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Abstract
Social stimuli seem to be processed more easily and efficiently than non-social stimuli. The current study tested whether 
social feedback stimuli improve reward learning in a probabilistic reward task (PRT), in which one response option is usu-
ally rewarded more often than the other via presentation of non-social reward stimuli. In a pre-registered online study with 
305 participants, 75 participants were presented with a non-social feedback stimulus (a star) and information about gains, 
which is typically used in published PRT studies. Three other groups (with 73–82 participants each) were presented with one 
of three social feedback stimuli: verbal praise, an attractive happy face, or a “thumbs up”-picture. The data were analysed 
based on classical signal detection theory, drift diffusion modelling, and Bayesian analyses of null effects. All PRT variants 
yielded the expected behavioural preference for the more frequently rewarded response. There was no processing advantage 
of social over non-social feedback stimuli. Bayesian analyses further supported the observation that social feedback stimuli 
neither increased nor decreased behavioural preferences in the PRT. The current findings suggest that the PRT is a robust 
experimental paradigm independent of the applied feedback stimuli. They also suggest that the occurrence of a processing 
advantage for social feedback stimuli is dependent on the experimental task and design.
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Introduction

Our daily lives are filled with social feedback signals – the 
nod of a teacher encouraging a student to speak up, the smile 
of a conversation partner signalling continued interest, or the 

aversion of one’s gaze aimed at stopping another person’s 
approach. Individuals make use of these signals to imple-
ment adaptive changes in their behaviour, hoping for favour-
able outcomes. Although these social feedback signals are 
ubiquitous in daily life, psychological research has mostly 
used non-social signals in feedback and learning experi-
ments in the past decades. Non-social feedback stimuli allow 
for a high degree of experimental control but lack ecological 
validity. Tackling this problem, the last years have seen an 
increasing interest in establishing more realistic experimen-
tal settings with “social” stimuli to signal performance and 
reward feedback.

A recent review by Matyjek et al. (2020) characterised 
the different dimensions of social and non-social feedback 
stimuli, and also pointed at potential problems when directly 
comparing them. For example, the most common com-
parisons in the literature are conducted between monetary 
stimuli (as a non-social example) and facial displays (as a 
social example) serving as feedback signals. These com-
parisons are often confounded by several factors: reinforcer 
type (primary/innate [faces] vs. secondary/learned [money] 
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reinforcers), temporal proximity of delivery (immediate 
[faces] vs. delayed [money] delivery), duration (longer 
lasting [money] vs. transient [faces]), tangibility (abstract 
vs. touchable), and naturalness (symbolic vs. naturalistic 
stimulus depictions) (Matyjek et al., 2020). These are just 
a few stimulus dimensions that potentially add to reported 
processing differences between monetary and facial feed-
back stimuli (e.g., Flores et al., 2015; Rademacher et al., 
2010; Spreckelmeyer et al., 2009). Along these lines, a study 
using a probabilistic reward-based decision-making task 
(PRT; Pizzagalli et al., 2005) found faster reaction times 
and higher accuracy with monetary than facial feedback 
stimuli (Pechtel et al., 2013). Notably, the study design did 
not control for the fact that participation in one group was 
incentivised with an additional monetary bonus that was 
missing in the other group. Other studies did use social and 
non-social stimuli in this probabilistic reward task, but did 
not compare their effects with each other (Chevallier et al., 
2016), or statistically eliminated the impact of monetary vs. 
social praise feedback on task outcomes (Janes et al., 2015).

Attempting to limit the influence of several confound-
ing stimulus dimensions, our own research investigating 
social and non-social feedback stimuli used both naturalistic 
depictions and line drawings of thumbs up/down as social 
feedback stimuli and compared those to plus/minus symbols 
matched on visual complexity (Pfabigan et al., 2019; Pfab-
igan & Han, 2019). This approach ameliorated differences 
in temporal proximity of delivery, duration, and tangibility, 
and partly those of naturalness. By extracting event-related 
potentials and oscillatory activity during performance feed-
back, we observed neural and behavioural processing advan-
tages for social feedback stimuli compared to non-social 
ones (Pfabigan & Han, 2019). Pioneering psychological 
studies (Allport, 1920; Dashiell, 1930; Gates & Rissland, 
1923; Zajonc, 1965) as well as more recent research (Hurle-
mann et al., 2010) seem to support such a processing advan-
tage of social over non-social feedback stimuli. However, 
the underlying mechanisms of this processing advantage are 
not well understood, and therefore it is unclear how social 
stimuli could lead to observed behavioural improvements. 
This is of crucial importance as the use of social feedback 
stimuli could be a simple strategy to improve behaviour in 
learning settings.

Within the current study, we investigated two potential 
mechanisms that might contribute to the proposed process-
ing advantage of social stimuli. First, it might be possible 
that the use of social feedback stimuli leads to an increase in 
one’s ability to learn from positive reinforcement (i.e., reward 
learning). Second, it might be possible that the use of social 
feedback stimuli acts on reward responsivity in general. The 
latter suggestion can be investigated by disentangling sub-pro-
cesses of the decision-making process that influence reward 
responsivity via computational modelling. For example, the 

use of social feedback stimuli might increase the speed of 
evidence accumulation (i.e., the drift rate) on a trial-by-trial 
basis (Gold & Shadlen, 2007), or result in a larger response 
bias towards the rewarded response option (i.e., starting 
bias, Ratcliff et al., 2016). The unique combination of stimu-
lus dimensions (e.g., primary reinforcer, immediate reward, 
natural stimuli) of social stimuli might account for this biased 
behaviour. It could therefore be that the use of social feedback 
stimuli increases the learning rate of rewarded choice options, 
influences evidence accumulation (drift rate), or biases behav-
ioural responses towards the rewarded choice option (starting 
bias), or a combination of all these possibilities.

To test whether reward learning or sub-processes influ-
encing reward responsivity, or their combination, under-
lie the proposed processing advantage of social feedback 
stimuli, we conducted a pre-registered online experiment. 
Reward learning and sub-processes of reward responsivity 
were assessed with the probabilistic reward task (PRT; Piz-
zagalli et al., 2005). This task is framed as a visual discrimi-
nation task in which correct choices are sometimes followed 
by positive reinforcement. Unbeknownst to the participants, 
one response option is rewarded three times more often than 
the alternative one, which usually introduces a preference 
(i.e., response bias) for the rewarded response option in 
healthy individuals. One participant group was presented 
with a non-social feedback stimulus as reward, while three 
other groups were presented with different instances of 
social feedback stimuli as rewards. We capitalised on the 
literature that consistently reported such a response bias as 
an objective measure of reward learning (Pizzagalli et al., 
2005), as well as more recent computational modelling 
approaches of the PRT to assess latent parameters such as 
drift rate and starting bias (Eikemo et al., 2017, 2019; Huys 
et al., 2013).

In line with our previous research (Pfabigan et al., 2019; 
Pfabigan & Han, 2019), we hypothesised that reward learn-
ing and reward responsivity would be higher when using 
social compared to non-social feedback stimuli (preregis-
tered Hypothesis 2). Additionally, we explored whether trait 
reward responsiveness and hedonic capacity were associated 
with PRT-derived response bias and computational model-
ling parameters in the whole sample.

Materials and methods

Participants

In our pre-registration, we reported an a priori sample size 
calculation with a target sample size of 304 participants 
calculated with G*Power (Faul et al., 2007). However, we 
later noticed that the program is not suitable for these mixed 
design calculations. Using the program PANGEA (Westfall, 
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2016), we now report the minimal effect sizes of interest 
observable in the current study for our main hypotheses. 
With a four-level between-subject factor (feedback type) 
and a three-level within-subject factor (experimental block) 
and at least 73 participants in each group, this study has 
80% power to detect a main effect of feedback type with d 
= 0.33, 81% power to detect a main effect of experimental 
block with d = 0.27, and 80% power to detect an interaction 
effect of feedback type by experimental block with d = 0.38.

Via an online participant recruitment platform, 327 
English-speaking volunteers aged between 18 and 55 years 
were recruited. Twenty-two datasets were excluded from 
further analyses because participants failed to conform to 
task instructions (i.e., had an accuracy rate of below 50% 
or used only one response button for more than 75% of the 
trials). The final sample consisted of 305 participants with 
a mean age of 26 years (SD = 7.54): 138 women, 166 men, 
and one participant who preferred to not disclose their sex. 
The experiment was presented in four parallel versions (i.e., 
feedback-type groups) which were posted online in a mixed 
order to recruit approximately 40 participants each per 
online batch. Participants gave online consent before par-
ticipation. The study was conducted in accordance with the 
1964 Declaration of Helsinki and approved by the Regional 
Committee for Medical Research Ethics South East Norway 
(REK Sør-Øst B, project 26699), and by the Norwegian Cen-
tre for Research Data (NSD) to comply with GDPR regu-
lations. The study was preregistered on the Open Science 
Forum (OSF) before data collection; anonymized raw data 
and analyses scripts are provided on the OSF and GitHub 
(see Data Availability statement). This online study is part 
of a larger research project investigating the effects of gut 
hormones on reward processing (see https://​osf.​io/​f9rkq) 
and was conducted as a side project during a COVID-19 
lockdown when the larger project was on hold. Due to the 
context of the larger project, this study preregistered also a 
hypothesis addressing whether reward responsiveness and 
learning would be associated with subjective hunger feel-
ings (preregistered Hypothesis 1). Hence, subjective ratings 
of bodily states and demographic information such as on 
height and weight were assessed to link results of the online 
experimental task to the larger project on gut hormones.

Online recruitment

Participants signed up for the experiment via the platform 
https://​proli​fic.​co. After providing consent, demographic 
variables were assessed. Afterwards, subjective ratings and 
psychological questionnaires were filled in via an online sur-
vey tool (https://​netts​kjema.​no/ [a survey solution developed 
and hosted by the University of Oslo (nettskjema@usit.uio.
no)]), storing participants’ responses on an encrypted server. 
After filling in all questionnaires, participants used a link 

to access the experimental task, which was hosted on the 
website https://​pavlo​via.​org/. At the end of the experimen-
tal task, participants were re-directed to https://​proli​fic.​co, 
where their task completion was recorded. The questionnaire 
part took about 15–20 min to fill out; the subsequent experi-
mental task took about 20 min. Each participant received 
£5.63 for study completion.

Experimental task

Participants performed an adapted version of the proba-
bilistic reward task (PRT; Pizzagalli et al., 2005) to assess 
their reward responsiveness. The PRT is framed as a per-
ceptual decision task in which participants have to make a 
choice between two visually similar options. Skewed reward 
schedules are used in the task to introduce a response bias, 
which is supposed to reflect the propensity of behavioural 
change as a function of available rewards. Each trial starts 
with the presentation of a mouthless cartoon face for 500 ms 
(see Fig. 1). Subsequently, a line is blended in for 100 ms 
constituting the mouth of the schematic face. Afterwards, 
participants have to indicate via button press whether the 
mouth was long or short (by pressing buttons ‘s’ for short 
or ‘l’ for long with their index fingers on a keyboard). There 
was no response time limit. On selected trials, participants 
were presented with a feedback stimulus for a duration of 
1750 ms; on the remaining trials a fixation cross was pre-
sented for the same duration. During the inter-trial-interval, 
a fixation cross was displayed for 500 ms until the next trial 
started. The visual stimuli differ only minimally from each 
other – by 1 mm in the laboratory task version. Thus, in 
combination with the short presentation duration, the correct 
identification of the mouth length is challenging. Accuracy 
rates are about 75% in laboratory PRT versions (Eikemo 
et al., 2019).

At the beginning of the experiment, participants were 
informed that they will receive feedback after a correct 
answer in a few cases, and that they will be provided with 
information at the end of the experiment on how often they 
had received this feedback. This was done to match labora-
tory task versions in which participants received informa-
tion of how much money they had won at the end of the 
task. Unbeknownst to the participants, 75% of all correct 
responses were rewarded with positive feedback for one 
of the stimuli (i.e., the rich response option). For the other 
stimulus, only 25% of all correct responses were rewarded 
with positive feedback (i.e., the lean response option). The 
presentation order of rich and lean stimuli was randomised. 
The assignment of short and long mouths serving as rich 
and lean stimuli was counterbalanced across participants.

In a between-subject design, four different types of 
feedback stimuli were presented to induce a response bias 
towards the rich option. In reference to the original task 

https://osf.io/f9rkq
https://prolific.co
https://nettskjema.no/
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version, one group of participants saw a yellow star with 
the information “You have won 1 point!” (Pizzagalli et al., 
2005). This group was considered as the non-social feed-
back-type group. A second group received verbal feedback 
“Well done!” displayed in a speech balloon (e.g., Janes et al., 
2015; van der Veen et al., 2011). A third group was pre-
sented with the smiling face of a young woman, taken from 
the Chicago Face Database (Ma et al., 2015). The last group 
was presented with a photograph of a realistic hand with 
thumbs-up, as used in our previous studies (Pfabigan et al., 
2019; Pfabigan & Han, 2019). Those three groups were con-
sidered as social feedback type groups. A between-subjects 
design was chosen to avoid potential carry-over effects due 
to tiredness or a lack of novelty, but also to assess the robust-
ness of the PRT with respect to different feedback stimuli. 
All visual task displays were programmed for a 1600 × 1200 
display resolution. It was not possible to present the stimuli 
in exactly this display size in the online browser version. 
Instead, a match-to-desktop resolution approach was chosen 
which kept the ratio between height and width of the original 
display size constant. Experimental participation was only 
possible on laptops and desktop computers.

Participants performed ten training trials with perfor-
mance feedback (correct/incorrect) once in the beginning. 
None of the participants was rejected based on their per-
formance in the training. Afterwards, three blocks of 96 
trials each were presented. Participants could take breaks 

in between the blocks. After the third block, participants 
were informed about how often they had received positive 
feedback overall. Moreover, participants were asked whether 
they thought that the short mouth face or the long mouth 
face was rewarded more often than the other one. This ques-
tion was asked to assess whether participants had been aware 
of the skewed reward schedule or not. Further, participants 
were asked how rewarding they had experienced the posi-
tive feedback stimulus (on a nine-point Likert scale from 1 
= not at all rewarding to 9 = extremely rewarding) to assess 
whether the stimuli differed in experienced reward. The cur-
rent task version was programmed in PsychoPy v2020.1.3 
(Peirce et al., 2019) and hosted online on https://​pavlo​via.​
org.

Subjective ratings and questionnaires

All participants provided information about their sex, body 
weight and height, education level, and whether they were 
smokers. In addition, female participants were asked to indi-
cate whether they were taking hormonal contraceptives, and 
whether they were currently in the first week of their men-
strual cycle. This last information was collected because pre-
vious studies suggested that reward responsiveness could 
vary in relation to hormonal changes within the menstrual 
cycle (Diekhof & Ratnayake, 2016). Participants’ ethnicity 
or cultural identification were not assessed.

Fig. 1   Trial timing of the PRT and the four feedback-type groups

https://pavlovia.org
https://pavlovia.org
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To assess current affective state that could potentially 
influence PRT performance, participants filled in the Posi-
tive and Negative Schedule (PANAS, Watson et al., 1988). 
Twenty adjectives describing either positive or negative 
affective states had to be rated on a five-point Likert scale, 
ranging from 1 = very slightly or not at all to 5 = extremely. 
To assess trait reward responsiveness, participants filled in 
the Temporal Experience of Pleasure Scale (TEPS, Gard 
et al., 2006). The questionnaire consists of 18 statements 
describing joyful situations (e.g., The smell of freshly cut 
grass is enjoyable to me.). Participants had to indicate how 
true each statement was for them in general, using a six-
point Likert scale ranging from 1 = very false for me to 6 
= very true for me. To assess hedonic capacity, the Snaith-
Hamilton Pleasure Scale (SHAPS, Snaith et al., 1995) was 
administered. This 14-item questionnaire aims to assess 
participants’ ability to experience pleasure in the last few 
days. Participants had to indicate their agreement with state-
ments such as I have found pleasure in small things, e.g., 
bright sunny day, a telephone call from a friend via four 
options (strongly disagree/disagree/agree/strongly or defi-
nitely agree). The analysis scheme by Franken et al. (2007) 
was used. Additionally, participants rated subjective bodily 
states and trait interoceptive abilities (see preregistration), 
which will be reported elsewhere.

Statistical analyses

Pre‑registered analyses

Data were analysed with SPSS 26.0 (IBM), jamovi (The 
jamovi project, 2023; JASP (JASP Team (2022), and MAT-
LAB (MathWorks). To describe the four feedback-type 
groups, self-reported sex, contraceptive use, current men-
struation, education, and smoking status were compared 
with chi-square tests. Questionnaires and rating data across 
the four feedback-type groups were compared with one-way 
ANOVAs after testing for equal variances across groups with 
a Levene test. Multilevel modelling was conducted to test for 
feedback-type group differences in reaction times, accuracy 
rates, and the signal detection theory indices (response bias 
log b, discriminability log d).

Participants were excluded from analyses if their overall 
accuracy was below 50% and/or if they responded with only 
one response button in more than 75% of all trials. This 
resulted in the exclusion of 22 participants from both the 
PRT and the questionnaire data. In the remaining partici-
pants, trials with response times < 250 ms and > 2500 ms 
were excluded prior to analyses (approx. 9.9 % overall), 
based on previous literature (Eikemo et al., 2019).

Single-trial reaction time data were first subjected to a 
log10 transformation to approximate a Gaussian data dis-
tribution. These logarithmized reaction time data were 

modelled as a function of feedback type (comparing the 
non-social group with each of the three social feedback 
groups), block (comparing blocks 1 vs. 2, and 2 vs. 3), 
reward contingency (effect coding: lean = – 1, rich = 1), 
and mean-centred trial number as continuous predictor, 
and the interactions feedback-type x reward contingency 
and block x trial number as fixed effects. Trial number was 
included as continuous predictor because we were inter-
ested in whether reaction times would vary over the course 
of the experiment, and over the three experimental blocks. 
The random effects structure included a random intercept for 
participant and random slopes for block and reward contin-
gency (model: reaction times ~ 1 + feedback-type + block + 
reward contingency + trial number + feedback-type:reward 
contingency + block:trial number + (1 + block + reward 
contingency│participant). Accuracy rates (% based on valid 
trials) were subjected to an arcsine transformation to approx-
imate a Gaussian data distribution before they were mod-
elled with feedback-type, block, and reward contingency, and 
all possible interaction terms as fixed effects. The random 
effects structure included a random intercept for partici-
pant and random slopes for block and reward contingency 
(model: accuracy ~  1 + feedback-type + block + reward 
contingency + feedback-type:block + feedback-type:reward 
contingency + block:reward contingency + feedback-
type:block:reward contingency + (1 + block + reward 
contingency│participant). In line with previous PRT studies, 
we calculated a response bias (log b) and a discriminability 
(d’) index in reference to established procedures from signal 
detection theory (Pizzagalli et al., 2008). The value 0.5 was 
added to each cell to avoid division by zero. Log b is con-
sidered an index of reward sensitivity and reward learning, 
while log d (or d’) is an index of stimulus discriminabil-
ity (Pizzagalli et al., 2005). A winsorization procedure was 
applied for the two indices per group because outliers were 
detected for each index (Starkings, 2012). Winsorized log 
b and log d values were separately modelled with feedback-
type, block, and their interaction as fixed effects. The random 
effects structure included a random intercept for participant 
(model: log b/log d ~ 1 + feedback-type + block + feedback-
type:block + (1│participant). For all multilevel analyses, we 
used the Satterthwaite method for approximation of degrees 
of freedom and applied a restricted maximum likelihood 
estimation for fixed effects. Equal random effects covariance 
structure was assumed across the four feedback-type groups 
in all analyses. As effect size measures, semi-partial R2 is 
reported (Edwards et al., 2008). Values of 0.02, 0.13, and 
0.26 denote small, medium, and large effects (Cohen, 1992).

Computational modelling  To assess whether social feed-
back impacts reward responsiveness, the choice and reaction 
time data were fitted with a drift diffusion model (DDM). 
DDMs are a family of sequential sampling models that 
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allow the extraction of information about underlying mech-
anisms above and beyond descriptive and signal detection 
approaches (Ratcliff, 1978).

The central assumption underlying the drift diffusion 
model is that agents continuously gather evidence for their 
available options when faced with a decision-making prob-
lem. Only once a decision threshold in favour of any alter-
native is reached, i.e., enough evidence is sampled for that 
option, a corresponding motor response is initiated. Compu-
tationally, this idea can be formalised as a sequential sam-
pling process with four parameters. The drift rate param-
eter (v) specifies the evidence generation/sampling, i.e., the 
speed of evidence accumulation. The boundary separation 
parameter (a) quantifies the amount of evidence that is suf-
ficient for the agent to make a decision. Increases in bound-
ary separation therefore lead to more accurate but slower 
choices. In contrast, increases in drift rate lead to both more 
accurate and faster choices. The starting point parameter (z) 
reflects a bias towards one of the decision boundaries, i.e., 
more frequent and faster choices for the respective options. 
Finally, the non-decision time parameter (t) indicates the 
temporal offset between choice onset and the start of evi-
dence accumulation.

The model fitting was performed using the rstan pack-
age (Stan development team; Carpenter et al., 2017) in R 
(R Core Team (2022). Parameters were estimated for each 
individual and block separately by looping through each 
participant’s trials, assuming a distribution according to the 
Wiener-first-passage-time. To ensure mutually constrained 
and reliable estimates, the individual parameters were drawn 
from corresponding group-level distributions separately for 
each feedback type and block. The parameters for the group-
level distributions were drawn from pre-specified priors. On 
the group level, the boundary separation, non-decision time 
and starting bias parameters for each block and feedback 
type were drawn from uniform distributions. The boundary 
separation was initialized between 0.1 and 10. The non-deci-
sion time was initialised between 0.1 and 1. The starting bias 
was initialized between – 4 and 4. The group-level drift rate 
parameters were drawn from normal distributions (initial-
ised as μ = 0 and δ = 10). The respective standard deviation 
priors were drawn from Cauchy distributions (initialised as 
μ = 0 and δ = 2.5). On the individual level, all parameters 
were drawn from a normal distribution with the mean and 
standard deviations initialized as the corresponding group-
level priors. As we were interested in the effect of social and 
non-social feedback on any of the above mentioned DDM 
parameters, the drift rate, boundary separation, and non-
decision time parameters were estimated separately for rich 
and lean trials. In line with previous research (Eikemo et al., 
2017, 2019), the starting bias for lean trials was defined as 
the complementary to the starting bias for rich trials, i.e., 
z(lean) = 1–z(rich). To ensure meaningful sampling, each 

parameter was additionally constrained to a specific range, 
effectively truncating the distributions. Boundary separation 
was limited to be positive (truncated at 0), non-decision time 
was bound between 0 and 1, and starting bias was bound 
between – 4 and 4. Please note that the starting bias was 
mapped from [– 4, 4] to [0, 1] for the Wiener-first-time pas-
sage function, using the cumulative density function of the 
normal distribution (phi). All standard deviation priors were 
bound to be positive. The hierarchical model was run with 
four chains with 2000 burn-in samples and 2000 posterior 
samples each. All chains converged successfully, as indi-
cated by R-hats between 1.000 and 1.002 (Gelman & Rubin, 
1992).

For feedback-type group comparisons, the estimated 
model parameters for drift rate, boundary separation and 
non-decision time were extracted for each participant and 
compared across conditions with multilevel models analo-
gous to the ones for reaction times, accuracy, and response 
bias/discriminability indices. Again, a winsorization pro-
cedure was applied per group because of outlier values. 
Winsorized DDM parameter were separately modelled 
with feedback-type, block, and reward contingency, and all 
possible interactions as fixed effects. The random effects 
structure included a random intercept for participant and 
random slopes for block and reward contingency when 
model convergence allowed for those two (model: DDM 
parameters ~ 1 + feedback-type + block + reward con-
tingency + feedback-type:block + feedback-type:reward 
contingency + block:reward contingency + feedback-
type:block:reward contingency + (1 + block + reward 
contingency│participant). For the starting bias parameter, 
the factor reward contingency was dropped, as starting bias 
for lean trials is defined as the complement of the starting 
bias for rich trials (see above).

Exploratory analyses

We calculated the difference between log b in block 3 and 
block 1 per participant to capture reward learning (e.g., 
Santesso et al., 2008), and submitted these values to a one-
way ANOVA to test for differences between the feedback 
types. Furthermore, scores on questionnaire scales assess-
ing current affective state (PANAS), trait reward respon-
siveness (TEPS), and hedonic capacity (SHAPS) were 
added to the multilevel models of reward bias log b and the 
DDM model parameters as continuous predictors to explore 
their potential influence. For the respective mean-centred 
scores, a main effect as well as the interaction with feedback 
type were modelled. Further, effects of sex and age were 
explored. These exploratory analyses were corrected for 
multiple comparisons (Bonferroni correction for five covari-
ates per dependent variable: pcorr < .010). To substantiate 
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null-findings of feedback type in the main outcomes, we 
report Bayes factors in support for the null hypothesis for 
simplified statistical models (by collapsing across rich and 
lean stimuli and the three blocks).

Results

The four feedback-type groups did not differ significantly 
from each other in terms of demographics, all p values > 
.182, see Table 1)

The four feedback-type groups did not differ in the rat-
ings and psychological questionnaires either – see Table 2 
for an overview. On average, participants rated the feedback 
stimuli as rather rewarding (M = 5.94, SD = 2.31). Please 
note that the first 18 participants in the star feedback group 
did not provide this rating because the question was only 

implemented later. Ratings of each feedback-type group 
were significantly higher than 5, the response alternative 
in the middle of the nine-point Likert scale (t test against 
the score 5; all p values < .008; all d’s > 2.0). This suggests 
that all four feedback stimuli were perceived as rewarding. 
Reward ratings did not differ for the four types of feedback 
(F(3,283) = 0.74, p = .532; BF01 = 23.83), see Table 2, 
“Reward rating”. At the end of the experiment, participants 
were informed about how often they had received positive 
feedback, which was on average 106.82 times (SD = 17.43). 
Again, no differences between feedback types were observed 
(F(3,301) = 0.39, p = .762; BF01 = 41.03). The participants 
seemed to have been aware of the skewed reward contin-
gencies, as 83.3% of all participants correctly identified the 
stimulus that was rewarded more often (11.5% were unde-
cided, 5.2% gave an incorrect response).

Table 1   Sample characteristics

Star Verbal FB Happy face Thumbs up Total sample Chi-square test
n = 75 n = 75 n = 73 n = 82 n = 305 p

Sex Man 45 37 39 45 166 0.606
Woman 30 38 34 36 138
Prefer not to answer 0 0 0 1 1

Contraceptive use No 19 24 25 26 94 0.686
Yes 11 14 9 10 44

Menstruation last 7 days No 23 27 21 29 100 0.329
Yes 7 11 13 7 38

Education Elementary School 0 0 1 1 2 0.182
High School 23 24 26 37 110
Max. 3 years of higher education 15 21 18 17 79
4 years or more of higher education 32 29 0 25 104
PhD 2 0 1 2 5
Other 3 1 1 0 5

Currently smoking No 62 60 55 71 248 0.336
Yes 18 15 18 11 57

Table 2   Ratings and psychological questionnaires

Star Verbal FB Happy face Thumbs up One-way 
ANOVA

M SD M SD M SD M SD p

Willingness to pay for food (in EUR) 10.95 9.17 9.53 9.38 7.77 6.03 8.74 6.04 0.087
PANAS Positive affect 30.04 6.42 28.77 7.80 28.19 8.01 28.11 7.30 0.348

Negative affect 16.89 6.52 16.89 7.79 17.10 6.89 15.90 5.95 0.684
TEPS Anticipatory 4.16 0.65 4.27 0.73 4.23 0.75 4.06 0.76 0.284

Consummatory 4.41 0.67 4.60 0.70 4.55 0.73 4.42 0.74 0.241
BAQ 79.07 13.38 79.15 16.76 77.51 16.93 74.83 16.80 0.290
SHAPS 29.03 4.95 28.55 6.64 28.40 5.78 28.05 5.22 0.755
Final reward count PRT 105.20 19.03 106.59 18.04 108.19 17.17 107.28 15.66 0.762
Reward rating 6.02 2.06 5.77 2.44 5.74 2.36 6.22 2.30 0.532
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Pre‑registered results

Classical PRT analyses results (see Table 3, untransformed 
values for reaction time and accuracy rates)  Single-trial 
reaction time data (logarithmized) were faster for the rich 
than the lean stimulus (b = – 0.015, SE = 0.002, 95% CI 
[– 0.019; – 0.012], t(299) = – 7.86, p < .001, semi-partial R2 
= 0.17). Reaction times were faster in block 2 than in block 1 
(b = – 0.045, SE = 0.005, 95% CI [– 0.050; – 0.036], t(897) 
= – 9.14, p < .001, semi-partial R2 = 0.07), while differ-
ences between blocks 3 and 2 were not significant (p = .322). 
Moreover, reaction times became faster with increasing trial 
number (b = – 2.13e-4, SE = 1.98e-5, 95% CI [– 2.52e-4; 
– 1.75e-4], t(78047) = – 10.79, p < .001, semi-partial R2 = 
0.002), with a very small effect size. Indicated by a signifi-
cant interaction of trial number and block, this acceleration 
in reaction times was particularly obvious from block 1 to 
block 2 (b = – 7.07e-4, SE = 4.83e-5, 95% CI [– 8.02e-4; 
– 6.12e-4], t(78017) = – 14.64, p < .001, semi-partial R2 
= 0.003), while reaction times became slower again from 
block 2 to block 3 (b = 1.16e-4, SE = 4.85e-5, 95% CI 
[2.04e-5; 2.11e-4], t(78021) = 2.38, p = .017, semi-partial 
R2 = 0.003). No other effects were significant (all p values 
> .316). A BF01 = 11.62 suggested strong evidence for the 
absence of differences between the feedback types.

Accuracy rates (after arcsine transformation) were sig-
nificantly higher for the rich compared to the lean stimulus 
(b = 0.192, SE = 0.024, 95% CI [0.144; 0.240], t(301) = 
7.91, p < .001, semi-partial R2 = 0.17) and higher in block 
2 than in block 1 (b = – 0.027, SE = 0.014, 95% CI [– 0.054; 
– 1.44e-4], t(1026) = – 1.97, p = .049, semi-partial R2 = 
0.01). Moreover, the accuracy difference between the rich 
and the lean stimulus was larger in block 2 than in block 
1 (b = – 0.054, SE = 0.027, 95% CI [– 0.107; – 9.43e-4], 
t(904) = – 1.99, p = .046, semi-partial R2 = 0.01). No other 
effects were significant (all p values > .148). A BF01 = 26.93 
suggested strong evidence for the absence of differences 
between the feedback types.

Reward sensitivity assessed via log b was significantly 
higher in block 2 than in block 1 (b = – 0.04, SE = 0.01, 95% 
CI [– 0.07; – 0.01], t(602) = – 2.67, p = .008, semi-partial R2 
= 0.02), while no significant differences were found between 
blocks 2 and 3 (p = .273). Neither feedback-type nor the 
interaction effects were significant (all p values > .410). A 
BF01 = 65.44 suggested very strong evidence for the absence 
of differences between the feedback types.

Stimulus discriminability assessed via log d was sig-
nificantly higher in block 2 than in block 1 (b = – 0.04, 
SE = 0.01, 95% CI [– 0.06; – 0.01], t(602) = – 3.02, p = 
.003, semi-partial R2 = 0.03), while no significant differ-
ences were found between blocks 2 and 3 (p = .319). Neither 

Table 3   Reaction times, accuracy rates and signal detection indices

Star Verbal FB Happy face Thumbs up

M SD M SD M SD M SD

RTs (sec) Rich Block1 0.60 0.16 0.59 0.12 0.58 0.11 0.60 0.16
Block2 0.57 0.18 0.59 0.14 0.55 0.12 0.58 0.14
Block3 0.57 0.17 0.59 0.18 0.53 0.10 0.59 0.16

Lean Block1 0.61 0.16 0.62 0.14 0.59 0.11 0.61 0.14
Block2 0.60 0.20 0.61 0.15 0.57 0.11 0.60 0.13
Block3 0.60 0.19 0.61 0.14 0.55 0.10 0.60 0.14

ACC (%) Rich Block1 74.13 15.59 75.99 14.10 76.44 16.33 76.22 13.05
Block2 75.42 18.41 76.94 15.97 78.63 14.43 78.94 14.79
Block3 78.22 16.45 77.69 18.44 79.46 16.48 77.87 14.93

Lean Block1 68.94 14.70 69.33 14.99 71.08 15.98 69.17 16.27
Block2 67.20 18.60 69.34 18.15 70.85 14.97 70.02 14.46
Block3 66.63 21.50 69.73 17.70 71.07 16.52 69.42 15.53

log b Block1 0.07 0.23 0.08 0.22 0.07 0.28 0.08 0.22
Block2 0.11 0.27 0.11 0.27 0.10 0.27 0.12 0.23
Block3 0.14 0.25 0.13 0.31 0.13 0.30 0.11 0.22

log b reward learning 0.07 0.26 0.05 0.32 0.06 0.28 0.04 0.24
log d Block1 0.45 0.28 0.47 0.28 0.52 0.28 0.47 0.26

Block2 0.48 0.35 0.52 0.35 0.54 0.26 0.53 0.30
Block3 0.49 0.35 0.54 0.34 0.58 0.33 0.51 0.31
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feedback-type nor the interaction effects were significant (all 
p values > .122). A BF01 = 23.93 suggested strong evidence 
for the absence of differences between the feedback types.

Drift diffusion model results  Efficiency in evidence accu-
mulation, as reflected in drift rates (v, Fig. 2, Table 4), was 
higher for the rich than the lean stimulus (b = – 0.17, SE 
= 0.03, 95% CI [– 0.23; – 0.11], t(301) = – 5.32, p < .001, 
semi-partial R2 = 0.09). Moreover, drift rates increased from 
block 1 to block 2 (b = – 0.10, SE = 0.02, 95% CI [– 0.14; 
– 0.06], t(1204) = – 4.66, p < .001, semi-partial R2 = 0.05), 
and from block 2 to block 3 (b = – 0.06, SE = 0.02, 95% CI 
[– 0.10; – 0.02], t(1204) = – 2.78, p = .006, semi-partial R2 
= 0.05). These findings are in line with previous research 
(Eikemo et al., 2019). Our analyses further showed a sig-
nificant interaction between feedback-type and block when 
comparing blocks 2 and 3 for the star and the thumbs-up 
feedback, with a small effect size (b = 0.14, SE = 0.06, 95% 
CI [0.03; 0.25], t(1204) = 2.49, p = .013, semi-partial R2 
= 0.01). Descriptively resolving this interaction, the drift 
rates increased linearly from the first to the last block with 
the star feedback. In contrast, the drift rates increased from 
block 1 to 2 with the thumbs-up feedback, while drift rates 
in block 3 where lower than in block 2. No other effects were 
significant (all p values > .153).

The amount of evidence necessary for a choice, as 
reflected in the boundary separation parameter (a, Fig. 3, 
Table 4), was higher for the rich than the lean stimulus (b 
= – 0.01, SE = 0.004, 95% CI [– 0.017; – 0.009], t(301) = 
– 2.17, p = .031, semi-partial R2 = 0.02). Moreover, there 
was an overall decrease in necessary evidence from block 1 
to block 2 (b = 0.04, SE = 0.009, 95% CI [0.02; 0.06], t(301) 
= 4.21, p < .001, semi-partial R2 = 0.06). This main effect 
of block was further qualified by a significant interaction 
between feedback type and block when comparing blocks 
2 and 3 for the star and the happy face feedback (b = 0.05, 
SE = 0.21, 95% CI [0.006; 0.088], t(301) = 2.22, p = .027, 
semi-partial R2 = 0.03). Descriptively resolving this interac-
tion, the boundary separation parameter was smaller in block 
2 than block 3 with the star feedback, whereas the pattern 
was reversed with the happy face, i.e., a smaller boundary 
separation parameter in block 3 than block 2. This suggests 
that the responses of the happy face feedback group were 
faster, but more error-prone in block 3 than in block 2, while 
the responses of the star feedback group were faster, but 
more error-prone in block 2 than in block 3.

The time between stimulus onset and evidence accumu-
lation, as reflected in the non-decision time parameter (t, 
Fig. 4, Table 4) showed significant differences between the 
star and the verbal feedback (b = 0.02, SE = 0.005, 95% 
CI [0.004; 0.025], t(301) = 2.66, p = .008, semi-partial  

Fig. 2   Drift rate parameter. A Estimated parameter values, averaged across feedback types. B Estimated parameter values, averaged across 
blocks. C Estimated parameter values, averaged across reward contingencies. Error bars depict the standard error of the mean
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Table 4   Drift diffusion model parameters

Star Verbal FB Happy face Thumbs up

M SD M SD M SD M SD

Drift rate Rich Block 1 0.99 0.59 1.09 0.56 1.15 0.64 1.03 0.56
Block 2 1.11 0.64 1.16 0.67 1.22 0.63 1.24 0.65
Block 3 1.22 0.70 1.25 0.78 1.35 0.69 1.13 0.63

Lean Block 1 0.91 0.56 0.86 0.50 0.99 0.57 0.93 0.60
Block 2 0.95 0.65 1.00 0.63 1.05 0.54 0.97 0.59
Block 3 1.07 0.74 1.05 0.63 1.09 0.59 1.02 0.53

Boundary separation Rich Block 1 1.30 0.23 1.29 0.20 1.29 0.16 1.30 0.19
Block 2 1.26 0.27 1.29 0.20 1.23 0.18 1.28 0.17
Block 3 1.27 0.23 1.31 0.22 1.22 0.17 1.29 0.20

Lean Block 1 1.29 0.21 1.30 0.20 1.28 0.18 1.30 0.18
Block 2 1.24 0.26 1.28 0.16 1.22 0.19 1.26 0.17
Block 3 1.27 0.23 1.29 0.18 1.20 0.17 1.27 0.19

Non-decision time Rich Block 1 0.89 0.06 0.91 0.04 0.91 0.04 0.91 0.04
Block 2 0.90 0.05 0.91 0.05 0.92 0.03 0.90 0.04
Block 3 0.90 0.05 0.91 0.04 0.93 0.03 0.90 0.05

Lean Block 1 0.89 0.05 0.91 0.04 0.92 0.03 0.90 0.04
Block 2 0.90 0.05 0.91 0.05 0.92 0.04 0.90 0.05
Block 3 0.90 0.05 0.91 0.04 0.93 0.03 0.91 0.04

Starting bias Block 1 0.52 0.04 0.51 0.05 0.52 0.05 0.52 0.05
Block 2 0.52 0.06 0.52 0.05 0.53 0.06 0.53 0.06
Block 3 0.54 0.06 0.53 0.06 0.53 0.05 0.53 0.05

Fig. 3   Boundary separation. A Estimated parameter values, averaged across feedback types. B  Estimated parameter values, averaged across 
blocks. C Estimated parameter values, averaged across reward contingencies. Error bars depict the standard error of the mean
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R2 = 0.08), and between the star and the happy face feed-
back (b = 0.03, SE = 0.006, 95% CI [0.02; 0.04], t(301) 
= 4.94, p < .001, semi-partial R2 = 0.08). The non-deci-
sion time was shorter with the star feedback than the two 
other feedback types. No other effects were significant 
(all p values < .090).

In line with previous findings, we found a bias towards 
choices for the rich stimulus option, as reflected in the 
starting point parameter (z, Fig. 5, Table 4). The estimated 
starting bias across participants (collapsed over blocks and 
reward contingency, M = 0.53, SD = 0.04) was significantly 
different from 0.5, t(304) = 12.08, p < .001, d = 0.69, 95% 

Fig. 4   Non-decision time. A Estimated parameter values, averaged across feedback types. B Estimated parameter values, averaged across blocks. 
Error bars depict the standard error of the mean

Fig. 5   Starting bias. A Estimated parameter values for blocks, aver-
aged across feedback types and reward contingency. B Estimated 
parameter values for feedback type, averaged across block and reward 

contingency. C Estimated parameter values, averaged across reward 
contingency. Error bars depict the standard error of the mean
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CI [0.57; 0.82]. The starting bias increased from block 1 to 
block 2 (b = – 0.01, SE = 0.003, 95% CI [– 0.015; – 0.004], 
t(602) = – 3.21, p = .001, semi-partial R2 = 0.06), and 
from block 2 to block 3 (b = – 0.008, SE = 0.003, 95% CI 
[– 0.014; – 0.002], t(602) = – 2.69, p = .007, semi-partial 
R2 = 0.06). Moreover, a significant interaction effect was 
observed when comparing blocks 2 and 3 for the star and the 
happy face feedback (b = 0.05, SE = 0.21, 95% CI [0.009; 
0.004], t(301) = 2.22, p = .027, semi-partial R2 = 0.02). 
Descriptively resolving the interaction, the starting bias was 
larger in block 3 than in block 2 with the star feedback, while 
the starting bias was larger in block 2 than in block 3 with 
the happy face feedback. This suggests that the preference 
for the rich stimulus in the final experimental block was 
smaller with the happy face feedback.

Exploratory results

Reward learning, i.e., the difference in log b between 
blocks 3 and 1, differed significantly from zero in the total 
sample (t(304) = 3.36, p < .001, d = 0.19, CI [0.08; 0.31]). 
No differences were observed in reward learning for the 
four feedback types though (F(3,301) = 0.16, p = .920). 
A BF01 = 54.64 suggested very strong evidence for the 
absence of differences between feedback types in reward 
learning.

Adding individual scores of trait reward responsiveness 
(TEPS) or current positive and negative affective states 
(PANAS) as predictors for log b (i.e., participants’ response 
bias towards the more often rewarded option) did not result 
in significant effects of these variables (all p values > .319). 
In contrast, hedonic capacity (SHAPS) interacted with dif-
ferences between the non-social group (star) and the social 
group presented with thumbs up (b = – 0.018, SE = 0.007, 
t(297) = – 2.76, p = .006, semi-partial R2 = 0.03). The star 
feedback group showed a positive association between log 
b and hedonic capacity (simple effects analysis: b = 0.011, 
SE = 0.005, 95% CI [0.001; 0.021], t(297) = 2.18, p = .030), 
while the thumbs up feedback group showed a non-signifi-
cant negative association (b = – 0.008, SE = 0.005, 95% CI 
[– 0.016; 0.001], t(297) = – 1.70, p = .091). Participants’ sex 
(both p values > .673) and age (both p values > .031) had no 
influence on log b variation. Psychological questionnaires, 
participants’ sex and age had no impact on the DDM param-
eters starting bias (all p values > .090), boundary separation 
(all p values > .036), and drift rate (all p values > .064). For 
the DDM parameter non-decision time, a significant interac-
tion between participants’ age and the star and the thumbs 
up feedback group was observed (b = – 0.003, SE = 6.95e-
4, 95% CI [– 0.004; – 0.002], t(297) = – 4.18, p < .001, 
semi-partial R2 = 0.06). The star feedback group showed 
a positive association between age and non-decision time 

(simple effects analysis: b = 0.002, SE = 5.45e-4, 95% CI 
[8.01e-4; 0.003], t(297) = 3.44, p < .001), while the thumbs 
up feedback group showed a negative association (simple 
effects analysis: b = – 0.001, SE = 4.42e-4, 95% CI [– 0.002; 
– 1.64e-4], t(297) = – 2.34, p = .020).

Discussion

This pre-registered online experiment aimed to iden-
tify underlying mechanisms for a proposed processing 
advantage of social over non-social feedback stimuli. In 
particular reward learning (behavioural preference for a 
rewarded choice option) and sub-processes influencing 
reward responsivity (facilitation of evidence accumulation 
or a general bias towards the rewarded option) were inves-
tigated. While the online administration of an established 
probabilistic reward task (PRT, Pizzagalli et al., 2005) led 
to the expected response bias towards the more frequently 
rewarded response option, the hypothesised processing 
advantage of social over non-social feedback stimuli was 
not observed. In contrast, almost no evidence for process-
ing differences between social and non-social feedback 
stimuli in the PRT was found.

A strength of the current PRT study is that the calculation 
of participants’ response bias (log b) and discriminability 
bias (log d) was complemented by a computational model-
ling approach (Barch et al., 2017; Huys et al., 2013; Ratcliff 
et al., 2016), which allowed for a more fine-grained assess-
ment of sub-processes of reward responsivity. The results 
demonstrated the validity of the online administration of 
the current PRT. Participants chose the rewarded option (the 
“rich” stimulus) more often, and they were faster and more 
accurate when doing so. This resulted in stable response 
(log b) and discriminability (log d) biases in line with pre-
vious research (Pizzagalli et al., 2005). The drift diffusion 
modelling showed better evidence accumulation for the rich 
stimulus (drift rate) and a higher starting bias for the rich 
stimulus, in line with Huys et al. (2013). However, contrary 
to our hypothesis, we observed no evidence for a processing 
advantage of social over non-social feedback stimuli in these 
two modelling parameters. Moreover, no group differences 
were observed in reaction times, accuracy rates, the signal 
detection indices, and reward learning between the differ-
ent groups applying either social or the standard non-social 
feedback stimuli. The only group difference was observed 
for the non-decision time modelling parameter, which was 
not a priori in the focus. Verbal and happy face feedback 
stimuli led to a slight delay in the evidence accumulation 
process compared to the star feedback stimulus. However, 
overall performance of the four feedback groups was com-
parable, which renders the impact of the non-decision time 
result negligible.
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The current findings further suggest that the previously 
reported processing advantage of social over non-social 
stimuli (Hurlemann et al., 2010; Pfabigan et al., 2019; Pfa-
bigan & Han, 2019) does not apply to a between-subjects 
set-up in which one category of rewarding stimuli (equiva-
lent to positive performance feedback) was presented in a 
probabilistic way. The application of a between-subjects 
design is one of the main differences between the cur-
rent study and previous within-subject studies reporting 
a processing advantage. In these, participants were con-
fronted with both social and non-social stimuli within the 
same experiment. The continuous confrontation with both 
social and non-social performance feedback could have led 
to direct comparison processes between the two, which 
might have led to the observed processing advantage of 
social over non-social stimuli. It is thus possible that the 
direct comparison of social with non-social stimuli is nec-
essary to establish the observed processing advantage. For 
example, non-social stimuli could serve as anchors for 
the subsequent assessment of social stimuli, or vice versa 
(e.g., Meyer & Schvaneveldt, 1971; Tversky & Kahne-
man, 1974).

Similar reasoning as for a potential processing ben-
efit applies to the evaluation of subjective reward value. 
Although the four feedback stimuli were rated as similarly 
rewarding, it is important to keep in mind that these ratings 
were obtained by different participants. Thus, the partici-
pants presumably compared the feedback they received to 
no feedback at all. The reward ratings might look differ-
ently if the same participants rated all four feedback types. 
Along these lines, ratings of touch as a social stimulus were 
found to differ depending on whether a between- or a within-
subjects design was used (Triscoli et al., 2014). In this study, 
different velocities of stroking were rated more similarly to 
each other when they were rated by different participants 
(between-subjects design) than when they were rated by the 
same participants (within-subjects design). In a different 
domain, signal intensity elicited greater effects on condi-
tioning and reaction time in a within- than between-subjects 
design (Grice & Hunter, 1964). Based on these findings, 
one may speculate that a within-subjects design might have 
led to larger differences between the four feedback types. 
However, for the present study, we were interested in the 
methodical aspects of the PRT, i.e., if the PRT elicits differ-
ent behavioural preferences depending on the feedback type, 
and in this task there is typically only one type of feedback 
presented. Applied to a more general learning context such 
as finding the optimal type of feedback for a language learn-
ing app, the absolute effectiveness of a particular feedback 
would also be more important than its relative effectiveness. 
For these reasons, we opted for a between-subjects design.

Another explanation for the absence of the hypothesised 
processing advantage could be the use of only behavioural 

instead of neural outcomes. Assessing the Feedback-Related 
Negativity component FRN (Gehring & Willoughby, 2002; 
Miltner et al., 1997), a neural marker of feedback processing, 
changes in response bias from blocks 2 and 3 compared to 
block 1 were positively related to FRN amplitude variation 
(Santesso et al., 2008). However, this positive relationship 
was not observed for actual task behaviour. Another study 
reported an association between a PRT reward bias and neu-
ral markers even when FRN amplitudes were assessed in an 
independent task (Bress & Hajcak, 2013). Similarly, a pro-
cessing advantage of social over non-social feedback stimuli 
was demonstrated in FRN amplitude variation in our previ-
ous studies (Pfabigan et al., 2019; Pfabigan & Han, 2019), 
whereas differences in behaviour were either absent or only 
small. Therefore, it could be possible that neural markers 
of PRT performance are more sensitive to a processing 
advantage of social over non-social stimuli than behavioural 
markers. On a more general note, the utilization of neuro-
physiological markers of decision-making could advance 
our understanding of the underlying processes captured by 
the task. For example, event-related activity on a trial basis 
can be reliably linked to drift diffusion modelling processes 
and parameters such as evidence accumulation, drift rate, 
or boundary stopping criteria (Kelly & O’Connell, 2013), 
which could be of particular interest when aiming to repli-
cate the boundary separation effect observed in the happy 
face feedback group. Furthermore, neural information allows 
valuable insight to arbitrate and empirically test different 
evidence-accumulation models beyond the possibilities of 
conventional behavioural measures (Devine et al., 2019; 
Kelly et al., 2021).

On a conceptual level, one might also ask whether the 
current operationalisation of social and non-social reward 
stimuli was optimal. The social stimuli used (praise indi-
cated by a speech bubble, a smiling face, and thumbs up) 
might not have been very social after all because no inter-
action with a human occurred. In contrast, the non-social 
stimulus (a yellow star with the text “Correct! You won 1 
point!”) might have been perceived as social, for example, 
if participants assumed that this feedback came from the 
experimenter. This type of feedback was selected to allow 
comparability with most published PRT studies using a simi-
lar stimulus. Because it primarily conveys information about 
task performance (“Correct!”) and potential reward (points 
in the current study, but most often monetary reward in other 
studies), we considered it to reflect rather non-social reward 
provided by the computer program. In contrast, the social 
feedback stimuli of the current study were selected because 
their physical stimulus features were indicative of critical 
aspects of social interactions – for example the communi-
cation of social motives such as affiliation and protection 
via a smiling face or of approval via the thumbs up gesture 
(Morris, 1994).
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What makes a stimulus social is an ongoing debate. In 
previous studies, we argued that physical stimulus features 
linked to social interactions (i.e., gestures, facial expres-
sions) are enough to render a stimulus social (Pfabigan 
et al., 2019; Pfabigan & Han, 2019). In contrast, other 
authors argued that it is the social context in which the 
stimuli are embedded that renders them social, for example 
via the construction of ingenious cover stories where par-
ticipants were led to believe to receive feedback from other 
individuals (Kujawa et al., 2014; Somerville et al., 2006). 
These diverging definitions of social stimuli – based on 
a bottom-up or a top-down definition – could serve as a 
forward-looking basis for further studies. For example, 
an experiment could compare feedback information via 
non-social feedback stimuli that have either an assigned 
social connotation (i.e., feedback stimuli selected by the 
participant’s partner) or not (i.e., feedback stimuli gener-
ated by a computer program).

The current results provide additional future-oriented 
insights into the application of the PRT. While online 
experiments are thought to be susceptible to potential 
differences in hardware, operating systems, the chosen 
browser application, and the respective situation in which 
participants conduct the experiment (see Bridges et al., 
2020; Semmelmann & Weigelt, 2017), recent studies have 
established their validity also for cognitive experiments. 
For example, Semmelmann & Weigelt (2017) tested five 
experimental tasks both in a controlled laboratory setting 
and in a less-controlled web setting, and concluded that 
the relevant task-specific effects could be replicated (apart 
from a priming experiment) and that error rates were com-
parable in both settings. A recent mega-study further cor-
roborated the timing precision of online experiments and 
emphasised the usability of online experiments in experi-
mental research (Bridges et al., 2020). Thus, the current 
results demonstrate that an online administration of the 
PRT results in the expected effects without much loss of 
experimental control. The only discrepancy with PRT labo-
ratory assessments compared to the current online applica-
tion were the responses to the post-experimental question 
as to whether or not participants were aware of the skewed 
reward scheme. The majority of the current participants 
seemed to have been aware of it, while this is most often 
not the case in laboratory settings (Eikemo et al., 2017; 
Heerey et al., 2008). Nevertheless, we refrain from regard-
ing this knowledge as a disadvantage of the online applica-
tion because the current participants nevertheless displayed 
the expected response bias.

Moreover, in contrast to the classical laboratory settings 
in which participation is incentivised with a monetary bonus 
for each received reward, the current online PRT assessment 
used a different strategy. Participants knew beforehand how 
much money they would be compensated with, irrespective 

of their performance. This suggests that omitting a direct 
link between received rewards and monetary outcomes still 
yielded the expected response preference for the highly 
rewarded response option. This underlines the robustness 
of the PRT. Online versions of the PRT could facilitate its 
application in difficult-to-reach settings (e.g., forensics, mar-
ginalized participant groups, sparsely populated areas) and 
allow for higher feasibility of longitudinal designs.

In an exploratory analysis, we tested whether PRT out-
comes were associated with self-reported reward respon-
siveness. Of particular interest was the correlation between 
reward responsivity assessed with log b and hedonic capac-
ity assessed with the SHAPS (Franken et al., 2007; Snaith 
et al., 1995). Previous studies have reported a negative 
association between those two, which was primarily dem-
onstrated in clinical samples (Luking et al., 2017; Pizza-
galli et al., 2005; Vrieze et al., 2013) and their first-degree 
relatives (Liu et al., 2016). This association was not pre-
sent in our overall sample (r = 0.05; BF01 = 9.86, suggest-
ing moderate evidence for the absence of an association 
between hedonic capacity and reward responsivity). How-
ever, an exploratory analysis showed opposing associations 
between the reward bias and hedonic capacity in the groups 
presented with the non-social (star) and a social feedback 
stimulus (thumbs up), whereas the groups did not differ 
overall in hedonic capacity. Future research should exam-
ine whether this exploratory finding indicates a flexible 
and malleable relationship between state and trait meas-
ures of reward responsivity. The DDM parameters were 
also not associated with self-reported hedonic capacity. Of 
note, the current online sample had on average hedonic 
capacity scores that were higher than those reported for 
healthy individuals in a recent meta-analysis (Trøstheim 
et al., 2020). Thus, the question whether hedonic capacity 
influences the processing of social and non-social feedback 
stimuli cannot be conclusively answered.

Conclusion

No processing advantage of social over non-social feedback 
stimuli was observed when they were presented to different 
participants. Overall, these findings strongly suggest that 
different social stimuli can serve equally well as reinforc-
ing stimuli in the probabilistic reward task (PRT), without 
affecting the expected response bias towards the more fre-
quently rewarded option.
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