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A B S T R A C T

Polarization is the process by which a macrophage cell commits to a phenotype based on external signal
stimulation. To know how this process is affected by random fluctuations and events within a cell is of utmost
importance to better understand the underlying dynamics and predict possible phenotype transitions. For this
purpose, we develop a stochastic modeling approach for the macrophage polarization process. We classify
phenotype states using the Robust Perron Cluster Analysis and quantify transition pathways and probabilities
by applying Transition Path Theory. Depending on the model parameters, we identify four bistable and one
tristable phenotype configuration. We find that bistable transitions are fast but their states less robust. In
contrast, phenotype transitions in the tristable situation have a comparatively long time duration, which reflects
the robustness of the states. The results indicate parallels in the overall transition behavior of macrophage cells
with other heterogeneous and plastic cell types, such as cancer cells. Our approach allows for a probabilistic
interpretation of macrophage phenotype transitions and biological inference on phenotype robustness. In
general, the methodology can easily be adapted to other systems where random state switches are known
to occur.
1. Introduction

Macrophages are a specific type of immune cells (Lahmar et al.,
2016). In a process called polarization macrophages adopt different
phenotypes in response to external signals and their microenvironment.
Such stimulation results in a continuum of macrophage phenotype
variety and functionality that has been simplified into a dichotomous
framework: on one end, there are classically activated (M1-phenotype)
macrophages and on the other end alternatively activated types (M2-
phenotype). M1-like macrophages are pro-inflammatory and direct host
defense, whereas M2-like macrophages have quite the opposite effect—
they resolve inflammation and repair tissue (Mantovani et al., 2005).
The original dichotomous framework is based on in vitro studies in
which macrophages were stimulated with IFN-𝛾 or IL-4 to induce
an M1 or M2 phenotype, respectively (Martinez and Gordon, 2014).
In between these extremes, unique or mixed phenotypes have been
observed (Sica and Mantovani, 2012), particularly in pathological con-
texts such as neurodegenerative disorders (Garofalo et al., 2003) or the
tumor microenvironment (Biswas et al., 2008).
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Macrophage polarization is regulated by cytokine signals which
induce the Jak-STAT pathway in these cells (Hu et al., 2007). This path-
way communicates information from chemical signals outside of a cell
to the nucleus, resulting in the activation of genes. Binding of the ligand
(e.g., a cytokine) to its cell-surface receptor activates JAK proteins,
which then self-phosphorylate and then phosphorylate their associated
receptor. This action recruits STATs which are phosphorylated by the
JAKs to form a dimer. The dimer translocates from the cytosol to the
cell nucleus to induce transcription of target genes (O’Shea and Plenge,
2012). This pathway is ubiquitous in the cell and has roles in develop-
ment, immunity, and cancer. It also integrates with other cell signaling
pathways (e.g. mTOR and MAPK/ERK). Its role in cytokine receptor
signaling is one of its many purposes. In the context of macrophages,
IFN-𝛾 induced STAT1 activation facilitates the transcription of genes
which create pro-inflammatory products (Ma et al., 2020) whereas
IL-4 induced STAT6 activation has the opposite effect (Waqas et al.,
2019) and represses inflammatory markers in macrophages (Czimmerer
et al., 2018). Within the binary phenotype classification system, simul-
taneous high STAT1 and low STAT6 activation is interpreted as the
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Fig. 1. Flowchart of the methodological approach. First, a deterministic model of macrophage polarization is transformed into a stochastic modeling framework. We then use a
clustering approach to identify possible multistable phenotypes based on several different parameter sets. Finally, to calculate phenotype transition paths and probabilities between
the identified phenotypes, we apply Transition Path Theory. Created with Biorender.com.
M1 phenotype, whereas reversed activation levels characterize the M2
phenotype (Bardi et al., 2018). While we acknowledge that the binary
classification of macrophage phenotypes into a M1 and M2 category is
oversimplified, we use this terminology to make our results more easily
comparable with the current literature and reflect the historical in vitro
experiments related to macrophage polarization in which a macrophage
is stimulated with a single cytokine to induce polarization.

We also know that macrophages within a tumor can switch be-
tween phenotypes, which determine their functionality to be either
promoting or suppressing tumor growth (Poh and Ernst, 2018). In
other words, macrophages are very plastic cells (Biswas and Mantovani,
2010) that can reverse their activation state fully and rapidly. There-
fore, a given macrophage may participate sequentially in the induction
and resolution of inflammation (Porcheray et al., 2005).

Even with this biological insight, knowledge gaps exist in under-
standing how microenvironmental signaling drives polarization, pheno-
type switching and functionality, and ultimately pathological outcomes.
To address these knowledge gaps, several deterministic model frame-
works, based on Ordinary Differential Equations (ODEs), have been
developed in recent years to better understand macrophage polariza-
tion processes, and the transitions between phenotypes, e.g., Nickaeen
et al. (2019), Smith et al. (2016), Zhao et al. (2019), Frank et al. (2021).
These models confirmed the existence of already known phenotypes,
and predicted others not yet described in the literature. Furthermore,
bifurcation analysis revealed the possibility of phenotype switches that
are known to exist in living cells and cell cultures (Sica and Mantovani,
2012).

Deterministic model frameworks build on the assumption that there
are a large number of molecules (e.g., transcription factors) present
within a cell. Contrary to this assumption, (human) cells may include
only a restricted number of molecule copies, such that intrinsic noise
and random fluctuations play an important role. Therefore, frameworks
exist to study stochastic gene-regulatory networks of cell-fate decisions,
such as energy landscape analysis (Coomer et al., 2022; Ye et al.,
2021), or transition path theory (Li et al., 2021; Lang et al., 2021).
Such approaches help identify possible important pathways and respec-
tive probabilities of phenotype switches, along with the responsible
underlying mechanisms.
2

In this paper, we aim to mimic a stochastic cell environment by
taking into account randomness within a single macrophage cell. Using
the Markov state modeling (MSM) framework, we first study possible
phenotype configurations and compare them to the outcome of de-
terministic model approaches. Then, applying transition path theory
(TPT), we analyze the transition routes of the identified phenotypes
and their corresponding probabilities. Recently, a similar approach
has been applied in describing lysis-lysogeny transition and stem cell
development (Li et al., 2021).

The article is organized in the following way. We start with the
presentation of the methodological approach in Section 2, followed by
the results in Section 3, and end with their discussion in Section 4.
Appendix includes more details on the methods, additional figures and
tables describing our results. Matlab code (macro-tpt Frank and Röblitz
(2022)) to reproduce the results from this paper is available from https:
//github.com/a-sfrank/macro-tpt.git.

2. Methods

An overview of the methodological approach used in this article is
presented in Fig. 1.

2.1. The deterministic ODE model

We start with a deterministic ODE model that describes dynamic
changes of STAT1 and STAT6 in a single macrophage (Frank et al.,
2021). This model is characterized by an asymmetry in the regulatory
mechanisms and exhibits complex dynamics in terms of multistability.
A graphical representation of the model is shown in Fig. 2. The variable
𝑥1 represents STAT1, a marker for M1 polarization, and the variable 𝑥2
represents STAT6, a marker for M2 polarization, along with two input
signals (denoted by 𝑆1 and 𝑆2). The equations of the ODE model are

𝑥′1 =
(

𝑎1 ⋅𝐻
+(𝑥1, 𝑘1, 𝑛1) + 𝑆1

)

⋅𝐻−(𝑥2, 𝑝2, 𝑙2) + 𝑏1 − 𝑞1𝑥1, (1)

𝑥′2 = 𝑎2 ⋅𝐻
+(𝑥2, 𝑘2, 𝑛2) + 𝑆2 ⋅𝐻

−(𝑥1, 𝑝1, 𝑙1) + 𝑏2 − 𝑞2𝑥2, (2)

where ′ = 𝑑∕𝑑𝑡. The term 𝐻+(𝑥𝑖, 𝑘𝑖, 𝑛𝑖) = 𝑥𝑛𝑖∕(𝑥𝑛𝑖 + 𝑘𝑖
𝑛𝑖 ) denotes a

stimulatory Hill function, whereas 𝐻−(𝑥𝑖, 𝑝𝑖, 𝑙𝑖) = 𝑝𝑙𝑖𝑖 ∕(𝑝
𝑙𝑖
𝑖 + 𝑥𝑖

𝑙𝑖 ) denotes
an inhibitory Hill function. For more details on the ODE model con-
struction, see Frank et al. (2021). The model parameters and their
descriptions are provided in Table 1.

https://github.com/a-sfrank/macro-tpt.git
https://github.com/a-sfrank/macro-tpt.git
https://github.com/a-sfrank/macro-tpt.git
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Fig. 2. Schematic diagram of the modeled signaling network. The variable 𝑥1
represents STAT1, a marker for M1 polarization, and the variable 𝑥2 represents STAT6,
a marker for M2 polarization, along with two input signals (denoted by 𝑆1 and 𝑆2).
Self-stimulation of STATs (𝑎𝑖 , 𝑛𝑖 , 𝑘𝑖 , 𝑖 ∈ {1, 2}) is represented by the orange loops at the
bottom of the figure, while processes of mutual-inhibition are depicted with red and
green inhibiting lines (𝑝𝑖 , 𝑙𝑖 , 𝑖 ∈ {1, 2}). The incoming blue arrows (𝑏𝑖 , 𝑖 ∈ {1, 2}) represent
basal activation of STATs which also occurs in the absence of cytokine signaling. The
outgoing black arrows (𝑞𝑖 , 𝑖 ∈ {1, 2}) represent deactivation of STATs. Incoming arrows
at the top represent cytokine signaling (IFN (𝑆1) and IL4 (𝑆2) respectively). Note the
asymmetry in that STAT6 inhibits both the input signal and self stimulation of STAT1,
but STAT1 impacts only the input signal for STAT6. See Frank et al. (2021) for a
detailed description of the model equations. Created with Biorender.com.

Table 1
Model parameters in Eqs. (1)–(2).
Parameter Description

𝑎1,2 Strength of self-stimulation
𝑏1,2 Basal activation rates
𝑛1,2 Exponents in the Hill functions for self-stimulation
𝑘1,2 Thresholds in the Hill functions for self-stimulation
𝑙1,2 Exponents in the Hill functions for mutual inhibition
𝑝1,2 Thresholds in the Hill function for mutual inhibition
𝑞1,2 Deactivation rates
𝑆1,2 Input signal strength

2.2. Building the stochastic gene-regulatory network model

The Chemical Master Equation (CME) is a fundamental description
of stochastic chemical kinetics commonly used to model noisy gene
regulatory networks. It takes into account random fluctuations in the
time points and the order of chemical reactions. The CME is a system of
differential equations that describes the evolution of probability densities
in the state space. For a system involving 𝐷 different species, the state
space is N𝐷, i.e., the space of 𝐷-dimensional positive integer vectors
containing the copy-numbers of each of the 𝐷 species. The CME can
usually only be solved numerically, which is a tedious task. Alterna-
tively, one can draw sample realizations of the underlying stochastic
Markov jump process by using the stochastic simulation algorithm
(SSA) (Gillespie, 1976).

In order to derive the CME from the deterministic ODE model,
the ODE system is first decomposed into four elementary reactions
corresponding to synthesis and degradation of STAT1 and STAT6,
respectively,

∅
𝛼1(𝑥1, 𝑥2)

GGGGGGGGGGGGGGA𝑥1, ∅
𝛼2(𝑥1, 𝑥2)

GGGGGGGGGGGGGGA𝑥2, 𝑥1
𝛼3(𝑥1)

GGGGGGGGGGA∅, 𝑥2
𝛼4(𝑥2)

GGGGGGGGGGA∅,

with the four stochastic propensity functions

𝛼1(𝑥1; 𝑥2) =
(

𝑎1 ⋅𝐻
+(𝑥1, 𝑘1, 𝑛1) + 𝑆1

)

⋅𝐻−(𝑥2, 𝑝2, 𝑙2) + 𝑏1,

𝛼2(𝑥1; 𝑥2) = 𝑎2 ⋅𝐻
+(𝑥2, 𝑘2, 𝑛2) + 𝑆2 ⋅𝐻

−(𝑥1, 𝑝1, 𝑙1) + 𝑏2,

𝛼3(𝑥1) = 𝑞1 ⋅ 𝑥1,

𝛼 (𝑥 ) = 𝑞 ⋅ 𝑥 ,
3

4 2 2 2
and stoichiometric change matrix

𝑆 =
(

1 0 −1 0
0 1 0 −1

)

.

Denote by 𝑝(𝑖, 𝑗) the probability to find the system in state (𝑥1 = 𝑖, 𝑥2 =
𝑗) at time 𝑡. The CME is the balance equation for the change in this
probability density:
𝑑
𝑑𝑡

𝑝(𝑖, 𝑗) = 𝛼1(𝑖 − 1, 𝑗) ⋅ 𝑝(𝑖 − 1, 𝑗) + 𝛼3(𝑖 + 1) ⋅ 𝑝(𝑖 + 1, 𝑗)

+ 𝛼2(𝑖, 𝑗 − 1) ⋅ 𝑝(𝑖, 𝑗 − 1) + 𝛼4(𝑗 + 1) · (𝑖, 𝑗 + 1)

−
[

𝛼1(𝑖, 𝑗) + 𝛼3(𝑖) + 𝛼2(𝑖, 𝑗) + 𝛼4(𝑗)
]

⋅ 𝑝(𝑖, 𝑗)

If the state space is truncated and enumerated with states 𝑘 =
1, 2,… , 𝑛, this equation can be written in matrix notation,

𝑝′ = 𝑄 ⋅ 𝑝, 𝑝 ∈ R𝑛, 𝑄 ∈ R𝑛×𝑛 (3)

whereby the transition rate matrix 𝑄 has column sums zero. The sta-
tionary density 𝜋 ∈ R𝑛 is given by the eigenvector of 𝑄 corresponding
to eigenvalue 𝜆 = 0,

𝑄 ⋅ 𝜋 = 0. (4)

2.3. Phenotype identification via clustering

Stochastic changes in particular patterns of gene expression have
been identified with spontaneous phenotype transitions that can di-
versify otherwise identical cell-populations. These gene expression pat-
terns correspond to metastable regions in the state space of the CME.
The dynamics remains in these regions for a long time before it rapidly
switches to another metastable region.

Multistability is characterized by the occurrence of a cluster of
𝑛𝑐 > 1 eigenvalues 𝜆1 = 0 > 𝜆2 > ⋯ > 𝜆𝑛𝑐 close to zero for the
matrix 𝑄. Note that the eigenvalue 𝜆1 = 0 is equivalent to the Perron
root 𝜆1 = 1 (also called the leading eigenvalue or dominant eigenvalue)
of the corresponding transition probability matrix 𝑃 (𝜏) = exp(𝜏 ⋅ 𝑄). It
has been demonstrated previously (Röblitz and Weber, 2013) that the
subspace spanned by the corresponding eigenvectors, 𝑋, contains all
information about the location of the metastable regions. To extract this
information, spectral clustering approaches, such as the Robust Perron
Cluster Analysis (PCCA+) (Röblitz and Weber, 2013), are useful. The
PCCA+ computes a transformation matrix 𝐴 such that the transformed
eigenvectors 𝜒 = 𝑋 ⋅ 𝐴 become so-called membership vectors. These
membership vectors form a fuzzy clustering of the state space in that
they assign to any state the probabilities for belonging to any of the
𝑛𝑐 clusters, which represent the metastable regions. In the context of
macrophage polarization, the metastable regions define the different
phenotypes.

Furthermore, the membership vectors are used to project (coarse
grain) the dynamics onto the space of metastable regions by

𝑄𝑐 = (𝜒𝑇 ⋅ diag(𝜋) ⋅ 𝜒)−1 ⋅ 𝜒𝑇 ⋅ diag(𝜋) ⋅𝑄 ⋅ 𝜒 = 𝐴−1 ⋅ diag(𝜆) ⋅ 𝐴,

where 𝜆 = (𝜆1,… , 𝜆𝑛𝑐 ). The statistical weights 𝑤𝑘 of the clusters can be
computed by

𝑤𝑘 ∶= 𝜒𝑇
𝑘 𝜋, 𝑘 = 1,… , 𝑛𝑐 .

Similarly, the normalized partial densities of the clusters are given by

𝜋𝑘 ∶= diag(𝜋) ⋅ 𝜒𝑘∕𝑤𝑘.

While the coarse grained transition rates might be difficult to in-
terpret, the corresponding coarse grained transition probabilities for a
time interval of length 𝜏 can be obtained via the matrix exponential

𝑃𝑐 (𝜏) = exp(𝜏 ⋅𝑄𝑐 ).

If not stated otherwise, we use 𝜏 = 100 throughout the computations.
This reduced representation of the dynamics as transition probability
matrix of a low-dimensional Markov chain is referred to as Markov state
model.
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2.4. Choice of parameter sets

With no background knowledge about adequate model parameters
leading to multistability in the stochastic model, we relied on the
parameter sets presented in the ODE model (Frank et al., 2021), which
give rise to bi-, tri- and quadstability in the deterministic case. These
parameter values were adapted from an empirical T-cell model (Yates
et al., 2004) and are considered biologically reasonable.

The dimension of 𝑥1 (STAT1) and 𝑥2 (STAT6) in the ODE model is
concentration. Hence, we need to multiply all parameters that contain
units of concentration (i.e., 𝑎1, 𝑎2, 𝑏1, 𝑏1, 𝑘1, 𝑘2, 𝑝1, 𝑝2, 𝑆1, 𝑆2) with a fac-
tor that accounts for the conversion from concentrations to molecular
copy numbers. If the unit of 𝑥1 and 𝑥2 was mol/L (molar, M), this
conversion requires multiplication with both the volume (in litre) as
well as Avogadro’s constant 𝑛𝐴 = 6 ⋅ 1023 (number of molecules in
one mol). If the unit of 𝑥1 and 𝑥2 was in a different concentration
unit, e.g., pM or nM, then a third factor is required that accounts for
conversion from any concentration unit to mol/L. At the end, it is only
the lump factor that occurs as parameter in the CME model, and the
important fact is that this factor is proportional to the system volume.

This conversion follows the approach taken by Vellela and Qian
(2009). They derive the CME from the ODE as a birth–death process,
whereby the rates in the stochastic model are related to the rates in
the deterministic model by a factor of the volume parameter 𝑉 which
depends on the order of the reaction. The authors consider values of 20,
40, and 80 in their numerical analysis. A factor 𝑉 = 6 would convert,
for example, a concentration of 1 pM into 6 molecular copy numbers
in a volume of 10 pL. The order of magnitude of this factor seems
to be reasonable, given that the typical volume of a human alveolar
macrophage is in the pico-litre range (Krombach et al., 1997) and
typical protein concentrations in a cell in the pico- to low nano-molar
range (Wenta et al., 2008; González Pérez et al., 2009).

In our simulations, we use a conversion factor 𝑉 = 12.9 and multiply
the concentration-related parameters from (Frank et al., 2021) with this
factor. The authors in Vellela and Qian (2009) demonstrate that the
conversion factor 𝑉 is a critical parameter. In their numerical example,
increasing its value leads to a change in peak heights in the bistable
stationary distribution. We therefore varied 𝑉 to see how it influences
the multistability patterns.

Generally, there is no one-to-one correspondence between the dy-
namics of the ODE and that of the CME model. Hence, it is not
surprising that the CME model with the transformed parameter sets did
not result in the same multistability as the ODE model. We therefore
varied some of the stochastic model parameters that were identi-
fied as being most sensitive in the ODE model (Frank et al., 2021),
e.g., 𝑞1,2, 𝑘1,2, 𝑆1,2, 𝑎2, whenever the parameter transformation did not
result in the expected multistability in the stochastic model. Hence,
the primary rationale behind this variation was to find parameter sets
that lead to multistability in our stochastic model. To asses whether
parameter sets result in multistability, we used three different criteria:
(i) the gap in the zero eigenvalue spectrum of the transition rate matrix
𝑄, (ii) the quality of the clustering (the crispness of the membership
functions 𝜒), and (iii) the spatial separation of the resulting metastable
regions. We selected parameter sets for presentation that satisfy all
three conditions.

2.5. Computing phenotype transition paths and probabilities

Transition Path Theory (TPT) has originally been developed in the
context of molecular dynamics simulations, but has previously also
been applied to gene regulatory networks (Chu et al., 2017; Tse et al.,
2018). The theory is described in detail in numerous papers (Metzner
et al., 2009; Noé et al., 2009; Vanden-Eijnden, 2010).

Based on the identified macrophage phenotypes, TPT is applied to
determine the transition pathways along which macrophages switch
4

their phenotype, together with the corresponding path probabilities.
For completeness, we briefly summarize the TPT concepts that are
important for our application to macrophage polarization, but refer the
reader to Appendix A.1, as well as the above mentioned papers for more
details.

TPT takes as input the transition rate matrix 𝑄 = (𝓁𝑖𝑗 )𝑖,𝑗∈ =
𝑄(𝑖, 𝑗)𝑖,𝑗∈ (from Eq. (3)) of a Markov jump process {𝑋}𝑡∈R defined
on a discrete state space . Based on the assumption that the process
{𝑋}𝑡∈R is irreducible and ergodic, the time-reversed process {�̃�}𝑡∈R is
lso a Markov jump process with a rate matrix �̃� = (𝓁)𝑖,𝑗∈ given by
�̃�,𝑗 =

𝜋𝑗
𝜋𝑖
𝓁𝑗𝑖 (Metzner et al., 2009), where 𝜋 is the invariant distribution

or stationary density) of both processes {𝑋}𝑡∈R and {�̃�}𝑡∈R, satisfying
q. (4).

TPT is based on reactive trajectories, which are defined as transitions
etween two non-empty, disjoint subsets 𝐴 and 𝐵 of the state-space ,
here one set is the source and the other one is the sink state (Noé
t al., 2009; Metzner et al., 2009).

As a first step, we compute the discrete forward 𝑞+ and backward
− committor functions, as they are essential to calculate statistical
roperties and dynamical information of the reactive trajectories. 𝑞+ is
he probability that the process that starts in 𝑖 ∈  will first reach subset

rather than 𝐴, while 𝑞− describes the probability that the process first
isited sub-set 𝐴 rather than 𝐵 (Metzner et al., 2009). In a second step,
e calculate statistical properties that allow for a dynamical interpre-

ation of the ensemble of reactive trajectories between subsets 𝐴 and
in the state space  (Helfmann et al., 2020). Table A.3 summarizes

mportant measures in TPT to describe dynamical information and
tates the corresponding interpretation. For the detailed computation
f these quantities, the reader is referred to Appendix A.1.

In a third step, we coarse-grain the probability current of reactive
rajectories, 𝑓𝐴𝐵

𝑖𝑗 , by projecting it onto the metastable state regions 𝑆𝑖
nd 𝑆𝑗 from the Markov State Model, i.e., onto the phenotypes,

̃𝑆𝑖→𝑆𝑓
=

∑

𝑘∈𝑆𝑖 ,𝑙∈𝑆𝑓

𝑓𝐴𝐵
𝑘,𝑙 , (5)

which in its normalized form reads

𝑝𝑟𝑆𝑖→𝑆𝑓
=

𝐹𝑆𝑖→𝑆𝑓
∑

𝑖=𝑆𝑖 ,𝑓≠𝑆𝑖
𝐹𝑆𝑖→𝑆𝑓

. (6)

n this step, we define a set 𝑆𝑘 as the support of a partial density 𝜋𝑘 in
uch a way that it carries at least (1 − 𝜀) ⋅ 100% of this density, i.e.
∑

∈𝑆𝑘

𝜋𝑘(𝑖) > 1 − 𝜀,

hereby we choose 𝜀 = 10−8.
Finally, by using probability tree diagrams, the relative probabilities

f the path segments 𝑝𝑟𝑆𝑖→𝑆𝑓
are combined along an individual pathway

𝑃𝑖 from 𝐴 to 𝐵 to define the total relative probability 𝑝𝑟𝑖 of path 𝑃𝑖.

3. Results

3.1. Parameter sets for multistability

Following the procedure described in Section 2.4, we identified five
different parameter sets (cases) that lead to different combinations of
phenotypes. These are presented in Table 2.

Parameter sets leading to bi- and tristability are notably different
from each other. For example, the phenotype observation in case 1 is
driven by the parameter ratio of 𝑏1 ≫ 𝑏2, and partly by 𝑞1 > 𝑞2. Trista-
bility (case 5) results from bistability (case 2) by increasing the external
input signals 𝑆1,2. Other bistable cases (e.g., case 3 and 4) emerge,
respectively, from parameter cases 2 and 1 by a change of values in
𝑎1, 𝑏1, 𝑞2 and 𝑆1,2. These parameter dependencies potentially reflect the

differences in cellular conditions driving phenotype emergence.



Journal of Theoretical Biology 575 (2023) 111634A.-S.J. Frank et al.

t

d
f

s
b
(
(
l
l
t
L

i
p
w

3

F

e
d
c
c
m
m
c
i
L

s
p
w
t

3

(
c
t

F
c
i
o

Table 2
Parameter sets. The table presents the five different cases of parameter sets from the manual sampling approach, which give rise to multistable macrophage phenotypes in the
stochastic model. The values are based on the model parameters in Frank et al. (2021). Due to the conversion to molecule numbers, parameters 𝑎1,2 , 𝑏1,2 , 𝑘1,2 , 𝑝1,1 and 𝑆1,2 have
o be multiplied with the factor 𝑢 ⋅ 𝑉 ⋅ 𝑛𝐴 = 12.9.

Parameters 𝑎1 𝑎2 𝑏1 𝑏2 𝑛1 𝑛2 𝑘1 𝑘2 𝑙1 𝑙2 𝑝1 𝑝2 𝑞1 𝑞2 𝑆1 𝑆2

Case 1 (bi) 5 5 15 0.05 6 6 1 1 1 1 0.5 1 5 1 2 0.155
Case 2 (bi) 15 5 0.05 0.05 6 6 1 1 1 1 0.5 1 5 1 2 0.155
Case 3 (bi) 15 5 0.05 0.05 6 6 1 1 1 1 0.5 1 5 5 1 0.0775
Case 4 (bi) 5 5 0.001 0.05 6 6 1 1 1 1 0.5 1 5 1 2 0.155
Case 5 (tri) 15 5 0.05 0.05 6 6 1 1 1 1 0.5 1 5 1 0.31 0.024
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3.2. Identified phenotypes in the stochastic environment

We observe diversity in multistable macrophage phenotype config-
urations, specifically bi- and tristability, as presented by the clustering
results in Table A.4. Multistability is also visible in the corresponding
transition probability matrices 𝑃𝑐 and the surface plots of the partial
ensities, which represent the multiple phenotypes states (see Fig. 3
or bistability and Fig. A.6 for tristability).

Depending on parameters used in the model (see Table 2), Fig. 3
hows four different pairs of bistable phenotype sets, which are defined
ased on the relative levels (i.e., low, high) of activation in 𝑥1∕𝑥2:
1) high 𝑥1/low 𝑥2 (H/L) and high 𝑥1/high 𝑥2 (H/H) in Fig. 3(a),
2) low 𝑥1/high 𝑥2 (L/H) and high 𝑥1/low 𝑥2 (H/L) in Fig. 3(c), (3)
ow 𝑥1/low 𝑥2 (L/L) and high 𝑥1/low 𝑥2 (H/L) in Fig. 3(e) and (4)
ow 𝑥1/low 𝑥2 (L/L) and low 𝑥1/high 𝑥2 (L/H) in Fig. A.7(g). Only one
ristable case was detected, which comprised the L/L, the H/L and the
/H phenotypes (see Fig. A.6).

Furthermore, the statistical weights 𝑤𝑖 (𝑖 = 1, 2, 3) in Table A.4
ndicate how much time the dynamical process spends in a specific
henotype region before switching to another one. The higher the
eight, the longer the expected holding time.

.3. Phenotype transitions in the bistable case

The dynamic flow paths between the phenotypes are presented in
igs. 3 and A.7.

The information above and in Table A.5 reveals that for the param-
ter set in case 4 (see Table 2), a macrophage will never transition
irectly from L/L to L/H or vice-versa but will always pass through the
omplement set (C) when making this phenotype change. However, in
ase 3, the transition probabilities indicate that a macrophage is much
ore likely to directly transition between L/L and H/L rather than
eander through a complement set. Additionally, the transition time

an be compared between different cases (see Table A.5). For example,
t is an order of magnitude faster for a macrophage to transition from
/L to H/L in Case 3 rather than from H/L to L/L.

Overall, the transitions happen mostly (with nearly 100%) on one
pecific path, directly from the start to the end set, through the com-
lement set (C). This observation is different from what we observe
hen there are more than two phenotypes present, as discussed for the

ristable case in the following.

.4. Phenotype transitions and probabilities in the tristable case

The dynamic flow paths between the three identified phenotypes
L/L, H/L and L/H) are presented in Figs. 4 and A.8 for different
ombinations of start and end phenotype. They were generated from
he parameter set in case 5 (Table 2).

The transition networks are illustrated in Figs. 4(b), Fig. 4(d),
ig. 4(f), and Fig. 4(h) as well as in Figs. A.8(b) and Fig. A.8(d). As it
an be seen from these figures, the choice of start and end set plays an
mportant role for the transition dynamics and phenotype realizations
5

f the macrophage cell. This choice influences the specific transition
aths and their probabilities. In the following, we therefore distinguish
etween the different flow directions by enumerating them as ‘subcases
–6’.

In subcase 1, the states L/H and H/L are the end sets and L/L
s the start set (see Figs. A.8(a) and Fig. A.8(b)), while in subcase

the start set is defined as the combination of the L/L and H/L
henotype (see Figs. A.8(c) and Fig. A.8(d)). In these two cases, we
bserve short transition times (𝑡 = 0.16 and 0.40, respectively) (see
able A.6) with high transition probabilities for the different paths.
articularly, subcase 1 shows that cells are more likely to end up in the
/L phenotype (57.4%) than in the L/H phenotype (43.6%). In subcase
, 90.3% of the transitions to the L/H state start in the L/L phenotype,
hile only 9.6% start in the H/L state.

Both subcases 3 and 4 start from the same start set (L/L), but
heir end phenotype as well as the intermittent phenotype differ (see
igs. 4(a) and 4(c)). For example, in subcase 4 macrophage cells
oming from the L/L state end up with 99.2% probability in the H/L
henotype (either directly or via the complement, see Table A.6). There
s, however, an additional very small probability that the macrophage
witches to the L/H phenotype, and stays there for a very long time,
efore settling in the final H/L state. The stopover in the L/H state is
epresented by the self-loop in the corresponding transition network
see Fig. 4(d)). This discourse over the L/H phenotype, with a very
ow segment probability (3.8e−6%) of leaving the state (L/H), makes
he transition from the L/L to the H/L phenotype lasting very long on
verage (𝑡 = 135337) and thus very unlikely (see Table A.6). Similar
nterpretations can be drawn for subcase 3 based on the presented
esults in Figs. 4(a) and 4(b) and the Table A.6. Here, however, the
esults indicate that the macrophage cell is able to leave the intermit-
ent state (H/L). This is also indicated by the relatively fast transition
ime (𝑡 = 2.03).

Similar to subcase 4, also subcases 5 and 6 represent a situation
here the final phenotype state will probably not be reached. Here,

he start sets are the L/H, respectively the H/L phenotype, and the end
ets are the H/L and L/H phenotype, respectively (see Figs. 4(e) and
(g)). The dynamic information in Table A.6, as well as the segment
robabilities in the corresponding transition networks in Figs. 4(f) and
(h) indicate that the transition flow is recurrently drawn towards the
ntermittent phenotype state (I) with high probability (i.e., there are
ath segments with a very low probability for leaving the intermittent
tate, while the probabilities of path segments leading to this state
re high). In other words, it will require several transition iterations
etween the intermittent state (I) and the complement set (C) until the
nd state is reached. This observation can also be inferred from the
ow probabilities of the respective transition paths (see Table A.6). The
verage length of a successful transition in cases 5 and 6 (𝑡 = 699 and

𝑡 = 1359, respectively, see Table A.6) reflects this result as well.

3.5. Influence of volume scaling on multistability

As mentioned in Section 2.4, the conversion factor 𝑉 is a critical
parameter. We therefore analyzed how multistability is affected if 𝑉 is

varied for one of the cases. Fig. 5 shows how the stationary density
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Fig. 3. Bistable phenotype configurations. The left panel shows a surface plot of the sum of the partial densities which correspond to two metastable clusters. The ratio between
𝑥1 , 𝑥2 defines the phenotypes. In (a) we see high activation levels in both 𝑥1 and 𝑥2, and thus can classify a High/High (H/H) phenotype. High activation in 𝑥1 and low activation
in 𝑥2, describes a H/L phenotype. Similarly, we see bistable clusters of phenotypes in (c) H/L and L/H, in (e) L/L and H/L and in (g) L/L and L/H. The right panel shows calculated
transition path flow directions in (b), (d), (f) and (h). In these transition flow graphs, the red colored set indicates the starting set and the blue colored set the ending set. The
gray colored area represents the transition flow. The Table A.5 gives a quantitative overview over the transition dynamics, including the respective paths and probabilities.
changes in case 1 when we vary the conversion factor. When the
factor decreases, the two density peaks move towards smaller copy
numbers. The H/H peak becomes smaller compared to the H/L peak,
until the two peaks merge into one and bistability is lost. In the other
direction, increasing 𝑉 moves the two peaks towards higher copy
numbers, thereby increasing the statistical weight of the H/H peak and
decreasing the H/L peak. The larger the conversion factor, the less
probable the H/L state becomes, and stochastic transitions get more and
more rare. Similar observations can be made for the other parameter
sets.
6

4. Discussion

Informed knowledge about phenotype states, paths and their proba-
bilities in a realistic setting is crucial to predict the role and functional-
ity of macrophage cells in disease progression and to better understand
the underlying mechanisms. Until now, however, it was unclear how
macrophages behave in their stochastic environment. Therefore, we de-
signed a methodological approach to mimic the macrophage switching
dynamics in a stochastic cellular environment.

A similar approach (to the one we present here) has been applied
in Li et al. (2021) to other cell-fate decisions. However, there are
several computational differences: (i) In Li et al. (2021), MSM is based
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Fig. 4. Transition flows, paths and probabilities between three phenotypes. The left column shows transition path flow (in gray color) in the CME state-space between a given
start phenotype (in red color) and end phenotype (in blue color). The right column presents the transition network together with the corresponding path segment probabilities,
added next to the arrows of the flow direction. Red colored circles represent the start sets (𝑆𝑖, with 𝑖 for initial), and blue ones the end sets (𝑆𝑓 , with 𝑓 for final). Intermittent
phenotype states (I) are colored in gray and green represents the state space without any phenotype, i.e., the complement set (C) to the states (𝑆𝑖 , 𝐼 and 𝑆𝑓 ). The path probabilities
were calculated from Eq. (6) in Section 2. Their color refers to the set from where the transition flow comes. Table A.6 gives a quantitative overview over the transition dynamics,
including all possible transition paths and their respective probabilities. Sub-cases 1 and 2 with combined end and start states are presented in Fig. A.8.

Fig. 5. Stationary density from simulations of case 1 with varying conversion factor 𝑉 ∗. The value of the original conversion factor is 𝑉 = 12.9.
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on simulation counts from the SSA to define the transition matrix. We
define the transition rate matrix directly using the birth- and death-
terms from a deterministic ODE model described in Frank et al. (2021).
Hence, our approach is not restricted by simulation length. (ii) As in Li
et al. (2021), we applied a PCCA type algorithm to partition the state
space into fewer metastable states. The algorithm, as described in Frank
et al. (2022), was extended to also deal with irreversible Markov chains,
which makes it applicable to a wider range of biological processes. (iii)
Instead of applying TPT on all micro-states as in Li et al. (2021), we
adapted a coarse-grained version of TPT only between the identified
phenotypes, which is less computational intensive.

Gene regulatory networks underlying macrophage polarization are
exceedingly complicated (Wang et al., 2014). There have been many
approaches to represent them using complex models, e.g., Palma et al.
(2018), Zhao et al. (2019), Hörhold et al. (2020), Castiglione et al.
(2016), Mishra et al. (2021), in the attempt to cover more molecular
details and to couple them to large, non-linear and high-dimensional
data sets.

On the contrary, we have employed a parsimonious, phenomeno-
logical model of the macrophage polarization process with the aim
to increase interpretability of our results and gain interesting bio-
logical insights. Our simple model also avoids unnecessary and com-
plex assumptions about possible relationships and connections between
transcription factors and is therefore more easily generalizable and
applicable to other processes. With fewer number of unknown model
parameters, our model will be less prone to overfitting when coupled
with (sparse) experimental data; it requires less computations and
memory storage and is consequentially computationally more efficient.

We have shown that phenotype multistability is maintained in the
stochastic setting, but that the number and combinations of emerging
phenotypes differ from a deterministic approach, as compared to the
results in Frank et al. (2021). This illustrates the influence and sensitiv-
ity of single-cell decisions to random fluctuations, which is in line with
prior work by Chu et al. (2017), Tse et al. (2018), Gupta et al. (2011),
where the authors analyzed how stochasticity affects cell-fate-decisions
of cancer, embryonic stem cells or closed gene regulatory network
motifs. In addition, we gained first insights into the probabilistic nature
of macrophage phenotype switches, which depends on the number of
phenotypes, the specific type, as well as the switch direction.

In particular, our analysis revealed that for different parameter
configurations, different phenotypes (e.g., L/L, H/L, L/H and H/H)
emerge. These phenotypes coincide with those identified in Frank
et al. (2021). However, our results also indicate that the number
of multistable phenotypes (e.g., quadstable) in stochastic systems is
restricted to bi- and at most tristability, which is in accordance with
the current literature (Gupta et al., 2011; Geiß et al., 2011; Cas-
tiglione et al., 2016). The validity of this hypothesis would have a
huge impact on our understanding of macrophage cells and needs to
be confirmed. Furthermore, the biological mechanisms behind changes
in different phenotype configurations need more attention, especially
as macrophage polarization is dynamic across time (Murray, 2017).
For example, our observation that specific parametric sets leading to
different phenotype outcomes can evolve from one another or in some
cases remain mutually exclusive should be replicated in laboratory
experiments, and their kinetic parameters within the cells should be
quantified. Such an endeavor is a crucial first step to actually reconcile
the biologically observed macrophage phenotypes and computational
results (Eftimie and Barelle, 2021; Tse et al., 2018). The overall lack
of data on macrophage markers restricts our knowledge about corre-
sponding kinetic parameters and consequently on macrophage subtypes
and their transition behavior (Eftimie and Barelle, 2021). The authors
in, e.g., Zhao et al. (2019) have used experimental data on activated
transcription factors from Western blot analyses to validate their model.
The data show short activation profiles over time, but do not reflect
8

multistable events. This restricts also our analysis and results to purely
synthetic scenarios and warrants the need for more data on macrophage
phenotype subtypes, their markers and kinetic parameters to gain better
understanding of the underlying processes of these heterogeneous cells
through modeling in the future. In the following, our findings are
therefore validated against empirical evidence for multistability of
macrophages and state switches existing in the current literature.

Considering the level of activation of STAT1 and STAT6, we could
interpret the L/H phenotype as M2-like, and H/L phenotype as M1-
like, while H/H would represent a mixed phenotype and L/L an M0
phenotype (Frank et al., 2021). While the M0, M1 and M2 phenotypes
are known to exist, mixed phenotypes (i.e., H/H) are less common.
Indeed, unique or mixed phenotypes have been observed (Sica and
Mantovani, 2012), particularly in pathological contexts such as neu-
rodegenerative disorders (Garofalo et al., 2003) or the tumor mi-
croenvironment (Biswas et al., 2008). For example, mixed phenotype
macrophages have been recently observed in early-stage lung can-
cer (Singhal et al., 2019) as well as human breast cancer (Deligne
et al., 2020) and there are open questions both about the biological
mechanisms which lead to their existence and their importance in
tumor progression and control (Eftimie and Barelle, 2021).

Recent biological experiments in phenotype profiling (Singhal et al.,
2019) have also demonstrated that tumor associated macrophages
(TAMs) in early lung cancer often demonstrate a mixed phenotype,
coexpressing M1 and M2 markers. This result indicates that in early-
stage tumors, the phenotype of macrophages is mixed and not skewed
towards either M1 or M2. It is well known that in advanced tumors,
M2 macrophages are abundant (Yang et al., 2020), indicating that
a large population of macrophages undergo a phenotype switch (or
switches) as the tumor progresses. Similar observations have been made
in Malyshev and Malyshev (2015). Here the authors describe a ‘‘switch
phenotype’’ or ‘‘M3-phenotype’’, which actually mixes attributes from
both the M1 and M2 phenotypes and has been observed in experiments
when the phenotype spectrum shifted from M1 to M2 or vice versa. In
our results, we have observed such a shift between the M1 to the M2
phenotypes over the complement set, which implies that the phenoytpe
has to mix M1 and M2 attributes temporarily to reach the other ‘‘side’’.
The hypotheses made by Malyshev and Malyshev (2015), however,
indicate that another path exists that leads through a stable fourth
phenotype, similar to the H/H one observed in the bistable situation,
linking M1 and M2. Although our results did not confirm their claim,
we cannot rule out the existence of such a phenotype and transition
path.

In addition, our results show that bistable phenotype switches are
faster than switches between three phenotypes. This result coincides
with the finding in Eftimie and Barelle (2021) that macrophage phe-
notypes have different half-life spans (e.g., M1 and mixed phenotypes
have shorter spans), which consequently could impact the speed of
specific transitions. If, for example, a transition path passes through an
intermediate phenotype that has a long half-life, the switch to the end
phenotype would take longer time. In our results, such an observation
was specifically clear in the M1–M2 phenotype transition over the M0
state, which led to very long average transition duration. This duration
reflects the energy barrier that has to be crossed for the phenotypes to
switch states (Kim and Wang, 2007). For example, the longer the time,
the more energy is needed for a transition and the robuster are the
phenotype states (Kim and Wang, 2007). A similar observation has also
been confirmed in a study on cancer cells, where the authors showed
that specific phenotype configurations were maintained over a long
time period (Gupta et al., 2011).

Finally, the transition network probabilities in Gupta et al. (2011)
for cancer sub-populations are comparable in terms of rate and magni-
tude to our results in the tristable case. In particular, the study shows
that some phenotypes have a very high probability to remain in a

specific state once this state has been reached. The observation that
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cancer stem like cells arise form non-stem-like cells, is similar to our ob-
servation of the L/L (M0-like) phenotype (Gupta et al., 2011). Although
cancer and macrophage cells are not identical, they share similar
attributes like heterogeneity and plasticity (Yabo et al., 2022). Thus, the
observed similarities, between our study and the results by Gupta et al.
(2011), in transition dynamics might be another common attribute of
these cell types. This inference however needs further investigation. In
addition, future studies should investigate if the transition probabilities
for single macrophage cells coincide with data from in-vivo and in-vitro
experiments and how these probabilities are altered in populations of
macrophage cells. Particularly, the presented methodological approach
in this manuscript could be of use for such future work.

Intermediate states have also been observed in embryogenesis dur-
ing the epithelial-mesenchymal transition, which is critical for organ
and tissue development (Lang et al., 2021) and also plays a role in
cancer metastasis (Goetz et al., 2020). Intermediate states were found
to accelerate the epithelial-mesenchymal transition because cells can
make small changes on gene expression as a first step towards a
transition, but remain in the intermediate state due to its level of
stability (Lang et al., 2021). The authors suggest that the presence
of intermediate states increases the plasticity of cell fate transitions.
It is becoming apparent that many cellular processes have multiple
intermediate states rather than just a binary outcome, and the role of
these states may be to maintain plasticity. In the context of macrophage
polarization, this is desirable as macrophages must be plastic to respond
to their changing environment (Shapouri-Moghaddam et al., 2018).

Overall, we have shown that our methodological approach is a use-
ful tool to uncover the underlying dynamic differences in multistable
systems and to test different hypotheses about potential configuration
states. This paradigm could be applied beyond macrophage polariza-
tion, and an advantage of this framework is the simple construction
of the model. Many cell fate decisions are controlled by pairs of
antagonistic master regulators (Zhou and Huang, 2011) which can
be represented by small networks with mutual inhibition and self-
stimulation. Examples include Cdx2 and Oct4 in the embryo (Ralston
and Rossant, 2005) and Nkx6 and Ptf1a, in the pancreas (Schaffer et al.,
2010). Thus our approach can potentially be applied to a wide range
of paired cell-fate decisions.

Although we studied a rather simple system with two transcription
factors and two input signals, the simplicity of our approach allows
to easily expand on the number of those to study specific components
of macrophage polarization related to particular diseases (Dorrington
and Fraser, 2019). In addition, further exploration of the parameter
space using, e.g., Latin Hypercube Sampling (Stein, 1987; McKay et al.,
2000), could lead to a broader range of parameters for multistability,
and therewith reveal different dynamics. Such an analysis however
exceeds the scope of this study.

Upon the availability of more data on macrophages and their kinetic
parameters, we believe that this approach will be of great importance
to further investigate and clarify our understanding of the mechanisms
behind particular cell transition pathways. Single-cell RNA-seq can
reveal immune heterogeneity by revealing a large number of genes per
cell and makes it possible to identify previously unknown macrophages
subsets. For example, Dick et al. (2019) recently identified a new set
of macrophages whose population increases after cardiac injury. More
evidence of mixed phenotype macrophages will undoubtedly unfold.
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Appendix

A.1. Transition path theory

TPT takes as input the transition rate matrix 𝑄 = (𝓁𝑖𝑗 )𝑖,𝑗∈ =
𝑄(𝑖, 𝑗)𝑖,𝑗∈ of a Markov jump process {𝑋}𝑡∈R defined on a discrete
tate space . Based on the assumption that the process {𝑋}𝑡∈R is
rreducible and ergodic, the time-reversed process {�̃�}𝑡∈R is also a
arkov jump process with a rate matrix �̃� = (𝓁)𝑖,𝑗∈ given by 𝓁𝑖,𝑗 =

𝜋𝑗
𝜋𝑖
𝓁𝑗𝑖 (Metzner et al., 2009), where 𝜋 is the invariant distribution (or

stationary density) of both processes {𝑋}𝑡∈R and {�̃�}𝑡∈R.
TPT is based on reactive trajectories, which are defined as transitions

etween two non-empty, disjoint subsets 𝐴 and 𝐵 of the state-space ,
here one set is the source and the other one is the sink state (Noé
t al., 2009; Metzner et al., 2009).

The discrete forward 𝑞+ and backward 𝑞− committor functions
re essential to calculate statistical properties and dynamical informa-
ion of the reactive trajectories. The forward committor 𝑞+ is defined
y Metzner et al. (2009), as follows,

⎧

⎪

⎨

⎪

∑

𝑗∈ 𝓁𝑖𝑗𝑞+𝑗 = 0 ∀𝑖 ∈ (𝐴 ∪ 𝐵)𝑐

𝑞+𝑗 = 0 ∀𝑖 ∈ 𝐴,
𝑞+ = 1 ∀𝑖 ∈ 𝐵,

(A.1)
⎩
𝑗

https://github.com/a-sfrank/macro-tpt.git
https://github.com/sroeblitz/cPCCA.git
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Table A.3
Nomenclature of Transition Path Theory (TPT). Table presents the dynamical information about the ensemble of reactive trajectories and
their interpretations. Details on TPT can be found in Section 2 and Appendix.

Symbol Name Interpretation

Entire state space

𝐴 → 𝐵 Reactive trajectory from 𝐴 to 𝐵 A trajectory that leaves 𝐴 and enters 𝐵
without returning to 𝐴 in between

𝑞+ Forward committor Prob. that a trajectory initiated in A will reach B before A
𝑞− Backward committor Prob. that a trajectory initiated in B will reach A before B
𝑓𝐴𝐵
𝑖𝑗 Prob. current of reactive trajectories Average rate at which a reactive trajectory from 𝐴 to 𝐵

transitions from state 𝑖 to state 𝑗
𝑓+
𝐴𝐵 Effective current 𝑓+

𝑖𝑗 = max(𝑓𝐴𝐵
𝑖𝑗 − 𝑓𝐴𝐵

𝑗𝑖 , 0)
𝜇𝐴𝐵
𝑖 Prob. distribution of reactive trajectories Prob. that a reactive trajectory passes through state 𝑖

𝑡𝐴𝐵 Transition time Average time duration of a transition from 𝐴 to 𝐵
𝑘𝐴→ Transition rate out of 𝐴 Average rate at which trajectories leave 𝐴
𝑘→𝐵 Transition rate into 𝐵 Average rate at which trajectories enter 𝐵

CG state space

�̃�𝑆 Total stationary prob.
of macrostate 𝑆

𝐹𝑆𝑖→𝑆𝑓
Coarse-grained flux between
macrostates 𝑆𝑖 and 𝑆𝑓

�̃�𝑆𝑖→𝑆𝑓
Transition probability between Inter-macrostate transitions
macrostates 𝑆𝑖 and 𝑆𝑓 (based on source-state 𝑆𝑖)
Fig. A.6. Three macrophage phenotypes: Surface plot of the sum of the three partial
densities corresponding to the three identified metastable clusters. The ratio between
𝑥1 , 𝑥2 characterize the phenotype: Low activation in 𝑥1 and high activation level in
𝑥2 describes the Low/High (L/H) phenotype. Low activation in 𝑥1 and low activation
level in 𝑥2 describes the Low/Low (L/L) phenotype, and high activation in 𝑥1 and low
activation level in 𝑥2 describes the High/Low (H/L) phenotype.

and the backward committor 𝑞− as

⎧

⎪

⎨

⎪

⎩

∑

𝑗∈ 𝓁𝑖𝑗𝑞−𝑗 = 0 ∀𝑖 ∈ (𝐴 ∪ 𝐵)𝑐

𝑞−𝑗 = 1 ∀𝑖 ∈ 𝐴,
𝑞−𝑗 = 0 ∀𝑖 ∈ 𝐵.

(A.2)

Given the above definitions of committor functions, rate matrices
and stationary densities, we can calculate statistical properties that
allow for a dynamical interpretation of the ensemble of reactive trajec-
tories between subsets 𝐴 and 𝐵 in the state space  (Helfmann et al.,
2020). Table A.3 summarizes important measures in TPT to describe
dynamical information and states the corresponding interpretation.

For any 𝑖 ∈ , the distribution of reactive trajectories 𝜇𝑅 = (𝜇𝑅
𝑖 )𝑖∈ is

given by (see Metzner et al. (2009))

𝜇𝑅
𝑖 = 𝜋𝑖𝑞

+
𝑖 𝑞

−
𝑖 . (A.3)

Normalizing 𝜇𝑅
𝑖 by the probability to be on a transition at time 𝑡

(i.e., 𝑍𝐴𝐵 =
∑

𝑗∈ 𝜋𝑗𝑞+𝑗 𝑞
−
𝑗 ) (Helfmann et al., 2020), one defines the

normalized distribution of reactive trajectories (𝜇𝐴𝐵
𝑖 ) (Metzner et al.,

2009), as

𝜇𝐴𝐵
𝑖 = 𝑍−1

𝐴𝐵 𝜇𝑅
𝑖 . (A.4)
10
Two other important statistics are the net average number of reac-
tive trajectories observed per time unit (𝑓+

𝑖𝑗 ) and the average number of
transitions from 𝐴 to 𝐵 per time unit (𝑘𝐴𝐵) (Metzner et al., 2009).

The definitions of 𝑓+
𝑖𝑗 and 𝑘𝐴𝐵 build on the probability current of

reactive trajectories, 𝑓𝐴𝐵
𝑖𝑗 , which is defined in Metzner et al. (2009) as

follows: For all pairs of states (𝑖, 𝑗), 𝑖, 𝑗 ∈  , 𝑖 ≠ 𝑗,

𝑓𝐴𝐵
𝑖𝑗 = 𝜋𝑖𝑞

−
𝑖 𝓁𝑖𝑗𝑞

+
𝑗 , where 𝓁𝑖𝑗 = 𝑄(𝑖, 𝑗). (A.5)

𝑓𝐴𝐵
𝑖𝑗 describes the average rate at which a reaction trajectory transitions

from state 𝑖 to state 𝑗. Moreover, the transition rate from 𝐴 to 𝐵, 𝑘𝐴𝐵 ,
is given by

𝑘𝐴𝐵 =
∑

𝑖∈𝐴,𝑗∈
𝑓𝐴𝐵
𝑖𝑗

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝑘𝐴→

=
∑

𝑖∈ ,𝑗∈𝐵
𝑓𝐴𝐵
𝑖𝑗

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝑘→𝐵

, (A.6)

where 𝑘𝐴→ and 𝑘→𝐵 are the discrete rates of leaving 𝐴 and entering 𝐵,
respectively (see Metzner et al. (2009), Helfmann et al. (2020)). Equal-
ity in Eq. (A.6) holds for stationary Markov processes {𝑋𝑡}𝑡∈R (Helf-
mann et al., 2020). The effective current 𝑓+

𝑖𝑗 is defined by (see Metzner
et al. (2009))

𝑓+
𝑖𝑗 = max(𝑓𝐴𝐵

𝑖𝑗 − 𝑓𝐴𝐵
𝑗𝑖 , 0). (A.7)

Furthermore, the average time duration of a transition from 𝐴 to 𝐵,
𝑡𝐴𝐵 , is defined in Helfmann et al. (2020) by

𝑡𝐴𝐵 ∶= 𝑍𝐴𝐵

𝑘𝐴𝐵
. (A.8)

While the above characteristics are defined on the entire state space
, we consider for the following definitions the coarse-grained sets
from the Markov State Model, which is defined by matrix 𝑃𝑐 (𝜏). For
the coarse partition of the state space ̃ = {𝑆 ,… , 𝑆 }, where 𝐴 and 𝐵
1 𝑛
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Fig. A.7. Bistable phenotype configurations. The left panel shows a surface plot of the sum of the partial densities which correspond to two metastable clusters. The ratio
between 𝑥1 , 𝑥2 defines the phenotypes. In (a) we see high activation levels in both 𝑥1 and 𝑥2, and thus can classify a High/High (H/H) phenotype. High activation in 𝑥1 and low
activation in 𝑥2, describes a H/L phenotype. Similarly, we see bistable clusters of phenotypes in (c) H/L and L/L, in (e) L/L and H/L, and in (g) L/L and L/H. The right panel
shows calculated transition path flow directions in (b), (d), (f) and (h). The red colored set indicates the starting set, blue the ending set and gray the transition flow.
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Table A.4
Clustering results from PCCA+. Table shows the number of metastable states (i.e., phenotypes), the calculated eigenvalues (𝜆𝑖 , 𝑖 = {1, 2, 3, 4}) and gaps, cluster weights
𝜔𝑖 , 𝑖 = {1, 2}), transition rate matrix 𝑄𝑐 , and transition probability matrix 𝑃𝑐 for the respective five parameter sets (‘‘Case’’).
Case # phenotypes Eigenval. of 𝑄𝑐 Cluster weights Transition state matrix Transition prob. matrix

1 2
𝜆1 = 0

𝜆2 = −0.9884
(𝜆3 = −0.9997)

𝜔1 = 0.10031
𝜔2 = 0.89969

𝑄𝑐 = 10−4 ⋅
(

0.4707 −0.4707
−0.6109 0.6109

)

𝑃𝑐 =
(

0.9981 0.0019
0.0000 1.0000

)

2 2
𝜆1 = 1.000
𝜆2 = 0.9962
(𝜆3 = 0.0008)

𝜔1 = 0.099103
𝜔2 = 0.9009

𝑄𝑐 = 10−4 ⋅
(

−0.3860 0.3860
0.0625 −0.0625

)

𝑃𝑐 =
(

0.9962 0.0038
0.0000 1.0000

)

3 2
𝜆1 = 0

𝜆2 = −0.0214
(𝜆3 = −4.6872)

𝜔1 = 0.45748
𝜔2 = 0.54252

𝑄𝑐 =
(

−0.0269 0.0269
0.0272 −0.0272

)

𝑃𝑐 =
(

0.1243 0.8757
0.0068 0.9932

)

4 2
𝜆1 = 0

𝜆2 = −0.0021
(𝜆3 = −0.9261)

𝜔1 = 0.097708
𝜔2 = 0.90229

𝑄𝑐 =
(

−0.0024 0.0024
0.0001 −0.0001

)

𝑃𝑐 =
(

0.8094 0.1906
0.0001 0.9999

)

5 3

𝜆1 = 0,
𝜆2 = −2.8653 ⋅ 10−5

𝜆3 = −6.1945 ⋅ 10−4

(𝜆4 = −0.9902)

𝜔1 = 0.016006
𝜔2 = 0.084884
𝜔3 = 0.89911

𝑄𝑐 = 10−3 ⋅
⎛

⎜

⎜

⎝

−0.0327 0.0033 0.0294
0.6020 −0.6075 0.0055
−0.0042 0.0043 −0.0001

⎞

⎟

⎟

⎠

𝑃𝑐 =
⎛

⎜

⎜

⎝

0.9957 0.0014 0.0029
0.0580 0.9414 0.0006
0.0000 0.0000 1.0000

⎞

⎟

⎟

⎠

Table A.5
Transition Path Theory (TPT) results for sets of two phenotype states (two each of L/L, H/L, L/H, H/H). Each subcase specifies the start and end sets of the transition
directions, as well as complement (C) set, as well as the average time duration (𝑡) it takes for a phenotype to switch. Based on the coarse-grained transition fluxes between

etastable (phenotype) sets (e.g., 𝑆𝑖 indicates the initial set and 𝑆𝑓 the final set), all possible transition paths and their probabilities are calculated as described in Section 2. See
able A.3 for description and interpretation of TPT nomenclature. Methodological details are presented in Section 2 and in Appendix.

Case 1: Forward Case 1: Backward Case 2: Forward Case 2: Backward

Start: H/L Start: H/H Start: L/H Start: H/L
End: H/H End: H/L End: H/L End: L/H

Statistics: Average time duration per transition

𝑡 3.508329e−01 𝑡 1.888526e−01 𝑡 1.745843e−01 𝑡 5.180507e−01

Coarse-grained flux directions and amount:

𝐒𝐢 → 𝐒𝐟 �̃�𝐒𝐢→𝐒𝐟 𝐒𝐢 → 𝐒𝐟 �̃�𝐒𝐢→𝐒𝐟 𝐒𝐢 → 𝐒𝐟 �̃�𝐒𝐢→𝐒𝐟 𝐒𝐢 → 𝐒𝐟 �̃�𝐒𝐢→𝐒𝐟

𝐻∕𝐿 → 𝐻∕𝐻 0 𝐻∕𝐻 → 𝐻∕𝐿 0 𝐿∕𝐻 → 𝐻∕𝐿 0 𝐻∕𝐿 → 𝐿∕𝐻 0
𝐻∕𝐿 → 𝐶 4.030848e−14 𝐻∕𝐻 → 𝐶 7.307069e−14 𝐿∕𝐻 → 𝐶 2.126413e−14 𝐻∕𝐿 → 𝐶 1.236879e−14
𝐻∕𝐻 → 𝐻∕𝐿 0 𝐻∕𝐿 → 𝐻∕𝐻 0 𝐻∕𝐿 → 𝐿∕𝐻 0 𝐿∕𝐻 → 𝐻∕𝐿 0
𝐻∕𝐻 → 𝐶 0 𝐻∕𝐿 → 𝐶 0 𝐻∕𝐿 → 𝐶 0 𝐿∕𝐻 → 𝐶 0
𝐶 → 𝐻∕𝐿 0 𝐶 → 𝐻∕𝐻 0 𝐶 → 𝐿∕𝐻 0 𝐶 → 𝐻∕𝐿 0
𝐶 → 𝐻∕𝐻 1.404820e−14 𝐶 → 𝐻∕𝐿 2.257171e−14 𝐶 → 𝐻∕𝐿 7.004957e−15 𝐶 → 𝐿∕𝐻 3.946240e−15

Transition paths and transition probabilities

𝐻∕𝐿 → 𝐻∕𝐻 0% 𝐻∕𝐻 → 𝐻∕𝐿 0% 𝐿∕𝐻 → 𝐻∕𝐿 0% 𝐻∕𝐿 → 𝐿∕𝐻 0%
𝐻∕𝐿 → 𝐶 → 𝐻∕𝐻 100% 𝐻∕𝐻 → 𝐶 → 𝐻∕𝐿 100% 𝐿∕𝐻 → 𝐶 → 𝐻∕𝐿 100%. 𝐻∕𝐿 → 𝐶 → 𝐿∕𝐻 100%

Case 3: Forward Case 3: Backward Case 4: Forward Case 4: Backward

Start: L/L Start: H/L Start: L/L Start: L/H
End: H/L End: L/L End: L/H End: L/L

Statistics: Average time duration per transition

𝑡 1.776616e−07 𝑡 1.395691e−06 𝑡 4.367060e−01 𝑡 1.784335e−01

Coarse-grained flux directions and amount:
𝐒𝐢 → 𝐒𝐟 �̃�𝐒𝐢→𝐒𝐟 𝐒𝐢 → 𝐒𝐟 �̃�𝐒𝐢→𝐒𝐟 𝐒𝐢 → 𝐒𝐟 �̃�𝐒𝐢→𝐒𝐟 𝐒𝐢 → 𝐒𝐟 �̃�𝐒𝐢→𝐒𝐟

𝐿∕𝐿 → 𝐻∕𝐿 1.232997e−04 𝐿∕𝐿 → 𝐻∕𝐿 0 𝐿∕𝐿 → 𝐿∕𝐻 0 𝐿∕𝐿 → 𝐿∕𝐻 0
𝐿∕𝐿 → 𝐶 5.619505e−09 𝐿∕𝐿 → 𝐶 0 𝐿∕𝐿 → 𝐶 1.009425e−14 𝐿∕𝐿 → 𝐶 0
𝐻∕𝐿 → 𝐿∕𝐿 0 𝐻∕𝐿 → 𝐿∕𝐿 9.039354e−05 𝐿∕𝐻 → 𝐿∕𝐿 0 𝐿∕𝐻 → 𝐿∕𝐿 0
𝐻∕𝐿 → 𝐶 0 𝐻∕𝐿 → 𝐶 2.660313–08 𝐿∕𝐻 → 𝐶 0 𝐿∕𝐻 → 𝐶 2.052825e−14
𝐶 → 𝐿∕𝐿 0 𝐶 → 𝐿∕𝐿 4.933935e−10 𝐶 → 𝐿∕𝐿 0 𝐶 → 𝐿∕𝐿 6.876109e−15
𝐶 → 𝐻∕𝐿 7.050022e−11 𝐶 → 𝐻∕𝐿 0 𝐶 → 𝐿∕𝐻 3.554568e−15 𝐶 → 𝐿∕𝐻 0

Transition paths and transition probabilities:

𝐿∕𝐿 → 𝐻∕𝐿 99.99% 𝐻∕𝐿 → 𝐿∕𝐿 99.97% 𝐿∕𝐿 → 𝐿∕𝐻 0% 𝐿∕𝐻 → 𝐿𝐿 0%
𝐿∕𝐿 → 𝐶 → 𝐻∕𝐿 0.01% 𝐻∕𝐿 → 𝐶 → 𝐿∕𝐿 .03% 𝐿∕𝐿 → 𝐶 → 𝐿∕𝐻 100% 𝐿∕𝐻 → 𝐶 → 𝐿𝐿 100%
12
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Table A.6
Transition Path Theory (TPT) results for three phenotype states (L/L, H/L and L/H). Each subcase specifies the start and end sets of the transition directions, as well as
intermittent (I) or complement (C) set, as well as the average time duration (𝑡) it takes for a phenotype to switch. Based on the coarse-grained transition fluxes between metastable
phenotype) sets (e.g., 𝑆𝑖 indicates the initial set and 𝑆𝑓 the final set), all possible transition paths and their probabilities are calculated as described in Section 2. See Table A.3
or description and interpretation of TPT nomenclature. Methodological details are presented in Section 2 and in Appendix. Abbreviations: ‘‘Compl.’’ refers to the complement set
C); ‘‘Inter.’’ stands for intermittent set (I).

Subcase 1 Subcase 2 Subcase 3

Start: L/L Start: L/L & H/L Start: L/L
End: L/H & H/L End: L/H End: L/H
Compl.: C Compl.: C Compl.: C
Inter.: – Inter.: – Inter.: H/L

Statistics: Average time duration per transition

𝑡 1.645091e−01 𝑡 4.010152e−01 𝑡 2.031077e+00

Coarse-grained flux directions and amount:
𝐒𝐢 → 𝐒𝐟 �̃�𝐒𝐢→𝐒𝐟 𝐒𝐢 → 𝐒𝐟 �̃�𝐒𝐢→𝐒𝐟 𝐒𝐢 → 𝐒𝐟 �̃�𝐒𝐢→𝐒𝐟

𝐿∕𝐿 → 𝐻∕𝐿 4.283462e−14 𝐿∕𝐿 → 𝐶 3.6797e−14 𝐿∕𝐿 → 𝐻∕𝐿 6.947925e−17
𝐿∕𝐿 → 𝐶 3.765562e−14 𝐻∕𝐿 → 𝐶 3.913517e−15 𝐿∕𝐿 → 𝐶 3.679917e−14
𝐶 → 𝐻∕𝐿 7.501706e−16 𝐶 → 𝐿∕𝐻 1.136061e−14 𝐻∕𝐿 → 𝐻∕𝐿 2.360166e−11
𝐶 → 𝐿∕𝐻 1.049604e−14 𝐻∕𝐿 → 𝐶 1.576060e−16

𝐶 → 𝐿∕𝐻 1.051028e−14
𝐶 → 𝐻∕𝐿 5.286661e−17

Transition paths and transition probabilities

𝐿∕𝐿 → 𝐶 → 𝐿∕𝐻 43.66% 𝐿∕𝐿 → 𝐶 → 𝐿∕𝐻 90.39% 𝐿∕𝐿 → 𝐶 → 𝐿∕𝐻 99.31%
𝐿∕𝐿 → 𝐻∕𝐿 53.22% 𝐻∕𝐿 → 𝐶 → 𝐿∕𝐻 9.61% 𝐿∕𝐿 → 𝐻∕𝐿 → 𝐶 → 𝐿∕𝐻 1.2615e−6%
𝐿∕𝐿 → 𝐶 → 𝐻∕𝐿 3.12% 𝐿∕𝐿 → 𝐶 → 𝐻∕𝐿 → 𝐶 → 𝐿∕𝐻 3.3135e−6%

Subcase 4 Subcase 5 Subcase 6

Start: L/L Start: L/H Start: H/L
End: H/L End: H/L End: L/H
Compl.: C Compl.: C Compl.: C
Inter.: L/H Inter.: L/L Inter.: L/L

Statistics: Average time duration per transition

𝑡 1.353744e+05 𝑡 6.990304e+03 𝑡 1.359403e+04

Coarse-grained flux directions and amount:
𝐒𝐢 → 𝐒𝐟 �̃�𝐒𝐢→𝐒𝐟 𝐒𝐢 → 𝐒𝐟 �̃�𝐒𝐢→𝐒𝐟 𝐒𝐢 → 𝐒𝐟 �̃�𝐒𝐢→𝐒𝐟

𝐿∕𝐿 → 𝐻∕𝐿 4.292451e−14 𝐿∕𝐻 → 𝐶 2.185682e−14 𝐻∕𝐿 → 𝐿∕𝐿 5.811830e−15
𝐿∕𝐿 → 𝐶 8.647682e−16 𝐿∕𝐿 → 𝐻∕𝐿 8.438635e−15 𝐻∕𝐿 → 𝐶 5.821236e−15
𝐿∕𝐻 → 𝐶 3.139963e−14 𝐿∕𝐿 → 𝐶 1.250078e−14 𝐿∕𝐿 → 𝐶 2.650196e−14
𝐿∕𝐻 → 𝐿∕𝐻 8.209541e−07 𝐿∕𝐿 → 𝐿∕𝐿 2.208563e−09 𝐿∕𝐿 → 𝐿∕𝐿 2.285861e−09
𝐶 → 𝐻∕𝐿 7.515452e−16 𝐶 → 𝐻∕𝐿 1.421303e−17 𝐶 → 𝐿∕𝐻 3.960937e−15
𝐶 → 𝐿∕𝐻 8.916429e−16 𝐶 → 𝐿∕𝐿 1.310601e−14 𝐶 → 𝐿∕𝐿 8.115767e−15

Transition paths and transition probabilities:

𝐿∕𝐿 → 𝐻∕𝐿 98.30% 𝐿∕𝐻 → 𝐶 → 𝐻∕𝐿 0.11% 𝐻∕𝐿 → 𝐶 → 𝐿∕𝐻 16.41%
𝐿∕𝐿 → 𝐶 → 𝐻∕𝐿 0.90% 𝐿∕𝐻 → 𝐶 → 𝐿∕𝐿 → 𝐶 → 𝐻∕𝐿 6.2193e−7% 𝐻∕𝐿 → 𝐿∕𝐿 → 𝐶 → 𝐿∕𝐻 1.8999e−4%
𝐿∕𝐿 → 𝐶 → 𝐿∕𝐻 → 𝐶 → 𝐻∕𝐿 1.87𝑒 − 8% 𝐿∕𝐻 → 𝐶 → 𝐿∕𝐿 → 𝐻∕𝐿 3.8166e−4% 𝐻∕𝐿 → 𝐶 → 𝐿∕𝐿 → 𝐶 → 𝐿∕𝐻 1.2783e−4%
are identical to individual 𝑆𝑖 or a combination of several 𝑆𝑖, the coarse-
rained flux from set 𝑆𝑖 to set 𝑆𝑓 , is defined, according to Noé et al.
2009), by

̃𝑆𝑖→𝑆𝑓
=

∑

𝑘∈𝑆𝑖 ,𝑙∈𝑆𝑓

𝑓𝐴𝐵
𝑘,𝑙 (A.9)

Given the coarse-grained flux 𝐹𝑆𝑖→𝑆𝑓
, we can now define individual

athways 𝑃𝑖 connecting A and B (Noé et al., 2009), by connecting
eighboring sets 𝑆𝑖, 𝑖 ∈ [𝑛], with 𝑆1 = 𝐴 and 𝑆𝑛 ∶= 𝐵, such that
̃𝑆𝑖→𝑆𝑓

≠ 0.
Given the set of all individual pathways 𝑃𝑖 from 𝐴 to 𝐵, we describes

he relative probability of a path segment from 𝑆𝑖 to 𝑆𝑓 (similar to Noé
t al. (2009)) by

𝑟
𝑆𝑖→𝑆𝑓

=
𝐹𝑆𝑖→𝑆𝑓

∑

𝑖=𝑆𝑖 ,𝑓≠𝑆𝑖
𝐹𝑆𝑖→𝑆𝑓

, (A.10)

where the sum represent the total flow from state 𝑆𝑖 to neighboring
states 𝑆 , 𝑗 ∈ [𝑛], 𝑗 ≠ 𝑖 on the 𝐴 → 𝐵 transition paths.
13

𝑗

Finally, the relative probabilities of the path segments 𝑝𝑟𝑆𝑖→𝑆𝑓
along

an individual pathway 𝑃𝑖 from 𝐴 to 𝐵 are combined to define the total
relative probability 𝑝𝑟𝑖 of path 𝑃𝑖.

Alternatively, there exist several, so called, Path Decomposition Al-
gorithms (Metzner et al., 2009; Noé et al., 2009) that allow the decom-
position into individual pathways 𝑃𝑖. However, if used on the entire
state space  they can be computationally very expensive. Due to our
relative small coarse-grained state space ̃, we decided to calculate the
decomposition manually, as described above.

A.2. Tables

See Tables A.3–A.6.

A.3. Figures

See Figs. A.6–A.8
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Fig. A.8. Transition flows, paths and probabilities between three phenotypes with combined start and end sets. The left column shows the transition path flow (in gray
color) in the CME state-space between a given start set (in red color) and end set (in blue color). The right column represents the transition path flows in a transition network
together with the corresponding path segment probabilities, which are added next to the arrows of the flow direction. Red colored circles represent the start sets (𝑆𝑖, with i for
initial), and blue ones the end sets (𝑆𝑓 , with f for final). Green color refers to the state space without any phenotype, i.e., the complement set (C) to the states (𝑆𝑖 and 𝑆𝑓 ). The
path segment probabilities were calculated from Eq. (3) in Section 2. Their color refers to the set from where the transition flow comes. Table A.6 gives a quantitative overview
over the transition dynamics, including all possible transition paths and their respective probabilities. Subcases 3–6 are presented in Fig. 4 in the article.
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