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Abstract 
Background.   Tumor burden assessment is essential for radiation therapy (RT), treatment response evaluation, 
and clinical decision-making. However, manual tumor delineation remains laborious and challenging due to radio-
logical complexity. The objective of this study was to investigate the feasibility of the HD-GLIO tool, an ensemble of 
pre-trained deep learning models based on the nnUNet-algorithm, for tumor segmentation, response prediction, 
and its potential for clinical deployment.
Methods.   We analyzed the predicted contrast-enhanced (CE) and non-enhancing (NE) HD-GLIO output in 49 multi-
parametric MRI examinations from 23 grade-4 glioma patients. The volumes were retrospectively compared to cor-
responding manual delineations by 2 independent operators, before prospectively testing the feasibility of clinical 
deployment of HD-GLIO-output to a RT setting.
Results.   For CE, median Dice scores were 0.81 (95% CI 0.71–0.83) and 0.82 (95% CI 0.74–0.84) for operator-1 and 
operator-2, respectively. For NE, median Dice scores were 0.65 (95% CI 0.56–0,69) and 0.63 (95% CI 0.57–0.67), re-
spectively. Comparing volume sizes, we found excellent intra-class correlation coefficients of 0.90 (P < .001) and 
0.95 (P < .001), for CE, respectively, and 0.97 (P < .001) and 0.90 (P < .001), for NE, respectively. Moreover, there 
was a strong correlation between response assessment in Neuro-Oncology volumes and HD-GLIO-volumes (P < 
.001, Spearman’s R2 = 0.83). Longitudinal growth relations between CE- and NE-volumes distinguished patients by 
clinical response: Pearson correlations of CE- and NE-volumes were 0.55 (P = .04) for responders, 0.91 (P > .01) for 
non-responders, and 0.80 (P = .05) for intermediate/mixed responders.
Conclusions.   HD-GLIO was feasible for RT target delineation and MRI tumor volume assessment. CE/NE tumor-
compartment growth correlation showed potential to predict clinical response to treatment.

Key Points

•	 HD-GLIO has high geometrical similarity and reliability with manual 3D delineations.

•	 HD-GLIO predicts both contrast-enhancing (CE)- and non-enhancing (NE) volumes.

•	 Longitudinal change in CE/NE distinguishes groups of differing treatment responses.

Feasibility of deep learning-based tumor segmentation 
for target delineation and response assessment in 
grade-4 glioma using multi-parametric MRI  

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://
creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, 
provided the original work is properly cited.
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Glioblastoma (GBM) is the most common and aggressive 
primary brain tumor in adults, and age-adjusted incidence 
is approximately 3.2 per 100 000 population.1 The primary 
treatment for GBM is maximum safe surgical resection, 
and conformal external beam radiotherapy (RT) with con-
current Temozolomide chemotherapy.2 Patients’ prognosis 
and responses to treatment differ depending on age at di-
agnosis, Karnofsky Performance Score,3 extents of tumor 
resection, and promoter methylation status of the DNA 
repair gene O6-methylguanine-DNA methyltransferase 
(MGMT).4 Tumors with mutated isocitrate dehydrogenase 
(IDH) gene that were earlier denoted secondary GBM,5 
have recently been reclassified as astrocytoma grade IV.6 
Treatment efficacy is measured by overall survival (OS) 
and radiologic response in terms of progression-free sur-
vival.7 We previously reported that recurrent glioblastoma 
patients harboring unmethylated MGMT promoter segre-
gated a priori into three groups with divergent clinical re-
sponses8 to a chemo-sensitization regimen of bortezomib 
(BTZ) 48 hours prior to temozolomide (TMZ) treatment. 
Radiological response is an important metric in evaluating 
treatment benefits. However, there is a knowledge gap re-
garding earliest radiological signs of clinical responses 
during longitudinal follow-up of glioblastoma patients 
undergoing intervention trials.

In radiation oncology, the target volume delinea-
tion remains a time-consuming manual task, where 
leading guidelines differ in how the gross target volume 
(GTV) and the clinical target volume (CTV) are defined. 
According to the European Society for Radiotherapy and 
Oncology Advisory Committee on Radiation Oncology 
Practice (ESTRO-ACROP), GTV should include all contrast-
enhancing areas on T1-weighted magnetic resonance im-
aging (MRI), excluding post-surgical infarction or gliosis.9 
Delineation should not be based on postoperative MRI 
alone, preoperative scans should also be assessed, pro-
viding a more precise GTV. Moreover, CTV is defined by 
an isotropic margin of 20 mm from the GTV adjusted at 
anatomical barriers, based upon evidence of infiltration- 
and recurrence patterns.9 However, the Radiation Therapy 
Oncology Group (RTOG) advises inclusion of peritumoral 
edema in the GTV since it is thought to hold high concen-
trations of non-enhancing tumor cells.10 RTOG also ad-
vises additional CTV margin of 20 mm10 (Supplementary 

Figure 1). However, tumors delineated by either guideline 
do not differ in recurrence pattern or patient survival.11 
The consequence of poorly demarcated target volume 
is damage to healthy brain tissue, inflicting increased 
radionecrosis and demyelinization with potential long-
term neurocognitive deficits.11 Suboptimal target cov-
erage may lead to reduced therapeutic effects. Manual 
target delineation is arguably the weakest link throughout 
the course of the RT planning process.12,13 Profound inter-
center variability in GBM RT target delineation practice 
between the European treatment institutions has been re-
ported.14 Hence, there is a need for improved methods that 
reduce incongruity in tumor volume evaluation between 
professionals and alleviate workload.

Quantitative tumor burden assessment in Neuro-
Oncology radiology is important as objective treatment 
response and progression-free survival are considered 
reliable endpoints. The response assessment in neuro-
oncology (RANO) working group criteria is the current 
standard.15 The clinical response assessment in RANO is 
based on 2 perpendicular measures of the largest part of 
the contrast-enhancing lesion, following the given criteria 
of volumetric duration, evaluated in relation to the use of 
corticosteroids, new lesions, and clinical status. Several 
studies have compared the use of 2 perpendicular meas-
ures, to 3D-volumetric segments,16–19 where consensus 
states the 3D-approach supersedes 2-dimensional in both 
accuracy and reliability. Nevertheless, in clinical practice, 
there has been a compromise that practical efficiency out-
weighs the inaccuracy of 2-dimensional measures. This 
underscores the unmet need for more effective tools for 
quantifying true volumetric tumor burden.

Recently, a deep learning (DL) brain tumor segmentation 
tool, HD-GLIO, was developed at the Heidelberg University 
Hospital (UKHD)/ German Cancer Research Center (DKFZ). 
The tool comprises an ensemble of DL models based on 
the nnUNet algorithm17 and trained by neuro-radiologist’s 
tumor labeling to automatically segment (1) the T1 contrast-
enhancing (CE) volume, and (2) the non-enhancing (NE) 
volume corresponding to T2-FLAIR hyperintense abnor-
mality.17,20 In this study, we compared the prediction of the 
HD-GLIO tool to the oncologist’s and neuroradiologists 
manual delineation outputs, clinical RANO measures, as 
well as longitudinal tumor compartment development to 

Importance of Study

High-precision tumor delineation is a prerequisite for 
optimal radiation treatment planning that enables pre-
cise organ-at-risk sparing and reduction of adverse 
effects. Furthermore, tumor volume underlines RANO 
scores and treatment response assessment. However, 
tumor delineation is both complex and time-con-
suming, and as a result, single-slice 2D measures often 
serve as a surrogate for full 3-dimensional (3D) volume 
measures. We have shown herein that HD-GLIO holds 
high geometrical similarity and reliability with manual 
3D delineations. Since the tool could segment both 

the contrast-enhancing (CE)- and the non-enhancing 
(NE) tumor compartment, their relational change in 
growth pattern became assessable. CE/NE tumor-
compartment growth correlation distinguished pa-
tients with different treatment responses. The ability of 
the HD-GLIO tool to differentiate grade-4 glioma tumor 
compartments may render it an efficient tool for longi-
tudinal assessment of treatment response. Improved 
quantitative information should allow for better treat-
ment planning, and rapid determination of radiological 
treatment response.
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clinical treatment response. Additionally, we tested pro-
spectively the feasibility of clinical deployment of HD-GLIO 
output in radiation treatment planning for a limited group 
of patients.

Aim of the Study

We hypothesized that segmenting glioblastoma and 
grade-4 astrocytoma tumor compartments on multi-
parametric MRI (mpMRI) using HD-GLIO will be geo-
metrically similar to manual delineations of tumors 
from patients undergoing treatment in the phase 1B/II 
BORTEM-17 (ClinicalTrials.gov Identifier: NCT03643549). 
Furthermore, we aimed to investigate the feasibility of clin-
ical deployment of this DL tool as an oncologist support 
tool for RT target delineation, and volumetric MRI tumor 
burden assessment. Additionally, we aimed to identify any 
unique features in longitudinal MRI data that may be cor-
related to treatment response.

Materials and Methods

Data Material

The study was approved by the Regional Ethics Committee 
in Western Norway, reference number 2017/2084/REK vest 
and Norwegian Medicines Agency (17/17445-17). All eli-
gible patients signed the approved consent form for study 
participation. We analyzed 49 mpMRI datasets, 29 retro-
spectively, and 20 prospectively.

The 29 retrospective datasets were from 13 patients 
harboring recurrent grade-4 gliomas, comprising 10 gli-
oblastoma patients and 3 grade-4 astrocytoma patients 
with unmethylated MGMT promoter, included in the on-
going multicentre study (ClinicalTrials.gov Identifier: 
NCT03643549). These participants were selected according 
to the following inclusion criteria: (1) histologically and 
radiologically confirmed recurrent or progressed WHO-
grade-421 intracranial glioma, (2) ≥ 12 weeks since radia-
tion treatment, (3) estimated glomerular filtration rate 
≥ 60, (4) negative pregnancy test, and, (5) age > 18. See 
ClinicalTrials.gov Identifier: NCT03643549 for complete list 
of inclusion/exclusion criteria. For these 13 patients, image 
acquisition was performed at 3T Siemens MAGNETOM 
Prisma (Siemens Healthineers, Munich, Germany) MR 
scanner at Haukeland University Hospital (HUH).

Furthermore, 10 patients harboring grade-4 primary 
gliomas, comprising 7 glioblastoma patients and 3 
grade-4 astrocytoma patients, were included for prospec-
tive validation using 20 clinical pre- and postoperative 
mpMRI datasets. Image acquisition was performed on MR 
scanners within HUH (field strength 1.5–3T), according to 
clinical routine. Inclusion criteria for prospective patients 
were: (1) newly diagnosed, histologically confirmed WHO-
grade-4 intracranial glioma,6 (2) available standard mpMRI, 
and (3) were to receive conformal RT during the period of 
November 2022–March 2023. Exclusion criteria included 
previous RT treatment.

All de-identified mpMRI datasets (n = 49) were stored 
on the Secure Access to Research Data and E-Infracture 

(SAFE) facility at the University of Bergen, analyzed 
with the HD-GLIO tool at the Mohn Medical Imaging and 
Visualization Center, Department of Radiology at HUH. The 
number of included patients concurred with ESTRO recom-
mendations for implementing artificial intelligence-based 
applications in radiotherapy.22

Multi-parametric MRI and HD-GLIO Model

The 13 patients harboring recurrent tumors underwent 
baseline MRI examinations (session-1) followed by mpMRI 
every 56 days (session-2, …→) up to 4 sessions, parallel 
to sequential combination of bortezomib (BTZ) 48 hours 
before temozolomide (TMZ) 150–200  mg/m2 treatment 
in 5-day cycles.8 The MRI sequences used in this study in-
cluded 3D T1-weighted pre- (T1-w) and post-contrast (cT1-
w), axial T2-weighted (T2-w), and 3D T2 fluid-attenuated 
inversion recovery (T2-FLAIR) recordings. The MRI pro-
tocol is in line with the consensus recommendations for 
standardized brain tumor imaging protocol in clinical 
trials,23 and corresponds to the mpMRI protocol used to 
train HD-GLIO.

The HD-GLIO tool was selected because it is a pre-
trained open-sourced ensemble model, that is well 
documented,17,20,24 readily available and maintained 
at the Division of Computational Neuroimaging, 
Heidelberg University Hospital and Division of Medical 
Image Computing, German Cancer Research Center 
code-hosting GitHub repository (https://github.com/
NeuroAI-HD/HD-GLIO). Moreover, the HD-GLIO require-
ments regarding image acquisition and interpretation 
are largely in consensus with the protocol in use at HUH, 
being a clinical proton therapy patient-exchange collab-
orator. HD-GLIO prediction-output image files were im-
ported into the clinical RT treatment planning system 
(Eclipse Aria Oncology Information Systems [Varian, 
California, USA]). The pre-trained HD-GLIO tool used for 
inference, was originally trained and validated on a large 
3220 image dataset consisting of both primary and recur-
rent GBM from 38 institutions in Europe, and has previ-
ously shown good segmentation and 3D tumor volume 
results.17

Tumor Delineation, Retrospective Analysis

Two expert clinicians, a consultant oncologist (operator-1) 
and a consultant neuro-radiologist (operator-2) performed 
manual 3D delineations independently on the 29 mpMRI 
datasets, retrospectively, using ITK-snap25 version 3.8.0. 
The operators were selected to reflect the oncologists who 
delineate the target volume for RT in Scandinavia, and the 
neuro-radiologists who report the radiological responses 
on MRI during treatment, where the inter-operator var-
iability addresses the variability across 2 clinical discip-
lines. The same delineation guidelines as used for training 
HD-GLIO17 were followed. CE region was defined as the 
contrast-enhancing tumor, excluding necrosis. NE region 
was defined as T2-FLAIR hyperintense abnormality ex-
cluding the contrast-enhancing and necrotic tumor, resec-
tion cavity, and obvious leukoaraiosis. In total, 72 manual 
segmentations were acquired for which 56 were available 
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for inter-operator variability evaluation as well as for label 
fusion (Figure 1). For details regarding the HD-GLIO proc-
essing pipeline, see Supplementary Appendix.

The output of HD-GLIO was compared to (1) the blinded 
manual delineations of each observer separately, empha-
sizing differences across disciplines, (2) the fused label, 
being the joint contribution from 2 disciplines, and (3) the 
aforementioned labels with added isotropic dilations of 
5, 10, and 20 mm, representing margins clinically used in 
RT9,10,26 to assess any change in relative performance dif-
ference. Dice similarity coefficients were calculated as a 
geometric measure of spatial overlap between 2 segmen-
tation masks. We also calculated Hausdorff Distance 95% 
(HD95) for calculation of the 95th percentile of the dis-
tances between boundary points in the 2 segmentation 
masks,27 details in Supplementary Appendix. We also as-
sessed the volume size consistency between measures, 
as well as the sensitivity ( True_Positive

True_Positive+False_Negative ) and 
specificity ( True_Negative

True_Negative+False_Positive ) for each operator. As 
we had 2 operators to compare with HD-GLIO, we defined 
HD-GLIO as the reference segmentation and calculated 
metrics according to this definition.

Prospective Validation on Clinical RT-Patients

HD-GLIO analyzed pre- and postoperative mpMRI-images 
(n = 20) acquired from 10 patients prior to radiation treat-
ment planning. The mpMRI, with spatially coordinated 
HD-GLIO output volumes, were co-registered with the 
planning-CT in Eclipse treatment planning system. The 
HD-GLIO output volumes were applied as a prediction 
of RT GTV for clinical use, where preoperative HD-GLIO 
output volumes were selected for quantitative and qual-
itative evaluation for geometrical overlay according to 
ESTRO guidelines. Selection of preoperative HD-GLIO 
output volumes enabled comparable grounds for both 
CE- and NE-volumes. Postoperative HD-GLIO output vol-
umes were selected for qualitative assessment according 
to RTOG guidelines that are based on delineation of the NE 
compartment, since contrast-enhancing tumor tissue was 
surgically removed. To prevent confirmation bias, the on-
cologist was blinded for the HD-GLIO-prediction until target 
delineation was performed. After target delineation, based 
on MRIs and planning-CT, the oncologist performed a clin-
ical evaluation of the HD-GLIO-predictions. This was made 

29 Datasets
retrospective, 13 patients

T1, T2, FLAIR, cT1

RANO
assessment

Brain
masks

ITK-
snap

Post-processing:
metrics calculation

Input for subsequent statistical
analysis

Input for quantitative
and qualitative analysis

Operator 1
output:

41 segments

Operator 2
output:

31 segments

HD-GLIO
output:

58 segments

HD-GLIO
output:

30 segments

Python Python

Brain
masks

Clinical
target

volumes

20 Datasets
prospective, 10 patients

T1, T2, FLAIR, cT1

Figure 1.  Methodological flowchart. Flowchart showing the methodological steps of the data-processing pipeline for retrospective tumor 
burden analysis (left) and prospective clinical validation (right).
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according to a pre-defined qualitative scale ranging from 
4 to 1 according to clinical utility,28 where: (4) “Contour 
requires no correction,” (3) “Contour requires only minor 
corrections, significant time saved,” (2) “Contour requires 
major corrections, little time saved,” and (1) “Contour not 
usable, no time saved.”

Dice scores between manual target volumes and preop-
erative HD-GLIO-prediction volumes were also calculated. 
HD-GLIO NE volumes were also qualitatively evaluated for 
geometric overlay on FLAIR- hyperintensity in postopera-
tive mpMRIs.

All qualitative assessments were performed by a senior 
consultant oncologist with 14 years of experience.

Clinical Response Evaluation

Responses to treatment were measured by clinical eval-
uation including (1) Neurological Assessment in Neuro-
Oncology (NANO) scale, (2) scores on the EQ-5D-5L quality 
of life questionnaire, and (3) Karnofsky Performance Score, 
as described previously.8 Based on these assessments, 
the 13 patients were segregated into 3 groups (Table 1). 
Although survival data across groups were not statistically 
significant, difference in mean across groups supported 
clinical findings, as listed above. Group-1 was character-
ized by long survival and clinically stable disease, consisting 
of patients A, B, C, D, and E. Group-2 was characterized by 
short survival and rapid disease progression, consisting of 
patients F, G, H, I, and J. Group-3 was characterized by mixed 
clinical response and tumor doubling times, not fitting with 
characteristics in group-1 or group-2, and consisted of pa-
tients K, L, and M (details in Supplementary Table 1).

Statistics

All statistics were analyzed with a 95% confidence interval 
using SPSS Version 26.0. (IBM, Armonk, NY). Dice simi-
larity coefficients were computed with two-tailed Wilcoxon 
signed rank test. For volume size consistency assessment, 
the inter-item intra-class correlation coefficient (ICC) was 
calculated using two-way mixed model (details in sup-
plementary appendix). For correlation between RANO 
measures and 3-dimensional CE volumes, we calculated 
Spearman’s non-parametric rank-order correlation co-
efficient with two-tailed test of significance, where 0 is 
no association and 1 is a perfect monotonic relationship, 
and >80 is regarded “very strong.”29 For correlation be-
tween CE- and NE-volumes, we used Pearson correlation 
with one-tailed test of significance. For difference in tumor 
volume regarding tumor location, we used linear mixed 
effect model, accounting for difference in number of re-
peated measures between patients.

Results

Patient characteristics for all 23 patients are in Table 1. 
For detailed individual patient and tumor-compartment 
characteristics, please see Supplementary Tables 1 and 2, 
respectively.

Dice- and HD95-Scores, Retrospective Dataset

HD-GLIO output volumes showed significant geometrical 
similarity with manual delineations.

CE volumes showed median Dice scores of 0.81 (95% CI 
0.71–0.83) and 0.82 (95% CI 0.74–0.84) for operator-1 and 
operator-2, respectively (Figure 2A). The median inter-
operator Dice score for CE was 0.68 (95% CI 0.42–0.79). 
Fusion of operator-1 and operator-2 CE volumes showed 
median Dice scores of 0.77 (95% CI 0.64–0.85). The HD95 
measurements for CE showed median of 5.91 (95% CI 
2.8–16.4) and 3.16 (95% CI 2.8–7.1) for operator-1 and op-
erator-2, respectively. The median inter-operator HD95 for 
CE was 8.5 (95% CI 2.8–32). Moreover, by dilating the 3D 
volumes by 5 mm or 10 mm, the relative performance dif-
ference across operators was reduced from 7% (baseline) 
to 2% (Figure 2B). When dilating the volume by 20 mm, in 
accordance with ESTRO guidelines,9 the median relative 
performance difference across operators was 4%. The me-
dian DICE scores improved significantly for both operators 
(P < .01), for all dilation sizes.

For NE volumes, median Dice scores were 0.65 (95% CI 
0.56–0.69) and 0.63 (95% CI 0.57–0.67) for operator-1 and 
operator-2, respectively (Figure 2C). The median inter-
operator score for NE was 0.74 (95% CI 0.58–0.78). Fusion 
of operator-1 and operator-2 NE volumes showed median 
Dice scores of 0.59 (95% CI 0.47–0.69). The HD95 for NE 
showed median of 16.1 (95% CI 10.6–22.2) and 16.7 (95% 
CI 9.4–23.2) for operator-1 and operator-2, respectively. The 
median inter-operator HD95 for NE was 6.39 (95% CI 2.8–
13.0). Isotropic dilations of 20  mm equalized the relative 
NE-performance difference between operators (Figure 2D).

Taken together, we found that for CE, the Dice sim-
ilarity and HD95 scored better between operator and 
HD-GLIO, than between operators. This indicates that 
HD GLIO predictions had a size, shape, and location that 
was intermediate between the operator-1 and operator-2 
manual delineations. Adding dilations further increased 
Dice scores, and reduced the relative performance differ-
ence between individuals. For NE-volumes, Dice scores 
and HD95 showed poorer agreement between oper-
ator and HD-GLIO than between operator scores. This 
was because manual NE-delineations held substantially 
larger volumes than HD-GLIO predictions. For some pa-
tients, manual NE-delineations included isolated T2-FLAIR 
hyperintense regions, for example, in the contra-lateral 
hemisphere (Figure 2E–G), to a larger extent than com-
puted by HD-GLIO. Both operators had specificity of 0.99 
(95% CI = 0.99), respectively. Details regarding sensitivity 
in Supplementary Appendix.

Prospective Validation on Clinical RT-Patients

HD-GLIO successfully segmented pre- and postopera-
tive grade-4 glioma tumor compartments in 9/10 cases. 
As expected, there was great heterogeneity in radiolog-
ical expression, where preoperative mpMRIs from 5 pa-
tients revealed solid tumors with well-defined contrast 
enhancement and peritumoral edema. Four patients 
exhibited diffuse malignancy with limited contrast en-
hancement and some edema. One patient had an atypical 
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radiological expression with no contrast enhancement 
and minimal edema, where HD-GLIO failed to predict any 
tumor (Figure  3A–B). Adaptations were made in which 
HD-GLIO output volume was found relevant for compar-
ison corresponding to patient-specific radiological tumor 

characteristics, in concordance with ESTRO guidelines. 
CE volumes overlaid precisely with clinical volumes in tu-
mors with solid contrast enhancement, while NE volumes 
were more accurate in diffuse tumor tissue. In the preop-
erative mpMRIs, HD-GLIO output could be used clinically 
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Figure 2.  Volume similarity and discrepancy. (A, C) Boxplots of contrast-enhanced (CE)-volume and non-enhancing (NE)-volume Dice scores, 
respectively. (B, D) Line chart of median CE and NE Dice scores, respectively, after adding isotropic dilations. Red = operator-1, Blue = operator-2, 
and Black = fusion of operator-1- and operator-2 delineations. (C) Boxplots of NE-volume Dice scores. (E–G) Example of diverging delineations 
(Coronal view) where both operators (E and G) delineated a solitary island in the right hemisphere that HD-GLIO (F) excluded. Red segment = 
CE-volume, blue segment = NE-volume.
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 8 Hannisdal et al.: Deep learning volume prediction in grade-4 glioma

A B

C D

E F

Figure 3.  HD-GLIO predictions on clinical radiation therapy-patients. Red segment = manual gross target volume (GTV), Yellow segment = 
HD-GLIO prediction. (A) Manual GTV on patient holding atypical GBM expression, where (B) HD-GLIO failed to predict tumor volume. (C) Manual 
vs. (B) score-4 HD-GLIO prediction. (E) Manual GTV vs. (F) score-3 HD-GLIO prediction. All images: C-T1-w MRI.
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9Hannisdal et al.: Deep learning volume prediction in grade-4 glioma

without changes (score 4), on 2 patients (Figure 3C–D). 
HD-GLIO performed very well on 4 patients requiring only 
minor corrections (score 3) (Figure 3E–F), while on 2 pa-
tients, major corrections were required in parts of the 
target (score 2). Score 1—no time saved—was made on 
one patient. Overall, HD-GLIO showed a high degree of ge-
ometrical concordance with CTVs, with median Dice score 
of 0.83 (95% CI 0.59–0.90) (Figure 4A), in agreement with 
our retrospective analysis. Specifically, we observed that 
patients harboring tumors with well-defined contrast en-
hancement obtained median Dice-score of 0.87 (95% CI 

0.77–0.95). This was significantly higher than diffuse tu-
mors with median Dice-score of 0.63 (95% CI 0.24–0.95) (P 
< .05) (Figure 4B). This indicates that level of confidence is 
higher when a solid contrast-enhancing tumor is present. 
However, we observed that geometrical divergence be-
tween manual- and HD-GLIO volumes were partly due to 
HD-GLIO outlines being more complex in holding greater 
alignment with neighboring anatomical volumes, whereas 
manual delineations held smoother outlines, not avoiding 
adjacent vessels and nerves (Figure 4C–D). Taken together, 
preoperative HD-GLIO-outputs provided time-saving 
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Figure 4.  Prospective results. (A) Boxplot of overall DICE scores of preoperative prospective patients. (B) Boxplot of Dice scores according to 
prediction used. (C) Manual gross target volume (red segment) vs. (D) HD-GLIO (yellow segment) prediction demonstrating adaptions to nerves 
and vessels. (E-F) Postoperative non-enhancing predictions (blue segments) of FLAIR-hyperintensity volumes.
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output volumes in 88% of cases, thus were deemed useful 
in a clinical setting.

All patients underwent gross total surgical resection. 
Postoperative mpMRIs showed minimal or no contrast en-
hancement on all patients, and large areas of hyperintense 
T2- FLAIR-signal on all patients except 1 patient exhib-
iting an atypical radiological expression. By qualitative 
assessment, all NE volumes were in concordance with 
true hyperintense T2- FLAIR-signal, requiring only minor 
corrections (score 3) (Figure 4E–F). Hence, postoperative 
NE volumes were useful for target delineation performed 
according to RTOG guidelines that include T2-FLAIR-
hyperintensity in the GTV.

MRI tumor burden assessment—volume size 
agreement

We assessed the agreement in volume (mL) among the 2 
operators` delineations and the HD-GLIO segmentation. 
Inter-operator ICC was 0.65 for CE volumes, and 0.90 for 
NE volumes (P < .05, respectively). Furthermore, HD-GLIO 
yielded excellent CE-volume agreement with ICC = 0.90 
and ICC = 0.95 for operator-1 and operator-2, respectively 
(P < .01, respectively). HD-GLIO also had excellent agree-
ment for NE volumes, with ICCs of 0.97 and 0.90 for oper-
ator-1 and operator-2, respectively (P < .01, respectively).

For CE volumes, we also calculated ICC in relation to 
the RANO-prescribed measures, showing ICCs of 0.1, 
0.15, and 0.2 for operator-1, HD-GLIO, and operator-2, re-
spectively. RANO, based on volume estimation from 2-di-
mensional projections, was considerably smaller than 
the 3-dimensional measures, regardless of operator/
HD-GLIO. Consequently, ICCs showed overall poor agree-
ment with the RANO measures. Therefore, we assessed 
the Spearman correlation between RANO measures and 
the 3-dimensional CE volumes. There was a strong posi-
tive correlation between RANO and HD-GLIO (Spearman 
R2 = 0.83 P < .001), and with RANO and operator-2, R2 = 0.80 
(P < .001). Correlation with operator-1 was not statistically 
significant.

In summary, HD-GLIO tumor burden assessment con-
curred with both operators, and HD-GLIO volume sizes 
held a clear proportional relationship with RANO volumes.

Longitudinal Features in MRI-Measurements in 
Relation to Clinical Response

The patients were partitioned a priori into 3 groups ac-
cording to clinical response criteria.8 We heuristically 
screened CE- and NE-volumes in search of discriminative 
features in the longitudinal mpMRI recordings that could 
be related to clinical response in our cohort (Figure 5A–B). 
As both operators had good or excellent ICC with HD-GLIO 
for both CE- and NE-volumes, we found HD-GLIO volume 
sizes (n = 58, ie, 29 exams × 2 compartments) and volume 
changes to be candidate for further investigation regarding 
reported clinical response.

For group-1 (number of repeated measures = 14) we 
had 4 MRI sessions with 56 days interval. These patients 
demonstrated responses to treatment and the longest 

overall survival, Supplementary Table 1. When comparing 
the first 2 sessions, we found that the NE compartment 
volume increase was least prominent in group-1 among 
the 3 groups (Figure 5C, D). Moreover, in this group, me-
dian CE volumes were reduced from third to last time 
point. Patients in group 2 had such rapid progression they 
did not live to their third MRI session. Group-2 (number 
of repeated measures = 9) had the smallest initial NE vol-
umes, but showed the steepest increase in both median 
CE-volume and median NE-volume across all 3 groups, 
(Figure 5 C). For group-3 (number of repeated measures 
= 5), increase in median CE and median NE volumes was 
intermediate. Hence, the ratio (median NE-volume/ me-
dian CE-volume) differed between the groups. We calcu-
lated Pearson correlation as a measure of the strength of 
the linear relationship between the CE- and NE-volumes 
for each group and found Pearson correlations of 0.55 (P = 
.02), 0.91 (P < .01), and 0.80 (P = .05) for group-1, 2, and 3, 
respectively.

Disregarding the groups, we screened for other factors 
related to tumor volume. We performed a linear mixed 
model analysis and observed that CE/NE-relations cor-
responded with tumor location, where right-hemisphere 
tumors obtained larger volumes (mean 27  361  mL) than 
left-hemisphere (mean 15 154 mL) (P = .02), Supplementary 
Table 2. Pearson correlations were 0.72 (P < .01) and 0.86 (P 
< .01) for right- and left-sided tumors, respectively.

Discussion

The objective of this study was to investigate the feasibility 
of clinical deployment of HD-GLIO as a support tool in radi-
otherapy target delineation, for radiological tumor burden 
assessment, and to screen for discriminative features in 
longitudinal MRI data that may be correlated to clinical 
treatment response. The major findings were: (1) HD-GLIO 
showed significant geometrical similarity with manual de-
lineations and saved time during tumor volume prediction 
for clinical radiation treatment planning, (2) HD-GLIO had 
strong statistical correlation with RANO, and (3) longitu-
dinal CE/NE-volume growth rate differed significantly in 
relation to treatment response. Prospective findings were 
that CE volumes held high geometrical overlap with clin-
ical volumes in tumors with solid contrast enhancement, 
while NE volumes held more accurate overlap in diffuse 
tumor tissue.

As expected and confirming the motivation for this study, 
we found substantial variability between clinical operators 
for both Dice scores and volume sizes. This could be due 
to extrinsic factors such as the operators’ experience and 
subjective perception characteristics, or, intrinsic factors 
contributing to radiological interpretation complexity, such 
as immune response, surgery, effects of chemotherapy, 
and previous radiotherapy. However, in the training of 
computer-based DL models, expert knowledge from years 
of radiological interpretation training can be transformed 
into automated pattern recognition tools. Such knowledge 
transfer can promote standardization of tumor volume 
annotation, thereby reducing variation in patient care. 
Moreover, the clinical tolerance of inter-operator variability 
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Figure 5.  Tumor compartment growth patterns between groups. (A-B) contrast-enhanced (CE)-volumes (red segments) and non-enhancing 
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can help set the standard for acceptable variability be-
tween AI predictions and expert delineations.

Limitations of the Study

When comparing new methods to the ground truth, un-
certainty remains regarding false positive/false negative 
tumor voxels. This constrains validation of AI models in 
cases where AI challenges or outperforms the ground 
truth. Furthermore, limitations in segmentation perfor-
mance will depend on the external validity of the training 
data, where potential underrepresentation of certain 
tumor expressions in training data could lead to false 
positive or false negative detection of tumor burden. 
Although part of our study entailed retrospective ana-
lyses with inherent confounders such as surveillance bias 
and varying imaging time points, validation with a small 
but independent prospective cohort did confirm the find-
ings. The small sample size of the prospective cohort may 
have limited external validity, in particular when radio-
logical expression within the group is highly heteroge-
neous. In these prospective patients, preoperative tumor 
outlines largely had good intracranial spatial concordance 
with postoperative tumor cavities. Thus, preoperative 
tumor geometry remained spatially relevant when fused 
with planning CT. Further validation in a larger, random-
ized cohort, including several hospital systems and geo-
graphical regions with more diverse populations, or by 
incorporating larger datasets is required.

Feasibility for HD-GLIO in Radiotherapy Target 
Delineation

Recent development in photon and proton RT techniques 
with improved target coverage and steep dose gradients 
enable better organ-at-risk dose sparing and have further 
advantage of high-precision target delineation. We ad-
dressed the use of mpMRI and the pre-trained HD-GLIO en-
semble model to determine if this can aid in target volume 
delineation on the patients undergoing treatment in the 
phase 1B/II BORTEM-17 clinical trial (ClinicalTrials.gov 
Identifier: NCT03643549).

Retrospective median Dice scores for the CE volumes, 
0.81 and 0.82 for operator-1 and operator-2, respectively, 
were considerably better than median inter-operator 
Dice score of 0.68, in concordance with HD95 measures. 
Prospective validation of oncologist agreement with 
HD-GLIO confirmed retrospective findings, showing me-
dian Dice score of 0.87. Moreover, the oncologist’s clinical 
evaluation was that the HD-GLIO-predicted CE volume was 
clinically usable in all cases, contributing to a more effi-
cient workflow.

Retrospective Dice scores for NE in this study were some-
what poorer than for CE, and when manually inspecting 
the NE-volume discrepancies, we observed HD-GLIO tends 
to segment slightly (≈1 mm) more restricted than manual 
delineations along the outline. This could be due to visual 
perception characteristics as well as physical precision in 
manual delineations. Moreover, for some patients, manual 
delineations included solitary islands of hyperintense 
T2-FLAIR-signal that HD-GLIO excluded. There are, 

however, no definite data suggesting such inclusion alters 
patient outcome, which is why ESTRO-ACROP guidelines 
advise not to include all hyperintense T2-FLAIR regions on 
primary grade IV tumors.9,11 Prospective validation of pre-
operative NE-volumes confirmed retrospective Dice-score 
of 0.63. However, qualitative scores showed that the NE 
volumes still were found useful for majority of cases, in 
terms of potential time saved. The oncologist also reported 
that HD-GLIO-predictions could represent quality assur-
ance for clinicians in training or activate reassessment in 
complex cases. The qualitative and quantitative scores 
corresponded.

Prospective results demonstrate that even though some 
variations were seen, overall HD-GLIO performance was 
found useful for clinical deployment. Best results were 
found for CE volumes, where clinical utility was also most 
readily recognized due to the well-defined contrast en-
hancement. Our NE results showed more variation, and 
held lower scores than CE. This is not unexpected, as tu-
mors exhibiting diffuse radiological expressions can be 
more challenging to define. Thus, a more laborious assess-
ment is required for this group, which might be reflected 
by the potential time saved. NE volumes were most useful 
when evaluated postoperatively in relation to RTOG guide-
lines. This could be related to T2-FLAIR-hyperintensity 
region being more straightforward to assess, compared 
to ESTRO guidelines depending on more complex assess-
ment across the mpMRI.

Nevertheless, the HD-GLIO tool demonstrated ability 
to segment vector-valued voxels in mpMRI expressing 
high-dimensional tumor tissue signatures with geomet-
rical similarity for both CE and NE. This was with the use 
of standard brain mpMRI acquisition protocol. We have 
also shown that the relative performance difference be-
tween HD-GLIO predictions and manual delineations is 
significantly reduced when isotropic margins are added, 
increasing the relevance of RT target delineation. However, 
we emphasize that the final design of the RT target vol-
umes will depend on the treating oncologist, and that ra-
diological data should be interpreted according to salient 
clinical information.

MRI tumor burden assessment—volume size 
agreement

Limited time resources have been the point of conten-
tion for not implementing 3-dimensional tumor volume 
assessment in clinical routine, even though the con-
sensus is that 3D gives the most accurate measure.19,30 
For a single examination, the complete HD-GLIO pipe-
line (including spatial alignment of the channel images, 
brain extraction, and segmentation) took less than 4 
minutes wall time, providing CE+NE tumor compart-
ments with instant volumetric calculation in good agree-
ment with expert delineations. When we assessed the 
volume size correlation between HD-GLIO and oper-
ators, main findings showed that HD-GLIO had overall 
excellent reliability with both operators. For both CE 
and NE, reliability in size between HD-GLIO and oper-
ators were superior to the inter-operator reliability. We 
also found a very strong correlation between HD-GLIO 
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and the current gold standard RANO measurements. 
However, RANO volumes were significantly smaller than 
3-dimensional volumes, implying the 2-dimensional 
RANO measures severely underestimate the anisotropic 
tumor volume.

Longitudinal Features Correlated to Clinical 
Response

We previously reported8 that our cohort was segregated 
into 3 groups of diverging clinical response measures; re-
sponders (group-1), non-responders (group-2), and mixed/
intermediate response (group-3). In this study, we inves-
tigated whether there may be discriminative features in 
the longitudinal MRI data that correlated to these clinical 
treatment responses by assessing the relationship of CE- 
and NE-volumes in the 3 groups, as well as tumor loca-
tion. We found that group-1 patients, who exhibited good 
clinical response to treatment, had the smallest linear re-
lationship between CE- and NE-volumes (Pearson corre-
lation = 0.55). This means that angiogenetic tumor growth 
was restricted, and that the biological processes inducing 
edema and hyperintense T2-FLAIR-signal, developed more 
slowly than for the other groups. This was also the group 
characterized by a more activated immune response.8 
Group-2 patients exhibited a very strong linear relation-
ship between CE- and NE-volume increases (Pearson cor-
relation = 0.91), and was the group with poorest response 
to treatment, as well as lowest OS. The difference in rela-
tional tumor-compartment volume development fits well 
with difference in clinical response for the patients in our 
study. This relational growth also correlated with tumor lo-
cation, where right-hemisphere tumors had larger volume 
than left-hemisphere tumors, in concordance with findings 
in other studies.31

Taken together, this could indicate that increase in 
NE-volume relative to CE- volume i.e, tumor-compartment 
growth correlation, is a prognostic factor (proxy indicator) 
for treatment response. To the best of our knowledge, 
there have not been other studies assessing this relation-
ship, although peritumoral edema has been suggested as 
a negative prognostic factor for survival in GBM.32 The in-
corporation of T2-FLAIR-changes in the determination of 
progression was one of the major changes proposed by the 
RANO criteria for high-grade gliomas; however, because 
of the difficulty of measuring T2-FLAIR hyperintensity 
volume accurately, no objective criteria were proposed.15 
In this study, we found the HD-GLIO model to be an ef-
fective tool in quantifying 3D tumor volume on repeti-
tive measures, where the dual-compartment assessment 
adds value to the clinical usefulness. Adding weight to 
radiological tumor burden as a marker of response also 
increases objectiveness by reducing impact of subjective 
interpretation-diversity bias in Patient Reported Outcome 
Measures.

Although our data regarding characteristic group-wise 
growth pattern features are somewhat limited by the 
small sample sizes across groups, we will prospectively 
investigate this CE/NE tumor-compartment growth corre-
lation further as more patients are included in the ongoing 
study.

Conclusions

In our study, comprising 23 patients and 49 MRI exam-
inations, HD-GLIO DL predictions demonstrated high 
agreement (Dice similarity score and HD95) with manual 
delineations in segmenting grade 4 glioma tumor compart-
ments on multi-parametric MRI. Our data indicate that the 
HD-GLIO tool could serve as a first step in target volume 
delineation for radiotherapy, where the computed CE- and 
NE-compartments would be subsequently assessed by the 
oncologist, being responsible for the final design of GTV 
and CTV.

We found a strong correlation to volumetric RANO 
measures, suggesting HD-GLIO is feasible for MRI-based 
3D tumor burden assessment in clinical decision-making 
as well as in trials.

We also suggest the tumor-compartment growth corre-
lation (longitudinal CE/NE volume ratio) could serve as a 
prognostic factor for treatment response. An ongoing pro-
spective study is investigating this tumor-compartment 
growth correlation to validate its prediction for treatment 
response in larger sample and independent population.
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