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Purpose: The purpose of this study is to investigate the impact of Bergen 
Epileptiform Morphology Score (BEMS) and interictal epileptiform discharge (IED) 
candidate count in EEG classification.

Methods: We included 400 consecutive patients from a clinical SCORE EEG 
database during 2013–2017 who had focal sharp discharges in their EEG, but 
no previous diagnosis of epilepsy. Three blinded EEG readers marked all IED 
candidates. BEMS and IED candidate counts were combined to classify EEGs as 
epileptiform or non-epileptiform. Diagnostic performance was assessed and then 
validated in an external dataset.

Results: Interictal epileptiform discharge (IED) candidate count and BEMS were 
moderately correlated. The optimal criteria to classify an EEG as epileptiform 
were either one spike at BEMS > = 58, two at > = 47, or seven at > = 36. These criteria 
had almost perfect inter-rater reliability (Gwet’s AC1 0.96), reasonable sensitivity 
of 56–64%, and high specificity of 98–99%. The sensitivity was 27–37%, and 
the specificity was 93–97% for a follow-up diagnosis of epilepsy. In the external 
dataset, the sensitivity for an epileptiform EEG was 60–70%, and the specificity 
was 90–93%.

Conclusion: Quantified EEG spike morphology (BEMS) and IED candidate count 
can be combined to classify an EEG as epileptiform with high reliability but with 
lower sensitivity than regular visual EEG review.

KEYWORDS

epileptiform, morphology, count, quantitative, EEG, validation

Introduction

The definition of epileptiform activity includes qualitative criteria to guide EEG readers in 
detecting interictal epileptiform discharges (IEDs) (1). According to the criteria, typical 
morphological traits of an IED are a spiky peak, a wave duration that is different from the 
background waves, an asymmetric waveform, a slow after-wave, disrupted background activity, 
and a dipole suggesting that the source of the transient is in the brain. The diagnostic value of 
morphological IED features has been discussed extensively (2–5). Inter-rater agreement (IRA) 
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has been assessed for specific morphological features (2, 4), and 
optimal combinations of the criteria have been validated (3).

The IED criteria describe the evaluation of single transients 
without discussing the possible role of recurring sharp transients. It is 
unclear whether additional EEG phenomena such as IED counts are 
relevant for a diagnosis of epilepsy. An EEG conclusion should 
be based not only on a single graphoelement but also on all available 
data in an EEG recording. IRA seems to be better for overall EEG 
interpretation than individual IEDs (4, 6–9). The literature is sparse 
regarding spike count in routine scalp EEG. Kural et  al. (10) 
demonstrated that a higher IED count is required to conclude that an 
EEG contains epileptiform activity when the IEDs have a less typical 
epileptiform morphology. Spike count has been assessed for specific 
epilepsy types, such as continuous spike–wave during sleep (11, 12), 
benign epilepsy with centro-temporal spikes (13), temporal lobe 
epilepsy (14), and juvenile myoclonic epilepsy (15). Latency to the first 
IED, a measure analogous to spike count has been examined in long-
term EEG recordings (16).

We have previously described the Bergen Epileptiform 
Morphology Score (BEMS) (17), a score from 0 to 86 for sharp 
transients, where a higher value indicates a more typical epileptiform 
morphology. BEMS is calculated from carefully selected and visually 
relatable morphological IED features (spike slope, spike amplitude, 
spike similarity to background, and slow after-wave area) and patients’ 
age, as IED morphology depends on age (18). BEMS classified the first 
sharp discharge in an EEG with a similar performance as an EEG rater 
both regarding the EEG conclusion (AUC = 0.86) and a future epilepsy 
diagnosis (AUC = 0.70). With BEMS as an established score for the 
single sharp discharge, it is possible to assess additional factors that 
may be relevant to spike identification. This study aimed to examine 
whether the combination of BEMS and the number of sharp 
discharges, referred to as IED candidate count in this study, can 
improve the diagnostic performance when classifying EEGs as 
epileptiform or non-epileptiform.

Materials and methods

Patients and EEGs

We selected a random subsample of EEGs from the total material 
described in our previous study (17). The original material included 
all consecutive patients who had standard EEGs or sleep-deprived 
EEGs recorded in our EEG laboratory at Haukeland University 
Hospital during the period of 4 March 2013–29 October 2017, which 
were reported in SCORE EEG (19). We included only those patients 
who had all their EEGs recorded at our laboratory during the inclusion 
period, no epileptiform activity in prior EEGs (interictal epileptiform 
activity or non-focal IEDs), and no prior clinical diagnosis of epilepsy 
(ICD-10 G40/G41 since 1999) in their hospital medical records. The 
first EEG for each patient that contained an epileptiform or 
non-epileptiform sharp discharge was analyzed. Hospital database 
records were examined for a clinical epilepsy diagnosis until 27 
November 2019. The subsample of EEGs selected for this study was 
then randomized again and divided into two equally sized datasets 
(DS1 and DS2). DS1 was reserved as a training set to find optimal cut 
points for the predictor variables. An external dataset (DS3), described 
by the study mentioned in (10), was used for external validation. In 

total, 30 out of 60 patients in DS3 had epilepsy, confirmed by recording 
of their habitual paroxysmal events during long-term EEG monitoring 
(LTM). The patients included in DS3 were 1 year or older with a 
median age of 33 years. Their 20-min interictal EEG had to contain 
sharp transients. Patients were excluded if their LTM was inconclusive 
regarding epileptic or non-epileptic seizures.

EEG recordings

Electrodes were applied according to the 10–20 system, with a 
minimum of 21 and a maximum of 26 electrodes. The 26 electrode 
montages included three subtemporal electrodes on each side and Fpz. 
The recording length was 20 min for standard EEGs and 60 min for 
sleep-deprived EEGs. The sampling rate was 500 samples per second. 
NicoletOne™ EEG system was used to record and display EEGs for 
the clinical EEG classification which was used as an outcome, while 
EEGs were displayed in EEGLAB (20) for the marking of 
IED candidates.

IED candidates

We defined IED candidates as sharp transients that could 
be suspected to be IED, excluding physiological transients (21) and 
artifacts that mimic epileptiform discharges. Three clinical 
neurophysiologists, with at least 6 years of experience in EEG 
interpretation, marked all IED candidates chronologically in each 
EEG until a maximum count of 40, using a tool that has been 
described previously (17, 18). Only the channel in which the IED 
candidate had the most typical epileptiform features was marked for 
quantitative morphological analysis. We defined a maximum count to 
reduce the workload and with the assumption that higher counts 
would not have a significant impact on the performance of 
classification. In the event of spike trains or IEDs in close temporal 
proximity, only one distinct spiky component was analyzed per epoch 
of 1 s. If no IED candidate was identified in an EEG, a negative peak 
from the background activity on the last page of the EEG recording 
was marked instead. The IED candidates were marked independently 
by the three raters (rater 1–3) and blinded to patient data, any previous 
EEG markings, and the ordinary clinical EEG report. Raters 1 and 2 
marked IED candidates in DS1, DS2, and DS3, while rater 3 marked 
in DS2 and DS3 to increase the number of raters for validation.

IED candidate-derived diagnostic markers

The following diagnostic markers were derived from the marked 
IED candidates in DS1:

 • BEMSmax: The IED candidate with the highest BEMS in an EEG.
 • BEMSsum: The sum of BEMS for all IED candidates in one EEG.
 • IED candidate count: The number of IED candidates in one EEG.
 • Diagnostic classifier: We searched through combinations of three 

pairwise IED candidate counts and BEMS thresholds to find the 
combination with the highest average diagnostic accuracy and 
IRA when applied as three criteria-sets, where one criteria-set 
had to be  fulfilled to classify an EEG as epileptiform. All 
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combinations were assessed for raters 1 and 2  in DS1 with 
pre-specified constraints for computational feasibility as follows: 
The range of BEMS was constrained between 40 and 70 points 
for the first criteria-set, 30 and 60 points for the second 
criteria-set, and 20 and 50 points for the third criteria-set. In 
addition, the BEMS threshold differences between criteria-sets 
could not be less than 10 points. A total of 5,456 combinations 
were assessed. The number of criteria-sets was chosen based on 
the combination of criteria sets given in the study by Kural et al. 
(10). Adding further criteria-sets was considered to be  too 
computationally demanding, with diminishing returns regarding 
diagnostic performance.

In addition to the diagnostic markers, the mean BEMS for all IED 
candidates in one EEG, defined as BEMSmean, was calculated.

Statistics

The diagnostic markers BEMSmax, BEMSsum, IED candidate 
count, and the binary classification by the diagnostic classifier were 
grouped according to the EEG conclusion (focal IED or sharp 
transient). As a secondary outcome measure, these markers were 
grouped according to whether the patients were diagnosed with 
epilepsy or not during the follow-up. The diagnostic performance 
was assessed by measures of sensitivity, specificity, accuracy (the 
percentage that was correctly classified), and IRA. We calculated the 
intraclass correlation coefficient (ICC) as a measure of IRA between 
the raters. IRA between raters for binary classifications was 
calculated as Gwet’s AC1 (22). Pearson’s correlation coefficient was 
calculated for BEMS and IED candidate counts. Optimal cut points 
for the diagnostic markers were chosen in DS1 for raters 1 and 2 as 
the lowest possible value that corresponded to the highest accuracy, 
with specificity of >90% for the EEG conclusion. When the optimal 
cut points differed between the raters, the mean defined the 
common cut point, except for the diagnostic classifier, where a joint 
set of combinations was selected that maximized the sum of 
accuracy and Cohen’s kappa for raters 1 and 2. The performance of 
the diagnostic classifier and the diagnostic markers was finally 
assessed in DS2 and DS3, regarding the EEG-conclusion of 
non-epileptiform transients and IED and the diagnosis of epilepsy 
during the follow-up. Since candidate counts were limited between 
1 and 40, we  calculated the estimated candidate count with a 
Poisson model with 1 as the lower censoring limit and 40 as the 
upper censoring limit.

Results

Patient and EEG characteristics

The original material from our previous study contained a total of 
14,337 EEGs. A total of 4,473 EEGs were excluded due to an 
incomplete EEG history in the SCORE database, a previous diagnosis 
of epilepsy, or missing data. In total, 6,607 EEGs were excluded 
because no IEDs or sharp transients had been scored in the clinical 
report, or the EEG contained a seizure. A subsample of 400 EEGs from 
400 different patients was randomly selected from the remaining 2,063 

candidates and divided equally into DS1 and DS2. A total of 383 
patients were analyzed after excluding 17 patients due to technical 
difficulties in the process of loading or reading the EEG. Patient age 
distributions were similar in DS1 and DS2, with a mean age of 39 years 
and standard deviation (SD) of 28 years (Table 1). In total, 42 out of 
383 patients (11%) died during follow-up. The proportion that had 
EEGs containing clinically scored IEDs differed between DS1 (21%) 
and DS2 (13%), while those diagnosed with epilepsy were 30% in DS1 
and 27% in DS2. The IED candidate count had a wide range with a 
maximum of 40/min. The estimated mean candidate peak rate was 
only 0.1–0.4/min for the three raters, which corresponds to 2–8 
suspicious peaks in a 20-min EEG.

Relationship between IED candidate count 
and spike morphology

Spike morphology and IED candidate count had a positive 
association in each of the three datasets (Figure 1). BEMSmax and IED 
candidate count had a correlation coefficient (CC) of 0.62 for rater 1, 
0.67 for rater 2, and 0.66 for rater 3 in DS1 and DS2 combined (DS2 
only for rater 3). The CC for raters 1, 2, and 3 in DS3 was 0.62, 0.60, 
and 0.61, respectively. BEMSmean and IED candidate count had a 
correlation of 0.41, 0.42, and 0.37 in the combined DS1 and DS2 for 
raters 1, 2 and 3, respectively. The significance level was p < 0.001 for 
all correlation coefficients.

Diagnostic performance in DS1

The accuracy and IRA data for BEMSmax, BEMSsum, and IED 
candidate count in DS1 are shown in Figure 2. The cut points applied 
for all three raters were 50 for BEMSmax, 465 for BEMSsum, and 18 for 
IED candidate count. The IRA was substantial for all diagnostic 
markers; ICC and Gwet’s AC1 were 0.76 (95% CI = 0.69–0.81) and 0.88 
(95% CI = 0.85–0.96) for BEMSmax, 0.68 (95% CI = 0.59–0.75) and 0.86 
(95% CI = 0.80–0.93) for BEMSsum, and 0.73 (95% CI = 0.65–0.79) and 
0.90 (95% CI = 0.83–0.95) for IED candidate count, respectively. The 
diagnostic performance when applying the common cut points for the 
individual raters was as follows: For BEMSmax, the sensitivity was 64% 
(95% CI = 48–78), specificity was 89% (95% CI = 83–93), and accuracy 
was 84% (95% CI = 78–89) for rater 1 and sensitivity was 64% (95% 
CI = 48–78), specificity was 92% (95% CI = 86–96), and accuracy was 
86% (95% CI = 80–90) for rater 2. For BEMSsum, the sensitivity was 
71% (95% CI = 55–84), specificity was 92% (95% CI = 87–96), and 
accuracy was 88% (95% CI = 82–92) for rater 1 and the sensitivity was 
64% (95% CI = 48–78), specificity was 99% (95% CI = 95–100), and 
accuracy was 91% (95% CI = 87–95) for rater 2. For IED candidate 
count, the sensitivity was 64% (95% CI = 48–78), specificity was 96% 
(95% CI = 92–99), and accuracy was 89% (95% CI = 84–93) for rater 1 
and the sensitivity was 60% (95% CI = 43–74), specificity was 99% 
(95% CI = 95–100), and accuracy was 90% (95% CI = 85–94) for rater 
2. The diagnostic classifier with the highest combined accuracy and 
IRA for both raters was as follows: One IED candidate with BEMS 
> = 58, two IED candidates with BEMS > = 47, or seven IED candidates 
with BEMS > = 36. The sensitivity, specificity, and accuracy were 67% 
(95% CI = 51–80), 92% (95% CI = 86–95), and 86% (95% CI = 81–91) 
for rater 1 and 62% (95% CI = 46–76), 96% (95% CI = 92–99), and 89% 
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(95% CI = 84–93) for rater 2, respectively. IRA was almost perfect with 
Gwet’s AC1 = 0.89 (95% CI = 0.83–0.95).

Diagnostic performance in DS2 and DS3

Diagnostic performance for the various markers in DS1 and DS2 
is shown in Table 2. Gwet’s AC1 was >0.89 for all diagnostic markers 
in DS2 and varied from 0.57 to 0.73 in DS3. The diagnostic classifier 
had the highest IRA in both datasets with Gwet’s AC1 of 0.96 in DS2 
and 0.73 in DS3. The sensitivity for the markers was 60–67% in DS2 
and 33–70% in DS3. The specificity was 96–99% in DS2 and 86–91% 
in DS3. Supplemental Digital Content 1 shows rater-specific 
performance measures with 95% confidence intervals. The diagnostic 
performance of our current standard of care, the clinical EEG 
conclusion, which also served as a reference standard for the 
diagnostic markers, had a sensitivity of 41% (95% CI = 28–56) and a 
specificity of 97% (95% CI = 93–99) for the follow-up diagnosis of 
epilepsy in DS2.

Discussion

We have shown in a large study of routine scalp EEGs that there 
is a positive correlation between characteristic epileptiform IED 
morphology and IED candidate count. EEGs with distinct epileptiform 
discharges had a high IED candidate count, while EEGs with less 
characteristic epileptiform activity as defined by BEMS had a lower 
IED candidate count. Quantified EEG spike morphology (BEMS) and 
IED candidate count can be  combined to classify an EEG as 
epileptiform with high reliability but with somewhat lower sensitivity 
than regular visual EEG review.

Interictal epileptiform discharge (IED) candidate count was an 
important predictor of epileptiform activity in our study. We suggest 
that the IED candidate count should be added in a future update of 
the criteria for epileptiform discharges that was proposed by the 
International Federation of Clinical Neurophysiology (IFCN). IED 
candidate count is not an inherent property of epileptiform 
morphology but rather provides a context for its interpretation. 
We suspect that a higher IED candidate count strengthens the EEG 

TABLE 1 Patient and EEG characteristics.

DS1 DS2 Total

Sample size, n= 196 187 383

Age in years, mean 

(SD) (min-max) 37.3 (28.3) (0–100) 40.5 (26.7) (0–94) 38.9 (27.5) (0–100)

Death rate during 

follow-up, % 12.8 9.1 11.0

EEG-conclusion IED, 

% 21.4 13.4 17.5

Epilepsy at follow-up, 

% 30.1 27.3 28.7

IED candidates per 

minute for rater 1 

(Censored), mean 

(min-max) 1.4 (0.0–25.6) 1.1 (0.0–23.2) 1.2 (0.0–25.6)

IED candidates per 

minute for rater 1 

(Uncensored), mean 0.36 0.34 0.35

IED candidates per 

minute for rater 2 

(Censored), mean 

(min-max) 1.3 (0.0–39.6) 0.6 (0.0–16.8) 1.0 (0.0–39.6)

IED candidates per 

minute for rater 2 

(Uncensored), mean 0.12 0.09 0.10

IED candidates per 

minute for rater 3 

(Censored), mean 

(min-max) * 1.0 (0.0–22.9) 1.0 (0.0–22.9)

IED candidates per 

minute for rater 3 

(Uncensored), mean * 0.14 0.14

*: Rater 3 did not mark IED candidates in DS1.
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reader’s confidence in spike detection and reduces the likelihood of 
false positives, a well-known challenge in visual spike detection (23). 
Background noise can imitate epileptiform activity once or twice but 
not repetitively. Some physiological sharp transients can occur 
repeatedly but have recognizable morphology (21). When spotting a 
definite epileptiform discharge by visual interpretation, less prominent 
discharges in the same region are more easily included as IEDs. It 
depends on the signal-to-noise ratio whether one or more discharges 
are needed to distinguish a spike from background activity. Signal 
averaging is a well-known method in signal analysis and applies the 
same principle. Each addition of raw signal to the running average 
flattens background noise while the signal of interest remains 
unchanged. While one epileptiform discharge might fulfill only a few 
IFCN criteria, the average of many discharges meets more criteria, and 
morphological uncertainties are eliminated.

We have described the IED candidate count in a large dataset 
where all EEGs had at least one epileptiform or non-epileptiform 
sharp discharge scored at the time of the clinical EEG report. The 
average IED candidate count was estimated to be between two and 
eight per 20-min EEG. IED candidate count is entirely based on visual 
interpretation of scalp EEG and does not reveal the intracranial or 

“true” spike count. Some intracranial IEDs are not detected in scalp 
EEG (24). Their visibility depends on variables, such as source depth, 
cortical area, and geometry (25).

Our study had a high IRA. To be able to test the reproducibility of 
our classification model, we  divided our internal EEGs into two 
independent data sets (DS1 and DS2) and used the second data set for 
validation, also including a third EEG rater. The inter-rater agreement 
was substantial to almost perfect between the three raters for the 
diagnostic classifier, demonstrating robustness regarding variability in 
the selection of IED candidates between the raters. Our assessment of 
IED candidate morphology is entirely objective by applying the 
algorithm for the BEMS score, analogous to a subjective visual 
assessment of epileptiform criteria. The BEMS algorithm is publicly 
available for use by equipment manufacturers.

The diagnostic classifier was built using a traditional and 
explainable analytic approach that classified EEGs as epileptiform or 
non-epileptiform with high reproducibility and specificity but with 
lower sensitivity than a routine clinical EEG examination. Possible 
explanations for the limited sensitivity could be that the BEMS score 
did not capture enough information per IED candidate or that the 
clinical information available to the clinical interpreter of the EEG 

FIGURE 1

Scatter plots with IED candidate count and BEMSmax for the three raters. The datasets DS1 and DS2 (n = 383) are shown in (A–C) (rater 3 examined DS2 
only). The dataset DS3 (n = 60) is shown in (D–F). Observations are labeled according to epileptiform (+) or non-epileptiform (●) EEG in DS1 and DS2, 
and epilepsy (+) or not epilepsy (●) in DS3. Jitter (0.4) has been added to increase visibility of overlapping symbols. Most EEGs in DS1 and DS2 (A–C) fell 
into two clusters, similar for all three raters. The cluster in the lower left corner contains EEGs with infrequent IED candidates and a low BEMSmax, while 
the cluster in the upper right corner contains EEGs with frequent IED candidates with a high BEMSmax. A minority of the EEGs were scattered between 
the two clusters. This two-cluster pattern was less evident for DS3 (D–F).
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FIGURE 2

(A–C): Accuracy for BEMSmax (A), BEMSsum (B) and IED candidate count (C), with the EEG conclusion as outcome for rater 1 and 2 in DS1. The optimal 
rater specific cut points are indicated by a dot (rater 1) and a square (rater 2). The vertical dashed lines indicate common cut points. (D–F): Bland–
Altman plots for BEMSmax (D), BEMSsum (E), and IED candidate count (F) for rater 1 and 2 in DS1. Mean values are plotted along the x-axis, mean 
differences between rater 1 and 2 along the y-axis. BEMSmax had the most evenly distributed means between rater 1 and 2, while BEMSsum and IED 
candidate count had increasing differences between the two raters for higher means.
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contained decisive information to tip the scales. We found a gray area 
of ambiguous EEGs that had neither infrequent and unconvincing 
IED candidates nor numerous and highly epileptiform IED candidates. 
Experienced clinical EEG interpreters can add diagnostic value in 
such cases.

Future studies of EEG interpretation should focus on difficult 
borderline EEGs.

There are several limitations to this study. We did not have access 
or the capacity to analyze clinical and paraclinical patient data that can 
be thought to influence or explain BEMS and IED candidate count, 
e.g., what evidence was available to the clinicians that diagnosed the 
patients with epilepsy, type of epilepsy syndrome, seizure burden, use 
of anti-seizure medication, imaging data, neurological comorbidities, 
IED candidate localization, and topography. Individual rater threshold 
differences were relatively large for IED candidate count and BEMSsum 
(Figure 2), affecting the diagnostic performance negatively since a 
common threshold will differ from each of the rater’s optimal cut 
point. The IED candidate count threshold differences imply that the 
difficulties when deciding whether an EEG waveform is an IED 
candidate are comparable to that of IED classification. The low inter-
rater threshold difference and healthy Bland–Altman plot for BEMSmax 
(Figure 2) suggest that the IED candidate selection by a human rater 
combined with automated quantitative BEMS scores reliably identifies 
the IED candidate with the most typical epileptiform characteristics 
in an EEG.

We validated the diagnostic performance and IRA of the 
diagnostic markers by examining an external EEG dataset (DS3) that 
had different patient characteristics, prevalence of positive outcomes, 
and reference standards. DS3 consisted of patients who had required 
long-term video-EEG monitoring (LTM) in their work-up, as opposed 
to our internal datasets which included routine EEGs from a wide 
variety of referrers and reasons for requesting an EEG. The pretest IED 
probability was lower in DS1 and DS2 compared with DS3. The low 
prevalence of focal IEDs in our internal datasets approximates the 
actual prevalence in the patient population that is referred to our EEG 
laboratory for a routine EEG, which can be estimated at 8% from our 
previous studies (18). Validating the diagnostic markers on DS3 was 
a “trial by fire” due to the different dataset characteristics outlined 

above. The optimal cut point for any quantitative diagnostic marker 
depends on pretest probability, and its application will be  more 
suitable for similar datasets. The gold standard in DS3, the 
classification of habitual seizures as epileptic or non-epileptic by LTM, 
is an outcome measure of a higher standard than those in DS1 and 
DS2, which were focal IEDs as classified by the attending physician 
and the presence of a follow-up diagnosis of epilepsy in the hospital 
database records.

Conclusion

Interictal epileptiform discharge (IED) candidate count is a 
relevant predictor variable in the classification of EEGs as epileptiform 
or non-epileptiform. IED candidate count correlated positively with 
IED candidate morphology. Based on our data, we  suggest the 
following criteria for definite interictal epileptiform activity: either at 
least one very typical epileptiform discharge (BEMS> = 58), or at least 
two moderately typical epileptiform discharges (BEMS> = 47), or at 
least seven less distinct epileptiform discharges (BEMS> = 36).

Data availability statement

The datasets presented in this article are not readily available 
because of ethical and privacy restrictions. Requests to access the 
datasets should be directed to the corresponding author.

Ethics statement

The studies involving human participants were reviewed and 
approved by REK vest, Universitetet i Bergen, Det medisinske fakultet, 
Postboks 7,804, 5,020 Bergen. The reference code for our research 
project is “2017/1512/REK vest.” Written informed consent from the 
participants’ legal guardian/next of kin was not required to participate 
in this study in accordance with the national legislation and the 
institutional requirements.

TABLE 2 Mean performance of diagnostic markers between 3 raters when applying the common cut points that were developed in DS1 for rater  
1 and 2.

DS2 (N = 187) DS3 (N = 60)

Interrater 
agreement

EEG conclusion Epilepsy Interrater 
agreement

Epilepsy

Gwet’s AC1
Sensitivity 

%
Specificity 

%
Sensitivity 

%
Specificity 

% Gwet’s AC1
Sensitivity 

%
Specificity 

%

BEMSmax* 0.90 60 96 29 95 0.57 70 86

BEMSsum** 0.94 67 98 32 98 0.69 56 94

IED candidate 

count*** 0.93 60 98 29 97 0.70 33 96

Diagnostic 

classifier**** 0.96 60 99 26 97 0.73 63 91

Clinical EEG 

conclusion 51 96

Asterisks indicate appliance of common cutpoints. *: BEMSmax > = 50. **: BEMSsum > = 465. ***: IED candidate count > = 18. ****: either 1 IED candidate with BEMS > = 58, 2 with BEMS 
> = 47 or 7 with BEMS > = 36.
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