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ABSTRACT
We study periodic Lyapunovmatrix equations for a general discrete-
time linear periodic system Bpxp − Apxp−1 = fp, where the matrix
coefficients Bp and Ap can be singular. The block coefficients of the
inverse operator of the system are referred to as the Green matrices.
We derive new decay estimates of the Greenmatrices in terms of the
spectral norms of special solutions to the periodic Lyapunov matrix
equations. The study is based on the periodic Schur decomposition
of matrices.
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1. Introduction

Linear periodic systems are frequently used mathematical models of periodic phenom-
ena. A variety of such models is presented in the IFAC proceedings volume [1]. The book
[2] provides fundamentals of modelling and analysis of both continuous and discrete-
time linear periodic systems with emphasis on control theory. Modern algorithmic and
computational issues related to linear periodic systems are discussed in papers [3–5].

We are concerned with the general discrete-time linear periodic systems here, namely
with the doubly infinite linear systems of the form

Bpxp − Apxp−1 = fp, ∀p ∈ Z, (1)

whereZ is the set of integer numbers. TheN × N complexmatrices Bp andAp are periodic
in pwith period P ≥ 1 so that Bp+Pk = Bp and Ap+Pk = Ap for all integers k. The matrices
Ap and Bp are allowed to be singular and fp is a given complexN-vector. The doubly infinite
vector sequences xp and fp are assumed to be elements of l2, i.e.

∑∞
p=−∞ x∗

pxp < ∞ and∑∞
p=−∞ f ∗p fp < ∞. By V∗ we denote the conjugate transpose of a matrix or vector V.
Let us first consider the time-invariant case where Bp = I is the identity matrix and

Ap = A is constant for all p ∈ Z, and the matrix A is discrete-time stable, that is, all its
eigenvalues lie in the open unit disk {z ∈ C : |z| < 1} of the complex plane C. Then, the
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sensitivity of the stability of A to small perturbations can be characterized by the value
minφ∈R σmin(A − eiφI), where σmin denotes the minimum singular value of a matrix, i =√−1 and R is the set of real numbers. The sensitivity can be alternatively characterized
by the parameter 1/‖H‖2, where H = ∑∞

n=0(A
n)∗An is a positive definite solution of the

discrete-time Lyapunov matrix equation H − A∗HA = I. Moreover, the magnitude ‖H‖2
allows us to derive the decay estimate (see, e.g. [6, chap. 9] or Remark 1.1)

‖An‖2 ≤
√

‖H‖2 (1 − 1/‖H‖2)n/2 , n ≥ 0. (2)

The interest of this estimate is not so much its sharpness (although it is very good for suffi-
ciently large n), but rather the fact that it is easily implementable as it is based on standard
Lyapunov matrix equations and eigenvalues of Hermitian positive-definite matrices. The
literature on efficient algorithms dealing with these issues is indeed rich, see, e.g. [7, 8].
As we shall see later in this section and throughout the paper, our goal is to extend this
estimate to system (1). This will be achieved again by means of some Lyapunov matrix
equations, but unlike the time-invariant case, here the literature is still in its infancy when
it comes to implementation issues, see the discussion at the end of this section.

The concept of matrix stability is naturally extended to the concept of spectral
dichotomy of matrices and regular matrix pencils, or operators as in [9]. For example, a
matrix A is said to possess the circular spectral dichotomy if it has no eigenvalues on the
unit circle {z ∈ C : |z| = 1}. A sensitivity theory of the circular dichotomy of matrices is
given in [10]. Its extension to regular matrix pencils is developed in [11, 12]. The mono-
graph [6] presents a unified theory of the spectral dichotomyofmatrices and regularmatrix
pencils.

The spectral dichotomy theory developed in [6, 10–12] can be extended to discrete-time
periodic systems. A standard way of extension is based on the so called liftingmethod [13],
which transforms the N × N periodic system (1) to an augmented time-invariant system
with matrix coefficients of size NP × NP, for example of the form

BXn − AXn−1 = Fn, n ∈ Z, (3)

where Xn = [xTnP, x
T
nP+1, . . . , x

T
nP+P−1]

T , Fn = [f TnP, f
T
nP+1, . . . , f

T
nP+P−1]

T and

A =

⎡
⎢⎢⎢⎢⎣

A0
⎤
⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎢⎣

B0
−A1 B1

−A2 B2
. . . . . .

−AP−1 BP−1

⎤
⎥⎥⎥⎥⎥⎦ .

Throughout this section we assume that the matrix B − eiφA is nonsingular for all φ ∈
R (when this assumption fails, the system (3) may not be solvable, see Proposition 1.1).
Consider the Fourier series

(B − eiφA)−1 =
∞∑

n=−∞
Gn einφ (4)

with the matrix coefficients Gn, which we refer to as the Green matrices for the system (3).
This denomination is used, for example, in [10] for systems of type (3), whereB is the iden-
tity matrix. It follows that the unique l2-solution to (3) is represented in the convolutional
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form

Xn =
∞∑

k=−∞
Gn−kFk, n ∈ Z. (5)

The matrix of the inverse operator determined by (5) is block Toeplitz and doubly infinite.
The Toeplitz blocks are of size NP × NP.

Proposition 1.1: If B − A eiφ0 is singular for some φ0 ∈ R, then system (2) has no solution
Xn in l2 for some Fn ∈ l2.

Proof: We may assume that the matrices B and A are upper triangular and that BNN −
ANN eiφ0 = 0 by using the QZ factorization of the matrix pencil B − μA with eigenvalue
reordering [7]. Then the entries yn = (Xn)N and gn = (Fn)N satisfy the doubly infinite
system

BNNyn − ANNyn−1 = gn. (6)

When BNN = ANN = 0, the right-hand side gn must be 0 identically and this contradicts
to existence of a solution for all sequences gn. Now assume that BNN 
= 0 and ANN 
= 0.
Then the solution of (6) with g0 = 1 and gn = 0 for all n 
= 0 has the components yn =
x0 e−inφ0 for n ≥ 0 and yn = y−1 e−i(n+1)φ0 for n<0. The sequence yn belongs to l2 only if
y0 = y−1 = 0, i.e. g0 must equal 0, which contradicts the assumption g0 = 1. �

Proposition 1.1 proves that the operator L in l2 defined by (2) is bijective under
the condition that B − A eiφ is nonsingular for all φ ∈ R. Since the inverse operator
L−1 is block convolutional as in (5), Gn → 0 as |n| → ∞. The matrix equation I =∑∞

n=−∞ Gn einφ(B − A eiφ) yields the following identities for the matrix Fourier coeffi-
cients Gn:

GnB − Gn−1A = δnI, n ∈ Z, (7)

where δn is the Kronecker symbol such that δ0 = 1 and δn = 0 for n 
= 0. Similarly, I =
(B − A eiφ)

∑∞
n=−∞ Gn einφ yields BGn − AGn−1 = δnI, n ∈ Z.

The following theorem shows that the decay rate ofGn as |n| → ∞ can still be expressed
analogously to (2), but the derivation is rather involved (see appendix for more detail).

Theorem 1.2:

‖Gn‖2 ≤
√

‖H+‖2
(
1 − 1

‖�+B∗H+B�+‖2

)n/2
, n ≥ 0, (8)

‖G−n‖2 ≤
√

‖H−‖2
(
1 − 1

‖�−A∗H−A�−‖2

)(n−1)/2
, n > 0, (9)

where �+ and �− are the orthogonal projectors onto the right deflating subspaces of the
pencil λB − A corresponding to the eigenvalues respectively inside and outside the unit circle,
andH+ = ∑∞

n=0 G∗
nGn,H− = ∑−1

n=−∞ G∗
nGn are Hermitian positive semidefinite matrices

satisfying the discrete-time Lyapunov matrix equations

B∗H+B − A∗H+A = (G0B)∗(G0B), (10)
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A∗H−A − B∗H−B = (G−1A)∗(G−1A). (11)

Remark 1.1: In the particular case when P = 1, Ap = A and Bp = I for all p and A is
discrete-time stable, then �+ = I, �− = 0, Gn = An if n ≥ 0, Gn = 0 if n<0, H+ =∑∞

n=0(A
n)∗An,H− = 0, and the estimate (8) reduces to (2).

Given a sequenceFn such thatFn = 0 whenever |n| > nK for some positive integer nK ,
the corresponding solution Xn to (3) decays as |n| → ∞. Owing to (5) the decay rate of
Xn is bounded by the decay rate of Gn as |n| → ∞.

A drawback of estimates (8) and (9) is that they involve the dense matricesH+ andH−
of large size NP × NP (which is the case, e.g. for small N and large P or for medium sizes
N and P). This drawback is overcome by means of special periodic Lyapunov matrix equa-
tions of sizeN × N as in [14]. However, this reference restricts the study to the case where
Bp = I and nonsingular Ap and furthermore, the periodic Lyapunov matrix equations are
constructed in a form which is not suitable for numerical computation. The present paper
removes these restrictions and provides periodic Lyapunov matrix equations in the gen-
eral case, where the matrices Bp and Ap can be singular. In addition, we give tighter decay
estimates than those in [14].

More specifically, our approach, where periodicity plays an essential role, is based on
the periodic Schur decomposition ofmatrices with reordering and solutions of generalized
periodic Sylvester systems, which allow us to block diagonalize periodic matrix sequences
according to the spectrum parts of the monodromy matrix inside and outside the unit
circle. The periodic Lyapunov matrix equations are then written for the diagonal blocks
thus avoiding projected right-hand sides. The non-projected periodic Lyapunov equations
that is without projected right-hand side have advantage that they admit unique solutions,
which can be found by efficient algorithms of numerical linear algebra; see e.g. [15]. These
issues are developed in Sections 2, 3 and 4. Finally, in Sections 5 and 6, the desired decay
estimates are written in terms of solutions to the non-projected periodic Lyapunov matrix
equations.

The periodic Schur decomposition is a powerful tool for solving periodic Lyapunov
matrix equations and periodic Riccatimatrix equations; see e.g. [3, 4, 13, 16] and references
therein. Periodic Lyapunov matrix equations in the context of balanced model reduction
for periodic linear descriptor systems are treated in [17]. Note however that, so far, con-
vergence failure issues in the periodic Schur decomposition limit its practical utility, but
progress is being made; see [18].

The exponential decay of the entries of inverse of band matrices has been of some use
in spline approximations as mentioned in [19]. Decay patterns of matrix inverses have also
attracted considerable interest in linear system preconditioning, low-rank approximation
strategies such as hierarchical matrices, wavelets etc; see [20, 21] and references therein.
The exponential decay estimates of the present paper can be useful in the estimation of sta-
bility regions near periodic trajectories and in the Smith typemethods [22, 23] for periodic
matrix equations; see e.g. the analysis in [24] based on the decay bounds for the continuous
periodic systems. The decay estimates also provide a quantitative convergence analysis of
the so called doubling iterations for solving certain matrix equations [25].

Part IV of [26] contains other applications of exponential decay estimates and describes
alternative decay estimates based on the Kreiss matrix theorem. However, the constants in
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the Kreiss matrix theorem are too expensive for computing [27]. Moreover, these estimates
depend on the matrix size.

2. Green’s matrices and periodic Lyapunov equations

The doubly infinite system (1) determines a bounded linear transformL : x = (xp) �→ f =
(fp) in the space l2 of square-summable doubly infinite vector sequences. We assume that
L is invertible and represent its bounded inverse L−1 in the matrix form

xl =
∑
p∈Z

Gl,pfp, l ∈ Z, (12)

where we call the coefficient matrices Gl,p by Green’s matrices for (1) in l2. In the control
theory literature, the Green matrices are usually called the fundamental matrices.

Formula (5) determines the block structure of Gn−k:

Gn−k =

⎡
⎢⎢⎢⎣

GnP,kP GnP,kP+1 . . . GnP,kP+P−1
GnP+1,kP GnP+1,kP+1 . . . GnP+1,kP+P−1

...
... · · · ...

GnP+P−1,kP GnP+P−1,kP+1 . . . GnP+P−1,kP+P−1

⎤
⎥⎥⎥⎦ . (13)

It follows from (13) that Gl,p is P-periodic:

Gl+Pm,p+Pm = Gl,p for allm ∈ Z. (14)

The structure (13) also implies that the positive semidefinite Hermitian matrices

H+
p =

∞∑
l=p

G∗
l,pGl,p, H−

p =
p−1∑

l=−∞
G∗
l,pGl,p, p ∈ Z (15)

are the diagonal N × N blocks of the matrices H+ and H− used in (10) and (11). The
matrices H+

p and H−
p are periodic in p with period P on account of (14).

It follows from (12) that Green’s matrices satisfy the identity

BlGl,p = AlGl−1,p + δl,pI (16)

for all l, p ∈ Z. The Kronecker symbol δl,p equals 1 if l = p or 0 otherwise. The iden-
tity (16) is simply the elementwise expression of equation LL−1 = I , where I stands for
the identity operator in l2. Inserting the equality fp = Bpxp − Apxp−1 into (12) gives the
elementwise expression of equation L−1L = I :

Gl,pBp = Gl,p+1Ap+1 + δl,pI. (17)

The matrices H+
p and H−

p are solutions to the following pair of periodic Lyapunov matrix
equations

B∗
pH

+
p Bp − A∗

p+1H
+
p+1Ap+1 = (Gp,pBp)∗(Gp,pBp), (18)
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A∗
p+1H

−
p+1Ap+1 − B∗

pH
−
p Bp = (Gp,p+1Ap+1)

∗(Gp,p+1Ap+1). (19)

These equations are direct implications of the identity (17). For instance, since Gl,pBp =
Gl,p+1Ap+1 for l 
= p,

A∗
p+1H

+
p+1Ap+1 =

∞∑
l=p+1

(Gl,p+1Ap+1)
∗Gl,p+1Ap+1 =

∞∑
l=p+1

(Gl,pBp)∗(Gl,pBp)

= B∗
pH

+
p Bp − (Gp,pBp)∗(Gp,pBp).

Equation (19) is derived analogously. We show in Section 4 that Gp,pBp and
−Gp,p+1Ap+1 = I − Gp,pBp are projectors for all p ∈ Z; see Corollary 4.2.

Derivations in Section 4 show that the solution H+
p of (18) and solution H−

p of (19) are
unique only under the additional conditions

(BpGp,p)
∗H+

p BpGp,p = H+
p (20)

(ApGp−1,p)
∗H−

p ApGp−1,p = H−
p (21)

Note that computation of H+
p and H−

p from the systems of equations (18), (20)
and (19), (21) is complicated by the fact that they are overdetermined. Below we get rid
of the projected right-hand sides in (18), (19) and conditions (20), (21).

3. Periodic Schur decomposition and block diagonalization

By a slight abuse of notation we write the monodromy matrix formally as

M = B−1
P APB−1

P−1AP−1 . . .B−1
1 A1 (22)

even if somematrices Bp are singular. Such usage can be justified for our purposes by small
perturbation of the matrices Bp. A strict but more involved consideration is based on the
lifting method. If some Bp are singular then the matrix (22) may have infinite eigenvalues
and indefinite eigenvalues. The eigenvalue structure of M is easily revealed by means of
the periodic Schur decomposition, which is an extension of the QZ factorization of linear
matrix pencils to periodic matrix pencils; see [28, 29] for more details.

Theorem 3.1 (Periodic Schur decomposition): There exist unitary matrices Qp, Zp, p =
1, . . . ,P, and QP+1 = Q1 such that all the transformed matrices

B̂p = Z∗
pBpQp+1, Âp = Z∗

pApQp, p = 1, . . . ,P,

are upper triangular.
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The diagonal entries of B̂p, Âp provide spectral information about system (1). By the aid
of Theorem 3.1 the monodromy matrix (20) reads

M = Q1M̂Q∗
1, where M̂ = B̂−1

P ÂPB̂−1
P−1ÂP−1 . . . B̂−1

1 Â1. (23)

The eigenvalues λi ofM are the diagonal entries of M̂, namely

λi = ai/bi, bi =
P∏

p=1
(B̂p)ii, ai =

P∏
p=1

(Âp)ii.

When (ai, bi) = (0, 0), we say that λi is indefinite. From now on, we restrict ourselves to
the regular case, when the monodromy matrix M has no indefinite eigenvalues. If bi 
= 0
(bi = 0), then λi is a finite (infinite) eigenvalue ofM.

We also assume below that the monodromy matrixM in (22) has no eigenvalues on the
unit circle {λ ∈ C : |λ| = 1}. Otherwise, it is easy to construct a solution xp of (1) such that
the solution xp 
∈ l2 and the corresponding right-hand side fp ∈ l2.

It is possible to select an arbitrary order of eigenvalues in the periodic Schur decompo-
sition of Theorem 3.1; see [30]. Let the eigenvalues be ordered such that λ1, . . . , λN0 lie in
the open unit disk, i.e. |λi| < 1 for i = 1, . . . ,N0, and λN0+1, . . . , λN0+N∞ lie outside the
closed unit disk, so that N0 + N∞ = N and |λi| > 1 for i = N0 + 1, . . . ,N.

Let us block partition the transformed matrices subject to the above ordering

B̂p =
[
B0
p B0∞

p
0 B∞

p

]
, Âp =

[
A0
p A0∞

p
0 A∞

p

]
. (24)

The matrices B̂p and Âp are then simultaneously block-diagonalized as
[
I −Lp
0 I

]
B̂p

[
I Kp+1
0 I

]
=

[
B0
p 0
0 B∞

p

]
= B̃p, (25)

[
I −Lp
0 I

]
Âp

[
I Kp
0 I

]
=

[
A0
p 0
0 A∞

p

]
= Ãp, (26)

where the blocks Kp and Lp satisfy the generalized P-periodic Sylvester system (an analog
of the generalized Sylvester matrix equations; see, e.g. [31])

B0
pKp+1 − LpB∞

p = −B0∞
p , A0

pKp − LpA∞
p = −A0∞

p , p = 1, . . . ,P, (27)

KP+1 = K1. (28)

Since B0
p and A∞

p are nonsingular due to the ordering, the Sylvester matrix equations
can be rewritten in the form Kp+1 = (B0

p)
−1LpB∞

p − (B0
p)

−1B0∞
p and Lp = A0

pKp(A∞
p )−1 +

A0∞
p (A∞

p )−1. After subsequent elimination of Lp we obtain the periodic Lyapunov matrix
system with respect to the set of matrices Kp, p = 1, . . . ,P,

Kp+1 = (B0
p)

−1A0
pKp(A∞

p )−1B∞
p − Fp, (29)

where KP+1 = K1, and Fp = (B0
p)

−1B0∞
p − (B0

p)
−1A0∞

p (A∞
p )−1B∞

p .
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The system of P equations (29) can be further reduced to a single nonsymmetric
discrete-time Lyapunov matrix equation

Kp − M0
pKpM∞

p−1 = Cp, (30)

where

M0
p = (B0

p+P−1)
−1A0

p+P−1 · · · (B0
p)

−1A0
p,

M∞
p−1 = (A∞

p )−1B∞
p · · · (A∞

p+P−1)
−1B∞

p+P−1,

and

Cp =
P−1∑
j=1

⎛
⎝
⎛
⎝ j∏

i=P−1
(B0

p+i)
−1A0

p+i

⎞
⎠ Fp+j−1

P−1∏
i=j

(A∞
p+i)

−1B∞
p+i

⎞
⎠ − Fp+P−1.

Equation (30) has a unique solution because both matricesM0
p andM∞

p−1 are discrete-time
stable; see, e.g. [6]. This leads to the following

Theorem 3.2 (Periodic block diagonalization with eigenvalue ordering): Assume that
the monodromy matrix M has no indefinite eigenvalues and has no eigenvalues on the unit
circle. Then, there exist nonsingular matrices Q̃p, Z̃p, p = 1, . . . ,P, and Q̃P+1 = Q̃1 such that

B̃p = Z̃−1
p BpQ̃p+1 Ãp = Z̃−1

p ApQ̃p,

where all the transformed matrices B̃p, Ãp, p = 1, . . . ,P, are upper triangular and block
diagonal. The diagonal blocks B0

p, A0
p, B∞

p , A∞
p of the transformed matrices

B̃p =
[
B0
p 0
0 B∞

p

]
, Ãp =

[
A0
p 0
0 A∞

p

]

are such that the eigenvalues of the monodromy matrices M0
p = (B0

p+P−1)
−1A0

p+P−1 · · ·
(B0

p)
−1A0

p and M∞
p = (A∞

p−P+1)
−1B∞

p−P+1 · · · (A∞
p )−1B∞

p lie inside the open unit disk for all
integer p.

Proof: The matrices

Q̃p = Qp

[
I Kp
0 I

]
, Z̃p = Zp

[
I Lp
0 I

]

provide the desired block diagonalization; see (25), (26). �

4. Block diagonal representations

Recall that the matrix sequences Bp, Ap, H+
p , H−

p are P-periodic in p. The Green matrices
Gl,p are also periodic as Gl,p = Gl+Pk,p+Pk for all k ∈ Z. If necessary, the matrices Qp, Zp,
Kp, Lp are extended P-periodically for all p ∈ Z.
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The transformed Green matrices

G̃l,p = Q̃−1
l+1Gl,pZ̃p (31)

satisfy the analogue of (7), namely

G̃l,pB̃p = G̃l,p+1Ãp+1 + δl,pI (32)

and also the similar equation B̃lG̃l,p = ÃlG̃l−1,p + δl,pI.

Theorem 4.1: The transformed Green matrices G̃l,p are block diagonal

G̃l,p =
[
G0
l,p 0
0 G∞

l,p

]
(33)

with the blocks

G0
l,p =

⎧⎨
⎩
0, l < p,
(B0

p)
−1, l = p,

((B0
l )

−1A0
l ) . . . ((B0

p+1)
−1A0

p+1)(B
0
p)

−1, l > p.
(34)

G∞
l,p =

⎧⎨
⎩
0, l > p − 1,
−(A∞

p )−1, l = p − 1,
−((A∞

l+1)
−1B∞

l+1) . . . ((A∞
p−1)

−1B∞
p−1)(A

∞
p )−1, l < p − 1.

(35)

Proof: It is easy to verify that matrices (33) with the blocks (34) and (35) satisfy
Equation (32). Moreover,

lim
l→+∞

‖G0
l,p‖ = 0, lim

l→−∞
‖G∞

l,p‖ = 0. (36)

Convergence in (36) is linear. Therefore, the operator (12) constructed from the matri-
ces (33) is bounded in l2 and coincides with L−1 owing to uniqueness of the inverse
operator in l2. �

Corollary 4.2: The identities G0
p,pB0

p = I and G∞
p−1,pA

∞
p = −I are valid and

Gp,pBp = Q̃p+1

[
I

0

]
Q̃−1
p+1, −Gp−1,pAp = Q̃p

[
0

I

]
Q̃−1
p

are projectors.

Let us denote the upper triangular factor of the Cholesky factorization of I + LpL∗
p by

(I + LpL∗
p)

1/2 and that of I + K∗
pKp by (I + K∗

pKp)
1/2.

Proposition 4.3:

‖Gl,p‖2 = ‖G0
l,p(I + LpL∗

p)
1/2‖2, l ≥ p, (37)

‖Gl,p‖2 = ‖(I + K∗
l+1Kl+1)

1/2G∞
l,p‖2, l ≤ p − 1. (38)
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Proof: If l ≥ p, then Gl,pG∗
l,p = Ql+1

[
G0
l,p(I + LpL∗

p)(G
0
l,p)

∗ 0
0 0

]
Q∗
l+1. If l ≤ p − 1, then

G∗
l,pGl,p = Zp

[
0 0
0 (G∞

l,p)
∗(I + K∗

l+1Kl+1)G∞
l,p

]
Z∗
p . �

The transformed matrices

H̃+
p = Z̃∗

pH
+
p Z̃p, H̃−

p = Z̃∗
pH

−
p Z̃p. (39)

are block diagonal

H̃+
p =

[
H0
p 0
0 0

]
, H̃−

p =
[
0 0
0 H∞

p

]
(40)

with the diagonal blocks

H0
p =

∑
l≥p

(G0
l,p)

∗G0
l,p and H∞

p =
∑
l≤p−1

(G∞
l,p)

∗(I + K∗
l+1Kl+1)G∞

l,p. (41)

The P-periodic matrix sequences H0
p and H∞

p satisfy the periodic discrete-time Lyapunov
matrix systems

(B0
p)

∗H0
pB

0
p − (A0

p+1)
∗H0

p+1A
0
p+1 = I, (42)

(A∞
p+1)

∗H∞
p+1A

∞
p+1 − (B∞

p )∗H∞
p B

∞
p = (I + K∗

p+1Kp+1). (43)

To estimate the norms in (37) and (38) we introduce the following matrices:

B̌0
p = (I + LpL∗

p)
−1/2B0

p, B̌∞
p = B∞

p (I + K∗
p+1Kp+1)

−1/2, (44)

Ǎ0
p = (I + LpL∗

p)
−1/2A0

p, Ǎ∞
p = A∞

p (I + K∗
pKp)

−1/2, (45)

Ǧ0
l,p = G0

l,p(I + LpL∗
p)

1/2, Ǧ∞
l,p = (I + K∗

l+1Kl+1)
1/2G∞

l,p, (46)

Ȟ0
p =

∑
l≥p

(Ǧ0
l,p)

∗Ǧ0
l,p, Ȟ∞

p =
∑
l≤p−1

(Ǧ∞
l,p)

∗Ǧ∞
l,p = H∞

p . (47)

Note that the monodromy matrices M̌0
p = (B̌0

p+P−1)
−1Ǎ0

p+P−1 · · · (B̌0
p)

−1Ǎ0
p = M0

p and

M̌∞
p = (Ǎ∞

p−P+1)
−1B̌∞

p−P+1 · · · (Ǎ∞
p )−1B̌∞

p = (I + K∗
p+1Kp+1)

1/2M∞
p (I + K∗

p+1Kp+1)
−1/2

are discrete-time stable. We also obtain ‖Gl,p‖2 = ‖Ǧ0
l,p‖2 if l ≥ p and ‖Gl,p‖2 = ‖Ǧ∞

l,p‖2 if
l ≤ p − 1.

The matrices Ȟ0
p and Ȟ∞

p satisfy the periodic discrete-time Lyapunov matrix systems

(B̌0
p)

∗Ȟ0
pB̌

0
p − (Ǎ0

p+1)
∗Ȟ0

p+1Ǎ
0
p+1 = I (48)

(Ǎ∞
p+1)

∗Ȟ∞
p+1Ǎ

∞
p+1 − (B̌∞

p )∗Ȟ∞
p B̌

∞
p = I (49)

which are uniquely solvable. Moreover, all coefficient matrices B̌0
p, Ǎ

0
p+1, B̌

∞
p and Ǎ∞

p+1 in
systems (48) and (49) are upper triangular. Therefore, (48) and (49) are triangular linear
systems when writing them with the Kronecker product of matrices.
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5. Decay estimates I

Theorem 5.1: The following decay estimates hold

‖G0
l,p‖2 ≤

√
‖Ȟ0

p‖2
l−1∏
i=p

(
1 − 1/‖(B̌0

i )
∗Ȟ0

i B̌
0
i‖2

) 1
2 , l ≥ p, (50)

‖G∞
l,p‖2 ≤

√
‖Ȟ∞

p ‖2
p∏

i=l+2

(
1 − 1/‖(Ǎ∞

i )∗Ȟ∞
i Ǎ

∞
i ‖

) 1
2 , l ≤ p − 1, (51)

where the product over an empty set of indices is equal to 1.

Proof: The bound (50) is valid for l = p as a consequence of the inequality (Ǧ0
p,p)

∗Ǧ0
p,p ≤

Ȟ0
p. Further we need the variables x

0
l = Ǧ0

l,pf
0 for l ≥ p such that B̌0

l x
0
l = Ǎ0

l x
0
l−1 when l>p

and B̌0
px0p = f 0. If l>p, then owing to (48) and B̌0

l x
0
l = Ǎ0

l x
0
l−1 we obtain the estimates

(x0l )
∗(B̌0

l )
∗Ȟ0

l B̌
0
l x

0
l = (x0l−1)

∗(Ǎ0
l )

∗Ȟ0
l Ǎ

0
l x

0
l−1

= (x0l−1)
∗(B̌0

l−1)
∗Ȟ0

l−1B̌
0
l−1x

0
l−1 − (x0l−1)

∗x0l−1

≤
(
1 − 1/‖(B̌0

l−1)
∗Ȟ0

l−1B̌
0
l−1‖2

)
· (x0l−1)

∗(B̌0
l−1)

∗Ȟ0
l−1B̌

0
l−1x

0
l−1

≤
⎡
⎣ l−1∏

i=p

(
1 − 1/‖(B̌0

i )
∗Ȟ0

i B̌
0
i‖2

)⎤⎦ (x0p)
∗(B̌0

p)
∗Ȟ0

pB̌
0
px

0
p.

Corollary 4.2 and (44)–(46) imply that Ǧ0
l,lB̌

0
l = I. Since

(x0l )
∗(x0l ) = (x0l )

∗(B̌0
l )

∗(Ǧ0
l,l)

∗Ǧ0
l,lB̌

0
l x

0
l ≤ (x0l )

∗(B̌0
l )

∗Ȟ0
l B̌

0
l x

0
l

we arrive at the inequality

‖Ǧ0
l,pf

0‖22 ≤
⎡
⎣ l−1∏

i=p

(
1 − 1/‖(B̌0

i )
∗Ȟ0

i B̌
0
i‖2

)⎤⎦ (f 0)∗Ȟ0
pf

0,

which yields (50). The estimate (51) is derived similarly using (47), (49), the variables x∞
l =

Ǧ∞
l,pf

∞ for l ≤ p − 1 satisfying B̌∞
l x

∞
l = Ǎ∞

l x
∞
l−1 when l<p−1 and Ǎ∞

p x∞
p−1 = −f∞, the

identities G∞
p,p+1A

∞
p+1 = −I and

Ǧ∞
p,p+1Ǎ

∞
p+1 = (I + K∗

p+1Kp+1)
1/2G∞

p,p+1A
∞
p+1(I + K∗

p+1Kp+1)
−1/2 = −I.

�

Remark 5.1: Let �+
p and �−

p be the orthogonal projectors corresponding to the spectral
projector pair Pp = Gp,pBp and I − Pp = −Gp,p+1Ap+1. It can be shown that for all p =
1, 2 . . . ,P

‖Ȟ0
p‖2 = ‖H+

p ‖2, ‖Ȟ∞
p ‖2 = ‖H−

p ‖2,
‖(B̌0

p)
∗Ȟ0

pB̌
0
p‖2 = ‖�+

p B
∗
pH

+
p Bp�

+
p ‖2, ‖(Ǎ∞

p )∗Ȟ∞
p Ǎ

∞
p ‖2 = ‖�−

p A
∗
pH

−
p Ap�

−
p ‖2.
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6. Decay estimates II

In this section we propose decay estimates which are based on the P-periodic sequences of
the discrete-time stablemonodromymatricesM0

p andM∞
p fromTheorem3.2. The discrete-

time Lyapunov matrix equations H0
p − (M0

p)
∗H0

pM0
p = I and H∞

p − (M∞
p )∗H∞

p M∞
p = I

have unique solutions

H0
p =

∑
k≥0

((M0
p)

∗)k(M0
p)

k, H∞
p =

∑
k≥0

((M∞
p )∗)k(M∞

p )k, (52)

and (2) yields the following estimates for all integer k ≥ 0:

‖(M0
p)

k‖2 ≤
√

‖H0
p‖2

(
1 − 1/‖H0

p‖2
)k/2

, ‖(M∞
p )k‖2 ≤

√
‖H∞

p ‖2
(
1 − 1/‖H∞

p ‖2
)k/2

.
(53)

Theorem 6.1: For all integer k ≥ 0

‖G0
l+Pk,p‖2 ≤

√
‖H0

l+1‖2
(
1 − 1/‖H0

l+1‖2
)k/2 ‖G0

l,p‖2, l = p, p + 1, . . . , p + P − 1,
(54)

‖G∞
l−Pk,p‖2 ≤

√
‖H∞

l ‖2
(
1 − 1/‖H∞

l ‖2
)k/2 ‖G∞

l,p‖2, l = p − 1, . . . , p − P. (55)

Proof: It is easy to see that G0
l+Pk,p = (M0

l+1)
kG0

l,p for l ≥ p and G∞
l−Pk,p = (M∞

l )kG∞
l,p for

l ≤ p − 1. The estimates (53) yield the desired estimates. �

Alternatively, one can apply the decay estimates from [32] formulated in the following

Theorem 6.2: If A is a discrete-time stable matrix, then

‖An‖ ≤
{
e(n + 1)(1 − dA)n, n > (1 − dA)/dA,
1/dA, otherwise, (56)

where dA = minφ∈R σmin(eiφI − A).

Corollary 6.3: Determine the parameters

dM0
p

= min
φ∈R

σmin(eiφI − M0
p) and dM∞

p = min
φ∈R

σmin(eiφI − M∞
p ).

For all integer k ≥ (1 − dM0
p
)/dM0

p
,

‖G0
l+Pk,p‖2 ≤ e(k + 1)(1 − dM0

p
)k, l = p, p + 1, . . . , p + P − 1, (57)

For all integer k ≥ (1 − dM∞
p )/dM∞

p ,

‖G∞
l−Pk,p‖2 ≤ e(k + 1)(1 − dM∞

p )k, l = p − 1, . . . , p − P. (58)
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Example: This simple illustrative example shows that the decay estimates of Theorem 6.1
can be better than the decay estimates of Theorem 5.1.

Let P = 2 and α be a very large real number, say, α = 250. The coefficients of a stable

2-periodic linear system are A1 =
(
2−1

0

)
, A2 =

(
1 α

0 1

)
, B1 = B2 = I. The mon-

odromy matrices areM0
1 = A2A1 =

(
2−1

0

)
andM0

2 = A1A2 = 2−1
(
1 α

0 0

)
. Green’s

matrices Gl,p for p = 0 are G0,0 = I, G2k−1,0 = G2k,0 =
(
2−k

0

)
, k = 1, 2, . . ., and

Gl,0 = 0 for l<0.

Solution to the system (42) is H0 =
(
8/3 5α/3
5α/3 5α2/3 + 2

)
,H1 =

(
5/3 0
0 1

)
. Since

‖H0‖2 ≈ 5α2/3 and ‖H1‖2 = 5/3, the bound (50) gives the weak estimate

‖G2k,0‖2 ≤
√

‖H0‖2 (1 − 1/‖H0‖2)k/2 (1 − 1/‖H1‖2)k/2

≈
√
5
3
α

(
1 − 3

5α2

)k/2 (
1 − 3

5

)k/2
.

On the other hand, from (52) we obtainH0
1 =

(
4/3 0
0 1

)
, so ‖H0

1‖2 = 4/3, and (54) yields

the tight estimate

‖G2k,0‖2 ≤
√

‖H0
1‖2

(
1 − 1/‖H0

1‖
)k/2 = 2√

3
2−k.

We also have dM0
1

= 1/2. Corollary 6.3 provides the weaker estimate ‖G2k,0‖2 ≤ e(k +
1)2−k for k>1.

When thematricesAp and Bp, p = 1, 2, are interchanged, we easily obtain an illustrative
example with singular Bp. The Green matrices Gl,p for p = 0 are G−1,0 = −I, G−2k−1,0 =
G−2k,0 =

(−2−k

0

)
, k = 1, 2, . . ., and Gl,0 = 0 for l ≥ 0.

Solution to the system (43) is H0 =
(
5/3 0
0 1

)
, H1 =

(
8/3 5α/3
5α/3 5α2/3 + 2

)
. Since

‖H0‖2 = 5/3 and ‖H1‖2 ≈ 5α2/3, the bound (51) gives the estimate

‖G−2k−1,0‖2 ≤
√

‖H0‖2 (1 − 1/‖H0‖2)k/2 (1 − 1/‖H1‖2)k/2

≤
√
5
3

(
1 − 3

5α2

)k/2 (
1 − 3

5

)k/2
.

On the other hand, from (54) we obtain H∞
1 =

(
4/3 0
0 1

)
, so ‖H∞

1 ‖2 = 4/3, and (54)

yields the estimate

‖G−2k−1,0‖2 ≤
√

‖H∞
1 ‖2

(
1 − 1/‖H∞

1 ‖)k/2 = 2√
3
2−k.
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Appendix. Proof of Theorem 1.2

The proof requires some intermediate results which we give in the form of lemmas in order to
facilitate the reading.

Lemma A.1: The Hermitian positive semidefinite matrices

H+ =
∞∑
n=0

G∗
nGn, H− =

−1∑
n=−∞

G∗
nGn (A1)

satisfy the discrete-time Lyapunov matrix equations

B∗H+B − A∗H+A = (G0B)∗(G0B), (A2)

A∗H−A − B∗H−B = (G−1A)∗(G−1A). (A3)
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Proof: The proof is based on Equation (7). For n ≥ 1, Gn−1A = GnB, and so

A∗H+A =
∞∑
n=1

(Gn−1A)∗Gn−1A =
∞∑
n=1

(GnB)∗GnB = B∗H+B − (G0B)∗G0B.

Similarly, for n ≤ −1, GnB = Gn−1A, and so

B∗H−B =
−1∑

n=−∞
(GnB)∗GnB =

−1∑
n=−∞

(Gn−1A)∗Gn−1A = A∗H−A − (G−1A)∗G−1A.

�

Lemma A.2: (1) The matrices P+ = G0B and P− = I − P+ = −G−1A are the spectral projec-
tors onto the right deflating subspaces of the pencil λB − A corresponding to the eigenvalues
respectively inside and outside the unit circle.

(2) The orthogonal projectors �+ and �− corresponding to P+ and P− satisfy

P+ = �+P+, P− = �−P− (A4)

(3) The matrices Gn satisfy the identities

G0BGn = Gn = GnBG0 if n ≥ 0, (A5)

−G−1AGn = Gn = −GnAG−1 if n < 0. (A6)

Proof: (1) The spectral projectors onto the right deflating subspace of the pencil λB − A corre-
sponding to the eigenvalues inside the unit circle is given by (see, e.g. [33, chap. 1] or [6, chap.
10]) P+ = 1

2π i
∫
γ
(zB − A)−1B dz, where γ is any closed contour enclosing the eigenvalues in

the open unit disk and excluding the other eigenvalues. Letting γ be the unit circle z = e−iφ ,
0 ≤ φ < 2π leads to P+ = 1

2π
∫ 2π
0 (B − eiφA)−1B dφ.

On the other hand, it follows from (4) thatGn = 1
2π

∫ 2π
0 (B − eiφA)−1e−inφ dφ = 1

2π i
∫
γ
(zB −

A)−1zn dz. Therefore G0B = P+, and equation (7) gives P− = I − G0B = −G−1A.
(2) The orthogonal projectors associated with P+ and P− are given by �+ = P+(P∗+P+ +

P∗−P−)−1P∗+ and �− = P−(P∗+P+ + P∗−P−)−1P∗−. From (P∗+P+ + P∗−P−)P+ = P∗+P+ we
deduce that P+ = (P∗+P+ + P∗−P−)−1P∗+P+ and hence P+ = �+P+. Similarly, we have P− =
�_P_.
In fact, P+ = P̃+P+ for any projector P̃+ onto the same subspace as P+, i.e. when range (P̃+) =
range (P+). Indeed, for each vector x, P̃+(P+x) = P+x. Analogously, P− = P̃−P− for any
projector P̃− onto the same subspace as P−.

(3) Let γ1 and γ2 be closed contours enclosing the eigenvalues in the open unit disk and excluding
the other eigenvalues and suppose that γ1 is inside γ2. Then

G0BGn = 1
(2π i)2

∫
γ2

∫
γ1

(z1B − A)−1B(z2B − A)−1zn2 dz1 dz2

= 1
(2π i)2

∫
γ2

∫
γ1

(z1B − A)−1 − (z2B − A)−1

z2 − z1
zn2 dz1 dz2

= 1
2π i

∫
γ1

(
1
2π i

∫
γ2

zn2
z2 − z1

dz2
)

(z1B − A)−1dz1

− 1
2π i

∫
γ2

(
1
2π i

∫
γ1

dz1
z2 − z1

)
(z2B − A)−1zn2 dz2 = Gn,

where we have used the Cauchy formulas

1
2π i

∫
γ2

zn2
z2 − z1

dz2 = zn1 and
1
2π i

∫
γ1

dz1
z2 − z1

= 0.

The other equalities in (A5) and (A6) can be derived similarly.
�
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Proof of Theorem 1.2.: Note first that the equalities Gn = GnBG0 for n ≥ 0 and Gn = −GnAG−1
for n< 0 imply the equations

H+ = G∗
0B∗H+BG0, (A7)

H− = G∗
−1A∗H−AG−1, (A8)

which should be added to the Lyapunov Equations (A2) and (A3) in order to provide uniqueness of
their solutionsH+ andH−.

Now, owing to (A2), the equalities

G∗
n(B∗H+B)Gn = G∗

n−1A∗H+AGn−1 = G∗
n−1[B∗H+B − (G0B)∗G0B]Gn−1

hold if n ≥ 1. In view of (A4), G0B = �+G0B. As a consequence of (A7)
G∗
n−1B∗H+BGn−1 = G∗

n−1B∗G∗
0B∗H+BG0BGn−1

= G∗
n−1B∗G∗

0�+B∗H+B�+G0BGn−1

≤ ‖�+B∗H+B�+‖2(G0BGn−1)
∗G0BGn−1

and
G∗
n(B∗H+B)Gn ≤ (1 − 1/‖�+B∗H+B�+‖2)G∗

n−1(B∗H+B)Gn−1.
Hence

G∗
n(B∗H+B)Gn ≤ (1 − 1/‖�+B∗H+B�+‖2)nG∗

0 (B∗H+B)G0,
and using again (A7) leads to the estimate

G∗
n(B∗H+B)Gn ≤ (1 − 1/‖�+B∗H+B�+‖2)nH+.

Since G0BGn = Gn, we can derive the estimate

G∗
n(B∗H+B)Gn ≥ G∗

nB∗G∗
0G0BGn = G∗

nGn. (A9)

The estimate (8) of Theorem 1.2 then follows from the inequality G∗
nGn ≤ (1 − 1/‖�+B∗H+B

�+‖2)nH+. The estimate (9) is derived analogously. �

Comments

(1) The Lyapunov equations (A2) and (A3) are often called generalized Lyapunov equations [6,
chap. 10]) because the matrices P+ = G0B and P− = −G−1A are projectors. The generalized
Lyapunov equations were first introduced by Godunov for continuous-time linear systems in
[34]. Since the equations from [34] have nonunique solutions, Bulgakov supplemented them
by additional equations in [35] in order to get a matrix system, which has a unique solution.
Generalized Lyapunov equations with unique solution in the general discrete-time case, includ-
ing singular B, were derived by Malyshev in [11, 12]. Generalized Lyapunov equations for
descriptor continuous-time case were introduced by Stykel in [36].

(2) To our best knowledge, the earliest publication which contains decay estimates of the form (2)
for the continuous-time Lyapunov matrix equations, is [9, proof of Theorem 5.1]. Decay esti-
mates for discrete-time linear systems BXn − AXn−1 = Fn with an arbitrary matrix B first
appeared in [11, 12]. Decay estimates for descriptor continuous-time linear systems are derived
in [36].

(3) In previous publications, the denominators in (8) and (9) are ‖B∗H+B‖2 instead of
‖�+B∗H+B�+‖2 and ‖A∗H−A‖2 instead of ‖�−A∗H−A�−‖2. The variant in (8) and (9)
gives tighter estimates, which, as far as we know, are not available in the literature.
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