorical Capacitated k-Median Clustering,

Balanced Categorical k-Median Clustering, and Factor-Balanced Cate-

gorical k-Median Clustering (see Article 2). In Chapter 6, we show a approximate

kernel for Parameterized �p-Equal k-Median Clustering (see Article 3). Finally,

we conclude with discussions and the future research directions in Chapter 7.

Chapter 2

Basic Notions

2.1 Numbers

We denote the set of real numbers by R, the set of integers by Z, and the set of natural

numbers by N. We denote the set of nonnegative real numbers by R≥0, and by R>0 the

set of positive real numbers. Respectively, Z≥0 denotes the set of nonnegative integers,

that is, Z≥0 = N ∪ {0}. For a vector x ∈ Rd, we use x[i] to denote the i-th element of

the vector for i ∈ {1, . . . , d}.

2.2 Metric Spaces

A metric space is a pair (M, dist), where M is a set of points and dist : M×M → R≥0

is a distance measure function which is a metric, that is, for any x,y ∈ M, it satisfies

the following three properties:

1. dist(x,y) = 0 if and only if x = y,

2. dist(x,y) = dist(y,x),

3. triangle inequality, that is, for any point z ∈ M

dist(x,y) ≤ dist(x, z) + dist(z,y).

The points in set M can be points in Rd. For p ≥ 1, the lp-norm defines the distance

12 Basic Notions

between two points x,y ∈ Rd as

dist(x,y) = distp(x,y) = ||x− y||p = (
d∑

i=1

|x[i]− y[i]|p) 1
p .

For p = 1, dist1(x,y), also known as the Manhattan distance or taxicab distance, is

dist1(x,y) = ||x− y||1 =
d∑

i=1

|x[i]− y[i]|.

The l2-norm is the regular Euclidean distance. For p = 0, disto(x,y) is the number of

indices at which vector x and y differ, also called Hamming distance, and for p = ∞,

dist∞(x,y) = max
i∈{1,...,d}

|x[i]− y[i]|.

It is also possible to consider problems for other metrics spaces, for example, for the graph

metric. Here, the points of the metric space is the set V of vertices of an undirected

edge-weighted connected graph G and the distance between vertices u and v is the length

of the shortest path connecting them.

2.3 Complexity Theory

In this section, we recall some basic definitions regarding the approximation algorithms

and discuss parameterized complexity.

A decision problem L is a subset of Σ∗, where Σ∗ is a set of strings over a finite alphabet

Σ. The input of a decision problem L is a string I over Σ, and the instance is yes/no

depending on whether I ∈ L or not. A minimization problem Π is a computable function

Π: Σ∗×Σ∗ → R≥0. The instances of a minimization problem Π is I ∈ Σ∗, and a solution

to I is simply a string s ∈ Σ∗. Then the function Π(·, ·) defines the value Π(I, s)

of a solution s to an instance I. The optimum value of an instance I is OptΠ(I) =

mins∈Σ∗ Π(I, s). A solution s is optimal if OptΠ(I) = Π(I, s).

2.3.1 Approximation Algorithms

An NP-hardness optimization problem implies that no known algorithm that can solve

“all the instances” of problem “optimally” in “polynomial time”. To deal with the NP-

hardness of a problem, one of the above requirements must be relaxed. One of the

2.3 Complexity Theory 13

common approaches is to relax the requirement of the optimal solution and settles for

a solution “closer” to the optimal. Towards, this we consider designing approximation

algorithms for the optimization problems to obtain near-optimal solutions as opposed to

a classical exact algorithm which has to correctly determine whether an input is a yes or

no instance of a decision problem. In this section we introduce the standard terminology

for approximation algorithms. For an in-depth introduction to the area of approximation

algorithms, we refer to the classical book by Vazirani [79], and byWilliamson and Shymos

[80]. Formally, for a minimization problem Π and a value α > 1, an α-approximate

algorithm is a polynomial time algorithm which for all the instances of the problem

produces a solution whose objective value is at most a factor of α times of the value

of the optimal, i.e, α · Opt, where Opt is the objective value of the optimal solution.

The complexity class that contains problems admitting constant-factor approximation

algorithms is called APX. A problem is said to have a polynomial-time approximation

scheme (PTAS) if for every fixed ε > 0, there is a polynomial-time algorithm solving the

problem and producing a solution (1 + ε) factor to the optimum. Formally, we define it

as follows.

For a minimization problem Π, a polynomial-time approximation scheme (PTAS) is a

family of algorithms {Aε}, where there is an algorithm for each ε > 0, such that {Aε} is

an (1 + ε)-approximation algorithm.

The running time of a PTAS algorithm is of the form |I|f(ε), where I is an input instance

and f is some function of ε. Unless P = NP, PTAS � APX, that is, there exist problems

that are in APX but without a PTAS. An equivalent of NP-hardness for approximation

algorithms is APX-hardness. Therefore, showing APX-hardness would imply the non-

existence of a PTAS. The APX-hardness of a problem can be shown by giving a PTAS

reduction from some known APX-hard problem.

For the purpose of this work it would be suffice to know that 3-Dimensional Matching

(3DM) is APX-hard. In (3DM), we are given three disjoint sets of elements X, Y and

Z such that |X| = |Y | = |Z| = n and a set of m triples T ⊆ X × Y × Z. In addition,

each element of W := X ∪ Y ∪ Z appears in at most 3 triples. A set M ⊆ T is called a

matching if no element of W is contained in more than one triple of M . The goal is to

find a maximum cardinality matching. We use the following proposition due to Petrank

[73].

Proposition 1. [Restatement of Theorem 4.4 from [73]] There exists a constant 0 <

γ < 1, such that it is NP-hard to distinguish the instances of the 3DM problem in which

a perfect matching exists, from the instances in which there is a matching of size at most

(1− γ)n.

14 Basic Notions

2.3.2 Parameterized Complexity

A parameterized problem Π is a subset of Σ∗ × N, where Σ is a finite alphabet. Thus,

an instance of Π is a pair (I, k), where I ⊆ Σ∗ and k is a nonnegative integer called a

parameter. It is said that a parameterized problem Π is fixed-parameter tractable (FPT)

if it can be solved in f(k) · |I|O(1) time for some computable function f that depends on

the parameter k only. The parameterized complexity class FPT is composed of fixed-

parameter tractable problems. The complexity class XP consists of problems that can

be solved with running time |I|f(k), where f is some function of k.

We now discuss the kernelization algorithms and polynomial kernels, and ways for prov-

ing lower bounds for kernelization.

Kernelization. A kernelization algorithm (or kernel) for a parameterized problem Π

is an algorithm A that, given an instance (I, k) of Π, in polynomial time produces an

instance (I ′, k′) of Π such that

(i) (I, k) ∈ Π if and only if (I ′, k′) ∈ Π, and

(ii) |I ′|+ k′ ≤ g(k) for a computable function g(·).

The function g(·) is called the size of a kernel; a kernel is polynomial if g(·) is a polyno-

mial. Every decidable FPT problem admits a kernel. However, it is unlikely that all FPT

problems have polynomial kernels and the parameterized complexity theory provides

tools for refuting the existence of polynomial kernels up to some reasonable complexity

assumptions. The standard assumption here is that NP �⊆ coNP / poly. In this work,

we use a type of reduction for deriving kernelization lower bound called polynomial pa-

rameter transformation (PPT). Here, we establish a kernelization lower bound of some

problems by showing a PPT reduction from an already known hard problem.

Let Π,Π′ ⊆ Σ∗ × N be two parameterized problems. An algorithm A is called a poly-

nomial parameter transformation if, given an instance (I, k) of problem Π, A works in

polynomial time and outputs an equivalent instance (I ′, k′) ∈ Π′, such that k′ ≤ p(k) for

some polynomial p(·).

Note, we have no constraints on the size of I ′, and only the polynomial bound on the

parameter k′ is essential. In this work, we use the result of Dell and Marx [30] about

kernelization lower bounds for the Perfect r-Set Matching problem. A hypergraph

H is said to be r-uniform for a positive integer r, if every hyperedge of H has size

2.3 Complexity Theory 15

r. Similarly to graphs, a set of hyperedges M is a matching if the hyperedges in M

are pairwise disjoint, and M is perfect if every vertex of H is saturated in M , that is,

included in one of the hyperedges of M . Perfect r-Set Matching asks, given an

r-uniform hypergraph H, whether H has a perfect matching. Dell and Marx [30] proved

the following kernelization lower bound.

Proposition 2. [[30]] Let r ≥ 3 be an integer and let ε be a positive real. If NP ⊆
coNP / poly, then Perfect r-Set Matching does not have kernels with O(

(|V (H)|
r

)r−ε
)

hyperedges.

We need a weaker claim.

Corollary 1. Perfect r-Set Matching admits no polynomial kernel when parame-

terized by the number of vertices of the input hypergraph unless NP ⊆ coNP / poly.

2.3.3 Lower Bounds

In this section, we discuss the hardness assumptions commonly used to show the lower

bounds such as W -hierarchy, Exponential Time Hypothesis and Set Cover Conjecture.

W -Hierarchy. Parameterized complexity theory provides a framework to refute the

existence of an FPT algorithm for a problem, that is, it gives some evidence that a

specific problem is not fixed-parameter tractable. Unlike the NP-complete problems,

there is a hierarchy of hard parameterized problems occupying the different levels of this

hierarchy, called W -hierarchy. Downey and Fellows introduced the W -hierarchy in an

attempt to capture the exact complexity of various hard parameterized problems. We

omit the formal details here and refer to the book [29]. The following relation is known

among the classes in W -hierarchy: FPT = W [0] ⊆ W [1] ⊆ W [2] · · · ⊆ W [P]. Similar

to P �= NP, it is widely believed that FPT �= W [1], and used as a working hypothesis

of parameterized complexity. Thus, if for any i ≥ 1, a parameterized problem is W [i]-

hard, then is unlikely to be fixed parameter tractable. The parameterized hardness of

a problem can be shown by giving a parameterized reduction from a known W [i]-hard

problem that transfers fixed-parameter tractability.

Let A,B ⊆ Σ∗ × N be two parameterized problems. A parameterized reduction from A

to B is an algorithm that, given an instance (I, k) of A outputs an instance (I ′, k′) of B

such that

• (I, k) is a yes-instance of A if and only if (I ′, k′) is a yes-instance of B,

16 Basic Notions

• k′ ≤ g(k) for some computable function g and

• the running time is f(k) · |I|O(1) for some computable function f .

Exponential Time Hypothesis. Recall that, in the CNF-SAT problem, we are given

a propositional Boolean formula φ = C1 ∧ . . . ∧ Cm over n variables X = {x1, x2, ..., xn}
such that each clause Ci is a disjunction of literals of the form xi or ¬xi, for some

1 ≤ i ≤ n. The task is to determine whether formula has a satisfying assignment,

that is, an assignment of true/false values to the variables so that formula φ becomes

true. By the famous Cook-Levin Theorem [27], CNF-SAT is NP-hard, that is, we do not

expect it to be solvable in polynomial time. However it can be solved in time O∗(2n)

by trying all possible true/false assignments. For this classical problem, we do not know

any faster algorithm than this brute force. For a positive integer q, a q-CNF formula is

a special case of CNF-SAT, where each clause Ci is a disjunction of at most q literals.

In 2001, Impagliazzo, Paturi, and Zane [50] introduced a conjecture which provides a

tight understanding of the complexity of q-SAT, for q ≥ 3 known as Exponential Time

hypothesis (ETH) which is defined as follows.

Conjecture 1 (Exponential Time Hypothesis (ETH)). There is a positive real number δ

such that 3-SAT with n variables and m clauses can not be solved in time 2δn(n+m)O(1).

Note that ETH is a stronger assumption than P �= NP. This conjecture also implies that

FPT �= W [1] [29]. Hence, it can also give conditional evidence that certain problems

are not fixed-parameter tractable. Also, it can be used to argue that a parameterized

problem can not be solved within a running time of 2o(k) · |I|O(1) or f(k) · |I|o(k). For an
in-depth study to the topics we refer to Chapter 14 of [29].

The main usage in this work is through the following proposition due to [64].

Proposition 3. Assuming ETH, there is no 2o(n) time algorithm for the Dominating

set problem where n is the number of vertices of G .

Note, that by Proposition 3, any polynomial time reduction from Dominating set to

an another problem whose size is linear in n shows that the latter does not have an

subexponential algorithm. That is, such reductions provide an algorithmic ETH lower

bounds for the target problem.

Set Cover Conjecture In the Set Cover problem, the input is a ground set of n

elements and a collection of m sets, and the goal is to find the smallest sub-collection

2.3 Complexity Theory 17

of sets whose union is the entire ground set. An exhaustive search takes O(2mn) time,

and a dynamic-programming algorithm has runtime O(2n · mn) [40]. The Set Cover

Conjecture implies a 2Ω(n) lower bound for Set Cover even when size of each set is

O(1). Note that no algorithm that runs in time O∗(2(1−ε)n) is known, where ε > 0

denotes a fixed constant. Further, it was conjectured using the set cover conjecture that

the above runtime is optimal, even if the input sets are small [28]. To state Set Cover

Conjecture, we consider a variant of the Set Cover problem called Δ-Set Cover

where all the sets have size at most Δ > 0, and the conjecture is defined as follows.

Conjecture 2 (Set Cover Conjecture (SeCoCo) [28]). For every fixed ε > 0 there

is Δ(ε) > 0, such that no algorithm (even randomized) solves Δ-Set Cover in time

O∗(2(1−ε)n).

2.3.4 Parameterized Approximation and Lossy Kernels

We also consider the parameterized analog of optimization problems. Since we only

deal with minimization problems where the minimized value is nonnegative, we state the

definitions only for optimization problems of this type. A parameterized minimization

problem Π is a computable function

Π: Σ∗ × N× Σ∗ → R≥0 ∪ {+∞}.

The instances of a parameterized minimization problem Π are pairs (I, k) ∈ Σ∗×N, and

a solution to (I, k) is simply a string s ∈ Σ∗, such that |s| ≤ |I|+ k. Then the function

Π(·, ·, ·) defines the value Π(I, k, s) of a solution s to an instance (I, k). The optimum

value of an instance (I, k) is

OptΠ(I, k) = min
s∈Σ∗ s.t. |s|≤|I|+k

Π(I, k, s).

A solution s is optimal if OptΠ(I, k) = Π(I, k, s).

A parameterized minimization problem Π is said to be FPT if there is an algorithm that

for each instance (I, k) of Π computes an optimal solution s in f(k) · |I|O(1) time, where

f(·) is a computable function. Let α ≥ 1 be a real number.

An FPT α-approximation algorithm for Π is an algorithm that in f(k) · |I|O(1) time

computes a solution s for (I, k) such that Π(I, k, s) ≤ α · OptΠ(I, k), where f(·) is a

computable function.

Note that the above definition only defines constant factor FPT-approximation algo-

18 Basic Notions

rithms. However, the definition can in a natural way be extended to approximation

algorithms whose approximation ratio depeneds on the parameter k, on the instance I,

or on both.

It is useful for us to make some comments about defining Π(·, ·, ·) for the case when

the considered problem is parameterized by the solution value. For simplicity, we do it

informally and refer to [41] for details and explanations. If s is not a “feasible” solution

to an instance (I, k), then it is convenient to assume that Π(I, k, s) = +∞. Otherwise,

if s is “feasible” but its value is at least k + 1, we set Π(I, k, s) = k + 1.

Lossy Kernelization Similar to kernels for parameterized problems, we define an

extension of kernelization to optimization problem, call α-approximate or lossy kernels.

Informally, an α-approximate kernel of size g(·) is a polynomial-time algorithm, that

given an instance (I, k), outputs an instance (I ′, k′) such that |I ′| + k′ ≤ g(k) and

any c-approximate solution s′ to (I ′, k′) can be turned in polynomial time into a (c ·
α)-approximate solution s to the original instance (I, k). More precisely, let Π be a

parameterized minimization problem and let α ≥ 1. An α-approximate (or lossy) kernel

for Π is a pair of polynomial algorithms A and A′ such that

(i) given an instance (I, k), A (called a reduction algorithm) computes an instance

(I ′, k′) with |I ′|+ k′ ≤ g(k), where g(·) is a computable function,

(ii) the algorithm A′ (called a solution-lifting algorithm), given the initial instance

(I, k), the instance (I ′, k′) produced by A, and a solution s′ to (I ′, k′), computes

an solution s to (I, k) such that

Π(I, k, s)

OptΠ(I, k)
≤ α · Π(I

′, k′, s′)
OptΠ(I

′, k′)
.

For simplicity, we assume here that Π(I,k,s)
OptΠ(I,k)

= 1 if OptΠ(I, k) = Π(I, k, s) = 0 and
Π(I,k,s)
OptΠ(I,k)

= +∞ if OptΠ(I, k) = 0 and Π(I, k, s) > 0; the same assumption is used for
Π(I′,k′,s′)
OptΠ(I′,k′) . As with classical kernels, g(·) is called the size of an approximate kernel, and

an approximate kernel is polynomial if g(·) is a polynomial. Analogous to the result that

a decidable parameterized decision problem admits a kernel if and only if it is FPT, it

holds that a computable parameterized optimization problem admits polynomial time

α-approximation if and only if it admits α-lossy kernel.

Chapter 3

Problem Definitions

In this section, we discuss and define the clustering problems that we consider in this

thesis.

3.1 Clustering

In its most general form, the k-Median Clustering problem is defined as follows.

Given a setX of n points in a spaceM with a distance measure function dist : M×M →
R≥0, a description of a set F ⊆ M of possible centers and an integer k, and the task is

to find a pair (X , C), where X is a partition of X into k subsets {X1, . . . , Xk}, called
clusters, C = {c1, . . . , ck} ⊆ F is a set of k centers, and the goal is to minimize the

following cost over all pairs (C,X)

cost(C,X) =
k∑

i=1

∑
x∈Xi

dist(ci,x).

Note that one can place the center at any point in F. We say that a partition

{X1, . . . , Xk} of X is an k-median clustering of X. We assume that we are given black-

box access to dist. Namely, given two points x,y ∈ X, we assume that dist(x,y) can be

computed in constant time.

We mainly study the variant of the problem where F = M, that is, centers can be placed

arbitrarily anywhere in the metric space M. In the literature, this variant is often called

Continuous k-Median Clustering. Moreover, in the continuous version of the

problem, we often call centers medians. In our thesis, whenever we mention k-Median

Clustering, we refer to this continuous variant of the problem. The variant when F is a

20 Problem Definitions

finite set given as a part of input and distinct from X, the problem is called Discrete k-

Median Clustering. This problem is also known as k-Median Facility Location

where input point set X corresponds to the set of clients that need to be served by

the facilities selected from the set of centers F, and the cost of establishing a facility is

zero, but we have an upper bound on the number of facilities allowed to set up, and the

objective is to minimize the total cost of serving the clients.

For a k-median clustering {X1, . . . , Xk} and given vectors c1, . . . , ck in M, we define the

cost of clustering with respect to c1, . . . , ck as

cost(X1, . . . , Xk, c1, . . . , ck) =
k∑

i=1

∑
x∈Xi

dist(x, ci).

In Categorical k-Median Clustering, M is the set of strings of length m from

Σ over a finite alphabet equipped with the Hamming distance, and the objective is to

minimize the following cost over all pairs (C,X)

cost(C,X) =
k∑

i=1

∑
x∈Xi

dist0(ci,x).

Observe that viewing points as strings is very natural concerning dist0 (Hamming dis-

tance) and is especially interesting when Σ is small.

In Euclidean k-Median Clustering, M is a d-dimensional Euclidean space Rd, dist

is the Euclidean distance, denoted by dist2(x,y), i.e.,

dist2(x,y) = ||x− y||2 = (
d∑

i=1

|x[i]− y[i]|2) 1
2 .

One can also consider the generalization of Euclidean k-Median Clustering to �p

distances, we call the problem �p-k-Median Clustering. Here, the metric space M
is still Rd, but dist is defined by the �p-norm, i.e.,

distp(x,y) = ||x− y||p = (
d∑

i=1

|x[i]− y[i]|p) 1
p .

The basic model of k-Median Clustering has various weaknesses, and one such is

that it allows no control over the structure of the clusters, apart from the global cost

minimization. This motivates us to consider clustering variants with size constraints

called Capacitated k-Median clustering. Here, along with the k-median clustering

3.1 Clustering 21

instance, we are given two positive integers p and q, where p ≤ q and the objective is

to find a partition X = {X1, . . . , Xk} of X and centers C = {c1, . . . , ck} minimizing

k-median clustering cost(X , C) over all the pairs (X , C) subject to the constraint that

the size of each resulting cluster is at least p and at most q. If p = q = n
k
, that is, the

size of each resulting cluster is required to be equal to n
k
, we call the problem Equal

k-Median Clustering.

We call the Capacitated k-Median clustering problem Categorical Capac-

itated k-Median Clustering when M is the set of strings of length m from Σ

over a finite alphabet and distance considered is Hamming, i.e., dist0. More pre-

cisely, in Categorical Capacitated k-Median Clustering we are given a multiset

X = {x1, . . . ,xn} of n points from Σm over a finite alphabet, a positive integer k, a non-

negative integer B, and positive integers p and q such that p ≤ q, and the goal is to

decide whether there is a partition X = {X1, . . . , Xk} of X, where p ≤ |Xi| ≤ q, and

vectors C = {c1, . . . , ck} in Σm such that

cost(C,X) =
k∑

i=1

∑
x∈Xi

dist0(ci,x) ≤ B.

The next most natural model is restricting the input in �p-k-Median Clustering to

the integral values. Moreover, we also desire that the resulting cluster’s size is the same.

That is, when M is Zd, and dist is defined as the lp-norm, and the objective is to find

a partition X = {X1, . . . , Xk} of X ⊆ Zd of points and k centers C = {c1, . . . , ck} in

Rd such that size of each cluster is same, that is |X1| = . . . , |Xk| = |X|
k

minimizing the

following objective function over all the pairs (C,X)

cost(C,X) =
k∑

i=1

∑
x∈Xi

distp(ci,xi,).

We call the problem �p-Equal k-Median Clustering.

In the last, we briefly mention the some related types of clustering problems called k-

Center and k-Means. k-Means is defined analogously to k-Median Clustering,

except that the objective is to minimize the following cost over all pairs (C,X)

cost(C,X) =
k∑

i=1

∑
x∈Xi

(dist(ci,x))
2.

.

In k-Center, the objective is to minimize the maximum distance of a point to its

22 Problem Definitions

nearest center, i.e., mink
i=1 maxx∈Xi

dist(x, ci). The k-Center problem is also known in

the literature as k-supplier.

3.2 Common Result

In this section, we provide an auxiliary result for Capacitated k-Median clustering

which will be used later in several chapters.

Observe that given vectors c1, . . . , ck, we can find a k-median clustering {X1, . . . , Xk}
that minimizes

∑k
j=1

∑
x∈Xj

dist(x, cj) by following the greedy procedure. For each i ∈
{1, . . . , n}, we find j ∈ {1, . . . , k} such that dist(xi, cj) is minimum (ties are broken

arbitrarily) and place xi in the cluster Xj. Since

n∑
i=1

min{dist(cj,xi) | 1 ≤ j ≤ k} ≤
k∑

j=1

∑
xi∈Xj

dist(cj,xi),

for every k-median clustering {X1, . . . , Xk}, the described greedy procedure produces

optimal partition of X (some sets may be empty). However, the constructed k-clustering

does not respect the size constraints. Still, given vectors c1, . . . , ck, we can decide in

polynomial time whether an instance of Capacitated k-Median clustering has a

solution with the medians c1, . . . , ck using a reduction to the classicalMinimum Weight

Perfect Matching problem on bipartite graphs that is well-known to be solvable in

polynomial time by the Hungarian method of Kuhn [59] (see also [66]).

Recall that a matching M of a graph G is a set of edges without common vertices. It is

said that a matching M saturates a vertex v if M has an edge incident to v. A matching

M is perfect if every vertex of G is saturated. The task of Minimum Weight Perfect

Matching is, given a bipartite graph G and a weight function w : E(G) → R≥0, to find

a perfect matching M (if it exists) such that its weight w(M) =
∑

e∈M w(e) is minimum.

We show the following result.

Lemma 1. Let X = {x1, . . . ,xn} be a collection of n points in space M, k be a

positive integer, and let p and q be two positive integers such that p ≤ q. Let also

c1, . . . , ck be the points in M. Then a capacitated k-median clustering of minimum

cost(X1, . . . , Xk; c1, . . . , ck) can be computed in polynomial time.

Proof. Assume p ≤ n
k
≤ q, that is kp ≤ n ≤ kq. Otherwise, a capacitated k-median

clustering does not exist. Given X and centers {c1, . . . , ck}, and positive integers p and

q, we construct the bipartite graph G as follows.

3.2 Common Result 23

• For each i ∈ {1, . . . , k}, construct a set of p vertices Wi = {vi1, . . . , vip} and a set of

q − p vertices W ′
i = {vip+1, . . . , v

i
q}; note that W ′

i = ∅ if p = q. Let Vi = Wi ∪W ′
i

for i ∈ {1, . . . , k} and denote V =
⋃k

i=1 Vi; the block of vertices Vi corresponds to

the median ci.

• For each i ∈ {1, . . . , n}, construct a vertex ui corresponding to each point xi of X

and make ui adjacent to the vertices of V . Denote U = {u1, . . . , un}.

• Construct a set of s = kq − n vertices U ′ = {u′
1, . . . , u

′
s} that we call fillers and

make the vertices of U ′ adjacent to the vertices of W ′
j for all j ∈ {1, . . . , k}; note

that U ′ = ∅ if n = qk and observe that qk ≥ n by our assumption.

Observe that G is a bipartite graph, where U ∪U ′ and V form the bipartition. Note also

that |U ∪ U ′| = |V | = qk.

• For every i ∈ {1, . . . , n} and j ∈ {1, . . . , k}, set w(uiv
j
h) = dist(cj,xi) for h ∈

{1, . . . , q}, that is, the weight of all edges joining ui corresponding to xi with the

vertices of Vj corresponding to the median cj.

• For every i ∈ {1, . . . , s} and j ∈ {1, . . . , k}, set w(u′
iv

j
h) = 0 for h ∈ {p+ 1, . . . , q},

that is, the edges incident to the fillers have zero weights.

We show one-to-one correspondence between perfect matchings of G and k-clusterings

of X.

In the forward direction, assume that M is a perfect matching of G. We construct the

clustering {X1, . . . , Xk} as follows. For every h ∈ {1, . . . , n}, uh is saturated by M

and, therefore, there are ih ∈ {1, . . . , k} and jh ∈ {1, . . . s} such that edge uhv
ih
jh

∈ M .

Consider M ′ = {uhv
ih
jh

| 1 ≤ h ≤ n} ⊆ M . We cluster the points of X according

to M ′. Formally, we place xh in Xih for each h ∈ {1, . . . , n}. Observe that for each

i ∈ {1, . . . , k}, the vertices of Wi are adjacent only to the vertices of U . Since these

vertices are saturated by M , we obtain that |Xi| ≥ p for every i ∈ {1, . . . , k}. Since

|Vi| = q, |Xi| ≤ q for all i ∈ {1, . . . , k}. Now we upper bound the cost of the obtained

k-clustering:

k∑
i=1

∑
xj∈Xi

dist(ci,xj) =
n∑

h=1

dist(cih ,xh) = w(M ′) ≤ w(M).

For the reverse direction, consider a k-clustering {X1, . . . , Xk} for X such that p ≤
|Xi| ≤ q for all i ∈ {1, . . . , k}. Let i ∈ {1, . . . , k}. Consider the cluster Xi and assume

24 Problem Definitions

that Xi = {xj1 , . . . ,xjhi
} and p ≤ |Xi| ≤ q. Recall that every vertex of Vi is adjacent to

every vertex of U . Let Mi = {uj1v
i
1, . . . , ujhi

vihi
}. Clearly, Mi is a matching saturating

the first p ≤ hi ≤ q vertices of Vi. In particular, the vertices of Wi are saturated. We

construct Mi for every i ∈ {1, . . . , k} and set M ′ =
⋃k

i=1 Mi. Since {X1, . . . , Xk} is a

partition of X, M ′ is a matching saturating every vertex of U . Denote by V ′ the set

of vertices of V that are not saturated by M ′. Notice that V ′ ⊆ ⋃k
i=1 W

′
i because the

vertices of each Wi are saturated by Mi. Observe that every vertex of U ′ is adjacent to

every vertex of W ′
i for i ∈ {1, . . . , k}, that is, G[U ′ ∪ V ′] is a complete bipartite graph.

Because |U ′| = |V ′| = s, G[U ′ ∪ V ′] has a perfect matching M ′′. We set M = M ′ ∪M ′′.

It is easy to see that M is a matching, and since M saturates every vertex of G, M is

a perfect matching. To evaluate the weight of M , recall that the edges of G incident to

the fillers have zero weights, that is, w(M ′′) = 0. Then

w(M) =w(M ′) = w(
k⋃

i=1

Mi) =
k∑

i=1

∑
e∈Mi

w(e) =
k∑

i=1

(
w(uj1v

i
1) + · · ·+ w(ujhi

vihi
)
)

=
k∑

i=1

∑
xj∈Xi

dist(ci,xj).

Thus, finding a k-clustering {X1, . . . , Xk} that minimizes cost(X1, . . . , Xk, c1, . . . , ck) is

equivalent to computing a perfect matching of minimum weight in G. Then, because a

perfect matching of minimum weight in G can be found in polynomial time [59, 66], a

k-clustering of minimum cost can be found in polynomial time.

Chapter 4

Exact Exponential Algorithms for

Clustering Problems

In this chapter, we study Discrete k-Median Clustering. In particular, we give

exact algorithms for two of its variants in general metric space. First, when F = X, that

is, one can pick centers from any point in the input set X, which we call Restricted

k-Median Clustering. The second variant is when the set of centers F is a finite

set distinct from X and given as part of the input. Recall that this variant is known

as k-Median Facility Location. We also complement the results by showing that

under a certain complexity-theoretic assumption, the running time of the algorithm

is asymptotically optimal upto the base of the exponent. The results mentioned in

this chapter have appeared in Article 1. Formally, we define Restricted k-Median

Clustering as follows.

Input: A set of n points X with a distance measure function dist : X ×
X → R≥0 and an integer k.

Task: The task is to find a pair (C,X), where X is a partition of

X into k subsets X = {X1, . . . , Xk}, called clusters, and C =

{c1, . . . , ck} ⊆ X is a set of k centers. The goal is to minimize the

following cost over all pairs (C,X)

cost(C,X) =
k∑

i=1

∑
x∈Xi

dist(ci,x).

Restricted k-Median Clustering

26 Exact Exponential Algorithms for Clustering Problems

We say that a partition {X1, . . . , Xk} of X is a restricted k-median clustering of X.

Agarwal and Procopiuc [2] gave an exact algorithm for k-Center in Rd running in

nO(k1−
1
d) time. In particular, in two dimensional space, their algorithm runs in 2O(

√
n logn)

time for any value of k, i.e., in sub-exponential time. This initiated this work and led

us towards a natural question, studying the complexity of Restricted k-Median

Clustering in general metric space.

Recall that for Restricted k-Median Clustering, it is easy to design an exact

algorithm that runs in time
(
n
k

) · nO(1) – it simply enumerates all sets of centers of size

k, and the corresponding partition of X into clusters is obtained by assigning each point

to its nearest center. Then, we simply return the solution with the minimum cost.

The näıve algorithm has running time O∗(2n) when k belongs to the range n/2± o(n),(
n
k

)
 2n. We design an exact algorithms for the problem with running time cn ·nO(1) for

a constant c < 2, that is, as small as possible. In particular, we obtain an O∗((1.89)n)

time exact algorithm for Restricted k-Median Clustering that works for any value

of k. We show the following result.

Theorem 1. There is an exact algorithm for Restricted k-Median Clustering

running in time (1.89)n · nO(1), where n is the number of points in X.

This is the first non-trivial exact algorithms for Restricted k-Median Clustering.

Our algorithm is quite general in the sense that it does not use any properties of the

underlying (metric) space – it does not even require the distances to satisfy the triangle

inequality. We complement this result by showing that the running time of our algorithm

is asymptotically optimal, up to the base of the exponent. That is, unless the Exponential

Time Hypothesis fails, there is no algorithm for these problems running in time 2o(n) ·
nO(1). Recall that the formal definition of ETH is given in Section 2, and we prove the

ETH-hardness result in Section 4.2.

Theorem 2. Restricted k-Median Clustering cannot be solved in time 2o(n) time

unless the exponential-time hypothesis fails, where n is the number of points in X.

To explain the idea behind Theorem 1, consider the following fortuitous scenario. Sup-

pose that the optimal solution only contains clusters of size exactly 2. In this case,

it is easy to solve the problem optimally by reducing the problem to finding a Mini-

mum Weight Perfect Matching in the complete graph defining the metric. Note

that the cluster-center always belongs to its own cluster, which implies that a cluster

of size 2 contains one additional point. This immediately suggests the connection to

minimum-weight matching. Note that the problem of finding Minimum Weight Per-

fect Matching is known to be polynomial-time solvable by the classical result of

27

Edmonds [52]. This idea can also be extended if the optimal solution only contains clus-

ters of size 1 and 2, by finding matching in an auxiliary graph. However, the idea does

not generalize to clusters of size 3 and more, since we need to solve a problem that has

a flavor similar to the 3-dimensional matching problem or the “star partition” problem,

which are known to be NP-hard [16, 43, 56]. Nevertheless, if the number of points be-

longing to the clusters of size at least 3 is small, one can “guess” these points, and solve

the remaining points using matching. However, the number of points belonging to the

clusters of size at least 3 can be quite large – it can be as high as n. But note that

the number of centers corresponding to clusters of size at least 3 can be at most n/3.

We show that “guessing” the subset of centers of such clusters is sufficient (as opposed

to guessing all the points in such clusters), in the sense that an optimal clustering of

the “residual” instance can be found again by finding a minimum-weight matching in an

appropriately constructed auxiliary graph.

We briefly explain the idea behind the construction of this auxiliary graph. Note that

in order to find an optimal clustering in the “residual” instance, we need to figure out

the following things: (1) the set of points that are involved in clusters of size 1, i.e.,

singleton clusters, (2) the pairs of points that become clusters of size 2, and (3) for each

center ci of a cluster of size at least 3, the set of at least two additional points that are

connected to ci. We find the set of points of type (1) by matching them to a set of dummy

points with zero-weight edges. The pairs of points involved in clusters of size 2 naturally

correspond to a matching, such that the weight of each edge corresponds to the distance

between the corresponding pair of points. Finally, to find points of type (3), we make

an appropriate number of copies of each guessed center ci that will be matched to the

corresponding points. Although the high-level idea behind the construction of the graph

is very natural, it is non-trivial to construct the graph such that a minimum-weight

perfect matching in the auxiliary graph exactly corresponds to an optimal clustering

(assuming we guess the centers correctly). Thus, this construction pushes the boundary

of applicability of matching in order to find an optimal clustering. Since the minimum-

weight perfect matching problem can be solved in polynomial time, the running time of

our algorithm is dominated by guessing the set of centers of clusters of size at least 3.

As mentioned previously, the number of such centers is at most n/3, which implies that

the number of guesses is at most
(

n
n/3

) ≤ (1.89)n, which dominates the running time of

our algorithm. We describe this result in Section 4.1.

We show that the “facility” location version the Restricted k-Median Clustering

problem is computational harder. We remind that k-Median Facility Location is

defined as follows.

28 Exact Exponential Algorithms for Clustering Problems

Input: A set of n points X = {x1, . . . ,xn}, called clients, and a set F of

m possible centers in a space M = X∪F with a distance measure

function dist : M×M → R≥0 and an integer k.

Task: The task is to find a pair (C,X), where X is a partition of

X into k subsets X = {X1, . . . , Xk}, called clusters, and C =

{c1, . . . , ck} ⊆ F is a set of k centers. The goal is to minimize the

following cost over all pairs (C,X)

cost(C,X) =
k∑

i=1

∑
x∈Xi

dist(ci,x).

.

k-Median Facility Location

For Restricted k-Median Clustering, we beat the “trivial” bound of O(2n), by

giving a O((1.89)n) time algorithm. However, for k-Median Facility Location, we

show that it is not possible to obtain a 2(1−ε)n · (mn)O(1) time algorithm for any fixed

ε > 0, where m = |F| and n = |X|. To show this result, we use the Set Cover

Conjecture (see Section 2), which is a complexity-theoretic hypothesis proposed by

Cygan et al. [28]. In Section 4.3, we show the following.

Theorem 3. Assuming Set Cover Conjecture, for any fixed ε > 0, there is no

2(1−ε)n ·mO(1) time algorithm for k-Median Facility Location, where n is the number

of clients and m is the number of potential locations.

We match this lower bound by designing an algorithm with running time 2n · (mn)O(1)

under some mild assumptions. While this algorithm is not obvious, it is a relatively

straightforward application of the subset convolution technique. The details are in Sec-

tion 4.4.

Organization of the chapter In Section 4.1, we give an exact algorithm for Re-

stricted k-Median Clustering. In Section 4.2, assuming the Exponential Time

Hypothesis, we establish the impossibility of solving Restricted k-Median Clus-

tering in subexponential time in the number of input points. In Section 4.3, we show

that k-Median Facility Location can not be solved in subexponential time in the

number of clients assuming the set cover conjecture. Further, in Section 4.4, using subset

convolution, we give the exact algorithm for k-Median Facility Location.

4.1 Exact Algorithm for Restricted k-Median Clustering. 29

4.1 Exact Algorithm for Restricted k-Median Clus-

tering.

In this section, we prove Theorem 1 which is restated.

Theorem 1. There is an exact algorithm for Restricted k-Median Clustering

running in time (1.89)n · nO(1), where n is the number of points in X.

Before delving into the proof of Theorem 1, we discuss the approach at a high level.

We begin by “guessing” a subset of centers from an (unknown) optimal solution. For

each guess, the problem of finding the best (i.e., minimum-cost) clustering that is “com-

patible” with the guess is reduced to finding a minimum weight perfect matching in an

auxiliary graph G (note, here we do not know all the centers) similarly to the proof of

Lemma 1.

The graph G is constructed in such a way that this clustering can be extracted by essen-

tially looking at the minimum-weight perfect matching. Note that Minimum Weight

Perfect Matching problem is well known to be solvable in polynomial time by the

Blossom algorithm of Edmonds [52]. Finally, we simply return a minimum-cost cluster-

ing found over all guesses.

Let us fix some optimal restricted k-median clustering solution and let k∗
1, k

∗
2 and k∗

3 be

a partition of k, where k∗
1 : the number of clusters of size exactly 1, call Type1 ; k∗

2 : the

number of clusters of size exactly 2, call Type2 ; and k∗
3 : the number of clusters of size at

least 3, call Type3. Let C∗
3 ⊆ X be Type3 centers, and say C∗

3 = {c1, . . . , ck∗3}. Observe

that number of clusters with Type3 centers is at most n
3
. Suppose not, then the number

of clusters with Type3 centers is greater than n
3
. Each Type3 cluster contains at least

three points. This contradicts that the number of input points is n.

Algorithm. First, we guess the partition of k into k1, k2, k3 as well as a subset C3 ⊆ X

of size at most n/3. For each such guess (k1, k2, k3, C3), we construct the auxiliary

graph G (as defined subsequently) corresponding to this guess, and compute a minimum

weight perfect matching M in G. Let M∗ be a minimum weight perfect matching over all

the guesses. We extract the corresponding clustering (C∗,X ∗) from M∗ (also explained

subsequently), and return as an optimal solution of the given instance.

Running time. Note that there are at most O(k2) tuples (k1, k2, k3) such that

k1 + k2 + k3 ≤ k (note that ki’s are non-negative integers). Furthermore, there are

at most
∑n/3

i=0

(
n
i

) ≤ (1.89)n subsets of X of size at most n/3. Here, the sum of binomial

coefficients
∑n/3

i=0

(
n
i

)
is upper bounded using the inequality

(
n
αn

) ≤ nn

(αn)αn·(n−αn)n−αn =

30 Exact Exponential Algorithms for Clustering Problems

[(1
α
)α · (1

1−α
)
1−α

]n for α = 1
3
(see [39]). Finally, constructing the auxiliary graph, and

finding a minimum-weight perfect matching takes polynomial time. Thus, the running

time is dominated by the number of guesses for C3, which implies that we can bound

the running time of our algorithm by O∗((1.89)n).

Construction of Auxiliary Graph. From now on assume that our algorithm made

the right guesses, i.e., suppose that (k1, k2, k3) = (k∗
1, k

∗
2, k

∗
3) and C∗

3 = C ′. Then, we

initialize the Type3 centers by placing each center from C ′ into a separate cluster. At

this point, to achieve this, we reduce the problem to the classical Minimum Weight

Perfect Matching on an auxiliary graph G, which we define as follows. See Figure 4.1

for an illustration of the construction.

• For each i ∈ {1, . . . , k3}, construct a set of s = n − k3 − 2k2 − k1 vertices Ci =

{ci1, . . . , cis}. Denote W =
⋃k

i=1 Ci; the block of vertices Ci corresponds to center

ci.

• Let Y = X \ C ′, that is, a set consisting of unclustered points in X. Observe

|Y | = n − k3. Denote Y = {y1, . . . , y(n−k3)}. For simplicity, we slightly abuse

the notation by keeping the vertices in G same as points in Y . That is, for each

i ∈ {1, . . . , (n − k3)}, place a vertex yi in the set Y . Make each yi adjacent to all

vertices of W .

• For each i ∈ {1, . . . , k1}, construct an auxiliary vertex ui. Denote Uiso =

{u1, . . . , uk1}. Make each ui adjacent to every vertex of Y .

• Construct a set of s(k3 − 1) vertices, Zfill = {z1, . . . , zs(k3−1)}, that we call fillers

and make vertices of Zfill adjacent to the vertices of W .

We define edge weights. For an edge uv ∈ E(G), we will use w(uv) to denote the weight

of the edge uv.

• For every i ∈ {1, . . . , (n − k3)} and every j ∈ {1, . . . , k3} set w(yic
j
h) = dist(yi, cj)

for h ∈ {1, . . . , s}, i.e., weight of all edges joining yi in Y with the vertices of Ci

corresponding to center cj.

• For every i, j ∈ {1, . . . , n− k3}, i �= j, set w(yiyj) = dist(yi, yj), i.e., the weight of

edges between vertices of Y .

• For every i ∈ {1, . . . , k1} and j ∈ {1, . . . , (n− k3)}, set w(uiyj) = 0, i.e., the edges

incident to the vertices of Uiso have zero weights.

4.1 Exact Algorithm for Restricted k-Median Clustering. 31

• For every i ∈ {1, . . . , s(k3−1)} and j ∈ {1, . . . , k3}, w(zicjh) = 0, for h ∈ {1, . . . , s},
i.e., the edges incident to the fillers have zero weights.

Lemma 2. The graph G has a perfect matching.

Proof. We construct a set M ⊆ E(G) that saturates every vertex in G.

Note that |Uiso| < |Y | and every vertex of Uiso is adjacent to every vertex of Y . Therefore,

we can construct M1 ⊆ E(G) by arbitrarily mapping each vertex of Uiso to a distinct

vertex of Y . Clearly, M1 is matching saturating vertices of Uiso. Since |Uiso| = k1, M1

saturates k1 vertices of Y . Denote by Y ′ the set of vertices of Y that are not saturated

by M1. Observe |Y ′| = s+ 2k2.

Every vertex of Zfill is adjacent to every vertex of W and |Zfill| < |W |. Construct

M2 ⊆ E(G) by arbitrarily mapping each vertex of Zfill to a distinct vertex of W . Thus,

M2 is a matching which saturates every vertex of Zfill and since |Zfill| = s(k3 − 1), it

also saturates s(k3 − 1) vertices of W . Denote by W ′ the set of vertices of W that is

not saturated by M2. Observe |W ′| = s. Recall, every vertex of W ′ is adjacent to every

vertex of Y ′ and note that |W ′| < |Y ′|. Therefore, construct M3 ⊆ E(G) by arbitrarily

matching each vertex of W ′ with a distinct vertex of Y ′.

Thus, the matching M3 saturates s vertices in both the sets W ′ and Y ′. Denote M ′ =

M1 ∪M2 ∪M3. Clearly, the vertices of Uiso, W and Zfill are saturated by M ′.

Denote by Y ′′ = Y \ Y ′ the set of vertices of Y that are not saturated by M ′. Note that

|Y ′′| = 2k2. Consider M4 ⊆ E(G) which maps these 2k2 vertices to each other. We set

M = M ′ ∪M4. It is easy to see that M is a perfect matching.

We next show one-to-one correspondence between perfect matchings of G and the re-

stricted discrete k-median clusterings of X.

Lemma 3. Let OPTmm(G) = weight of minimum weight perfect matching, and

OPTRkmed(X) = optimal clustering cost of restricted k-median clustering of X. Then,

OPTmm(G) = OPTRkmed(X).

Proof. In the forward direction, let M denote a minimum weight perfect matching M ⊆
E(G). We construct a restricted k-median clustering of X of same cost.

Observe that each vertex of Zfill is only adjacent to the vertices ofW and |Zfill| < |W |. Let
W1 ⊆ W be a set of vertices matched to vertices of Zfill. Since G has a perfect matching,

it saturates Zfill, where |Zfill| = s(k3 − 1). Then, |W1| = s(k3 − 1). Let W2 = W \W1 be

set of vertices matched to vertices of Y . Clearly, |W2| = s.

32 Exact Exponential Algorithms for Clustering Problems

u1 u2
uk1

y1 y2 yi yj y(n−k3)

c11 c12
c1s c21 c22 c2s ck3

1
ck3
sck3

2

z1 z2 zs(k3−1)

0
0

0

0

C1 C2
Ck3

Uiso

W

Y = X \ C′

Zfiller

dist(y1, c1)

dist(yj , c2)

dist(yn−k3 , ck3)

dist(yi, yj)

Figure 4.1: Illustration of the graph G produced in the reduction from Restricted k-
Median Clustering to Minimum Weight Perfect Matching. To avoid clutter,
we only show some representative edges. Recall that we guess the set of k3 centers of
Type3, and corresponding to each such center ci, we add a set Ci consisting of s copies
corresponding to that center. Next, we have the set Y corresponding to n−k3 unclustered
points. Finally, Uiso and Zfill consist of auxiliary vertices in order to ensure a perfect
matching. The weights of vertices among Y correspond to the corresponding original
distance; whereas the weight of an edge between y� ∈ Y , and a copy cji corresponding to
a Type3 center ci is defined to be dist(y�, ci). The weights of all other edges are equal to
zero.

4.1 Exact Algorithm for Restricted k-Median Clustering. 33

For every i ∈ {1, . . . , (n − k3)}, vertex yi ∈ Y is saturated by M . Therefore, we

construct the restricted k-median clustering {X1, . . . , Xk} of X, where each Xi ∈
{Type1,Type2,Type3}, for i ∈ {1, . . . , k} as follows.

Let Y ′ ⊆ Y be the set of vertices that are matched to vertices of Uiso in M , where

|Uiso| = k1 < |Y |. Corresponding to each such vertex in Y ′, select a center in the

solution C, call CType1 = {c1Type1, . . . , ck1Type1}. Correspondingly, also construct a singleton

cluster Xi = {ciType1}, for i ∈ {1, . . . , k1}. Let XType1 denote set of all Type1 clusters.

We now construct Type3 clusters: Let Y ′
i ⊆ Y be the set of vertices matched to set Ci,

for i ∈ {1, . . . , k3} in M . Consider Xi = Y ′
i ∪ {ci}. Clearly, Xi, for i ∈ {1, . . . , k3},

corresponds to Type3, clusters in X. Let XType3 denote set of all Type3 clusters. Recall,

we already guessed set C ′ = {c1, . . . , ck3}, that is, Type3 centers correctly.

Lastly, we construct clusters of Type2. Denote by Y ′′ set of unclustered points in Y .

Observe these points form a set of k2 disjoint edges in M . Arbitrarily, select one of the

endpoint of each edge as a center in the solution C, call CType2 = {c1Type2, . . . , ck2Type2}.
That is, for an edge y1y2 ∈ M , where y1, y2 ∈ Y ′′, select center as y1 or y2. Then

construct a cluster Xi, for i ∈ {1, . . . , k2} by placing both the endpoints of the edge in

the same cluster. Denote by XType2 the set of all Type2 clusters.

Clearly, Xi ∈ {Type1, T ype2, T ype3}, for i ∈ {1, . . . , k} is a partition of X. Note, since

Type1 clusters are isolated points, therefore, they contribute zero to the total cost of

clustering. Now we upper bound the cost of the obtained restricted k-median clustering:

k∑
i=1

∑
x∈Xi

dist(ci, x) =
k2∑
i=1

∑
y∈XType2

dist(ciType2, y) +
k3∑
i=1

∑
y∈XType3

dist(ci, y) = OPTmm(G).

For the reverse direction, consider a restricted k-median clustering {X1, . . . , Xk} of X

into {Type1,Type2,Type3} clusters of X such that |Type1| = k1, |Type2| = k2 and

|Type3| = k3 and C ′ = {c1, . . . , ck3}, that is, centers of Type3 clusters with OPTRkmed(X).

We construct a perfect matching M ⊆ E(G) of G as follows.

Observe that each Type1 cluster is a singleton cluster. ConstructM1 ⊆ E(G) by iterating

over each singleton vertex in Y corresponding to each cluster and match it to a distinct

vertex in Uiso. Since |Type1| = |Uiso| = k1, M1 is a matching saturating set Uiso. Also,

M1 saturates k1 vertices in Y .

Corresponding to each Type2 cluster, construct M2 ⊆ E(G) by adding an edge between

both the end vertices in Y . Clearly, M2 is a disjoint set of k2 edges in G and saturates

2k2 vertices in Y .

34 Exact Exponential Algorithms for Clustering Problems

Denote Y ′ ⊆ Y be the set of vertices matched by M1 ∪M2. Clearly, |Y ′| = k1 +2k2. Let

Y ′′ = Y \Y ′ be the set of remaining unmatched vertices in Y . Then, |Y ′′| = |Y |− |Y ′| =
n− k3 − 2k2 − k1 = s.

Note, we already guessed C ′ = {c1, . . . , ck3} and we have a cluster Xi corresponding to

each Ci, for i ∈ {1, . . . , k3}. Construct M3 ⊆ E(G) by matching each vertex of Xi \ {ci}
in Y ′′ to a distinct copy of ci in W . Since |Y ′′| < |W |, M3 saturates Y

′′. Let W1 ⊆ W be

the set of vertices saturated by M3. Note that |Y ′′| = s, then |W1| = s. Let W2 = W \W1

be the set of vertices not saturated by M3, where |W | = sk3. Then, |W2| = s(k3 − 1).

Every vertex of Zfill is only adjacent to every vertex of W (in particular of W2). We

construct M4 ⊆ E(G) by matching each vertex of Zfill to a distinct vertex of W2. Since

|Zfill| = |W2| = s(k3 − 1), M4 saturates Zfill and W2.

To evaluate the weight of M , recall that the edges of G incident to the set Uiso and to

the filler vertices Zfill have zero weights, that is, w(M1) = w(M4) = 0. Then

w(M) = w(M2) + w(M3) =
∑
e∈M2

w(e) +
∑
e∈M3

w(e)

=
∑

ci:Xi∈XType2

∑
y∈Xi

dist(ci, y) +
∑

ci:Xi∈XType3

∑
y∈Xi

dist(ci, y)

= OPTRkmed(X).

This completes the proof.

It is straightforward to see that the construction of the graph G from an instance (X, dist)

of Restricted k-Median Clustering can be done in polynomial time. Then, be-

cause a perfect matching of minimum weight of the graph G can be found in polyno-

mial time [52] and the total number of guesses is at most (1.89)nnO(1), Restricted

k-Median Clustering can be solved exactly in (1.89)nnO(1) time. This completes the

proof of Theorem 1.

4.2 ETH Hardness

In this section, we establish a result around the (im)possibility of solving Restricted

k-Median Clustering in subexponential time in the number of points in X. For

this, we use the result of Lokshtanov et al. [64] which states that, assuming ETH, the

Dominating set problem cannot be solved in time 2o(n) time, where n is the number

of vertices of the graph.

4.2 ETH Hardness 35

Given an unweighted, undirected graph G, a dominating set S is a subset of V (G) such

that each v ∈ V (G) is dominated by S, that is, we either have v ∈ S or there exists an

edge uv ∈ E(G) such that u ∈ S. The decision version of Dominating set is defined

as follows.

Input: Given an unweighted, undirected graph G, positive integer k.

Task: Determine whether G has a dominating set of size at most k.

Dominating set

We use Proposition 3 from Section 2, to prove the following.

Theorem 2. Restricted k-Median Clustering cannot be solved in time 2o(n) time

unless the exponential-time hypothesis fails, where n is the number of points in X.

Proof. We give a reduction from Dominating set to Restricted k-Median Clus-

tering. Let (G, k) be the given instance of Dominating set. We assume that there is

no dominating set in G of size at most k − 1. This assumption is without loss of gener-

ality, since we can use the following reduction iteratively for k′ = 1, 2, . . . , k, which only

incurs a polynomial overhead.

Now we construct an instance (X, dist) of Restricted k-Median Clustering as

follows. First, let X = V (G), i.e., we treat each vertex of the graph as a point in the

metric space, and we use the terms vertex and point interchangeably. Recall that the

graph G is unweighted, but we suppose that the weight of every edge in E(G) is 1. Then,

we let dist be the shortest path metric in G. The following observations are immediate.

Observation 1.

• For all u ∈ V (G), dist(u, u) = 0.

• For all distinct u, v ∈ V (G), dist(u, v) = 1 if and only if uv ∈ E(G), and

dist(u, v) ≥ 2 if and only if uv �∈ E(G).

We now show that there is a dominating set of size k if and only if there is a restricted

k-median clustering of cost exactly n− k.

In the forward direction, let S ⊆ V (G) be a dominating set of size k. We obtain the

corresponding restricted k-median clustering as follows. We let S = {c1, c2, . . . , ck} to

be the set of centers. For a center ci ∈ S, we define X ′
i = N [ci]. Since S is a dominating

36 Exact Exponential Algorithms for Clustering Problems

set, every vertex in V (G) \ S has a neighbor in S. Therefore,
⋃

1≤i≤k X
′
i = V (G). Now,

we remove all other centers except ci from the set X ′
i. Furthermore, if a vertex belongs

to multiple X ′
i’s, we arbitrarily keep it only in a single X ′

i. Let {X1, X2, . . . , Xk} be the

resulting partition of V (G). Observe that in the resulting clustering, centers pay a cost

of zero, whereas every other vertex has a center at distance 1. Therefore, the cost of the

clustering is exactly n− k.

In the other direction, let (S, {X1, X2, . . . , Xk}) be a given restricted k-median clustering

of cost n − k. We claim that S is a dominating set of size k. Consider any vertex

u ∈ V (G) \ S, and suppose u ∈ Xi corresponding to the center ci. Since u �∈ S,

dist(u, S) ≥ d(u, ci) ≥ 1. This holds for all n−k points of V (G)\S. Now, if u ∈ Xi, and

dist(u, ci) > 1 for some vertex u ∈ V (G) \ S, then this contradicts the assumption that

the given clustering has cost n − k. This implies that every u ∈ V (G) \ S has a center

in S at distance exactly 1, i.e., u has a neighbor in S. This concludes the proof.

This reduction takes polynomial time. Observe that the number of points in the resulting

instance is equal to n, the number of vertices in G. Therefore, if there is an algorithm for

Restricted k-Median Clustering with running time subexponential in the number

of points n then it would give a 2o(n) time algorithm for Dominating set, which would

refute ETH, via Proposition 3.

4.3 SeCoCo Hardness

In this section, we use Set Cover Conjecture stated in Section 2, and give the prove

of Theorem 3. Let us restate the theorem.

Theorem 3. Assuming Set Cover Conjecture, for any fixed ε > 0, there is no

2(1−ε)n ·mO(1) time algorithm for k-Median Facility Location, where n is the number

of clients and m is the number of potential locations.

Proof. We give a reduction from Set Cover to k-Median Facility Location.

Given an instance (U ,S) of Set Cover, where U = {u1, . . . , un} and S = {S1, . . . , Sm},
such that Si ⊆ U , we create an instance of k-Median Facility Location by building

a bipartite graph G = ((X ∪ F), E) as follows.

• For each element ui ∈ U , we create a client, say xi, for i ∈ {1, . . . , n}. Denote

X = {x1, . . . , xn}.

4.3 SeCoCo Hardness 37

• For each set Si ∈ S, we create a center 1, say ci, for i ∈ {1, . . . ,m}. Denote

F = {c1, . . . , cm}.

• For every i ∈ {1, . . . , n} and every j ∈ {1, . . . ,m}, if ui ∈ Sj, then connect

corresponding xi and cj with an edge of weight 1, i.e., client xi pays cost 1 when

assigned to facility cj.

This finishes the construction of G. Now, let dist be the shortest path metric in graph

G.

We show that there is set cover of size at most k if and only if there is k-median clustering

of cost n.

In the forward direction, assume there is a set cover S ′ ⊆ S of size at most k. Assume

S ′ = {S1, . . . , Sk}. For a set Si, we make the corresponding vertex ci ∈ F a center.

Then, we create its corresponding cluster Xi as follows. We add all the points xj such

that cixj ∈ E. Finally, we make the clusters Xi pairwise disjoint, by arbitrarily choosing

exactly one cluster for every client, if the client is present in multiple clusters. Clearly,

{X1, . . . , Xk} is a partition of X. We now calculate the cost of the obtained k-median

clustering.
k∑

i=1

∑
x∈Xi

dist(ci, x) =
k∑

i=1

|Xi| = n.

In the reverse direction, suppose there is a k-median clustering {X1, . . . , Xk} of X of

cost n. Let C = {c1, . . . , ck} ⊆ F be a set of centers. Every client must be at distance

at least 1 from its corresponding center. We claim that each client in a cluster is at

distance exactly 1 from its corresponding center. Suppose not, then there exists a client

with distance strictly greater than 1 from its center. The total number of clients is n.

This contradicts that the cost of k-median clustering is n. Thus, every element is chosen

in some set corresponding to set C. Therefore, a subfamily S ′ ⊆ S corresponding to set

C forms a cover of U . Since |C| = k, S ′ is a cover of U of size at most k.

Clearly, this reduction takes polynomial time. Furthermore, observe that the number

of clients in the resulting instance is same as the number of elements in U . Therefore,

if there is an 2(1−ε)n ·mO(1) time algorithm for k-Median Facility Location then it

would give a 2(1−ε)n ·mO(1) time algorithm for Set Cover, which, in turn, refutes Set

Cover Conjecture.

1In the context of k-Median Facility Location, we use center and facility interchangeably.

38 Exact Exponential Algorithms for Clustering Problems

4.4 A 2n · (mn)O(1) Time Algorithm for k-Median Fa-

cility Location

Let (X,F, dist, k) be a given instance of k-Median Facility Location, where n = |X|
denotes the number of clients, and m = |F| denotes the number of potential locations.

In this section, we give a 2n · (mn)O(1)-time exact algorithm, under a mild assumption

that any distance in the input is a non-negative integer that is bounded by a polynomial

in the input size2. Let M := n ·D, where D denotes the maximum inter-point distance

in the input. Note that M = (mn)O(1).

We define k functions cost1, cost2, . . . , costk : 2X → M , where costi(Y) denotes the

minimum cost of clustering the clients of Y into at most i clusters. In other words,

costi(Y) is the optimal i-Median Facility Location cost, restricted to the instance

(Y,F, dist). First, notice that cost1(Y) is simply the minimum cost of clustering all

points of Y into a single cluster. This value can be computed in O(mn) time by iterating

over all centers in F, and selecting the center c that minimizes the cost
∑

p∈Y dist(p, c).

Thus, the values cost1(Y) for all subsets Y ⊆ X can be computed in O(2nmn) time.

Next, we have the following observation.

Observation 2. For any Y ⊆ X and for any 1 ≤ i ≤ k,

costi(Y) = min
A∪B=Y
A∩B=∅

costi−1(A) + cost1(B).

Note that since we are interested in clustering of Y into at most i clusters, we do not

need to “remember” the set of facilities realizing costi−1(A) and cost1(B) in Observation

2. Next, we discuss the notion of subset convolution that will be used to compute costi(·)
values that is faster than the näıve computation.

Subset Convolutions. Given two functions f, g : 2X → Z, the subset convolution of f

and g is the function (f ∗ g) : 2X → Z, defined as follows.

∀Y ⊆ X : (f ∗ g)(Y) =
∑

A∪B=Y
A∩B=∅

f(A) · g(B) (4.1)

It is known that, given all the 2n values of f and g in the input, all the 2n values of

f ∗ g can be computed in O(2n · n3) arithmetic operations, see e.g., Theorem 10.15

in the Parameterized Algorithms book [29]. This is known as fast subset convolution.

2Since the integers are encoded in binary, this implies that the length of the encoding of any distance
is O(log(m) + log(n)).

4.4 A 2n · (mn)O(1) Time Algorithm for k-Median Facility Location 39

Now, let (f ⊕ g)(Y) = minA∪B=Y
A∩B=∅

f(A) + g(B). We observe that f ⊕ g is equal to the

subset convolution f ∗ g in the integer min-sum semiring (Z ∪ {∞},min,+), i.e., in

Equation 4.1, we use the mapping + �→ min, and · �→ +. This, combined with a simple

“embedding trick” enables one to compute all values of f ⊕ g : 2X → {−N, . . . , N} in

time 2nnO(1) · O(N logN log logN) using fast subset convolution – see Theorem 10.17 of

[29]. Finally, Observation 2 implies that costi is exactly costi−1 ⊕ cost1, and we observe

that the function values are upper bounded by n ·D = M . We summarize this discussion

in the following proposition.

Proposition 4. Given all the 2n values of costi−1 and cost1 in the input, all the 2n

values of costi can be computed in time 2nnO(1) · O(M logM log logM).

Using Proposition 4, we can compute all the 2n values of cost2(·), using the pre-computed

values cost1(·). Then, we can use the values of cost2(·) and cost1(·) to compute the

values of cost3(·). By iterating in this manner k − 1 ≤ n times, we compute the

values of costk(·) for all 2n subsets of k, and the overall time is upper bounded by

2nmnO(1) · O(M logM log logM), which is 2n · (mn)O(1), if M = (mn)O(1). Note that

costk(X) corresponds to the optimal cost of clustering. Finally, the computed values of

the functions costi(·) can be used to also compute a clustering {X1, X2, . . . , Xk} of X,

and the corresponding centers {c1, c2, . . . , ck}. We omit the straightforward details. This

proves the following theorem.

Theorem 4. k-Median Facility Location can be solved optimally in 2n · (mn)O(1)

time, assuming the distances are integers that are bounded by polynomial in the input

size.

40 Exact Exponential Algorithms for Clustering Problems

Chapter 5

Parameterized Categorical

Capacitated Clustering

In this chapter, we study the parameterized complexity of Categorical Capacitated

k-Median Clustering. It is a generalization of Categorical k-Median Cluster-

ing. The results mentioned in this chapter appeared in Article 2.

Input: A multiset X = {x1, . . . ,xn} of n points from Σm over a finite al-

phabet, a positive integer k, a nonnegative integer B, and positive

integers p and q such that p ≤ q.

Task: Decide whether there is a partition X = {X1, . . . , Xk} of X, where

p ≤ |Xi| ≤ q, and vectors C = {c1, . . . , ck} in Σm such that

cost(C,X) =
k∑

i=1

∑
x∈Xi

dist0(ci,x) ≤ B.

Categorical Capacitated k-Median Clustering

Recall that the sets X1, . . . , Xk are called clusters and the vectors c1, . . . , ck are centers.

Parameterized algorithms for the vanilla variant of Categorical Capacitated k-

Median Clustering (without constraints on the sizes of clusters) were given by Fomin,

Golovach, and Panolan in [37]. One of the main results of their paper is the theorem

providing an algorithm of running time 2O(B logB) · (nm)O(1) for vanilla clustering over

the binary field. In other words, the problem is fixed-parameter tractable (FPT) param-

eterized by B. The main question that we address in this chapter is whether clustering

constraints impact the problem’s parameterized complexity.

42 Parameterized Categorical Capacitated Clustering

Our main result is that Categorical Capacitated k-Median Clustering is fixed-

parameter tractable when parameterized by the budget B and the alphabet size. More

precisely, we show the following:

Theorem 5. Categorical Capacitated k-Median Clustering can be solved in

2O(B logB)|Σ|B · (mn)O(1) time.

Theorem 5 generalizes the result (Theorem 1) in [37]. Interestingly, for approximation

algorithms, introducing clustering constraints makes the problem much more computa-

tionally challenging. However, from the parameterized complexity perspective, adding

constraints on the sizes of clusters does not change the complexity of the problem. We

note that Theorem 5 is tight in the sense that it is unlikely that the dependence on

the alphabet size could be made polynomial because the results of Fomin, Golovach,

and Simonov [38] imply that Categorical Capacitated k-Median Clustering is

W[1]-hard when parameterized by B and m.

We also observe that Categorical Capacitated k-Median Clustering is NP-

complete even for binary points, k = 2 and p = q = n
2
.

Theorem 6. For every fixed integer constant c ≥ 0, Categorical Capacitated

k-Median Clustering is NP-complete for k = 2, binary points and q − p ≤ c.

Theorem 5 can be used to establish fixed-parameter tractability of several other variants

of constrained clustering discussed in the literature. In some applications, it is natural

to require that the sizes of clusters be approximately equal, see, e.g., [78].

We consider variants of Categorical Capacitated k-Median Clustering, where

the input contains additional parameters besides a set X = (x1, . . . ,xn) of n points over

a finite alphabet Σm and integers k and B, and the task is to find clusters X1, . . . , Xk

and medians c1, . . . , ck ∈ Σm such that
∑k

i=1

∑
x∈Xi

dist0(ci,x) ≤ B and the sizes of the

clusters satisfy special balance properties.

• In Balanced Categorical k-Median Clustering, we are additionally given

a nonnegative integer δ and it should hold that ||Xi| − |Xj|| ≤ δ for all i, j ∈
{1, . . . , k}, that is, the sizes of clusters can differ by at most δ.

• In Factor-Balanced Categorical k-Median Clustering, we are given a

real α ≥ 1 and it is required that |Xi| ≤ α|Xj| for all i, j ∈ {1, . . . , k}, that is, the
ratio of the sizes of the clusters is upper bounded by α.

43

By making use of Theorem 5, we prove that Balanced Categorical k-Median

Clustering and Factor-Balanced Categorical k-Median Clustering are

solvable in time 2O(B logB)|Σ|B · (mn)O(1).

Corollary 2. Balanced Categorical k-Median Clustering and Factor-

Balanced Categorical k-Median Clustering are solvable in time 2O(B logB)|Σ|B ·
(mn)O(1).

Finally, we discuss kernelization for these problems. In particular, we show that Bal-

anced Categorical k-Median Clustering admits a polynomial kernel under the

combined parameterization by k, B and δ.

Theorem 7. Balanced Categorical k-Median Clustering admits a kernel,

where the output set has O(k(B + δk)) points from a space of dimension O(B(B + k))

over an alphabet of size at most B + k.

In [37, Theorem 3], Fomin, Golovach and Panolan proved thatCategorical k-Median

Clustering for binary points does not admit a polynomial kernel when parameterized

by B, unless NP ⊆ coNP /poly. This immediately implies the following proposition.

Proposition 5. Categorical Capacitated k-Median Clustering (Balanced

Categorical k-Median Clustering and Factor-Balanced Categorical k-

Median Clustering, respectively) has no polynomial kernel when paramterized by B,

unless NP ⊆ coNP /poly, even if Σ = {0, 1}.

That is, neither of the considered problems has a polynomial kernel when parameterized

by B only, unless NP ⊆ coNP /poly.

Organization of the chapter In Section 5.1, we show that Categorical Capac-

itated k-Median Clustering is NP-complete for k = 2 and binary matrices even

if the clusters are required to be of the same size. In Section 5.2, we show our main

result by constructing an FPT algorithm for Categorical Capacitated k-Median

Clustering parameterized by B + |Σ|. In Section 5.3, we discuss Balanced Cate-

gorical k-Median Clustering and Factor-Balanced Categorical k-Median

Clustering. Further, in Section 5.4, we discuss kernelization for clustering problems

with size constraints.

44 Parameterized Categorical Capacitated Clustering

5.1 Hardness of Clustering

In [32], Feige proved that Categorical k-Median Clustering is NP-complete for

k = 2 and binary points, that is, for the case Σ = {0, 1}. This result immediately implies

that Categorical Capacitated k-Median Clustering is also NP-complete for

k = 2 and binary points.

To see it, note that an instance (X,Σ, k, B) of Categorical k-Median Clustering is

equivalent to the instance (X,Σ, k, B, p, q) of Categorical Capacitated k-Median

Clustering for p = 1 and q = n. However, we would like to underline that Categor-

ical Capacitated k-Median Clustering is NP-hard even if p = q. For this, we use

some details of the hardness proof of Feige [32].

Feige proved that Categorical k-Median Clustering is NP-hard by showing a

reduction from the Max-Cut problem [32]. In Max-Cut, we are given a graph G and

a nonnegative integer �, and the task is to find a cut (S, S), that is, a partition of the

vertex set into a set S and its complement S = V (G) \ S such that the size of the cut,

i.e., the number of edges between S and S is at least �. The reduction constructed by

Feige has the property given in the following lemma.

Lemma 4 ([32]). There is a polynomial time reduction from Max-Cut to Categor-

ical k-Median Clustering that computes from an instance (G, �) of Max-Cut an

instance (X,Σ, 2, B) of Categorical k-Median Clustering where Σ = {0, 1}, such
that the following holds: if (G, �) is a yes-instance of Max-Cut with a cut (S, S̄) of size

at least �, then (X,Σ, 2, B) is a yes-instance of Categorical k-Median Clustering

that has a solution {X1, X2} with the property that |X1|/|X2| = |S|/|S|.

Theorem 6. For every fixed integer constant c ≥ 0, Categorical Capacitated

k-Median Clustering is NP-complete for k = 2, binary points and q − p ≤ c.

Proof. We show the theorem by a reduction fromMax-Cut that is well-known to be NP-

complete [43]. Given an instance (G, �) of Max-Cut, we construct an auxiliary instance

(G′, 2�) of Max-Cut, where G′ is the union of two disjoint copies G1 and G2 of G. Then

for the constructed instance (G′, 2�) we can use as a black box the algorithm of Feige

[32] from Lemma 4 to produce the instance (X,Σ, 2, B) of Categorical k-Median

Clustering with Σ = {0, 1}. We further set p = q = |V (G)| and consider the instance

(X,Σ, 2, B, p, q) of Categorical Capacitated k-Median Clustering. Clearly, q−
p ≤ c. We show that (G, �) is a yes-instance of Max-Cut if and only if (X,Σ, 2, B, p, q)

is a yes-instance of Categorical Capacitated k-Median Clustering.

5.2 FPT Algorithm for Parameterization by B and the Alphabet Size 45

In the forward direction, assume that (G, �) is a yes-instance of Max-Cut and let (S, S̄)

be a cut of size at least �. Let S1 and S2 be the copies of S in G1 and G2, respectively. We

now consider S ′ ⊆ V (G′) such that S ′ = S1∪(V (G2)\S2). Clearly, S ′ = (V (G1)\S1)∪S2

and (S ′, S ′) is a cut of G′ of size at least 2�. Moreover, |S ′| = |S1| + |V (G2) \ S2| =
|S2|+ |V (G1) \S1| = |S ′|. Hence, (G′, 2�) is a yes-instance of Max-Cut with a solution

(S ′, S ′) that has the property that |S ′| = |S ′|. By Lemma 4, (X,Σ, 2, B) is a yes-

instance of Categorical k-Median Clustering that has a solution {X1, X2} such

that |X1| = |X2|. This implies that p ≤ |X1|, |X2| ≤ q. Therefore, {X1, X2} is also

solution for the instance (X,Σ, 2, B, p, q) of Categorical Capacitated k-Median

Clustering. Thus, (X,Σ, 2, B, p, q) is a yes-instance of Categorical Capacitated

k-Median Clustering.

In the reverse direction, suppose that (X,Σ, 2, B, p, q) is a yes-instance of Categorical

Capacitated k-Median Clustering. Then there is a 2-clustering {X1, X2} for X

of cost at most B. This means that (X,Σ, 2, B) is a yes-instance of Categorical

k-Median Clustering because (X,Σ, 2, B) is obtained from (G′, 2�) by a polynomial

reduction from Lemma 4, (G′, 2�) is a yes-instance of Max-Cut, that is, G′ has a cut of

size at least 2�. Since G′ is a disjoint union of two identical copies of G, each copy has

a cut of size at least l. Therefore, (G, �) is a yes-instance of Max-Cut. This completes

the hardness proof.

5.2 FPT Algorithm for Parameterization by B and

the Alphabet Size

In this section, we show that Categorical Capacitated k-Median Clustering is

FPT when parameterized by B and |Σ|. Our main result is Theorem 5 that we restate

here.

Theorem 5. Categorical Capacitated k-Median Clustering can be solved in

2O(B logB)|Σ|B · (mn)O(1) time.

Note that this result is tight in the sense that it is unlikely that the dependence on the

alphabet size could be made polynomial. It was shown in [38], that Categorical k-

Median Clustering is W[1]-hard when parameterized by B and the number of rows m

of the input matrix if Σ = Z, i.e., for an infinite alphabet. However, it is straightforward

to see that this result holds for Σ = {0, . . . , n− 1} because our measure is the Hamming

distance. For each row of the input matrix, we can replace the original symbols by the

symbols of Σ = {0, . . . , n − 1} in such a way that the original symbols in the row are

46 Parameterized Categorical Capacitated Clustering

the same if and only if the new symbols are the same. Clearly, this replacement gives an

equivalent instance. This immediately leads to the following proposition.

Proposition 6. Categorical Capacitated k-Median Clustering is W[1]-hard

when parameterized by B and m.

The remaining part of the section contains the proof of Theorem 5. The proof is con-

structive. In Subsection 5.2.1, we introduce some notation and show technical claims

that are used by the algorithm.

5.2.1 Definitions and Technical Lemmata

In this section, we introduce some additional terminology that will be used in this work.

Recall, that a partition X = {X1, . . . , Xk} of X is a k-clustering of X.

Definition 1. An initial cluster is an inclusion maximal set J ⊆ {x1, . . . ,xn} such that

all the points in J are identical.

We say a cluster Xi of P is simple if Xi ⊆ J and Xi is composite, otherwise, that is, if

Xi contains some xh, and xj in X such that xh �= xj.

We start by making the following observation about medians of sufficiently big (in B)

clusters.

Observation 3. Let {X1, . . . , Xk} be a k-median clustering of collection of points X =

{x1, . . . ,xn} of Σm of cost at most B, and let |Xi| ≥ B + 1 for some i ∈ {1, . . . , k}.
Then for all vectors c1, . . . , ck ∈ Σm such that

∑k
h=1

∑
x∈Xh

dist0(ch,x) ≤ B, ci = x for

at least |Xi| − B equal points x in X. Moreover, if |Xi| ≥ 2B + 1, then ci is unique.

Proof. To show the first part of the claim, assume that ci ∈ Σm is distinct from at least

B + 1 points x of Xi. Then

B ≥
k∑

h=1

∑
x∈Xh

dist0(ch,x) ≥
∑
x∈Xi

dist0(ci,x) ≥ B + 1;

a contradiction. For the second part of the claim, note that if |Xi| ≥ 2B + 1, then ci

should coincide with more than half of the points x in Xi and, therefore, the choice of

ci is unique.

We use the following simple observation about the number of composite clusters and the

number of initial clusters having elements in the composite clusters of a solution.

5.2 FPT Algorithm for Parameterization by B and the Alphabet Size 47

Observation 4. Let X = {x1, . . . ,xn} be a collection of n points X of Σm with the

partition J = {J1, . . . , Js} of X into initial clusters. Let also X = {X1, . . . , Xk} be a k-

median clustering of X of cost at most B. Then X contains at most B composite clusters

and J has at most 2B initial clusters with nonempty intersections with the composite

clusters of X .

Proof. Let c1, . . . , ck be medians such that
∑k

i=1

∑
x∈Xi

dist0(ci,x) ≤ B. Note that if

Xi is a composite cluster for some i ∈ {1, . . . , k}, then ci is distinct from x for at least

one x ∈ Xi and
∑

x∈Xi
dist0(ci,x) ≥ 1. Therefore, X contains at most B composite

clusters. For the second claim, notice that if J has t ≥ B initial clusters with nonempty

intersections with composite clusters, then because X has at most B composite clusters,

for at least t− B of these initial clusters Jj, x �= ci for x ∈ Jj and all the medians ci of

composite clusters. Hence, t ≤ 2B.

Let J ⊆ {x1, . . . ,xn} be an initial cluster. Due to size constraints, it may happen

that a k-median clustering {X1, . . . , Xk} with several simple clusters Xi ⊆ J provides a

solution. This means, that we should partition a subset of J into blocks of bounded size.

To verify whether we are able to create such a partition, we use the following observation.

Observation 5. Let p and q be positive integers, p ≤ q. A finite set S can be partitioned

into h subsets such that each of them has size at least p and at most q if and only if⌈
|S|
q

⌉
≤ h ≤

⌊
|S|
p

⌋
.

Proof. If S can be partitioned into h subsets of size at least p and at most q, then,

trivially, ph ≤ |S| and qh ≥ |S|, i.e.,
⌈
|S|
q

⌉
≤ h ≤

⌊
|S|
p

⌋
. If

⌈
|S|
q

⌉
≤ h ≤

⌊
|S|
p

⌋
, then S

has h disjoint subsets S1, . . . , Sh of size p. Then the remaining |S| − ph elements can be

greedily added to these subsets without exceeding the upper bound q on the size.

Let J = {J1, . . . , Js} be the partition of X = {x1, . . . ,xn} into initial clusters. For a

k-median clustering X = {X1, . . . , Xk}, we define the graph G(X ,J) as the intersection

graph of the sets of X and J , that is, G(X ,J) is the bipartite graph with the set of

vertices X ∪ J such that for every i ∈ {1, . . . , k} and j ∈ {1, . . . , s}, Xi and Jj are

adjacent if and only if Xi∩Jj �= ∅. We show that we can assume G(X ,J) to be a forest.

This can be proved using an Integer Linear Program or flow formulation of the clustering

problem with given medians. For simplicity, we provide a direct proof.

Lemma 5. Let X = {x1, . . . ,xn} be a collection of points of n points of Σm with the

partition J = {J1, . . . , Js} of X into initial clusters. Also, let X = {X1, . . . , Xk} be

a k-clustering for X. Then there is a k-clustering X ′ = {X ′
1, . . . , X

′
k} such that (i)

48 Parameterized Categorical Capacitated Clustering

|Xi| = |X ′
i| for all i ∈ {1, . . . , k}, (ii) cost(X ′

1, . . . , X
′
k) ≤ cost(X1, . . . , Xk), and (iii)

G(X ′,J) is a forest.

Proof. Assume that X ′ = {X ′
1, . . . , X

′
k} is a k-median clustering for X satisfying con-

ditions (i) and (ii) such that the number of edges of G(X ′,J) is minimum. Denote by

c1, . . . , ck optimal medians for X ′
1, . . . , X

′
k. We claim that G(X ′,J) is a forest.

b)

Jj1

Jjt

X ′
it

X ′
i1

Jj2

X ′
i2

Jj1

Jjt

X ′
i1

X ′
i2

X ′
it

Jj2

a)

Figure 5.1: A cycle in G(X ′,J) and the cluster rearrangement scheme.

The proof is by contradiction. Assume that G(X ′,J) has a cycle. This means that

there are distinct i1, . . . , it ∈ {1, . . . k} and distinct j1, . . . , jt ∈ {1, . . . , s} such that

X ′
ih
∩ Jjh �= ∅ and X ′

ih
∩ Jjh+1

�= ∅ for all h ∈ {1, . . . , t}; here and further in the proof,

we assume that jt+1 = j1 and it+1 = i1 (see Figure 5.1(a)).

For h ∈ {1, . . . , s}, denote by yh the point coinciding with xh′ for xh′ ∈ Jh. We observe

that either

t∑
h=1

(dist0(cih ,yjh) + dist0(cih ,yjh+1
)) ≥ 2

t∑
h=1

dist0(cih ,yjh) (5.1)

or
t∑

h=1

(dist0(cih ,yjh) + dist0(cih ,yjh+1
)) ≥ 2

t∑
h=1

dist0(cih ,yjh+1
) (5.2)

because the sums of the left and right parts of inequalities (5.1) and (5.2) are the same.

We assume without loss of generality that (5.1) holds, as the second case is symmetric.

This means that
t∑

h=1

dist0(cih ,yjh+1
) ≥

t∑
h=1

dist0(cih ,yjh). (5.3)

5.2 FPT Algorithm for Parameterization by B and the Alphabet Size 49

We iteratively modify X ′ by moving a representative of Jjh in Xih−1
to Xih for h ∈

{2, . . . , t+ 1}, that is, representatives are moved cyclically without changing the cluster

sizes (see Figure 5.1(b)). We show that this procedure does not increase the clustering

cost with respect to the medians c1, . . . , ck.

Formally, we construct the k-clusterings X (0),X (1), . . ., where X (p) = {X(p)
1 , . . . , X

(p)
k }

for p = 0, 1, . . ., starting from X (0) = X ′ while Jjh+1
∩X

(p)
ih

�= ∅ for all h ∈ {1, . . . , t}.

Assume that X (p) = {X(p)
1 , . . . , X

(p)
k } is constructed and Jjh+1

∩ X
(p)
ih

�= ∅ for all h ∈
{1, . . . , t}. For every h ∈ {1, . . . , t}, let xi′h ∈ Jjh+1

∩X
(p)
ih

.

X
(p+1)
ih

= (X
(p)
ih

\ {xi′h}) ∪ {xi′h−1
}

for all h ∈ {1, . . . , t} assuming that i′0 = i′t, and we set X
(p+1)
q = X

(p)
q for q ∈ {1, . . . , k} \

{i1, . . . , it}. Clearly, |X(p+1)
i | = |X(p)

q | for all i ∈ {1, . . . , r}. We have that

(k∑
i=1

∑
x∈X(p)

i

dist0(ci,x)
)−(k∑

i=1

∑
x∈X(p+1)

i

dist0(ci,x)
)
=

t∑
h=1

(dist0(cih ,xi′h)− dist0(cih ,xi′h−1
))

=
t∑

h=1

(dist0(cih ,yjh+1
)− dist0(cih ,yjh))

=
(t∑

h=1

(dist0(cih ,yjh+1
)
)− (t∑

h=1

dist0(cih ,yjh)
) ≥ 0,

where the last inequality follows from (5.3). This means that the cost of the k-clustering

X (p+1) with respect to the medians c1, . . . , ck is at most the cost of X (p) with respect to

the same medians.

The next k-clustering X (p+1) is constructed from X (p) if Jjh+1
∩ X

(p)
ih

�= ∅ for all h ∈
{1, . . . , t}. Thus, the sequence is finite, and for the last k-clustering X (q), there is h ∈
{1, . . . , t} such that Jjh+1

∩X(q)
ih

= ∅, that is,X(q)
ih

and Jjh+1
are not adjacent inG(X (q),J).

Note that the rearrangement of elements of clusters does not create new adjancencies

in G(X (q),J) because no cluster gets representatives of an initial cluster that had no

representatives in it. We conclude that G(X (q),J) has less edges than G(X ′,J) but this

contradicts the choice of X ′. Therefore, G(X ′,J) is a forest and X ′ satisfies conditions

(i)–(iii) as required.

Next, we show that, given a collection of n points X, we can list all potential medians

for a k-median clustering of cost at most B in FPT when B and |Σ| are parameters. We

50 Parameterized Categorical Capacitated Clustering

show this by making use of the nontrivial result of Marx [68] about the enumeration of

subhypergraphs with bounded partial edge cover. This result already proved to be very

useful for designing FPT algorithms for clustering problems [37, 38].

Recall that a hypergraph H is a pair (V, E), where V is a set of vertices and E is a family

of subsets of V called hyperedges. Similarly to graphs, we denote by V (H) the set of

vertices and by E(H) the set of hyperedges. For a vertex v, we denote by EH(v) the set

of hyperedges containing v, that is, EH(v) = {E ∈ E(H) | v ∈ E}.

Let G be a hypergraph and let U ⊆ V (G). We say that a hypergraph H appears at U

as a subhypergraph if there is a bijection π : V (H) → U with the property that for every

E ∈ E(H), there is E ′ ∈ E(G) such that π(E) = E ′ ∩ U .

A fractional hyperedge cover of a hypergraph H is a function ϕ : E(H) → [0, 1] such that

for every vertex v ∈ V (H),
∑

E∈EH(v) ϕ(E) ≥ 1, that is, the sum of the values assigned

by f of the hyperedges containing v is at least one. The fractional cover number ρ∗(H)

of H is the minimum value
∑

E∈E(H) ϕ(E) taken over all fractional hyperedge covers ϕ

of H.

Proposition 7 ([68]). Let H be a hypergraph with fractional cover number ρ∗(H), and

let G be a hypergraph whose hyperedges have size at most �. There is an algorithm that

enumerates, in |V (H)|O(|V (H)|) ·�|V (H)|ρ∗(H)+1 ·|E(G)|ρ∗(H)+1 ·|V (G)|2 time, every U ⊆ V (G)
where H appears at U as subhypergraph in G.

We apply this result similarly to [38] and, therefore, only briefly sketch the proof of the

following lemma.

Lemma 6. There is an algorithm that, given a collection of n points X = {x1, . . . ,xn}
and a nonnegative integer B, in 2O(B logB) · |Σ|B ·(mn)O(1) time outputs a set M(X, B) ⊆
Σm of size 2O(B logB)·|Σ|B ·(mn)O(1) such that for every k-clustering {X1, . . . , Xk} for X of

cost at most B, there are c1, . . . , ck ∈ M(X, B) such that
∑k

i=1

∑
x∈Xi

dist0(ci,xj) ≤ B.

Proof. Let S be the set of distinct points s of X. Initially, we set M(X, B) := S.

For every s ∈ S, we construct the hypergraph Gs with the vertex set {1, . . . ,m} with

hyperedges corresponding to the points of X at Hamming distance at most B from s:

for every xi ∈ {x1, . . . ,xn} such that dist0(s,xi) ≤ B, we introduce the hyperedge

Ei = {j | 1 ≤ j ≤ m and xi[j] �= s[j]},

that is, the hyperedge contains indices, where s differs from xi. Note that |Ei| ≤ B.

5.2 FPT Algorithm for Parameterization by B and the Alphabet Size 51

Consider an arbitrary k-clustering {X1, . . . , Xk} for X of cost at most B. Let Xi ∈
{X1, . . . , Xk} and let s ∈ S be such that s = xj for some xj ∈ Xi. Let also ci ∈ Σm

be an optimal median for Xi, that is,
∑

xj∈Ii dist0(ci,xj) is minimum. Notice that if

|Xi| ≥ B + 1, then by Observation 3, every feasible median for Xi is a point of X

and these points are already placed in M(X, B). Also, if ci = s, then ci ∈ M(X, B).

Assume that |Xi| ≤ B and ci �= s. Clearly, dist0(ci, s) ≤ B. Moreover, for any xj ∈ Xi,

dist0(s,xj) ≤ B. This holds trivially if s = xj. Otherwise, if s �= xj, we have that

dist0(s,xj) ≤ dist0(ci, s) + dist0(ci,xj) ≤
∑

xj∈Xi
dist0(ci,xj) ≤ B. Let

D = {j | 1 ≤ j ≤ m and ci[j] �= s[j]},

that is, D is the set of indices where s differs from the median ci.

We consider the hypergraph Hi with the vertex set D whose edges correspond to the

points xj for xj ∈ Xi. For each xj ∈ Xi, we construct the hyperedge

Fj = {h | h ∈ D and xj[h] �= s[h]},

that is, each hyperedge contains indices from D, where s differs from xj. We claim that

the fractional cover number ρ∗(Hi) ≤ 2.

To show this, we define the function ϕ(F) = 2
|E(Hi)| for every hyperedge F of Hi. We

prove that ϕ is a fractional hyperedge cover of Hi. Thus, we have to show that for every

j ∈ D,
∑

F∈EHi
(j) ϕ(F) ≥ 1. This is equivalent to proving that for every j ∈ D, at least

half of the hyperedges of Hi contain j. Assume that this is not the case, i.e., there is

j ∈ D such that more than half of hyperedges do not contain j. This mean that for

more than half of points xh for xh ∈ Xi, s[j] = xh[j] = s. However, by the definition of

D, s[j] �= ci[j] and, therefore, ci[j] �= s. This contradicts the assumption that ci is an

optimal median for Xi because replacing the current value ci[j] by s decreases the cost.

Hence, ϕ is a fractional hyperedge cover. Then

ρ∗(Hi) ≤
∑

F∈E(Hi)

ϕ(F) =
∑

F∈E(Hi)

2

|E(Hi)| = 2.

Observe that Hi appears in Gs at D because for each xj ∈ Xi, dist0(s,xj) ≤ B, that

is, for every xj ∈ Xi, Gs contains the hyperedge Ej corresponding to xj; the mapping

π : V (Hi) → D is the identity function.

We obtain that Hi is a hypergraph with the fractional cover number at most 2 that

appears in Gs at D. Notice that, given s and D, we can list the vectors over Σm that

differ from s in the indices from D and the total number of such vectors is at most |Σ|B

52 Parameterized Categorical Capacitated Clustering

because |D| ≤ B. Then ci appears in this list. This leads to the following algorithm. We

consider all hypergraphs H on at most B vertices with at most B hyperedges. Then for

each H and every s ∈ S, we use the algorithm of Marx from Proposition 7 to enumerate

every D ⊆ V (Gs) where H appears in GD as subhypergraph. Then for every D, we list

the vectors that differ from s in the indices from D by brute force. Then these vectors

are included in M(X, B).

For given H and s, the sets D can be enumerated in time 2O(B logB) · B2B+1 · n3 · m2

by Proposition 7. Then generating the vectors that differ from s in D can be done in

|Σ|B ·nO(1) time as we can assume that |Σ| ≤ n. However, we need 2O(B2) time to generate

all hypergraphs with at most B vertices and at most B hyperedges. This gives the total

running time 2O(B2) · |Σ|B · (mn)O(1) and the same bound on the size of M(X, B).

The running time can be improved by proving that there is a subhypergraph H′
i of H

with V (H′
i) = V (Hi) and E(H′

i) ⊆ E(Hi) of size O(logB) (more precisely, of size at most

160 lnB) such that ρ∗(H′
i) ≤ 4. The proof is identical to the proof of Claim 18 of [38]

(see also Proposition 6.3 of [68]) and we omit it here.

Then we consider all hypergraphs H with at most B vertices and at most 160 lnB

hyperedges. The total number of these hypergraphs is 2O(B logB). Then, in the same way

as above, for each H and every s ∈ S, we use the algorithm of Marx from Proposition 7

to enumerate every D ⊆ V (Gs) where H appears in GD as subhypergraph. For every

D, the vectors that differ from s in the indices from D are enumerated by brute force

and each vector is added to M(A, B) unless it is already included in the set. The total

running time is 2O(B logB) · |Σ|B · (mn)O(1) and the number of vectors in M(A, B) is

2O(B logB) · |Σ|B · (mn)O(1).

5.2.2 Algorithm

Let (X,Σ, k, B, p, q) be an instance of Categorical Capacitated k-Median Clus-

tering with X = {x1, . . . ,xn}. First, we compute the partition J = {J1, . . . , Js} of X

into initial clusters.

Choosing potential medians

By the next step , we restrict the set of considered medians. For this, we apply Lemma 6

and construct the set M = M(X, B) of potential medians. Recall that this set has size

2O(B logB)|Σ|B · (mn)O(1) and can be computed in 2O(B logB)|Σ|B · (mn)O(1) time. For a

5.2 FPT Algorithm for Parameterization by B and the Alphabet Size 53

k-clustering X = {X1, . . . , Xk}, we define the minimum cost (with respect to M), as

min{
k∑

i=1

∑
xj∈Xi

dist0(ci,xj) | c1, . . . , ck ∈ M}.

If (X,Σ, k, B, p, q) is a yes-instance, then it has a solution such that the medians are in

M by Lemma 6. Therefore, solving the problem is equivalent to finding a clustering of

minimum cost at most B with respect to M. Throughout this section, whenever we say

that X is a clustering of minimum cost, we mean that the cost is minimum with respect

to M.

Structure of solutions

Further, we argue that we can consider solutions of a special structure whose nontrivial

part involves bounded number of initial clusters.

By Lemma 5, if (X,Σ, k, B, p, q) is a yes-instance, then there is a solution X =

{X1, . . . , Xk} to the instance such that the intersection graph G(X ,J) of the initial clus-

ters and the clusters of the solution is a forest. We call such a solution (or k-clustering)

acyclic. To solve the problem, we check whether the considered instance has an acyclic

solution. To simplify notation, we assume that all solutions considered further on are

acyclic.

By Observation 4, any k-clustering for X of cost at most B has at most B composite

clusters. We consecutively consider t = 0, . . . ,min{B, k}, and for each t, we verify

whether there is a solution X = {X1, . . . , Xk} with exactly t composite clusters. If we

find such a solution, then we return the yes-answer and stop. Otherwise, if we have no

solution for all the values of t, we report that (X,Σ, k, B, p, q) is a no-instance. From

now on, we assume that nonnegative t ≤ min{B, k} is fixed.

It is convenient to consider the special case t = 0 separately. If t = 0, then a solution

X has no composite cluster, that is, the clusters of the solution form partitions of the

initial clusters. Observe that cost(X) = 0 ≤ B in this case. By Observation 5, the initial

clusters can be partitioned into k blocks of size at least p and at most q, if and only if there

are positive integers h1, . . . , hs such that k = h1 + · · · + hs and
⌈
|Ji|
q

⌉
≤ hi ≤

⌊
|Ji|
p

⌋
for

every i ∈ {1, . . . , s}. For every i ∈ {1, . . . , s}, we verify whether
⌈
|Ji|
q

⌉
≤

⌊
|Ji|
p

⌋
. If at least

one of the inequalities does not hold, the required h1, . . . , hs do not exist. Otherwise, we

observe that positive integers h1, . . . , hs such that k = h1+· · ·+hs and
⌈
|Ji|
q

⌉
≤ hi ≤

⌊
|Ji|
p

⌋
for every i ∈ {1, . . . , s} exist if and only if

∑s
i=1

⌈
|Ji|
q

⌉
≤ k ≤ ∑s

i=1

⌊
|Ji|
p

⌋
. Then we verify

54 Parameterized Categorical Capacitated Clustering

the last inequality.

From now, we assume that t ≥ 1. Note that we also can assume that B ≥ 1 because for

B = 0, no cluster of a solution can be composite.

By Observation 4, there are at most 2B initial clusters with nonempty intersections with

the composite clusters of a solution X . Since G(X ,J) is a forest, it is easy to observe that

at least t + 1 initial clusters have nonempty intersections with the composite clusters.

We consider � = t + 1, . . . , 2B, and for each �, we check whether there is a solution

X = {X1, . . . , Xk} such that exactly � initial clusters have nonempty intersections with

the composite clusters of X . If we find such a solution, then we return the yes-answer

and stop. Otherwise, if we have no solution for all the values of �, we report that

(X,Σ, k, B, p, q) is a no-instance. From now, we assume that positive t+ 1 ≤ � ≤ 2B is

given.

Recall that we are looking for an acyclic solution X = {X1, . . . , Xk}, that is, G(X ,J) is

required to be a forest. Let X be such a k-clustering. Let X ′ ⊆ X be the set of composite

clusters and let J ′ ⊆ J be the set of initial clusters having nonempty intersections with

the composite clusters. Recall that |X ′| = t and |J ′| = � by our assumptions. Note also

that the leaves of G(X ′,J ′) are initial clusters and every connected component of this

forest contains at least three vertices.

We consider all forests F on t+ � vertices such that (i) each connected component of F

has at least three vertices, and (ii) F admits a bipartition (U,W) of its vertex set with

|U | = t and |W | = � such that the leaves of F are in W . Since t ≤ B and � ≤ 2B, the

number of such forests is 2O(B) [72] and they can be listed in 2O(B) time (see, e.g., [81]).

Note that since the leaves are required to be in W , the bipartition (U,W) is unique.

From now on, we assume that F together with the bipartition (U,W) is given.

Colorful solutions

Recall that we are looking for a solution such that exactly � initial clusters have nonempty

intersections with composite clusters of the solution. We use the color coding technique

of Alon, Yuster, and Zwick [5] (see [29, Chapter 5] for the detailed introduction) to

highlight the initial clusters with nonempty intersections with clusters of a potential

solution. We first give a Monte Carlo algorithm with false negatives and then explain

how to derandomize it. We color the initial clusters by � colors uniformly at random. We

say that a k-clustering X = {X1, . . . , Xk} of cost at most B is a colorful solution if the

initial clusters with nonempty intersections with the clusters of X have distinct colors.

As it is standard for color coding, the algorithm exploits the property that if there

5.2 FPT Algorithm for Parameterization by B and the Alphabet Size 55

is a solution such that exactly � initial clusters have nonempty intersections with the

composite clusters of the solution, then the probability that these � clusters get distinct

colors in a random coloring is at least �!
��

≥ e−� ≥ e−2B. Therefore, with probability at

least e−2B, a yes-instance admits a colorful solution.

Finding colorful solutions

Our next task is to explain how to check whether there is a colorful solution for a given

random coloring ψ : J → {1, . . . , �} such that G(X ′,J ′), where X ′ is the set of com-

posite clusters in the solution and J ′ ⊆ J is the set of initial clusters having nonempty

intersections with the composite clusters, is isomorphic to F . For this, we use dynamic

programming over F . Recall that F is given together with the bipartition (U,W) of its

vertex set, where the leaves are inW . To construct our dynamic programming algorithm,

we formally define k-clusterings forming solutions as follows.

Definition 2 (Feasible k-clustering). For a given forest F with the bipartition (U,W)

of its vertex set, we say that an acyclic k-clustering X = {X1, . . . , Xk} of X is a feasible

(with respect to F and the parameters t and �) if the following holds:

(i) p ≤ |Xi| ≤ q for i ∈ {1, . . . , k},

(ii) the set X ′ ⊆ X of composite clusters has size t and the set J ′ ⊆ J of initial

clusters having nonempty intersections with the composite clusters has size �,

(iii) the initial clusters in J ′ are colored by distinct colors by ψ, and

(iv) G(X ′,J ′) is isomorphic to F with an isomorphism that bijectively maps X ′ to U

and J ′ to W .

Then the problem of finding a colorful solution boils down to checking whether there is

a feasible k-clustering of cost at most B.

To proceed with the algorithm, we need some auxiliary notation. For a set of colors

P ⊆ {1, . . . , �}, we use J (P) ⊆ J to denote the subset of initial clusters with the

colors from P and C(P) ⊆ {x1, . . . ,xn} is used to denote the set of points in the initial

clusters with their colors in P , that is, C(P) =
⋃

J∈J (P) J . We also denote X(P), the

subcollection of X with the points xi such that xi ∈ C(P).

It is common to do bottom-up dynamic programming over rooted trees. However, F may

be disconnected. We argue that, given partial solutions for the connected components

of F , we can combine them and solve the problem for F . Denote by F1, . . . , Ff the

56 Parameterized Categorical Capacitated Clustering

connected components of F . Let Ui = V (Fi)∩U and Wi = V (Fi)∩W for i ∈ {1, . . . , f}.
Let also ti = |Ui| and �i = |Wi| for i ∈ {1, . . . , f}.

For i ∈ {1, . . . , f}, P ⊆ {1, . . . �} and a positive integer h ≤ k, denote by ωi(P, h)

the minimum cost of an h-clustering for X(P) that is feasible with respect to Fi and

the parameters ti and �i if |P | = �i. We assume that ωi(P, h) = +∞ if |P | �= �i or

no h-clustering is feasible. Thus, the functions ωi(P, h) represent partial solutions for

F1, . . . , Ff .

We show that if we are given the tables of values of ωi(P, h), then we can verify whether

there is a feasible k-clustering of cost at most B.

Lemma 7. Given the values ωi(P, h) for all i ∈ {1, . . . , f}, P ⊆ {1, . . . �} and positive

integers h ≤ k, it can be decided in time 2O(B) ·n2 whether there is a feasible k-clustering

for X of cost at most B with respect to F , t and �.

Proof. To give the intuition behind the proof, observe that a feasible k-clustering of cost

at most B with respect to F , t and � exists if and only if there are positive integers

h1, . . . , hf such that h1 + · · · + hf = k and a partition {P1, . . . , Pf} of {1, . . . , �} such

that

ω1(P1, h1) + · · ·+ ωf (Pf , hf) ≤ B

because in a feasible clustering the initial clusters in J ′ are colored by distinct colors.

This leads to the following dynamic programming algorithm.

For j ∈ {1, . . . , f}, P ⊆ {1, . . . , �}, let F (j) be the disjoint union of F1, . . . , Fj, t
(j) =

t1+ · · ·+tj and �(j) = �1+ · · ·+�j. For j ∈ {1, . . . , f}, P ⊆ {1, . . . , �} and positive integer

h, denote by w(j)(P, h) the minimum cost of an h-clustering for X(P) that is feasible

with respect to F (j), t(j) and �(j) if |P | = �(j); we also assume that w(j)(P, h) = +∞ if

|P | �= �(j) or there is no feasible h-clustering.

Notice that ω1(P, h) = w(1)(P, h) and w(f)(P, h) is the minimum cost of an h-clustering

for X(P) that is feasible with respect to F , t and �. Thus, w(f)({1, . . . , �}, k) ≤ B if and

only if there is a feasible k-clustering for X of cost at most B with respect to F , t and �.

We compute the values of w(j)(P, h) for j = 1, 2, . . . , f . As we observed, w(1)(P, h) =

ω1(P, h). To compute w(j)(P, h) for j ≥ 2, we use the following recurrence:

w(j)(P, h) = min{ωj(Y, h
′) + w(j−1)(P \ Y, h− h′) | 1 ≤ h′ < h and ∅ �= Y ⊂ P}; (5.4)

we also assume that w(j)(P, h) = +∞ if the set in the right part of (5.4) is empty.

The correctness of (5.4) is proved in the standard way by showing the two opposite

5.2 FPT Algorithm for Parameterization by B and the Alphabet Size 57

inequalities. Let P ⊆ {1, . . . , �}. To simplify notation, assume that {J1, . . . , Js′} are

initial clusters with colors from P . Let also h ≤ k be a positive integer.

In the forward direction, suppose that |P | = �(j) and {X1, . . . , Xh} is an h-clustering for

X(P) that is feasible with respect to F (j), t(j) and �(j) of minimum cost.

Let X ′ ⊆ {X1, . . . , Xh} be the set of composite clusters and let J ′ ⊆ {J1, . . . , Js′} be

the set of initial clusters having nonempty intersections with the composite clusters.

Recall that |X ′| = t(j), |J ′| = �(j), and the initial clusters in J ′ are colored by distinct

colors. Consider an isomorphism α that bijectively maps the vertices of G(X ′,J ′) to the

vertices of F with the property that the vertices of X ′ are mapped to
⋃(j)

i=1 Ui and J ′

are mapped to
⋃(j)

i=1 Wi. Then �j clusters of J ′ are mapped to Wj.

Denote by Y ⊂ P the set of their colors. Clearly, |Y | = �j and |P \ Y | = �(j) −
�j = �j−1. Notice that the clusters of X ′ that are mapped to Uj are composed of

elements of initial clusters with colors from Y and no other composite cluster contains

an element of an initial cluster with a color from Y . To simplify notation, assume that

the clusters X1, . . . , Xh′ contain elements of the initial clusters with the colors from Y

and Xh′+1, . . . , Xh are the clusters containing elements of the initial clusters with the

colors from P ⊆ Y . Then we have that {X1, . . . , Xh′} is a feasible h′-clustering for

X(Y) with respect to Fj, tj and �j. Similarly, we obtain that {Xh′+1, . . . , Xh} is a

feasible (h− h′)-clustering for X(P \ Y) with respect to F (j−1), t(j−1) and �(j−1). Thus,

w(j)(P, h) ≥ ωj(Y, h
′) + w(j−1)(P \ Y, h− h′) and, therefore,

w(j)(P, h) ≥ min{ωj(Y, h
′) + w(j−1)(P \ Y, h− h′) | 1 ≤ h′ < h and ∅ �= Y ⊂ P}. (5.5)

If either |P | �= �(j) or there is no an h-clustering for X(P) that is feasible with respect

to F (j), t(j) and �(j), then w(j)(P, h) = +∞ and (5.5) is trivial.

To show the opposite inequality, let nonempty Y ⊆ P and positive h′ < h be such that

the right part of (5.4) is minimum. If ωj(Y, h
′) + w(j−1)(P \ Y, h − h′) = +∞, then the

required inequality holds trivially. Assume that this is not the case. Then |Y | = �j,

|P \ Y | = �(j−1), there is an h′-clustering X (1) for X(Y) of cost ωj(Y, h
′) that is feasible

with respect to Fj, tj and �j, and there is an (h − h′)-clustering X (2) for X(P \ Y) of

cost w(j−1)(P \ Y, h− h′) that is feasible with respect to F (j−1), t(j−1) and �(j−1).

Consider X = X (1)∪X (2) and observe that this is an h-clustering forX(P) that is feasible

with respect to F (j), t(j) and �(j). This means that w(j)(P, h) ≤ ωj(Y, h
′) + w(j−1)(P \

58 Parameterized Categorical Capacitated Clustering

Y, h− h′). By the choice of Y and h′,

w(j)(P, h) ≤ min{ωj(Y, h
′) + w(j−1)(P \ Y, h− h′) | 1 ≤ h′ < h and ∅ �= Y ⊂ P}. (5.6)

Combining (5.5) and (5.6), we obtain that the recurrence (5.4) holds.

Finally, we compute w(f)(P, h) for all P ⊆ {1, . . . , �} and all positive h ≤ k. In particular,

we find w(f)({1, . . . , �}, k) and verify whether this value is at most B.

To evaluate the running time, note that to compute the table of values of w(j)(P, h) by

(5.4), we consider all nonempty P of size at most � and the nonempty subsets Y ⊂ P .

This means that we consider at most 3� pairs of sets. Also, we consider all positive

h ≤ k and h′ ≤ h, that is, at most k2 pairs of integers. Since � ≤ 2B and k ≤ n, the

computations can be done in 2O(B) · n2 time. Since f ≤ t ≤ B, the total running time is

2O(B) · n2.

The final step is to compute the partial solutions for F1, . . . , Ff . By Lemma 7, we have to

compute the tables of values of ωi(P, h) for all i ∈ {1, . . . , f}, nonempty P ⊆ {1, . . . , �}
and positive h ≤ k. For this, we use the fact that F1, . . . , Ff are trees and this allows us

to use dynamic programming over these trees.

Lemma 8. Let T be a tree with a bipartition (U,W) of its vertex set such that t′ = |U | ≤
t, �′ = |W | ≤ � and the leaves of T are in W . For a given P ⊆ {1, . . . , �} with |P | = �′

and positive h ≤ k, the minimum cost of a feasible h-clustering for X(P) with respect to

T , t′ and �′ can be found in 2O(B logB)|Σ|B · (mn)O(1) time.

Proof. We select a vertex z ∈ U as a root of T . This selection defines a parent-child

relation on the set of vertices. For a vertex x ∈ V (T), we denote by Tx the subtree

of T induced by the descendants of x (including the vertex itself). For x ∈ V (T), let

tx = V (Tx) ∩ U and �x = V (Tx) ∩ W . For every x ∈ V (T), we compute the tables of

auxiliary values depending on whether x ∈ U or x ∈ W .

For a set of colors Z ⊆ P , J ∈ J (Z) and J ′ ⊆ J , we use J (Z)/J ′ to denote the set of

clusters obtained from the initial clusters of J (Z) by the replacement of J by J ′′ = J \J ′

if J ′ ⊂ J and J (Z)/J ′ = J (Z) \ {J} if J ′ = J .

We assume that the clusters of J (Z)/J ′ have the inherited colors. We also writeX(Z)/J ′

to denote the subcollection of X(Z) obtained by the deletion of the points from J ′. Note

that J (Z)/J ′ is the set of initial clusters for X(Z)/J ′.

5.2 FPT Algorithm for Parameterization by B and the Alphabet Size 59

Suppose that x ∈ W . For every positive integer h′ ≤ h, every Y ⊆ P , every c ∈ Y ,

every J ∈ J (Y) and every nonnegative integer j ≤ |J |, we define ω
(1)
x (h′, Y, c, J, j). For

technical reasons, it is convenient to define this function for leaves separately.

Definition 3 (Partial solution for a leaf x ∈ W). Let x be a leaf. We define

ω
(1)
x (h′, {c}, c, J, j) as the minimum cost of an h′-clustering for X(Y)/J ′, where J ′ ⊆ J

of size j, such that all the clusters are simple, and ω
(1)
x (h′, Y, c, J, j) = +∞ if Y �= {c}.

Definition 4 (Partial solution for an internal x ∈ W). If x is an internal vertex of T ,

then ω
(1)
x (h′, Y, c, J, j) is the minimum cost of an h′-clustering X = {X1, . . . , Xh′} for

X(Y)/J ′, where J ′ ⊂ J of size j, such that

(i) p ≤ |Xi| ≤ q for i ∈ {1, . . . , h′},

(ii) the set X ′ ⊆ X of composite clusters has size tx, and the set J ′ ⊆ J (Y)/J ′ of

initial clusters having nonempty intersections with the composite clusters has size

�x,

(iii) |Y | = �x and the initial clusters in J ′ are colored by distinct colors by ψ,

(iv) G(X ′,J ′) is isomorphic to Tx with an isomorphism α that bijectively maps X ′ to

Ux, J ′ to Wx, and

(v) J \ J ′ ∈ J ′, α(J \ J ′) = x and ψ(J \ J ′) = c.

In both cases, we assume that ω
(1)
x (h, Y, c, J, j) = +∞ if there is no such an h′-clustering.

Informally, ω
(1)
x (h′, Y, c, J, j) is the minimum cost of an h′-clustering for X(Y)/J ′ that

is feasible with respect to Tx, tx and �x with the additional assumption that we take j

elements of J colored by c to include to the composite cluster that corresponds to the

parent of x (see Figure 5.2). Observe that the value of ω
(1)
x (h′, Y, c, J, j) does not depend

on the choice of J ′. Notice also that we have the special case when Ux = ∅, i.e. when

x is a leaf because we have no composite clusters in this case. Then we form h′ simple

clusters from the initial clusters J (Y)/J ′.

Now we define the fuction ω
(2)
x (h′, Y, j, s) for x ∈ U for every positive integer h′ ≤ h,

every Y ⊆ X, every nonnegative integer j ≤ q, and every s ∈ M.

Definition 5 (Partial solution for x ∈ U). ω
(2)
x (h′, Y, j, s) is the minimum cost of an

h′-clustering X = {X1, . . . , Xh′} for X(Y) such that

(i) the cost of X1 is computed with respect to the median s, that is, the cost equals∑
xi∈X1

dist0(s,xi),

60 Parameterized Categorical Capacitated Clustering

composite cluster

z

j elements of J colored c
will be moved to the parent cluster

yω
(2)
y (h′, Y, j, s)

x ω
(1)
x (h′, Y, c, J, j)

initial clusters of color c

initial cluster will be
j elements of the parent

moved to the

Figure 5.2: The general scheme of dynamic programming over T . The vertices of U
corresponding to composite clusters are shown by black bullets and the vertices of W
corresponding to initial clusters are white. The arrows show which initial clusters are
contributing to composite clusters. Note that J is a (part of) initial cluster of color c
and the remaining initial clusters of color c (including the rest of the cluster containing
J) are split into simple clusters.

(ii) p− j ≤ |X1| ≤ q − j and p ≤ |Xi| ≤ q for i ∈ {2, . . . , h′},

(iii) for the set of composite clusters X ′ ⊆ X , X ′′ = X ′ ∪ {X1} has size tx, and the set

J ′ ⊆ J (Y) of initial clusters having nonempty intersections with the clusters from

X ′′ has size �x,

(iv) |Y | = �x and the initial clusters in J ′ are colored by distinct colors by ψ,

(v) G(X ′′,J ′) is isomorphic to Tx with an isomorphism α that bijectively maps X ′′ to

Ux, J ′ to Wx, and α(X1) = x.

In the same way as above for other functions, it is assumed that ω
(2)
x (h′, Y, j, s) = +∞ if

there is no such an h′-clustering.

Informally, ω
(2)
x (h′, Y, j, s) is the minimum cost of an h′-clustering forX(Y) that is feasible

with respect to Tx, tx and �x, where the specific cluster X1 associated with x is required

to have s as its median and “misses” j elements (see Figure 5.2). Notice that it is not

required that s is optimal forX1. However, in the future, X1 is going to be complemented

by j elements of an initial cluster corresponding to the parent of x, unless x is a root.

Note also that X1 is not a composite cluster if x has a unique child, but because X1 is

expected to be complemented by other elements, X1 is counted as a composite cluster

in the definition of ω
(2)
x (h′, Y, j, s).

Now we explain how to compute the table of values of ω
(1)
x (h′, Y, c, J, j) and ω

(2)
x (h′, Y, j, s).

First, we compute ω
(1)
x (h′, Y, c, J, j) for leaves.

Claim 5.2.1. For every leaf x of T , ω
(1)
x (h′, Y, c, J, j) can be computed in O(n) time.

5.2 FPT Algorithm for Parameterization by B and the Alphabet Size 61

Proof. If Y �= {c}, ω(1)
x (h′, Y, c, J, j) = +∞ by the definition. Assume that Y = {c}.

Let J ′ ⊆ J be a set of size j. We compute Ĵ = J (Y)/J ′ in O(n) time. Then

ω
(1)
x (h′, Y, c, J, j) = 0 if every set in Ĵ can be partitioned into clusters of size at

least p and at most q in such a way that the total number of clusters is h′, and

ω
(1)
x (h′, Y, c, J, j) = +∞ otherwise. We apply Observation 5. First, we verify whether

every Ĵ ∈ Ĵ can be partitioned into clusters of size at least p and at most q by check-

ing whether
⌈
|Ĵ |
q

⌉
≤

⌊
|Ĵ |
p

⌋
. If this holds, then we observe that we can obtain exactly h′

clusters in total if and only if
∑

Ĵ∈Ĵ
⌈
|Ĵ |
q

⌉
≤ h′ ≤ ∑

Ĵ∈Ĵ
⌊
|Ĵ |
p

⌋
. Since checking of these

conditions can be done in O(n) time, the total running time is O(n).

Next, we explain how to compute ω
(1)
x (h′, Y, c, J, j) for internal vertices if the tables of

values of ω
(2)
y (·, ·, ·, ·) are given for all children y of x. This is done by an auxiliary

dynamic programming algorithm.

Claim 5.2.2. Let x ∈ W be an internal vertex of T and assume that the table of values

of ω
(2)
y (·, ·, ·, ·) is computed for every child y of x. Then ω

(1)
x (h′, Y, c, J, j) can be computed

in 2O(B logB)|Σ|B · (mn)O(1) time.

Proof. Let h′ ≤ h, Y ⊆ P , c ∈ Y , J ∈ J (Y) and j ≤ |J |. If j = |J |, then we immediately

set ω
(1)
x (h′, Y, c, J, j) = +∞ because we have no proper J ′ ⊂ J of size j. Also, if |Y | �= �x

or ψ(J) �= c, then ω
(1)
x (h′, Y, c, J, j) = +∞ by definition. Assume that j < |J |, J ′ ⊂ J of

size j, ψ(J) = c and |Y | = �x. Let Ĵ = J \ J ′. We denote by y1, . . . , yf the children of x

in T .

Consider the initial clusters of color c. By the definition of ω
(1)
x (h′, Y, c, J, j), we are

interested in an h′-clustering, where the initial clusters of color c distinct from J are

split into simple clusters and, possibly, some parts of J also form simple clusters. For a

nonnegative integers ĥ ≤ h′ and ĵ ≤ |Ĵ |, we define w(ĥ, ĵ) to be 0 if the initial clusters of

Ĵ = J ({c})/(J \J ′′), where J ′′ ⊆ Ĵ of size ĵ can be partitioned into ĥ simple clusters of

size at least p and at most q, and we set w(ĥ, ĵ) = +∞ otherwise. To compute w(ĥ, ĵ),

we use Observation 5 similarly to the proof of Claim 5.2.1. Namely, we verify whether

every J̃ ∈ Ĵ can be partitioned into clusters of size at least p and at most q by checking

whether
⌈
|J̃ |
q

⌉
≤

⌊
|J̃ |
p

⌋
, and then we check whether

∑
J̃∈Ĵ

⌈
|J̃ |
q

⌉
≤ ĥ ≤ ∑

J̃∈Ĵ
⌊
|J̃ |
p

⌋
. Since

ĥ ≤ h′ ≤ h, the values of w(ĥ) can be computed in O(n2) time.

Observe that by the definition of ω
(1)
x (h′, Y, c, J, j), the points of Ĵ should be included in

f composite clusters associated with the children of x in an h′-clustering for X(Y)/J ′.

In particular, if |Ĵ | < f , it cannot be done and ω
(1)
x (h′, Y, c, J, j) = +∞ by the definition.

From now, we assume that |Ĵ | ≥ f .

62 Parameterized Categorical Capacitated Clustering

For i ∈ {1, . . . , f}, denote by T (i) the subtree of T induced by {x} ∪ ⋃i
i′=1 V (Tyi′), set

U (i) = U ∩ V (T (i)) and W (i) = W ∩ V (T (i)). Let also t(i) = |U (i)| and �(i) = |W (i)|
for i ∈ {1, . . . , f}. For each i ∈ {1, . . . , f}, each nonnegative ĥ ≤ h′, each positive

ĵ ≤ |J | − j, and every c ∈ Z ⊆ Y , define the auxiliary values w(i)(ĥ, ĵ, Z).

Definition 6 (Auxiliary partial solution). w(i)(ĥ, ĵ, Z) is the minimum cost of ĥ-

clustering X = {X1, . . . , Xĥ} for X(Z)/(J \ J ′′), where J ′′ ⊆ Ĵ of size ĵ, such that

(i) p ≤ |Xi′ | ≤ q for i′ ∈ {1, . . . , ĥ},

(ii) the set X ′ ⊆ X of composite clusters has size t(i), and the set J ′ ⊆ J (Y)/(J \ J ′′)

of initial clusters having nonempty intersections with the composite clusters has

size �(i),

(iii) |Z| = �(i) and the initial clusters in J ′ are colored by distinct colors by ψ,

(iv) G(X ′,J ′) is isomorphic to T (i) with an isomorphism α that bijectively maps X ′ to

U (i), J ′ to W (i), and

(v) J ′′ ∈ J ′, α(J ′′) = x and ψ(J ′′) = c.

We also follow the same convention as above that w(i)(ĥ, ĵ, Z) = +∞ if either there is

no ĥ-clustering satisfying (i)–(v). Observe that, by the definition, ω
(1)
x (h′, Y, c, J, j) =

w(f)(h′, |J | − j, Y). Therefore, we compute the tables of values of w(i)(·, ·, ·) for i =

1, . . . , f .

To initiate the computation of w(i)(·, ·, ·), it is convenient to formally define this function

for i = 0. We set

w(0)(ĥ, ĵ, Z) =

⎧⎨
⎩
w(ĥ, ĵ) if Z = {c},
+∞ otherwise.

For s ∈ M , denote d(s) = dist0(s, aj) for j ∈ J . Then to compute w(i)(ĥ, ĵ, Z) for i ≥ 1,

we use the following recurrence:

w(i)(ĥ, ĵ, Z) = min{ω(2)
yi
(ĥ′, Ẑ, ĵ′, s) + ĵ′d(s) + w(i−1)(ĥ− ĥ′, ĵ − ĵ′, Z \ Ẑ)}, (5.7)

where the minimum in the right part is taken over all integers 1 ≤ ĥ′ ≤ ĥ and 0 < ĵ′ ≤ ĵ,

all sets Ẑ such that c /∈ Ẑ ⊂ Z, and all s ∈ M. We assume that w(i)(ĥ, ĵ, Z) = +∞ if

the set in the right part is empty.

We prove the correctness of (5.7) by showing the opposite inequalities between the left

and the right part.

5.2 FPT Algorithm for Parameterization by B and the Alphabet Size 63

If w(i)(ĥ, ĵ, Z) = +∞, then

w(i)(ĥ, ĵ, Z) ≥ min{ω(2)(ĥ′, Ẑ, ĵ′, s) + ĵ′d(s) + w(i−1)(ĥ− ĥ′, ĵ − ĵ′, Z \ Ẑ)}.

Suppose that w(i)(ĥ, ĵ, Z) < +∞. Consider ĥ-clustering X for X(Z)/(J \ J ′′) of cost

w(i)(ĥ, ĵ, Z) satisfying (i)–(v). Let X ∈ X be the composite cluster such that α(X) = yi.

Since α(J ′′) = x, X contains points of J ′′. Let Ĵ ′′ = I ∩ J ′′ and ĵ′ = Ĵ ′′. Denote by

s ∈ M the median of X1. Consider Ĵ ′′ = α−1(V (Tyi)) ∩ J ′, that is, the set of initial

clusters having nonempty intersections with the composite clusters that are mapped by

α to the nodes of Tyi . The coloring ψ colors these clusters by distinct colors and we

define Ẑ to be the set of colors of the clusters of Ĵ ′′; note that c /∈ Ẑ. Denote by ĥ′ the

number of clusters in X containing points of the initial clusters with colors in Ẑ and let

X1 be the set of these clusters; observe that X ∈ X1. Let X2 = X \ X1.

By the defintion of the values of w(i−1)(·, ·, ·), we obtain that the cost of clustering for

X2 is at least w(i−1)(ĥ − ĥ′, ĵ − ĵ′, Z \ Ẑ). The cluster X contains ĵ′ points of J . Since

s is its median, these ĵ′ points contribute ĵ′d(s) to its cost. Then, by the definition of

ω
(2)
yi (·, ·, ·, ·), we have that the cost of clustering for X1 is at least ω

(2)
yi (ĥ

′, Ẑ, ĵ′, s)+ ĵ′d(s).

This means that w(i)(ĥ, ĵ, Z) ≥ ω(2)(ĥ′, Ẑ, ĵ′, s) +w(i−1)(ĥ− ĥ′, ĵ − ĵ′, (Z \ Ẑ)∪ {c}) and

w(i)(ĥ, ĵ, Z) ≥ min{ω(2)
yi
(ĥ′, Ẑ, ĵ′, s) + ĵ′d(s) + w(i−1)(ĥ− ĥ′, ĵ − ĵ′, Z \ Ẑ)}. (5.8)

For the opposite direction, assume that integers ĥ′, ĵ′, a set Ẑ, and a median s are chosen

in such a way that the value of ω
(2)
yi (ĥ

′, Ẑ, ĵ′, s) + ĵ′d(s) + w(i−1)(ĥ− ĥ′, ĵ − ĵ′, Z \ Ẑ) is
minimum. If the value is +∞, then w(i)(ĥ, ĵ, Z) ≤ ω(2)(ĥ′, Ẑ, ĵ′, s) + ĵ′d(s) + w(i−1)(ĥ−
ĥ′, ĵ − ĵ′, Z \ Ẑ) as required. Assume that ω

(2)
yi (ĥ

′, Ẑ, ĵ′, s) < +∞ and w(i−1)(ĥ− ĥ′, ĵ −
ĵ′, Z \ Ẑ) < +∞.

By the definition of ω
(2)
yi (ĥ

′, Ẑ, ĵ′, s), there is an ĥ′-clustering X1 for X(Ẑ) of cost

ω
(2)
yi (ĥ

′, Ẑ, ĵ′, s) satisfying conditions (i)–(v) of the definition. In particular, X1 con-

tains a special cluster X with the median s such that p − ĵ′ ≤ |X| ≤ q − ĵ′ and X is

mapped to the root yi of Tyi by the isomorphism α.

Let J ′′ ⊆ Ĵ of size ĵ and let Ĵ ′′ ⊆ J ′′ of size ĵ′. By the definition of w(i−1)(ĥ − ĥ′, ĵ −
ĵ′, Z \ Ẑ), there is an (ĥ− ĥ′)-clustering X2 for X(Z \ Ẑ)/((J \J ′′)∪ Ĵ ′′) of cost w(i−1)(ĥ−
ĥ′, ĵ − ĵ′, Z \ Ẑ) satisfying conditions (i)–(v) of the definition of w(i−1)(·, ·, ·).

Observe that the clusters of X1 and X are pairwise disjoint and include all points of

the initial clusters with their colors in Z except ĵ′ + j points of J . We construct the

ĥ-clustering X for X(Z)/(J \ J ′′) as follows. First, we modify the cluster X ∈ X1 by

64 Parameterized Categorical Capacitated Clustering

setting X := X ∪ Ĵ ′′. Note that we increase the cost of the cluster by at most ĵ′d(s).

Then we take the union of X1 and X2. The definitions of the values ω
(2)
yi (ĥ

′, Ẑ, ĵ′, s)

and w(i−1)(ĥ− ĥ′, ĵ − ĵ′, Z \ Ẑ) imply that X satisfies conditions (i)–(v) for w(i)(ĥ, ĵ, Z).

Therefore, w(i)(ĥ, ĵ, Z) ≤ ω(2)(ĥ′, Ẑ, ĵ′, s) + ĵ′d(s) + w(i−1)(ĥ− ĥ′, ĵ − ĵ′, Z \ Ẑ).

By the choice of ĥ′, ĵ′, Ẑ, and s,

w(i)(ĥ, ĵ, Z) ≤ min{ω(2)
yi
(ĥ′, Ẑ, ĵ′, s) + ĵ′d(s) + w(i−1)(ĥ− ĥ′, ĵ − ĵ′, Z \ Ẑ)}. (5.9)

Then (5.8) and (5.9) imply (5.7).

We use (5.7) to compute the table of values of w(f)(·, ·, ·). Then ω
(1)
x (h′, Y, c, J, j) =

w(f)(h′, |J | − j, Y) by the definition.

To evaluate the running time, notice that the initial table w(f)(·, ·, ·) can be computed in

2O(B) · n2, since w(ĥ) can be computed in O(n2) time and then the table is constructed

for at most n values of ĵ and at most 2� sets Z. To compute the table w(i)(·, ·, ·) from
w(i−1)(·, ·, ·) by (5.7) for i ∈ {1, . . . , f}, we consider all pairs of integers ĥ′ ≤ ĥ, all pairs

of sets Z and Ẑ ⊂ Z and all s ∈ M. Since ĥ ≤ n, Z ⊆ {1, . . . , �} and � ≤ 2B, and

|M| = 2O(B logB)|Σ|B · (mn)O(1), w(i)(·, ·, ·) can be computed in 2O(B logB)|Σ|B · (mn)O(1).

Then the total running time is 2O(B logB)|Σ|B · (mn)O(1).

Further, we show how to compute ω
(2)
x (h′, Y, j, s) if the tables of values of ω

(1)
y (·, ·, ·, ·, ·)

are already computed. Similarly to the proof of Claim 5.2.2, we also use an auxiliary

dynamic programming algorithm.

Claim 5.2.3. Let x ∈ U be an internal vertex of T and assume that the table of values

of ω
(1)
y (·, ·, ·, ·, ·) is computed for every child y of x. Then ω

(2)
x (h′, Y, j, s) can be computed

in 2O(B) · nO(1) time.

Proof. Let h′ ≤ h, Y ⊆ P , j ≤ q, and let s ∈ M. If |Y | �= �x, then ω
(2)
x (h′, Y, j, s) = +∞

by defintion. Assume that |Y | = �x. In the same way as in the proof of Claim 5.2.2,

denote by y1, . . . , yf the children of x in T . For i ∈ {1, . . . , f}, let T (i) be the subtree of

T induced by {x} ∪⋃i
i′=1 V (Tyi′), set U

(i) = U ∩ V (T (i)) and W (i) = W ∩ V (T (i)). Let

also t(i) = |U (i)| and �(i) = |W (i)| for i ∈ {1, . . . , f}. For an initial cluster J , we denote

by d(J) = dist0(s,xi) for xi ∈ J . Similarly to the proof of Claim 5.2.2, we compute some

auxiliary values.

For each i ∈ {1, . . . , f}, every positive integer ĥ ≤ h′, every nonnegative integer ĵ ≤ q,

and every nonempty Z ⊆ P , we define the auxiliary value as follows.

5.2 FPT Algorithm for Parameterization by B and the Alphabet Size 65

Definition 7 (Auxiliary partial solution). w(i)(ĥ, ĵ, Z) is the minimum cost of an ĥ-

clustering X = {X1, . . . , Xĥ} for X(Z) such that

(i) the cost of X1 is computed with respect to the median s, that is, the cost equals∑
xi∈X1

dist0(s,xi),

(ii) |X1| = ĵ and p ≤ |Xi′ | ≤ q for i′ ∈ {2, . . . , ĥ},

(iii) for the set of composite clusters X ′ ⊆ X , X ′′ = X ′ ∪{X1} has size t(i), and the set

J ′ ⊆ J (Z) of initial clusters having nonempty intersections with the clusters from

X ′′ has size �(i),

(iv) |Z| = �(i) and the initial clusters in J ′ are colored by distinct colors by ψ,

(v) G(X ′′,J ′) is isomorphic to T (i) with an isomorphism α that bijectively maps X ′′

to U (i), J ′ to W (i), and α(X1) = x.

We assume that w(i)(ĥ, ĵ, Z) = +∞ if there is no such a ĥ-clustering.

Notice that the parameter ĵ defines the size of a selected cluster X1. Then, by the

definition, we have that

ω(2)
x (h′, Y, j, s) = min{w(f)(h′, ĵ, Y) | p− j ≤ ĵ ≤ q − j} (5.10)

assuming that ω
(2)
x (h′, Y, j, s) = +∞ if the set in the right part is empty.

We compute the tables of values of w(i)(·, ·, ·) for i = 1, . . . , f .

First, we observe that

w(1)(ĥ, ĵ, Z) = min{ω(1)
y1
(ĥ− 1, Z, c, J, ĵ) + ĵd(J) | c ∈ Z, J ∈ J (Z)}; (5.11)

as before, w(1)(ĥ, ĵ, Z) = +∞ if the set in the right part is empty.

To see that w(1)(ĥ, ĵ, Z) ≥ min{ω(1)
y1 (ĥ− 1, Z, c, J, ĵ) + ĵd(J) | c ∈ Z, J ∈ J (Z)}, assume

that w(1)(ĥ, ĵ, Z) < +∞; otherwise, the inequality is trivial. Let X = {X1, . . . , Xĥ} be

an ĥ-clustering for X(Z) satisfying conditions (i)–(v).

Since y1 is the unique child of x in T (1), X1 consists of ĵ points of some initial cluster J .

Let c be the color assigned to J by ψ. Then, by the definition of ω
(1)
y1 (ĥ − 1, Z, c, J, ĵ),

{X2, . . . , Xĥ} is an (ĥ−1)-clustering for X(Z)/J ′ for J ′ ⊆ J of size ĵ that satisfies all the

condition of the definition of ω
(1)
y1 (·, ·, ·, · · · , ·). Therefore, the cost of {X2, . . . , Xĥ} is an

(ĥ−1) is at least ω
(1)
y1 (ĥ−1, Z, c, J, ĵ). The median ofX1 is s andX1 contains ĵ points of J .

66 Parameterized Categorical Capacitated Clustering

Therefore, the cost ofX1 is ĵd(J). We conclude that w(1)(ĥ, ĵ, Z) ≥ ω
(1)
y1 (ĥ−1, Z, c, J, ĵ)+

ĵd(J). Therefore, w(1)(ĥ, ĵ, Z) ≥ min{ω(1)
y1 (ĥ− 1, Z, c, J, ĵ) + ĵd(J) | c ∈ Z, J ∈ J (Z)}.

Now we prove that w(1)(ĥ, ĵ, Z) ≤ min{ω(1)
y1 (ĥ− 1, Z, c, J, ĵ) + ĵd(J) | c ∈ Z, J ∈ J (Z)}.

If the right part of (5.11) is +∞, then the inequality is trivial. Assume that this is not

the case and let c ∈ Z and J ∈ J (Z) be such that the right part of (5.11) achieves

the minimum value for them. Then there is an (ĥ− 1)-clustering X for X(Z)/J ′, where

J ′ ⊆ J has size ĵ, with the cost ω
(1)
y1 (ĥ − 1, Z, c, J, ĵ) that satisfies all the condition

of the definition of ω
(1)
y1 (·, ·, ·, · · · , ·). Then we construct a new cluster X = J ′ with

the median s. Clearly, the cost is ĵd(J). It is straightforward to verify that X ∪ {X}
satisfies (i)–(v). Therefore, w(1)(ĥ, ĵ, Z) ≤ ω

(1)
y1 (ĥ−1, Z, c, J, ĵ)+ĵd(J) and w(1)(ĥ, ĵ, Z) ≤

min{ω(1)
y1 (ĥ− 1, Z, c, J, ĵ) + ĵd(J) | c ∈ Z, J ∈ J (Z)}.

Combining the two inequalities, we conclude that (5.11) holds.

To compute w(1)(ĥ, ĵ, Z) for i ≥ 2, we show that

w(i)(ĥ, ĵ, Z) = min{ω(1)
yi
(ĥ′, Ẑ, c, J, ĵ′) + ĵ′d(J) + w(i−1)(ĥ− ĥ′, ĵ − ĵ′, Z \ Ẑ)}, (5.12)

where the minimum is taken over all positive integers ĥ′ < ĥ, ĵ′ < ĵ, all nonempty sets

Ẑ ⊂ Z, all c ∈ Z, and J ∈ J (Z). As it is standard in our paper, w(i)(ĥ, ĵ, Z) = +∞ if

the set in the right part of (5.12) is empty.

We prove (5.12) by demonstrating the opposite inequalities between the left and the

right part.

If w(i)(ĥ, ĵ, Z) = +∞, then w(i)(ĥ, ĵ, Z) ≥ min{ω(1)
yi (ĥ

′, Ẑ, c, J, ĵ′) + ĵ′d(J) + w(i−1)(ĥ −
ĥ′, ĵ − ĵ′, Z \ Ẑ)}. Assume that this is not the case. Then there is an ĥ-clustering X
for X(Z) of cost w(i)(ĥ, ĵ, Z) satisfying (i)–(v). In particular, there is X ∈ X such that

|X| = ĵ, α(X) = x and s is its median. Let J ∈ J (Z) be the initial cluster such that

α(J) = yi. Denote by c its color. By definition, J ∩ X �= ∅. Let J ′ = X ∩ J and

ĵ′ = |J ′|. Consider Ĵ ′ = α−1(V (Tyi)) ∩ J ′, that is, the set of initial clusters intersecting

composite clusters that are mapped by α to the vertices of Tyi . Note that J ∈ Ĵ ′. By

definition, these clusters are colored by distinct colors by ψ. Denote by Ẑ the set of their

colors. Clearly, c ∈ Ẑ. Let X1 ⊆ X \ {X} be the set of clusters in X having nonempty

intersections with with the initial clusters from Ĵ ′; note that X /∈ X1 by definition. Set

ĥ′ = |X1|. Let X2 = X \ X1.

Observe that X1 is an ĥ′-clustering for X(Ẑ)/J ′. Moreover, X1 satisfies all the condi-

tions of the definition of ω
(1)
yi (ĥ

′, Ẑ, c, J, ĵ′). This implies that the cost of X1 is at least

ω
(1)
yi (ĥ

′, Ẑ, c, J, ĵ′). Consider the clustering X̂2 obtained from X2 by the replacement of X

5.2 FPT Algorithm for Parameterization by B and the Alphabet Size 67

by X̂ = X \J ′. Notice that the clusters of X̂2 contains only points of initial clusters with

colors from Z \ Ẑ. Also, we have hat |X̂| = ĵ − ĵ′ and |X̂2| = ĥ− ĥ′ because i ≥ 2 and

X �= J ′. Then it is straightforward to verify that X̂2 is (ĥ− ĥ′)-clustering for X(Z \ Ẑ)
satisfying (i)–(v) for w(i−1)(·, ·, ·).

Therefore, the cost of X̂2 is at least w(i−1)(ĥ − ĥ′, ĵ − ĵ′, Z \ Ẑ). Finally, recall that

J ′ ⊂ X. Since s is the median of X, the contribution of J ′ to the cost is ĵ′d(J). We

conclude that w(i)(ĥ, ĵ, Z) ≥ ω
(1)
yi (ĥ

′, Ẑ, c, J, ĵ′) + ĵ′d(J) + w(i−1)(ĥ − ĥ′, ĵ − ĵ′, Z \ Ẑ).

Hence,

w(i)(ĥ, ĵ, Z) ≥ min{ω(1)
yi
(ĥ′, Ẑ, c, J, ĵ′) + ĵ′d(J) + w(i−1)(ĥ− ĥ′, ĵ − ĵ′, Z \ Ẑ)}. (5.13)

The opposite inequality is trivial if the right part of (5.12) equals +∞. Assume that this

is not the case and suppose that positive integers ĥ′ < ĥ, ĵ′ < ĵ, a set Ẑ ⊂ Z, c ∈ Z, and

J ∈ J (Z) are chosen in such a way that the right part of (5.12) achieves the minimum

value for them.

By the definition of ω
(1)
yi (ĥ

′, Ẑ, c, J, ĵ′), there is an ĥ′-clustering X1 for X(Ẑ)/J ′ of cost

ω
(1)
yi (ĥ

′, Ẑ, c, J, ĵ′) satisfying conditions (i)–(v) of the definition, where J ′ ⊆ J of size

ĵ′ = |J ′|. In particular, c is a color of J .

We also have that, by definition of w(i−1)(ĥ − ĥ′, ĵ − ĵ′, Z \ Ẑ), there is an (ĥ − ĥ′)-

clustering for X(Z \ Ẑ) satisfying conditions (i)-(v) of the definition. In particular, there

is a special cluster X ∈ X2 of size ĵ − ĵ′ with the median s.

We construct the clustering X for X(Z) as follows. First, we modify the cluster

X ∈ X2 by replacing it by X ′ = X ∪ J ′. Then we take the union of X1 and the

modified X2. It is straightforward to verify that X is a ĥ-clustering for X(Z) sat-

isfying (i)–(v) for w(i)(ĥ, ĵ, Z). Since X ′ is obtained by adding ĵ′ points of J , the

cost of X is ω
(1)
yi (ĥ

′, Ẑ, c, J, ĵ′) + ĵ′d(J) + w(i−1)(ĥ − ĥ′, ĵ − ĵ′, Z \ Ẑ). Therefore,

w(i)(ĥ, ĵ, Z) ≤ ω
(1)
yi (ĥ

′, Ẑ, c, J, ĵ′)+ ĵ′d(J)+w(i−1)(ĥ− ĥ′, ĵ− ĵ′, Z \ Ẑ) and, by the choice

of ĥ′, ĵ′, Ẑ, c and J ,

w(i)(ĥ, ĵ, Z) ≤ min{ω(1)
yi
(ĥ′, Ẑ, c, J, ĵ′) + ĵ′d(J) + w(i−1)(ĥ− ĥ′, ĵ − ĵ′, Z \ Ẑ)}. (5.14)

By (5.13) and (5.14), we conclude that the recurrence (5.12) holds. Then we compute

the tables of values of w(i)(·, ·, ·) for i = 1, . . . , f using (5.11) and (5.12). Finally, we

apply (5.10) to compute ω
(2)
x (h′, Y, j, s).

Clearly, the table of values of w(1)(·, ·, ·) can be computed in 2O(B) · n3 time because we

68 Parameterized Categorical Capacitated Clustering

consider ĥ, ĵ ≤ n and at most 2� sets Z, and then go through at most � values of c and

at most n sets J . To compute the tables of values of w(i)(·, ·, ·) for i ≥ 2, we consider

all pairs of integers ĥ′ < ĥ, all pairs ĵ′ < ĵ, all nonempty sets Ẑ ⊂ Z, all c ∈ Z, and

J ∈ J (Z). Since ĥ′, ĥ, ĵ′, ĵ ≤ n, the number of pairs of set Ẑ ⊂ Z is at most 3�, the

number of the choices of c is at most � and the number of the choices of J is at most n,

we have that the total running time is 2O(B) · nO(1) because � ≤ 2B.

Claims 5.2.1–5.2.3 allow us to compute the table of values of ω
(2)
z (·, ·, ·, ·) for the root z

of T bottom-up starting from the leaves (recall that z ∈ U). To make the final step of

our algorithm, observe that the minimum cost of a feasible h-clustering for X(P) with

respect to T , t′ and �′ is

min{ω(2)
x (h, P, 0, s) | s ∈ M}

by the definition of these values.

The tree T has �′ + t′ ≤ 3B vertices. The table of values of either ω
(1)
x (·, ·, ·, ·, ·) or

ω
(2)
x (·, ·, ·, ·) constructed for every node x has size 2O(B logB)|Σ|B · (mn)O(1) and can be

constructed in 2O(B logB)|Σ|B · (mn)O(1) time by Claims 5.2.1–5.2.3. Therefore, the total

running time is 2O(B logB)|Σ|B · (mn)O(1).

Using Lemmas 7 and 8, we are able to check whether the considered instance has a

colorful solution.

Putting all together

Now we are ready to put all ingredients of our algorithm together.

Lemma 9. Categorical Capacitated k-Median Clustering can be solved in

2O(B logB)|Σ|B · (mn)O(1) time by a Monte Carlo algorithm with false negatives.

Proof. Let (X,Σ, k, B, p, q) be an instance of Categorical Capacitated k-Median

Clustering with X = {x1, . . . ,xn}. We start with computing the partition J =

{J1, . . . , Js} of X into initial clusters and this step can be done in polynomial time.

By the next step, we construct the set M = M(X, B) of potential medians of size

2O(B logB)|Σ|B · (mn)O(1) in 2O(B logB)|Σ|B · (mn)O(1) time using Lemma 6.

Then we consider all nonnegative t ≤ min{B, k} to guess the number of composite

clusters. If t = 0, then the problem is solved in polynomial time. If t ≥ 1, then we

proceed and guess the number � of initial clusters having nonempty intersections with

composite clusters, where t + 1 ≤ � ≤ B. For the chosen values of t and �, we consider

5.2 FPT Algorithm for Parameterization by B and the Alphabet Size 69

all forests F on t + � vertices to guess the structure of G(X ′,J ′). Recall that we have

2O(B) forests (see [72]) that can be listed in 2O(B) time (see [81]).

Further, we color the elements of J uniformly at random by � colors and, given t, �, F

and a random coloring ψ : J → {1, . . . , �}, check whether there is a feasible k-clustering

of cost at most B. Recall that if there is a solution with t composite clusters such

that exactly � initial clusters have nonempty intersections with the composite clusters of

the solution, then the probability that these � clusters are assigned distinct colors in a

random coloring ψ is at least e−2k. Then the probability that some initial clusters having

nonempty intersections with the composite clusters of the solution obtain the same color

is at most 1−e−2B. This implies that if we try e2B random colorings, then the probability

that for every coloring, some initial clusters having nonempty intersections with the

composite clusters of the solution are of the same color is at most (1 − e−2B)e
2B ≤ e−1.

This implies that it is sufficient to consider N = �e2B� random colorings ψ. For each

coloring, we verify the existence of a colorful solution. If a colorful solution exists for ψ,

then we report that (X,Σ, k, B, p, q) admits a required solution and stop. Otherwise, if

we fail to find a colorful solution for every ψ, we report that there is in solution and the

probability of an incorrect answer is at most e−1 < 1.

For given given t, �, F and a random coloring ψ : J → {1, . . . , �}, we use Lemmas 7

and 8 for verifying whether a feasible k-clustering exists. For the connected com-

ponents F1, . . . , Ff of F , we apply Lemma 8 and compute the values ωi(P, h) for all

i ∈ {1, . . . , f}, P ⊆ {1, . . . �} and positive integers h ≤ k. By Lemma 8, this can be

done in 2O(B logB)|Σ|B · (mn)O(1) time. Given these values, we apply Lemma 7 to check

in 2O(B) · n2 time whether there is a feasible k-clustering for A of cost at most B with

respect to F , t and �.

The overall running time of this algorithm is 2O(B logB)|Σ|B · (mn)O(1) and this concludes

the proof.

Derandomization

Our algorithm can be derandomized by standard tools [5] (see also [29, Chapter 5]).

More precisely, we replace random colorings by functions from a perfect hash family.

Let s and � be positive integers such that s ≥ �. A set F of functions ξ : {1, . . . , s} →
{1, . . . , �} is said to be an (s, �)-perfect hash family if for every X ⊆ {1, . . . , s} of size �,

there is a ξ ∈ F such that ξ|X is a bijection between X and {1, . . . , �}.

We use the result of Naor, Schulman, and Srinivasan [71] (see also [29, Chapter 5]).

70 Parameterized Categorical Capacitated Clustering

Proposition 8. For every s ≥ � ≥ 1, there is an (s, �)-perfect hash family F of size

e��O(log �) · log s that can be constructed in e��O(log �) · s log s time.

We consider our set of initial clusters J = {J1, . . . , Js} and construct an (s, �)-perfect

hash family F . Since � ≤ 2B and s ≤ n, |F| = e2B(2B)O(logB) · log n and F can be

constructed in e2B(2B)O(logB) ·n log n time by Proposition 8. For every ξ ∈ F , we define

the coloring ψξ : J → {1, . . . , �} by setting ψξ(Ji) = ξ(i) for i ∈ {1, . . . , s}.

If (X,Σ, k, B, p, q) admits a solution with t composite clusters such that exactly � initial

clusters have nonempty intersections with the composite clusters, then there is ξ ∈ F
such that ψξ colors these initial clusters by distinct colors by the definition of an (s, �)-

perfect hash family. Then our randomized algorithm can be modified as follows: instead

of trying N = �e2B� random colorings ψ we try all ξ ∈ F , we verify the existence

of a colorful solution with respect to ψξ. We obtain that we can solve Categorical

Capacitated k-Median Clustering for (X,Σ, k, B, p, q) in 2O(B logB)|Σ|B · (mn)O(1)

deterministic time and this concludes the proof of Theorem 5.

5.3 Clustering with Size Constraints

In this section, we discuss other variants of Categorical k-Median Clustering

with cluster size constraints: Balanced Categorical k-Median Clustering and

Factor-Balanced Categorical k-Median Clustering. We also discuss the spe-

cial case of Categorical Capacitated k-Median Clustering for p = q = n/k

that is equivalent to Balanced Categorical k-Median Clustering for δ = 0 and

to Factor-Balanced Categorical k-Median Clustering for α = 1. We refer to

this problem as Categorical Equal Clustering.

Recall that by Theorem 6, Categorical Capacitated k-Median Clustering is

NP-complete for k = 2 and p = q = n/2, that is, Categorical Equal Clustering

is NP-complete for k = 2. Using the same arguments as in the proof of Theorem 6, we

can show the following more general claim.

Theorem 8. For every fixed α ≥ 1 (δ ≥ 0, respectively), Factor-Balanced Cate-

gorical k-Median Clustering (Balanced Categorical k-Median Cluster-

ing, respectively) is NP-complete for k = 2 and binary matrices.

From the positive side, we observe that Balanced Categorical k-Median Clus-

tering and Factor-Balanced Categorical k-Median Clustering admit Turing

5.4 Kernelization for Clustering with Size Constraints 71

reductions to Categorical Capacitated k-Median Clustering, that is, Cate-

gorical Capacitated k-Median Clustering is the most general among the con-

sidered problems. For this, we make the following straightforward observation.

Observation 6. An instance (X,Σ, k, B, δ) of Balanced Categorical k-Median

Clustering (an instance (X,Σ, k, B, α) of Factor-Balanced Categorical k-

Median Clustering, respectively) is a yes-instance if and only if there is a non-

negative integer p such that n
k
− δ ≤ p ≤ n

k
(n

αk
≤ p ≤ n

k
, respectively) and for q = p+ δ

(q = αp, respectively), (X,Σ, k, B, p, q) is a yes-instance of Categorical Capaci-

tated k-Median Clustering.

Thus, given an algorithm A for Categorical Capacitated k-Median Clustering,

we can solve Balanced Categorical k-Median Clustering for (X,Σ, k, B, δ) as

follows. We consider all p starting from max{1, �n
k
� − δ} up to �n

k
�, and use A to solve

Categorical Capacitated k-Median Clustering for (X,Σ, k, B, p,min{n, p+δ}).
If A returns “yes” for one of the values of p, we conclude that (X,Σ, k, B, δ) is a yes-

instance of Balanced Categorical k-Median Clustering and stop. Otherwise,

if A always returns “no”, (X,Σ, k, B, δ) is a no-instance. Clearly, Factor-Balanced

Categorical k-Median Clustering can be solved in similar way. This allows to

obtain the following corollary of Theorem 5.

Corollary 2. Balanced Categorical k-Median Clustering and Factor-

Balanced Categorical k-Median Clustering are solvable in time 2O(B logB)|Σ|B ·
(mn)O(1).

5.4 Kernelization for Clustering with Size Con-

straints

In this section, we discuss kernelization for clustering problems with size constraints.

In [37, Theorem 3], Fomin, Golovach and Panolan proved thatCategorical k-Median

Clustering does not admit a polynomial kernel when parmeterized by B, unless NP ⊆
coNP /poly. This immediately implies the following proposition.

Proposition 5. Categorical Capacitated k-Median Clustering (Balanced

Categorical k-Median Clustering and Factor-Balanced Categorical k-

Median Clustering, respectively) has no polynomial kernel when paramterized by B,

unless NP ⊆ coNP /poly, even if Σ = {0, 1}.

Also, by Theorems 6 and 8 the problems are already NP-hard for k = 2. Thus, for

kernelization, we have to consider more restrictive parameterizations. Up to now, we

72 Parameterized Categorical Capacitated Clustering

have only partial results. In particular, we can show Balanced Categorical k-

Median Clustering admits a polynomial kernel when parameterized by B, k and

δ.

We start with some auxiliary results. First, we observe that if there is an initial cluster

J of size at least B + 1, then at least one median should be the same as a point of the

input set with point in J .

Observation 7. Let {X1, . . . , Xk} be a k-clustering of a X = {x1, . . . ,xn} of cost at

most B and let J ⊆ {x1, . . . ,xn} be an initial cluster with |J | ≥ B + 1. Then there is

an i ∈ {1, . . . , k} such that an optimal median of Xi coincides with s = xj for xj ∈ J .

Proof. For the sake of contradiction, assume that medians c1, . . . , ck for the clusters

{X1, . . . , Xk}, respectively, are distinct from s. Then

k∑
i=1

∑
xj∈Xi

dist0(ci,xj) ≥
k∑

i=1

∑
xj∈J∩Xi

dist0(ci, s) ≥ |J | > B

contradicting that the cost of {X1, . . . , Xk} is at most B.

Our next lemma shows that if there is a clustering such that a median ci coincides with

point xj, then we can either collect all the elements of the initial cluster J containing xj

in the same cluster of a solution or form a cluster of a solution out of its elements.

Lemma 10. Let {X1, . . . , Xk} be a k-clustering of X = {x1, . . . ,xn} with optimal me-

dians c1, . . . , ck, respectively. Let also S ⊆ {c1, . . . , ck} be the set of medians coinciding

with points of X. Then there is a k-clustering {X ′
1, . . . , X

′
k} for X such that

(i) |X ′
i| = |Xi| for all i ∈ {1, . . . , k},

(ii)
∑k

i=1

∑
xj∈X′

i
dist0(ci,xj) ≤

∑k
i=1

∑
xj∈Xi

dist0(ci,xj), and

(iii) for every s ∈ S and the initial cluster J such that s = xj for j ∈ J , there is

i ∈ {1, . . . , k} such that either J ⊆ X ′
i or X ′

i ⊂ J .

Proof. Let c1, . . . , ck be optimal medians for X1, . . . , Xk, respectively. Assume without

loss of generality that S = {c1, . . . , ct}, and denote by J1, . . . , Jt the initial clusters such

that for every i ∈ {1, . . . , t}, xj = ci for xj ∈ Ji. Let X ′ = {X ′
1, . . . , X

′
k} be a k-clustering

for X such that (a) |X ′
i| = |Xi| for all i ∈ {1, . . . , k}, (b) ∑k

i=1

∑
xj∈X′

i
dist0(ci,xj) ≤∑k

i=1

∑
xj∈Xi

dist0(ci,xj), and (c)
∑t

i=1 |X ′
i ∩Ji| is maximum. We claim that X ′ satisfies

conditions (i)–(iii) of the lemma. Clearly, (i) and (ii) are fulfilled by conditions (a) and

5.4 Kernelization for Clustering with Size Constraints 73

(b) of the choice of X ′. To show (iii), we prove that either Ji ⊆ X ′
i or X

′
i ⊂ Ji for every

i ∈ {1, . . . , t}.

Assume to the contrary that there is i ∈ {1, . . . , t} such that neither Ji ⊆ X ′
i nor

X ′
i ⊂ Ji. Then there is a cluster X ′

j for j ∈ {1, . . . , k} such that j �= i, X ′
j ∩ J �= ∅,

and there is xh ∈ X ′
i such that xh /∈ Ji. Let x� ∈ X ′

j ∩ Ji. Consider the k-clustering

X ′′ = {X ′′
1 , . . . , X

′′
k} such that X ′′

i = (X ′
i ∪ {x�}) \ {xh}, X ′′

j = (X ′
j ∪ {xh}) \ {x�}, and

X ′′
h = X ′

h for h ∈ {1, . . . , k} such that h �= i, j. In words, we exchange the elements xh

and x� between X ′
i and X ′

j. Then

k∑
p=1

∑
xq∈X′

p

dist0(cp,xq)−
k∑

p=1

∑
xq∈X′′

p

dist0(cp,xq)

=dist0(ci,xh) + dist0(cj,x�)− dist0(ci,x�)− dist0(cj,xh),

and since ci = x�, we obtain that

k∑
p=1

∑
xq∈X′

p

dist0(cp,xq)−
k∑

p=1

∑
xq∈X′′

p

dist0(cp,xq)

=dist0(x�,xh) + dist0(cj,x�)− dist0(cj,xh) ≥ 0

by the triangle inequality. This means that

k∑
p=1

∑
xq∈X′′

p

dist0(cp,xq) ≤
k∑

p=1

∑
xq∈X′

p

dist0(cp,xq) ≤
k∑

p=1

∑
xq∈Xp

dist0(cp,xq). (5.15)

Since |X ′′
i | = |X ′

i| for all i ∈ {1, . . . , t}, X ′′ satisfies condition (a) of the choice of X ′.

Condition (b) is satisfied because of (5.15). However, |X ′′
i ∩ J | = |(X ′

i ∩ X) ∪ {x�}| =
|X ′

i ∩ J |+ 1. Because X ′′ was obtained by the exchange xh and x� between X ′
i and X ′

j,

X ′
p ∩ Jp ⊆ X ′′

p ∩ Jp for p ∈ {1, . . . , t}. We obtain that
∑t

p=1 |X ′
p ∩ Jp| <

∑t
p=1 |X ′′

p ∩ Jp|
contradicting (c). Therefore, either Jp ⊆ X ′

p or X ′
p ⊂ Jp for every p ∈ {1, . . . , t} as it

claimed.

The following lemma is used to find medians if the sizes of clusters in a solution are

sufficiently big.

Lemma 11. Let X = {X1, . . . , Xk} be a k-clustering of X = {x1, . . . ,xn} of cost at

most B such that s ≤ |Xi| ≤ s + δ for all i ∈ {1, . . . , k}, where δ is a nonnegative

integer and an integer s satisfying s ≥ 2B +1+ (k− 1)δ. Then for every initial clusters

J ⊆ {x1, . . . ,xn}, the following is fulfilled for c = xj for xj ∈ J :

74 Parameterized Categorical Capacitated Clustering

(i) if |J | mod s ≥ B + 1 + (k − 1)δ, then exactly
⌈
|J |
s

⌉
clusters of X have optimal

medians coinciding with c (the other medians are different),

(ii) if |J | mod s ≤ B+(k−1)δ, then exactly
⌊
|J |
s

⌋
clusters of X have optimal medians

coinciding with c.

Proof. We start with proving (i). Let |J | mod s ≥ B + 1 + (k − 1)δ. We show that (i)

holds for J by induction on p =
⌊
|J |
s

⌋
.

The base case is p = 0. Then
⌈
|J |
s

⌉
= 1. As |J | mod s ≥ B+1+(k−1)δ and

⌊
|J |
s

⌋
= 0,

B + 1 ≤ |J | ≤ s. By Observation 7, there is a cluster in X whose optimal median

is c. Thus, at least one optimal median coincides with c. Without loss of generality,

we assume that c is the median of X1. We now show that ci �= c for i ∈ {2, . . . , k}.
Assume to the contrary that there exists ch ∈ {X2, . . . , Xk} such that ch = c. By

Lemma 10, there is a k-clustering X = {X ′
1, . . . , X

′
k} for X such that |X ′

i| = |X ′
i| for all

i ∈ {1, . . . , k}, ∑k
i=1

∑
xj∈X′

i
dist0(ci,xj) ≤

∑r
i=1

∑
xj∈Xi

dist0(ci,xj), and J ⊆ X ′
1. Then

k∑
i=1

∑
xj∈X′

i

dist0(ci,xj) ≥
∑

xj∈X′
h

dist0(ch,xj) =
∑

xj∈X′
h

dist0(c,xj) ≥ |X ′
h| ≥ s ≥ B + 1,

contradicting that cost(X) ≤ B. We conclude that exactly one median coincides with c,

that is, (i) holds for p = 0.

Now let p ≥ 1 and assume that the claim holds when p is smaller. Note that k ≥ 2 in

this case. We observe that, because |J | mod s ≥ B + 1 + (k − 1)δ, |J | ≥ sp + B +

1 + (k − 1)δ. By Observation 7, there is a cluster in X whose optimal median is c.

Without loss of generality, we assume that c is the median of X1. Then by Lemma 10,

there is a k-clustering {X ′
1, . . . , X

′
k} for X such that |X ′

i| = |Xi| for all i ∈ {1, . . . , k},∑k
i=1

∑
xj∈X′

i
dist0(ci,xj) ≤

∑k
i=1

∑
xj∈Xi

dist0(ci,xj), and X ′
1 ⊂ J .

Consider X′ = X \ X1, that is, X
′ is obtained from X by the deletion of the points in

X1. Notice that X ′ = {X ′
2, . . . , X

′
k} is an (k − 1)-clustering for X′ of cost at most B.

Moreover, because |X ′
i| = |Xi| ≥ s ≥ 2B + 1, c2, . . . , ck are unique optimal medians for

X ′
2, . . . , X

′
k, respectively, by Observation 3. Let J ′ = J \X ′

1. Since |X ′
1| ≤ s+ δ,

|J ′| = |J |−|X ′
1| ≥ sp+B+1+(k−1)δ−s−δ = s(p−1)+B+1+(k−2)δ ≥ B+1+(k−2)δ.

By our inductive hypothesis, exactly
⌈
|J ′|
s

⌉
clusters of X ′ have optimal medians coinciding

with c. As |X1| ≥ s,
⌊
|J ′|
s

⌋
≤ p−1. Because |J ′| ≥ s(p−1)+B+1+(k−2)δ,

⌊
|J ′|
s

⌋
≥ p−1.

Hence,
⌊
|J ′|
s

⌋
= p − 1 and

⌈
|J ′|
s

⌉
= p. Since c2, . . . , ck are optimal medians, exactly p

5.4 Kernelization for Clustering with Size Constraints 75

of them are equal to c. Together with the median c1 = c, exactly p + 1 medians in

{c1, . . . , ck} are equal to c. Then exactly
⌈
|J |
s

⌉
= p + 1 clusters of X have optimal

medians coinciding with c. This completes the proof of (i).

To show (ii), we first claim that for every initial cluster J , there are at least p =
⌊
|J |
s

⌋
clusters in X , whose optimal medians are equal to c, where c = xj for xj ∈ J . The proof

is by induction on p.

The claim is trivial if p = 0. Let p ≥ 1 and assume that the claim holds when p is

smaller. Since p ≥ 1, |J | ≥ s ≥ B + 1. By Observation 7, there is a cluster in X whose

optimal median is c. Without loss of generality, we assume that c is the median of X1.

Then by Lemma 10, there is an k-clustering {X ′
1, . . . , X

′
k} for X such that |X ′

i| = |Xi|
for all i ∈ {1, . . . , k}, ∑k

i=1

∑
xj∈I′i dist0(ci,xj) ≤ ∑k

i=1

∑
xj∈Xi

dist0(ci,xj), and either

J ⊆ X ′
1 or X ′

1 ⊂ J .

Suppose that J ⊆ X ′
1. Then |J | ≤ |X ′

i| ≤ s + δ < 2s. This means that p = 1 and our

claim holds, as c = c1.

Assume from now that this is not the case, that is, X ′
i ⊂ J . Then we argue similarly to

the proof of (i). Consider X′ = X \X1, that is, X
′ is obtained from X by the deletion of

the points in X1. Notice that X ′ = {X ′
2, . . . , X

′
k} is an (k − 1)-clustering for X′ of cost

at most B. Moreover, because |X ′
i| = |Xi| ≥ s ≥ 2B + 1, c2, . . . , ck are unique optimal

medians for X ′
2, . . . , X

′
k, respectively, by Observation 3. Let J ′ = J \X ′

1.

If
⌊
|J ′|
s

⌋
≥ p−1, then by the inductive assumption, there are at least p−1 clusters in X ′,

whose optimal medians coincide with c. Thus, at least p− 1 medians from {c2, . . . , ck}
are equal to c. Taking into account c1 = c, we have that at least p medians from

{c1, . . . , ck} are equal to c, as required.

Let
⌊
|J ′|
s

⌋
≤ p − 2. Note that p ≥ 2 in this case. Since |X ′

1| ≤ s + δ and |J | ≥ ps, we

obtain that |J ′| = |J | − |X ′
1| ≥ (p− 2)s+ (s− δ). Thus,

⌊
|J ′|
s

⌋
= p− 2 and

|J ′| mod s ≥ s− δ ≥ 2B + 1 + (k − 1)δ ≥ B + 1 + (k − 2)δ.

By the already proven (i), we have that there are at least
⌈
|J ′|
s

⌉
= p− 1 clusters in X ′,

whose optimal medians coincide with c. Since c1 = c, we again obtain that at least

p medians from {c1, . . . , ck} are equal to c. This concludes the proof of our auxiliary

claim.

To finish the proof of (ii), assume that |J | mod s ≤ B+(k− 1)δ. We already have that

at least p =
⌊
|J |
s

⌋
clusters of X have optimal medians coinciding with c. It remains to

76 Parameterized Categorical Capacitated Clustering

show that there are at most p such clusters. Assume to the contrary that at least p+ 1

medians are equal to s and assume without loss of generality that c = c1 = . . . = cp+1.

Then

k∑
i=1

∑
xj∈Xi

dist0(ci,xj) ≥
p+1∑
i=1

∑
xj∈Xi

dist0(ci,xj) =
∑

xj∈X1∪...∪Xp+1

dist0(c,xj)

≥
∑

xj∈(X1∪...∪Xp+1)\J
dist0(c,xj) ≥ |(X1 ∪ . . . ∪Xp−1) \X|.

We know that |Xi| ≥ s for i ∈ {1, . . . , k}. Then |X1 ∪ . . . ∪Xp+1| ≥ s(p + 1). Since |J |
mod s ≤ B + (k − 1)δ, |J | ≤ ps + B + (k − 1)δ. This implies |(X1 ∪ . . . ∪Xp+1) \ J | ≥
s−B−(k−1)δ � B+1. Hence

∑
xj∈(X1∪...∪XP+1)\J dist0(c,xj) ≥ B+1 > B contradicting

that cost(X) ≤ B. This proves that exactly
⌊
|J |
s

⌋
clusters of X have optimal medians

coinciding with c.

Lemma 11 allows us to compute optimal medians and solve Balanced Categorical

k-Median Clustering if the average size of clusters is sufficiently big.

Lemma 12. Balanced Categorical k-Median Clustering can be solved in poly-

nomial time for instances (X,Σ, k, B, δ) with n
k
≥ 2B + 1 + δk.

Proof. Let (X,Σ, k, B, δ) be an instance of Balanced Categorical k-Median

Clustering with n
k

≥ 2B + 1 + δk. Clearly, we can assume that δ ≤ n − 1. If

(X,Σ, k, B, δ) is a yes-instance, then there is an integer s such that n
k
− δ ≤ s ≤ n

k
and

s � |Xi| � s+ δ for a solution {X1, . . . , Xk} to the instance.

Then we consider all integers s such that n
k
− δ ≤ s ≤ n

k
. For each value of s, we check

whether there is a solution {X1, . . . , Xk} for the considered instance with s ≤ |Xi| ≤ s+δ,

for all i ∈ {1, . . . , k}. If yes, we return the yes-answer, otherwise, if we fail to find a

solution for every s, then the algorithm returns the no-answer.

Let s be fixed. For each initial cluster J , we compute
⌊
|J |
s

⌋
and |J | mod s. Using

these two values, we find the medians coinciding with c such that c = xj for xj ∈ J

using Lemma 11. Denote by C the obtained collection of medians. If |C| �= k, then

we discard the current choice of s. Otherwise, C contains exactly k potential medians

and we combine Observation 6 and Lemma 1 to decide whether (X,Σ, k, B, δ) admits a

solution with these medians.

Since we consider at most δ + 1 ≤ n values of s and the algorithm from Lemma 1 is

polynomial, the total running time of our algorithm is polynomial.

5.4 Kernelization for Clustering with Size Constraints 77

In [37], Fomin et al. proved that Categorical k-Median Clustering admits a

polynomial kernel when parameterized by B and k for binary alphabet. As one of

the steps of their kernelization algorithm (see Theorem 2 of [37]), they show that the

dimension of the output set can be reduced to O(B(B+k)). Formally, the proof is done

for the binary case, that is, for Σ = {0, 1}.

However, the reduction rule used in [37] works for arbitrary alphabet Σ because to apply

the rule, we only should be able to compute the Hamming distances between pairs of

points of X and check whether two given coordinates of certain subcollection of points

are the same.

We state this result in the following lemma.

Lemma 13 ([37]). There is a polynomial algorithm that, given an instance (X,Σ, k, B)

of Categorical k-Median Clustering with X, a set of n points from Σm, produces

an equivalent instance (X′,Σ, k, B) with X ′ of n points from Σm′
such that the following

holds:

• m′ = O(B(B + k)).

• {X1, . . . , Xk} is a solution for (X,Σ, k, B) if and only if it is also a solution for

(X′,Σ, k, B).

Now we are ready to show a polynomial kernel for Balanced Categorical k-Median

Clustering.

Theorem 7. Balanced Categorical k-Median Clustering admits a kernel,

where the output set has O(k(B + δk)) points from a space of dimension O(B(B + k))

over an alphabet of size at most B + k.

Proof. Let (X,Σ, k, B, δ) be an instance of Balanced Categorical k-Median

Clustering with X = (x1, . . . ,xn).

Suppose n
k
≥ 2B+1+δk. Then, by Lemma 12, the problem can be solved in polynomial

time. We do it and return a trivial yes or no-instance, respectively. For example, we

can return either the set with {0, 0} or {0, 1}, respectively, and set k = 1, B = 0 and

δ = 0. Assume from now that n
k
≤ 2B + δk, that is, n ≤ 2Bk + δk2. If X has at least

B + k + 1 pairwise distinct points, then for every k-clustering {X1, . . . , Xk} and every

c1, . . . , ck ∈ Σm,
∑k

i=1

∑
xj∈Xi

dist0(ci,xj) ≥ B + 1 because at least B + 1 points of X

are distinct from each median. Thus, (X,Σ, k, B, δ) is a no-instance in this case, and we

return a trivial no-instance of Balanced Categorical k-Median Clustering.

78 Parameterized Categorical Capacitated Clustering

Assume from now that the number of pairwise distinct points is at most B + k. If

|Σ| > B+k, then we can replace every symbol of Σ by a symbol of Σ′ = {0, . . . , B+k−1}
maintaining the following property: for each point of X, the same symbols of Σ are

replaced by the same symbols of Σ′. It is straightforward to verify that this replacement

produces an equivalent instance because we are using the Hamming distances. From

now, we assume that |Σ| ≤ B + k.

Given (X,Σ, k, B, δ), we consider the instance (X,Σ, k, B) of Categorical k-Median

Clustering. We use the algorithm from Lemma 13 and denote by (X′,Σ, k, B) the

output instance. Then we construct the instance (X′,Σ, k, B, δ) of Balanced Cate-

gorical k-Median Clustering and output it.

We show that (X,Σ, k, B, δ) is a yes-instance of Balanced Categorical k-Median

Clustering if and only if (X′,Σ, k, B, δ) is a yes-instance.

For the forward direction, suppose (X,Σ, k, B, δ) is a yes-instance of Balanced Cat-

egorical k-Median Clustering. Let X = {X1, . . . , Xk} be a solution to the in-

stance. Clearly, X is a solution for the instance (X,Σ, k, B) of Categorical k-

Median Clustering. By Lemma 13, X is a solution for (X′,Σ, k, B). Then X is

a solution for (X′,Σ, k, B, δ). For the opposite direction, the arguments are similar. Let

X = {X1, . . . , Xk} be a solution for (X′,Σ, k, B, δ). Then this is a solution for the in-

stance (X′,Σ, k, B) of Categorical k-Median Clustering and, by Lemma 13, a

solution for (X′,Σ, k, B). Finally, X is a solution of (X,Σ, k, B, δ).

Recall that n = O(k(B+δk)) and note thatX′ has dimensionO(B(B+k)) by Lemma 13.

Since |Σ| ≤ B + k, we conclude that the output set has O(k(B + δk)) points from the

space of dimension O(B(B + k)) over an alphabet of size at most B + k.

It is easy to see that our kernelization algorithm is polynomial and this concludes the

proof.

Chapter 6

FPT Approximation Schemes/

Lossy Kernelization for Clustering

In this chapter, we study the �p-Equal k-Median Clustering from the perspective

of parameterized preprocessing with the cost of clustering as a parameter. The results

mentioned in this chapter have appeared in Article 2. Recall that in this problem, we

consider the metric space M = Zd and dist is the �p-norm. The optimization version of

the problem is defined as follows.

Input: A multiset X = {x1, . . . ,xn} of n points in Zd, a positive integer

k and n is divisible by k

Task: Find a partition X = {X1, . . . , Xk} of X ⊆ Zd of points and k

centers C = {c1, . . . , ck} in Rd such that size of each cluster is the

same, that is, |X1| = . . . = |Xk| = n
k
minimizing the following

objective function over all the pairs (X , C)

cost(X , C) =
k∑

i=1

∑
x∈Xi

distp(x, ci).

�p-Equal k-Median Clustering

Note that some points in X may be identical. Here, we consider the situation where

every point is a d-dimensional vector with integer coordinates, while the clusters centers

are not necessarily from X. Moreover, the coordinates of the cluster center may be real

or integer values.

In this work, we need to define the parameterized version of �p-Equal k-Median Clus-

80 FPT Approximation Schemes/ Lossy Kernelization for Clustering

tering, we call the problem Parameterized �p-Equal k-Median Clustering with

the cost of clustering B (the budget) being the parameter. Following the framework of

lossy kernelization [65], when the cost of an optimal clustering exceeds the budget, we

assume it is equal to B + 1. More precisely, in Parameterized �p-Equal k-Median

Clustering, we are given an additional integer B (budget parameter). The task is to

find a k-clustering {X1, . . . , Xk} with |X1| = · · · = |Xk| and minimizing the value

costBp (X1, . . . , Xk) =

⎧⎨
⎩
∑k

i=1 costp(Xi) if
∑k

i=1 costp(Xi) ≤ B,

B + 1 otherwise.

We believe that restricting the input to the integral values is the most natural model for

studying the complexity of Parameterized �p-Equal k-Median Clustering with

respect to the parameter B. Moreover, considering B as a parameter only make sense

as input values are suitably discretized which is a common situation when the data is

categorical, that is, it can admit a fixed number of possible values. For example, it could

be gender, blood type, or political orientation. A prominent example of categorical data

is binary data, where the points are binary vectors.

Our first main result is the following theorem providing a polynomial 2-approximate

kernel.

Theorem 9. For every nonnegative integer constant p, Parameterized �p-Equal k-

Median Clustering admits a 2-approximate kernel when parameterized by B, where

the output collection of points has O(B2) points of Zd′ with d′ = O(Bp+2), where each

coordinate of a point takes an absolute value of O(B3).

In other words, the theorem provides a polynomial-time algorithm that compresses the

original instance X to a new instance whose size is bounded by a polynomial of B and

such that any c-approximate solution in the new instance can be turned in a polynomial

time to a 2c-approximate solution to the original instance.

A natural question is whether the approximation ratio of the lossy kernel in Theorem 9

is optimal. While we do not have a complete answer to this question, we provide lower

bounds supporting our study of the problem from the perspective of approximate kernel-

ization. Our next result rules out the existence of an “exact” kernel for the problem. To

state the result, we need to define the decision version of �p-Equal k-Median Clus-

tering. In this version, we call the problemDecision �p-Equal k-Median Cluster-

ing, the question is whether for a given budget B, there is a k-clustering {X1, . . . , Xk}
with clusters of the same size such that

∑
1≤i≤k costp(Xi) ≤ B.

6.1 Lossy Kernel for Parameterized �p-Equal k-Median Clustering 81

Theorem 10. For the �0 and �1-norms, Decision �p-Equal k-Median Clustering

has no polynomial kernel when parameterized by B unless NP ⊆ coNP / poly, even if the

input points are binary, that is, are from {0, 1}d.

On the other hand, we prove that Decision �p-Equal k-Median Clustering admits

a polynomial kernel when parameterized by k and B.

Theorem 11. For every nonnegative integer constant p, Decision �p-Equal k-

Median Clustering admits a polynomial kernel when parameterized by k and B,

where the output collection of points has O(kB) points of Zd′ with d′ = O(kBp+1) and

each coordinate of a point takes an absolute value of O(kB2).

6.1 Lossy Kernel for Parameterized �p-Equal k-Median

Clustering

We briefly sketch the main ideas behind the construction of our lossy kernel for Param-

eterized �p-Equal k-Median Clustering. The lossy kernel’s main ingredients are

a) a polynomial time algorithm based on an algorithm for computing a minimum weight

perfect matching in bipartite graphs, b) preprocessing rules reducing the size and dimen-

sion of the problem, and c) a greedy algorithm. Each of the steps is relatively simple and

easily implementable. However, proving that these steps result in a lossy kernel with the

required properties is not easy.

Recall that for a given budget B, we are looking for a k-clustering of a collection of points

X = {x1, . . . ,xn} into k clusters of the same size minimizing the cost. We also assume

that the cost is B+1 if the instance points do not admit a clustering of cost at most B.

Informally, we are only interested in optimal clustering when its cost does not exceed the

budget. First, if the cluster’s size s = n
k
is sufficiently large (with respect to the budget),

we can construct an optimal clustering in polynomial time. More precisely, we prove that

if s ≥ 4B + 1, then the clusters’ medians could be selected from X. Moreover, we show

how to identify the (potential) medians in polynomial time. In this case, constructing

an optimal k-clustering could be reduced to the classical problem of computing a perfect

matching of minimum weight in a bipartite graph.

The case of cluster’s size s ≤ 4B is different. We apply a set of reduction rules. These

rules run in a polynomial time. After exhaustive applications of reduction rules, we

either correctly conclude that the considered instance has no clustering of cost at most

B or construct an equivalent reduced instance. In the equivalent instance, the dimension

82 FPT Approximation Schemes/ Lossy Kernelization for Clustering

is reduced to O(kBp+1) while the absolute values of the coordinates of the points are in

O(kB2).

Finally, we apply the only approximate reduction on the reduced instance. The approx-

imation procedure is greedy: whenever there are s equal points, we form a cluster out

of them. For the points remaining after the exhaustive application of the greedy proce-

dure, we conclude that either there is no clustering of cost at most B or the number of

points is O(B2). This construction leads us to the lossy kernel. However, the greedy se-

lection of the clusters composed of equal points may not be optimal. In particular, the

reductions used to obtain our algorithmic lower bounds given in Sections 6.2 and 6.3 ex-

ploit the property that it may be beneficial to split a block of s equal points between

distinct clusters.

Nevertheless, the greedy clustering of equal points leads to a 2-approximation. The proof

of this fact requires some work. We evaluate the clustering cost obtained from a given

optimal clustering by swapping some points to form clusters composed of equal points.

Further, we upper bound the obtained value by the cost of the optimum clustering. For

the last step, we introduce an auxiliary clustering problem formulated as a min-cost flow

problem. This reduction allows us to evaluate the cost and obtain the required upper

bound.

The organisation of the chapter is as follows. In Subsection 6.1.1, we provide some

auxiliary results, and in Subsection 6.1.2, we prove the main results. Throughout this

section, we assume that p ≥ 0 defining the �p-norm is a fixed constant.

6.1.1 Technical Lemmata

We start by proving the following results about the medians of clusters when their size

is sufficiently big with respect to the budget.

Lemma 14. Let {X1, . . . , Xk} be an equal k-clustering of a collection of points X =

{x1, . . . ,xn} of Zd of cost at most B ∈ Z≥0, and let s = n
k
. Then each cluster Xi for

i ∈ {1, . . . , k} contains at least s− 2B equal points.

Proof. The claim is trivial if s ≤ 2B + 1. Let s ≥ 2B + 2. Assume to the contrary

that a cluster Xi has at most s − 2B − 1 equal points for some i ∈ {1, . . . , k}. Let

c1, . . . , ck be optimum medians for the clusters X1, . . . , Xk, respectively. Then we have

that costp(X1, . . . , Xk) = costp(X1, . . . , Xk, c1, . . . , ck).

Let xi0 ∈ Xi be a point at the minimum distance from ci. Since there are at most

6.1 Lossy Kernel for Parameterized �p-Equal k-Median Clustering 83

s−2B−1 points in Xi which are equal to xi0 , there are t = 2B+1 points xi1 , . . . ,xit ∈ Xi

distinct from xi0 . Observe that

∑
xh∈Xi

distp(ci,xh) ≥
t∑

j=0

distp(ci,xij) ≥
t∑

j=1

distp(ci,xij). (6.1)

Because the points have integer coordinates and by the triangle inequality,

1 ≤ distp(xi0 ,xij) ≤ distp(xi0 , ci) + distp(xij , ci) (6.2)

for every j ∈ {1, . . . , t}. Since xi0 is a point of Xi at minimum distance from ci,

distp(xi0 , ci) + distp(xij , ci) ≤ 2 · distp(xij , ci). (6.3)

From (6.2) and (6.3), we get distp(xij , ci) ≥ 1
2
for j ∈ {1, . . . , t}. Thus, from (6.1), we

get ∑
xh∈Xi

distp(ci,xh) ≥
t∑

j=1

distp(ci,xij) ≥
1

2
t =

1

2
(2B + 1) > B,

which is a contradiction with costp(X1, . . . , Xk) ≤ B. This completes the proof.

Lemma 15. Let {X1, . . . , Xk} be an equal k-clustering of a collection of points X =

{x1, . . . ,xn} of Zd of cost at most B ∈ Z≥0, and let s = n
k
≥ 4B+1. Let also c1, . . . , ck ∈

Rd be optimum medians for X1, . . . , Xk, respectively. Then for every i ∈ {1, . . . , k},
ci = xj for xj ∈ Xi such that Xi contains at least s− 2B points that are equal to xj and

the choice of ci is unique.

Proof. Consider a cluster Xi with the median ci for arbitrary i ∈ {1, . . . , k}. Since

s ≥ 4B + 1, then by Lemma 14, there is xj ∈ Xi such that Xi contains at least s− 2B

points that are equal to xj. We show that ci = xj. Notice that the choice of the set of

at least s− 2B equal points is unique because Xi can contain at most s− (s− 2B) = 2B

distinct from xj points, and since s ≥ 4B + 1, s− 2B ≥ 2B + 1 > 2B.

The proof is by contradiction. Assume that ci �= xj. Let S ⊆ {1, . . . , n} be the set of

indices of the points xh ∈ Xi that coincide with xj, and denote by T the set of indices

of the remaining points in Xi. We know that |T | ≤ 2B < |S| because s ≥ 4B + 1 and

84 FPT Approximation Schemes/ Lossy Kernelization for Clustering

|S| ≥ 2B + 1. Then

costp(Xi) =costp(Xi, ci) =
∑
h∈Xi

distp(ci,xh)

=
∑
h∈S

distp(ci,xh) +
∑
h∈T

distp(ci,xh)

=(|S| − |T |) · distp(ci,xj) +
∑
h∈T

(distp(ci,xj) + distp(ci,xh)).

(6.4)

On using the triangle inequality, we get

(|S| − |T |) · distp(ci,xj)+
∑
h∈T

(distp(ci,xj) + distp(ci,xh))

≥(|S| − |T |) · distp(ci,xj) +
∑
h∈T

distp(xj,xh).
(6.5)

We know that (|S|− |T |) ·distp(ci,xj) > 0 because |S| > |T | and ci �= xj. Then by (6.5),

we have

(|S| − |T |) · distp(ci,xj) +
∑
h∈T

distp(xj,xh) >
∑
h∈T

distp(xj,xh). (6.6)

Combining (6.4)–(6.6), we conclude that costp(Xi) >
∑

h∈T distp(xj,xh). Let c′i = xj.

Then

costp(Xi, c
′
i) =

∑
h∈Xi

distp(c
′
i,xh) =

∑
h∈S

distp(c
′
i,xh) +

∑
h∈T

distp(c
′
i,xh)

=
∑
h∈T

distp(c
′
i,xh) < costp(Xi)

which contradicts that ci is an optimum median for Xi. This concludes the proof.

We use the following lemma to identify medians.

Lemma 16. Let {X1, . . . , Xk} be an equal k-clustering of a collection of points X =

{x1, . . . ,xn} of Zd of cost at most B ∈ Z≥0, and let s = n
k
≥ 4B + 1. Suppose that

Y ⊆ X is a collection of at least B+1 equal points of X. Then there is an i ∈ {1, . . . , k}
such that an optimum median of Xi coincides with xj for xj ∈ Y .

Proof. Let c1,ck be optimum medians of X1, . . . , Xk, respectively. Since s ≥ 4B+1,

then by Lemma 15, for every i ∈ {1, . . . , k}, ci coincides with some element xh of the

cluster Xi. For the sake of contradiction, assume that c1, . . . , ck are distinct from xj ∈ Y .

This means that distp(xj−ci) ≥ 1 because the coordinates of the points of X are integer.

6.1 Lossy Kernel for Parameterized �p-Equal k-Median Clustering 85

Then

costp(X1, . . . , Xk) =
k∑

i=1

costp(Xi, ci) ≥
k∑

i=1

∑
xh∈Y ∩Xi

distp(ci,xh) ≥
k∑

i=1

|Xi ∩ Y |

=|Y | ≥ B + 1 > B,

contradicting that costp(X1, . . . , Xk) ≤ B. This proves the lemma.

We use our next lemma to upper bound the clustering cost if we collect s = n
k
equal

points in the same cluster.

Lemma 17. Let {X1, . . . , Xk} be an equal k-clustering of a collection of points X =

{x1, . . . ,xn} of Zd, and let c1, . . . , ck ∈ Rd. Suppose that S is a collection of s = n
k
equal

points of X and xj ∈ S. Then there is an equal k-clustering {X ′
1, . . . , X

′
k} of X with

X ′
1 = S such that

costp(X
′
1, . . . , X

′
k, c

′
1, . . . , c

′
k) ≤ costp(X1, . . . , Xk, c1, . . . , ck) + s · distp(c1,xj),

where c′1 = xj and c′h = ch for h ∈ {2, . . . , k}.

Proof. The claim is trivial if S = X1 because we can set X ′
i = Xi for i ∈ {1, . . . , k}.

Assume that this is not the case and there are elements of S that are not in X1; denote

by xi1 , . . . ,xit these elements. We assume that xih ∈ Xi′h , for h ∈ {1, . . . , t} for i′h ≥ 2.

Because |S| = s, there are xj1 , . . . ,xjt ∈ X1 such that xj1 , . . . ,xjt /∈ S. We construct

X ′
1, . . . , X

′
k from X1, . . . , Xk by exchanging the points xjh and xih between X1 and Xi′h

for every h ∈ {1, . . . , t}. Notice that |X ′
1| = · · · = |X ′

k| because the exchanges do not

modify the sizes of the clusters. Thus, {X ′
1, . . . , X

′
k} is an equal k-clustering. We claim

that {X ′
1, . . . , X

′
k} satisfies the required property.

We have that

cost(X ′
1, . . . , X

′
k, c

′
1, . . . , c

′
k)− cost(X1, . . . , Xk, c1, . . . , ck)

=
k∑

i=1

∑
xh∈X′

i

distp(xh, c
′
i)−

k∑
i=1

∑
xh∈Xi

distp(x, ci)

=
∑

xh∈X′
1

distp(xh, c
′
1)−

∑
xh∈X1

distp(xh, c1)

+
k∑

i=2

(∑
xh∈X′

i

distp(xh, c
′
i)−

∑
xh∈Xi

distp(xh, ci)
)
.

(6.7)

Note that
∑

xh∈X′
1
distp(xh, c

′
1) = 0 and

∑
xh∈X1

distp(xh, c1) ≥
∑t

h=1 distp(xjh , c1). Also

86 FPT Approximation Schemes/ Lossy Kernelization for Clustering

by the construction of X ′
1, . . . , X

′
k and because ci = c′i for i ∈ {2, . . . , k}, we have that

k∑
i=2

(∑
xh∈X′

i

distp(xh, c
′
i)−

∑
xh∈Xi

distp(xh, ci)
)
=

t∑
h=1

distp(xjh , c
′
ih
)−

t∑
h=1

distp(xih , cih)

=
t∑

h=1

distp(xjh , cih)−
t∑

h=1

distp(xih , cih).

Then extending (6.7) and applying the triangle inequality twice, we obtain that

cost(X ′
1, . . . , X

′
k, c

′
1, . . . , c

′
k)− cost(X1, . . . , Xk, c1, . . . , ck)

≤ −
t∑

h=1

distp(xjh , c1) +
t∑

h=1

distp(xjh , cih)−
t∑

h=1

distp(xih , cih)

=
t∑

h=1

(− distp(xjh , c1) + distp(xjh , cih)− distp(xih , cih)
)

≤
t∑

h=1

(
distp(xih , cih)− distp(c1, cih)

)

≤
t∑

h=1

distp(xih , c1) ≤ t · distp(xj, c1) ≤ s · distp(xj, c1)

as required by the lemma.

Our next lemma shows that we can solve Parameterized �p-Equal k-Median Clus-

tering in a polynomial time if the cluster size is sufficiently big with respect to the

budget.

Lemma 18. There is a polynomial-time algorithm that, given a collection X =

{x1, . . . ,xn} of n points of Zd, a positive integer k such that n is divisible by k, and

a nonnegative integer B such that n
k
≥ 4B +1, either computes Opt(X, k) ≤ B and pro-

duces an equal k-clustering of minimum cost or correctly concludes that Opt(X, k) > B.

Proof. Let X = {x1, . . . ,xn} be a collection of n points of Zd and let k be a positive

integer such that n is divisible by k, and suppose that s = n
k
≥ 4B+1 for a nonnegative

integer B.

First, we exhaustively apply the following reduction rule.

Reduction Rule 1. If X contains a collection of s equal points S, then set X := X \S
and k := k − 1.

To argue that the rule is safe, let X′ = X \ S, where S is a collection of s equal

6.1 Lossy Kernel for Parameterized �p-Equal k-Median Clustering 87

points of X, and let k′ = k. Clearly, X′ contains n′ = n − s points and n′
k′ = s.

If {X ′
1, . . . , X

′
k′} is an equal k′-clustering of X′, then {S,X ′

1, . . . , X
′
k′} is an equal k-

clustering of X. Note that costp(S) = 0 because the elements of S are the same. Then

costp(S,X
′
1, . . . , X

′
k′) = costp(X

′
1, . . . , X

′
k′). Therefore, Opt(X, k) ≤ Opt(X′, k′). We

show that if Opt(X, k) ≤ B, then Opt(X, k) ≥ Opt(X′, k′).

Suppose that {X1, . . . , Xk} is an equal k-clustering of X with costp(X1, . . . , Xk) =

Opt(X, k) ≤ B. Denote by c1, . . . , ck optimum medians of X1, . . . , Xk, respectively.

Because |S| = s ≥ 4B + 1 ≥ B + 1, there is a cluster whose optimum median

is xj for xj ∈ S. We assume without loss of generality that X1 is such a cluster

and c1 = xj. By Lemma 17, there is a k-clustering {S,X ′
2, . . . , X

′
k} of X such that

costp(S,X
′
2, . . . , X

′
k, c

′
1, . . . , c

′
k) ≤ costp(X1, . . . , Xk, c1, . . . , ck) + s · distp(c1,xj), where

c′1 = xj and c′h = ch for h ∈ {2, . . . , k}. Because c1 = xj, we conclude that

costp(X
′
2, . . . , X

′
k) = costp(S,X

′
2, . . . , X

′
k, c

′
1, . . . , c

′
k) ≤ costp(X1, . . . , Xk, c1, . . . , ck) =

Opt(X, k). Since {X ′
2, . . . , X

′
k} is a k′-clustering of X′, we have that Opt(X′, k′) ≤

costp(X
′
2, . . . , X

′
k) ≤ Opt(X, k) as required.

We obtain that either Opt(X, k) = Opt(X′, k′) ≤ B or Opt(X, k) > B and Opt(X′, k′) >

B. Notice also that, given an optimum equal k′-clustering of X′, we can construct the

optimum k-clustering of X, by making S a cluster. Thus, it is sufficient to prove the

lemma for the collection of points obtained by the exhaustive application of Reduction

Rule 1. Note that if this collection is empty, then Opt(X, k) = 0 and the lemma holds.

This allows us to assume from now that X is nonempty and has no s equal points.

Suppose that {X1, . . . , Xk} be an equal k-clustering with costp(X1, . . . , Xk) = Opt(X, k) ≤
B. By Lemma 15, we have that for every i ∈ {1, . . . , k}, the optimum median ci for

Xi is unique and ci = xj for xj ∈ Xi such that Xi contains at least s− 2B points that

are equal to xj. Notice that c1, . . . , ck are pairwise distinct because a collection of equal

points cannot be split between distinct clusters in such a way that each of these clusters

would contain at least s− 2B points. This holds because any collection of equal points

of X contains at most s− 1 elements and 2(s− 2B) > s as s ≥ 4B + 1. By Lemma 16,

we have that if X contains a collection of equal points S of size B + 1 ≤ s − 2B, then

one of the optimum medians should be equal to a point from S.

These observations allow us to construct (potential) medians c1, . . . , ct as follows: we

iteratively compute inclusion maximal collections S of equal points of X and if |S| ≥
B + 1, we set the next median ci be equal to a point of S. If the number of constructed

potential medians t �= k, we conclude that X has no equal k-clustering of cost at most

B. Otherwise, if t = k, we have that c1, . . . , ck should be optimum medians for an equal

k-clustering of minimum cost if Opt(X, k) ≤ B.

88 FPT Approximation Schemes/ Lossy Kernelization for Clustering

Then we compute in a polynomial time an equal k-clustering {X1, . . . , Xk} ofX that min-

imizes costp(X1, . . . , Xk, c1, . . . , ck) using Lemma 1. If costp(X1, . . . , Xk, c1, . . . , ck) >

B, then we conclude that Opt(X, k) > B. Otherwise, we have that Opt(X, k) =

costp(X1, . . . , Xk, c1, . . . , ck) and {X1, . . . , Xk} is an equal k-clustering of minimum

cost.

Our next aim is to show that we can reduce the dimension and the absolute values of

the coordinates of the points if Opt(X, k) ≤ B. To achieve this, we mimic some ideas

of the kernelization algorithm of Fomin et al. in [37] for the related clustering problem.

However, they considered only points from {0, 1}d and the Hamming norm.

Lemma 19. There is a polynomial-time algorithm that, given a collection X =

{x1, . . . ,xn} of n points of Zd, a positive integer k such that n is divisible by k, and

a nonnegative integer B, either correctly concludes that Opt(X, k) > B or computes a

collection of n points Y = {y1, . . . ,yn} of Zd′ such that the following holds:

(i) For every partition {I1, . . . , Ik} of {1, . . . , n} such that |I1| = · · · = |Ik| = n
k
,

either costp(X1, . . . , Xk) > B and costp(Y1, . . . , Yk) > B or costp(X1, . . . , Xk) =

costp(Y1, . . . , Yk), where Xi = {xh | h ∈ Ii} and Yi = {yh | h ∈ Ii} for every

i ∈ {1, . . . , k}.

(ii) d′ = O(kBp+1).

(iii) |yi[h]| = O(kB2) for h ∈ {1, . . . , d′} and i ∈ {1, . . . , n}.

Proof. Let X = {x1, . . . ,xn} be a collection of n points of Zd and let k be a positive

integer such that n is divisible by k. Let also B be a nonnegative integer.

We iteratively construct the partition S = {S1, . . . , St} of {x1, . . . ,xn} using the following
greedy algorithm. Let j ≥ 1 be an integer and suppose that the sets S0, . . . , Sj−1 are

already constructed assuming that S0 = ∅. Let Z = {x1, . . . ,xn} \ ⋃j−1
i=0 Si. If Z = ∅,

then the construction of S is completed. If Z �= ∅, we construct Sj as follows:

• set Sj := {xh} for arbitrary xh ∈ Z and set Z := Z \ {xh},

• while there is xr ∈ Z such that distp(xr,xr′) ≤ B for some xr′ ∈ Sj, set Sj :=

Sj ∪ {xr} and set Z = Z \ {xr}.

The crucial property of the partition S is that every cluster of an equal k-clustering of

cost at most B is entirely in some part of the partition.

6.1 Lossy Kernel for Parameterized �p-Equal k-Median Clustering 89

Claim 6.1.1. Let {X1, . . . , Xk} be an equal k-clustering of X of cost at most B. Then

for every i ∈ {1, . . . , k} there is a j ∈ {1, . . . , t} such that Xi ⊆ Sj.

Proof of Claim 6.1.1. Denote by c1, . . . , ck ∈ Rd the optimum medians for the clusters

X1, . . . , Xk, respectively. Assume to the contrary that there is a cluster Xi such that

xu,xv ∈ Xi with xu and xv in distinct collections of the partition {S1, . . . , St}. Then

distp(xu,xv) > B by the construction of S1, . . . , St and

costp(X1, . . . , Xk) ≥costp(Xi) = costp(Xi, ci) ≥ distp(ci,xu) + distp(ci,xv)

≥distp(xu,xv) > B

contradicting that costp(X1, . . . , Xk) ≤ B.

From the above Claim 6.1.1, we have that if t > k, then X has no equal k-clustering of

cost at most B, that is, Opt(X,B) > B. In this case, we return this answer and stop.

From now on, we assume that this is not the case and t ≤ k.

By Lemma 14, at least n
k
− 2B points in every cluster of an equal k-clustering of cost at

most B are the same. Thus, if {X1, . . . , Xk} is an equal k-clustering of cost at most B,

then for each i ∈ {1, . . . , k}, Xi contains at most 2B+1 distinct points. By Claim 6.1.1,

we obtain that for every i ∈ {1, . . . , t}, Si should contain at most k(2B+1) distinct points

if X admits an equal k-clustering of cost at most B. Then for each i ∈ {1, . . . , t}, we
compute the number of distinct points in Si and if this number is bigger than k(2B+1),

we conclude that Opt(X, k) > B. In this case, we return this answer and stop. From

now, we assume that this is not the case and each Si for i ∈ {1, . . . , t} contains at most

k(2B + 1) distinct points.

For a collection of points Z ⊆ X, we say that a coordinate h ∈ {1, . . . , d} is uniform for

Z if xj[h] is the same for all xj ∈ Z and h is nonuniform otherwise.

Let �i be the number of nonuniform coordinates for Si for i ∈ {1, . . . , t}, and let � =

max1≤i≤t �i. For each i ∈ {1, . . . , t}, we select a set of indices Ri ⊆ {1, . . . , d} of size �

such that Ri contains all nonuniform coordinates for Si. Note that Ri may be empty if

� = 0. We also define a set of coordinates Ti = {1, . . . , d} \Ri, for i ∈ {1, . . . , t}.

For every i ∈ {1, . . . , n} and j ∈ {1, . . . , t} such that xi ∈ Sj, we define an (� + 1)-

dimensional point x′
i, where x

′
i[1, . . . , �] = xi[Rj] and x′

i[�+1] = (j−1)(B+1). This way

we obtain a collection of points X′ = {x′
1, . . . ,x

′
n}. For every j ∈ {1, . . . , t}, we define

S ′
j = {x′

h | xh ∈ Sj}, that is, we construct the partition S ′ = {S ′
1, . . . , S

′
t} of {x′

1, . . . ,x
′
n}

corresponding to S.

90 FPT Approximation Schemes/ Lossy Kernelization for Clustering

For each i ∈ {1, . . . , t}, we do the following:

• For each h ∈ {1, . . . , �}, we find M
(i)
h = min{x′

j[h] | x′
j ∈ S ′

i}.

• For every x′
j ∈ S ′

i, we define a new point yj by setting yj[h] = x′
j[h] − M

(i)
h for

h ∈ {1, . . . , �} and yj[�+ 1] = x′
j[�+ 1] = (j − 1)(B + 1).

This way, we construct the collection Y = {y1, . . . ,yn} of points from Z�+1. Our algo-

rithm returns this collection of points.

It is easy to see that the described algorithm runs in a polynomial time. We show that

if the algorithm outputs Y, then this collection of the points satisfies conditions (i)–(iii)

of the lemma.

To show (i), let {I1, . . . , Ik} be a partition of {1, . . . , n} such that |I1| = · · · = |Ik| = n
k
,

and let Xi = {xh | h ∈ Ii} and Yi = {yh | h ∈ Ii} for every i ∈ {1, . . . , k}. We show

that either costp(X1, . . . , Xk) > B and costp(Y1, . . . , Yk) > B or costp(X1, . . . , Xk) =

costp(Y1, . . . , Yk).

Suppose that costp(X1, . . . , Xk) ≤ B. Consider i ∈ {1, . . . , k} and denote by ci the

optimum median for Xi. By Claim 6.1.1, there is a j ∈ {1, . . . , t} such that Xi ⊆ Sj.

We define c′i ∈ R�+1 by setting c′i[1, . . . , �] = ci[Rj] and c′i[� + 1] = (j − 1)(B + 1).

Further, we consider c′′i ∈ R�+1 such that c′′i [h] = c′i[h] − M
(j)
h for h ∈ {1, . . . , �} and

c′′i [�+ 1] = (j − 1)(B + 1). Then by the definitions of X′
i and Yi, we have that

costp(Xi) = costp(Xi, ci) = costp(X
′
i, c

′
i) = costp(Yi, c

′′
i) ≥ costp(Yi).

This implies that costp(X1, . . . , Xk) ≥ costp(Y1, . . . , Yk).

For the opposite direction, assume that costp(Y1, . . . , Yk) ≤ B. Similarly to S ′, for every

j ∈ {1, . . . , t}, we define S ′′
j = {yh | xh ∈ Sj}, that is, we construct the partition

S ′′ = {S ′′
1 , . . . , S

′′
t } of Y corresponding to S. We claim that for each i ∈ {1, . . . , k}, there

is j ∈ {1, . . . , t} such that Yi ⊆ Sj.

The proof is by contradiction and is similar to the proof of Claim 6.1.1. Assume that

there is i ∈ {1, . . . , k} such that there are yu,yv ∈ Yi belonging to distinct sets of S ′′.

Then distp(yu,yv) ≥ |yu[�+ 1]− yv[�+ 1]| > B by the construction of S ′′
1 , . . . , S

′′
t . Then

costp(Y1, . . . , Yk) ≥costp(Yi) = costp(Yi, ci) ≥ distp(ci,yu) + distp(ci,yv)

≥distp(yu,yv) > B,

6.1 Lossy Kernel for Parameterized �p-Equal k-Median Clustering 91

where ci is an optimum median of Yi. However, this contradicts that costp(Y1, . . . , Yk) ≤
B.

Consider i ∈ {1, . . . , k} and let c′′i ∈ R�+1 an optimum median for Yi. Let also j ∈
{1, . . . , t} be such that Yi ⊆ Sj. Notice that c′′i [�+ 1] = (j − 1)(B + 1) by the definition

of Sj. We define c′i ∈ R�+1 by setting c′i[h] = c′′i [h] + M
(j)
h for h ∈ {1, . . . , �} and

c′i[�+1] = c′′i [�+1] = (j−1)(B+1). Then we define ci ∈ Rd, by setting ci[Rj] = c′i[1, . . . , �]

and ci[Tj] = xh[Tj] for arbitrary xh ∈ Sj. Because the coordinates in Tj are uniform for

Sj, the values in each coordinate h ∈ Tj of the coordinates of the points of Xi are the

same. This implies that

costp(Xi) ≤ costp(Xi, ci) = costp(X
′
i, c

′
i) = costp(Yi, c

′′
i) = costp(Yi).

Hence, costp(X1, . . . , Xk) ≤ costp(Y1, . . . , Yk). This completes the proof of (i).

To show (ii), we prove that � ≤ kBp(2B+1). For this, we show that �i ≤ kBp(2B+1) for

every i ∈ {1, . . . , t}. Consider i ∈ {1, . . . , t}. Recall that Si contains at most k(2B + 1)

distinct points. Denote by xj1 , . . . ,xjr the distinct points in Xi and assume that they

are numbered in the order in which they are included in Si by the greedy procedure

constructing this set.

Let Zq = {xj1 , . . . ,xjq} for q ∈ {1, . . . , r}. We claim that Zq has at most (q − 1)Bp

nonuniform coordinates for each q ∈ {1, . . . , r}. The proof is by induction. The claim

is trivial if q = 1. Let q > 1 and assume that the claim is fulfilled for Zq−1. By the

construction of Si, xjq is at distance at most B from xjh for some h ∈ {1, . . . , q − 1}.
Then because distp(xjq ,xjh) ≤ B, we obtain that the points xiq and xih differ in at

most Bp coordinates by the definition of the �p-norm. Then because Zq−1 has at most

(q − 2)Bp nonuniform coordinates, Zq has at most (q − 1)Bp nonuniform coordinates as

required.

Because the number of nonuniform coordinates for Si is the same as the number of

nonuniform coordinates for Zr and r ≤ k(2B + 1), we obtain that �i ≤ kBp(2B + 1).

Then � = max1≤i≤t �i ≤ kBp(2B + 1). Because the points of Y are in Z�+1, we have the

required upper bound for the dimension. This concludes the proof of (ii).

Finally, to show (iii), we again exploit the property that every Si contains at most

k(2B+1) distinct points. Let i ∈ {1, . . . , t} and h ∈ {1, . . . , d} and denote by xj1 , . . . ,xjr

the distinct points in Xi. Let h ∈ {1, . . . , d}. We can assume without loss of generality

that xj1 [h] ≤ · · · ≤ xjr [h]. We claim that xjr [h] − xj1 [h] ≤ B(k(2B + 1) − 1). This is

trivial if r = 1. Assume that r > 1. Observe that xjq [h]−xq−1[h] ≤ B for q ∈ {2, . . . , r}.
Otherwise, if there is q ∈ {2, . . . , r} such that xjq [h] − xq−1[h] > B, then the distance

92 FPT Approximation Schemes/ Lossy Kernelization for Clustering

from any point in {xj1 , . . . ,xjq−1} to any point in {xjq , . . . ,xjr} is more than B but this

contradicts that these points are the distinct points of Si. Then because xjq [h]−xq−1[h] ≤
B for q ∈ {2, . . . , r} and r ≤ k(2B+1), we obtain that xjr [h]−xj1 [h] ≤ B(k(2B+1)−1).

Then, by the definition of x′
1, . . . ,x

′
n, we obtain that for every x′

q,x
′
r ∈ S ′

i for some

i ∈ {1, . . . , t} and every h ∈ {1, . . . , �}, |x′
q[h] − x′

r[h]| ≤ B(k(2B + 1) − 1). By the

definition of M
(i)
h for i ∈ {1, . . . , t}, we obtain that |yj[h]| ≤ B(k(2B + 1)− 1) for every

j ∈ {1, . . . , n} and every h ∈ {1, . . . , �}. Because |yj[� + 1]| ≤ (k − 1)(B + 1), we have

that |yi[h]| ≤ B(k(2B + 1) − 1) for h ∈ {1, . . . , d′} and i ∈ {1, . . . , n}. This completes

the proof of (iii) and the proof of the lemma.

Finally in this subsection, we show the following lemma that is used to upper bound the

additional cost incurred by the greedy clustering of blocks of equal points.

Lemma 20. Let X = {x1, . . . ,xn} be a collection of n points of Zd and let k be a positive

integer such that n is divisible by k. Suppose that S1, . . . , St are disjoint collections of

equal points of X such that |S1| = · · · = |St| = n
k
and Y = X \ (

S1 ∪ · · · ∪ St

)
. Then

Opt(Y, k − t) ≤ 2 · Opt(X, k).

Proof. Let {X1, . . . , Xk} be an optimum equal k-clustering of X with optimum me-

dians c1, . . . , ck of X1, . . . , Xk, respectively, that is, Opt(X, k) = costp(X1, . . . , Xk) =

costp(X1, . . . , Xk, c1, . . . , ck). Let xih ∈ Sh for h ∈ {1, . . . , t}. Consider a t-tuple of

(j1, . . . , jt) of distinct indices from {1, . . . , k} such that

distp(xi1 , cj1) + · · ·+ distp(xit , cjt) = min
(q1,...,qt)

(
distp(xi1 , cq1) + · · ·+ distp(xit , cqt)

)
, (6.8)

where the minimum in the right part is taken over all t-tuples (q1, . . . , qt) of distinct

indices from {1, . . . , k}. Denote � = k − t. Iteratively applying Lemma 17 for S1, . . . , St

and the medians cj1 , . . . , cjt , we obtain that there is an equal �-clustering {Y1, . . . , Y�} of

Y such that

costp(S1, . . . , St, Y1, . . . , Y�) ≤ costp(X1, . . . , Xk) + s
t∑

h=1

distp(xih , cjh). (6.9)

Because the points in each Si are the same, costp(Si) = 0 and, therefore,

costp(S1, . . . , St, Y1, . . . , Y�) = costp(Y1, . . . , Yk). Then by (6.9),

Opt(Y, �) ≤ costp(Y1, . . . , Yk) ≤ Opt(X, k) + s
t∑

h=1

distp(xih , cjh). (6.10)

6.1 Lossy Kernel for Parameterized �p-Equal k-Median Clustering 93

This implies that to prove the lemma, it is sufficient to show that

s
t∑

h=1

distp(xih , cjh) ≤ Opt(X, k). (6.11)

To prove (6.11), we consider the following auxiliary clustering problem. Let Z = S1 ∪
· · · ∪ St and s = n

k
. The task of the problem is to find a partition {Z1, . . . , Zk} of Z,

where some sets may be empty and |Zi| ≤ s for every i ∈ {1, . . . , k}, such that

t∑
i=1

∑
xh∈Zi

distp(xh, ci) (6.12)

is minimum. In words, we cluster the elements of Z in the optimum way into clusters

of size at most s using the optimum medians c1, . . . , ck for the clustering {X1, . . . , Xk}.
Denote by Opt∗(Z, k) the minimum value of (6.12). Because in this problem the task

is to cluster a subcollection of points of X and we relax the cluster size constraints, we

have that Opt∗(Z, k) ≤ Opt(X, k). We show the following claim.

Claim 6.1.2.

Opt∗(Z, k) ≥ s · min
(q1,...,qt)

t∑
h=1

distp(xih , cqh),

where the minimum is taken over all t-tuples (q1, . . . , qt) of distinct indices from

{1, . . . , k}.

Proof of Claim 6.1.2. We show that the considered auxiliary clustering problem can be

reduced to the Min Cost Flow problem (see, e.g., the textbook of Kleinberg and

Tardos [57] for the introduction)1. We construct the directed graph G and define the

cost and capacity functions c(·) and ω(·) on the set of arcs A(G) as follows.

• Construct two vertices a and b that are the source and target vertices, respectively.

• For every i ∈ {1, . . . , t}, construct a vertex ui (corresponding to Si) and an arc

(a, ui) with ω(a, ui) = 0.

• For every j ∈ {1, . . . , k}, construct a vertex vj (corresponding to Zj) and and arc

(vj, b) with ω(vj, b) = 0.

• For every h ∈ {1, . . . , t} and every j ∈ {1, . . . , k}, construct an arc (uh, vj) and set

ω(ui, vj) = distp(xih , cj) (recall that xih ∈ Sh).

• For every arc e of G, set c(e) = s, where s = n
k
.

1Equivalently one may use the ILP statement.

94 FPT Approximation Schemes/ Lossy Kernelization for Clustering

Then the volume of a flow f : A(G) → R≥0 is v(f) =
∑t

i=1 f(a, ui) and its cost is

ω(f) =
∑

a∈A(G) ω(a) · f(a). Let f ∗(·) be a flow of volume st with minimum cost. We

claim that ω(f ∗) = Opt∗(Z, k).

Assume that {Z1, . . . , Zk} is a partition of Z such that |Zi| ≤ s for every i ∈ {1, . . . , k}
and Opt∗(Z, k) =

∑t
i=1

∑
xh∈Zi

distp(xh, ci). We define the flow f(·) as follows:

• for every i ∈ {1, . . . , t}, set f(a, ui) = s,

• for every i ∈ {1, . . . , t} and j ∈ {1, . . . , k}, set f(ui, vj) = |Si ∩ Zj|, and

• for every j ∈ {1, . . . , t}, set f(vj, b) = |Zj|.

It is easy to verify that f is a feasible flow of volume st and ω(f) =
∑t

i=1

∑
xh∈Zi

distp(xh, ci).

Thus, ω(f ∗) ≤ ω(f) = Opt∗(Z, k).

For the opposite inequality, consider f ∗(·). By a well-known property of flows (see [57]),

we can assume that f ∗(·) is an integer flow, that is, f ∗(e) is a nonnegative integer for

every e ∈ A(G). Since v(f ∗) = st, we have that f ∗(a, ui) = s for every i ∈ {1, . . . , t}.
Then we construct the clustering {Z1, . . . , Zk} as follows: for every i ∈ {1, . . . , t} and j ∈
{1, . . . , k}, we put exactly f ∗(ui, vj) points of Si into Zj. Because f

∗(a, ui) = s for every

i ∈ {1, . . . , t} and c(vj, b) = s for every j ∈ {1, . . . , k}, we obtain that {Z1, . . . , Zk} is a

partition of Z such that |Zi| ≤ s for every i ∈ {1, . . . , k} and
∑t

i=1

∑
xh∈Zi

distp(xh, ci) =

ω(f ∗). This implies that Opt∗(Z, k) ≤ ∑t
i=1

∑
xh∈Zi

distp(xh, ci) = ω(f ∗).

This proves that ω(f ∗) = Opt∗(Z, k). Moreover, we can observe that, given an integer

flow f(·) with v(f) = st, we can construct a feasible clustering {Z1, . . . , Zk} of cost

ω(f) such that for every i ∈ {1, . . . , t} and every j ∈ {1, . . . , k}, |Si ∩ Zj| = f(ui, vj).

Recall that the capacities of the arcs of G are the same and are equal to s. Then again

exploiting the properties of flows (see [57]), we observe that there is a flow f ∗(·) with

v(f ∗) = st of minimum cost such that saturated arcs (that is, arcs e with f ∗(e) =

c(e) = s) compose internally vertex disjoint (a, b)-paths, and the flow on other arcs is

zero. This implies, that for the clustering {Z1, . . . , Zk} constructed for f ∗(·), for every
j ∈ {1, . . . , k}, either Zj = ∅ or there is i ∈ {1, . . . , t} such that Zj = Si. Assume that

j1, . . . , jt are distinct indices from {1, . . . , k} such that Zjh = Sh for h ∈ {1, . . . , t}. Then
ω(f ∗) =

∑t
i=1

∑
xh∈Zi

distp(xh, ci) = s
∑t

h=1 distp(xih , cjh) and

Opt∗(Z, k) = ω(f ∗) = s
t∑

h=1

distp(xih , cjh) ≥ s · min
(q1,...,qt)

t∑
h=1

distp(xih , cqh),

where the minimum is taken over all t-tuples (q1, . . . , qt) of distinct indices from

{1, . . . , k}. This proves the claim.

6.1 Lossy Kernel for Parameterized �p-Equal k-Median Clustering 95

Recall that Opt∗(Z, k) ≤ Opt(X, k). By the choice of j1, . . . , jt in (6.8) and Claim 6.1.2,

we obtain that inequality (6.11) holds. Then by (6.11), we have that Opt(Y, k − t) ≤
2 · Opt(X, k) as required by the lemma.

6.1.2 Construction of the Lossy Kernel

Now we are ready to show the result about the approximate kernel that we restate.

Theorem 9. For every nonnegative integer constant p, Parameterized �p-Equal k-

Median Clustering admits a 2-approximate kernel when parameterized by B, where

the output collection of points has O(B2) points of Zd′ with d′ = O(Bp+2), where each

coordinate of a point takes an absolute value of O(B3).

Proof. Let (X, k, B) be an instance of Parameterized �p-Equal k-Median Clus-

tering with X = {x1, . . . ,xn}, where the points are from Zd and n is divisible by k.

Recall that a lossy kernel consists of two algorithms. The first algorithm is a polynomial

time reduction producing an instance (X′, k′, B′) of bounded size. The second algorithm

is a solution-lifting and for every equal k′-clustering {X ′
1, . . . , Xk′} of X′, this algorithm

produces in a polynomial time an equal k-clustering {X1, . . . , Xk} of X such that

costBp (X1, . . . , Xk)

Opt(X, k, B)
≤ 2 · cost

B′
p (X ′

1, . . . , X
′
k′)

Opt(X′, k′, B′)
.2 (6.13)

We separately consider the cases when n
k
≥ 4B + 1 and n

k
≤ 4B.

Suppose that n
k
≥ 4B+1. Then we apply the algorithm from Lemma 18. If the algorithm

returns the answer that X does not admit an equal k-clustering of cost at most B, then

the reduction algorithm returns a trivial no-instance (X′, k′, B′) of constant size, that

is, an instance such that X′ has no clustering of cost at most B′. For example, we

set X′ = {(0), (1)}, k′ = 1, and B′ = 0. Here and in the further cases when the

reduction algorithm returns a trivial no-instance, the solution-lifting algorithm returns

an arbitrary equal k-clustering of X. Since costBp (X1, . . . , Xk) = Opt(X, k, B) = B + 1,

(6.13) holds. Assume that the algorithm from Lemma 18 produced an equal k-clustering

{X1, . . . , Xk} of minimum cost. Then the reduction returns an arbitrary instance of

Parameterized �p-Equal k-Median Clustering of constant size. For example, we

2Note that by our simplifying assumption,
costBp (X1,...,Xk)

Opt(X,k,B) = 1 if Opt(X, k, B) = costBp (X1, . . . , Xk) =

0 and
costBp (X1,...,Xk)

Opt(X,k,B) = +∞ if Opt(X, k, B) = 0 and costBp (X1, . . . , Xk) > 0, and the same assumption

is used for
costB

′
p (X′

1,...,X
′
k′)

Opt(X′,k′,B′) .

96 FPT Approximation Schemes/ Lossy Kernelization for Clustering

can use X′ = {(0)}, k′ = 1, and B′ = 0. The solution-lifting algorithms always returns

{X1, . . . , Xk}. Clearly, costBp (X1, . . . , Xk) = Opt(X, k, B) and (6.13) is fulfilled.

From now on, we assume that n
k
≤ 4B, that is, n ≤ 4Bk. We apply the algorithm

from Lemma 19. If this algorithm reports that there is no equal k-clustering of cost

at most B, then the reduction algorithm returns a trivial no-instance and the solution-

lifting algorithm outputs an arbitrary equal k-clustering of X. Clearly, (6.13) is satisfied.

Assume that this is not the case. Then we obtain a collection of n ≤ 4Bk points

Y = {y1, . . . ,yn} of Zd′ satisfying conditions (i)–(iii) of Lemma 19. That is,

(i) for every partition {I1, . . . , Ik} of {1, . . . , n} such that |I1| = · · · = |Ik| = n
k
,

either costp(X1, . . . , Xk) > B and costp(Y1, . . . , Yk) > B or costp(X1, . . . , Xk) =

costp(Y1, . . . , Yk), where Xi = {xh | h ∈ Ii} and Yi = {yh | h ∈ Ii} for every

i ∈ {1, . . . , k},

(ii) d′ = O(kBp+1), and

(iii) |yi[h]| = O(kB2) for h ∈ {1, . . . , d′} and i ∈ {1, . . . , n}.

By (i), for given an equal k-clustering clustering {Y1, . . . , Yk} of Y, we can compute the

corresponding clustering {X1, . . . , Xk} by setting Xi = {xh | yh ∈ Yi} for i ∈ {1, . . . , k}.
Then Opt(X, k, B) = Opt(Y, k, B) and

costBp (X1, . . . , Xk)

Opt(X, k, B)
=

costBp (Y1, . . . , Yk)

Opt(Y, k, B)
. (6.14)

Hence the instances (X, k, B) and (Y, k, B) are equivalent. We continue with the com-

pressed instance (Y, k, B).

Now we apply the greedy procedure that constructs clusters S1, . . . , St composed by

equal points. Formally, we initially set X′ := Y , k′ := k, and i := 0. Then we do the

following:

• while X′ contains a collections S of s identical points, set i := i + 1, Si := S,

X′ := X′ \ S, and k′ := k′ − 1.

Denote by X′ the set of points obtained by the application of the procedure and let

S1, . . . , St be the collections of equal points constructed by the procedure. Note that

k′ = k − t. We also define B′ = 2B. Notice that it may happen that X′ = Y or

X′ = ∅. The crucial property exploited by the kernelization is that by Lemma 20,

Opt(X′, k′) ≤ 2 · Opt(Y, k).

6.1 Lossy Kernel for Parameterized �p-Equal k-Median Clustering 97

We argue that if k′ > B, then we have no k-clustering of cost at most B. Suppose

that k′ > B′. Consider an arbitrary equal k′-clustering {X ′
1, . . . , X

′
k′} of X′. Because

the construction of S1, . . . , St stops when there is no collection of s equal points, each

cluster X ′
i contains at least two distinct points. Since all points have integer coordinates,

we have that costp(X
′
i) ≥ 1 for every i ∈ {1, . . . , k′}. Therefore, costp(X

′
1, . . . , X

′
k′) =∑k′

i=1 costp(X
′
i) ≥ k′ > B′ = 2B. This means that 2 · Opt(Y, k) ≥ Opt(X′, k′) > 2B

and Opt(Y, k) > B. Using this, our reduction algorithm returns a trivial no-instance.

Then the solution-lifting algorithm outputs an arbitrary equal k-clustering of X and this

satisfies (6.13).

From now on we assume that k′ ≤ B′ = 2B and construct the reduction and solution

lifting algorithms for this case.

If k′ = 0, then X′ = ∅ and the reduction algorithm simply returns an arbitrary instance

of constant size. Otherwise, our reduction algorithms returns (X′, k′, B′). Observe that

since k′ ≤ B′ = 2B, |X′| ≤ n ≤ 4B2. Recall that d′ = O(Bp+2) and |x′
i[h]| = O(B3)

for h ∈ {1, . . . , d′} for every point x′
i ∈ X′. We conclude that the instance (X′, k′, B′)

of Parameterized �p-Equal k-Median Clustering satisfies the size conditions of

the theorem.

Now we describe the solution-lifting algorithm and argue that inequality (6.13) holds.

If k′ = 0, then the solution-lifting algorithm ignores the output of the reduction algorithm

which was arbitrary. It takes the equal k-clustering {S1, . . . , Sk} of Y and outputs the

equal k-clustering {X1, . . . , Xk} of X by setting Xi = {xh | yh ∈ Si} for i ∈ {1, . . . , k}.
Clearly, costp(S1, . . . , Sk) = costp(X1, . . . , Xp) = 0. Therefore, (6.13) holds.

If k′ > 0, we consider an equal k′-clustering {X ′
1, . . . , X

′
k′} of X′. The solution-lifting

algorithm constructs an equal k-clustering {S1, . . . , St, X
′
1, . . . , X

′
k′}, that is, we just add

the clusters constructed by our greedy procedure. Since the points in each set Si are the

same, costp(Si) = 0 for every i ∈ {1, . . . , t}. Therefore,

costp(S1, . . . , St, X
′
1, . . . , X

′
k′) = costp(X

′
1, . . . , X

′
k′).

Notice that since Opt(X′, k′) ≤ 2 · Opt(Y, k), we have that Opt(X′, k′, B′) ≤ 2 ·
Opt(Y, k, B). Indeed, if Opt(Y, k) ≤ B, then Opt(X′, k′) ≤ 2B = B′. Hence,

Opt(Y, k, B) = Opt(Y, k), Opt(X′, k′, B′) = Opt(X′, k′), and Opt(X′, k′, B′) ≤ 2 ·
Opt(Y, k, B). If Opt(Y, k) > B, then Opt(Y, k, B) = B + 1. In this case,

2 · Opt(Y, k, B) = 2B + 2 > Opt(X′, k′, B′) because Opt(X′, k′, B′) ≤ B′ + 1 = 2B + 1.

Finally, since costp(S1, . . . , St, X
′
1, . . . , X

′
k′) = costp(X

′
1, . . . , X

′
k′) and Opt(X′, k′, B′) ≤

98 FPT Approximation Schemes/ Lossy Kernelization for Clustering

2 · Opt(Y, k, B), we conclude that

costBp (S1, . . . , St, X
′
1, . . . , X

′
k′)

Opt(Y, k, B)
≤ 2 · cost

B
p (X1, . . . , X

′
k′)

Opt(X′, k′, B′)
. (6.15)

Then the solution-lifting algorithm computes the equal k-clustering {X1, . . . , Xk} for the

equal k-clustering {Y1, . . . , Yk} = {S1, . . . , St, X
′
1, . . . , X

′
k′} of Y by setting Xi = {xh |

yh ∈ Yi} for i ∈ {1, . . . , k}. Combining (6.14) and (6.15), we obtain (6.13).

This concludes the description of the reduction and solution-lifting algorithms, as well

as the proof of their correctness. To argue that the reduction algorithm is a polynomial-

time algorithm, we observe that the algorithms from Lemmata 18 and 19 run in a

polynomial time. Trivially, the greedy construction of S1, . . . , St, X, and k′ can be done

in a polynomial time. Therefore, the reduction algorithm runs in a polynomial time. The

solution-lifting algorithm is also easily implementable to run in a polynomial time.

6.2 Kernelization

In this section, we study (exact) kernelization of clustering with equal sizes. In Subsec-

tion 6.2.1 we prove Theorem 10 claiming that decision version of the problem, Decision

�p-Equal k-Median Clustering, does not admit a polynomial kernel being parame-

terized by B only. We also show in Subsection 6.2.2 that the technical lemmata developed

in the previous section for approximate kernel, can be used to prove that Decision �p-

Equal k-Median Clustering parameterized by k and B admits a polynomial kernel.

6.2.1 Kernelization Lower Bound

In this subsection, we show that it is unlikely that Decision �p-Equal k-Median

Clustering admits a polynomial kernel when parameterized by B only. We prove this

for the �0 and �1-norms. Our lower bound holds even for points with binary coordinates,

that is, for points from {0, 1}d. For this, we use the result of Dell and Marx [30] about

kernelization lower bounds for the Perfect r-Set Matching problem.

A hypergraph H is said to be r-uniform for a positive integer r, if every hyperedge of H
has size r. Similarly to graphs, a set of hyperedges M is a matching if the hyperedges

in M are pairwise disjoint, and M is perfect if every vertex of H is saturated in M , that

is, included in one of the hyperedges of M . Perfect r-Set Matching asks, given a

r-uniform hypergraph H, whether H has a perfect matching. Dell and Marx [30] proved

6.2 Kernelization 99

the following kernelization lower bound. We use the Proposition 2 and Corollary 1 that

we restate here.

Proposition 2. [[30]] Let r ≥ 3 be an integer and let ε be a positive real. If NP ⊆
coNP / poly, then Perfect r-Set Matching does not have kernels with O(

(|V (H)|
r

)r−ε
)

hyperedges.

We need a weaker claim.

Corollary 1. Perfect r-Set Matching admits no polynomial kernel when parame-

terized by the number of vertices of the input hypergraph unless NP ⊆ coNP / poly.

Proof. To see the claim, it is sufficient to observe that the existence of a polynomial kernel

for Perfect r-Set Matching parameterized by |V (H)| implies that the problem has

a kernel such that the number of hyperedges is polynomial in |V (H)| with the degree of

the polynomial that does not depend on r contradicting Proposition 2.

We show the kernelization lower bound for �0 and �1 using the fact that optimum medians

can be computed by the majority rule for a collection of binary points. Let X be a

collection of points of {0, 1}d. We construct c ∈ {0, 1}d as follows: for i ∈ {1, . . . , d},
consider the multiset Si = {x[i] | x ∈ X} and set c[i] = 0 if at least half of the elements

of Si are zeros, and set c[i] = 1 otherwise. It is straightforward to observe the following.

Observation 8. Let X be a collection of points of {0, 1}d and let c ∈ {0, 1}d be a vector

constructed by the majority rule. Then for the �0 and �1-norms, c is an optimum median

for X.

We also use the following lemma which is a special case of Lemma 10 in Chapter 5.

Lemma 21. Let {X1, . . . , Xk} be an equal k-clustering of a collection of points X =

{x1, . . . ,xn} from {0, 1}d, and let c1, . . . , ck be optimum medians for X1, . . . , Xk, re-

spectively. Let also C ⊆ {c1, . . . , ck} be the set of medians coinciding with some points

of X. Suppose that every collection of the same points of X has size at most n
k
. Then

there is an equal k-clustering {X ′
1, . . . , X

′
k} of X such that cost0(X

′
1, . . . , X

′
k, c1, . . . , ck) ≤

cost0(X1, . . . , Xk, c1, . . . , ck) and for every i ∈ {1, . . . , k}, the following is fulfilled: if

ci ∈ C, then each xh ∈ X coinciding with ci is in X ′
i.

100 FPT Approximation Schemes/ Lossy Kernelization for Clustering

Now we are ready to prove Theorem 10, we restate it here.

Theorem 10. For the �0 and �1-norms, Decision �p-Equal k-Median Clustering

has no polynomial kernel when parameterized by B unless NP ⊆ coNP / poly, even if the

input points are binary, that is, are from {0, 1}d.

Proof. Notice that for any binary vector x ∈ {0, 1}d, dist0(x) = dist1(x). Since we con-

sider only instances where the input points are binary, we can assume that the medians

of clusters are binary as well by Observation 8. Then it is sufficient to prove the the-

orem for one norm, say �0. We reduce from Perfect r-Set Matching. Let H be

an r-uniform hypergraph. Denote by v1, . . . , vn the vertices and by E1, . . . , Em the hy-

peredges of H, respectively. We assume that n is divisible by r, as otherwise H has

no perfect matching. We also assume that r ≥ 3 because for r ≤ 2, Perfect r-Set

Matching can be solved in a polynomial time [66].

We construct the instance (X, k, B) of Decision �p-Equal k-Median Clustering,

where X is a collection of (r − 1)n+ rm points of {0, 1}d, where d = 2rn.

To describe the construction of X, we partition the set {1, . . . , 2rn} of coordinate indices

into n blocks R1, . . . , Rn of size 2r each. For every i ∈ {1, . . . , n}, we select an index

pi ∈ Ri and set R′
i = Ri \ {pi}. Formally,

• Ri = {2r(i− 1) + 1, . . . , 2ri} for i ∈ {1, . . . , n},

• pi = 2r(i− 1) + 1 for i ∈ {1, . . . , n}, and

• R′
i = {2r(i− 1) + 2, . . . , 2ri} for i ∈ {1, . . . , n}.

The set of points X consists of n +m blocks of equal points V1, . . . , Vn and F1, . . . , Fm,

where |Vi| = r − 1 for each i ∈ {1, . . . , n} and |Fi| = r for i ∈ {1, . . . ,m}. Each block Vi

is used to encode the vertex vi, and each block Fi is used to encode the corresponding

hyperedge Ei. An example is shown in Figure 6.1.

For each i ∈ {1, . . . , n}, we define the vector vi ∈ {0, 1}2rn corresponding to the vertex

vi of H:

vi[j] =

⎧⎨
⎩
1 if j ∈ Ri,

0 otherwise.

Then Vi consists of r − 1 copies of vi that we denote v
(1)
i , . . . ,v

(r−1)
i .

For every j ∈ {1, . . . ,m}, we define the vector fj ∈ {0, 1}2rn corresponding to the

6.2 Kernelization 101

hyperedge Ej = {v
i
(j)
1
, . . . , v

i
(j)
r
}:

fj[h] =

⎧⎨
⎩
1 if h = ps for some s ∈ {i(j)1 , . . . , i

(j)
r },

0 otherwise.

Then Fj includes r copies of fj denoted by f
(1)
j , . . . , f

(r)
j .

To complete the construction of the instance of Decision �p-Equal k-Median Clus-

tering, we define

• k = n+m− n
r
,

• B = (3r − 2)n.

Recall that n is divisible by r and note that (r−1)n+rm
k

= r.

It is straightforward to verify that the construction of (X, k, B) is polynomial.

We claim that the hypergraph H has a perfect matching if and only if (X, k, B) is a yes-

instance of Decision �p-Equal k-Median Clustering. The proof uses the following

property of the points of X: for every i ∈ {1, . . . , n} and every j ∈ {1, . . . ,m},

dist0(vi, fj) =

⎧⎨
⎩
3r − 2 if vi ∈ Ej,

3r if vi /∈ Ej.
(6.16)

For the forward direction, assume that H has a perfect matching M . Assume without

loss of generality that M = {E1, . . . , Es} for s = n
r
. Since M is a prefect matching, for

every i ∈ {1, . . . , n}, there is a unique hi ∈ {1, . . . , s} such that vi ∈ Ehi
. We construct

the equal k-clustering {X1, . . . , Xk} as follows.

For every i ∈ {1, . . . , n}, we define Xi = Vi ∪ {f (t)hi
}, where t is chosen from the set

{1, . . . , r} in such a way that X1, . . . , Xn are disjoint. In words, we initiate each cluster

Xi by setting Xi := Vi for i ∈ {1, . . . , n}. This way, we obtain n clusters of size r − 1

each. Then we consider the blocks of points F1, . . . , Fs corresponding to the hyperedges

of M and split them between the clusters X1, . . . , Xn by including a single element into

each cluster. It is crucial that each Xi = Vi is complemented by an element of Fhi
, that

is, by an element of the initial cluster corresponding to the hyperedge saturating the

vertex vi. Since M is a perfect matching, this splitting is feasible.

Notice that the first s blocks of points F1, . . . , Fs are split between X1, . . . , Xn. The

102 FPT Approximation Schemes/ Lossy Kernelization for Clustering

X =

⎛
⎜⎜⎜⎝

1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0
1 1 0
1 1 0
1 1 0
1 1 0
1 1 0
0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1
0 0 1 1 0
0 0 1 1 0
0 0 1 1 0
0 0 1 1 0
0 0 1 1 0
0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎠

Figure 6.1: The construction of X for H with V (H) = {v1, . . . , v6} and the hyperedges
E1 = {v1, v2, v3}, E2 = {v4, v5, v6}, E3 = {v1, v3, v5}, and E4 = {v2, v4, v5}. The col-
lection of the points X is shown here as a matrix, where each column is a point of X.
Note that r = 3 here. The blocks of X are shown by solid lines and the part of X corre-
sponding to the vertices of H is separated from the part corresponding to hyperedges by
a double line. The blocks of coordinates with indices R1, . . . , R6 are separated by solid
lines. The coordinates with the indices p1 = 1, p2 = 7, p3 = 13, p4 = 19, p5 = 25, and
p6 = 31 are underlined by dashed lines.

6.2 Kernelization 103

remaining m − s blocks Fs+1, . . . , Fm have size r each and form clusters Xn+1, . . . , Xk.

This completes the construction of {X1, . . . , Xk}.

To evaluate cost0(X1, . . . , Xk), notice that the optimal median ci = vi for i ∈ {1, . . . , n}
by the majority rule. Then, by (6.16), cost0(Xi) = dist0(vi, fhi

) = 3r − 2. Since

the clusters Xn+1, . . . , Xr consist of equal points, we have that cost0(Xi) = 0 for

i ∈ {1, . . . ,m − s}. Then cost(X1, . . . , Xk) = (3r − 2)n = B. Therefore, (X, k, B)

is a yes-instance of Decision �p-Equal k-Median Clustering.

For the opposite direction, let {X1, . . . , Xk} be an equal k-clustering of X of cost at most

B. Denote by c1, . . . , ck the optimal medians constructed by the majority rule. Observe

that the choice of a median by the majority rule described above is not symmetric because

if i-th coordinates of the points in a cluster have the same number of zeros and ones,

the rule selects the zero value for the i-coordinate of the median. We show the following

claim.

Claim 6.2.1. For every i ∈ {1, . . . , k}, either ci ∈ {v1, . . . ,vn} or ci[j] = 0 for all

j ∈ R′
1 ∪ . . . ∪ R′

n. Moreover, the medians of the first type, that is, coinciding with one

of v1, . . . ,vn, are distinct.

Proof of Claim 6.2.1. Suppose that ci[h] �= 0 for some h ∈ R′
j, where j ∈ {1, . . . , n}.

Observe that, by the construction of X, for every point x ∈ X, x[h] = 1 only if x ∈ Vj.

Since ci is constructed by the majority rule, we obtain that more than half of elements of

Xi are from Vj and ci = vj. To see the second part of the claim, notice that |Vj| = r− 1

and, therefore, at most one cluster Xi of size r can have at least half of its elements from

Vj.

By Claim 6.2.1, we assume without loss of generality that ci = vi for i ∈ {1, . . . , �} for

some � ∈ {0, . . . , r} (� = 0 if there is no cluster with the median from {v1, . . . ,vn}) and
ci[j] = 0 for j ∈ R′

1∪ . . .∪R′
n whenever i ∈ {�+1, . . . , k}. Because the medians c1, . . . , c�

are equal to points of X, by Lemma 21, we can assume that Vi ⊂ Xi for i ∈ {1, . . . , �}.
Claim 6.2.2. � = n.

Proof of Claim 6.2.2. The proof is by contradiction. Assume that � < n. Consider the

elements of n − � blocks V�+1, . . . , Vn. Let p be the number of elements of V�+1 ∪ . . . ∪
Vn included in X1, . . . , X� and the remaining q = (r − 1)(n − �) − p elements are in

X�+1, . . . , Xk. By the definition of v1, . . . ,vn, if a point v
(t)
h ∈ Vh for some h ∈ {� +

1, . . . , n} is in Xi for some i ∈ {1, . . . , �}, then dist0(v
(t)
h , ci) = dist0(vh,vi)0 = 4r. Also

we have that if v
(t)
h ∈ Vh for some h ∈ {�+ 1, . . . , n} is in Xi for some i ∈ {�+ 1, . . . , r},

then dist0(v
(t)
h , cI) = dist0(vh, cI) ≥ |R′

h| = 2r− 1. By (6.16), if the unique point Xi \ Vi

104 FPT Approximation Schemes/ Lossy Kernelization for Clustering

is f
(t)
h ∈ Fh for some h ∈ {1, . . . ,m}, then dist0(f

(t)
h , ci) = dist0(fh,vi) ≥ 3r − 2. Then∑�

i=1 cost0(Xi) ≥ 4rp + (3r − 2)(� − p) and
∑k

i=�+1 cost0(Xi) ≥ (2r − 1)q. Recall also

that r ≥ 3 and, therefore, r + 2 ≤ 2r − 1 and (r + 2)(r − 1) > 3r − 2. Summarizing, we

obtain that

cost0(X1, . . . , Xk) =
�∑

i=1

cost0(Xi) +
k∑

i=�+1

cost0(Xi)

≥ (
4rp+ (3r − 2)(�− p)

)
+
(
(2r − 1)q

)
= (3r − 2)�+ (r + 2)p+ (2r − 1)q

≥ (3r − 2)�+ (r + 2)(p+ q) = (3r − 2)�+ (r + 2)(r − 1)(n− �)

> (3r − 2)n = B,

but this contradicts that cost0(X1, . . . , Xk) ≤ B. This proves the claim.

By Claim 6.2.2, we obtain that ci = vi and Xi ⊂ Vi for i ∈ {1, . . . , n}. For every

i ∈ {1, . . . , n}, Xi \Vi contains a unique point. Clearly, this is a point from F1∪· · ·∪Fm.

Denote by f
(ti)
hi

the point of Xi ⊂ Vi for i ∈ {1, . . . , n}. By (6.16), dist0(ci, f
(ti)
hi

) =

dist0(ci, fhi
) ≥ 3r − 2 for every i ∈ {1, . . . , n}. This means that

B ≥cost0(X1, . . . , Xk) =
n∑

i=1

cost0(Xi) +
k∑

i=n+1

cost0(Xi) ≥
n∑

i=1

cost0(Xi)

≥(3d− 2)n = B.

Therefore,
∑k

i=n+1 cost0(Xi) = 0. Hence, k − n = m − s clusters Xn+1, . . . , Xk ⊆
F1 ∪ · · · ∪ Fm, where s = n

r
, consists of equal points. Without loss of generality, we

assume that Fs+1, . . . , Fm form these clusters. Then the elements of F1, . . . , Fs are split

to complement V1, . . . , Vn to form X1, . . . , Xn. In particular, for every i ∈ {1, . . . , n},
there is f

(ti)
hi

∈ Xi for some hi ∈ {1, . . . ,m} and ti ∈ {1, . . . , r}.

We claim that M = {E1, . . . , Es} is a perfect matching of H. To show this, consider

a vertex vi ∈ V (H). We prove that vi ∈ Ehi
. For sake of contradiction, assume that

vi /∈ Ehi
. Then dist0(f

(ti)
hi

, ci) = dist0(fhi
,vi) = 3r by (6.16) and

cost0(X1, . . . , Xk) =
n∑

j=1

cost0(Xj) ≥
n∑

j=1

dist0(f
(tj)
hj

, ci)

=
n∑

j=1

dist0(fhi
,vi) ≥ (3r − 2)n+ 2 > B;

a contradiction with cost0(X1, . . . , Xk) ≤ B. Hence, every vertex of V (H) is saturated

6.2 Kernelization 105

by some hyperedge of M . Since |M | = s = n
r
, we have that the hyperedges of M are

pairwise disjoint, that is, M is a matching. Since every vertex is saturated and M is a

matching, M is a perfect matching.

This concludes the proof of our claim that H has a perfect matching if and only if

(X, k, B) is a yes-instance of Decision �p-Equal k-Median Clustering.

Observe that B = (3r − 2)n in the reduction meaning that B = O(n2). Since De-

cision �p-Equal k-Median Clustering is in NP, there is a polynomial reduction

form Decision �p-Equal k-Median Clustering to Perfect r-Set Matching.

Thus, if Decision �p-Equal k-Median Clustering has a polynomial kernel when

parameterized by B, then Perfect r-Set Matching has a polynomial kernel when

parameterized by the number of vertices of the input hypergraph. This leads to a con-

tradiction with Corollary 1 and completes the proof of the theorem.

6.2.2 Polynomial Kernel for k +B Parameterization

In this subsection, we prove Theorem 11 that we restate here.

Theorem 11. For every nonnegative integer constant p, Decision �p-Equal k-

Median Clustering admits a polynomial kernel when parameterized by k and B,

where the output collection of points has O(kB) points of Zd′ with d′ = O(kBp+1) and

each coordinate of a point takes an absolute value of O(kB2).

Proof. Let (X, k, B) be an instance of Decision �p-Equal k-Median Clustering

with X = {x1, . . . ,xn}, where the points are from Zd. Recall that n is divisible by k.

Suppose n
k
≥ 4B+1. Then we can apply the algorithm from Lemma 18. If the algorithm

returns that there is no equal k-clustering of cost at most B, then the kernelization

algorithm returns a trivial no-instance of Decision �p-Equal k-Median Clustering.

Otherwise, if Opt(X, k) ≤ B, then the algorithm returns a trivial yes-instance.

Assume from now that n
k

≤ 4B, that is, n ≤ 4Bk. Then we apply the algorithm

from Lemma 19. If this algorithm reports that there is no equal k-clustering of cost

at most B, then the kernelization algorithm returns a trivial no-instance of Decision

�p-Equal k-Median Clustering. Otherwise, the algorithm from Lemma 19 returns

a collection of n ≤ 4Bk points Y = {y1, . . . ,yn} of Zd′ satisfying conditions (i)–(iii) of

the lemma. By (i), we obtain that the instances (X, k, B) and (Y, k, B) of Decision

�p-Equal k-Median Clustering are equivalent. By (ii), we have that the dimension

106 FPT Approximation Schemes/ Lossy Kernelization for Clustering

d′ = O(k(Bp+1)), and by (iii), each coordinate of a point takes an absolute value of

O(kB2). Thus, (Y, k, B) is a required kernel.

6.3 APX-Hardness of �p-Equal k-Median Clustering

In this section, we prove APX-hardness of �p-Equal k-Median Clustering w.r.t.

Hamming (�0) and �1 distances. The constructed hard instances consist of high-

dimensional binary (0/1) points. As the �0 and �1 distances between any two binary

points are the same, we focus on the case of �0 distances. Our reduction is from 3-

Dimensional Matching (3DM), where we are given three disjoint sets of elements

X, Y and Z such that |X| = |Y | = |Z| = n and a set of m triples T ⊆ X × Y × Z. In

addition, each element of W := X ∪ Y ∪ Z appears in at most 3 triples. A set M ⊆ T

is called a matching if no element of W is contained in more than one triple of M . The

goal is to find a maximum cardinality matching. We need Proposition 1 which we restate

here.

Proposition 1. [Restatement of Theorem 4.4 from [73]] There exists a constant 0 <

γ < 1, such that it is NP-hard to distinguish the instances of the 3DM problem in which

a perfect matching exists, from the instances in which there is a matching of size at most

(1− γ)n.

Here γ should be seen as a very small constant close to 0. We use the construction

described in Section 6.2.1, with a small modification.

We are given an instance of 3DM. Let N = 3n, the total number of elements. We

construct a binary matrix A of dimension 6N × (2N + 3m). For each element, we take

2 columns and for each triple 3 columns. The 6N row indexes are partitioned into N

parts each of size 6. In particular, let R1 = {1, . . . , 6}, R2 = {7, . . . , 12} and so on. For

the i-th element, we construct the column ai of length 6N which has 1 corresponding to

the indexes in Ri and 0 elsewhere.

Recall that each element can appear in at most 3 triples. For each element x, consider

any arbitrary ranking of the triples that contain it. The occurrence of x in a triple with

rank j is called its j-th occurrence for 1 ≤ j ≤ 3. For example, suppose x appears in three

triples tw, ty and tz. One can consider the ranking 1.tw, 2.ty, 3.tz. Then, the occurrence of

x in ty is called 2-nd occurrence. Let vji be the j-th index of Ri for 1 ≤ i ≤ N, 1 ≤ j ≤ 3.

For each triple t with j1-, j2- and j3-th occurrences of the elements p, q and r in t,

respectively, we construct the column bt of length 6N which has 1 corresponding to the

indices vj1p , vj2q and vj3r , and 0 elsewhere.

6.3 APX-Hardness of �p-Equal k-Median Clustering 107

The triple columns are defined in a different way in our reduction in Section 6.2.1 where

for each triple and each element, a fixed index is set to 1. Now, we set different indices

based on the occurrences of the element. This ensures that for two different triple

columns bs and bt, their Hamming distance dH(bs, bt) = 6. Note that dH(ai, bt) = 7 if the

element i is in triple t, otherwise dH(ai, bt) = 9. Set cluster size to be 3 and the number

of clusters k to be (2N/3) +m. We will prove the following lemma.

Lemma 22. If there is a perfect matching, there is a feasible clustering of cost 7N .

If all matchings have size at most (1 − γ)n, any feasible clustering has cost at least

7(1− γ)N + (23/3)γN .

Note that it is sufficient to prove the above lemma for showing the APX-hardness of the

problem. The proof of the first part of the lemma is exactly the same as in the previous

construction. We will prove the second part. To give some intuition of the cost suppose

there is a matching of the maximum size (1 − γ)n. Then we can cluster the matched

elements and triples in the same way as in the perfect matching case by paying a cost of

7(1− γ)N . Now for each unmatched element, we put its two columns in a cluster. Now

we have γN clusters with one free slot in each. One can fill in these slots by columns

corresponding to γN/3 unmatched triples. All the remaining unmatched triples form

their own cluster. Now, consider an unmatched triple s whose 3 columns are used to fill

in slots of unmatched elements p, q, and r. As this triple was not matched, it cannot

contain all these three elements, i.e, it can contain at most 2 of these elements. Thus,

for at least one element, the cost of the cluster must be 9. Therefore, the total cost of

the three clusters corresponding to p, q, and r is at least 7 + 7 + 9 = 23. The total cost

corresponding to all γN/3 unmatched triples is then (23/3)γN . We will show that one

cannot find a feasible clustering of lesser cost.

For our convenience, we will prove the contrapositive of the second part of the above

lemma: if there is a feasible clustering of cost less than 7(1−γ)N+(23/3)γN , then there

is a matching of size greater than (1 − γ)n. So, assume that there is such a clustering.

Let c1, c2, . . . , ck be the cluster centers.

By Lemma 21, we can assume that if a column f of A is a center of a cluster C, all the

columns equal to f are in C. We will use this in the following. A center ci is called

an element center if ci is an element column. Suppose the given clustering contains �

clusters with element centers for some �. Without loss of generality, we assume that

these are the first � clusters.

108 FPT Approximation Schemes/ Lossy Kernelization for Clustering

Lemma 23. If the cost of the given clustering is less than 7(1 − γ)N + (23/3)γN ,

� > (1− 2γ/9)N .

Proof. Note that if a cluster center is an element column, then by Lemma 21 we can

assume that both element columns are present in the cluster. Thus, in our case, each

of the first � clusters contains two element columns and some other column. Now,

each of these � other columns can be either a column of some other element or a triple

column. Let �1 of these be element columns and �2 of these be triple columns, where

� = �1 + �2. For each cluster corresponding to these �1 element columns, the cost is 12,

as dH(ai, aj) = 12 for all i, j. Similarly, for each cluster corresponding to the �2 triple

columns, the cost is at least 7, as dH(ai, bt) ≥ 7 for all i, t.

Note that out of 2N element columns, 2�+ �1 are in the first � clusters. The rest of the

element columns are in the other clusters. Now there can be two cases: such a column

is in a cluster that contains (i) at least 2 element columns and (ii) exactly one element

column.

Claim 6.3.1. The cost of each element column which is not in the first � clusters is at

least 5 in the first case.

Proof. Consider such a column ai and let cj be the center of the cluster that contains

ai. Note that the only 1 entries in ai are corresponding to the indices in Ri. We claim

that at most one entry of cj corresponding to the indices in Ri can be 1. This proves

the original claim, as |Ri| = 6. Consider an index z ∈ Ri such that cj[z] = 1. As cj is

not an element column and the centers are defined based on the majority rule, there is

a column e in the cluster with e[z] = 1. This must be a column of a triple that contains

the element i. By construction, e does not contain 1 corresponding to the indices in

Ri \ {z}. As the third column in the cluster is another element column (as we are in

the first case), its entries corresponding to the indices in Ri are again 0. Hence, by the

majority rule, at most one entry of cj corresponding to the indices in Ri can be 1.

Next, we consider case (ii).

Claim 6.3.2. Consider a cluster that is not one of the first � clusters and contains

exactly one element column. Then, its cost is at least 5. Moreover, the cost of the

element column is at least 4.

Proof. Consider the element column ai of the cluster and let cj be the center of the

cluster. Note that the only 1 entries in ai are corresponding to the indices in Ri. Now,

if the other two (triple) columns in the cluster are the same, there must be at most one

6.3 APX-Hardness of �p-Equal k-Median Clustering 109

entry of them corresponding to the indices in Ri that is 1. This is true by the construction

of triple columns. Hence, in this case, at most one entry of cj corresponding to the indices

in Ri can be 1 and the cost is at least 5. Otherwise, there can be two distinct triple

columns bs and bt in the cluster and at most two indices z1, z2 ∈ Ri such that z1 �= z2

and bs[z1] = bt[z2] = 1. By construction of the triple columns, there are no other indices

z ∈ Ri \ {z1, z2} such that bs[z] = 1 or bt[z] = 1. Thus, by the majority rule, at most

two entries of cj corresponding to the indices in Ri can be 1. Hence, the cost of ai is at

least 4. Now, as bs and bt are distinct, the cost of either one of them must be at least 1.

It follows that the cost of this cluster is at least 5.

Now, again consider the 2N−2�− �1 element columns that are not in the first � clusters.

Let κ be the number of clusters that are not the first � clusters and contain exactly 1

element column. This implies that 2N − 2� − �1 − κ element columns are contained in

the clusters which are not the first � clusters and contain at least 2 element columns. By

Claim 6.3.1, the cost of each such column is at least 5. By Claim 6.3.2, the cost of each

of the κ clusters defined above is at least 5.

It follows that the total cost of the clustering is 12�1 + 7�2 + (2N − 2�− �1 − κ)5 + 5κ =

10N − 3�, as � = �1 + �2. Now, given that the cost is less than 7(1− γ)N + (23/3)γN .

10N − 3� < 7(1− γ)N + (23/3)γN = 7N + 2γN/3

3N − 3� < 2γN/3

� > (1− 2γ/9)N

As before, let �2 be the number of clusters out of the first � clusters such that �2 contains

a triple column.

Claim 6.3.3. �2 > (1− 2γ/3)N .

Proof. Again consider the cost of the given clustering. The cost of the �2 clusters is

at least 7. The cost of the remaining � − �2 clusters is exactly 12 as before. Now, as

110 FPT Approximation Schemes/ Lossy Kernelization for Clustering

First � clusters

Remaining 2(N−�) =
2�4 element columns

�2 triple clusters �1 element cl.

μmatched �2 − μ = �3 unmatched

3|T1| �5 clusters w.r.t T2

cost 9 triples

�6 cost 7

clusters

w.r.t T3

Figure 6.2: Hierarchy of the clusters. Illustration of the proof of Lemma 24.

� > (1− 2γ/9)N by Lemma 23,

7�2 + 12((1− 2γ/9)N − �2) < 7(1− γ)N + (23/3)γN = 7N + 2γN/3

7�2 + 12N − 24γN/9− 12�2 < 7N + 2γN/3

5�2 > 5N − 30γN/9

�2 > (1− 2γ/3)N

We show that out of the �2 elements corresponding to these �2 clusters, more than

(1− γ)N elements must be matched.

Lemma 24. There is a matching that matches more than (1− γ)N elements.

Proof. Consider the set of elements corresponding to the �2 clusters, each of which con-

tains a triple column. Let M be a maximum matching involving these elements and

triples that matches μ elements. We will show that μ > (1− γ)N . The total cost of the

clusters corresponding to these matched elements is 7μ. Let �1 be the number of clus-

ters out of the first � clusters that contain all element columns (see Figure 6.2). The

total cost of these clusters is 12�1. Note that 3�1 columns are involved in these clusters.

For the remaining at least 2(N − μ)− 3�1 element columns and correspondingly at least

N − μ − 3�1/2 elements, the corresponding columns can either be in one cluster along

with a triple column or split into two clusters. Let �3 be the number of such elements

6.3 APX-Hardness of �p-Equal k-Median Clustering 111

whose columns are in one cluster along with a triple column. Also, let �4 be the re-

maining elements whose columns are split into two clusters (see Figure 6.2). By Claims

6.3.2 and 6.3.1, the cost of each split column is at least 4. Thus, the total cost corre-

sponding to these �4 elements is at least 8�4. Now, we compute the cost corresponding

to the �3 elements whose columns are in one cluster along with a triple column. Con-

sider the set of triples involved in these clusters. Also, let T1 be the set of triples whose

three columns appear in these �3 clusters. The cost of such triple columns is at least

7 + 7 + 9 = 23, as they are not a part of the maximum matching. Let �5 be the number

of clusters among the �3 clusters where the triples in T1 do not appear and T2 be the set

of associated triples. Each triple in T2 thus appears in at most 2 clusters among the �3

clusters (see Figure 6.2). Let T3 ⊆ T2 be the set of triples each of which is only associ-

ated with the clusters of cost 7 and �6 be the number of these clusters. As these triples

are not part of the maximum matching, each of them can cover at most two unmatched

elements. Thus, the size of T3 is at least �6/2. Note that, by definition, at least one col-

umn of each such triple does not belong to the first � clusters. We compute the cost of

these triple columns. If such a triple column appears in all triple column clusters, the

cost of the column is at least 3, by the construction of the triple columns and noting

that two copies of the column cannot appear in the cluster. If such a triple is in a clus-

ter with only one element column, its cost must be at least 2, as the element columns’

at most one 1 entry can coincide with the 1 entries of the column. Now, if such a triple

column appears in a cluster with two element columns, then the cost of the column is

at least 1. However, the cost of the element columns must be at least 10. We charged

each such element column a cost of 4 while charging the split columns corresponding to

the �4 elements. So, we can charge 10− 8 = 2 additional cost to those element columns.

Instead, we charge this to the triple column. Thus, its charged cost is 1 + 2 = 3. Thus,

the total cost corresponding to the triples in T3 is at least (�6/2) · 2. The total cost of

the clustering is at least,

7μ+ 12�1 + 8�4 + (23/3)|T1|+ (�5 − �6)((7 + 9)/2) + 7�6 + (�6/2) · 2
=7μ+ 12�1 + 8�4 + (23/3)(�3 − �5) + 8�5 (as 3|T1| = �3 − �5)

≥7μ+ 12�1 + 8�4 + (23/3)�3

≥7μ+ 12�1 + (23/3)(�3 + �4)

≥7μ+ 12�1 + (23/3)(N − μ− 3�1/2) (as �3 + �4 ≥ N − μ− 3�1/2)

=7μ+ (23/3)(N − μ) + �1/2

≥(23/3)N − (2/3)μ (as �1 ≥ 0)

112 FPT Approximation Schemes/ Lossy Kernelization for Clustering

Now, we know a strict upper bound on this cost. Thus,

(23/3)N − (2/3)μ < 7N + (2/3)γN

(23/3− 7)N − (2/3)γN < (2/3)μ

(2/3)N(1− γ) < (2/3)μ

μ > (1− γ)N

We summarize the results of this section in the following theorem.

Theorem 12. There exists a constant εc > 0, such that it is NP–hard to obtain a (1+εc)–

approximation for �p-Equal k-Median Clustering with �0 (or �1) distances, even if

the input points are binary, that is, are from {0, 1}d.

Chapter 7

Discussions and Open Problems

In Chapter 4 of the thesis, we looked at variants of Discrete k-Median Clustering

in a general metric space, where the candidate center set is either the same as the point

set or selected from a prescribed finite set given as an input. Below, we briefly discuss

these results and some future research directions.

• For Restricted k-Median Clustering, we designed an exact algorithm run-

ning in time (1.89)n · nO(1) and showed that unless the Exponential Time Hypoth-

esis fails, there is no algorithm for the problem running in time 2o(n) · nO(1). Note

that even if the distances satisfy the triangle inequality, the sum of squares of dis-

tances do not. However, our algorithm also works for k-Means, where we want to

minimize the sum of squares of distances; or, even more generally, if we want to

minimize the sum of z-th powers of distances, for some fixed z ≥ 1. Our algorithm

works for non-metric distance functions – it is easy to modify the construction

of graph G to work with asymmetric distance functions, which are quite popular

in the context of asymmetric travelling salesman problem. In particular, our al-

gorithm and the hardness result also hold for k-Center. However, it is folklore

that the exact versions of k-Center and Dominating set are equivalent. Thus,

using the currently best-known algorithm for Dominating set by Iwata [51], it

is possible to obtain an O∗((1.4689)n) time algorithm for k-Center. Improving

the running time (i.e., the base of the exponent) for the problem using the metric

properties of distances remains an interesting future direction.

• We also studied k-Median Facility Location and designed an exact algorithm

with running time 2n · (mn)O(1) and showed that an algorithm with running time

2(1−ε)n·mO(1) for some fixed ε > 0 is not possible for the problem unless the set cover

conjecture fails. Observe that designing an algorithm for k-Median Facility

114 Discussions and Open Problems

Location with running time 2m ·(mn)O(1) is trivial by simple enumeration. Hence,

one of the natural questions that arise is the following. Is it possible to improve

the base of the exponent by showing an algorithm with running time (2 − ε)m ·
(mn)O(1) for some fixed ε > 0 or this is not possible assuming some complexity-

theoretic hypothesis, like Set Cover Conjecture, or Strong Exponential Time

Hypothesis (SETH)?

In Chapter 5 of the thesis, we considered Categorical Capacitated k-Median

Clustering and its variants where sizes of the clusters satisfy special balance properties.

Next, we briefly look at the results we obtained and some open problems.

• We designed an FPT algorithm for Categorical Capacitated k-Median

Clustering running in time 2(B logB)|Σ|m · (mn)O(1). Categorical Capaci-

tated k-Median Clustering is the most general among its considered variants

Balanced Categorical k-Median Clustering and Factor-Balanced

Categorical k-Median Clustering. Hence, the above problems also admit

an FPT with a similar running time. It is natural to ask whether one can im-

prove the dependence on B. We do not know the answer to this question even for

the special case of Categorical k-Median Clustering where the size of each

cluster is the same. Also, besides the considered size constraints, it may be inter-

esting to consider other variants. For example, in Categorical Capacitated

k-Median Clustering, the size constraints p and q are universal for all clusters.

However, one may consider the case when the cluster sizes are given by individual

constraints.

• We observed that Categorical Capacitated k-Median Clustering, Bal-

anced Categorical k-Median Clustering, and Factor-Balanced Cat-

egorical k-Median Clustering has no polynomial kernel when parameterized

by B, unless NP ⊆ coNP /poly, even if Σ = {0, 1}.

• We desiged a polynomial kernel for Balanced Categorical k-Median Clus-

tering with O(k(B + δk)) points from the space of dimension O(B(B + k)) over

an alphabet of size at most B + k.

– This leads to the question whether Factor-Balanced Categorical k-

Median Clustering admits a polynomial kernel when parameterized by

k and B, assuming that α is a fixed constant. A more general question

is whether there are polynomial kernels for Categorical Capacitated k-

Median Clustering, Balanced Categorical k-Median Clustering,

115

and Factor-Balanced Categorical k-Median Clustering parame-

terized by k and B. Notice that Categorical k-Median Clustering has

a polynomial kernel for this parameterization [37, Theorem 2].

– Are there polynomial Turing kernels and do these problems admit polyno-

mial lossy kernels, that is, approximative kernels? (We refer to the book by

Lokshtanov et al. [41] for the definition of the notions.)

In Chapter 6 of the thesis, we studied Parameterized �p-Equal k-Median Clus-

tering. We initiated the study of lossy kernelization for clustering problems. The

following are the results and some of the open problems arising from the chapter.

• We designed a factor 2-approximation polynomial size kernel for Parameterized

�p-Equal k-Median Clustering. It is natural to ask whether the approxi-

mation factor can be improved or not. In particular, does the problem admit a

polynomial size approximate kernelization scheme (PSAKS) that is a lossy kernel-

ization analog of PTAS (we refer to the book by Fomin et al. [41] for the definition)?

• We proved that �p-Equal k-Median Clustering with �0 and �1 distances is

APX-hard. This refutes the existence of PTAS and makes it natural to ask about

PSAKS.

• We also believe it is interesting to consider the variants of the considered problems

for means instead of medians. Here, the cost of a collection of points X ⊆ Zd is

defined as minc∈Rd

∑
x∈X(distp(c,x))

2 for p ≥ 1. Clearly, if p = 1, that is, in the

case of the Manhattan norm, our results hold. However, for p ≥ 2, we cannot

translate our results directly because our arguments rely on the triangle inequality.

We believe that lossy kernelization may be a natural tool for the lucrative area of

approximation algorithms for clustering problems.

116 Discussions and Open Problems

Bibliography

[1] M. R. Ackermann, J. Blömer, and C. Sohler, Clustering for metric and

nonmetric distance measures, ACM Trans. Algorithms, 6 (2010). 2, 6

[2] P. K. Agarwal and C. M. Procopiuc, Exact and approximation algorithms

for clustering, Algorithmica, 33 (2002), pp. 201–226. 26

[3] C. C. Aggarwal and C. K. Reddy, eds., Data Clustering: Algorithms and

Applications, CRC Press, 2013. 1

[4] N. Alon and B. Sudakov, On two segmentation problems, Journal of Algorithms,

33 (1999), pp. 173–184. 9

[5] N. Alon, R. Yuster, and U. Zwick, Color-coding, J. ACM, 42 (1995), pp. 844–

856. 54, 69

[6] S. Arora, P. Raghavan, and S. Rao, Approximation schemes for euclidean

k-medians and related problems, in Proceedings of the Thirtieth Annual ACM Sym-

posium on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998, J. S.

Vitter, ed., ACM, 1998, pp. 106–113. 1, 4

[7] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and

V. Pandit, Local search heuristics for k-median and facility location problems,

SIAM J. Comput., 33 (2004), pp. 544–562. 3

[8] P. Awasthi, A. S. Bandeira, M. Charikar, R. Krishnaswamy, S. Villar,

and R. Ward, Relax, no need to round: Integrality of clustering formulations, in

Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science,

ITCS 2015, Rehovot, Israel, January 11-13, 2015, T. Roughgarden, ed., ACM, 2015,

pp. 191–200. 3

[9] M. Badoiu, S. Har-Peled, and P. Indyk, Approximate clustering via core-sets,

in Proceedings on 34th Annual ACM Symposium on Theory of Computing, May

19-21, 2002, Montréal, Québec, Canada, J. H. Reif, ed., ACM, 2002, pp. 250–257.

2, 6

118 BIBLIOGRAPHY

[10] D. Baker, V. Braverman, L. Huang, S. H.-C. Jiang, R. Krauthgamer,

and X. Wu, Coresets for clustering in graphs of bounded treewidth, in International

Conference on Machine Learning, PMLR, 2020, pp. 569–579. 5

[11] S. Bandyapadhyay, F. V. Fomin, and K. Simonov, On coresets for fair

clustering in metric and euclidean spaces and their applications, in 48th Interna-

tional Colloquium on Automata, Languages, and Programming (ICALP), vol. 198

of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, pp. 23:1–23:15.

9

[12] A. Banerjee and J. Ghosh, Clustering with balancing constraints, in Con-

strained clustering: advances in algorithms, theory, and applications, CRC Press,

2008, pp. 171–200. 2

[13] S. Basu, I. Davidson, and K. L. Wagstaff, eds., Constrained clustering, Chap-

man & Hall/CRC Data Mining and Knowledge Discovery Series, CRC Press, Boca

Raton, FL, 2009. Advances in algorithms, theory, and applications. 1, 2

[14] A. Bhattacharya, R. Jaiswal, and A. Kumar, Faster Algorithms for the

Constrained k-means Problem, Theory of Computing Systems, 62 (2018), pp. 93–

115. 8

[15] S. Bhattacharya, P. Chalermsook, K. Mehlhorn, and A. Neumann,

New approximability results for the robust k-median problem, in Algorithm Theory

- SWAT 2014 - 14th Scandinavian Symposium and Workshops, Copenhagen, Den-

mark, July 2-4, 2014. Proceedings, R. Ravi and I. L. Gørtz, eds., vol. 8503 of Lecture

Notes in Computer Science, Springer, 2014, pp. 50–61. 3

[16] J. Chalopin and D. Paulusma, Packing bipartite graphs with covers of complete

bipartite graphs, Discret. Appl. Math., 168 (2014), pp. 40–50. 27

[17] M. Charikar, C. Chekuri, A. Goel, and S. Guha, Rounding via trees: De-

terministic approximation algorithms for group steiner trees and k-median, in Pro-

ceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing,

Dallas, Texas, USA, May 23-26, 1998, J. S. Vitter, ed., ACM, 1998, pp. 114–123. 1,

5

[18] M. Charikar and S. Li, A dependent �p-rounding approach for the k-median

problem, in Automata, Languages, and Programming - 39th International Collo-

quium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part I, A. Czu-

maj, K. Mehlhorn, A. M. Pitts, and R. Wattenhofer, eds., vol. 7391 of Lecture Notes

in Computer Science, Springer, 2012, pp. 194–205. 3

BIBLIOGRAPHY 119

[19] M. Chrobak, C. Kenyon, and N. E. Young, The reverse greedy algorithm for

the metric k-median problem, Inf. Process. Lett., 97 (2006), pp. 68–72. 3

[20] V. Cohen-Addad, A. de Mesmay, E. Rotenberg, and A. Roytman, The

bane of low-dimensionality clustering, in Proceedings of the Twenty-Ninth Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA,

USA, January 7-10, 2018, A. Czumaj, ed., SIAM, 2018, pp. 441–456. 4, 6

[21] V. Cohen-Addad, H. Esfandiari, V. S. Mirrokni, and S. Narayanan,

Improved approximations for euclidean k-means and k-median, via nested quasi-

independent sets, in STOC ’22: 54th Annual ACM SIGACT Symposium on Theory

of Computing, Rome, Italy, June 20 - 24, 2022, S. Leonardi and A. Gupta, eds.,

ACM, 2022, pp. 1621–1628. 3

[22] V. Cohen-Addad, F. Grandoni, E. Lee, and C. Schwiegelshohn, Breach-

ing the 2 LMP approximation barrier for facility location with applications to k-

median, in Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms,

SODA 2023, Florence, Italy, January 22-25, 2023, N. Bansal and V. Nagarajan, eds.,

SIAM, 2023, pp. 940–986. 3

[23] V. Cohen-Addad, A. Gupta, A. Kumar, E. Lee, and J. Li, Tight FPT

approximations for k-median and k-means, in 46th International Colloquium on

Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras,

Greece, C. Baier, I. Chatzigiannakis, P. Flocchini, and S. Leonardi, eds., vol. 132

of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, pp. 42:1–42:14.

4, 6

[24] V. Cohen-Addad, Karthik C. S., and E. Lee, On approximability of clus-

tering problems without candidate centers, in Proceedings of the 2021 ACM-SIAM

Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 -

13, 2021, D. Marx, ed., SIAM, 2021, pp. 2635–2648. 4

[25] V. Cohen-Addad, P. N. Klein, and C. Mathieu, Local search yields approx-

imation schemes for k-means and k-median in euclidean and minor-free metrics,

SIAM J. Comput., 48 (2019), pp. 644–667. 4

[26] V. Cohen-Addad and J. Li, On the fixed-parameter tractability of capacitated

clustering, in 46th International Colloquium on Automata, Languages, and Pro-

gramming, ICALP 2019, July 9-12, 2019, Patras, Greece, C. Baier, I. Chatzigian-

nakis, P. Flocchini, and S. Leonardi, eds., vol. 132 of LIPIcs, Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 2019, pp. 41:1–41:14. 5

120 BIBLIOGRAPHY

[27] S. A. Cook, The complexity of theorem-proving procedures, Proceedings of the

third annual ACM symposium on Theory of computing, (1971). 16

[28] M. Cygan, H. Dell, D. Lokshtanov, D. Marx, J. Nederlof,

Y. Okamoto, R. Paturi, S. Saurabh, and M. Wahlström, On problems

as hard as cnf-sat, ACM Trans. Algorithms, 12 (2016). 17, 28

[29] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx,

M. Pilipczuk, M. Pilipczuk, and S. Saurabh, Parameterized Algorithms,

Springer, 2015. 15, 16, 38, 39, 54, 69

[30] H. Dell and D. Marx, Kernelization of packing problems, CoRR, abs/1812.03155

(2018). 14, 15, 98, 99

[31] H. Ding and J. Xu, A unified framework for clustering constrained data without

locality property, Algorithmica, 82 (2020), pp. 808–852. 2, 8

[32] U. Feige, NP-hardness of hypercube 2-segmentation, CoRR, abs/1411.0821 (2014).

3, 5, 44

[33] D. Feldman and M. Langberg, A unified framework for approximating and

clustering data, in Proceedings of the 43rd ACM Symposium on Theory of Com-

puting, STOC 2011, San Jose, CA, USA, 6-8 June 2011, L. Fortnow and S. P.

Vadhan, eds., ACM, 2011, pp. 569–578. 5, 6

[34] D. Feldman, M. Schmidt, and C. Sohler, Turning big data into tiny data:

Constant-size coresets for k-means, pca, and projective clustering, SIAM Journal on

Computing, 49 (2020), pp. 601–657. 5

[35] A. E. Feldmann, Karthik C. S., E. Lee, and P. Manurangsi, A survey on

approximation in parameterized complexity: Hardness and algorithms, Algorithms,

13 (2020), p. 146. 3

[36] Q. Feng, Z. Zhang, Z. Huang, J. Xu, and J. Wang, A unified framework of

FPT approximation algorithms for clustering problems, in 31st International Sym-

posium on Algorithms and Computation, ISAAC 2020, December 14-18, 2020, Hong

Kong, China (Virtual Conference), Y. Cao, S. Cheng, and M. Li, eds., vol. 181 of

LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, pp. 5:1–5:17. 4

[37] F. V. Fomin, P. A. Golovach, and F. Panolan, Parameterized low-rank

binary matrix approximation, Data Min. Knowl. Discov., 34 (2020), pp. 478–532. 5,

6, 41, 42, 43, 50, 71, 77, 88, 115

[38] F. V. Fomin, P. A. Golovach, and K. Simonov, Parameterized k-clustering:

Tractability island, J. Comput. Syst. Sci., 117 (2021), pp. 50–74. 5, 42, 45, 50, 52

BIBLIOGRAPHY 121

[39] F. V. Fomin and D. Kratsch, Exact Exponential Algorithms, Texts in Theoret-

ical Computer Science. An EATCS Series, Springer, 2010. 30

[40] F. V. Fomin, D. Kratsch, and G. J. Woeginger, Exact (exponential) algo-

rithms for the dominating set problem, in Graph-Theoretic Concepts in Computer

Science, J. Hromkovič, M. Nagl, and B. Westfechtel, eds., Berlin, Heidelberg, 2005,

Springer Berlin Heidelberg, pp. 245–256. 17

[41] F. V. Fomin, D. Lokshtanov, S. Saurabh, and M. Zehavi, Kernelization,

Cambridge University Press, Cambridge, 2019. Theory of parameterized prepro-

cessing. 18, 115

[42] G. Gan, C. Ma, and J. Wu, Data Clustering: Theory, Algorithms, and Appli-

cations, Second Edition, Society for Industrial and Applied Mathematics, Philadel-

phia, PA, 2020. 1

[43] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to

the Theory of NP-Completeness, W. H. Freeman, 1979. 27, 44

[44] S. Ghiasi, A. Srivastava, X. Yang, and M. Sarrafzadeh, Optimal energy

aware clustering in sensor networks, Sensors, 2 (2002), pp. 258–269. 2

[45] S. Guha and S. Khuller, Greedy strikes back: Improved facility location algo-

rithms, Journal of Algorithms, 31 (1999), pp. 228–248. 3, 4, 5

[46] S. Guha, A. Meyerson, and K. Munagala, Hierarchical placement and net-

work design problems, Proceedings 41st Annual Symposium on Foundations of Com-

puter Science, (2000), pp. 603–612. 2

[47] G. Gupta and M. Younis, Load-balanced clustering of wireless sensor networks,

in IEEE International Conference on Communications (ICC), vol. 3, IEEE, 2003,

pp. 1848–1852. 2

[48] S. Har-Peled and S. Mazumdar, On coresets for k-means and k-median cluster-

ing, in Proceedings of the 36th Annual ACM Symposium on Theory of Computing,

Chicago, IL, USA, June 13-16, 2004, L. Babai, ed., ACM, 2004, pp. 291–300. 5

[49] F. Höppner and F. Klawonn, Clustering with size constraints, in Computational

Intelligence Paradigms, Innovative Applications, L. C. Jain, M. Sato-Ilic, M. Virvou,

G. A. Tsihrintzis, V. E. Balas, and C. Abeynayake, eds., vol. 137, Springer, 2008,

pp. 167–180. 7

[50] R. Impagliazzo and R. Paturi, Complexity of k-sat, in Proceedings. Fourteenth

Annual IEEE Conference on Computational Complexity (Formerly: Structure in

Complexity Theory Conference) (Cat.No.99CB36317), 1999, pp. 237–240. 16

122 BIBLIOGRAPHY

[51] Y. Iwata, A faster algorithm for dominating set analyzed by the potential method,

in International Symposium on Parameterized and Exact Computation, Springer,

2011, pp. 41–54. 113

[52] E. Jack, Paths, trees, and flowers, Canadian Journal of Mathematics, 17 (1965),

p. 449–467. 27, 29, 34

[53] A. K. Jain, M. N. Murty, and P. J. Flynn, Data clustering: a review, ACM

Comput. Surv., 31 (1999), pp. 264–323. 1

[54] K. Jain, M. Mahdian, and A. Saberi, A new greedy approach for facility lo-

cation problems, in Proceedings on 34th Annual ACM Symposium on Theory of

Computing, May 19-21, 2002, Montréal, Québec, Canada, J. H. Reif, ed., ACM,

2002, pp. 731–740. 3

[55] K. Jain and V. V. Vazirani, Approximation algorithms for metric facility loca-

tion and k-median problems using the primal-dual schema and lagrangian relaxation,

J. ACM, 48 (2001), p. 274–296. 3

[56] D. G. Kirkpatrick and P. Hell, On the complexity of general graph factor

problems, SIAM J. Comput., 12 (1983), pp. 601–609. 27

[57] J. M. Kleinberg and É. Tardos, Algorithm design, Addison-Wesley, 2006. 93,

94

[58] S. G. Kolliopoulos and S. Rao, A nearly linear-time approximation scheme

for the euclidean k-median problem, SIAM J. Comput., 37 (2007), pp. 757–782. 4

[59] H. W. Kuhn, The Hungarian method for the assignment problem, Naval Res. Lo-

gist. Quart., 2 (1955), pp. 83–97. 22, 24

[60] A. Kumar, Y. Sabharwal, and S. Sen, Linear-time approximation schemes for

clustering problems in any dimensions, J. ACM, 57 (2010), pp. 5:1–5:32. 2, 5, 6, 8,

9

[61] S. Li and O. Svensson, Approximating k-median via pseudo-approximation, in

Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Comput-

ing, STOC ’13, New York, NY, USA, 2013, Association for Computing Machinery,

p. 901–910. 3

[62] T. Li, A general model for clustering binary data, in KDD’05, 2005, pp. 188–197. 2

[63] J.-H. Lin and J. S. Vitter, ε-approximations with minimum packing constraint

violation (extended abstract), in Proceedings of the Twenty-Fourth Annual ACM

BIBLIOGRAPHY 123

Symposium on Theory of Computing, STOC ’92, New York, NY, USA, 1992, As-

sociation for Computing Machinery, p. 771–782. 1

[64] D. Lokshtanov, D. Marx, and S. Saurabh, Lower bounds based on the expo-

nential time hypothesis, Bull. EATCS, 105 (2011), pp. 41–72. 16, 34

[65] D. Lokshtanov, F. Panolan, M. S. Ramanujan, and S. Saurabh, Lossy

kernelization, in Proceedings of the 49th Annual ACM Symposium on Theory of

Computing (STOC), ACM, 2017, pp. 224–237. 9, 80

[66] L. Lovász and M. D. Plummer, Matching theory, AMS Chelsea Publishing,

Providence, RI, 2009. 22, 24, 100

[67] P. J. Lynch, S. Horton, and S. Horton, Web style guide: Basic design prin-

ciples for creating web sites, Universities Press, 1999. 2

[68] D. Marx, Closest substring problems with small distances, SIAM J. Comput., 38

(2008), pp. 1382–1410. 50, 52

[69] J. Matoušek, On approximate geometric k -clustering, Discrete & Computational

Geometry, 24 (2000), pp. 61–84. 4

[70] N. Megiddo and K. J. Supowit, On the complexity of some common geometric

location problems, SIAM J. Comput., 13 (1984), pp. 182–196. 3

[71] M. Naor, L. J. Schulman, and A. Srinivasan, Splitters and near-optimal

derandomization, in FOCS 1995, IEEE Computer Society, 1995, pp. 182–191. 69

[72] R. Otter, The number of trees, Ann. of Math. (2), 49 (1948), pp. 583–599. 54, 69

[73] E. Petrank, The hardness of approximation: Gap location, Comput. Complex., 4

(1994), pp. 133–157. 13, 106

[74] C. Rösner and M. Schmidt, Privacy preserving clustering with constraints, in

45th International Colloquium on Automata, Languages, and Programming (ICALP

2018), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018. 2

[75] D. B. Shmoys, É. Tardos, and K. Aardal, Approximation algorithms for

facility location problems (extended abstract), in Symposium on the Theory of Com-

puting, 1997. 3

[76] C. Sohler and D. P. Woodruff, Strong coresets for k-median and subspace

approximation: Goodbye dimension, in Proceedings of the 59th Annual Symposium

on Foundations of Computer Science (FOCS), IEEE, 2018, pp. 802–813. 5

124 BIBLIOGRAPHY

[77] L. Sweeney, k-anonymity: A model for protecting privacy, International Journal

of Uncertainty, Fuzziness and Knowledge-Based Systems, 10 (2002), pp. 557–570. 8

[78] D. Vallejo-Huanga, P. Morillo, and C. Ferri, Semi-supervised clustering

algorithms for grouping scientific articles, in International Conference on Compu-

tational Science (ICCS), vol. 108 of Procedia Computer Science, Elsevier, 2017,

pp. 325–334. 7, 42

[79] V. V. Vazirani, Approximation algorithms, Approximation Algorithms, (2001).

13

[80] D. P. Williamson and D. B. Shmoys, The Design of Approximation Algorithms,

Cambridge University Press, 2011. 13

[81] R. A. Wright, L. B. Richmond, A. M. Odlyzko, and B. D. McKay,

Constant time generation of free trees, SIAM J. Comput., 15 (1986), pp. 540–548.

54, 69

[82] Y. Yang and B. Padmanabhan, Segmenting customer transactions using a

pattern-based clustering approach, in Proceedings of the 3rd IEEE International

Conference on Data Mining (ICDM), IEEE Computer Society, 2003, pp. 411–418.

2

[83] Z. Zhang, T. Li, C. Ding, and X. Zhang, Binary matrix factorization with

applications, in ICDM’07, IEEE, 2007, pp. 391–400. 2

uib.no

ISBN: 9788230859520 (print)
9788230853566 (PDF)

	111136 Nidhi Purohit_Elektronisk
	111136 Nidhi Purohit_korrekturfil
	111136 Nidhi Purohit_innmat
	111136 Nidhi PurohitElektronsk_bakside
	111136 Nidhi PurohitElektronsk_bakside

