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We study the potential of Weinberg’s Z2 × Z2-symmetric three-Higgs-doublet model. The potential is
designed to accommodate CP violation in the scalar sector within a gauge theory, while at the same time
allowing for natural flavor conservation. This framework allows for both explicit and spontaneous CP
violation. CP can be explicitly violated when the coefficients of the potential are taken to be complex. With
coefficients chosen to be real, CP can be spontaneously violated via complex vacuum expectation values
(VEVs). In the absence of the terms leading to the possibility of CP violation, either explicit or induced by
complex VEVs, the potential has two global Uð1Þ symmetries. In this case, spontaneous symmetry
breaking would, in general, give rise to massless states. In a realistic implementation, those terms must be
included, thus preventing the existence of Goldstone bosons. A scan over parameters, imposing the
existence of a neutral state at 125 GeV that is nearly CP even shows that, in the absence of fine-tuning, the
scalar spectrum contains one or two states with masses below 125 GeV that have a significant CP-odd
component. These light states would have a low production rate via the Bjorken process and could thus
have escaped detection at the Large Electron-Positron Collider. At the LHC, the situation is less clear.
While we do not here aim for a full phenomenological study of the light states, we point out that the γγ
decay channel would be challenging to measure because of suppressed couplings to WW.

DOI: 10.1103/PhysRevD.108.075029

I. INTRODUCTION

In the Standard Model (SM) there is only one Higgs
doublet and CP cannot be violated in the scalar sector. With
the addition of one extra Higgs doublet, CP can be violated
in this sector both explicitly, via the introduction of
complex coefficients or spontaneously as was shown by
Lee [1]. Spontaneous CP violation puts the breaking of CP
and electroweak symmetry breaking on equal footing.
However, the Yukawa couplings of models with two or
more Higgs doublets lead to potentially dangerous flavor-
changing neutral currents (FCNCs), for which there
are stringent experimental limits. In order to solve this

problem for the two-Higgs-doublet model, a solution was
proposed [2,3], based on the imposition of natural flavor
conservation (NFC) resulting from an additional Z2 sym-
metry in the scalar and in the Yukawa sector, forcing all
the right-handed quarks of each sector only to couple to a
single Higgs doublet, thus eliminating FCNCs at the tree
level. However, imposing a discrete symmetry on the scalar
potential in the context of two-Higgs-doublet models
automatically leads to CP conservation. This can be evaded
by adding a term softly breaking theZ2 symmetry, in which
case CP can be spontaneously violated [4]. In 1976, it was
pointed out by Weinberg [5] that the scalar potential of
models with three Higgs doublets and with additional Z2

symmetries leading to NFC can violate CP explicitly and
can also provide a mechanism for naturally small CP
violation. Soon afterward, Branco [6] showed that this
framework also allows for the possibility of spontaneous
CP violation.
In this work we outline some important features of the

Weinberg potential with real coefficients and CP violation,
with an emphasis on the mass spectrum. A more detailed
phenomenological analysis will be presented elsewhere. In
particular, we will demonstrate that there are regions of
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parameter space where the electron electric dipole moment
is below 10−29 e · cm, as required by experiments [7]. This
is an important constraint on CP-violating three-Higgs-
doublet models (3HDMs).
It is also important to point out that the requirements

of spontaneous CP breaking and NFC lead to a class of
theories where CP nonconservation is solely due to Higgs
exchange [8]. The fact that the right-handed quarks of each
sector only couple to a single Higgs doublet allows for the
rephasing of the right-handed quarks in such a way as to
cancel the phase of the vacuum expectation value (VEV) of
the doublet to which these quarks couple, thus leading to a
real Cabibbo-Kobayashi-Maskawa (CKM) matrix. It is by
now experimentally established that the CKM matrix is
complex [9,10], implying that if one wants to build a fully
realistic model from the point of view of flavor this issue
must be addressed. To solve this problem one might, for
instance, consider scenarios with the addition of vectorlike
quarks [11,12].
We consider the explicitly CP-conserving Z2 × Z2-

symmetric1 Weinberg potential [5], following the notation
of Ivanov and Nishi [13],

V ¼ V2 þ V4; with V4 ¼ V0 þ Vph; ð1:1aÞ

where V2 and V0 are insensitive to independent rephasing
of the Higgs doublets,

V2 ¼ −
�
m11ðϕ†

1ϕ1Þ þm22ðϕ†
2ϕ2Þ þm33ðϕ†

3ϕ3Þ
�
; ð1:1bÞ

V0 ¼ λ11ðϕ†
1ϕ1Þ2 þ λ12ðϕ†

1ϕ1Þðϕ†
2ϕ2Þ þ λ13ðϕ†

1ϕ1Þðϕ†
3ϕ3Þ

þ λ22ðϕ†
2ϕ2Þ2 þ λ23ðϕ†

2ϕ2Þðϕ†
3ϕ3Þ þ λ33ðϕ†

3ϕ3Þ2
þ λ012ðϕ†

1ϕ2Þðϕ†
2ϕ1Þ þ λ013ðϕ†

1ϕ3Þðϕ†
3ϕ1Þ

þ λ023ðϕ†
2ϕ3Þðϕ†

3ϕ2Þ; ð1:1cÞ

whereas

Vph¼ λ1ðϕ†
2ϕ3Þ2þλ2ðϕ†

3ϕ1Þ2þλ3ðϕ†
1ϕ2Þ2þH:c: ð1:1dÞ

would be sensitive to rephasing of the doublets. Explicit
CP conservation means that it is possible to make λ1, λ2, λ3
real by a rephasing of the scalar doublets. In this case CP
violation can only occur spontaneously, i.e., via complex
VEVs. For simplicity, in our discussion we choose to work
in this basis.
In the limit of fλ1; λ2; λ3g → 0 (or Vph → 0), the poten-

tial acquires two2 Uð1Þ symmetries, since both V2 and V0

are insensitive to rephasing of the fields. It is the emergence
of an additional symmetry that would allow for these terms

to be removed from the potential in a consistent way.
Different symmetries of multi-Higgs models occur fre-
quently and play an important role. As is clear from the
classification in Ref. [14], the full additional symmetry in
this limit is simply the Uð1Þ ×Uð1Þ symmetry we are
seeing here. Starting from the general Weinberg potential,
two of the scalar masses tend to zero when we approach the
limit where these Uð1Þ global symmetries emerge and are
broken by the vacuum.3

Experimentally, an SM-like scalar (hSM) has been
observed at 125.25 GeV with trilinear hSMVV (V ¼ W, Z)
gauge couplings that have very little CP-odd “contamina-
tion” [16,17]. One way to arrive at this situation is for the
coefficients of the phase-sensitive terms of the potential
to be small. In the limit when these terms vanish, CP is
conserved and the physical scalars have definite CP
parities. As stated earlier, there will also be two massless
states in this limit, as long as all VEVs are nonzero.
At this point, it is useful to comment on “natural”

alignment, when the hSMVV coupling automatically attains
full strength due to the symmetry of the potential. Pilaftsis
has shown [18] (see also Ref. [19]) that this happens in
a 3HDM if the quartic part of the potential has an Sp(6),
SU(3), or SOð3Þ × CP symmetry. Another possibility is to
have an unbrokenZ2 × Z2 symmetry. In our framework we
requireCP to be broken spontaneously. In order to haveCP
violation λ1, λ2, and λ3 must be simultaneously nonzero and
all VEVs must be different from zero. The latter breaks the
Z2 × Z2 symmetry. Therefore, there is no natural alignment
in this case. Since both the Weinberg Z2 × Z2-symmetric
potential and the Uð1Þ ×Uð1Þ-symmetric limit contain
terms not compatible with these higher symmetries, it
follows that natural alignment is not available in the present
framework. In particular, we note that CP violation is not
compatible with natural alignment.
In this work, we instead enforce alignment as a constraint

on the parameters, leaving room for small deviations.
In view of the above discussion, it is interesting to

explore whether the spectrum will contain two light states,
lighter than the one whose trilinear hVV gauge coupling is
SM-like. What we will see in our parameter scans is the
following feature:
In a realistic case, i.e., with an SM-like Higgs boson at

mh ¼ 125.25 GeV, the scenario where the SM-like scalar
is the lightest requires fine-tuning. That is, in the bulk of
the acceptable parameter space, lighter neutral scalars are

1The potential is separately symmetric under ϕi → −ϕi for all
three ϕi, which means that there are in fact three Z2 symmetries.

2The third Uð1Þ symmetry can be absorbed in the Uð1Þ
hypercharge symmetry.

3The masses are continuous functions of the couplings of the
phase-sensitive part of the potential: The masses squared are the
roots of the characteristic polynomial of the mass-squared matrix.
The coefficients of this characteristic polynomial will be poly-
nomials in the couplings of the phase-sensitive part of the
potential, i.e., continuous functions of these couplings. Moreover,
the roots of a polynomial are continuous functions of the
coefficients (see, e.g., [15]), so then the masses squared are
continuous functions of the phase-sensitive couplings.
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predicted. These generally have a considerable CP-odd
content.
Moreover, those light states would have suppressed

trilinear gauge couplings hiWW and hiZZ (i ¼ 1, 2), since
these couplings are constrained by the orthogonality of the
mixing matrix; hence they may have escaped detection at
the Large Electron-Positron Collider (LEP).
The paper is organized as follows. In Sec. II we minimize

the Weinberg potential, and discuss CP conservation and
properties of the mass matrices, introducing at the same
time notation and definitions used in the remainder of
the article. Section III presents the couplings among the
electroweak gauge bosons and the scalars, and Sec. IV
presents the Yukawa couplings. Then, in Sec. V we present
results of a scan over the potential parameters, subject to a
set of well-established constraints. In Sec. VI we compare
two ways of accommodating the discovered SM-like Higgs
particle in this potential, with either one or two states being
lighter. Finally, Sec. VII contains concluding remarks. The
expressions for the mass-squared matrices and pseudo-
Goldstone masses are given in Appendix A and a simple
version of the model, which turns out to conserve CP, is
discussed in Appendix B.

II. GENERAL PROPERTIES OF THE WEINBERG
POTENTIAL

We give here some basic properties of the minimum of
the potential and comment on conditions for CP conser-
vation. Such conditions can be analyzed from the point of
view of CP-odd scalar basis invariants [20,21] (see also
Ref. [22]), but a complete discussion is beyond the scope
of this work and will be presented elsewhere. We will
here only note that CP is conserved whenever any coupling
in Vph vanishes (provided all VEVs are nonzero) or
sinð2θ2 − 2θ3Þ ¼ 0.4

A. Minimizing the potential

By an overall phase rotation, we choose the VEVof ϕ1,
w1 ≡ v1 real, whereas the other VEVs, w2 and w3 will, in
general, be complex. We introduce phases θi by

wi ¼ vieiθi ; i ¼ 2; 3; ð2:1Þ

with v21 þ v22 þ v23 ¼ v2 and v ¼ 246 GeV. We will thus
represent the different vacua in the form

fw1; w2; w3g ¼ fv1; v2eiθ2 ; v3eiθ3g: ð2:2Þ

It is convenient to extract an overall phase factor and
decompose the SU(2) doublets as

ϕi ¼ eiθi
�

ϕþ
i

ðvi þ ηi þ iχiÞ=
ffiffiffi
2

p
�
; i ¼ 1; 2; 3: ð2:3Þ

In our convention, θ1 ¼ 0, ϕ1 being a reference for the
phases of the other fields.
In general, CP is violated, so we cannot assign CP

parities to the fields ηi and χi. However, since they are
independent fields, they have opposite “CP content” in the
sense that the product ηiχi is odd under CP.
The minimization with respect to the moduli of the

VEVs gives

m11 ¼ λ11v21 þ
1

2
λ̄12v22 þ

1

2
λ̄13v23 þ λ2 cosð2θ3Þv23

þ λ3 cosð2θ2Þv22; ð2:4aÞ

m22 ¼ λ22v22 þ
1

2
λ̄12v21 þ

1

2
λ̄23v23 þ λ1 cos ð2θ3 − 2θ2Þv23

þ λ3 cosð2θ2Þv21; ð2:4bÞ

m33 ¼ λ33v23 þ
1

2
λ̄13v21 þ

1

2
λ̄23v22 þ λ1 cos ð2θ3 − 2θ2Þv22

þ λ2 cosð2θ3Þv21; ð2:4cÞ

where we introduced the abbreviations

λ̄12 ≡ λ12 þ λ012; λ̄13 ≡ λ13 þ λ013; λ̄23 ≡ λ23 þ λ023:

ð2:5Þ

These abbreviations are also useful for the neutral-sector
mass matrices.
There are two minimization constraints with respect to

the phases. These can be expressed as

λ1v23 sinð2θ2 − 2θ3Þ þ λ3v21 sin 2θ2 ¼ 0; ð2:6aÞ

λ1v22 sinð2θ3 − 2θ2Þ þ λ2v21 sin 2θ3 ¼ 0: ð2:6bÞ

From these two relations, it follows that the two phases are
related via

λ3v22 sin 2θ2 þ λ2v23 sin 2θ3 ¼ 0: ð2:7Þ

It also follows that the relative sign of sin 2θ2 and sin 2θ3 is
the opposite of the relative sign between λ2 and λ3.

5

One can impose these two conditions (2.6) by substitut-
ing for λ2 and λ3,

4Let the indices fi; j; kg be some permutation of f1; 2; 3g, and
consider the vanishing of λi: The minimization conditions will
then enforce the vanishing of λj and λk, unless the angles take on
special values. Whenever all λl’s vanish Vph also vanishes and all
VEVs can be made real. 5The ranges of these parameters could accordingly be reduced.
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λ2 ¼
λ1v22 sinð2θ2 − 2θ3Þ

v21 sin 2θ3
; ð2:8aÞ

λ3 ¼ −
λ1v23 sinð2θ2 − 2θ3Þ

v21 sin 2θ2
: ð2:8bÞ

Insisting on perturbativity, we require all λi ∈ ½−4π; 4π�.
Thus, whenever θ2 or θ3 is small, the other angle must be
close (modulo π=2).
Alternatively, the minimization conditions (2.6) yield the

solutions [6]6

cos 2θ2 ¼
1

2

�
D23D31

D2
12

−
D31

D23

−
D23

D31

�
; ð2:9aÞ

cos 2θ3 ¼
1

2

�
D23D12

D2
31

−
D12

D23

−
D23

D12

�
; ð2:9bÞ

with

D12 ¼ λ3ðv1v2Þ2; D23 ¼ λ1ðv2v3Þ2;
D31 ¼ λ2ðv3v1Þ2: ð2:10Þ

Interpreting the Dij as sides in a triangle [6] requires λ1, λ2,
and λ3 to all be positive. As noted above, θ2 and θ3 must
then have opposite signs.

B. The case θ2 = θ3 +nπ=2

When θ2 and θ3 differ by a multiple of π=2, the first
terms of Eq. (2.6) vanish. These minimization conditions
then require one of the following to be satisfied (assuming
all VEVs are nonzero):
(1) λ2 ¼ λ3 ¼ 0,
(2) λ2 ¼ 0, sin 2θ2 ¼ 0,
(3) λ3 ¼ 0, sin 2θ3 ¼ 0, and
(4) sin 2θ2 ¼ sin 2θ3 ¼ 0.

All these cases are CP conserving and will not be
considered in the following.
θ2 ¼ θ3: When θ2 ¼ θ3 we may go to a basis in which

w2 and w3 are real, and w1 is complex. It then follows that
we have only one minimization condition with respect to
phases; there will remain a “leftover” field on which the
mass-squared matrix does not depend, i.e., a massless state.
θ2 ¼ θ3 � π: This case is essentially equivalent to the

case above, except for some sign changes.
θ2 ¼ θ3 � π=2: This case is also essentially equivalent to

the case above, except for an interchange of the ηi and χi
fields in one doublet.

C. Rotating to a Higgs basis

To make these mass-squared matrices as simple as
possible and to easily identify the SM Higgs in the neutral
mass spectrum [cf. Eq. (5.1) below], it is convenient to
rotate the Higgs doublets to a Higgs basis, where only one
doublet has a nonzero VEV.
A suitable Higgs basis is reached by the transformation

R2R1

0
@ v1

eiθ2v2
eiθ3v3

1
A ¼

0
@ v

0

0

1
A; ð2:11Þ

with

R1 ¼
�
1 0

0 R1

�
; R1 ¼

1

w

�
v2e−iθ2 v3e−iθ3

−v3e−iθ2 v2e−iθ3

�
;

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v22 þ v23

q
; ð2:12Þ

and

R2 ¼
1

v

0
B@

v1 w 0

−w v1 0

0 0 v

1
CA: ð2:13Þ

Thus, the Higgs basis [with SU(2) doublets H1, H2 and
H3] is reached by R≡R2R1,0

B@
H1

H2

H3

1
CA ¼ R

0
B@

ϕ1

ϕ2

ϕ3

1
CA ¼ R̃

0
B@

ϕ1

e−iθ2ϕ2

e−iθ3ϕ3

1
CA; ð2:14Þ

with

R̃ ¼ R2

1

w

0
B@

w 0 0

0 v2 v3
0 −v3 v2

1
CA ð2:15Þ

in fact real.
We decompose the Higgs-basis fields as

H1 ¼
�

Gþ	
vþ ηHB1 þ iG0



=
ffiffiffi
2

p
�
;

Hi ¼
 

φHBþ
i	

ηHBi þ iχHBi


=
ffiffiffi
2

p
!
; i ¼ 2; 3; ð2:16Þ

and enumerate the neutral fields f1; 2; 3; 4; 5g according to
the following sequence:

φHB
i ¼ �ηHB1 ; ηHB2 ; ηHB3 ; χHB2 ; χHB3

�
; i ¼ 1;…5: ð2:17Þ

6These expressions differ from those of Ref. [6] since we take
ϕ1 rather than ϕ2 to have a real VEV.
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D. Masses

The elements of the 2 × 2 charged mass-squared
matrix M2

ch, as well as the masses squared, are given in
Appendix A 1, while the elements of the 5 × 5 neutral
mass-squared matrix M2

neut are given in Appendix A 2.
Moreover, we give Oðλ1Þ formulas for the masses squared
of the pseudo-Goldstone bosons in Appendix A 2 a.
We diagonalize the general neutral mass-squared matrix

by a 5 × 5 rotation matrix O to obtain the mass eigenstates,

hi ¼ Oijφ
HB
j ; ð2:18Þ

with φHB
j defined by Eq. (2.17).

Since the mass-squared matrix of the neutral sector is
5 × 5, the rotation matrix O of Eq. (2.18) can only be
numerically determined. This somewhat limits our analysis.
In Appendix A 2 we schematically quote the determinant
(A8) of the neutral-sector mass-squared matrix. It is
proportional to λ21, reflecting the fact that the potential
has two massless states in the limit λ1 → 0.
In Appendix B we briefly discuss a “minimal” version of

the potential, with λ3 ¼ �λ2, θ3 ¼∓ θ2, and v3 ¼ v2. The
mass-squared matrix of the neutral sector factorizes in that
case, each factor vanishing linearly with λ1. This suggests
that these factors are related to the pseudo-Goldstone
bosons.

1. Special cases

As shown in Appendix A 2, the mass-squared matrix for
the neutral sector has the structure

M2
neut ¼

0
BBBBBB@

X X X 0 0

X X X 0 x

X X X x 0

0 0 x x x

0 x 0 x x

1
CCCCCCA



ηHB1
ηHB2
ηHB3
χHB2
χHB3


; ð2:19Þ

where elements that vanish as λ1 → 0 are denoted by lower-
case x. The column to the right is a reminder of the field
sequence in the Higgs basis. If we put sinð2θ2 − 2θ3Þ ¼ 0
we get a block-diagonal form with one massless state

M2
neut ¼

0
BBBBBB@

X X X 0 0

X X X 0 0

X X X 0 0

0 0 0 0 0

0 0 0 0 x

1
CCCCCCA



ηHB1
ηHB2
ηHB3
χHB2
χHB3


: ð2:20Þ

The condition λ1 ¼ 0 [instead of sinð2θ2 − 2θ3Þ ¼ 0] gives
the above texture, only with a vanishing element on the last
row and column (x → 0), yielding a block-diagonal form
with two massless CP-odd states.
Finally, for the “simple model” of Appendix B we have

M2
neut ¼

0
BBBBBB@

X X 0 0 0

X X x 0 0

0 x x 0 0

0 0 0 x x

0 0 0 x X

1
CCCCCCA



ηHB1
ηHB2
χHB3
χHB2
ηHB3


; ð2:21Þ

which is also block diagonal, having interchanged rows
(and columns) 3 and 5, i.e., swapped ηHB3 and χHB3 .

III. GAUGE COUPLINGS

The gauge-scalar couplings are determined by the kinetic
part of the Lagrangian,

Lkin ¼
X

i¼1;2;3

ðDμϕiÞ†ðDμϕiÞ: ð3:1Þ

For the cubic gauge-gauge-scalar part, we get

LVVh ¼
�
gmWWþ

μ Wμ− þ gmZ

2 cos θW
ZμZμ

�X5
i¼1

Oi1hi;

ð3:2Þ
with the rotation matrix O relating physical states to the
fields of the Higgs basis, as defined by Eq. (2.18). For the
SM-like state at 125.25 GeV, this coupling Oi1 is severely
constrained by the LHC measurements [23]. Its magnitude
must be close to unity.
For the cubic gauge-scalar-scalar terms, we find

LVhh ¼ −
g

2 cosθW

X5
i¼1

X5
j¼1

	
Oi2Oj4 þOi3Oj5


	
hi∂μ

↔
hj


Zμ þ g

2

X5
i¼1

X2
j¼1

�	
iOijþ1 þOijþ3


X2
k¼1

Ujkðhþk ∂μ
↔
hiÞWμ− þH:c:

�

þ
�
ieAμ þ ig cos2θW

2 cosθW
Zμ

�X2
j¼1

	
hþj ∂μ

↔
h−j


; ð3:3Þ

and for the quartic gauge-gauge-scalar-scalar terms, we find
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LVVhh ¼
�
g2

4
Wþ

μ Wμ− þ g2

8cos2θW
ZμZμ

�X5
i¼1

h2i þ
�
g2

2
Wþ

μ Wμ− þ e2AμAμ þ g2cos22θW
cos2θW

ZμZμ þ eg cos 2θW
cos θW

AμZμ

�

×
X2
j¼1

hþj h
−
j þ

��
eg
2
Wþ

μ Aμ −
g2sin2θW
2 cos θW

Wþ
μ Zμ

�X5
i¼1

X2
j;k¼1

Ujkhih−k
	
Oijþ1 þ iOijþ3


þ H:c:

�
: ð3:4Þ

We have argued that the vicinity of the Uð1Þ ×Uð1Þ
symmetry should have an impact on the scalar sector,
leading to light states that when λ1 → 0 reveal their
Goldstone origin and become odd under CP. In order to
shed light on this, we will analyze the coupling of the
Z boson to a pair of scalars. Since Z is odd under CP, it
will only couple to the odd component of a two-scalar
state hihj, not the even part. This odd component attains
its maximal value when one scalar is even and the other
is odd.
A measure of the CP content of two states is obtained

from the trilinear coupling hihjZ. From the first line of
Eq. (3.3), an obvious measure is

Pij ¼ ðOi2Oj4 þOi3Oj5Þ − ði ↔ jÞ: ð3:5Þ

We shall refer to it as the “Z affinity” of a pair of scalars.
A high affinity would mean that the hihj two-scalar
state has a significant CP-odd component. Since a two-
particle state consisting of two even or two odd scalars
would be CP even, we shall somewhat imprecisely refer to
the above situation of a large jPijj as saying the two states
have different CP profiles. The quantity Pij is basis
independent, since it refers to a coupling among physical
states.
As a reference, it is worth analyzing the Z affinities of

pairs of scalars in the CP-conserving 2HDM. We adopt the
conventional terminology of h andH being even under CP,
whereas A is odd. Furthermore, we take h to be the SM state
at 125 GeV. One readily finds that the Z affinity of h and H
(both CP even) is zero, whereas that of H and A is unity.
However, by the above definition and in the limit of
alignment, the Z affinity of h and A is also zero. With
h ¼ hj aligned, we have Oj1 ¼ 1, and (by orthogonality)
Ok1 ¼ Ojk ¼ 0, with k ≠ j. Thus, when hj is aligned, then
Pkj ¼ Pjk ¼ 0 for all k.
Whereas in the 2HDM, allowing for CP violation, the

hihjZ couplings are essentially the same as the hkZZ
couplings [24], with i, j, k all different, this is not the case
in a 3HDM.
Since Pij ¼ −Pji and Pii ¼ 0, it follows that there are

ten quantities, matching the fact that the rotation matrix
O can be generated by ten independent angles. Invoking
the orthogonality of the rotation matrix, as well as the
five independent hiVV couplings Oi1, it has been
shown that there are, in fact, only seven independent

couplings [25].7 We do, however, find it more transparent
to work within this set of ten quantities (3.5), but note from
the 2HDM example given above that different CP does not
necessarily yield a high value for jPijj. However, a high
value for jPijj can only emerge from states having different
CP content.
One may extend the usefulness of the measure of relative

CP of two states into the region of small, but nonzero Oj1

by normalizing it to the squared sum of even and odd
couplings,

P̂ij ¼
Pijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

minðO2
i1; O

2
j1Þ þ P2

ij

q ; ð3:6Þ

with Oi1 representing the CP-even part of the ZZhi
coupling. This measure enhances the affinity in parameter
regions where it would otherwise be small, due to near
alignment.8

A measure of the CP-odd content of a state can be
obtained by summing the square of this coupling over all the
other states, j ≠ i. We denote the square of this quantity P̃2

i ,

P̃2
i ¼

X
j≠i

P2
ij ¼

X
j

P2
ij ¼

X
j≠i

O2
j1 ¼ 1 −O2

i1; ð3:7Þ

where in the second step we have used the fact that Pii ¼ 0
and, in the following, the orthogonality of O. This has a
straightforward interpretation: While we may think of jOi1j
as a measure of the CP-even content of hi, we may think of

P̃i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −O2

i1

q
ð3:8Þ

as the CP-odd part.

IV. YUKAWA COUPLINGS

With complex VEVs, there will also be CP violation in
the Yukawa sector, even with real Yukawa couplings. The
actual amount of CP violation will depend on how the

7This mismatch between the ten underlying rotation angles and
the seven independent couplings is due to the fact that some sets
of rotation angles ðα12; α13;…; α45Þ and ðα012; α013;…; α045Þ yield
the same rotation matrix O.

8This normalization would fail in the zero-measure limit of both
hi and hj being purely CP odd, i.e., having minðOi1; Oj1Þ ¼ 0
and Pij ¼ 0.
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SU(2) doublets couple to the fermions. As an example, we
shall consider natural flavor conservation, where each
fermion species couples to at most one Higgs doublet [2].
One way to implement this is to let each right-handed
fermion sector u, d, and e couple to a different Higgs
doublet according to the following Z2 × Z2 charges:

ϕ1∶ðþ1;þ1Þ ϕ2∶ð−1;þ1Þ ϕ3∶ðþ1;−1Þ; ð4:1aÞ

uR∶ðþ1;þ1Þ dR∶ð−1;þ1Þ eR∶ðþ1;−1Þ: ð4:1bÞ

Then the Yukawa Lagrangian takes the form

LY ¼ Q̄LYuϕ̃1uR þ Q̄LYdϕ2dR þ ĒLYeϕ3eR þH:c: ð4:2Þ

Expanding the doublets and rewriting the Yukawa neutral
interactions in terms of the physical fermion fields, we
obtain, in addition to mass terms,

Lneutral
Y ¼ 1

v1
ūMuðη1 þ iχ1γ5Þuþ 1

v2
d̄Mdðη2 þ iχ2γ5Þd

þ 1

v3
ēMeðη3 þ iχ3γ5Þe: ð4:3Þ

Mixing between the ηi and χi fields will cause the neutral
physical scalars to have CP-violating interactions with the
fermions. The Yukawa interaction between a neutral
physical scalar hi and a fermion f takes the general form

Lhiff ¼ mf

v
hi
	
κhifff̄f þ iκ̃hifff̄γ5f



: ð4:4Þ

This structure can be used to quantify the CP content of the
physical scalars. For the case of ττ̄ final states, CMS [26]
has measured this mixing, defined through

tan αhSMττ ¼ κ̃hSMττ

κhSMττ
: ð4:5Þ

It has also been suggested to try to measure this quantity for
the 2HDM [27].
In order to identify this quantity, we need to express the

fields ηi and χi of Eq. (4.3) in terms of the physical scalars,
which are not eigenstates of CP. For this purpose, we start
by “undoing” the transformation to the Higgs basis (2.14),
writing the inverse, for the neutral fields, in the form

0
B@

η1 þ iχ1
η2 þ iχ2
η3 þ iχ3

1
CA ¼ R̃T

0
B@

ηHB1 þ iG0

ηHB2 þ iχHB2
ηHB3 þ iχHB3

1
CA; ð4:6Þ

with R̃ given by Eq. (2.15). Next, the ηHBi and χHBi ,
collectively referred to as φHB

i according to Eq. (2.17), can
be expressed in terms of the physical states hi via Eq. (2.18).

If we introduce a complex quantity for the couplings to
ϕk according to Eq. (4.3),

ZðkÞ
i ¼ 	R̃T



k1Oi1 þ

	
R̃T


k2ðOi2 þ iOi4Þ

þ 	R̃T


k3ðOi3 þ iOi5Þ

¼ R̃1kOi1 þ R̃2kðOi2 þ iOi4Þ þ R̃3kðOi3 þ iOi5Þ;
ð4:7Þ

then for the coupling of hi to ττ̄ (k ¼ 3), we have

κhiee ¼ v
v3

ReZð3Þ
i ; κ̃hiee ¼ v

v3
ImZð3Þ

i ; ð4:8Þ

and

αhiττ ¼ arg
	
Zð3Þ
i



: ð4:9Þ

Some quantitative comments on this quantity will be
presented in Sec. VI C.
As pointed out in the Introduction, this model cannot

generate a complex CKM matrix and therefore cannot be
considered as the full description.

V. PARAMETER SCANS OF THE SCALAR
POTENTIAL

The fact that LHC experiments have determined the
Higgs-gauge coupling hSMWW to be very close to the SM
value shows that the observed Higgs state is essentially
pure scalar, with no or very little pseudoscalar admixture.
In the notation of Eq. (3.2), this means that

jOj1j ≃ 1; for some j: ð5:1Þ

We have performed scans over parameters, analyzing the
mass spectrum and imposing a condition on the coupling of
the SM-like state to two gauge bosons. Each parameter
point is required to satisfy boundedness from below,
perturbativity, and tree-level unitarity. For boundedness
from below, only sufficient conditions are known for the
Z2 × Z2-symmetric potential [28,29] and we therefore opt
for a numerical check, whereas conditions for tree-level
unitarity conditions are taken from [30]. We uniformly
sample the parameters in the largest region where all the
above constraints can be met9

9Alternatively, the scan could be “factorized” into a scan over
the parameters determining the neutral sector, replacing λij and
λ0ij by λ̄ij, and another over the charged sector. Qualitatively, the
results are found to be similar.
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vi∈ ½0; v�; i ¼ 1; 2; 3; with v21 þ v22 þ v23 ¼ v2;

ð5:2aÞ

θi ∈ ½−π; π�; i ¼ 2; 3; ð5:2bÞ

λii ∈ ½0; 4π�; i ¼ 1; 2; 3; ð5:2cÞ

λij; λ0ij ∈ ½−4π; 4π�; i; j ¼ 1; 2; 3; ð5:2dÞ

λ1 ∈ ½−4π; 4π�: ð5:2eÞ

From these parameters one can reconstruct the mass-
squared matrices and diagonalize them. The neutral mass
eigenvalues are ordered as

m1 < m2 < m3 < m4 < m5: ð5:3Þ

Since the mass-squared matrix is homogeneous in the
λ’s, we can rescale the λ’s (all by the same factor) and
thereby rescale the masses. The analysis of the sampled
parameter points is performed as follows. For each j ¼ 1
to 5:
(1) check that the coupling Oj1 of hj to WW (or ZZ) is

compatible with LHC measurements [23] (at most
one value of j will be accepted),

(2) rescale all λ’s such that mj ¼ mSM ¼ 125.25 GeV,

(3) apply theoretical cuts (boundedness from below,
perturbativity, and tree-level unitarity) on all re-
scaled λ’s (including λ2 and λ3), and

(4) check that the lightest charged scalar is above 80 GeV.
If these conditions are satisfied, the parameter point is kept.
Regarding the LHC measurements of the Higgs-gauge
couplings hVV (V ¼ W, Z), we use the ATLAS run 2 value
for the coupling modifier κV [23] with a 3σ tolerance,
resulting in the following constraint for the SM-like state:

jOj1j > 0.93: ð5:4Þ

Thus, we obtain the hj distribution given in Table I. The
theoretical constraints referred to under point 3 are bound-
edness from below (within the limitation specified above),
perturbativity, and unitarity. We note that if these essential
experimental and theoretical constraints are to be satisfied
then the scenario where h1 is the SM-like state requires
fine-tuning of the parameters.
We observe that small values of λi are required to satisfy

all the constraints. This is illustrated by Fig. 1, where it is
seen that the distribution of λ1 becomes narrower as the
constraint on the hiVV coupling is applied. The further
constraints from boundedness from below and unitarity
(right-hand panel) have only a modest impact. These
histograms can be characterized by their rms values:

λ1junconstrained ¼ 1.91; λ1j3σ ¼ 0.66;

λ1j3σþth cuts ¼ 0.37: ð5:5Þ

Thus, when the constraint on the hiVV coupling is
imposed, this potential has an approximate Uð1Þ ×Uð1Þ
symmetry in a sizable fraction of its viable parameter space.
The parameter points have also been analyzed in terms

of the average (rms) Pij, representing the coupling of two

TABLE I. Distribution (in percentage) of hj with gauge
coupling hjWW in agreement with the SM, within 3σ.

h1 h2 h3 h4 h5

PDG [23] 0.31 38.23 28.00 22.51 10.95
ATLAS [31] 0.31 38.53 27.12 21.19 12.85
With theoretical cuts 0.01 27.88 30.69 27.68 13.74

FIG. 1. Histograms of λ1 without (left) and with (center and right) the constraint jðOj1Þ2 − κ2V j < nσ with n ¼ 3. On the right, we show
the impact of imposing further theory constraints (see text).
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neutral scalars to the Z boson, defined by Eq. (3.5). We
interpret this as a measure of their relative CP. We have
also studied the absolute CP-odd content, as defined by
Eq. (3.8). If the average (rms) Pij is large, we say their CP
content is different (even if the absolute P̃i and P̃j might be
similar), whereas if it is small, we shall say that their CP
content is similar.
For this study, as a reference, we also analyzed parameter

points that were not subject to the experimental SM-like
Higgs constraints described above. In Fig. 2 we compare
rms Z affinities for all pairs of neutral scalars and for two
cases, both without the SM-like constraint. In the left panel,
we impose a “near Uð1Þ ×Uð1Þ symmetry” condition

maxðjλ1j; jλ2j; jλ3jÞ ¼ 0.01; ð5:6Þ

whereas in the right panel we impose no such constraint,
i.e., we do not restrict the scan to the regime of nearUð1Þ ×
Uð1Þ symmetry. The left panel shows a clear separation
into two sets of states, h1 and h2 have low affinity to the Z,
meaning they have similar CP content, as does the other
set, h3, h4, and h5. It is natural to interpret this as follows:
Near the Uð1Þ ×Uð1Þ limit, we have two neutral states
that are approximately odd under CP and three that are
approximately even. This is fully in accord with the
expectations from the Goldstone theorem [32,33], since
the Goldstone bosons in the Uð1Þ ×Uð1Þ limit will be
CP odd [34].
It is instructive to consider how the Z affinity is affected

by alignment. Let hj be “aligned,” meaning its coupling to
WW is maximal, Oj1 ¼ 1. By orthogonality, it follows that
Ok1 ¼ 0 for k ≠ j and Ojk ¼ 0 for k ≠ 1. Then,

Pij ¼ Pji ¼ 0 for all i; ð5:7Þ

the aligned scalar hj has no Z affinity with any other hi [34].
This is analogous to the CP-even and aligned (and SM-like)
h in aCP-conserving 2HDM not having any Z affinity to the
pseudoscalar A, even though they have opposite CP.

The features displayed in Fig. 2 change when we turn on
the SM-like constraint. We shall next consider h2 and h3 as
candidates for being the discovered state at 125.25 GeV.

VI. ACCOMMODATING AN SM-LIKE STATE hSM

Assuming h2 or h3 is identified as hSM, we shall here first
discuss the CP profiles of the light states, as determined
from the gauge couplings, and then subsequently study the
Yukawa couplings.

A. h2 as hSM
We first consider the possibility that h2 is to be identified

with the discovered SM-like state at 125.25 GeV, as
suggested by Table I.
For the parameter points that survive the constraints, we

show in Fig. 3 the distributions of the complex VEVs v2eiθ2

and v3eiθ3 . Superimposed on circular structures with
“holes” at v2 ¼ 0 and v3 ¼ 0, there are depressions at
purely real and purely imaginary values. The latter are due
to the fact that λ2 and/or λ3 become nonperturbative when
j sin 2θ2j or j sin 2θ3j are small.

FIG. 2. Average Z affinity ðPijÞrms of states hi and hj. Left: the Uð1Þ ×Uð1Þ limit, as defined by Eq. (5.6). Right: no restriction
on the λ’s.

FIG. 3. Scatter plots of real and imaginary parts of the complex
VEVs v2eiθ2=v (left) and v3eiθ3=v (right), for h2 ¼ hSM. The
number of surviving parameter points increases when going from
dark blue to yellow.
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If h2 were the discovered Higgs particle at 125.25 GeV,
why has h1 escaped detection? Searches at LEP [35,36]
depend on production via the Bjorken mechanism, where
the hZZ coupling is essential. But within the present
scenario, the h1ZZ coupling O11 is suppressed. This is
illustrated in Fig. 4, where we plot

C2
1 ≡ jO11j2 ð6:1Þ

vs m1. The bulk of the scan points lie at masses below
50 GeV and for a squared coupling of the order 10−2. This
suppression is simply a result of the unitarity of the mixing
matrix O.
It is interesting to examine the profile of the neutral state

h1 that in this scenario is lighter than 125 GeV. Is it related
to the breaking of the Uð1Þ symmetries discussed in the
Introduction? In particular, does it have a significant
CP-odd content? Since the gauge field Z is odd under
CP, we can ask how large the h1h2Z coupling is, recalling
that, in the familiarCP-conserving 2HDM, there is anHAZ
coupling of strength 1 [in units of g=ð2 cos θWÞ]. The
corresponding coupling is for the Weinberg potential given
by Eq. (3.6), from the first term of Eq. (3.3). We show in
Fig. 5 the distribution of the h2hjZ couplings, in the above
units. The strongest coupling is seen to be to hj ¼ h1,
consistent with it having a sizable CP-odd component.

B. h3 as hSM
We next assume that h3 is to be identified as the

discovered SM-like scalar.
For the parameter points that survive the above constraints

on maximal allowed value of the jλj’s and minimum allowed
charged Higgs mass, we show in Fig. 6 the distributions of
the complex VEVs v2eiθ2 and v3eiθ3 . As compared with the

previous case, h2 ¼ hSM, the small-v2 and small-v3 regions
are here less depleted.
In analogy with the case above, we examine the profile

of the neutral states h1 and h2 that in this scenario are
lighter than 125 GeVand show in Fig. 7 the distribution of
h3hjZ couplings. The strongest coupling is again seen to be
to hj ¼ h1.

C. Yukawa couplings

Returning now to the Yukawa couplings, we study the
angle α, which is a measure of the relative CP-odd
component of this coupling. In Fig. 8 we show scatter
plots10 of α (in units of its maximum value, π=2) for the five
different neutral states in the two scenarios h2 ¼ hSM and
h3 ¼ hSM. In both cases hSM is subject to the constraint
jαj < 0.1, which ensures that the CP-odd part of the

FIG. 4. Distributions of squared gauge couplings C2
1 of h1 vs

mass (arbitrary units, with yellow “high” and dark blue “low”).

FIG. 5. Frequency distribution of the relative strength jP̂2jj of the
h2hjZ couplings, in units of g=ð2 cos θWÞ (along the y axis) vs hj.

FIG. 6. Scatter plots of real and imaginary parts of the complex
VEVs v2eiθ2=v (left) and v3eiθ3=v (right) for h3 ¼ hSM. Yellow is
high, dark blue is low.

10For better visibility, the points are randomly distributed along
the horizontal dimension.
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Yukawa coupling hSMτ̄τ is consistent with experimental
measurements [26].
This figure supports the feature of theWeinberg potential

presented in the Introduction: in each scenario, the states
lighter than hSM are more likely to have a significant CP-
odd content than the heavier ones.
It should be stressed that the results shown in Fig. 8

depend on how natural flavor conservation is implemented,
cf. (4.1). Because of the symmetry (statistically speaking)
of the potential under interchange of ϕi with ϕj, the scan
result does not depend on whether the fermion in question
(here, the τ) is coupled to ϕ1, ϕ2, or ϕ3. What is important,
though, is the fact that it is coupled to only one doublet. The
outcome would be different if the assumption of natural

flavor conservation were relaxed. If τ, e.g., couples to both
ϕ2 and ϕ3, then the angle α would instead be given by

αhiττ ¼ arg

�
v
v2

Zð2Þ
i þ v

v3
Zð3Þ
i

�
: ð6:2Þ

VII. CONCLUSIONS

We have explored the spectrum of the Weinberg scalar
potential with real coefficients in some detail, determining
the CP profiles of the neutral states from how they couple
to the electroweak gauge bosons and to fermions. We find
that if this potential accommodates the discovered, approx-
imately CP-even Higgs boson at 125.25 GeV, then it
naturally (i.e., in the absence of fine-tuning) predicts one
or two lighter neutral states. While the model violates CP,
one of these states, or both, would have a significant CP-
odd content.
One might wonder whether or not imposing the con-

ditions listed in Sec. V in our parameter scan would bring
us close to one of the symmetries obtained for natural
alignment in Ref. [18]. This would require simple relations
among the parameters of the potential [37,38]. We have
checked that this is not the case. Therefore, the requirement
of being close to alignment simply translates into an
appropriate choice of parameter space.
In spite of some hints [35,36,39–42], no state with m <

125 GeV has been observed. This could simply be because
in this model the hiZZ coupling is for the lighter states
typically below 10% of the SM value and production via
the Bjorken process is suppressed.
In view of these results and the appeal of the Weinberg

potential, it seems important to pursue the searches for a
light scalar, whose coupling to the Z and W is reduced. In
this context, it is important to recall that also branching

FIG. 7. Frequency distribution of the relative strength jP̂3jj
of the h3hjZ couplings, in units of g=ð2 cos θWÞ (along the
y axis) vs hj.

FIG. 8. Scatter plots of the absolute value of the angle α (in units of π=2) of Eq. (4.9), characterizing the CP-odd content of the Yukawa
couplings to ττ̄ for h2 ¼ hSM (left) and h3 ¼ hSM (right).
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ratios would differ from those of the SM Higgs. In
particular, the hj → γγ rate would be reduced, again
because of the reduced hiWW coupling and also modified
by the loop contributions of the charged scalars. This issue
will be discussed elsewhere; the contribution of the charged
states could lead to either destructive or constructive
interference with the W and fermion loops.
In Ref. [28] the same real scalar potential with an

additional complex soft symmetry breaking term is studied
in a region of parameter space such that the vacuum leaves
one of the Z2 symmetries unbroken, i.e., one of the
doublets acquires zero VEV. The additional soft term is
introduced to explicitly break the two Z2 symmetries that
are also broken by the vacuum. In this way it is possible to
have CP violated explicitly by the potential. This frame-
work results in a viable extension of the inert doublet model
[43–45], providing a good dark matter candidate while
having two noninert doublets.
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APPENDIX A: THE MASS-SQUARED MATRICES

In this appendix, we give the mass-squared matrices of
the Weinberg potential.

1. Charged sector

In the charged sector, the elements of the 2 × 2 mass-
squared matrix corresponding to the fields φHB�

2 and φHB�
3

can be written as

ðM2
chÞ11 ¼ −

λ1v2 sin2ð2θ2 − 2θ3Þv22v23
sin 2θ2 sin 2θ3v21w

2

−
	
λ012v

2
2 þ λ013v

2
3


 v2

2w2
; ðA1aÞ

ðM2
chÞ12 ¼ −

λ1vv1v2v3 sinð2θ2 − 2θ3Þ
sin 2θ2 sin 2θ3v21w

2

×
	
v22 sin 2θ2e

2iθ3 þ v23 sin 2θ3e
2iθ2



þ vv1v2v3
2w2

	
λ012 − λ013



; ðA1bÞ

ðM2
chÞ21 ¼ ðM2

chÞ�12; ðA1cÞ

ðM2
chÞ22 ¼ −

λ1
sin 2θ2 sin 2θ3w2

	
2 sin 2θ2 sin 2θ3

× cosð2θ2 − 2θ3Þv22v23 þ sin2 2θ2v42

þ sin2 2θ3v43


−

1

2w2

�ðλ012v23 þ λ013v
2
2Þv21

þ λ023w
4
�
: ðA1dÞ

These are all singular if either θ2 or θ3 vanishes faster
than the other one. The singularities arise due to the
constraints (2.8).
For the rotation to the mass eigenstates hþ1;2 we introduce

a complex matrix U,

hþi ¼ Uijφ
HBþ
jþ1 ; ðA2Þ

with φHBþ
2;3 defined by Eq. (2.16). Explicitly, with

U ¼
�

cos γ sin γeiϕ

− sin γe−iϕ cos γ

�
; ðA3Þ

we have hþ1 ¼ cos γφHBþ
2 þ sin γeiϕφHBþ

3 and hþ2 ¼
− sin γe−iϕφHBþ

2 þ cos γφHBþ
3 .

The masses in the charged sector are thus given entirely
in terms of λ1, λ012, λ

0
13, and λ

0
23, together with the VEVs and

the phases. The unprimed λij do not enter. Furthermore, for
small λ1, either λ012 and/or λ

0
13 and/or λ

0
23 must be negative.

2. Neutral sector

With the Higgs-basis field sequence (2.17) and invoking
Eq. (2.8), we find
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ðM2
neutÞ11 ¼

4λ1v22v
2
3

v2 sin 2θ2 sin 2θ3

�
1 − cosð2θ2 − 2θ3Þ cos 2θ2 cos 2θ3

�
þ 2

v2
�
λ11v41 þ λ22v42 þ λ33v43 þ λ̄12v21v

2
2 þ λ̄13v21v

2
3 þ λ̄23v22v

2
3

�
; ðA4aÞ

ðM2
neutÞ12 ¼

−2λ1v22v23
v2wv1 sin 2θ2 sin 2θ3

�
sin2ð2θ2 − 2θ3Þð2w2 − v2Þ − 2 cosð2θ2 − 2θ3Þ sin 2θ2 sin 2θ3v21

�
−

v1
v2w

�
2λ11v21w

2 − 2λ22v42 − 2λ33v43 − ðλ̄12v22 þ λ̄13v23Þðv2 − 2w2Þ − 2λ̄23v22v
2
3

�
; ðA4bÞ

ðM2
neutÞ13 ¼

2λ1v2v3
vw sin 2θ2 sin 2θ3

�
v22 sin

2 2θ2 − v23 sin
2 2θ3

�þ v2v3w
vw2

�
−2λ22v22 þ 2λ33v23 − λ̄12v21 þ λ̄13v21 þ λ̄23ðv22 − v23Þ

�
;

ðA4cÞ

ðM2
neutÞ22 ¼

4λ1v22v
2
3

v2w2 sin 2θ2 sin 2θ3

�
v21 cosð2θ2 − 2θ3Þ sin 2θ2 sin 2θ3 − w2 sin2ð2θ2 − 2θ3Þ

�
þ 2v21
v2w2

�
λ11w4 þ λ22v42 þ λ33v43 − λ̄12v22w

2 − λ̄13v23w
2 þ λ̄23v22v

2
3

�
; ðA4dÞ

ðM2
neutÞ23 ¼

2λ1v2v3
vv1w2 sin 2θ2 sin 2θ3

�
−w2 sinð2θ2 − 2θ3Þðv22 sin 2θ2 cos 2θ3 þ v23 sin 2θ3 cos 2θ2Þ

þ v21ðv22 − v23Þ cosð2θ2 − 2θ3Þ sin 2θ2 sin 2θ3
�þ v1v2v3

vw2

�
−2λ22v22 þ 2λ33v23 þ ðλ̄12 − λ̄13Þw2 þ λ̄23ðv22 − v23Þ

�
;

ðA4eÞ

ðM2
neutÞ25 ¼

2λ1vv2v3
v1

sinð2θ2 − 2θ3Þ; ðA4fÞ

ðM2
neutÞ33 ¼

−4λ1v22v23
w2

cosð2θ2 − 2θ3Þ þ
2v22v

2
3

w2

�
λ22 þ λ33 − λ̄23

�
; ðA4gÞ

ðM2
neutÞ34 ¼

−2λ1vv2v3
v1

sinð2θ2 − 2θ3Þ; ðA4hÞ

ðM2
neutÞ44 ¼

−2λ1v2v22v23
v21w

2 sin 2θ2 sin 2θ3
sin2ð2θ2 − 2θ3Þ; ðA4iÞ

ðM2
neutÞ45 ¼

−2λ1vv2v3
v1w2 sin 2θ2 sin 2θ3

sinð2θ2 − 2θ3Þ
�
v22 sin 2θ2 cos 2θ3 þ v23 sin 2θ3 cos 2θ2

�
; ðA4jÞ

ðM2
neutÞ55 ¼

−2λ1
w2 sin 2θ2 sin 2θ3

�
2v22v

2
3 cosð2θ2 − 2θ3Þ sin 2θ2 sin 2θ3 þ v42 sin

2 2θ2 þ v43 sin
2 2θ3

�
; ðA4kÞ

with ðM2
neutÞ14 ¼ ðM2

neutÞ15 ¼ ðM2
neutÞ24 ¼ ðM2

neutÞ35 ¼ 0. Most of these are singular if θ2 or θ3 vanishes faster than the
other one.
It is also instructive to study the determinant,

D5×5 ¼
λ21 sin

2ð2θ2 − 2θ3Þ
v2v41ðv22 þ v23Þ5 sin5 2θ2 sin5 2θ3

Fðθ2; θ3;…Þ; ðA5Þ

with

Fðθ2; θ3;…Þ ¼ 64λ31v
6
2v

10
3 w2sin22θ2sin82θ3F̃2;8 þ λ21v

4
2v

8
3sin

32θ2sin72θ3F̃3;7 þ λ1v22v
6
3sin

42θ2sin62θ3F̃4;6

þ v42v
4
3sin

52θ2sin52θ3F̃5;5 þ fðθ2; v2; λ22; λ̄12Þ ↔ ðθ3; v3; λ33; λ̄13Þg; ðA6Þ
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with F̃mn regular, homogeneous expansions in the λ’s and
powers of the VEVs, as well as sines and cosines of the θ’s,
accompanying the overall factors sinm 2θ2 sinn 2θ3.
Overall, if both θ’s are small, Fðθ2; θ3;…Þ is of order
10 in the θ’s, canceling the singularity of the prefactor of
Eq. (A5), but leaving an overall dependence on the θ’s
given by sin2ð2θ2 − 2θ3Þ.
The determinant of M2

neut has an overall factor of λ21
reflecting the fact that in the absence of the terms in Vph

there would be two massless states, originating from the
breaking of the Uð1Þ ×Uð1Þ symmetry.
For sinð2θ2 − 2θ3Þ ¼ 0 the elements ðM2

neutÞ25 ¼
ðM2

neutÞ34 ¼ ðM2
neutÞ44 ¼ ðM2

neutÞ45 ¼ 0, and the mass-
squared matrix becomes block diagonal. A 3 × 3 block
will account for mixing among ηHB1 , ηHB2 , and ηHB3 , whereas
a 2 × 2 block will describe a massless χHB2 and a massive
χHB3 . This model would preserve CP, as already mentioned
in Sec. II B. However, there is also another way to achieve
factorization, as discussed in Appendix B.

a. Masses of the Uð1Þ × Uð1Þ pseudo-Goldstone bosons

A nonzero λ1 explicitly breaks the Uð1Þ ×Uð1Þ sym-
metry of the potential and turns the two Goldstone bosons
into pseudo-Goldstone bosons. The masses of these
pseudo-Goldstone bosons can be computed to first order
in λ1 by writing the mass matrix in the symmetry basis as

M2
6×6 ¼ M2

6×6


λ1¼0

þ λ1
∂M2

6×6

∂λ1
ðA7Þ

≡M2
ð0Þ þ λ1M2

ð1Þ ðA8Þ

and applying time-independent perturbation theory. The
unperturbed system has a threefold degeneracy correspond-
ing to the Uð1ÞY and Uð1Þ ×Uð1Þ Goldstone bosons.
Hence, when λ1 is turned on, the Oðλ1Þ corrections to the
masses of these states are given by the eigenvalues of the
perturbation matrix in the degenerate subspace spanned by
the three massless states [46],

ðM2
ð1ÞÞij ¼ ni

∂M2

∂λ1
nT
j ; ðA9Þ

where ni (i ¼ 1, 2, 3) are three linearly independent
massless eigenstates of M2

ð0Þ. This matrix has a zero

eigenvalue due to the fact that the Uð1ÞY Goldstone boson
remains massless after λ1 is turned on. The two remaining
eigenvalues yield the masses of the Uð1Þ ×Uð1Þ pseudo-
Goldstone bosons at order Oðλ1Þ,

m2
i ¼

−λ1
v21 sin 2θ2 sin 2θ3

	
v21v

2
2 sin

2ð2θ2Þ

þ v23v
2
2 sin

2ð2θ2 − 2θ3Þ þ v21v
2
3 sin

2ð2θ3Þ � Δ


;

ðA10aÞ

where

Δ2 ¼ �v21ðv22 sin2ð2θ2Þ þ v23 sin
2ð2θ3ÞÞ

þ v22v
2
3 sin

2ð2θ2 − 2θ3Þ
�
2

− 4v21v
2
2v

2
3v

2 sin2ð2θ2Þ sin2ð2θ3Þ
× sin2ð2θ2 − 2θ3Þ: ðA10bÞ

Since all masses squared are linear in the λ’s, these above
expressions are independent of the λ’s defining V0.
It is instructive to compare these values with the simple

model discussed in Appendix B for θ3 ¼ −θ2 and v3 ¼ v2.
In that limit, the above results simplify to

m2
a ¼ 4λ1v22sin

22θ2; m2
b ¼

4λ1v22
v21

v2cos22θ2: ðA11Þ

For a discussion, see Appendix B.

APPENDIX B: A MINIMAL (SIMPLE) MODEL

Inspired by Eq. (2.7) we see that a minimal version of the
model can be constructed by imposing a symmetry under
the interchange

ϕ2 ↔ ϕ3: ðB1Þ

This immediately implies

m22 ¼ m33; λ2 ¼ λ3; ðB2Þ

as well as

λ22 ¼ λ33; λ12 ¼ λ13; λ012 ¼ λ013: ðB3Þ

It follows from the minimization conditions (2.4) and (2.6)
that, while the moduli of the VEVs are the same, we must
have opposite phases,

v2 ¼ v3; θ2 ¼ −θ3: ðB4Þ

Obviously, this simple model conserves CP [47] with CP
defined as
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0
B@

hϕ1i
hϕ2i
hϕ3i

1
CA⟶

CP

0
B@

1 0 0

0 0 1

0 1 0

1
CA
0
B@

hϕ�
1i

hϕ�
2i

hϕ�
3i

1
CA: ðB5Þ

Within this framework, the constraints (2.6) can be
expressed as

λ2 ¼ −2λ1
v22
v21

cosð2θ2Þ: ðB6Þ

1. Charged sector

The mass-squared matrix of the charged sector is found
to be given by

ðM2
chÞ11 ¼ 2λ1

v22
v21

v2 cos2 2θ2 −
1

2
λ012v

2; ðB7aÞ

ðM2
chÞ12 ¼ ðM2

chÞ�21 ¼ −iλ1v22
v
v1

sinð4θ2Þ; ðB7bÞ

ðM2
chÞ22 ¼ 2λ1v22 sin

2 2θ2 −
1

2
λ012v

2
1 − λ023v

2
2: ðB7cÞ

The two masses are determined by a quadratic equation,

m2þ ¼ 1

2

�
a�

ffiffiffi
b

p �
; ðB8Þ

with

a ¼ 2λ1
v22
v21

�
v2 − 2 sin2ð2θ2Þv22

�
− λ012ðv21 þ v22Þ − λ023v

2
2;

ðB9Þ

b ¼ v42
v41

�
4λ21ðv2 − 2 sin2 2θ2v22Þ2 þ 4v21ðλ012 − λ023Þ

×
�
2 sin2 2θ2ðv21 þ v22Þ − v2

�þ ðλ012 − λ023Þ2v41
�
:

ðB10Þ

If we consider the limit λ1 → 0, we find

m2þ →
1

2

�
−λ012ðv21 þ v22 ∓ v22Þ − λ023ðv22 � v22Þ

�
: ðB11Þ

On the other hand, if we make the further assumption
that λ012 ¼ λ023, we find

m2
α ¼ −

1

2
λ012v

2; ðB12aÞ

m2
β ¼ m2

α þ Δm2; ðB12bÞ

Δm2 ¼ 2λ1v22
v21

ðv21 þ 2v22 cos
2 2θ3Þ: ðB12cÞ

If λ1 > 0, we have mβ > mα, otherwise the order is
inverted. We must require λ012 < 0.

2. Neutral sector

In the Higgs basis and invoking Eq. (B6), the 5 × 5
mass-squared matrix takes the form

ðM2
neutÞ11 ¼

2

v2
�
−2λ1v42ð1þ 2 cos2 2θ2Þ þ λ11v41 þ 2λ22v42

þ 2λ̄12v21v
2
2 þ λ̄23v42

�
; ðB13aÞ

ðM2
neutÞ12 ¼

2
ffiffiffi
2

p
λ1v32

v1v2
ð−v21 þ 4v22 cos

2 2θ2Þ

þ
ffiffiffi
2

p
v1v2
v2

�
−2λ11v21 þ 2λ22v22

þ λ̄12ðv21 − 2v22Þ þ λ̄23v22
�
; ðB13bÞ

ðM2
neutÞ22 ¼

v22
v2
�
2λ1½−v21 þ 2ðv21 þ 4v22Þ cos2 2θ2�

þ ð4λ11 þ 2λ22 − 4λ̄12 þ λ̄23Þv21
�
; ðB13cÞ

ðM2
neutÞ25 ¼ 2λ1v

v22
v1

sin 4θ2; ðB13dÞ

ðM2
neutÞ33 ¼ 2λ1v22ð1 − 2 cos2 2θ2Þ þ ð2λ22 − λ̄23Þv22;

ðB13eÞ

ðM2
neutÞ34 ¼ −2λ1v

v22
v1

sin 4θ2; ðB13fÞ

ðM2
neutÞ44 ¼ 4λ1v2

v22
v21

cos2 2θ2; ðB13gÞ

ðM2
neutÞ55 ¼ 4λ1v22 sin

2 2θ2; ðB13hÞ

the remaining elements being zero.

3. Factorization

Since the mass-squared matrix for the neutral sector,
Eq. (B13), becomes block diagonal, its determinant fac-
torizes. One factor comes from the fηHB1 ; ηHB2 ; χHB3 g sector,

ðM2Þneut;3×3 ¼

0
B@

ðM2
neutÞ11 ðM2

neutÞ12 ðM2
neutÞ15

ðM2
neutÞ21 ðM2

neutÞ22 ðM2
neutÞ25

ðM2
neutÞ51 ðM2

neutÞ52 ðM2
neutÞ55

1
CA;

ðB14Þ
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and the other comes from the fηHB3 ; χHB2 g sector,

ðM2Þneut;2×2 ¼
� ðM2

neutÞ33 ðM2
neutÞ34

ðM2
neutÞ43 ðM2

neutÞ44

�
: ðB15Þ

The two determinants are given by

D3×3 ¼
8λ1v42 sin

2ð2θ2Þ
v21

�
8λ21v

4
2 cos

2 2θ2

− 2λ1
�
λ11v41 þ ð4λ22 þ 2λ̄23Þv42 cos2 2θ2

�
þ v41ð2λ11λ22 þ λ11λ̄23 − λ̄212Þ

�
; ðB16Þ

and

D2×2 ¼
4λ1v2v42

v21
ð−2λ1 þ 2λ22 − λ̄23Þ cos2ð2θ2Þ: ðB17Þ

Both of these vanish in the limit of λi → 0, i.e., when
Vph → 0. Furthermore, both determinants are proportional
to v42, so if the VEVs of ϕ2 and ϕ3 were to vanish, two
masses in each sector would vanish. This feature is
reflected in the scans of the full model shown in Figs. 3
and 6. There are no points at the origin in the v2 expðiθ2Þ or
v3 expðiθ3Þ planes.

4. CP conservation

Inspection of the gauge couplings discussed in Sec. III,
in particular the Zhihj couplings given by Eq. (3.5),
shows that P12 ¼ P15 ¼ P25 ¼ 0 and that P34 ¼ 0, so
states within each set have the same CP. Furthermore,
the nonvanishing ZZh1, ZZh2, and ZZh5 couplings and the
vanishing of the ZZh3 and ZZh4 couplings confirm the
following identification:

ηHB1 ; ηHB2 ; χHB3 ðnot ηHB3 Þ mix to form h1; h2; h5; CP even;

ðB18Þ

χHB2 ; ηHB3 ðnot χHB3 Þ mix to form h3; h4; CP odd;

ðB19Þ

and, as stated above, CP is conserved in this model.11

5. The two pseudo-Goldstone bosons

In Appendix 2 A a we discussed the masses of the
pseudo-Goldstone bosons to first order in λ1. For the
present simplified model, with v3 ¼ v2 and θ3 ¼ −θ2,
the results for those masses linear in λ1 simplify to

m2
i ¼

λ1
v21 sin

2 2θ2

�
2v21v

2
2 sin

2 2θ2

þ 4v42 sin
2 2θ2 cos2 2θ2 � Δ

�
; ðB20aÞ

Δ2 ¼ 4v22 sin
2 2θ2

�
v21 − 2ðv2 − v22Þ cos2 2θ2

�
2: ðB20bÞ

We find the two values

m2
a ¼ 4λ1v22sin

22θ2; m2
b ¼

4λ1v22
v21

v2cos22θ2: ðB21Þ

These mass values are seen to be contained as factors in
the above determinants D3×3 and D2×2, with m2

a being a
factor of D3×3 and m2

b a factor of D2×2. Referring back to
the CP properties of the 3 × 3 and the 2 × 2 blocks, we
conclude that in the limit λ1 → 0, then ha (mass ma) would
be even under CP and hb (mass mb) would be odd. They
become degenerate for

j tan 2θ2j ¼
v
v1

; ðB22Þ

which is necessarily larger than unity. It follows from the
discussion in the previous subsection that such degenerate
states would have different CP, as they must.
Finally, in the limit λ1 → 0 we find compact expressions

for the non-pseudo-Goldstone masses: From the 2 × 2
block,

m2
c ¼

	
2λ11 − λ̄23



v22; ðB23Þ

and from the 3 × 3 block,

m2
d;e ¼

α� β

2
; ðB24Þ

where

α ¼ v22
	
2λ22 þ λ̄23


þ 2λ11v21; ðB25Þ

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4v22v

2
1ð2λ̄212 − λ11ð2λ22 þ λ̄23ÞÞ þ v42ð2λ22 þ λ̄23Þ2 þ 4λ211v

4
1

q
: ðB26Þ

11However, because of the mixing between η and χ scalar fields, this model becomes CP violating when coupled to fermions.
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