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Abstract in English 

Regulated vesicle exocytosis, as in the case of highly specialised synaptic vesicle 

secretion, is controlled by a set of evolutionarily conserved proteins. Many of these 

proteins predate animals. The aim of this thesis was to study the origin and evolution 

of presynaptic protein complexes that are important for transmitter release. The main 

model organism used for this purpose was the choanoflagellate species 

Salpingoeca rosetta (S. rosetta). Choanoflagellates are not only the closest unicellular 

relatives of animals, but they also possess numerous synaptic protein homologues. 

The use of a wide range of techniques, such as homology-based protein searches, 3D 

vesicle reconstructions, immunostaining, genome editing, subcellular fractionation, 

immunoprecipitation, and mass spectrometry analysis, allowed direct comparisons 

with synapses and synaptic proteins. These revealed that choanoflagellates possess 

diverse, polarised vesicular landscapes and encode many of the investigated core 

neurosecretory vesicle proteins in their genomes. One of these neurosecretory vesicle 

core proteins is a homologue of secretory synaptobrevin, which is localised at both 

vesicle-rich poles of S. rosetta according to immunostainings. Similar to synapses, 

synaptobrevin in S. rosetta is most likely located in the membrane of vesicles 

transported along the cytoskeleton, as suggested by immunostaining and subcellular 

fractionation results. Co-immunoprecipitation (co-IP) with an antibody against 

S. rosetta synaptobrevin uncovered several potential interaction partners of 

synaptobrevin in S. rosetta, some of which were also found in proteomic studies on 

synaptic vesicles. Moreover, CRISPR/Cas9-mediated knockouts of synaptobrevin in 

S. rosetta suggest that synaptobrevin, similar to other organisms, is likely an essential 

protein for choanoflagellates. Like animal synaptobrevin 2, S. rosetta 

synaptobrevin has amino acids at key positions suspected to be important for substrate 

recognition by botulinum neurotoxin D (BoNT/D). In contrast to animal 

synaptobrevin 2, however, recombinant S. rosetta synaptobrevin is not cleaved by 

BoNT/D. The observed similarities between the vesicle secretion machinery in 

choanoflagellates and animal synapses provide evidence for a common origin of 

regulated vesicle secretion, which may be older than originally thought. 
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Abstract in Norwegian 

Regulert vesikeleksocytose, som i tilfellet med høyt spesialisert synaptisk 

vesikelsekresjon, styres av et sett evolusjonært konserverte proteiner. Mange av disse 

proteinene er eldre enn dyrene. Målet med denne avhandlingen var å studere 

opprinnelsen til og evolusjonen av pre-synaptiske proteinkomplekser som er viktige 

for transmitterfrigjøring. Hovedmodellorganismen jeg brukte til dette formålet, var 

choanoflagellaten Salpingoeca rosetta (S. rosetta). Choanoflagellater er ikke bare de 

nærmeste encellede slektningene til dyr, men de har også mange synaptiske 

proteinhomologer. Bruken av et bredt spekter av teknikker, som homologibaserte 

proteinsøk, 3D-vesikelrekonstruksjoner, immunfarging, genomredigering, subcellulær 

fraksjonering, immunopresipitering og massespektrometrisk analyse, muliggjorde 

direkte sammenligninger med synapser og synaptiske proteiner. Disse avslørte at 

choanoflagellater har mangfoldige, polariserte vesikellandskap og koder for mange av 

de undersøkte kjerneproteinene i nevrosekretoriske vesikler i genomene sine. Et av 

disse neurosekretoriske vesikelkjerneproteinene er en homolog til sekretorisk 

synaptobrevin, som ifølge immunfargingene er lokalisert ved begge vesikelrike poler i 

S. rosetta. I likhet med synapser er synaptobrevin i S. rosetta sannsynligvis lokalisert i 

membranen til vesikler som transporteres langs cytoskjelettet, noe immunfarging og 

subcellulær fraksjonering tyder på. Co-immunopresipitering (co-IP) med et antistoff 

mot synaptobrevin i S. rosetta avslørte flere potensielle interaksjonspartnere for 

synaptobrevin i S. rosetta, hvorav noen også ble funnet i proteomiske studier av 

synaptiske vesikler. Dessuten tyder CRISPR/Cas9-mediert knockout av synaptobrevin 

i S. rosetta på at synaptobrevin, i likhet med andre organismer, sannsynligvis er et 

essensielt protein for choanoflagellater. I likhet med synaptobrevin 2 fra dyr har 

synaptobrevin fra S. rosetta aminosyrer i nøkkelposisjoner som mistenkes å være 

viktige for substratgjenkjenning av botulinum nevrotoksin D (BoNT/D). I motsetning 

til dyrenes synaptobrevin 2 spaltes imidlertid ikke rekombinant synaptobrevin fra 

S. rosetta av BoNT/D. De observerte likhetene mellom vesikelsekresjonsmaskineriet 

hos choanoflagellater og dyresynapser tyder på at den regulerte vesikelsekresjonen har 

en felles opprinnelse som kan være eldre enn først antatt. 
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1. Introduction 

1.1. Secretory pathway 

Eukaryotic cells are separated by the endomembrane system into distinct subcellular 

compartments. This separation of diverse functional environments (e.g., nucleus, 

endoplasmic reticulum (ER), Golgi network, lysosome) provides a high degree of 

cellular specialisation (reviewed in Lee et al., 2004; Søreng et al., 2018). Parts of the 

endomembrane system were first described in the late 18th century by Camillo Golgi 

who used silver staining to visualise the Golgi network under a light microscope 

(Golgi, 1898). Later, after the application of electron microscopy in combination with 

cell fractionation, the essential interactions between the different cellular 

compartments in form of membrane trafficking were discovered (Jamieson & Palade, 

1967; Palade, 1975).  

The secretory pathway is one of the major membrane trafficking pathways. It is 

responsible for protein biogenesis, modification, sorting, secretion, and lipid transport 

(Palade, 1975). Studies of isolated secretion mutants in yeast provided profound 

knowledge for the understanding of the secretory pathway (Novick et al., 1980; Novick 

& Schekman, 1979), which was only later shown to be highly conserved in eukaryotes 

(Brennwald et al., 1994; d'Enfert et al., 1992; Griff et al., 1992; Protopopov et al., 1993; 

Wilson et al., 1989). Nearly all extracellular and membrane-bound proteins in a 

eukaryotic cell are transported via the secretory pathway to their destination (Palade, 

1975). This pathway can be distinguished between constitutive and regulated secretion. 

Constitutive secretion is believed to continually deliver newly synthesised proteins and 

lipids to the cell membrane in all cell types, whereas specific secretory cells, such as 

neurons, store secretory vesicles in pools. Upon a trigger signal, secretory vesicles can 

be released in a highly regulated manner from these pools (Gumbiner & Kelly, 1982; 

Tartakoff et al., 1977). Cargos of both pathways are assumed to follow the same route 

until they are sorted in the trans-Golgi network (Griffiths & Simons, 1986; Orci et al., 

1987).  
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The secretory pathway begins at the ER membrane, where ribosomes dock onto protein 

pores to release nascent polypeptides (Blobel & Dobberstein, 1975; Caro & Palade, 

1964). Here proteins are translocated or integrated into the ER to be post-translationally 

modified, folded, assembled, and transported to the Golgi network. In the Golgi 

network proteins are further processed while travelling between the different cisternae 

(cis-, medial-, trans-compartments of the Golgi network) (Baeuerle & Huttner, 1987; 

Balch et al., 1984a; Dunphy et al., 1985; Griffiths et al., 1983). Only after leaving the 

trans-Golgi network, proteins destined for the plasma membrane, lysosomes or 

regulated secretion follow different paths (Griffiths & Simons, 1986; Orci et al., 1987).  

Directional transport to specific locations, like the plasma membrane, is carried out by 

motor proteins moving along the cytoskeleton (including microtubules and actin 

filaments) (Bi et al., 1997; Govindan et al., 1995; Hall & Hedgecock, 1991; Johnston 

et al., 1991; Kuznetsov et al., 1992; reviewed in Nirschl et al., 2017; Novick & Botstein, 

1985). To travel between the different compartments, proteins are packed in transport 

vesicles (Balch et al., 1984b; Caro & Palade, 1964; Jamieson & Palade, 1967; Orci et 

al., 1986) (Figure 1.1). These vesicles bud off from the donor membrane driven by 

specific coat proteins that allow for cargo sorting and directionality (Balch et al., 1994; 

Barlowe, 2003; Cosson & Letourneur, 1994; Davis et al., 1986; Nishimura & Balch, 

1997). In the case of ER-derived transport, vesicles are encapsulated with the Coatomer 

protein complex II (COPII) for the anterograde transfer (Barlowe et al., 1994). In many 

eukaryotes COPII-coated vesicle budding is regionally restricted to specific ER-exit 

sites, which have been proposed to facilitate coupling with the retrograde recycling 

(Aridor et al., 1995; Bannykh et al., 1996; Orci et al., 1991). Between ER and Golgi, 

the protein homeostasis is maintained by retrieving ER escaped proteins in COPI-

coated vesicles from the Golgi network (Letourneur et al., 1994; Lewis & Pelham, 

1996). Also within the Golgi network, proteins are assumed to be transported in COPI-

coated vesicles (Malhotra et al., 1989; Orci et al., 1989). Vesicles transported between 

the trans-Golgi network and the endosome, lysosome or plasma membrane are coated 

with clathrin and its adaptor proteins (Ford et al., 2021; Friend & Farquhar, 1967; 

Pearse, 1975; Roth & Porter, 1964; Tooze & Tooze, 1986) (Figure 1.1). 
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Figure 1.1 Simplified scheme of the secretory pathway and the different 
transport steps. The different transport steps are indicated by colour-coded arrows 
and coat proteins (COPI, COPII and Clathrin). Proteins are packed in transport 
vesicles encapsulated by different coat proteins which drive vesicle budding, 
mediate cargo sorting and directionality. Transport vesicles which bud off from the 
ER in direction of the Golgi network are coated with Coatomer protein complex II 
(COPII, blue). Retrograde transported vesicles between Golgi and ER, as well as 
vesicles transported between the different cisternae of the Golgi-network, are 
assumed to be coated with COPI (red). Clathrin and its adaptor proteins (orange) 
coat vesicles transported between the trans-Golgi network, the endosome, lysosome, 
or plasma membrane. The figure was created according to the scheme described by 
Bonifacino and Glick (2004) (also reviewed by Ford et al., 2021). 

 

Although there are variations between vesicle trafficking regulated by the different coat 

proteins, they all follow the same pattern involving cargo sorting, coat assembly, 

budding, uncoating, recycling of coat proteins, tethering, docking and fusion with the 

target membrane. Prior to fusion, tethering of vesicles to the target membrane is 

believed to be the first contact to the acceptor compartment. Together with Rab (Ras-

associated-binding) proteins, tethering factors participate in the regulation of 

membrane docking and fusion with the target membrane (reviewed in Bonifacino & 

Glick, 2004; Kirchhausen, 2000; Lee et al., 2004).  

The importance of Rab proteins in the regulation of the secretory pathway was first 

discovered in yeast, where these proteins are known as Yeast protein transport (Ypt) 

GTPases (Peter et al., 1994; Salminen & Novick, 1987; Segev et al., 1988). Ypt and 
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Rab GTPases are highly conserved from yeast to mammals and participate in the 

regulation of many different membrane trafficking steps (Haubruck et al., 1989; Li & 

Warner, 1996; Tisdale et al., 1992). These steps include, for instance, vesicle 

formation, uncoating, the transport by specific motor proteins, docking and fusion 

(reviewed in Horgan & McCaffrey, 2011; Stenmark, 2009).  

The final step, the fusion between vesicles and their target membrane, is mediated by 

a set of proteins called soluble N-ethylmaleimide-sensitive factor (NSF) attachment 

protein receptors (SNAREs) (Söllner et al., 1993a). Together with regulatory factors, 

SNARE proteins catalyse membrane fusion, which leads to the release of cargo from 

the transport vesicles (described in more detail in chapter 1.2. SNAREs). 

 

1.2. SNAREs 

SNARE proteins are integral membrane proteins which initiate fusion between two 

opposing membranes (Hu et al., 2003). It was demonstrated by in vitro studies using 

cell-free extracts that three cognate SNARE proteins localised on a target (t-SNAREs) 

and vesicular membrane (v-SNAREs) form a highly stable ternary complex (Söllner et 

al., 1993b). In neurons, synaptic vesicles fuse with the presynaptic membrane by the 

formation of an SDS-resistant complex consisting of the v-SNARE, synaptobrevin 

(also called VAMP, vesicle-associated membrane protein) and the t-SNAREs, syntaxin 

and SNAP-25 (synaptosomal-associated protein of 25 kDa) (Figure 1.2) (Hayashi et 

al., 1994; Söllner et al., 1993b). The identification of these three proteins as targets of 

the clostridial neurotoxins, botulinum and tetanus toxin, provided early evidence for 

their central role in synaptic vesicle exocytosis (Blasi et al., 1993a; Blasi et al., 1993b; 

Link et al., 1992; Niemann et al., 1994; Schiavo et al., 1993a; Schiavo et al., 1993b; 

Schiavo et al., 1992). Together, these three SNARE proteins form a thermally stable 

coiled coil structure of a four-helix bundle (Fasshauer et al., 1997a; Fasshauer et al., 

1998a; Fasshauer et al., 1997b; Hayashi et al., 1994; Sutton et al., 1998). In case of the 

synaptic fusion complex, the four-helix bundle consists of two alpha-helices 
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contributed by SNAP-25 and one alpha-helix contributed by synaptobrevin and 

syntaxin each, which align in parallel to each other (Fasshauer et al., 1998a; Poirier et 

al., 1998; Sutton et al., 1998). This arrangement of exocytotic SNAREs is highly 

conserved from yeast to mammals (Katz et al., 1998; Rossi et al., 1997). 

A variety of different SNARE proteins have been discovered. So far, 41 members of 

the SNARE family have been found in Homo sapiens, 62 in  Arabidopsis thaliana and 

26 in Saccharomyces cerevisiae (Kloepper et al., 2007). These are localised to different 

subcellular compartments and display enriched expression profiles for specific cells in 

animals (Aalto et al., 1993; Advani et al., 1998; Antonin et al., 2000; Bennett et al., 

1993; Jahn & Scheller, 2006; Nagahama et al., 1996; Søgaard et al., 1994). Even though 

this diversity indicates a contribution to mediating membrane fusion specificity, the 

exact role of SNARE proteins in targeting specificity is still unclear (Fasshauer et al., 

1999; Söllner et al., 1993b; Yang et al., 1999). Experiments using combinations of 

different v-SNAREs and t-SNAREs in liposome reconstitution assays suggest the 

specificity of SNARE pairing. Other studies argue, SNARE proteins alone are not 

sufficient to ensure specific membrane fusion (Brandhorst et al., 2006; Furukawa & 

Mima, 2014; McNew et al., 2000). Furthermore, it is difficult to assess the extent to 

which SNARE proteins exhibit compartment specificity, as some SNAREs are 

involved in more than a single fusion step with different SNARE partners, whereas 

other SNAREs may substitute for each other (Antonin et al., 2000; Liu & Barlowe, 

2002; Wang et al., 2004). Recent microinjection experiments have shown that during 

vesicle budding, selectively sorted SNARE proteins and combinations mediate 

targeting via recruitment of specific tethering factors independent of SNARE pairing. 

According to these findings, some SNARE proteins are not only important for 

membrane fusion, but also actively participate in vesicle targeting (Koike & Jahn, 

2019). 

The characteristic sequence that allows SNARE proteins to interact with each other is 

called the “SNARE motif”. This is an evolutionarily conserved stretch of 60-70 amino 

acids shared by all proteins belonging to the SNARE superfamily. It contains a heptad 

repeat pattern that can be grouped into 15 layers of hydrophobic residues and one 
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hydrophile layer with an ionic residue in the centre. After the SNARE complex has 

formed, the zero ionic layer, which consists of one arginine and three glutamine 

residues, is shielded from the surrounding solvent by the outer hydrophobic leucine-

zippers. Each of these ionic residues originates from one of the four alpha helices that 

form the SNARE complex (Bock et al., 2001; Fasshauer et al., 1998b; Sutton et al., 

1998; Weimbs et al., 1997; Weimbs et al., 1998).  

Based on the amino acid in their zero ionic layer, a different classification of SNARE 

proteins into R-SNAREs (arginine) and Q-SNAREs (glutamine) has been established. 

This terminology also covers homotypic fusion events, for example, fusion between 

two vesicles where no assignment in v- and t-SNAREs is possible (Fasshauer et al., 

1998b). Q-SNAREs can be further differentiated into Qa, Qb and Qc SNAREs based 

on their homology to the C-terminus of syntaxin (Qa), the N- (Qb) and C-terminus (Qc) 

of SNAP-25 (Bock et al., 2001). 

 

Figure 1.2 Schematic illustration of the assembled trans-SNARE complex. 
The assembled trans-SNARE complex consists of the t-SNARES/Q-SNARES 
syntaxin and SNAP-25 and the v-SNARE/R-SNARE synaptobrevin, which dock a 
synaptic vesicle to the presynaptic membrane. Circled in blue is the crystal structure 
of the assembled SNARE complex comprising a four-helix bundle with 15 
hydrophobic layers and one ionic layer in the centre (0). One helix is contributed by 
synaptobrevin (orange), one by syntaxin (red) and two by SNAP-25 (green (Qb) and 
blue (Qc)). The illustration was created according to the model described by Südhof 
(2013) and the crystal structure (PDB ID: 1SFC from Sutton and Brunger (1998)) 
was included. 

 

When SNAREs localised on opposing membranes come together, they form a trans-

SNARE complex which bridges the two membranes and induces membrane fusion 
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(Figure 1.2). In the course of the fusion reaction, this complex is converted into a cis-

SNARE complex in which all SNARE proteins form a parallel four-helix bundle 

located in the same membrane (Hanson et al., 1997b; Lin & Scheller, 1997; Weber et 

al., 1998). Assembly of the cis-complex is believed to be accomplished by directional 

“zippering” initiated at the N-terminus in the direction of the C-terminus (Gao et al., 

2012; Hanson et al., 1997a; Hua & Charlton, 1999; Pobbati et al., 2006). The energy 

required to overcome the repulsive forces between the two membranes to merge them 

together is expected to be inherent in the energetically favoured assembly of the 

SNARE complex, which acts as an internal driving force (Fasshauer et al., 1997b; 

Hanson et al., 1997b; Lin & Scheller, 1997; Weber et al., 1998).  

Together with soluble NSF attachment proteins (SNAPs), the cis-complex is reversibly 

disassembled under ATP hydrolysis by the ATPase NSF (N-ethylmaleimide-sensitive 

fusion protein) allowing SNARE proteins to undergo repetitive rounds of fusion 

(Hayashi et al., 1995; Söllner et al., 1993a; Söllner et al., 1993b; Weber et al., 2000).  

Reconstitution assays using recombinantly expressed SNAREs demonstrated that 

SNARE proteins alone catalyse spontaneous fusion between artificial vesicles. 

However, the assembly rate of SNARE complexes in vitro is slow compared to the 

rapid regulated fusion events in vivo (Fasshauer et al., 2002; Sabatini & Regehr, 1996; 

Weber et al., 1998). Another in vitro study demonstrated that artificially stabilising a 

syntaxin/SNAP-25 acceptor complex for synaptobrevin accelerates liposome fusion 

(Pobbati et al., 2006). Other regulatory subunits are therefore needed to enable fast and 

precise membrane fusion in and between cells (Shen et al., 2007).  

 

1.3. Molecular assembly for fast regulated exocytosis 

The SM proteins, Sec1 and Munc18, first discovered in mutants of yeast and the 

nematode Caenorhabditis elegans, are of fundamental importance for in vivo 

membrane fusion (Brenner, 1974; Hata et al., 1993; Novick & Schekman, 1979; 

Pevsner et al., 1994; Verhage et al., 2000). Together with the priming factor Munc13, 
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SM proteins directly interact with SNARE proteins to organise and promote proper 

assembly of the fusion complex (Augustin et al., 1999; Baker et al., 2015; Parisotto et 

al., 2014; Richmond et al., 1999; Shen et al., 2007; Shu et al., 2020; Varoqueaux et al., 

2002; Wang et al., 2019). Neuronal syntaxin1 forms a stable complex with Munc18-1 

in a closed conformation that prevents interactions with the other two SNAREs 

(Burkhardt et al., 2008; Dulubova et al., 1999; Pevsner et al., 1994). In a mechanism 

that is not yet fully understood, the closed conformation of syntaxin1 is released via 

interaction with the MUN domain of Munc13-1 (Basu et al., 2005; Ma et al., 2011; 

Richmond et al., 1999; Richmond et al., 2001; Wang et al., 2017). The subsequent 

proper assembly of the ternary SNARE complex is believed to be orchestrated by 

Munc13 and Munc18. According to recent experiments, an intermediate is formed in 

which Munc18 provides a template for synaptobrevin and syntaxin simultaneously. 

This template organisation initiates and accelerates SNARE assembly most likely with 

the assistance of Munc13. In addition, this organisation might protect the complex from 

premature NSF-SNAP disassembly (Jiao et al., 2018; Lai et al., 2017; Ma et al., 2013; 

Parisotto et al., 2014; Shu et al., 2020; Stepien et al., 2019; Stepien et al., 2022; Wang 

et al., 2019). Similar observations of non-neuronal SM proteins, which act as important 

templates for membrane fusion complexes, indicate the conservation of this mechanism 

(Baker et al., 2015; Burkhardt et al., 2011; Jiao et al., 2018; Parra-Rivas et al., 2022).  

Another important aspect of fast regulated membrane fusion is the priming of vesicles 

in a release-ready state docked to the target membrane prior to fusion. During this step, 

SNARE proteins become arrested in a partly assembled state (Hua & Charlton, 1999; 

Pobbati et al., 2006; Walter et al., 2010). Priming and subsequent efficient fusion of a 

vesicle likely involves the cooperation of multiple SNARE complexes under tight 

regulation by several proteins (Radhakrishnan et al., 2021; Shi et al., 2012; Sinha et al., 

2011). In addition to Munc18 and Munc13, which are both essential priming factors 

(Lai et al., 2017; Varoqueaux et al., 2002; Verhage et al., 2000), complexin and 

synaptotagmin-1 are believed to be important priming regulators for fast Ca2+-

dependent neurotransmitter release (Brose et al., 1992; Cai et al., 2008; Fernández-

Chacón et al., 2001; Li et al., 2011; Malsam et al., 2020). Although the exact molecular 

mechanism remains unknown, several studies indicate a cooperation between 
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synaptotagmin-1 and complexin to lock the trans-SNARE complex in an activated 

state. Upon Ca2+-binding to the calcium sensor synaptotagmin-1, the locked state is 

released allowing SNAREs to fully assemble and initiate fusion (Brose et al., 1992; 

Giraudo et al., 2006; Li et al., 2011; Maximov et al., 2009; Rizo, 2022; Tang et al., 

2006; Zhou et al., 2017).  

To achieve fast Ca2+-triggered exocytosis of synaptic vesicles, Ca2+ channels must be 

positioned in close proximity to primed vesicles (Eggermann et al., 2012; Katz, 1969; 

Llinas et al., 1992; Stanley, 1993). This is accomplished by the scaffold proteins Rab3-

interacting molecule (RIM) and RIM-binding proteins (RIM-BPs) which tether Ca2+ 

channels to the active zone (Kaeser et al., 2011; Wu et al., 2019). Since RIM binds to 

the synaptic vesicle-localised Rab3 protein, it was suggested that RIMs link synaptic 

vesicles to Ca2+ channels (Kaeser et al., 2011). In addition, RIM is also involved in 

reversing the autoinhibition of Munc13 by disrupting its homodimeric state and making 

it accessible for vesicle priming (Deng et al., 2011). It was therefore proposed that 

RIMs form a priming complex with Rab3 and Munc13 (Dulubova et al., 2005; Kaeser 

et al., 2011). 

In conclusion, precise vesicle fusion is regulated by multiple specialised proteins, such 

as SNAREs, Rab GTPases, NSF, SNAPs, SM, scaffold and tethering proteins, like 

Munc13, and in the case of fast Ca2+-triggered release by complexin and synaptotagmin 

(reviewed in Brunger et al., 2019; Koike & Jahn, 2022; Rizo, 2022; Zhang & Hughson, 

2021). Despite all the progress made on vesicle fusion, there is still much to learn 

(Brose et al., 2019; Rizo, 2022). Many questions remain about the precise molecular 

details at each step of membrane fusion, the interaction partners involved and the 

identity of possibly still unknown actors. As the basic set of the membrane fusion 

machinery seems to be highly conserved in eukaryotes, comparative approaches using 

unicellular relatives of animals can help to address these questions (Burkhardt et al., 

2011; Kloepper et al., 2007; Novick & Schekman, 1979; Parra-Rivas et al., 2022; 

Protopopov et al., 1993). 
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1.4. Synaptic transmission and secretory vesicles 

Neurons communicate with each other via synapses. These are the small endings used 

to transmit a signal from one neuron to another. Synapses can either be of electrical or 

chemical nature (Bennett et al., 1963; Dale & Gaddum, 1930; Furshpan & Potter, 1959; 

Loewi, 1921). The focus in this thesis is on chemical synapses. In these, 

neurotransmitters are stored in synaptic vesicles at the presynaptic active zone (de 

Iraldi & de Robertis, 1963; De Robertis & Bennett, 1955; Del Castillo & Katz, 1955; 

Palade, 1954; Politoff et al., 1975; Robertson, 1956). Many scaffolding and tethering 

proteins, like Piccolo, Bassoon, ELKS, RIM, RIM-BP and Munc13 participate in 

organising synaptic vesicles and Ca2+ channels at the release site of a vertebrate synapse 

(Kaeser et al., 2011; Mukherjee et al., 2010; Wang et al., 2016). Upon arrival of an 

action potential, the membrane is temporarily depolarised, and voltage-gated Ca2+ 

channels are activated resulting in an influx of Ca2+. The increase of the intracellular 

Ca2+ concentration triggers exocytosis, which leads to the release of neurotransmitters 

into the synaptic cleft within less than 100 μs (Del Castillo & Katz, 1954; Fatt & Katz, 

1952; Heuser et al., 1979; Katz & Miledi, 1967; Liley, 1956; Sabatini & Regehr, 1996). 

Neurotransmitters diffuse across the synaptic cleft to the opposing postsynaptic 

membrane where they activate their target neurotransmitter receptors (Craig et al., 

1994; Del Castillo & Katz, 1955; Triller et al., 1985). This leads to the conversion of a 

chemical signal into an electrical signal. By allowing ion flux across the postsynaptic 

membrane, the membrane potential changes, resulting in an inhibitory or excitatory 

postsynaptic potential. Depending on the nature of the neurotransmitter receptor, the 

ion flow is either directly activated by ionotropic receptors or modulated by 

metabotropic receptors that activate G-proteins and trigger second messenger cascades 

(Bormann et al., 1987; Bührle & Sonnhof, 1983; Del Castillo & Katz, 1955; Sugiyama 

et al., 1987; Sun et al., 2001). In vertebrates, received signals from dendrites are 

integrated at the axon initial segment, where they decrease or increase the probability 

of the generation of an action potential in an all-or-none manner (Adrian, 1914; 

Coombs et al., 1957; Fuortes et al., 1957; Hill et al., 2008; Palmer & Stuart, 2006). 

When an action potential is generated, the membrane is depolarised, resulting in 
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opening of voltage-gated ion channels and propagation of the action potential down the 

axon (Bender & Trussell, 2009; Hodgkin & Huxley, 1952; Hodgkin & Katz, 1949). 

As explained earlier, the voltage-gated Ca2+ channels open in response to membrane 

depolarisation as soon as the action potential reaches the synaptic endings, and the Ca2+ 

influx triggers vesicle exocytosis (Del Castillo & Katz, 1954; Fatt & Katz, 1952; 

Heuser et al., 1979; Katz & Miledi, 1967; Liley, 1956).  

Most synapses which contain the neurotransmitter glutamate are excitatory (Curtis et 

al., 1959a; Takeuchi & Takeuchi, 1963), whereas y-aminobutyric acid (GABA) and 

glycine containing synapses are often inhibitory (Curtis et al., 1959b; Krnjević & 

Schwartz, 1967; Werman et al., 1967). However, there are also examples of GABA 

acting as an excitatory transmitter, presumably by mediating depolarisation at high 

intracellular chloride concentrations (Choi et al., 2008; Haam et al., 2012). It has been 

shown, that not only the interplay, but also direct interactions between excitatory and 

inhibitory systems contribute to another level of complexity in the regulation of 

neuronal transmission (Wen et al., 2022).  

Electron microscopic studies revealed that two morphologically different types of 

secretory vesicles can be found in neurons, which undergo regulated secretion. 

These are clear synaptic vesicles (40-60 nm) and large dense core vesicles (70-

120 nm). The latter appear granular in electron micrographs due to an electron dense 

core (De Robertis & Bennett, 1955; Hökfelt et al., 1977; Larsson, 1977; Lundberg & 

Hökfelt, 1983; Palade, 1954; Pelletier et al., 1984; Pelletier et al., 1981; Pickel et al., 

1979; Richardson, 1962; Robertson, 1956). The protein composition of both vesicle 

types has been investigated by mass spectrometry (Bark et al., 2012; Bradberry et al., 

2022; Grønborg et al., 2010; Morciano et al., 2005; Takamori et al., 2006; Taoufiq et 

al., 2020; Wegrzyn et al., 2007; Wegrzyn et al., 2010). Large dense core vesicles are 

loaded at the trans-Golgi network from which they bud off as immature large dense 

core vesicles (Hummer et al., 2017; Orci et al., 1987; Tooze & Huttner, 1990; Wu et 

al., 2004). Their cargo are neuropeptides, amines, neurotrophic factors or other 

modulatory substances essential for a variety of functions that modulate synaptic 

transmission (de Iraldi & de Robertis, 1963; de Wit et al., 2006; Larsson, 1977; Lochner 
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et al., 2006; Michael et al., 1997; Pelletier et al., 1984; Pelletier et al., 1981; Wu et al., 

2004). Large dense core vesicles are distributed throughout the neuron and have 

different release sites, whereas synaptic vesicles are stored and released at presynaptic 

active zones (de Wit et al., 2006; Lochner et al., 2006; Matsuda et al., 2009; Moro et 

al., 2021; Pelletier et al., 1984; Persoon et al., 2018; van de Bospoort et al., 2012). 

Compared to synaptic vesicles, large dense core vesicles exhibit distinct characteristics 

in biogenesis, dynamic transport, and release organisation. They are highly mobile and 

are continuously transported along the cytoskeleton (Bharat et al., 2017; de Wit et al., 

2006; Matsuda et al., 2009; Wong et al., 2012). Moreover, in mammalian neurons, 

large dense core vesicles do not appear to be pre-docked at release sites but are instead 

located in the periphery of synaptic vesicles pools. This may explain the slow-release 

properties and requirement for strong, prolonged stimulation for the release of large 

dense core vesicles (Hartmann et al., 2001; Persoon et al., 2018; van de Bospoort et al., 

2012). However, the molecular details of the individual steps in the life cycle of large 

dense core vesicles are still elusive and are only beginning to be understood (Bharat et 

al., 2017; de Wit et al., 2006; Hoogstraaten et al., 2020; Hummer et al., 2017; Moro et 

al., 2021; van de Bospoort et al., 2012; Wong et al., 2012). Future research on large 

dense core vesicles in neurons may reveal unexpected complexity in different types of 

neurons (Merighi, 2018).  

In contrast to large dense core vesicles, synaptic vesicles are not only retrieved from 

the trans-Golgi network but can also be recycled locally at the synapse (Ceccarelli et 

al., 1973; Heuser & Reese, 1973; Prior & Clague, 1997). The cargo of synaptic vesicles 

is loaded by neurotransmitter transporters at the presynapse. Synaptic vesicles store 

small classical neurotransmitters, such as acetylcholine, GABA, glutamate, or glycine.  

(Burger et al., 1989; Hell et al., 1990; Kish et al., 1989; Maycox et al., 1988; Politoff 

et al., 1975; Takamori et al., 2000). Apart from minor deviations, the overall protein 

composition of synaptic vesicles appears to be largely similar, even if they carry 

different cargos (Grønborg et al., 2010). However, diverse experiments suggest that 

synaptic vesicles can be assigned to distinct pools at the presynapse, which seem to 

involve different molecular components (Chanaday & Kavalali, 2018; Crawford & 

Kavalali, 2015; Evstratova et al., 2014; Raingo et al., 2012). These pools of synaptic 
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vesicles are functionally categorised based on their release characteristics in a readily 

releasable pool, a reserve pool, and a resting pool (Südhof, 2000). Synaptic vesicles of 

different pools might participate in the different release modes during 

neurotransmission. Here, a distinction is made between fast synchronous release in 

response to high Ca2+ concentrations and delayed asynchronous release in response to 

lower Ca2+ concentrations, as well as action potential-independent spontaneous release 

(Barrett & Stevens, 1972; Chanaday & Kavalali, 2018; Crawford & Kavalali, 2015; 

Evstratova et al., 2014; Fatt & Katz, 1952; Goda & Stevens, 1994; Raingo et al., 2012). 

It has been suggested that the readily releasable pool and reserve pool form together 

the activity-dependent recycling pool. The resting pool, on the other hand, has been 

proposed to be activity-independent and to store vesicles that are spontaneously 

released (Chanaday & Kavalali, 2018; Fredj & Burrone, 2009; Südhof, 2000).  

Synaptic vesicles and large dense core vesicles also share common features. 

For example, both types of vesicles depend on a fusion machinery consisting of 

neuronal SNAREs and their release is triggered by Ca2+ influx (Hartmann et al., 2001; 

Hoogstraaten et al., 2020; Matsuda et al., 2009; Persoon et al., 2018; Shimojo et al., 

2015; van de Bospoort et al., 2012). Western blot analyses of isolated large dense core 

vesicles indicated that they contain several classical synaptic vesicle proteins (synaptic 

vesicle protein 2 (SV2), Rab3, synaptophysin, (Berg et al., 2000)). Some of these and 

other proteins common to both vesicle types were also identified by mass spectrometry 

analysis (Bark et al., 2012; Takamori et al., 2006; Wegrzyn et al., 2010). 

Furthermore, the loading of both synaptic vesicles and monoamine-containing large 

dense core vesicles is dependent on neurotransmitter transporters and an 

electrochemical proton gradient generated by a vacuolar H+-ATPase (Birinci et al., 

2020; Edwards, 2007; Eriksen et al., 2016; Hell et al., 1990; Hummer et al., 2017; Kish 

et al., 1989; Matsuda et al., 2009; Maycox et al., 1988).  
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1.5. The evolution of the nervous system 

One of the central questions in the evolution of animals is how the nervous system and 

its diverse components originated (Marlow & Arendt, 2014). This question is closely 

linked to two other important issues concerning (1) the definition of a neuron and 

(2) the debate about the basal animal phylogeny (Bucher & Anderson, 2015; Marlow 

& Arendt, 2014). As for the difficulty of defining a neuron (1), no pan-neuronal genetic 

markers have yet been identified that apply to all neurons across all species. It is rather 

the case that some characteristics are not present in all neurons or are not exclusive to 

neuronal cells. For example, osteocytes and glia cells have long processes resembling 

dendrites, but some interneurons do not have clearly defined axons and dendrites 

(Bucher & Anderson, 2015). Moreover, many genes important for neuronal 

transmission are also expressed in cells outside of the nervous system (Bucher & 

Anderson, 2015; Moroz, 2009; Moroz & Kohn, 2015). Classical neurotransmitters and 

their receptors, for instance, play important roles in non-neuronal cells (Genever et al., 

1999; Lv & Liu, 2017; Xiang et al., 2007). In addition, many key features of the 

nervous system can be found outside of the animal kingdom. For example, voltage-

gated ion channels are present in choanoflagellates, bacteria and viruses (Liebeskind et 

al., 2011; Moran & Zakon, 2014; Plugge et al., 2000; Ren et al., 2001). 

Components involved in cellular polarisation are highly conserved from yeast to 

animals (Sarto-Jackson & Tomaska, 2016). Electrophysiological recordings showed 

that the unicellular protist Odontella sinensis can generate fast sodium-based action 

potentials similar to cardiac and skeletal muscle cells of animals (Taylor, 2009).  

Regarding the animal phylogeny (2), there are three animal lineages that have clearly 

recognisable neurons—bilaterians, cnidarians (sea anemones, corals, jellyfish, and 

hydroids) and ctenophores (comb jellies). Since neither muscle cells nor bona fide 

neurons appear to be present in poriferans (sponges) and placozoans 

(e.g., Trichoplax adhaerens, Hoilungia hongkongensis, and Polyplacotoma 

mediterranea), and due to their morphological simplicity, these lineages were 

considered to be among the earliest-branching animals (de Ceccatty, 1974a, 1974b; 

Philippe et al., 2009; Pick et al., 2010; Schierwater, 2005; Schierwater et al., 2009; 
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Schulze, 1892; Srivastava et al., 2008). In the poriferan Amphimedon queenslandica, 

many synaptic genes are not co-regulated like in animals with clearly defined neurons. 

Assuming that poriferans are the sister group to all animals, this could mean that pre-

existing proteins were used to form a synapse after coordination and expansion of 

interaction networks of protosynaptic genes (Conaco et al., 2012; Sakarya et al., 2007; 

Srivastava et al., 2010; Wong et al., 2019). 

Several studies have challenged this view and suggested ctenophores to be the first 

animal group that branched off the animal tree of life. This could imply that either the 

last common ancestor of all animals already possessed a nervous system that was lost 

in poriferans and placozoans, or that the nervous systems of ctenophores and other 

animals (cnidarians and bilaterians) evolved independently (Dunn et al., 2008; Moroz 

et al., 2014; Ryan & Chiodin, 2015; Ryan et al., 2013; Shen et al., 2017). 

Although many components important for synaptic signal transmission are present in 

ctenophores, other proteins involved in neuronal fate, patterning, synaptic functions 

(e.g., neurogenin, synaptotagmin, neuroligin) as well as some canonical 

neurotransmitters (e.g., serotonin, acetylcholine, dopamine, noradrenaline, histamine) 

seem absent (Moroz et al., 2014; Ryan et al., 2013; Sachkova et al., 2021). 

However, many aspects of the nervous system of ctenophores and their 

neurotransmission are still unknown, making it difficult to draw conclusions about 

functional conservation (Burkhardt et al., 2023; Burkhardt & Sprecher, 2017; Moroz 

& Kohn, 2015; Sachkova et al., 2021). Phylogenomic analyses indicating that 

poriferans should keep the basal position, on the other hand, do not exclude multiple 

origins of the nervous system, but they also suggest that the nervous system could have 

evolved only once and was lost in placozoans (Pisani et al., 2015; Simion et al., 2017). 

In summary, depending on the scenario, different assumptions can be made about the 

evolution of the nervous system. Four of these scenarios are shown in Figure 1.3 

(reviewed by Jékely et al., 2015).  
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Figure 1.3 Different scenarios for the evolution of the nervous system. 
The Illustration summarises four different scenarios on the origin of the nervous 
system. Depending on the phylogeny of animals and the homology of animal nervous 
systems, it can be assumed that the nervous system evolved only once (two scenarios 
on the left) or multiple times independently of each other (two scenarios on the right). 
If the nervous system evolved once, it could either have evolved in the last common 
ancestor of ctenophores, cnidarians and bilaterians (sponges first), or it was lost in 
placozoans and sponges (ctenophores first). In the case that the nervous systems are 
not homologues and evolved independently multiple times, either ctenophores or 
sponges could be the earliest-branching animals (reviewed by Jékely et al., 2015). 
Illustration from Jékely et al. (2015). 

 

There are various theories about the origin and evolution of the nervous system and 

neurons (reviewed in Arendt, 2021; Mackie, 1990; Moroz, 2009). Already in 1872, the 

German biologist Nicolaus Kleinenberg made first assumptions about the emergence 

of neurons. Kleinenberg suggested that neurons and muscle cells originated from a cell 

similar to the epithelial muscle cells of Hydra. Before this cell specialised into distinct 

contractile and excitable cells, it would have formed the basis for muscle and neuronal 

cells (Kleinenberg, 1872). In contrast, other theories assumed an independent evolution 

of sensory and receptor cells from (ciliated) epithelial cells (Hertwig & Hertwig, 1879; 

Jékely, 2011; Parker, 1919).  
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However, a different perspective emerged from theories that focused on tissue levels 

assuming cellular specialisations evolved after nerve nets (Pantin, 1956). One of these 

hypotheses was that the nervous system arose from a primordial epithelium capable of 

conducting electrical events and contraction (Mackie, 1970). This was based on the 

finding that hydrozoans have electrically excitable epithelia which receive sensory 

information and signal to effector cells, even though they do not exhibit specificity and 

directionality (Mackie & Passano, 1968). Several other examples of conductive tissues 

in plants, algae, and animals were considered to support the theory that a primordial 

conductive tissue may have formed the starting point for the evolution of localised, 

polarised information transfer resulting in specialisations, such as muscles and neurons. 

In addition, consideration was given to whether electrical transmission might be more 

ancient than chemical transmission (Mackie, 1970). Today, it is unclear whether 

electrical synapses were used by the last common ancestor of animals, since innexins 

and connexins, important proteins for the formations of gap junctions, are missing in 

poriferans and placozoans and have not been found outside of animals (Cai, 2008; 

Welzel & Schuster, 2022).  

Other theories suggest that neurons and the nervous system evolved from secretory 

cells or a secretory network (Colgren & Burkhardt, 2022; Grundfest, 1959; Haldane, 

1954; Horridge, 1968; Jékely, 2021; Lentz, 1968). One of these hypotheses is that 

neurons may have evolved from environment-and microbe-sensing cells, which share 

a common origin with immune cells. These cells interacted with its microbiome and 

released antimicrobial neuropeptides in response to microbial cues (Klimovich & 

Bosch, 2018). Another theory in favour of the secretory network was formulated by 

Gáspár Jékely in the ‘chemical brain hypothesis’ (Jékely, 2021). He proposed that 

neurosecretory cells arose by specialisation from a ciliated tissue. Under these 

conditions, the release of neuropeptides presumably served to synchronise sensory, 

motile ciliated cells. According to the ‘chemical brain hypothesis’, the evolution of a 

neurosecretory network connected by synapses was important to overcome the 

limitations caused by increasing body size and inefficient diffusion of neuropeptides. 

Another strategy to cope with the difficulties posed by the constraint diffusion and large 

body size had been the emergence of a circulatory system and neurohemal organs 
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(Jékely, 2021). The signalling machinery used for neuropeptide-based intercellular 

communication may have originally been involved in ciliary communication of 

ancestral protists and has been adopted for signalling in animals (Jékely, 2021).  

As early as in 1954, Haldane suggested that chemical communication in neurons and 

protists involves similar mechanisms and hence evolved from a unicellular ancestor 

(Haldane, 1954). This theory was further elaborated by the hypothesis that membrane 

repair mechanisms in the last common ancestor of eukaryotes could have set the 

foundation for combining contraction and secretion in response to Ca2+ influx and 

depolarisation (Brunet & Arendt, 2016).  

To date, it is still uncertain whether the nervous system evolved from a contractile-

conductive or sensory-secretory basis, or whether it has several different origins 

(Arendt, 2021). In the future, further comparative analyses in animals and organisms 

outside of the animal kingdom will contribute to a deeper understanding of the 

evolutionary history of the nervous system (Arendt, 2020; Burkhardt & Sprecher, 2017; 

Colgren & Burkhardt, 2022).  

 

1.6. Choanoflagellates 

Choanoflagellates are unicellular eukaryotes that live in various aquatic environments 

all over the globe (Auer & Arndt, 2001; Buck & Garrison, 1988; Leadbeater, 2015; 

Leakey et al., 2002; Thomsen et al., 1997; Thomsen & Larsen, 1992). They have a 

characteristic cell morphology which resembles choanocytes, the feeding cells of 

sponges (Clark, 1866; Kent, 1880; Laundon et al., 2019; Maldonado, 2004; Nichols et 

al., 2009). The cell body of choanoflagellates is spherical to ovoid with an apical 

flagellum surrounded by a collar of actin-filled microvilli which they use to trap 

bacteria and detritus for phagocytosis (Boenigk & Arndt, 2000; Karpov & Leadbeater, 

1998; Pettitt et al., 2002). Morphological and phylogenetic analyses identified 

choanoflagellates as the closest unicellular relatives of animals (Figure 1.4). It was 

therefore assumed that the last common ancestor of animals and choanoflagellates 
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resembled a choanoflagellate cell (Carr et al., 2008; Clark, 1871; King & Carroll, 2001; 

Lang et al., 2002; Ruiz-Trillo et al., 2008; Steenkamp et al., 2005). Together with 

animals, filastereans and ichthyosporeans, choanoflagellates form the clade of 

holozoans (Carr et al., 2008; Lang et al., 2002).  

 

Figure 1.4 Phylogenetic relationship between opisthokonts and amoebozoans. 
The opisthokonts include holozoans (animals, choanoflagellates, filastereans, and 
ichthyosporeans) and fungi. Phylogenetic analyses position choanoflagellates as the 
closest unicellular relatives of animals (Carr et al., 2008; King & Carroll, 2001; Lang 
et al., 2002; Ruiz-Trillo et al., 2008; Steenkamp et al., 2005). The illustration shows 
a simplified scheme, created according to the phylogenomic analysis of 
mitochondrial proteins by Ruiz-Trillo et al. (2008). 

 

Choanoflagellates display complex behaviours in response to diverse environmental 

stimuli, such as photo-, chemo- and mechanosensation (Brunet et al., 2021; Brunet et 

al., 2019; Kirkegaard et al., 2016; Miño et al., 2017; Reyes-Rivera et al., 2022; Ros-

Rocher & Brunet, 2023; Woznica et al., 2017; Woznica et al., 2021). Studies of 

choanoflagellates are key for understanding the origin and evolution of animals (Brunet 

& King, 2017; Goldstein & King, 2016; Hoffmeyer & Burkhardt, 2016; López-Escardó 

et al., 2019). For example, comparative analyses of the ciliary proteomes of 

choanoflagellates and different animals provided information on the ancestry of ciliary 

signalling proteins. In the same study, they identified previously uncharacterised ciliary 
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proteins conserved from choanoflagellates to mammals, offering insights into the 

aetiology of ciliopathies (Sigg et al., 2017). As choanoflagellates are a new model 

organism, many techniques still need to be established. Nevertheless, fully sequenced 

genomes and transcriptomes are available for several choanoflagellates species, and 

transgenic experiments are possible in the choanoflagellate species 

Salpingoeca rosetta (S. rosetta) and Monsiga brevicollis (M. brevicollis) (Booth & 

King, 2020, 2022; Booth et al., 2018; Brunet et al., 2019; Fairclough et al., 2013; King 

et al., 2008; López-Escardó et al., 2019; Richter et al., 2018; Wetzel et al., 2018; 

Woznica et al., 2021).  

In the present study, S. rosetta was used as a model to investigate the biology of 

synaptic protein homologues. One of the great advantages of working with S. rosetta 

is that it can easily be cultured in the laboratory and has a short generation time (Dayel 

et al., 2011; Fairclough et al., 2010). Moreover, S. rosetta has a complex life history 

which includes differentiation into diverse life stages (Figure 1.5). Among these are 

sexual, asexual, different unicellular, and multicellular life history stages (Dayel et al., 

2011; Fairclough et al., 2010; Levin & King, 2013). The different life stages can be 

induced by environmental cues (Alegado et al., 2012; Dayel et al., 2011; Fairclough et 

al., 2010; Levin & King, 2013; Woznica et al., 2016; Woznica et al., 2017). 

For example, the chondroitinase EroS (extracellular regulator of sex), secreted by the 

bacterium Vibrio fischeri, induces swarming and mating in S. rosetta (Woznica et al., 

2017). Another example is the so-called “rosette” colony, one of the multicellular 

stages of S. rosetta. Rosette colonies are formed by serial cell division in response to a 

bacterial lipid produced by Algoriphagus machipongonensis (Alegado et al., 2012; 

Alegado et al., 2013; Dayel et al., 2011; Fairclough et al., 2010; Woznica et al., 2016).  
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Figure 1.5 Schematic drawing of the life history of S. rosetta. S. rosetta can 
differentiate into different forms of solitary and multicellular stages. Arrows show 
the observed transitions. Slow swimmer cells can form chain colonies, where cells 
are attached by an extracellular matrix and intercellular bridges. Upon addition of 
Algoriphagus machipongonensis (*), slow swimmers can form rosette colonies by 
cell division. In this stage, cells have filopodia, are connected by intercellular 
bridges, and share an extracellular matrix. Slow swimmers are also assumed to be 
able to differentiate into fast swimmers and produce more slow swimmers by cell 
division. By settlement on surfaces, fast swimmers can become thecate cells that can 
become swimmers again by theca abandonment. Thecate cells produce an 
extracellular matrix and can give rise to a swimming and a thecate cell through cell 
division. The model and illustration were obtained from Dayel et al. (2011). 

 

Within a colony, cells share an extracellular matrix and are connected by fine 

intercellular bridges. These intercellular bridges might mediate signalling via diffusion 

of small molecules from one cell to another (Dayel et al., 2011). Structural analyses of 

colonies have shown that cells within a rosette colony display cell disparity. 

This indicates the presence of distinct cell states or even cell types within a S. rosetta 

colony (Laundon et al., 2019; Naumann & Burkhardt, 2019).  
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1.7. Studies on choanoflagellates to reconstruct the ancestry of 
synapses 

Neurons that possess chemical synapses are specialised secretory cells, that allow for 

ultrafast synaptic vesicle secretion in a highly coordinated and regulated manner (Rizo, 

2022; Sabatini & Regehr, 1996; see also chapters 1.3 and 1.4). To study the evolution 

of the nervous system and chemical signal transmission, it is necessary to investigate 

the onset of regulated secretion. To date, fossil records provided only limited 

information on the earliest appearance of a nervous system in animals (Budd, 2015; 

Burkhardt & Jékely, 2021; Liu et al., 2014). 

Several studies in yeast supported the hypothesis that the mechanism of synaptic 

vesicle exocytosis has evolved from the constitutive secretory pathway of single celled 

eukaryotes (Aalto et al., 1993; Brennwald et al., 1994; Novick & Schekman, 1979; 

Protopopov et al., 1993; Rossi et al., 1997). As the closest unicellular relatives of 

animals that do not possess a nervous system, choanoflagellates represent an important 

model to study the onset and transition from a unicellular organism to a complex 

nervous system-controlled animal (Carr et al., 2008; King & Carroll, 2001; Lang et al., 

2002; Ruiz-Trillo et al., 2008). Choanoflagellate genomes encode an astonishingly high 

number of diverse synaptic protein homologues. These include presynaptic protein 

homologues involved in vesicle exocytosis (secretory SNAREs, Munc18, Munc13) 

(Burkhardt et al., 2011; Fairclough et al., 2013), cell adhesion and signalling proteins 

(cadherins, Ca2+/calmodulin-dependent protein kinase II (CAMKII), Hedgehog, 

septins and tyrosine kinases) (Fairclough et al., 2013; King & Carroll, 2001; King et 

al., 2008; Snell et al., 2006), voltage-gated sodium and calcium channels (Cai, 2008; 

Liebeskind et al., 2011; Moran & Zakon, 2014), postsynaptic scaffolding proteins 

(Shank, Homer, Discs large) (Alié & Manuel, 2010; Anderson et al., 2016; Burkhardt 

et al., 2014; Moroz & Kohn, 2015; Sakarya et al., 2007) and ionotropic glutamate 

receptors (Moroz et al., 2021; Tikhonenkov et al., 2020). In particular, many of the 

proteins that are highly abundant on synaptic vesicles and assumed to be key for 

regulating synaptic secretion appear to be conserved in choanoflagellates (Buckley & 

Kelly, 1985; Burkhardt et al., 2014; Ciruelas et al., 2019; Göhde et al., 2021; Jahn & 
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Boyken, 2016; Liao et al., 2007; Rizo, 2022; Sugita et al., 1999; Taoufiq et al., 2020; 

Zhang & Castle, 2011; Zhang et al., 2015). There are, for instance, homologues of 

synaptic vesicle protein 2 (SV2), synaptogyrin, secretory carrier-associated membrane 

proteins (SCAMPs) and SV2-related protein (SVOP) in the genomes of S. rosetta and 

M. brevicollis (Burkhardt et al., 2014; Göhde et al., 2021). Complexin, one of the key 

proteins regulating synaptic vesicle exocytosis, is also present in the genome of 

M. brevicollis (Burkhardt et al., 2014). So far, no homologue of the calcium sensor 

synaptotagmin could be found (Göhde et al., 2021). However, other calcium sensors 

could be responsible for a regulated secretion in choanoflagellates. In neurons, Doc2 is 

assumed to be another calcium sensor that may be involved in asynchronous and/or 

spontaneous release of neurotransmitters (Courtney et al., 2018; Díez-Arazola et al., 

2020; Yao et al., 2011). Using basic local alignment analysis with human Doc2 as 

query, I identified other potential calcium sensors in the predicted proteomes of 

S. rosetta and M. brevicollis (Table 1). Another important finding in S. rosetta was the 

presence of the neuropeptide precursor sequences phoenixin and nesfatin, which are 

likely secretory proteins and might regulate feeding (Yañez-Guerra et al., 2022). 

Comparative studies of the secretion apparatus of neurons and M. brevicollis 

demonstrated that the key proteins Munc18 and syntaxin1 not only structurally 

resemble the vertebrate complex, but also interact in a very similar manner (Burkhardt 

et al., 2011). In M. brevicollis these proteins seem to be localised at the apical pole, 

where also numerous vesicles can be found (Burkhardt et al., 2011; Göhde et al., 2021). 

Immunostainings in S. rosetta indicated the presence of synaptobrevin, another 

secretory key protein, at both poles of the cell (Göhde et al., 2021). In combination 

with diverse vesicular landscapes observed in S. rosetta and M. brevicollis, 

these results suggest that the secretory function of the neurosecretory apparatus may be 

conserved in choanoflagellates (Burkhardt et al., 2011; Göhde et al., 2021; Laundon et 

al., 2019). It remains to be seen whether also its regulation or role in intercellular 

communication is conserved in choanoflagellates and has a proto-synaptic function. 

In summary, many of the building blocks of the nervous system have a premetazoan 

origin and thus predate neurons, suggesting that the nervous system evolved in a 
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stepwise assembly from pre-existing components (Arendt, 2020; Burkhardt et al., 

2014; Burkhardt & Jékely, 2021; Burkhardt et al., 2011; Göhde et al., 2021; Jékely, 

2021; Moroz & Kohn, 2015; Varoqueaux & Fasshauer, 2017; Yañez-Guerra et al., 

2022). 

So far, proteomic studies on secretory vesicle proteins have mainly been conducted in 

animals (Bradberry et al., 2022; Grønborg et al., 2010; Morciano et al., 2005; Takamori 

et al., 2006; Taoufiq et al., 2020). The functions of synaptic protein homologues in 

non-animal organisms are still largely unclear (Burkhardt et al., 2014; Colgren & 

Burkhardt, 2022; Göhde et al., 2021). However, the proteomic and functional studies 

that have been carried out on unicellular eukaryotes have provided fascinating insights 

into the ancestry of animal proteins (Bhattacharyya et al., 2016; Brennwald et al., 1994; 

Henriksen et al., 2012; Parra-Rivas et al., 2022; Protopopov et al., 1993; Sebé-Pedrós 

et al., 2016; Sigg et al., 2017).  

One example of a functional study that helped to characterise properties and regulatory 

interactions of syntaxin was an interspecies complementation experiment. 

Here syntaxin was knocked out in Caenorhabditis elegans and rescued by expressing 

a chimeric syntaxin containing a Habc domain from M. brevicollis. The rescue by the 

choanoflagellate chimera suggested a conserved function that predates synapses and 

animals (Parra-Rivas et al., 2022). 

The inclusion of the closest unicellular relatives of animals in investigations of the 

evolution of the nervous system and synapses—the smallest units for neuronal 

transmission—promise a different perspective that can bring clarity to many 

fundamental questions (Burkhardt & Sprecher, 2017). Choanoflagellates are a unique 

model for studying the evolution of regulated secretion under direct environmental 

influence (Burkhardt, 2015; Dayel et al., 2011; Hoffmeyer & Burkhardt, 2016). Due to 

its multicellularity and established techniques, S. rosetta is an ideal model that offers a 

great opportunity to investigate whether the last common ancestor of animals and 

choanoflagellates might have already used a similar apparatus for (regulated) secretion 

or intercellular communication as the synapses of animals (Booth & King, 2020, 2022; 
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Booth et al., 2018; Dayel et al., 2011; Fairclough et al., 2013; Fairclough et al., 2010; 

Wetzel et al., 2018). Comparative studies including animals and their closest relatives 

allow us to explore how vesicle secretion became highly specialised and linked to 

intercellular signal transduction, as in the case of neurotransmission. In addition, 

investigating homologues of synaptic vesicle proteins in close animal relatives may 

help to identify previously unknown molecular functions and potential interaction 

partners of synaptic proteins (Burkhardt et al., 2014; Burkhardt et al., 2011; Colgren & 

Burkhardt, 2022; Parra-Rivas et al., 2022; Yañez-Guerra et al., 2022). 
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2. Aim of the thesis 

The aim of this thesis was to investigate the evolutionary origin of synaptic proteins, 

especially those which are important for vesicle secretion. The main model organism 

for this thesis was the choanoflagellate species Salpingoeca rosetta (S. rosetta), in 

whose genome we find a great variety of highly conserved synaptic protein 

homologues. Studying protein homologues in choanoflagellates, the closest unicellular 

relative of animals, promises to uncover whether key synaptic vesicle proteins may 

have been part of an ancient secretion complex that evolved before the emergence of 

the first nervous systems.  

The general focus of this thesis, exploring the evolutionary history of regulated, 

synaptic vesicle release, was investigated in the context of two studies. The first of 

these studies (Paper I) aimed to show that most of the core neurosecretory vesicle 

proteins are conserved in the genomes of unicellular organisms and thus predate 

animals. Another important component of this study were investigations of 

intracellular vesicles in two choanoflagellate species (M. brevicollis and S. rosetta) to 

allow a comparison between highly specialised secretory cells such as neurons and 

choanoflagellates. 

The second study (Paper II) intended to further assess and characterise homologues of 

exocytotic synaptobrevin in S. rosetta. Exocytotic synaptobrevin is one of the key 

proteins for vesicle secretion in eukaryotes and can be used as a marker for secretory 

vesicles. So far, not much is known about the exact function and localisation of 

synaptobrevin in choanoflagellates. For direct comparisons between synaptobrevin 

from S. rosetta and secretory synaptobrevin of animals, I used a combination of 

comparative studies, targeted genome editing and various biochemical techniques, like 

co-immunoprecipitation, subcellular fractionation, enzyme assays, SDS-PAGE, 

Western blot, and mass spectrometry analysis. The purpose of this was to study 

synaptobrevin of S. rosetta from many different angles and to learn more about its pre-

metazoan role. 
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3. Summary of the results 

3.1. Choanoflagellates and the ancestry of neurosecretory 
vesicles (Paper I) 

Comparative analysis of neurosecretory vesicle proteins 

Neurosecretory vesicles are storage organelles that contain, for example, neuropeptides 

or neurotransmitters, which are released in a highly regulated manner. They represent 

an important part of the chemical signal transmission of the nervous system (see 

chapter 1.4; also reviewed by Hannah et al., 1999). Although there are many different 

theories about the evolution of the nervous system, its origin is still unclear (reviewed 

in Arendt, 2021; Mackie, 1990; Moroz, 2009). In paper I, we investigated the 

evolutionary history of neurosecretory vesicles using a comparative analysis of 28 core 

proteins of the neurosecretory vesicle proteome in 13 different eukaryotic species. 

Among these were animals with clearly recognisable neurons (zebrafish (Danio rerio), 

sea urchin (Strongylocentrotus purpuratus), fruit fly (Drosophila melanogaster), sea 

anemone (Nematostella vectensis), ctenophore (Mnemiopsis leidyi)), animals without 

recognisable neurons (placozoan (Trichoplax adhaerens), sponge (Amphimedon 

queenslandica)), the closest unicellular relatives of animals (two choanoflagellate 

species (S. rosetta, M. brevicollis) and a filasterean (Capsaspora owczarzaki)), and 

three different fungi species (Batrachochytrium dendrobatidis, Rhizopus oryzae, 

Saccharomyces cerevisiae) (figure 1). We searched for homologues of neurosecretory 

vesicle core proteins belonging to the following categories: ATPases; transporters and 

transporter-like proteins; proteins with four transmembrane domains; synapsins; 

synaptotagmins; SNAREs; SNARE co-chaperones; SNARE binding partners and Rab 

proteins (figure 1). Of the proteins studied, about 39% appear to be present exclusively 

in animals. These include synapsin, the synaptic-associated zinc transporter ZnT3, 

synaptotagmin1, chaperone cysteine string protein (CSP), myelin and lymphocyte 

protein 2 (MAL2), and synuclein. In contrast, most of the neurosecretory vesicle 

proteins studied also appear to be present in unicellular opisthokonts (~61%) 

(figure 1). All examined species seemed to possess homologues of secretory SNAREs, 

Rab7, V-and P-ATPases. In S. rosetta and M. brevicollis we also found homologues of 
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synaptogyrin, SCAMP1/2, synaptic vesicle protein 2 (SV2) and SV2-related protein 

(SVOP). In summary, in paper I we have shown that most of the synaptic vesicle core 

proteins analysed seem to occur in unicellular opisthokonts and thus predate animals. 

In addition to these results, I searched for the presence of Doc2 in the predicted 

proteomes of S. rosetta and M. brevicollis (additional results, Table 1). Doc2 is another 

calcium sensor in neurons and potentially responsible for asynchronous or spontaneous 

transmitter release in neurons (Courtney et al., 2018; Díez-Arazola et al., 2020; Yao et 

al., 2011). The results summarised in Table 1 show S. rosetta and M. brevicollis 

proteins with a sequence similarity of more than 25% to human Doc2. 

Reciprocal searches against the human proteome using the identified choanoflagellate 

protein sequences as queries indicated similarity to multiple C2 and transmembrane 

domain-containing protein 1 (MCTP1). The protein domain architecture, including the 

phosphoribosyl transferase-like domain of the S. rosetta protein PTSG_11158, also 

displays similarity to that of MCTP1. It can therefore be assumed that the genome of 

S. rosetta possibly encodes for an MCTP protein homologue. 

 

 

 

 

 

 

 

 

 

 



37 

Table 1 Protein domain compositions of Doc2A from Homo sapiens and 
Doc2A-like proteins from M. brevicollis and S. rosetta that exhibit sequence 
similarity. The Doc2A protein sequence from Homo sapiens was used as query for 
searches against the predicted proteomes of S. rosetta and M. brevicollis using the 
basic local alignment sequence similarity search tool (BLASTp) at the National 
Center for Biotechnology Information (NCBI) with the default BLAST parameters 
(Altschul et al., 1997). The identified choanoflagellate proteins were used as queries 
for reciprocal blasts against the Homo sapiens proteome. To further investigate the 
conservation of proteins, protein domains were analysed using Pfam (Punta et al., 
2012) and SMART (Letunic & Bork, 2017; Schultz et al., 1998). As predicted by 
SMART and Pfam, the green hexagons represent C2 domains, small pink boxes are 
low complexity regions, blue boxes are transmembrane regions, and black boxes are 
domains found at the C-terminus of phosphoribosyl transferases and phosphoribosyl 
transferase-like proteins. 

 Protein Organism 

Accession 

number E-value 

% 

identity 

Query:  Doc2A protein  Homo sapiens AAH41769.2 
 

 

Domain 

architecture  

    

 A9VA04_MONBE M. brevicollis XP_001749528.1 8e-15 27.88% 

Domain 

architecture  

 PTSG_07483 S. rosetta XP_004990989.1 5e-13 25.35% 

Domain 

architecture  
 PTSG_11158  S. rosetta XP_004987806.1 6e-13  29.04% 

Domain 

architecture  
Query: A9VA04_MONBE M. brevicollis XP_001749528.1   

 

multiple C2 and transmembrane 
domain-containing protein 1 
isoform 14 

Homo sapiens NP_001380474.1 1e-100 31.39% 

Domain 

architecture  
Query: PTSG_07483 S. rosetta XP_004990989.1   

 

multiple C2 and transmembrane 
domain-containing protein 1 
isoform 13 

Homo sapiens NP_001380473.1 1e-95 31.79% 

Domain 

architecture  
Query: PTSG_11158  S. rosetta XP_004987806.1   

 

multiple C2 and transmembrane 
domain-containing protein 1 
isoform 11 

Homo sapiens NP_001380471.1 7e-76 29.70%  

Domain 

architecture  
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Synaptobrevin in S. rosetta 

Of the neurosecretory vesicle core protein homologues in S. rosetta, we examined the 

SNARE protein synaptobrevin more closely and compared it to human 

synaptobrevin 1 and 2 (figure 2 a, b). The amino acid sequence of S. rosetta 

synaptobrevin displays a sequence identity of 38% with human synaptobrevin 1 and 

36% with human synaptobrevin 2 (figure 2 b). Since synaptobrevin and its homologue 

snc1/2 are localised on membranes of secretory vesicles in animals and yeast, we used 

it as a putative marker for secretory vesicles (Baumert et al., 1989; Protopopov et al., 

1993). Immunostainings of S. rosetta single and colonial cells with an antibody 

directed against the cytosolic domain of S. rosetta synaptobrevin indicated the presence 

of synaptobrevin at the apical and basal pole of the cells (figure 2 c–f). Here, the anti-

synaptobrevin signal seemed to overlap with signals of the anti-tubulin antibody 

(figure 2 e, f). In addition, we saw an overlap between cytoskeletal filaments (tubulin) 

and apical vesicles in transmission electron microscopy sections (figure 2 g, h). 

However, we did not observe any synaptobrevin antibody staining at putative plasma 

membrane contact sites of colonial S. rosetta cells (figure 2 e´´). 

 

Vesicular landscapes in choanoflagellates 

We investigated the quantity and diversity of intracellular vesicles in a M. brevicollis 

and S. rosetta cell by 3D reconstructions of the vesicular landscapes from serial 

ultrathin sections obtained by transmission electron microscopy (figure 3). 

Both species displayed diverse, polarised vesicular landscapes. Similar to the study by 

Laundon et al. (2019), we observed different vesicle populations with distinct 

morphologies. We assigned these vesicles to five types according to their size, location, 

and electron densities.  

In the M. brevicollis cell, we detected 163 vesicles (figure 3 a, b-f, b´-f´; electronic 

supplementary material of Paper I, supplementary video 1). These include (1) electron-

dense Golgi-associated vesicles (N = 79; mean diameter 54 nm) near the Golgi 

apparatus at the apical side of the cell, and between endoplasmic reticulum (ER) and 
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Golgi apparatus (figure 3 b, b´). Although vesicles between ER and Golgi cisternae 

display more heterogenous electron densities and often seem to be slightly more 

electron-lucent, they have the same size as vesicles near the Golgi apparatus at the 

apical side of the cell (figure 3 b´). Throughout the M. brevicollis cell and especially 

in the basal region there are (2) small electron-lucent vesicles (N = 51; mean diameter 

72 nm; figure 3 c, c´). These are slightly larger, but otherwise resemble the electron-

lucent vesicles between the Golgi apparatus and ER. (3) Apical vesicles (N = 6; mean 

diameter 116 nm) show a higher electron density and are present in low numbers at the 

apical pole of the cell (figure 3 d, d´). (4) Large extremely electron-lucent vesicles 

(N = 15; mean diameter 129 nm; figure 3 e, e´) are dispersed throughout the whole 

M. brevicollis cell. In the basal area of the cell soma are (5) large electron-dense 

vesicles (N = 12; mean diameter 129 nm; figure 3 f, f´). 

In the S. rosetta cell, we found 314 vesicles (figure 3 a, g-k, g´-k´; electronic 

supplementary material of Paper I, supplementary video 2). Here we also observed 

(1) electron-dense Golgi-associated vesicles (N = 206; mean diameter 55 nm) near the 

Golgi apparatus at the apical side of the cell (figure 3 g, g´). In contrast to 

M. brevicollis, we detected (2) small electron-lucent vesicles (N = 31; mean diameter 

79 nm) mainly in the apical region in S. rosetta (figure 3 h, h´). These resemble the 

Golgi-associated vesicles observed between the Golgi apparatus and the ER in the 

M. brevicollis cell (figure 3 b, b´) and the small vesicles of M. brevicollis 

(figure 3 c, c´) due to their homogenous electron density. Near the apical complex of 

the S. rosetta cell are (3) larger apical vesicles (N = 39; mean diameter 175 nm) 

(figure 3 i, i´). In comparison with the apical vesicles of M. brevicollis, those of 

S. rosetta often have a more ovoid shape and are more electron-lucent. 

(4) Large extremely electron-lucent vesicles (N = 28; mean diameter 209 nm) can be 

found in the whole cell soma of the S. rosetta cell (figure 3 j, j´). The few (5) medium-

sized, electron-lucent vesicles (N = 10; mean diameter 129 nm) are scattered 

throughout the S. rosetta cell (figure 3 k, k´). 

We found similarities and differences between the vesicle types of the two 

choanoflagellate species, which also differed in number (figure 3 l). Four of the vesicle 
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types were common to both species (Golgi-associated vesicles, small electron-lucent 

vesicles, apical vesicles and large extremely, electron-lucent vesicles), whereas large 

electron-dense vesicles and medium-sized, electron-lucent vesicles appear to be 

present in only one species each. The Golgi-associated vesicles of both species have a 

similar mean diameter but are 2.6 times more abundant in S. rosetta. Small vesicles 

also display a similar mean diameter but are slightly larger in S. rosetta. Moreover, they 

are 1.6 times more abundant in M. brevicollis and differ in their localisation 

(figure 3 c, h). Apical vesicles are 6.5 times more abundant in S. rosetta and their mean 

diameter is 1.5 times larger in S. rosetta. In addition, their shape is spherical in 

M. brevicollis, whereas they are spherical to ovoid in S. rosetta. Large extremely 

electron-lucent vesicles are 1.9 times more abundant in S. rosetta and their mean 

diameter is 1.6 times larger in S. rosetta. The large electron-dense vesicles of 

M. brevicollis appear to be a different type of vesicles from the medium-sized, electron-

lucent vesicles of S. rosetta, as they show no similarities (figure 3 f, k).  

Since a single cell of each species was examined in paper I, it should be noted that there 

may be cell-to-cell variations within the same species (Laundon et al., 2019). 

Therefore, conclusions based on comparisons between the vesicles of the two species 

should be considered very carefully. Nevertheless, our results revealed that both 

species exhibit diverse, polarised vesicular landscapes in which vesicles can be 

assigned to different types. 

 

3.2. Characteristics of secretory synaptobrevin homologues in 
the closest unicellular relative of animals (Paper II) 

The aim of paper II was to analyse and describe secretory synaptobrevin homologues 

of S. rosetta. In neurons, synaptobrevin1/2 is localised on the membrane of synaptic 

vesicles and is one of the key proteins for synaptic vesicle exocytosis. There it forms a 

complex with the two presynaptic membrane-bound SNARE proteins SNAP-25 and 

syntaxin, which is crucial for transmitter release (Baumert et al., 1989; Bennett et al., 
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1992; Oyler et al., 1989; Schiavo et al., 1992; Söllner et al., 1993b; 1.2. SNAREs). 

Through a homology-based search against the S. rosetta database at NCBI, we found 

two homologues of Homo sapiens synaptobrevin1/2 in S. rosetta. These are potentially 

involved in exocytosis according to searches against the SNARE Database (Kloepper 

et al., 2007). One of these synaptobrevins was the one we have already started to 

examine in paper I. In paper II, we named this synaptobrevin homologue 

synaptobrevin 1. We have named the other synaptobrevin we found in the genome of 

S. rosetta, synaptobrevin 2 (Figure 1 A). The expression of synaptobrevin 2 was 

verified by PCR-based amplification and sequencing of cDNA from single and rosette 

colony-forming cells of S. rosetta (Figure 1 B, Figure S1). S. rosetta therefore 

possibly possesses two exocytotic v-SNAREs. 

 

Functional analysis of synaptobrevin in S. rosetta 

We have attempted to analyse the function of the two synaptobrevins in S. rosetta by 

CRISPR/CAS9-mediated knockouts. For this purpose, we designed different guide 

RNAs to target Cas9 to the DNA region encoding for the cytosolic part of 

synaptobrevin 1 and 2. The associated DNA repair templates were designed with 

homology arms flanking the cleavage site 50 nucleotides each upstream and 

downstream. Downstream of the cleavage site, a stop cassette for premature 

termination of synaptobrevin was included in the repair templates (Figure 2 A). 

Repair templates and pre-assembled ribonucleoprotein complexes consisting of Cas9 

pre-loaded with a single guide RNA were delivered into S. rosetta cells by 

nucleofection. The nucleofection step, with a genome editing frequency of ~1%, is 

believed to be the biggest limiting factor for the genome editing efficiency (Booth & 

King, 2020; Booth et al., 2018). 

To increase the likelihood of enriching for edited cells, we used two different selection 

techniques. First, we co-transfected the S. rosetta cells with another ribonucleoprotein 

complex and a repair template mediating cycloheximide resistance (rpl36aP56Q) (Booth 

& King, 2020). This allowed us to select cells for cycloheximide resistance for four 
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days prior to clonal isolation. For the positive and negative control, cells were 

transfected only with rpl36aP56Q, with and without Cas9. During selection, we observed 

cell growth in the positive control (cells transfected with rpl36aP56Q+Cas9), the two 

synaptobrevin 1-targeting knockouts+rpl36aP56Q and the synaptobrevin 2-targeting 

knockout+rpl36aP56Q. In contrast, no cell growth was observed in the negative control 

(cells transfected with rpl36aP56Q without Cas9). These results indicated the successful 

delivery and incorporation of the cycloheximide resistance-mediating mutation. 

After selection, DNA from cycloheximide-resistant S. rosetta cells was isolated and 

screened for the integration of the stop cassette by PCR-based amplification and 

treatment with the restriction enzyme PacI. Since the stop cassette contains a PacI 

recognition site, which is normally absent in the genes encoding synaptobrevin 1 and 2, 

a successfully edited gene would be digested by PacI in two fragments. This is 

demonstrated by a shift on an agarose gel compared to undigested or non-edited DNA. 

Of all samples screened for the presence of the stop cassette in the DNA encoding for 

synaptobrevin 1 and 2, none showed digestion products of PacI (Figure 2 C, D). 

This means that despite the observed cell growth during cycloheximide selection, 

which indicates successful delivery and editing of rpl36aP56Q, no successful 

synaptobrevin 1 knockout could be observed. 

To avoid losing cells carrying the edited gene due to the duration of the selection 

process, we used an alternative, faster selection technique (Figure 2 B). For this, cells 

were transfected with a ribonucleoprotein complex containing the enzyme Cas9-RFP. 

This allowed clonal isolation of the transfected cells by fluorescence-activated cell 

sorting (FACS) already one day after transfection. After clonal isolation, we could 

observe proliferating cells in all samples. These included cells transfected with the two 

synaptobrevin 1-targeting knockouts and the synaptobrevin 2-targeting knockout. 

However, the presence of edited synaptobrevin 1 or synaptobrevin 2 could not be 

detected by PacI digestion (Figure 2 E-G). Thus, the presence of successful 

synaptobrevin 1 and 2 knockouts could not be confirmed after a faster selection 

procedure. 
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Since we assumed the knockouts could potentially be lethal, we tried to rescue one of 

the synaptobrevin 1 knockouts. For this, S. rosetta cells were first transfected with the 

synaptobrevin 1-targeting knockout. After 4 h of recovery, cells were co-transfected 

with a plasmid encoding for synaptobrevin 1. Following clonal isolation by FACS 

sorting and five days in which the cells were allowed to grow, we isolated the DNA of 

the co-transfected cells. Although, we detected the synaptobrevin 1 plasmid 

(Figure 2 I), we could not find an edited synaptobrevin 1 (Figure 2 H). 

Accordingly, no synaptobrevin 1 knockout could be observed after co-transfection 

with a synaptobrevin 1 plasmid. 

 

Comparative cleavage assay of human and S. rosetta synaptobrevin  

To further characterise synaptobrevin 1 of S. rosetta and compare it to human 

synaptobrevin 2, we performed a comparative cleavage assay. For this assay, we used 

botulinum neurotoxin D light chain (BoNT/D-LC), a highly specific protease that 

cleaves human synaptobrevin 2, 3 (cellubrevin) and to a minor extent synaptobrevin 1 

(Yamamoto et al., 2012). The protein sequence of S. rosetta synaptobrevin 1 contains 

five amino acids at key positions that are assumed to be important for substrate 

recognition by BoNT/D-LC (Figure 3 A). These are methionine at position 25 (46*), 

valine 21 (42*), arginine 26 (47*), lysine 31 (52*) and arginine 35 (56*), all of which 

are also present in human synaptobrevin 2 at positions marked with asterisks (Arndt et 

al., 2006; Yamasaki et al., 1994). We incubated equal concentrations and volumes of 

recombinant S. rosetta synaptobrevin 1 without the transmembrane domain (rec. Sros 

Syb1 [1-75]) or recombinant human synaptobrevin 2 (without most of the 

transmembrane domain, rec. human Syb [1-96]) with two different concentrations of 

recombinant BoNT/D-LC (rBoNT/D-LC). The negative controls contained 

recombinant proteins mixed with assay buffer. The samples were analysed by SDS-

PAGE and Coomassie staining (Figure 3 B). Recombinant S. rosetta synaptobrevin 1 

[1-75] has a molecular weight of 9.27 kDa and human synaptobrevin 2 [1-96] of 

10.5 kDa. Both displayed slightly higher bands than their predicted molecular weights 

(Figure 3 B). Similar differences between predicted molecular weight and migration 
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distance on SDS gels have been reported in other studies for synaptobrevin (Baumert 

et al., 1989; Zeng et al., 1998). These could be due to the low Grand average of 

hydropathicity (GRAVY) values of recombinant S. rosetta synaptobrevin 1 (-1.463) 

and recombinant human synaptobrevin 2 (-0.649). Their low GRAVY  values may lead 

to lower binding of sodium dodecyl sulphate and thus lower electrophoretic mobility 

of the proteins (Scheller et al., 2021; Shirai et al., 2008). Recombinant S. rosetta 

synaptobrevin 1 shows two bands on SDS gels (Figure 3 B; Figure S2). The lower 

band is probably the result of protein degradation by non-specific thrombin cleavage. 

According to our result, both concentrations of rBoNT/D-LC led to cleavage of 

recombinant human synaptobrevin 2. In comparison, no cleavage could be observed 

for recombinant S. rosetta synaptobrevin 1 [1-75] by rBoNT/D-LC (Figure 3 B). 

   

Potential interaction partners of S. rosetta synaptobrevin 1 

Potential interaction partners of synaptobrevin 1 in S. rosetta were analysed by co-

immunoprecipitation (co-IP) and label-free mass spectrometry analysis (Figure 4 A). 

We performed two independent co-IP experiments with the synaptobrevin 1 antibody 

already used for immunostainings in paper I (figure 2 c-f). In both experiments, we 

used a co-IP with another antibody (anti-shank) as negative control. Of the two 

experiments, all eluates, supernatants, last wash samples, and the S. rosetta cell lysate 

were examined for the presence of synaptobrevin 1 by SDS-PAGE and Western blot 

analysis (Figure 4 B and C). We detected a synaptobrevin 1 signal in the S. rosetta 

cell lysate, all supernatants, and the eluate samples of the synaptobrevin 1 co-IPs (using 

purified and non-purified antibody). Compared to the other samples of the first co-IP 

experiment, the signal of the eluate of the synaptobrevin 1 co-IP seemed to be the 

strongest (Figure 4 B). Since less eluate was loaded in comparison to the other 

samples, this result indicates a successful enrichment of synaptobrevin 1 by co-IP.  

For the first co-IP experiment, we used non-affinity purified synaptobrevin 1 antibody. 

Using mass spectrometry analysis, we identified 171 proteins that were exclusively 

present in the eluate of the synaptobrevin 1 co-IP (Table S2). This list of identified 
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proteins was compared to proteomic analysis of isolated synaptic vesicles (Bradberry 

et al., 2022; Takamori et al., 2006; Taoufiq et al., 2020). Besides synaptobrevin, four 

cytoskeletal proteins, two signalling molecules, seven metabolic enzymes, two 

chaperones, the small GTPase-related protein Rab9, annexin, the V-ATPase subunit H, 

a subunit of the oligosaccharyl transferase complex, von Willebrand factor A (VWFA) 

domain-containing protein, a mitochondrial, three proteasomal and 18 ribosomal 

proteins were present in the synaptobrevin 1 co-IP and in synaptic vesicle isolates 

(Table S2) (Bradberry et al., 2022; Takamori et al., 2006; Taoufiq et al., 2020). 

Three of these proteins (synaptobrevin, V-ATPase subunit H and tubulin beta chain) 

were among the most abundant protein species in the synaptic vesicle isolates studied 

by Taoufiq et al. (2020). Two other proteins that were co-immunoprecipitated with 

synaptobrevin 1 are folate gamma-glutamyl hydrolase and transmembrane protein 

35A. The folate gamma-glutamyl hydrolase is a peptidase known to be secreted and 

present in lysosomes or vacuoles (Bakthavatsalam & Gomer, 2010; Barrueco et al., 

1992; O'Connor et al., 1991; Orsomando et al., 2005; Yao et al., 1996). 

Transmembrane protein 35A (or novel acetylcholine receptor chaperone (NACHO)) is 

localised in the ER of neurons, where it is involved in the assembly of nicotinic 

acetylcholine receptors (Gu et al., 2016; Matta et al., 2017). In summary, using non-

affinity purified synaptobrevin 1 antibody, synaptobrevin 1 was enriched together with 

170 other proteins from S. rosetta cell lysate in the first synaptobrevin 1 co-IP. 

To validate the specificity of the 171 co-precipitated proteins in the first 

synaptobrevin 1 co-IP, the experiment was repeated using non-affinity and affinity-

purified synaptobrevin 1 antibody in parallel. In addition, another negative control 

containing only magnetic beads without antibodies (“beads only”) was included and an 

optimised ratio of beads to S. rosetta lysate with higher protein concentrations was 

used. However, for the co-IP with affinity-purified synaptobrevin 1 antibody, smaller 

amounts of antibody had to be used, as the purification process caused a large loss of 

antibody protein concentration. According to the Western blot results of the second, 

optimised co-IP experiment, synaptobrevin 1 was successfully enriched in the eluate 

samples of both synaptobrevin 1 co-IPs (performed with affinity- and non-affinity 

purified antibody, Figure 4 C).  
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We identified 88 proteins exclusively present in the two synaptobrevin 1 co-IPs of the 

second, optimised experiment by mass spectrometry analysis (Table S3). Of these, 

87 proteins were enriched in the co-IP with the non-affinity purified synaptobrevin 1 

antibody. Five proteins were enriched in the co-IP performed with affinity-purified 

synaptobrevin 1 antibody. Compared to the co-IP with non-affinity purified 

synaptobrevin 1 antibody performed in parallel, this is 17.4 times fewer proteins. 

Four of these proteins (synaptobrevin 1, two metabolic enzymes, and an RNA helicase) 

were also present in the co-IP with non-affinity purified synaptobrevin 1 antibody 

performed in parallel and in synaptic vesicle isolates (Bradberry et al., 2022; Takamori 

et al., 2006; Taoufiq et al., 2020). Accordingly, synaptobrevin 1 was also successfully 

enriched in the second, optimised co-IP experiment with affinity- and non-affinity-

purified synaptobrevin 1 antibody. Here, substantially fewer proteins were co-enriched 

using the affinity-purified antibody. 

Several of the proteins identified in the second, optimised co-IP experiment with non-

affinity purified synaptobrevin 1 antibody were also found in proteomic studies on 

isolated synaptic vesicles. Among these were the SNARE regulating ATPase NSF, 

gamma-soluble NSF attachment protein (γ-SNAP), dynamin, the voltage-dependent 

anion-selective channel protein 2, a cytoskeleton protein, four metabolic enzymes, the 

signalling protein Major vault protein and the mitochondrial dynamin-like GTPase 

OPA1 (Table S3) (Bradberry et al., 2022; Takamori et al., 2006; Taoufiq et al., 2020).  

Other proteins that were identified in the second, optimised experiment included the 

translocon-associated protein subunit delta and a Notch-like protein. Although the 

former protein was assigned as translocon-associated protein subunit delta, according 

to our homology-based search against the Homo sapiens database at NCBI, it could 

also be a 40-kDa Huntingtin-associated protein homologue (Table S4). A complex of 

40-kDa Huntingtin-associated protein and Huntingtin is believed to be involved in the 

regulation of early endosome motility through interaction with Rab5 (Pal et al., 2006). 

The protein Notch is part of an evolutionarily conserved family that, among many other 

important cellular processes, is also involved in intercellular communication (Gazave 

et al., 2009; Kopan & Ilagan, 2009; Vlachakis et al., 2020). The canonical protein 
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domain architecture of Notch consists of one to several epidermal growth factor 

repeats, a Notch domain, transmembrane and Ankyrin domains in the order listed here 

(Gazave et al., 2009; Kidd et al., 1986; Richter et al., 2018; Wharton et al., 1985). 

Since the Notch-like protein identified here lacks the Notch and Ankyrin domains but 

contains repeats of the epidermal growth factor and two transmembrane regions that 

are also common in other proteins, it cannot be regarded as a clear Notch homologue 

(Gazave et al., 2009; Kidd et al., 1986; Richter et al., 2018; Wharton et al., 1985). 

Of the proteins enriched in the first and second, optimised experiment, eleven proteins 

were present in both datasets (Table S2, Table S3, indicated with ●). In addition to 

synaptobrevin 1, these also included two IPT/TIG domain-containing proteins, dual 

oxidase maturation factor 1, CYRIA/CYRIB Rac1 binding domain-containing protein, 

uncharacterised protein PTSG_00332, four metabolic enzymes and AKT protein 

kinase. Of these, synaptobrevin and the metabolic enzyme inosine-5'-monophosphate 

dehydrogenase were also found in synaptic vesicle isolates (Bradberry et al., 2022; 

Takamori et al., 2006; Taoufiq et al., 2020).  

IPT/TIG domains (immunoglobulin, plexins, transcription factors-like/transcription 

factor immunoglobulin) are present, for example, in the animal exocyst complex 

component 2 (also called sec5) (Aravind & Koonin, 1999; Kee et al., 1997). 

The exocyst is a highly conserved complex involved in vesicle trafficking (Koumandou 

et al., 2007; Mei & Guo, 2018). When we used human exocyst complex component 2 

as a query for a homology-based search against the S. rosetta database on NCBI, we 

discovered that it exhibits a 30.85% protein sequence identity with one of the co-

precipitated IPT/TIG domain-containing proteins (PTSG_12887) (E-value=5e-04, 

Table S4). However, we did not detect a sec5 domain in the IPT/TIG domain-

containing protein of S. rosetta.  

The intensity of synaptobrevin 1 was one of the strongest signals measured in both 

co-IP experiments (Table S2, Table S3). Although comparisons between 

independently measured mass spectrometry samples without a standard must be 

considered very carefully, we assume from the strong signal that the enrichment of 
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synaptobrevin 1 was successful. It should be noted that all identified proteins in both 

co-IP experiments were annotated using the UniProt database. Future analyses of the 

domain architecture of each potential interaction partner will either confirm the 

previous annotations or possibly suggest alternative assignments. 

 

Localisation of synaptobrevin 1 in S. rosetta  

In paper I, we showed that the anti-synaptobrevin 1 antibody detects an antigen at both 

poles of S. rosetta cells, where we also observed numerous vesicles (Paper I: 

figure 2 c–f). However, it is still unclear whether synaptobrevin 1 is localised on 

secretory vesicles in S. rosetta, similar to animals or yeast (Baumert et al., 1989; 

Protopopov et al., 1993). Therefore, we examined the localisation of synaptobrevin 1 

using a subcellular fractionation protocol and the synaptobrevin 1 antibody. For this, 

we mechanically homogenised S. rosetta cells and separated subcellular fractions by 

differential centrifugation (Figure 5 A). All obtained fractions were analysed for the 

presence of synaptobrevin 1 by SDS-PAGE and Western blot analysis with the 

synaptobrevin 1 antibody (Figure 5 B). The homogenate (H) and pelleted non-

homogenised S. rosetta cells (control pellet = PC and control = C) showed a 

synaptobrevin 1 signal. As expected, no signal was observed in the two supernatants 

that were supposed to be free of S. rosetta cells, such as the bacterial supernatant (BS) 

obtained from pooling the S. rosetta cells and the supernatant of the non-homogenised 

control cells (SC). The homogenate was centrifugated at low speed to pellet nuclei, 

cellular debris, and unbroken cells (pellet 1 = P1) (Begovic, unpublished; Liu & 

Fagotto, 2011; Michelsen & Von Hagen, 2009; Walworth & Novick, 1987; Zinser et 

al., 1991). The viscosity of the sample and the smeared signal of pellet 1 (P1) was an 

indicator for the presence of large amounts of nucleic acids (Kurien & Scofield, 2012). 

Pellet 2 (P2), obtained by centrifugation of supernatant 1 (S1) at increased speed, was 

also viscous and gave a smeared signal. This could be due to mitochondrial DNA, since 

mitochondria were supposed to be pelleted by second centrifugation step. 

Both supernatants (S1 and S2) showed a clear synaptobrevin 1 signal, indicating a 

successful homogenisation of S. rosetta cells. Moreover, the supernatants exhibited 
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fewer non-specific bands, with S2 showing even fewer non-specific bands than S1. 

Based on previous studies, we assumed that the supernatant S2, obtained by the second 

centrifugation step at increased speed, still contained the membrane and cytosolic 

fractions. In contrast, the nuclear (P1) and the mitochondrial fractions (S1, P2) should 

be largely absent in S2 (Begovic, unpublished; Liu & Fagotto, 2011; Michelsen & Von 

Hagen, 2009; Walworth & Novick, 1987; Zinser et al., 1991). The result therefore 

indicated that synaptobrevin 1 is present in the membrane and cytosolic fraction. 
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4. Discussion 

4.1 The premetazoan origin of neurosecretory vesicle protein 
homologues 

In paper I, we used a comparative cross-species analysis to investigate the presence or 

absence of neurosecretory vesicle core proteins in different eukaryotic organisms. 

In line with previous studies, our findings revealed that many of the neurosecretory 

vesicle core proteins appear to be conserved as homologues in unicellular eukaryotes 

(Abrams & Sossin, 2019; Burkhardt et al., 2014; Burkhardt et al., 2011; Moroz & 

Kohn, 2015) (figure 1). This indicates that many of the neurosecretory vesicle core 

proteins may have evolved before the occurrence of the first animals and thus the first 

neurons. Some of the proteins we found in the predicted proteomes of the 

choanoflagellate species S. rosetta and M. brevicollis are involved in the regulated 

exocytosis of neurosecretory vesicles. Among these are a complete set of putative 

secretory SNAREs (synaptobrevin, syntaxin and SNAP-25), secretory carrier-

associated membrane proteins (SCAMPs), synaptic vesicle protein 2 (SV2), 

synaptogyrin, and SV2-related protein (SVOP) (Buckley & Kelly, 1985; Ciruelas et 

al., 2019; Liao et al., 2007; Sugita et al., 1999; Zhang & Castle, 2011; Zhang et al., 

2015). As previously shown by Burkhardt et al. (2014; 2011), complexin and Munc18, 

two other key proteins for regulated vesicle exocytosis, are also conserved in 

choanoflagellates. The presence of all these proteins in the closest unicellular relatives 

of animals suggests that they may have been involved in regulated secretion before the 

first nervous systems evolved. 

So far, we could not find a homologue of the calcium sensor synaptotagmin in 

organisms other than animals. This result is consistent with other studies and suggests 

that synaptotagmin may have originated in animals (Barber et al., 2009; Burkhardt et 

al., 2014; Craxton, 2007, 2010). However, this needs to be confirmed by future studies 

on other close relatives of animals, as it could also have been lost in the course of 

evolution (Richter et al., 2018).  
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Other proteins similar to synaptotagmin have been identified in plants and yeast 

(Barber et al., 2009; Craxton, 2007, 2010; Creutz et al., 2004; Manford et al., 2012; 

Saheki & De Camilli, 2017). Although these proteins are also called synaptotagmins 

in plants, they are more similar to mammalian extended-synaptotagmins or tricalbins 

in yeast. They all contain an additional domain called Synaptotagmin-like, 

Mitochondrial and lipid-binding Protein (SMP) domain and function as ER to plasma 

membrane tethers (Craxton, 2010; Giordano et al., 2013; Manford et al., 2012; Pérez-

Sancho et al., 2015; Ruiz-Lopez et al., 2021; Toulmay & Prinz, 2012). 

Here, I show proteins of S. rosetta and M. brevicollis which display over 25% sequence 

similarity to Doc2 (Table 1). Doc2 is another calcium sensor in neurons that could be 

responsible for spontaneous or asynchronous transmitter release (Courtney et al., 2018; 

Díez-Arazola et al., 2020; Yao et al., 2011). In contrast to the choanoflagellate proteins 

shown here, vertebrate Doc2 has only two C2 domains (Craxton, 2010; Orita et al., 

1995). Multiple C2 domains are, for example, present in the extended-synaptotagmins 

(or tricalbins in yeast) (Creutz et al., 2004; Min et al., 2007). These, however, possess 

the aforementioned characteristic SMP domain, which is not present in the 

choanoflagellate proteins shown here (Table 1; Lee & Hong, 2006). 

Reciprocal BLAST searches using the identified S. rosetta protein sequences as queries 

against the human proteome revealed a sequence identity of ~30% for multiple C2 and 

transmembrane domain-containing protein 1 (MCTP1). In fact, the protein domain 

architecture was also more reminiscent of MCTP1 than of Doc2 (Table 1). MCTPs are 

evolutionarily conserved. Studies have shown that MCTPs are mainly present in 

multicellular eukaryotes, like animals and plants, whereas they seem to be absent in the 

unicellular organisms studied, with the exception of choanoflagellates (Barber et al., 

2009; Liu et al., 2018; Shin et al., 2005; Téllez-Arreola et al., 2022; Zhao et al., 2022). 

Although the functions of MCTPs are not entirely clear, recent studies suggest that 

MCTPs are involved in neurotransmitter release, perhaps as endoplasmic reticulum-

localised calcium sensors (Genç et al., 2017; Téllez-Arreola et al., 2020). It remains to 

be seen whether the choanoflagellate proteins identified here are calcium sensors or 

whether they are involved in other tasks.  
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4.2 The evolution of regulated secretion and directed vesicle 
transport at cell-cell contact sites 

Regulated secretion, the basis for neurotransmitter release, appears to occur not only 

in animals, but can also be observed in unicellular eukaryotes (Bresslau, 1921; Chin et 

al., 2004; Munoz et al., 1991; Satir, 1977). So far, however, only limited information 

is available on the molecular details of regulated secretion in unicellular organisms 

(Aquilini et al., 2021; Coleman et al., 2018; Kuppannan et al., 2022; Sparvoli et al., 

2018). Alveolates, for example, which are distantly related to opisthokonts, exhibit 

regulated secretion, e.g. for the purpose of host invasion, predation or defence against 

predators (Buonanno et al., 2014; Ewing & Kocan, 1992; Harumoto & Miyake, 1991; 

Keeling et al., 2014; Sparvoli & Lebrun, 2021; Steenkamp et al., 2005). Some of the 

proteins involved in the regulated exocytosis of alveolates are conserved in ciliates, 

dinoflagellates, and apicomplexans, but appear to be restricted to alveolates (Aquilini 

et al., 2021; Kuppannan et al., 2022). During invasion, apicomplexan parasites inject 

rhoptry proteins into the host cell (Boothroyd & Dubremetz, 2008; Håkansson et al., 

2001; Nichols et al., 1983). To date, no SNARE proteins have been identified that are 

involved in the regulated rhoptry exocytosis (Aquilini et al., 2021; Sparvoli & Lebrun, 

2021). In general, it is still largely unknown whether and to what extent the molecular 

mechanisms of regulated exocytosis in animals and the various unicellular organisms 

share similarities and if they have a common origin (Briguglio et al., 2013; Coleman et 

al., 2018; Kaur et al., 2017; Kuppannan et al., 2022; Sparvoli & Lebrun, 2021; Sparvoli 

et al., 2018; Verbsky & Turkewitz, 1998).  

In yeast, secretory vesicles do not appear to be accumulated and released by regulated 

exocytosis, but constitutively (Novick & Schekman, 1979; Walworth & Novick, 1987). 

However, in choanoflagellates, the closest unicellular relative of animals, it is not clear 

whether vesicles may also be released by regulated exocytosis. The presence of the 

previously mentioned proteins, which are known to be involved in the release and 

regulation of synaptic vesicles, suggests a mechanism of regulated secretion in 

choanoflagellates (figure 1). 
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In paper I, we 3D reconstructed the vesicular landscapes of two choanoflagellate 

species S. rosetta and M. brevicollis. This allowed the identification of distinct vesicle 

populations (figure 3). Based on the size, location, and electron densities, we identified 

five different types of vesicles in each species. These included Golgi-associated, small 

electron-lucent, apical, large electron-lucent and large electron-dense vesicles or 

medium-sized, electron-lucent vesicles. Some of the vesicles were difficult to classify 

as they displayed intermediate features of different types. This illustrates the high 

dynamic nature of these organelles and is represented by the large whiskers in 

figure 3 l. Nevertheless, the properties of the vesicle types differ considerably from 

each other, indicating that our classification is likely correct. 

However, further molecular studies could allow the classification of additional vesicle 

types. This could, for example, enable a subdivision of Golgi-associated vesicles. 

Apical Golgi-associated vesicles could possibly be trans-Golgi vesicles that are 

transported to different destinations in the cell, while vesicles localised between ER 

and Golgi could be anterograde and retrograde vesicles (COPII/COPI coated vesicles, 

see also chapter 1.1). 

In both choanoflagellate species, we observed vesicle populations at the apical and 

basal pole of the cell. The polarised distribution of the vesicular landscapes in both 

choanoflagellate species is reminiscent of the clustered organisation of synaptic 

vesicles in presynapses of the nervous system (Richardson, 1962). Based on our 

immunostaining results in paper I (figure 2 c-f), we suspect that the homologue of the 

synaptic vesicle protein synaptobrevin is also localised at both cell poles of S. rosetta. 

These results are consistent with a previous study on M. brevicollis where 

immunostainings indicated the presence of synaptobrevin at the apical pole of the cell 

(Burkhardt et al., 2011). Considering the presence of a presumably secretory 

synaptobrevin at both cell poles, we assume that the apical and basal vesicles are 

secretory in S. rosetta.  

Vesicles localised at the apical pole of S. rosetta are in close proximity to tubulin 

filaments (figure 2 g, h). Together with the overlapping immunostaining signals of 
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synaptobrevin and the cytoskeleton protein tubulin in S. rosetta (figure 2 f), these 

results suggest a directed transport system in choanoflagellates where vesicles are 

trafficked along the cytoskeleton. 

So far, we do not know what these vesicles contain or what functions they have. 

Despite this, it is tempting to speculate that vesicles localised at the basal pole of 

S. rosetta may contain rosetteless and/or other extracellular matrix material. 

The secretion of these components from the basal part of S. rosetta cells appears to be 

crucial for rosette development (Dayel et al., 2011; Larson et al., 2020; Levin et al., 

2014; Wetzel et al., 2018). The protein rosetteless was identified by Levin et al. (2014) 

in a forward genetic screen of S. rosetta cells displaying defects in rosette development 

in the presence of rosette-inducing factors. One of these mutants had a defect in a 

C-type lectin, which turned out to be essential for the formation of rosette colonies. 

This C-type lectin was subsequently named "rosetteless". Rosetteless has a predicted 

secretion signal and is basally secreted into the extracellular matrix of rosette colonies. 

In the same study they showed that lysates of rosettes, single cells and chain colonies 

of S. rosetta contain similar amounts of rosetteless. Immunostainings of these three 

stages, on the other hand, indicated different quantities of rosetteless. Rosette colonies 

showed the strongest signal for rosetteless when analysed by immunostaining, whereas 

the other two stages showed weak to no signals (Levin et al., 2014). This could mean 

that rosetteless is only secreted during rosette colony development and is otherwise 

stored in vesicles in S. rosetta cells, where it may not be recognised by the rosetteless 

antibody. Therefore, rosetteless-containing vesicles are potential candidates for 

regulated secretion, that are possibly stored during the unicellular state. Apical vesicles, 

on the other hand, may contain enzymes that are released in direction of the feeding 

collar for extracellular digestion, similar to the enzymes released by yeast (Berthelot, 

1860; Novick & Schekman, 1979; Sanchez et al., 1984). It is also possible that these 

vesicles are used for intercellular communication (Rosati & Modeo, 2003). Based on 

our finding that putative sialin-like transporters exist in the genomes of S. rosetta and 

M. brevicollis, the apical vesicles could contain sialic acid, aspartate, or glutamate 

(Miyaji et al., 2008). Future studies on isolated vesicles from choanoflagellates (which 

are currently in preparation in our laboratory) promise to reveal more about the content 
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of these vesicles. In addition, further 3D reconstructions of the vesicular landscapes of 

different cell stages of S. rosetta, as performed by Laundon et al. (2019) and in paper I, 

will show whether the vesicle populations themselves or their amounts change. In the 

study by Laundon et al. (2019), a higher number of Golgi-associated vesicles was 

observed in S. rosetta single cells compared to colonies. This could indicate an 

increased secretion of vesicles containing, for example, rosetteless, extracellular matrix 

material or other components important for rosette development (Dayel et al., 2011; 

Levin et al., 2014; Wetzel et al., 2018). 

As mentioned earlier, rosette colonies of S. rosetta are connected by fine intercellular 

bridges of unknown molecular composition (Dayel et al., 2011). These bridges have 

electron dense-plates and are suggested to be involved in intercellular communication 

(Chaigne & Brunet, 2022; Colgren & Burkhardt, 2022; Dayel et al., 2011; Laundon et 

al., 2019). Since we did not observe synaptobrevin localisation or vesicle 

accumulations at these cellular connections, an exchange of signalling molecules via 

intercellular bridges would likely be independent of vesicle exocytosis and thus 

different from chemical neurotransmission (paper I, Laundon et al., 2019). 

However, small signalling molecules or ions could still be exchanged (Dayel et al., 

2011). Cytoplasmic bridges in plants are used for the transfer of metabolites, but also 

serve for the transmission of electrical signals (Canales et al., 2018; Mackie, 1970; 

Meiners et al., 1988). It has been hypothesised that in animals, functionally similar 

conductions that also transport metabolites originally formed the basis for specialised 

conduction by muscles, neurons and neurosensory cells (Mackie, 1970; Meiners et al., 

1988). Although gap junctions are not connected by a continuous membrane like 

cytoplasmic bridges, and the key proteins for the formation of gap junctions 

(innexins/pannexins and connexins) at electrical synapses appear to be an animal 

innovation, intercellular bridges of choanoflagellates may still share some similarities 

with electrical signal transmission (Cai, 2008; Colgren & Burkhardt, 2022; Moroz & 

Kohn, 2015). Moreover, there are possibly other, so far unknown proteins that form 

gap junctions in animals which do not possess connexins or pannexins (Slivko-

Koltchik et al., 2019). Recent studies have shown that filamentous cyanobacteria use 

septal junctions for cellular communication that are mechanistically similar to gap 
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junctions (Kieninger & Maldener, 2021; Weiss et al., 2019). In general, it cannot be 

ruled out that choanoflagellates have functionally similar intercellular channels that 

may allow intercellular communication.  

In summary, in paper I we observed several features in M. brevicollis and S. rosetta 

which are also present in neurons, highly specialised secretory cells. These include a 

large number of synaptic protein homologues, polarised vesicular landscapes, 

overlapping synaptobrevin and tubulin staining indicating a directed transport system, 

and plasma membrane contact sites in the case of multicellular S. rosetta cells (Bentley 

& Banker, 2016).  

In paper I, we propose a scenario that could explain the similarity between 

choanoflagellates and neurons. According to our findings, several features and 

structural components of neurosecretory vesicles appear to be ancient. We therefore 

suspect that a basic vesicle secretion machinery was already used by the last common 

ancestor of animals and choanoflagellates for the secretion of signalling molecules or 

other substances. Although this premetazoan vesicle secretion system may have 

already been used for intercellular communication, it was not yet positioned at cellular 

contact sites. Instead, signalling molecules were released into the environment. 

With the emergence of animals and increasing number of cells within an organism, this 

machinery was shifted to contact sites between cells. Under these conditions, the 

localisation of signal transmission would have been an evolutionary novelty and would 

have provided the basis for specific pre- and postsynaptic signalling. The ancestral 

directed transport and vesicle secretion system would thus have been co-opted for 

signal transmission at cellular contact sites. This may have been the foundation for the 

evolution of the many structurally distinct types of synapses, such as presynaptic triads 

in ctenophores, or neuromuscular synapses in many other animals (Hernandez-Nicaise, 

1968; Heuser & Reese, 1973; Palade, 1954; Robertson, 1956). Further future studies 

investigating the molecular machinery for intercellular communication in unicellular 

relatives of animals will test the validity of this scenario. 
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4.3 Studies of S. rosetta synaptobrevin allow comparisons with 
the secretory synaptobrevins of animals (Paper II) 

Synaptobrevin1/2 and its yeast homologue snc1/2 are the exocytotic SNARE proteins 

that are localised on the membrane of secretory vesicles (Baumert et al., 1989; 

Protopopov et al., 1993). They are crucial components of the basic vesicle secretion 

apparatus in eukaryotes (Baumert et al., 1989; Bennett et al., 1992; Protopopov et al., 

1993; Schiavo et al., 1992; Söllner et al., 1993b; 1.2. SNAREs). To learn more about 

the evolutionary history of one of the key proteins for vesicle exocytosis, we 

investigated the properties of secretory synaptobrevin homologues in 

choanoflagellates. These included studies of the function, sensitivity to rBoNT/D-LC, 

identification of potential interaction partners and the localisation of synaptobrevin in 

S. rosetta. 

When we tried to knock out putative secretory synaptobrevins in S. rosetta using the 

CRISPR/CAS9 system, we could not detect any cells containing the edited DNA of 

synaptobrevin 1 and 2 (Figure 2 C-H). One explanation for the absence of the edited 

genes could be the low gene editing efficiency (~1%). The efficiency is believed to be 

mainly limited by the delivery of the ribonucleoprotein complex and repair templates 

(Booth & King, 2020). However, the successful co-transfection of the synaptobrevin 1 

plasmid (Figure 2 I) and rpl36aP56Q, as indicated by cell growth under cycloheximide 

selection, suggested that the delivery of Cas9 and repair templates was likely not the 

limiting factor. We used two different selection techniques to increase the chances of 

enriching cells carrying edited synaptobrevin 1 and 2. The second selection technique 

aimed to shorten the time between transfection and clonal isolation to reduce the loss 

of possibly genome-edited cells (Figure 2 B). We could not detect any edited 

synaptobrevin here either (Figure 2 E-H). Although we used different guides and 

targeted two different genes to minimise the chance of failure due to low binding 

efficiency, the designed sequences may not have been optimal. Since not only the 

complementarity between the guide RNA and target DNA, but also the presence of the 

protospacer-adjacent motif (PAM) is essential for recognition by Cas9 (Leenay & 

Beisel, 2017), we verified the presence of the target sequences in advance by 
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sequencing amplified DNA with appropriate primers. If the loss of synaptobrevin 1 

and 2 causes a growth defect, it is also possible that successfully edited cells are 

outcompeted by cycloheximide-resistant or wild type cells. Another explanation could 

be that knocking out synaptobrevin 1 and 2 is lethal for S. rosetta, similar to animals 

or yeast (Liu et al., 2011; Nystuen et al., 2007; Protopopov et al., 1993; Schoch et al., 

2001). If synaptobrevin 1 and 2 are essential and their knockouts prevent S. rosetta 

cells from proliferating, this would explain why we could not detect the edited genes 

in S. rosetta cells. 

Transient overexpression of synaptobrevin 1 as fluorescent fusion protein also appears 

to significantly decrease cell growth of S. rosetta, suggesting an essential role (personal 

communication with Jeffrey Colgren). In summary, no functional phenotype of a 

synaptobrevin 1 or 2 knockout could be studied in detail with this approach. Since our 

results suggest that putative secretory synaptobrevin 1 and 2 may be essential for 

S. rosetta, its function could possibly be investigated in the future using an inducible 

knockdown system. In alveolates, yeast and different animal cells, for instance, the 

function of essential and presumably fitness-conferring genes was assessed using an 

auxin-inducible degron system, which allows rapid depletion of the targeted protein 

(Adhikari et al., 2021; Aquilini et al., 2021; Natsume et al., 2016; Nishimura et al., 

2009). Alternatively, CRISPR/Cas9-mediated synaptobrevin 1 and 2 knockouts could 

be performed in haploid S. rosetta cells, in which mating is induced immediately 

afterwards to generate diploid cells to complement the knockout (Levin et al., 2014; 

Levin & King, 2013; Wetzel et al., 2018; Woznica et al., 2017). 

In paper I, we showed that S. rosetta synaptobrevin 1 has a protein sequence identity 

of 38% with human synaptobrevin 1 and 36% identity with human synaptobrevin 2 

(Paper I, figure 2 b). Although the sequence identity of human synaptobrevin 2 and 

S. rosetta synaptobrevin 1 is lower, they share amino acids at specific positions which 

likely play an important role in substrate recognition by BoNT/D-LC (Paper II, 

Figure 3 A) (Arndt et al., 2006; Yamasaki et al., 1994). As one of the highly specific 

clostridial neurotoxins, BoNT/D-LC specifically cleaves synaptobrevin 2 and 3 in 

vertebrates, whereas synaptobrevin 1 is only cleaved to a lesser extent (Arndt et al., 
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2006; Yamamoto et al., 2012; Yamasaki et al., 1994). The lack of rBoNT/D-LC 

cleavage that we observed in recombinant S. rosetta synaptobrevin 1 [1-75] could mean 

that S. rosetta synaptobrevin 1 either cannot be recognised in general or that other 

factors are also involved in substrate recognition (Figure 3 B). For example, the yeast 

synaptobrevin 1/2 homologues snc1/2 are also not cleaved by clostridial neurotoxins 

(Niemann et al., 1994). However, it has been shown that that an engineered chimera of 

human synaptobrevin 2 and yeast snc2 not only functions in yeast, but is also cleaved 

by botulinum neurotoxin B (Fang et al., 2006). This study allowed the comparative 

investigation of botulinum cleavage in a eukaryotic cell and of recombinantly 

expressed human synaptobrevin 2 in vitro. There, point mutations showed different 

effects on the cleavage sensitivity. In particular, the effects of mutations near or within 

the transmembrane region of the chimera protein on the cleavage efficiency by 

botulinum neurotoxin B in yeast cells could be observed, indicating the importance of 

the transmembrane region (Fang et al., 2006). Moreover, cleavage of animal 

synaptobrevin 2 by clostridial neurotoxins has been shown to be strongly enhanced by 

the presence of lipid membranes (Caccin et al., 2003). According to these studies, both 

the use of full-length S. rosetta synaptobrevin 1 [1-96] and its incorporation into a lipid 

membrane could potentially improve substrate recognition of recombinant S. rosetta 

synaptobrevin 1 by rBoNT/D-LC. In the future, cleavage of S. rosetta synaptobrevin 1 

could be investigated by delivery of rBoNT/D-LC via nucleofection into S. rosetta 

cells. Alternatively, a S. rosetta synaptobrevin 1/snc2 chimera could be expressed in 

yeast cells and treated with BoNT/D-LC, similar to the study by Fang et al. (2006). 

Different recombinant chimeras of human synaptobrevin 2 and S. rosetta 

synaptobrevin 1 might also be used for an in vitro cleavage assay to compare S. rosetta 

synaptobrevin 1 with animal synaptobrevin 2. Moreover, higher concentrations of 

rBoNT/D-LC should be tested, as rat synaptobrevin 1 requires an almost 3700-fold 

higher concentration to be cleaved (Yamasaki et al., 1994). In addition, native 

synaptobrevin 1 from S. rosetta cells enriched by immunoprecipitation or recombinant 

full-length S. rosetta synaptobrevin 1 reconstituted in artificial vesicles could be used 

for a rBoNT/D-LC cleavage assay (Weber et al., 1998). Other botulinum neurotoxins 

specific for synaptobrevin can also be tested in a comparative cleavage assay. 
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For example, the botulinum neurotoxin type X light chain (BoNT/X-LC), which also 

cleaves non-secretory R-SNAREs in rat (synaptobrevin 1, 2, 3, 4, 5 and ykt6), might 

be used (Zhang et al., 2017). 

For the identification of potential interaction partners of synaptobrevin 1 in S. rosetta, 

we performed two independent co-IP experiments that were analysed by mass 

spectrometry (Figure 4 A). In these experiments, we identified 171 and 88 proteins, 

respectively (Table S2, Table S3). Of the proteins identified in the first and second 

co-IP, ~28% and ~22%, respectively, were also found in proteomic studies on isolated 

synaptic vesicles (Bradberry et al., 2022; Takamori et al., 2006; Taoufiq et al., 2020). 

Many of the co-immunoprecipitated proteins have been shown to participate in vesicle 

transport, secretion, cellular signalling, intercellular communication and migration 

(Aravind & Koonin, 1999; Bakthavatsalam & Gomer, 2010; Fort et al., 2018; Gu et al., 

2016; Kee et al., 1997; Kopan & Ilagan, 2009; Matta et al., 2017; O'Connor et al., 1991; 

Pal et al., 2006; Shang et al., 2018; Vlachakis et al., 2020; Yuki et al., 2019). 

Among these were, for example, a Notch-like protein, a potential 40-kDa Huntingtin-

associated protein homologue, CYRIA/CYRIB Rac1 binding domain-containing 

protein, transmembrane protein 35A, folate gamma-glutamyl hydrolase and two 

IPT/TIG domain-containing proteins. The CYRIA/CYRIB Rac1 binding domain-

containing protein and IPT/TIG domain-containing proteins were detected in both co-

IP experiments.  

CYRIA/CYRIB Rac1 binding domains are part of the evolutionarily conserved protein 

CYRI, which influence cell migration, chemotaxis, epithelial polarisation through 

direct interaction with the small GTPase Rac1 (Fort et al., 2018; Shang et al., 2018; 

Yuki et al., 2019). 

Since the IPT/TIG domain is also part of sec5, the animal exocyst component 2 

(Aravind & Koonin, 1999; Kee et al., 1997), we searched the S. rosetta protein database 

on NCBI for a potential homologue, using human sec5 as query (Table S4). 

Indeed, one of the two IPT/TIG domain-containing proteins enriched by the 

synaptobrevin 1 co-IPs displays a ~31% sequence similarity to human sec5, even 
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though it lacks the sec5 domain (Table S4). The exocyst complex is a conserved 

octameric complex important for polarised secretion of secretory vesicles in 

eukaryotes. Originally identified in yeast, it was later shown to be conserved from 

plants to mammals (Guo et al., 1999; Hsu et al., 1996; Koumandou et al., 2007; Mei & 

Guo, 2018; Novick et al., 1980; Novick & Schekman, 1979; Pereira et al., 2023; 

TerBush et al., 1996). Different subunits of the exocyst complex interact with 

SNAREs, Rab GTPases, and myosin. These interactions are thought to be important 

for the recognition, tethering and membrane fusion of secretory vesicles (Ahmed et al., 

2018; Dubuke et al., 2015; Jin et al., 2011; Moskalenko et al., 2002; Mott et al., 2003; 

Munson & Novick, 2006; Shen et al., 2013; Yue et al., 2017). The IPT/TIG domain of 

sec5 in animals allows interaction with the Ras family GTPase Ral, which is believed 

to be involved in recruitment of the exocyst complex (Mei & Guo, 2018; Moskalenko 

et al., 2003; Mott et al., 2003; Sugihara et al., 2002). In yeast and animals, different 

models for the assembly of the exocyst complex exist. Some of these suggest that sec5, 

together with other exocyst components, forms a subcomplex that localises to the 

plasma membrane or binds to secretory vesicles before the complete octameric 

complex is formed (Ahmed et al., 2018; Boyd et al., 2004; Maib & Murray, 2022; 

Moskalenko et al., 2003; Pereira et al., 2023). Our co-IP datasets did not include any 

of the other sec components, including those reported to interact directly with SNARE 

proteins and shown to precipitate with sec5 (Ahmed et al., 2018; Dubuke et al., 2015; 

Katoh et al., 2015; Shen et al., 2013; Yue et al., 2017). In the future, it must be tested 

whether the co-precipitated IPT/TIG domain-containing protein from S. rosetta is a 

sec5 homologue and whether it interacts directly with synaptobrevin 1 in 

choanoflagellates. If the IPT/TIG domain-containing protein from S. rosetta is indeed 

part of an exocyst complex, this may imply that a sec5 protein from choanoflagellates 

bears a closer resemblance to the animal sec5 than to yeast due to the absence of the 

IPT/TIG domain in Saccharomyces cerevisiae (Mott et al., 2003). 

Among the proteins identified in the synaptobrevin 1 co-IPs were ribosomal, 

proteasomal and metabolic proteins. Some of these exhibited high intensities and were 

also found in the proteomes of isolated synaptic vesicles (Bradberry et al., 2022; 

Takamori et al., 2006; Taoufiq et al., 2020). Of these proteins, not all are likely to be 
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specific interaction partners of synaptobrevin 1, but instead are highly abundant in the 

cytosol. It is possible that signals from these abundant proteins suppressed the signals 

from specific interaction partners with lower abundance (Sun et al., 2005; Taoufiq et 

al., 2020). Although we assume that, similar to yeast, only a few vesicles are docked 

to and in contact with membrane-bound SNAREs, we would still have expected to find 

other SNARE proteins among the interaction partners (Paper I; Bradberry et al., 2022; 

Brennwald et al., 1994; Laundon et al., 2019; Takamori et al., 2006; Taoufiq et al., 

2020). One possibility is that all SNARE complexes were efficiently disassembled. 

This is indicated by the presence of the ATPase NSF and γ-SNAP, which were enriched 

in the second co-IP experiment (Table S3; Hayashi et al., 1995; Söllner et al., 1993a; 

Söllner et al., 1993b). Another possibility is that the synaptobrevin 1 antibody used for 

the co-IP experiments blocks the interaction with other SNARE proteins. 

The synaptobrevin 1 antibody used for all experiments is a polyclonal antibody raised 

against the cytosolic domain of S. rosetta synaptobrevin 1 (Paper I and Paper II). 

For the formation of the SNARE complex, the cytosolic domain of synaptobrevin 1 is 

important (Pobbati et al., 2006). Conversely, this may also mean that a fully assembled 

SNARE complex hides the antigens recognised by the synaptobrevin 1 antibody and 

therefore cannot be enriched by co-IP.  

To improve binding specificity and reduce non-specific binding, the co-IP experiment 

was repeated several times and optimised in various ways (intermediate optimisation 

experiments not shown). For the first co-IP experiment, all samples were in-gel 

digested for mass spectrometry analysis (Figure S3). In the second, optimised co-IP 

experiment, on the other hand, samples were in-solution digested, which usually leads 

to a higher yield of identified proteins than in-gel digested samples (Havliš & 

Shevchenko, 2004; Klont et al., 2018). However, we measured a larger number of 

proteins in the in-gel digested samples of the first co-IP experiment (Table S2, 

Figure S3). The lower number of proteins identified in the second, optimised co-IP 

experiment could therefore mean that by optimising the ratio of lysate to beads, non-

specific binding proteins were successfully excluded (Table S3). As an additional 

optimisation, we also performed a co-IP with affinity-purified synaptobrevin 1 

antibody in the second, optimised experiment. Since the concentration of the affinity-
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purified antibody was greatly reduced by the purification process, smaller amounts of 

this antibody had to be used for the co-IP. The ratio of antibodies to beads also had to 

be reduced by ~57.62% in the co-IP with affinity-purified antibody. The smaller 

amount of antibody-coupled beads to larger amounts of S. rosetta cell lysate may have 

led to the substantially lower number of identified proteins. Considering that the co-IP 

with affinity-purified antibody identified only a few proteins that were not present in 

all other synaptobrevin 1 co-IPs, we cannot exclude that the affinity purification 

process affected the stability and functionality of the antibody.  

In order to further verify potential interaction partners in the future and to avoid 

dependence on antibodies, competitive pull-down experiments with recombinantly 

expressed S. rosetta synaptobrevin 1 could be performed. For example, S. rosetta cell 

lysate could be added to biotinylated, glutathione S-transferase- or His-tagged 

synaptobrevin 1 coupled to streptavidin, glutathione Sepharose or nickel nitrilotriacetic 

acid beads, respectively (Di Giovanni et al., 2010; Xie et al., 2017). 

Additionally, proteins in S. rosetta cells could be cross-linked with membrane-

permeable cross-linking agents such as disuccinimidyl suberate before cell lysis. 

Such an approach would allow us to study the in vivo interactions and to assess weak 

and transient protein-protein interactions in S. rosetta (Dettmer et al., 2013; Edelmann 

et al., 1995; Söllner et al., 1992). Individual potential interaction partners could also be 

investigated by in vivo co-localisation studies (Booth et al., 2018; Wetzel et al., 2018). 

Moreover, thermal proteome profiling, which is currently under development in our 

laboratory, may reveal unexpected interaction partners of synaptobrevin 1 and other 

synaptic protein homologues in S. rosetta (Franken et al., 2015; Reinhard et al., 2015; 

Savitski et al., 2014).  

Nonetheless, our results suggest successful enrichment of S. rosetta synaptobrevin 1 

by all synaptobrevin 1 co-IPs (Figure 4 B-C, Table S2, Table S3). This could be 

useful for numerous future experiments that require native synaptobrevin 1. 

As mentioned above, native S. rosetta synaptobrevin 1 could be used for comparative 

cleavage assays, or an attempt could be made to reconstitute it in artificial liposomes 

and investigate it in fusion experiments (Weber et al., 1998). Although the specificity 
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of the identified interaction partners remains to be verified, our results indicate that 

S. rosetta synaptobrevin 1 can be immunoprecipitated together with potential 

interaction partners.   

The immunostainings in paper I indicate that synaptobrevin 1 is localised at the 

vesicle-rich apical and basal pole of S. rosetta cells (figure 2 c-f). To further assess the 

subcellular localisation of synaptobrevin 1 in S. rosetta, we used a detergent-free 

subcellular fractionation protocol. According to our results, synaptobrevin 1 appears to 

be present in the cytosolic and membrane fraction, where we also suspect putative 

secretory vesicles to be present (Huttner et al., 1983; Pearse, 1975; Walworth & 

Novick, 1987; Whittaker et al., 1964; Zinser et al., 1991). We therefore hypothesise 

that, as in animals and yeast, synaptobrevin 1 may be localised on secretory vesicles in 

S. rosetta (Baumert et al., 1989; Protopopov et al., 1993). Further studies in the future 

are needed to confirm this assumption. For example, the described subcellular 

fractionation protocol could be combined with a sucrose density gradient and 

ultracentrifugation as performed by Hake (2019) and Sigg et al. (2017) to enrich the 

membrane fraction. In combination with immunoisolation, this could allow the 

enrichment of secretory vesicles from choanoflagellates, similar to the isolation of 

synaptic vesicles (Burger et al., 1989; Grønborg et al., 2010; Morciano et al., 2005; 

Takamori et al., 2000). In addition, electron microscopic analysis and expansion 

microscopy, possibly even in combination with super-resolution microscopy, using the 

affinity-purified synaptobrevin 1 antibody, could help to verify the isolation of vesicles 

and to determine the exact localisation of synaptobrevin 1 in S. rosetta (Burger et al., 

1989; Chen et al., 2015; Chen et al., 2021; Gao et al., 2021; Grønborg et al., 2010; 

Halpern et al., 2017; Klimas et al., 2023; Morciano et al., 2005; Takamori et al., 2000; 

Wang et al., 2018; Zhuang & Shi, 2023).  

In the future, it will be important to also raise antibodies against S. rosetta 

synaptobrevin 2. This would allow us to investigate the localisation and potential 

interaction partners of S. rosetta synaptobrevin 2 in a similar way as synaptobrevin 1 

was studied (Paper I: figure 2 c-f, Paper II: Figure 4 and Figure 5). 
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5. Conclusion and future perspectives 

In the two studies conducted, the evolutionary origin of the machinery important for 

regulated synaptic vesicle exocytosis was investigated. The first study showed that 

most of the investigated core proteins of neurosecretory vesicles predate neurons, as 

they are also present in the genomes of unicellular organisms. Moreover, 3D 

reconstructions revealed diverse vesicular landscapes in the two choanoflagellate 

species S. rosetta and M. brevicollis, where vesicles could be assigned to distinct 

classes. Immunostainings of single and colonial S. rosetta cells indicated the presence 

of synaptobrevin at the vesicle-rich apical and basal pole of the cells. 

There, synaptobrevin staining appeared to overlap with tubulin antibody staining. 

In summary, in the first study we found features in choanoflagellates that are also 

present in specialised secretory cells such as neurons, including polarised vesicle 

landscapes, plasma membrane contact sites, a polarised shape and potentially a directed 

transport system. 

The second study aimed to investigate putative secretory synaptobrevin homologues in 

more detail in S. rosetta. Since little was known about the function and localisation of 

synaptobrevin in choanoflagellates, I investigated the role of synaptobrevin in 

S. rosetta, which allowed comparisons with exocytotic synaptobrevin from animals. 

In S. rosetta, there are two putative secretory synaptobrevin homologues that seem to 

be essential for choanoflagellates, similar to those in animals. One of these 

synaptobrevins from S. rosetta has specific amino acids at certain positions, similar to 

animal synaptobrevin 2, which are thought to be important for substrate recognition by 

rBoNT/D-LC. However, unlike animal synaptobrevin 2, recombinant synaptobrevin 

from S. rosetta is not cleaved by rBoNT/D-LC. In addition, potential interaction 

partners of synaptobrevin in S. rosetta were identified by co-immunoprecipitation. 

Over 20% of the identified potential interaction partners were also found in proteomic 

studies on isolated synaptic vesicles. Moreover, subcellular fractionation experiments 

of S. rosetta indicate the presence of synaptobrevin in the cytosolic and membrane 

fractions. These findings support the hypothesis that synaptobrevin is localised on the 

membrane of vesicles in S. rosetta. In conclusion, this study has elucidated previously 
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unknown properties of putative secretory synaptobrevin in choanoflagellates and 

allowed a comparison with animal secretory synaptobrevin. 

My findings lead to many new questions and speculations, such as: What do 

synaptobrevin-positive vesicles contain and what is their function? 

Do choanoflagellates communicate? And if this is the case, do unicellular 

choanoflagellates communicate via secretion, or do only colonies communicate via 

intercellular bridges? Are budding, tethering, docking and fusion events of secretory 

vesicles in choanoflagellates regulated by the same machineries as in neurons? And do 

choanoflagellates have the molecular set-up for highly regulated secretion? All these 

questions remain a conundrum that may be solved in the future by isolating putative 

secretory vesicles and studying their protein composition and content. 
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