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Abstract: The ordinary spectrum is restricted in its applications, since it is based on the second-
order moments (auto- and cross-covariances). Alternative approaches to spectrum analysis have
been investigated based on other measures of dependence. One such approach was developed for
univariate time series by the authors of this paper using the local Gaussian auto-spectrum based on
the local Gaussian auto-correlations. This makes it possible to detect local structures in univariate time
series that look similar to white noise when investigated by the ordinary auto-spectrum. In this paper,
the local Gaussian approach is extended to a local Gaussian cross-spectrum for multivariate time series.
The local Gaussian cross-spectrum has the desirable property that it coincides with the ordinary
cross-spectrum for Gaussian time series, which implies that it can be used to detect non-Gaussian
traits in the time series under investigation. In particular, if the ordinary spectrum is flat, then peaks
and troughs of the local Gaussian spectrum can indicate nonlinear traits, which potentially might reveal
local periodic phenomena that are undetected in an ordinary spectral analysis.

Keywords: local periodicities; local co-spectrum; local quadrature-spectrum; local amplitude-spectrum;
local phase-spectrum; heatmap; distance plot; spectral plots

1. Introduction

The auto- and cross-spectra are tools that can extract temporal information from a
time series, and they can be used to detect interesting periodic phenomena from the data
under investigation. A disadvantage of these tools is that they are based on the auto- and
cross-correlations. This implies that nonlinear temporal dependencies could be invisible
from the point of view of the classical spectral theory, and this has, as discussed below,
motivated quite a few modifications of the classical approach.

One such modification, the local Gaussian spectral approach, was introduced for
the univariate case in Jordanger and Tjøstheim (2022) (hereafter referred to as JT22). In
contradistinction to the ordinary spectrum, which is based on linear operations on the
second moments and with a resulting estimate constructed from the periodogram, the
locally Gaussian spectrum is distributional-based using local maximum likelihood estima-
tion. The periodogram cannot be used in this local Gaussian framework. Nevertheless,
a key feature of the local Gaussian approach is that the resulting local Gaussian spectra
coincide completely with the classical spectra for Gaussian time series. The local Gaussian
auto-spectra can be used to investigate how the temporal dependency structure for a given
univariate time series deviates from the linear Gaussian dependency structure, and a lo-
cal Gaussian analysis can thus detect nonlinear temporal dependencies, including local
periodic phenomena, that are hidden from the classical approach.

This paper presents the extension of the local Gaussian approach to the multivari-
ate case, introducing local Gaussian variants of the classical (global) co-spectrum, the
quadrature-spectrum, the amplitude-spectrum, and the phase-spectrum.1 Using these new
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local Gaussian tools, it is possible to investigate, on a deeper than linear dependency level,
how different time series are interconnected. The local Gaussian approach can detect cross-
temporal interdependency relationships beyond what the classical (global) cross-spectrum
can manage, and this can, e.g., be used to examine whether one series is leading–lagging
another one at extreme amplitudes, but not, say, at moderate amplitudes.

The local Gaussian spectral-estimation algorithm in this paper was sanity tested on
simulated examples (a nonlinearly connected sinusoidal example, as explained later on),
and it was also used on the French CAC index versus the German DAX index in order
to show how it can be applied to investigate nonlinear cross-temporal interdependency
structures from the EuStockMarkets-data.

In addition to this, a GARCH-type model was fitted to the EuStockMarkets-data, and
samples from the fitted model were used to show how the local Gaussian sanity testing of
parametric models from JT22 can be extended to the multivariate case. This local Gaussian
sanity testing of the fitted models could supplement other model selection techniques,
and it could help detect models whose local Gaussian properties clearly deviate from the
properties seen in the sample. Note that the focus for this particular part, as in JT22, is on
the concepts themselves. A precise analysis of a test of fit is left to future work.

The classical (global) approach: The auto- and cross-covariances
{{

γk`(h)
}

h∈Z

}d

k,`=1

from a time series
{

Yt =
(

Y1,t, . . . , Yd,t

)}
t∈Z

, can range from determining it completely

(Gaussian time series) to containing no information at all (GARCH-type models, where
squaring of observations can be used as an ad hoc device to treat dependence). The auto-
and cross-spectral densities

{
fk`(ω)

}d
k,`=1 are (assuming they exist) the Fourier transforma-

tions of the auto- and cross-covariances, and these tools thus share the same limitations.
This implies that the auto- and cross-spectra might be inadequate tools when the task of in-
terest is to investigate non-Gaussian time series containing asymmetries or other nonlinear
structures—such as those observed in stock returns, cf., e.g., Hong et al. (2007).

In ordinary spectral analysis, if
{

Yk,t

}
t∈Z

and
{

Y`,t

}
t∈Z

are jointly weakly stationary,

and if the cross-covariances γk`(h) := Cov
(

Yk,t+h, Y`,t

)
are absolutely summable, then the

cross-spectrum fk`(ω) is defined as the Fourier transform of the cross-covariances, i.e.,

fk`(ω) = ∑
h∈Z

γk`(h) · e
−2πiωh. (1)

A simple scaling connects the auto- and cross-covariances γk`(h) and the corresponding

auto- and cross-correlations ρk`(h), in particular γk`(h) =
√

γkk(0) · γ``(0) · ρk`(h), and

this implies that the cross-spectrum fk`(ω) given in Equation (1) also can be written as

fk`(ω) =
√

γkk(0) · γ``(0) · ∑
h∈Z

ρk`(h) · e
−2πiωh. (2)

It is the sum of the cross-correlations that are generalized in the local Gaussian approach.
The expression for the inverse Fourier transform reveals, when h = 0, that the covari-

ance Cov
(

Yk,t, Y`,t

)
= γk`(0) can be expressed as the integral

∫ 1/2
−1/2 fk`(ω)dω. This makes

it possible to inspect how the (linear) interaction between the marginal time series varies
with the frequency ω. An inspection of the cross-spectrum fk`(ω) is a bit more complicated
than that of the auto-spectrum, since fk`(ω), in general, will be a complex-valued function.
It is thus usually the following real valued functions that are investigated:

ck`(ω) = Re( fk`(ω)), qk`(ω) = − Im( fk`(ω)), (3a)

αk`(ω) = Mod( fk`(ω)), φk`(ω) = Arg( fk`(ω)), (3b)
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where ck`(ω), qk`(ω), αk`(ω), and φk`(ω), respectively, are referred to as the co-spectrum,
quadrature-spectrum, amplitude-spectrum, and phase-spectrum. Note that ck`(ω) always
integrates to γk`(0) over one period, whereas qk`(ω) always integrates to zero.

The coherence Kk`(ω) := fk`(ω)/
√

fkk(ω) f``(ω) is an important tool when a spectral

analysis is performed on a multivariate time series, in particular since Kk`(ω) can be
realized as the correlation of dZk(ω) and dZ`(ω), where Zk(ω) and Z`(ω) are the right
continuous orthogonal-increment processes that by the spectral representation theorem
correspond to the weakly stationary time series

{
Yk,t

}
t∈Z

and
{

Y`,t

}
t∈Z

(see, e.g., Brockwell

and Davis 1986, p. 436 for details). The squared coherence
∣∣Kk`(ω)

∣∣2 is of interest since

its value (in the interval [0, 1]) reveals to what extent the two time series
{

Yk,t

}
t∈Z

and{
Y`,t

}
t∈Z

can be related by a linear filter.

Modifications of the classical approach: Other spectral approaches, involving dif-
ferent generalizations of the auto-spectrum f (ω), were discussed in JT22 [Section 1], and
several of the approaches were based on the following idea: The second-order moments
captured by the autocovariances {γ(h)}h∈Z can be replaced by alternative dependence
measures ξh computed from the bivariate random variables

(
Yt+h, Yt

)
, and a spectral den-

sity approach can then (under suitable regularity conditions) be defined as the Fourier
transform of

{
ξh
}

h∈Z. For multivariate time series, the natural extension is then to define

similar measures ξk`:h for the bivariate random variables
(

Yk,t+h, Y`,t

)
, and then use the

corresponding Fourier transform as an alternative to the cross-spectrum fk`(ω).
It does not seem to be the case (yet) that multivariate versions have been investigated

for all of the possible generalizations of the auto-spectrum f (ω), but some generalizations
do exist. The first extension of the cross-spectrum fk`(ω) along these lines is the polyspec-
tra introduced in Brillinger (1965), which is the multivariate version of the higher-order
moments/cumulants approach to spectral analysis (see Tukey 1959; Brillinger 1984, 1991).
Another generalization of fk`(ω) is given in Chung and Hong (2007), where the generalized
function approach introduced in Hong (1999) is used to set up a cross-spectrum that can be
used for the testing of directional predictability in foreign exchange markets. Some recent
work applies copula techniques for the investigation of multivariate time series, such as Li
(2023) using a copula spectra density kernel and Zhao et al. (2022) using copula-linked univariate
D-vines. A quantile-based approach can be found in Baruník and Kley (2019), where the
quantile-coherency concept is introduced, and quantile approaches based on the quantile
periodogram can be seen in Li (2021, 2022a).

In many cases, it can be difficult to interpret the various spectra/visualizations which
result from these modifications of the classical approach, but machine learning methods
can be combined with these techniques and help reduce/remove this problem—see, e.g.,
Chen et al. (2021); Li (2020, 2022b) for some examples of this approach. The review paper
Ciaburro and Iannace (2021) contains more information about machine-learning-based
methods applied to time series data.

The local Gaussian approach: The local Gaussian spectral density fv(ω) for univariate
strictly stationary time series that was defined in JT22 is based on the local Gaussian auto-
correlations ρv(h) from Tjøstheim and Hufthammer (2013). A simple adjustment gives the
local Gaussian cross-correlations ρk`:v(h) for multivariate strictly stationary time series, from
which a local Gaussian analogue fk`:v(ω) of the cross-spectrum fk`(ω) can be constructed
using the Fourier transform. The local Gaussian version of the cross-spectrum enables local
Gaussian alternatives to be defined of the co-spectrum, quadrature-spectrum, amplitude-
spectrum, and phase-spectrum, by simply copying the setup used in the ordinary (global)
case. Local Gaussian analogues of the coherence and squared coherence were investigated
in the preparation for this paper, but then discarded (see the discussion at the end of
Section 2.3 for further details).
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It should be mentioned that the local Gaussian approach to statistical modeling has
been applied recently to a number of nonlinear statistical problems; see, e.g., Tjøstheim
et al. (2021).

An overview of the paper: Section 2 defines the local Gaussian cross-spectrum fk`:v(ω),
which immediately gives the related local Gaussian variants of the co-spectrum, quadrature-
spectrum, amplitude-spectrum, and phase-spectrum from Equation (3). The asymptotic
theory for the estimators are then presented (the technical details and proofs are relegated
to the Supplementary Material). The real and simulated examples in Section 3 show that
estimates of fk`:v(ω) can be used to detect and investigate nonlinear structures in non-
Gaussian white noise, and in particular that fk`:v(ω) can detect local periodic phenomena
that are undetected in an ordinary spectral analysis. Some concluding remarks are gathered
in Section 4.

Supplementary Material: An online Supplementary Material exists that includes
additional in-depth discussions. See the end of the manuscript for further details about the
content of the Supplementary Material.

2. Definitions
2.1. The Local Gaussian Correlations

At the core of the generalization of Equation (1) lies the local Gaussian correlation
ρv from Tjøstheim and Hufthammer (2013). A construction that was originally used for
density estimation (see Hjort and Jones 1996) was, in Tjøstheim and Hufthammer (2013),
adjusted a bit in order to define ρv as a new local measure of dependence for a bivariate
random variable W . With g(w) being the density function of W , the idea is to find a local
Gaussian approximation ψ(w; θ) in the neighborhood of v—i.e., start with

ψ(w; θ) :=
1

2π · σ1σ2

√
1− ρ2

exp
{
− σ2

2 (w1−µ1)
2−2σ1σ2ρ(w1−µ1)(w2−µ2)+σ2

1 (w2−µ2)
2

σ2
1 σ2

2 (1−ρ2)

}
, (4)

then find a parameter vector θv =
[
µ1v, µ2v, σ1v, σ2v, ρv

]′ that gives the best match to g(w)
in a neighborhood of v, and then extract the correlation component ρv from the parameter
vector θv.

As discussed in JT22 [Section 2.1.2], the theoretical treatment can be based directly on
the construction from Tjøstheim and Hufthammer (2013), but the numerical convergence
of the estimation algorithm might then sometimes fail. This estimation problem can be
countered if a normalization of the marginals (see Definition 1 below) is performed before the
estimation algorithm is used.

2.2. The Local Gaussian Cross-Spectrum

The definition of the local Gaussian cross-spectrum density is almost identical to the
definition of the local Gaussian spectral density from JT22 [Section 2.2], which, in this paper,
will henceforth be referred to as the local Gaussian auto-spectrum.

Definition 1. For a strictly stationary multivariate time series {Yt}t∈Z, where

Yt =
(

Y1,t, . . . , Yd,t

)
, the local Gaussian cross-spectrum of the marginal time series

{
Yk,t

}
t∈Z

and
{

Y`,t

}
t∈Z

is constructed in the following manner.

1. With Gk and G` as the univariate marginal cumulative distributions of, respectively,
{

Yk,t

}
t∈Z

and
{

Y`,t

}
t∈Z

, and Φ as the cumulative distribution of the univariate standard normal distri-

bution, define normalized versions
{

Zk,t

}
t∈Z

and
{

Z`,t

}
t∈Z

by

{
Zk,t := Φ−1

(
Gk

(
Yk,t

))}
t∈Z

,
{

Z`,t := Φ−1
(

G
(̀

Y`,t

))}
t∈Z

. (5)
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2. For a given point v =
(
v1, v2

)
and for each bivariate lag h pair Zk`:h:t :=

(
Zk:t+h, Z`:t

)
, a

local Gaussian cross-correlation ρk`:v(h) can be computed based on a five-parameter local
Gaussian approximation of the bivariate density of Zk`:h:t at

(
v1, v2

)
.

3. When ∑h∈Z
∣∣ρk`:v(h)

∣∣ < ∞, the local Gaussian cross-spectrum at the point v is defined as

fk`:v(ω) :=
∞

∑
h=−∞

ρk`:v(h) · e
−2πiωh. (6)

The normalization of the marginals in Definition 1 reduces the amount of numerical
convergence issues in the estimation algorithm, and the resulting local Gaussian cross-
spectrum fk`:v(ω) is thus a feature of the collection of bivariate copula structures that are
present inside the overall cross-temporal dependency structure of the strictly stationary
time series {Yt}t∈Z. This implies that investigations based on the local Gaussian cross-
spectrum fk`:v(ω) should be complemented with methods that can extract relevant features
from the probability density functions of the d marginal distributions.

The basic properties of the local Gaussian cross-spectrum are quite similar to those
encountered for the local Gaussian auto-spectrum in JT22 [Lemma 2.1].

Lemma 1. The following properties hold for fk`:v(ω).

1. fk`:v(ω) coincides with fk`(ω) for all v ∈ R2 when {Yt}t∈Z is a multivariate Gaussian time
series.

2. The following holds when v̆ :=
(
v2, v1

)
is the diagonal reflection of v =

(
v1, v2

)
:

fk`:v(ω) = f`k:v̆(ω), (7a)

fk`:v(ω) = ρk`:v(0) +
∞

∑
h=1

ρ`k:v̆(h) · e
+2πiωh +

∞

∑
h=1

ρk`:v(h) · e
−2πiωh. (7b)

Proof. Item 1 follows since the local Gaussian cross-correlations ρk`:v(h) by construction co-
incides with the ordinary (global) cross-correlations ρ(h) in the Gaussian case. For the proof
of Item 2, the key observation is that the diagonal folding property that was observed for the
local Gaussian auto-spectrum (see JT22 [Lemma C.1]) extends directly to the present case,
i.e., ρk`:v(−h) = ρ`k:v̆(h), where v̆ =

(
v2, v1

)
is the diagonally reflected point corresponding to

v. This implies that fk`:v(ω) = fk`:v(−ω) = f`k:v̆(ω), and it also follows that Equation (6)
can be re-expressed as Equation (7b).

The diagonal folding property enables both the estimation algorithm (see Algorithm 1)
and the theoretical analysis (see Section 2.5) to be expressed in terms of non-negative
lag-values. The discussion in Sections 2.3 and 2.4, in particular Definitions 2 and 3 and
Algorithm 1, will thus use the same setup as that seen in Equation (7b).

2.3. Related Local Gaussian Entities

From the definition of the local Gaussian cross-spectrum, it is possible to define related
spectra in the same manner as those mentioned for the ordinary spectrum in Equation (3).

Definition 2. The local Gaussian versions of the co-spectrum ck`(ω), the quadrature-spectrum qk`(ω),
the amplitude-spectrum αk`(ω), and the phase-spectrum φk`(ω) are given by



Econometrics 2023, 11, 12 6 of 27

ck`:v(ω) := Re( fk`:v(ω)) =
∞

∑
h=−∞

ρk`:v(h) · cos(2πωh)

= ρk`:v(0) +
∞

∑
h=1

cos(2πωh)[ρk`:v(h) + ρk`:v̆(h)], (8a)

qk`:v(ω) := − Im( fk`:v(ω)) =
∞

∑
h=−∞

ρk`:v(h) · sin(2πωh)

=
∞

∑
h=1

sin(2πωh)[ρk`:v(h)− ρk`:v̆(h)], (8b)

αk`:v(ω) := Mod( fk`:v(ω)) =
√

c 2
k`:v(ω) + q 2

k`:v(ω), (8c)

φk`:v(ω) := Arg( fk`:v(ω)) ∈ (−π, π]. (8d)

The sums in Equation (8a,b) follow from Equation (7b). Note that Equation (7a) implies
the following symmetry results: ck`:v(ω) = c`k:v̆(ω), qk`:v(ω) = −q`k:v̆(ω),
αk`:v(ω) = α`k:v̆(ω) and φk`:v(ω) = −φ`k:v̆(ω).

Algorithm 1 For a sample
{

yt =
(

y1,t, . . . , yd,t

)}n

t=1
of size n from a multivariate time series,

an m-truncated estimate f̂ m
k`:v(ω) of fk`:v(ω) is constructed by means of the following procedure.

1. Use the univariate marginals
{

yk,t

}n

t=1
and

{
y`,t

}n

t=1
to find estimates Ĝk:n and

Ĝ̀ :n of the corresponding marginal cumulative distribution functions, and com-

pute from this the pseudo-normalized observations
{

ẑk,t := Φ−1
(

Ĝk:n

(
yk,t

))}n

t=1
and{

ẑ`,t := Φ−1
(

Ĝ̀ :n

(
y`,t

))}n

t=1
.

2. Create the lag h pseudo-normalized pairs
{(

ẑk,t+h, ẑ`,t

)}n−h

t=1
for h = 0, . . . , m, and estimate

for the point v =
(
v1, v2

)
the local Gaussian cross-correlations

{
ρ̂k`:v(h|bh)

}m
h=0, where the{

bh
}m

h=0 is the bandwidths that are used for the different lags.

3. Create the lag h pseudo-normalized pairs
{(

ẑ`,t+h, ẑk,t

)}n−h

t=1
for h = 1, . . . , m, and esti-

mate for the diagonally reflected point v̆ =
(
v2, v1

)
the local Gaussian cross-correlations{

ρ̂`k:v̆(h|bh)
}m

h=0.
4. Adjust Equation (7b) from Lemma 1(2) with some lag-window function λm(h) to obtain the

estimate

f̂ m
k`:v(ω) := ρ̂k`:v(0) +

m

∑
h=1

λm(h) · ρ̂`k:v̆(h) · e
+2πiωh +

m

∑
h=1

λm(h) · ρ̂k`:v(h) · e
−2πiωh, (9)

where the
{

bh
}m

h=0 is suppressed from the notation in order to obtain a more compact formula.

For Gaussian distributions, the local Gaussian correlations will always be equal to the
ordinary (global) correlations2, and the local Gaussian constructions in Definitions 1 and 2
will thus coincide with the ordinary (global) versions for multivariate Gaussian time series.
A comparison of the local and global estimates in the same plot is thus of interest when
a given sample is considered, since this could detect nonlinear dependencies of the time
series under investigation.

It is possible to define a local Gaussian analogue of the squared coherence mentioned
in Section 1 by replacing the ordinary cross- and auto-spectra with the corresponding
local Gaussian versions, i.e., the object of interest would be Qk`:v(ω) := fk`:v(ω) f`k:v(ω)/
fkk:v(ω) f``:v(ω). This approach was investigated in the preparation of this paper, but it is
not included here since Qk`:v(ω), in general, lacked the nice properties known from the
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ordinary global case. In particular, the local Gaussian auto-spectra fkk:v(ω) and f``:v(ω)
will, in general, be complex-valued functions, so an inspection of Qk`:v(ω) must thus be
based on plots of its real and imaginary parts (or its amplitude and phase). Moreover, these
plots more often than not turned out to be rather hard to investigate, since the estimates
of fkk:v(ω) and f``:v(ω) (for some distributions and some frequencies ω) gave values very
close to zero in the denominator.

2.4. Estimation

The estimation of the local Gaussian cross-spectrum fk`:v(ω) from Section 2.2 follows
the same setup that was used in JT22 [Section 2.3] for the estimation of the local Gaussian
auto-spectrum, but some extra indices are needed in the present case. The estimates of the
related spectra ck`:v(ω), qk`:v(ω), αk`:v(ω) and φk`:v(ω) from Section 2.3 are then obtained
from the estimate of fk`:v(ω) in the obvious manner.

Definition 3. For a multivariate sample {yt}
n
t=1 of size n, as described in Algorithm 1, the

m-truncated estimates of the local Gaussian versions of the co-spectrum, quadrature-spectrum,
amplitude-spectrum, and phase-spectrum are given by

ĉ m
k`:v(ω) := Re

(
f̂ m
k`:v(ω)

)
= ρ̂k`:v(0) +

m

∑
h=1

cos(2πωh)λm(h)[ρ̂k`:v(h) + ρ̂k`:v̆(h)], (10a)

q̂ m
k`:v(ω) := − Im

(
f̂ m
k`:v(ω)

)
=

m

∑
h=1

sin(2πωh)λm(h)[ρ̂k`:v(h)− ρ̂k`:v̆(h)], (10b)

α̂ m
k`:v(ω) := Mod

(
f̂ m
k`:v(ω)

)
=
√(

ĉ m
k`:v(ω)

)2
+
(
q̂ m

k`:v(ω)
)2, (10c)

φ̂ m
k`:v(ω) := Arg

(
f̂ m
k`:v(ω)

)
∈ (−π, π]. (10d)

The comments in JT22 [Section 2.3] hold for the present case, too. In particular, the
estimated marginal cumulative distributions Ĝk:n and Ĝ̀ :n from Algorithm 1(1) can either
be based on the (rescaled) empirical cumulative distribution functions or they could be built
upon a logspline technique such as the one implemented in Otneim and Tjøstheim (2017).
Furthermore, for the asymptotic investigation, the arguments in Otneim and Tjøstheim
(2017, Section 3) reveal that the pseudo-normalization of the marginals does not affect
the final convergence rates, which (as was performed in JT22) implies that the present
theoretical analysis can ignore the distinction between the original observations and the
pseudo-normalized observations.

The Input Parameters and Some Other Technical Details

An inspection of Algorithm 1 reveals that several tuning parameters must be selected
in order to compute the m-truncated local Gaussian cross-spectrum density estimates
f̂ m
k`:v(ω), and it is thus of interest to briefly present the values used for the plots contained

in this paper. All simulated time series have the same length as the one encountered for the
real data example, i.e., the log-returns of the EuStockMarkets-data.

Note that these tuning parameters were selected in order to provide a proof-of-concept
for the fact that nonlinear dependency structures can be detected by this approach, and
the quest for “optimal parameters” is a topic for further work. The interested reader can
consult Section S3 in the Supplementary Material for a sensitivity analysis of the different
tuning parameters.

The pseudo-normalization: The initial step of the computation of f̂ m
k`:v(ω) is to replace

the observations
{(

y1,t, . . . , yd,t

)}n

t=1
with the corresponding pseudo-normalized observa-

tions
{(

ẑ1,t, . . . , ẑd,t

)}n

t=1
, cf. Algorithm 1, that is, estimates of the d marginal cumulative

density functions
{

G`

}d
`=1 are needed. The present analysis used the rescaled empirical

cumulative density functions Ĝ`:n for this purpose.
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The points v of investigation: Three diagonal points, with coordinates corresponding
to the 10%, 50%, and 90% percentiles of the standard normal distribution,3 are used in the
basic plots in this section. Refer to Section S3.3 for further details related to the selection of
v, and see Figures 2, 4 and 7 for some heatmap-based plots.

The lag-window function λm(h): The smoothing of the estimated local Gaussian
auto-correlations, cf. Algorithm 1(3), was performed by the Tukey–Hanning lag-window
kernel: λm(h) =

1
2 ·
(

1 + cos
(

π · h
m

))
for |h| ≤ m, λm(h) = 0 for |h| > m.

The bandwidth b: The estimation of the local Gaussian auto-correlations requires the
selection of a bandwidth-vector b =

(
b1, b2

)
, and the plots in this section used b = (0.6, 0.6).

A discussion related to the choice of bandwidth can be found in Section S4.
The truncation level m: The value m = 10 was used for the truncation level, since it

was possible to detect nonlinear dependency structures even for that low a truncation level.
The number of replicates R: The estimated values (means and 90% pointwise confi-

dence intervals) were based on R = 100 replicates. Simulations were used for the cases with
known parametric models, whereas the bootstrapped-based resampling strategy developed
in JT22 was used for the real data example. The relevant details about this resampling
strategy are, for the convenience of the reader, included in Section S5.

Numerical convergence: The R-package localgauss (see Berentsen et al. 2014) esti-
mates the local Gaussian cross-correlations ρk`:v(h) and returns them together with an
attribute that reveals whether or not the estimation algorithm converged numerically.
The m-truncated estimates f̂ m

k`:v(ω) inherit the convergence attributes from the estimates{
ρ̂k`:v(h)

}m
h=−m, and either “NC = OK” or “NC = FAIL” will be added to the plot depending

on the convergence status.
Estimation aspects for a given parameter configuration: The estimation of f̂ m

k`:v(ω)

for a point v =
(
v1, v2

)
is based on the estimates

{
ρ̂k`:v(h)

}m
h=−m, and it can thus be of

interest to see how these estimates depend on the configuration of the abovementioned
tuning parameters. A detailed discussion can be found in JT22 [Section 3.2]. The key
observation is that the number of pseudo-normalized observations close to the point v
will be much lower when v lies in one of the tails. This implies a higher variability of
the estimated values

{
ρ̂k`:v(h)

}m
h=−m for points in the tails, and this is the reason that the

estimated pointwise confidence intervals for f̂ m
k`:v(ω) are much wider for points in the tails.

Reproducibility and interactive investigations: The R-package localgaussSpec con-
tains scripts that can be used to reproduce all the examples and figures encountered in this
paper, cf. Section S6.1 in the Supplementary Material for further details.

2.5. Asymptotic Theory for f̂ m
k`:v(ω)

The asymptotic theory for the local Gaussian cross-spectrum f̂ m
k`:v(ω) follows from a

few minor adjustments of the asymptotic theory that was developed for the local Gaussian
auto-spectra in JT22. A detailed discussion of the theoretical framework (some definitions,
and all assumptions and proofs) was relegated to Section S1 in the Supplementary Material.
The present discussion will only sketch out the key ideas and then state the asymptotic
results related to the local Gaussian cross-spectrum f̂ m

k`:v(ω).
The theorems related to the convergence f̂ m

k`:v(ω)→ fk`:v(ω) (see Section 2.5.2) require
three assumptions. Assumption S1 considers the simultaneous existence of all the local
Gaussian cross-correlations ρk`:v(h) at the point v for all lags h, whereas Assumption S2
considers the requirements needed for the individual estimates ρ̂k`:v(h) to converge against
ρk`:v(h). For the convergence of f̂ m

k`:v(ω) against fk`:v(ω), it is necessary to know how m, b,
and n should interact when the three limits m → ∞, b → 0+, and n → ∞ are taken, and
this is specified in Assumption S3.



Econometrics 2023, 11, 12 9 of 27

2.5.1. A Brief Sketch of the Requirements for Yt =
(

Y1,t, . . . , Yd,t

)
The local Gaussian spectrum fk`:v(ω) is obtained as the Fourier transform of the local

Gaussian cross-correlations ρk`:v(h), and it is thus necessary to add requirements on the k
and ` components of the multivariate times series {Yt}t∈Z. This will be phrased relative
to the bivariate pairs that can be created as different combinations of elements from the
univariate marginals

{
Yk,t

}
t∈Z

and
{

Y`,t

}
t∈Z

. Note that the folding property from Item 4 of

Algorithm 1 implies that it is sufficient to formulate the assumption based on non-negative
values of the lag h.

Definition 4. For a strictly stationary multivariate time series {Yt}t∈Z, with Yt =
(

Y1,t, . . . , Yd,t

)
,

and for a selected pair of indices k and `, define the following bivariate pairs from the univariate
marginals

{
Yk,t

}
t∈Z

and
{

Y`,t

}
t∈Z

.

Yk`:h:t :=
[
Yk,t+h, Y`,t

]′
, h ≥ 0, (11a)

Ỳ k:h:t :=
[
Y`,t+h, Yk,t

]′
, h ≥ 1, (11b)

and let gk`:h
(
yk`:h

)
and g`k:h

(
y`k:h

)
denote the respective probability density functions.

The basic idea for the construction of fk`:v(ω) is that a point v =
(
v1, v2

)
should be

selected at which for all h the density functions gk`:h
(
yk`:h

)
of Yk`:h:t will be approximated

by ψ
(
yk`:h; θk`:v:h

)
, where ψ is the bivariate Gaussian density function from Equation (4).

Note that the parameter vector θ from Equation (4) here has been replaced with θk`:v:h. The
added sub-indices are necessary since the theoretical investigation of f̂ m

k`:v(ω) requires a
total of 2m + 1 different parameter vectors to be considered simultaneously.

The local investigation (one for each h) requires a bandwidth vector b =
(
b1, b2

)
and

a kernel function K(w), which is used to define Kk`:h:b

(
yk`:h − v

)
:= 1

b1b2
K
( yk,h−v1

b1
,

y`,0−v2
b2

)
,

which in turn is used in the function qk`:v:h:b(θk`:v:h) defined below:

qk`:v:h:b :=
∫
R2

Kk`:h:b(yk`:h − v)[ψ(yk`:h; θk`:v:h)− log ψ(yk`:h; θk`:v:h)gk`:h(yk`:h)]dyk`:h. (12)

The target of interest, for a given bandwidth b, is to find parameter vectors θk`:v:h:b that
minimize Equation (12). Under suitable assumptions (see Section S1.1 for details), there will
exist a unique θk`:v:h:b when b is small enough. A limiting parameter vector θk`:v:h:0 will
then occur when the bandwidth b moves to zero, and the correlation components ρk`:v:h:0
from θk`:v:h:0 are then defined to be the local Gaussian cross-correlation ρk`:v(h) between
Yk,t+h and Y`,t. The Fourier transform of all the local Gaussian cross-correlations at the
point v, will (when they are absolutely summable, cf. Definition 1) give the local Gaussian
cross-spectrum fk`:v(ω).

For a given sample of size n, it is of course not possible to find estimates ρ̂k`:v(h) of
ρk`:v(h) for all lags h. This implies (cf. Algorithm 1) that it is only possible to create an
estimate f̂ m

k`:v(ω) of the m-truncated local Gaussian spectrum f m
k`:v(ω).

The convergence results related to an estimate ρ̂k`:v(h) of ρk`:v(h) only need to consider
how b should depend on n as b→ 0+ and n→ ∞. The asymptotic theory for the estimates
f̂ m
k`:v(ω) must also take into account that there is an additional limit m→ ∞, and it is thus

necessary to specify how m, b, and n should interact as m → ∞, b → 0+, and n → ∞.
The interested reader can consult Section S1.1 for further details, definitions, and technical
assumptions related to this issue. See, in particular, Assumption S3 for the relationship
between n, m, and b.
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2.5.2. Convergence Theorems for f̂ m
k`:v(ω), α̂ m

k`:v(ω), and φ̂ m
k`:v(ω)

Note that Assumptions S1–S3 are given in Section S1.1 in the Supplementary Material.
See Section S1.3 for the proofs of the theorems stated below.

Theorem 1. The estimate f̂ m
k`:v(ω) = ĉ m

k`:v(ω)− i · q̂ m
k`:v(ω) of the local Gaussian cross-spectrum

fk`:v(ω) = ck`:v(ω)− i · qk`:v(ω) will, under Assumptions S1–S3, satisfy

√
n
(
b1b2

)3/m ·
([

ĉ m
k`:v(ω)

q̂ m
k`:v(ω)

]
−
[

ck`:v(ω)
qk`:v(ω)

])
d−→ N

([
0
0

]
,

[
σ2

c|k`:v(ω) 0
0 σ2

q|k`:v(ω)

])
, (13)

when ω 6∈ 1
2 ·Z =

{
. . . ,−1,− 1

2 , 0, 1
2 , 1, . . .

}
, where the variances σ2

c|k`:v(ω) and σ2
q|k`:v(ω) are

given by

σ2
c|k`:v(ω) = lim

m→∞

1
m

(
σ̃2

k`:v(0) +
m

∑
h=1

λ2
m(h) · cos2(2πωh) ·

{
σ̃2

k`:v(h) + σ̃2
`k:v̆(h)

})
(14a)

σ2
q|k`:v(ω) = lim

m→∞

1
m

(
m

∑
h=1

λ2
m(h) · sin2(2πωh) ·

{
σ̃2

k`:v(h) + σ̃2
`k:v̆(h)

})
, (14b)

with σ̃2
k`:v(h) and σ̃2

`k:v̆(h) as the asymptotic variances related to the estimates ρ̂k`:v(h) and ρ̂`k:v̆(h)
(see Theorem S4 in the Supplementary Material for the details).

The local Gaussian quadrature-spectrum is identical to zero when ω ∈ 1
2 ·Z, and for those

frequencies the following asymptotic result holds under the given assumptions:√
n
(
b1b2

)3/m ·
(

f̂ m
k`:v(ω)− fk`:v(ω)

)
d−→ N

(
0, σ2

c|k`:v(ω)
)

, ω ∈ 1
2 ·Z. (15)

The asymptotic results for the local Gaussian amplitude- and phase-spectra are a direct
consequence of Theorem 1 and Brockwell and Davis (1986, Proposition 6.4.3, p. 211).

Theorem 2. Under Assumptions S1–S3, when αk`:v(ω) > 0 and ω 6∈ 1
2 ·Z, the estimate α̂ m

k`:v(ω)

=
√(

ĉ m
k`:v(ω)

)2
+
(
q̂ m

k`:v(ω)
)2 satisfies√

n
(
b1b2

)3/m · (α̂ m
k`:v(ω)− αk`:v(ω))

d−→ N
(

0, σ2
α (ω)

)
, (16)

where σ2
α (ω) is given relative to σ2

c|k`:v(ω) and σ2
q|k`:v(ω) (from Equation (14), Theorem 1) as

σ2
α =

(
c2

k`:v(ω) · σ2
c|k`:v(ω) + q2

k`:v(ω) · σ2
q|k`:v(ω)

)
/α2

k`:v(ω). (17)

Theorem 3. Under Assumptions S1–S3, when αk`:v(ω) > 0 and ω 6∈ 1
2 ·Z, the estimate φ̂ m

k`:v(ω)
= args

(
ĉ m

k`:v(ω)− i · q̂ m
k`:v(ω)

)
satisfies√

n
(
b1b2

)3/m ·
(
φ̂ m

k`:v(ω)− φk`:v(ω)
) d−→ N

(
0, σ2

φ (ω)
)

, (18)

where σ2
φ (ω) is given relative to σ2

c|k`:v(ω) and σ2
q|k`:v(ω) (from Equation (14), Theorem 1) as

σ2
φ (ω) =

(
q2

k`:v(ω) · σ2
c|k`:v(ω) + c2

k`:v(ω) · σ2
q|k`:v(ω)

)
/α4

k`:v(ω). (19)

The asymptotic normality results in Theorems 1–3 do not necessarily help much if
computations of pointwise confidence intervals for the estimated local Gaussian estimates
are of interest, since in practice it may be unfeasible to find decent estimates of the variances
σ2

c|k`:v(ω) and σ2
q|k`:v(ω) that occur in Theorem 1. The pointwise confidence intervals will,
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thus, later in the paper either be estimated based on suitable quantiles obtained by repeated
sampling from a known distribution, or they will be based on bootstrapping techniques
for those cases where real data have been investigated. Refer to Teräsvirta et al. (2010,
Chps. 7.2.5 and 7.2.6) for further details with regard to the need for bootstrapping in such
situations.

3. Visualizations and Interpretations

This section will show how different visualizations of the estimates f̂ m
k`:v(ω) of the

m-truncated local Gaussian cross-spectrum f m
k`:v(ω) can be used to detect nonlinear de-

pendency structures in a multivariate time series. The plots encountered here are natural
extensions of those introduced in JT22, but as f̂ m

k`:v(ω) is complex-valued, the actual in-
vestigation will be based on plots of the corresponding local Gaussian versions of the
co-spectrum, quadrature-spectrum, phase-spectrum, and amplitude-spectrum.

A sanity test of the implemented estimation algorithm is presented in Section 3.1,
and it is there seen that f̂ m

k`:v(ω) can detect local periodic structures in an example where a
heuristic argument enables the prediction of the anticipated result. Section 3.1 also contains
a procedure, based on combined heatmap and distance plots, that can help an investigator
detect local regions of interest. Section 3.2 applies the local Gaussian machinery to the log-
returns of the EuStockMarkets-data, and it also contains the results from a GARCH-type
model fitted to these log-returns.

A comparison of the results from the original data and the fitted model can reveal
to what extent the internal dependency structure of the fitted model actually reflects the
dependency structure of the original sample, and this might be of interest with regard to
model selection. As in JT22, it will be seen that plots based on f̂ m

k`:v(ω) can be useful as an
exploratory tool, and this approach might detect nonlinear dependencies and periodicities
between the variables, which cannot be detected by ordinary cross-spectral analysis.

3.1. Sanity Testing the Implemented Estimation Algorithm

This section will check that the estimates of f m
k`:v(ω) behave as expected for a few

simple simulated bivariate examples. The approach is similar to the one used in JT22, as the
examples are bivariate extensions of those used in that paper, but this paper highlights how
an initial investigation of heatmap and distance plots can help identify regions that might be
of interest to investigate further, cf. Figures 2, 4 and 7. It will be seen that an inspection of
the Co-, Quad-, and Phase-plots might be useful exploratory tools for the identification of
nonlinear dependency structures in multivariate time series.4

The strategy used to create the plots for the simulated data works as follows: First
draw a given number of independent replicates from the specified model, and compute
f̂ m
k`:v(ω) and f̂ m

k` (ω) for each of the replicates. Extract the relevant Co-, Quad-, and Phase-
spectra, and use the mean of these m-truncated estimates as estimates of the true (and
in general unknown) m-truncated spectra. Suitable upper and lower percentiles of the
estimates can be used to produce estimates of the pointwise confidence intervals.

Note that the plots are annotated with the following information: a stamp at the center
that specifies the type of spectrum investigated; the numerical convergence status NC in
the lower left corner; the truncation level m in the upper left corner; the percentiles of the
point v of investigation, and the bandwidth b in the upper right corner; the length n and
the number of replicates R in the lower right corner. Later on, for plots based on resampling
from a given sample, the plots will also include the block length L in the lower right corner.

3.1.1. Bivariate Gaussian White Noise

For the univariate time series considered in JT22, the sanity testing of the implemented
estimation algorithm started with the trivial Gaussian case, since for this case it is known
that the local Gaussian auto-spectrum coincides with the ordinary auto-spectrum for
Gaussian time series. The local Gaussian cross-spectrum also coincides with the ordinary
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cross-spectrum for multivariate Gaussian time series, cf. Lemma 1(1), and it is thus natural
to test the implemented algorithms on a bivariate Gaussian example.

The explicit details for this bivariate Gaussian test case are not that relevant for
the overall discussion, and those are thus relegated to Section S6.2 in the Supplementary
Material. For the present discussion, it suffices to say that the resulting plots are as expected,
cf. Figure S6.1. In particular, the estimates f̂ m

k`:v(ω) and f̂ m
k` (ω) of the m = 10 truncated local

Gaussian and ordinary cross-spectra (based on 100 replicates) are close to the values they
are supposed to have, and the estimated pointwise 90% confidence intervals for f̂ m

k`:v(ω)
are, as expected, wider when the point v lies in the periphery of the observations.

3.1.2. Bivariate Local Trigonometric Examples

With the exception of the Gaussian case, it is not known how the true local Gaussian
cross-spectrum should appear. This implies that is hard to know whether or not the m-
truncated Co-, Quad-, and Phase-plots look as they are supposed to, or if what is seen might
be the result of an erroneous implementation of the estimation algorithm.

The sanity testing of the implemented estimation algorithm was in JT22 performed
by the means of an artificially constructed local trigonometric time series, for which it at
least could be reasonably argued what the expected outcome should be for some specially
designated points v (given a suitable bandwidth b). This approach will here be extended
to the bivariate case, that is, bivariate local trigonometric time series will be constructed for
which it, at some designated points v, can be given a heuristic argument for the expected
shape of the estimated local Gaussian Co-, Quad-, and Phase-spectra.

These artificial time series will not satisfy the requirements needed for the asymptotic
theory to hold true (as is also the case for standard global spectral analysis), but they
can still be used to show how an exploratory tool based on the local Gaussian spectral
density can detect local structures that the ordinary spectral density fails to detect. Details
related to the two cases investigated in this section are given below, whereas Section S6.5 in
the Supplementary Material presents an in-depth explanation of the artificial time series
construction and the motivation for the heuristic arguments given in this section.

The reference case: The heuristic argument needed for the bivariate case is identical
in structure to the one used in the univariate case, and for the present investigation the
reference for the plots later on is based on the following simple bivariate model:

Y1,t = cos(2παt + φ) + w1,t and Y2,t = cos(2παt + φ + θ) + w2,t, (20)

where wi,t is Gaussian white noise with mean zero and standard deviation σ, with w1,t
and w2,t independent, and where, in addition, it is such that α and θ are fixed for all the
replicates, whereas φ is drawn uniformly from [0, 2π) for each individual replicate. A
realization with σ = 0.75, α = 0.302, and θ = π/3 is used for the Co-, Quad-, and Phase-
plots shown in Figure 1, where 100 independent samples of length 1859 were used to
obtain the estimates of the m-truncated spectra and their corresponding 90% pointwise
confidence intervals (based on the bandwidth b = (0.6, 0.6)). Some useful remarks can be
based on this plot, before the bivariate local trigonometric case is defined and investigated.

In this particular case, the local Gaussian spectra (in blue)5 in Figure 1 shares many
similarities with the corresponding global spectra (in red).6 In particular, the peaks of the
Co- and Quad-plots lie, for both the local and global spectra, at the frequency ω = α (shown
in the plots as a vertical line), and the corresponding Phase-plots at this frequency lie quite
close to the phase adjustment θ = π/3 (shown as a horizontal line, positioned with an
appropriate sign adjustment). This phenomenon is present both for the point at 10%::10%
and the point at 50%::50%, i.e., the local information at these quantiles is sufficient to
pick up both the spectral peak and the phase adjustment expected from the global model.
However, it should be noted that this nice match does not hold for all values of σ. In fact,
experiments with different values for σ (plots not included in this paper) indicate that the
difference between the local and global spectra becomes larger (in particular for the point
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10%::10%) when σ becomes smaller. See JT22 [Appendix G.4.4] for some further comments
related to this issue.
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Figure 1. Realization of Equation (20), “bivariate global cosine”, with σ = 0.75, α = 0.302, and
θ = π/3. Similar behavior in lower tail and center, both the global and local Gaussian cross-spectra
(truncated at m = 10) detect the frequency α and the phase difference θ.

Note that the wide pointwise confidence band observed for ω near 0 in the 10%::10%-
Phase-plot in Figure 1 is related to the branch-cut that occurs at −π in the definition of the
phase-spectrum, cf. Definition 2. The simple algorithm used for the creation of the pointwise
confidence intervals was not tweaked to properly cover the case where the majority of the
estimates lie in the second and third quadrants of the complex plane, which implies that
the Co- and Quad-plots should be consulted instead when the Phase-plot misbehaves in this
manner.

The values of the Co- and Quad-plots (for a given frequency ω) are (for each frequency)
related to the corresponding values of the Amplitude- and Phase-plots by the following
simple relations:

−Quad-plot/Co-plot = tan(Phase-plot), (21a)

Co-plot = Amplitude-plot · cos(Phase-plot), (21b)

−Quad-plot = Amplitude-plot · sin(Phase-plot), (21c)

which follows trivially from the way these spectra are defined relative to Cartesian or polar
representations of the complex-valued cross-spectra, cf. Equation (3) and Definition 2. For
the example investigated in Figure 1, where the Phase plot is close to −π/3 at α = 0.302, it
thus follows that the peak for the Quad-spectrum should be approximately

√
3 times larger

than the peak of the Co-spectrum.
The plots encountered later in this paper will be based on the abovementioned Carte-

sian or polar representations of f̂ m
k`:v(ω), but it is, in principle, also possible to make plots

(and animations) that, for a given value of ω, show the estimated values of f̂ m
k`:v(ω) as point

clouds in the complex plane. A discussion related to this complex-valued plot approach is
given in Section S6.4 in the Supplementary Material (see, in particular, Figure S6.2).

The bivariate local trigonometric case: Two bivariate extensions of the artificial local
trigonometric time series from JT22 [Section 3.3.2] are now considered. The key idea is
that an artificial bivariate time series

{(
Y1,t, Y2,t

)}
t∈Z

can be constructed by the following

scheme:

1. Select r ≥ 2 bivariate time series
{(

C1,i(t), C2,i(t)
)}r

i=1
.

2. Select a random variable I with values in the set {1, . . . , r}, and use this to sample
a collection of indices {It}t∈Z (that is, for each t, an independent realization of I is
taken). Let pi := P

(
Ii = i

)
denote the probabilities for the different outcomes.
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3. Define Yt by means of the equation

Y1,t :=
r

∑
i=1

C1,i(t) · 1{It = i}, (22a)

Y2,t :=
r

∑
i=1

C2,i(t) · 1{It = i}. (22b)

The indicator function 1{·} ensures that only one of the bivariate
(

C1,i(t), C2,i(t)
)

-
components contributes for a given value t, that is, it is also possible to write(

Y1,t, Y2,t

)
=
(

C1,It
(t), C2,It

(t)
)

.

The bivariate local trigonometric time series (needed for the sanity testing of the imple-
mented estimation algorithm) can now be constructed by selecting r cosine-functions that
oscillate around different horizontal baselines Li, that is,

C1,i(t) = Li + Ai(t) · cos(2παit + φi), i = 1, . . . , r, (23a)

C2,i(t) = Li + Ai(t) · cos(2παit + φi + θi), i = 1, . . . , r, (23b)

where αi, φi and θi, respectively, represent frequency and phase adjustments occurring in
the cosine-function, and where the amplitudes Ai(t) are uniformly distributed in some
interval

[
ai, bi

]
. Note that it is assumed that the phases φi are uniformly drawn (one time for

each realization) from the interval between 0 and 2π, whereas the phases θi are constants. It
is also assumed that the stochastic processes φi, Ai(t) and It are independent of each other.

The auto- and cross-correlations ρk`(h) of
{(

Y1,t, Y2,t

)}
t∈Z

, as given by Equations (22)

and (23), are functions of Li and pi. The auto-correlations ρ11(h) of the marginal time

series
{

Y1,t

}
t∈Z

were computed in JT22 [Appendix G.4], and the corresponding result

for the cross-correlation ρ12(h) is given in Section S6.5 in the Supplementary Material.
For the purpose of the present section, it is sufficient to know that it is possible to find
parameter configurations for which the global spectrum (based on the pseudo-normalized
observations) is rather flat (when truncated at m = 10), which implies that it cannot detect
the frequencies αi of the underlying structure. As will be seen in the ensuing simulation
experiments, the randomly sampled information for the local versions C1,i(t) and C2,i(t) of
Equation (23) may still be sufficient to recover the local periodic and phase structure.

Note that neither f12(ω) nor f12:v(ω) are well defined for the bivariate local trigonometric
times series, but this is not important since it still is possible to predict (cf. Section S6.5 for
details) that the m-truncated estimates f̂ m

12:v(ω) for some points v (and a given bandwidth
b) should resemble Figure 1—and this can be used, cf. Figures 3 and 5, to test the sanity
of the implemented estimation algorithm. These plots also reveal that the local Gaussian
versions of the Co-, Quad-, and Phase-plots can detect local properties that are undetected
by the ordinary version of these spectra.

Parameter setup: The models for the two time series presented in this section are
based on an extension of the univariate case seen in JT22, that is, both have r = 4 compo-
nents, the probabilities pi are given by (0.05, 1/3− 0.05, 1/3, 1/3), the frequencies αi are
given by (0.267, 0.091, 0.431, 0.270), the baselines Li are given by the values (−2,−1, 0, 1),
and the lower and upper ranges for the uniforms sampling of the amplitudes Ai(t) are,
respectively, given by (0.5, 0.2, 0.2, 0.5) and (1.0, 0.5, 0.3, 0.6). Note that Li and Ai(t) should
be selected in order to give a minimal amount of overlap between the different components,
cf. Section S6.5 for further details.

The distinction between the two models is due to the selection of the additional
phase adjustments θi. The model investigated in Figures 2 and 3 has a constant phase
adjustment of θ = π/3, whereas the model investigated in Figures 4 and 5 has individual
phase adjustments, given as

(
θ1, θ2, θ3, θ4

)
= (π/3, π/4, 0, π/2).
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To complete the specification of the setup, note that the 90% pointwise confidence
intervals in Figures 3 and 5 all are based on 100 independent samples of length 1859
from the above-described models, and that the bandwidth b = (0.6, 0.6) was used in the
computation of the local Gaussian cross-correlations.

Constant phase adjustment: The case where the phase difference θ = π/3 was used
for all the θi is investigated in Figures 2 and 3. This particular example was created in
order to test the sanity of the estimation algorithm. The resulting bivariate sample will,
by construction, cf. Section S6.5.1 for details, have an ordinary cross-spectrum that looks
quite flat (not possible to extract any useful information). Furthermore, cf. the last sentence
of the paragraph following the one containing Equation (23), and the heuristic argument
given in Section S6.5.2, it is possible to find configurations of bandwidth b and point v for
which the resulting local Gaussian spectra should look a bit similar to those encountered in
Figure 1 for the three designated points, 10%::10%, 50%::50%, and 90%::90% (which turns
out to be the case, cf. Figure 3).

It will, in general, not be known in advance for which points of v that local features
might be present, and it is thus necessary to use a strategy that can help identify interesting
regions. For this purpose, an adjusted version of the combined heatmap and distance plots
introduced in JT22 will be used, as seen in Figure 2, where the point v varies along
the diagonal. The heatmap part of the plot must be adjusted a bit since the estimated
m-truncated local Gaussian cross-spectrum f̂ m

k`:v(ω) is a complex-valued entity, and the
solution seen in Figure 2 shows a decomposition into the Co- and Quad-plots. The distance
parts of these plots are based on the distance function D that is inherited from the complex
Hilbert space of Fourier series on the interval

[
− 1

2 , 1
2

]
, cf. Section S3.1 for further details.

The distance plot can help an investigator see how far the time series of interest is from
being i.i.d. observations—and it enables a comparison with the global spectrum that is not
possible based only on the heatmap plots.
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Figure 2. Co- and Quad-heatmaps, distance plot: Sample from the bivariate local trigonometric model
in Equations (22) and (23), constant phase changes θi = π/3, i = 1, 2, 3, 4. This shows how f̂ m

k`:v(ω)

varies along the diagonal points v. The frequencies αi are shown as vertical lines. The points used in
Figure 3 are indicated with lines/points.

Note that the heatmap part of the plots can also be based on a polar decomposition
into Amplitude- and Phase-plots, but it is easier to digest the information from the Co- and
Quad-plots. It is, e.g., easy to see that different local structures are present in the samples
investigated by Co- and Quad-based heatmaps in Figures 2 and 4, but this difference is not
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that clear when Amplitude- and Phase-plots are used instead, cf. Section S3.2.2 for further
details.

Keep in mind that the pseudo-normalization step in Algorithm 1 implies that the
plots related to f̂ m

k`:v(ω) only reveal information about the cross-temporal interdependency
structures of the sample. An investigator must thus use some supplementing technique in
order to extract information from the marginal distributions.

The contours in the heatmap plots seen in Figure 2 reveal that different peaks occur
at different combinations of points v and frequencies ω, in agreement with the heuristic
argument that motivated the construction of this example. Together with the distance plot
part, which shows how much the m-truncated local Gaussian cross-spectrum differs from
the corresponding m-truncated ordinary cross-spectrum, this shows that it could be of
interest to take a closer look at the three points investigated in Figure 3.
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Figure 3. Co-, Quad-, and Phase-plots for three diagonal points: The bivariate local trigonometric model
in Equations (22) and (23), constant phase changes θi = π/3, i = 1, 2, 3, 4, shown as sign-adjusted
horizontal lines. The frequencies αi are shown as vertical lines. The local Gaussian spectra detect
structures that are not detected by the ordinary spectrum.

The three points investigated in Figure 3 correspond to the function components in
Equation (23) with indices i = 2, 3, 4. The point that corresponds to the i = 1 component
would, due to the combination of the low probability p1 and the placement of the level
L1, lie too far out in the tail to be properly investigated by the present sample size. Note
that the i = 1 component is included here in order to show that an exploratory approach
based on local Gaussian spectra can fail to detect local signals that are much weaker than
the dominating ones, cf. the discussion in Section S6.5.

For the points investigated in Figure 3, it seems to be the case that the local Gaussian
parts of the Co-, Quad-, and Phase-plots together reveal local properties in accordance
with the outcome expected from the knowledge of the generating model—and these local
structures are not detected by the ordinary global spectra, which in this case (due to the
values used for Li and pi) are quite close to being flat (i.e., information about the specified
frequencies cannot be extracted from the global spectrum, cf. Section S6.5.1). The left
column investigates a point at the lower tail of the diagonal, and it can there be observed
that both the Co- and Quad-plots have a peak close to the leftmost α-value—and the value
of the corresponding Phase-plot for frequencies close to this α-value lies quite close to the
phase difference between the first and second component. A similar situation is present for
the three plots shown in the right column, where a point at the upper tail of the diagonal is
investigated. Moreover, in accordance with the general discussion related to Equation (21),
the peaks of the Quad-plots are higher than those of the Co-plots in this case due to the
phase difference θ that was used in the input parameters.
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For the center column of Figure 3, which investigates the point at the center of the
diagonal, it can be seen that the Quad- and Phase-plots, in addition to the expected α-value,
also detect the presence of the other α-values. The Phase-plot is, for this point, not that
close to the expected value, but that situation changes if the truncation is performed at a
higher lag than m = 10. The center column thus shows the importance of considering a
range of values for the truncation level when such plots are investigated. The additional
peaks that are detected in the center column are due to contamination from the neighboring
regions.

Individual phase adjustment: The phase-spectrum contains information about the
lead–lag relationship between two time series. In practice, it is conceivable, as indicated
in the third paragraph of the Introduction, that the lead–lag relationships are different at
extremes; i.e., in the distributional tails, compared to in the center of the series. In fact,
such a difference is indicated in the lower row of Figure 9 of the DAX–CAC index pair to
be treated in Section 3.2.1 It is therefore of interest to examine the potential of the local
Gaussian analysis to pick up such differences for the bivariate local trigonometric example.
We therefore regenerated this example with the following individual phase adjustments:(

θ1, θ2, θ3, θ4
)
= (π/3, π/4, 0, π/2). The heatmap and distance plot seen in Figure 4 reveals,

once more, in agreement with the way the example was constructed, that it is natural to
look at the three points shown in Figure 5. The horizontal lines seen in the Phase-plots
part of Figure 5 show the θi-values (adjusted to have the correct sign), and for each of the
designated points, the intersection with the relevant vertical αi-line is highlighted to show
the expected outcome based on the knowledge of the model.
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Figure 4. Co- and Quad-heatmaps, distance plot: Sample from the bivariate local trigonometric model in
Equations (22) and (23), phase changes

(
θ1, θ2, θ3, θ4

)
= (π/3, π/4, 0, π/2). This shows how f̂ m

k`:v(ω)

varies along the diagonal points v. The frequencies αi are shown as vertical lines. The points used in
Figure 5 are indicated with lines/points.

The Co-, Quad-, and Phase-plots in Figure 5 behave in accordance with what was ob-
served in Figure 3; in particular, the Phase-plots pick up the individual phase adjustments,
giving values that lie close to the expected θi-value when the frequency ω is near the
corresponding αi-value. However, there are also changes in the Co- and Quad-spectral plots
that can be explained. In fact, the height of the corresponding Co- and Quad-peaks are
in accordance with the values of the Phase-plots. In particular, the phase-adjustment is
θ2 = π/4 for the point 10%::10%, which implies that the Co- and Quad-peaks should rise
approximately to the same height above their respective baselines, which seems to be fairly
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close to the observed result. For the points 50%::50% and 90%::90%, the situation is clearer
since the respective local frequencies θ3 = 0 and θ4 = π/2 then imply that only the Co-plot
should have a peak for the point 50%::50% and only the Quad-plot should have a peak for
the point 90%::90%, again in agreement with the impression based on Figure 5. The global
spectrum in Figure 5 (red line) does not reveal any of this local spectral structure.
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Figure 5. Co-, Quad-, and Phase-plots for three diagonal points: The bivariate local trigonometric model
in Equations (22) and (23), phase changes

(
θ1, θ2, θ3, θ4

)
= (π/3, π/4, 0, π/2), shown as sign-adjusted

horizontal lines. The frequencies αi are shown as vertical lines. The local Gaussian spectra detect
structures that are not detected by the ordinary spectrum.

The examples investigated in Figures 1–5 do not satisfy the requirements needed for
the asymptotic results (both for the global and local cases) to hold true; in particular, the
local Gaussian cross-correlations will, in these cases, not be absolutely summable.7 Despite
this, the examples are still of interest since they show that an exploratory tool based on the
local Gaussian spectra in this case (with a truncation at m = 10) can detect information that
is in agreement with what could be expected based on the parameters used in the models
for
(

Y1,t, Y2,t

)
.

The underlying model will, of course, not be known when a real multivariate time
series is encountered, so it is important to estimate the local Gaussian cross-spectrum at
a wide range of points v in the plane and a wide range of truncation levels m. This kind
of investigation can be performed using the heatmap and distance plots seen in Figures 2, 4
and 7.

Even when it might not be obvious how to interpret the results shown in the Co-,
Quad-, and Phase-plots, it should be noted that they can be used as an exploratory tool
that can detect nonlinear traits in the observations. Moreover, these plots can also be used
to investigate if a model fitted to the data contains elements that can mimic the observed
features. The recipe for this approach would then be to first select a model, then estimate
parameters based on the available sample, and finally use the resulting fitted model to
generate independent samples of the same length as the sample. Section 3.2 will show an
example of this approach, cf. Figures 9 and 12. Further details related to this are given in
Section S5.1.

3.2. A Real Multivariate Time Series and a Poorly Fitted GARCH-Type Model

This section will show how the Co-, Quad-, and Phase-plots can be used as an ex-
ploratory tool on a financial dataset, and then it will be seen how this approach also can
be used to obtain a visual impression of the quality of a multivariate GARCH-type model
fitted to these data. The multivariate time series sample to be considered in this section
will be a bivariate subset of the (log-returns of the) tetravariate EuStockMarkets-sample
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from the datasets-package of R, R Core Team (2020). This dataset was selected since it has
a length that should be large enough to justify the assumption that the observed features in
the Co-, Quad-, and Phase-plots are not solely there due to small sample variation.

The EuStockMarkets contains 1860 daily closing prices collected in the period 1991–1998,
from the following four major European stock indices: Germany DAX (Ibis), Switzerland
SMI, France CAC, and UK FTSE. The data were sampled in business time, i.e., weekends
and holidays were omitted. The log-returns of the EuStockMarkets values gives a dataset(
Y1, Y2, Y3, Y4

)
= (DAX, SMI, CAC, FTSE) that seems natural to model with some multi-

variate GARCH-type model, and the R-package rmgarch, Ghalanos (2022a), was used for
that purpose. Note that the present paper only aims to show how this kind of analysis can
be performed, so only one very simple model was investigated—which thus gave a rather
poor model for the data at hand.

The local Gaussian approach presented here is based on a pseudo-normalization of
the marginal distributions. It is thus, in essence, properties of the copula structures of the
time series that are revealed here, and a practitioner should supplement this approach by
methods that also extract information from the original marginals.

3.2.1. The DAX–CAC Subset of the EuStockMarkets-Log-Returns

The log-returns of the bivariate EuStockMarkets-subset
(
Y1, Y3

)
= (DAX, CAC), of

length 1859, will now be investigated.8 The individual pseudo-normalized traces of these
observations are shown in Figure 6, and it will be from these pseudo-normalized observa-
tions that the local Gaussian cross-correlations will be computed.

EuStockMarkets Y1 = DAX

−2

0

2

0 500 1000 1500

EuStockMarkets Y3 = CAC

−2

0

2

0 500 1000 1500

Figure 6. The pseudo-normalized log-reurns of the DAX- and CAC-components from the
EuStockMarkets-data, which will be investigated further in Figures 7–9.

A local Gaussian investigation requires that some points v must be selected, and thereafter
an in-depth investigation can be performed for the selected points. The heatmap and distance
plots can be useful for the task of identifying interesting points along the diagonal, as seen in
the Figure 7, where the m = 10 truncated Co- and Quad-spectra are presented for the DAX-
and CAC-components of the log-returns of the EuStockMarkets-data.

The scale indicators for the heatmap plots in Figure 7 reveal that it is the Co-spectrum
that dominates, and it is clear that the situation in the tails is different from the one in the
center. The asymmetry between the upper and lower tail is not immediately visible from
the heatmap part of Figure 7, but it is easy to see from the distance part of the plot that the
local Gaussian interdependency structure is stronger in the lower tail.

From the information in Figure 7, it can now be seen that it could be of interest
to compare the behavior in the tails with that at the center. The selected points v are
highlighted in Figure 7 with the help of added lines (the heatmap part) and circles (the
distance part). These points v are the same as those used for Figures 3 and 5, i.e., the
diagonal points v whose coordinates correspond to the 10%, 50%, and 90% percentiles of
the standard normal distribution.
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Figure 7. Co- and Quad-heatmaps, distance plot: Based on
(

Y1,t+h, Y3,t

)
with Y1,t+h and Y3,t being,

respectively, the DAX- and CAC-components shown in Figure 6. Asymmetric situation, with higher
values in the lower tail. The diagonal points used in Figures 8 and 9 are indicated with lines/points.

The estimates of the local Gaussian cross-correlations might degenerate toward +1
or −1 if the points v are too far out in the tails. It is thus of interest to check the behavior
of these estimates for the given sample before the computationally costly production of
pointwise confidence intervals (based on resampling) is undertaken. The result of this
investigation of the estimated local Gaussian cross-correlations ρk`:v(h) is seen in Figure 8,
where a wide range of values for h is included. The observed values of ρ̂k`:v(h) indicate
that degeneration of the estimates are not a problem for these points.
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Figure 8. Local Gaussian cross-correlations ρ̂k`:v(h) for three diagonal points: between
(

Y1,t+h, Y3,t

)
,

where Y1,t+h and Y3,t are the DAX- and CAC-components shown Figure 6.

It seems to be the case that the local Gaussian spectrum can detect nonlinear structures
even with a rather low truncation level m, but the value m = 10 used in this paper is
solely selected in order to present a proof-of-principle. For an actual investigation it would
be natural to investigate a wider range of different lags h, such as those seen in Figure 8,
in order to check what kind of behavior is observed. The interested reader will find a
sensitivity analysis of m in Section S3.4, which is based on the values seen in Figure 8.

Figure 9 shows the Co-, Quad-, and Phase-spectra obtained from the m = 10 truncated
global and local spectra for the three selected diagonal points. A solid red line represents
the estimate of the ordinary cross-spectrum f m

k`(ω), whereas a solid blue line represents
the estimate of the local Gaussian cross-spectrum f m

k`:v(ω). The 90% pointwise confidence
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intervals were created based on R = 100 block-bootstrap replicates using a block length of
L = 25 for the circular-index-based block bootstrap for tuples resampling strategy developed in
JT22. Details related to this resampling strategy are given in Section S5 in the Supplementary
Material, and the sensitivity analysis in Section S5.3 reveals that the results in this case are
stable over a wide range of block lengths.
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Figure 9. Co-, Quad-, and Phase-plots for three diagonal points: between
(

Y1,t+h, Y3,t

)
, where Y1,t+h

and Y3,t are the DAX- and CAC-components shown in Figure 6. The local Gaussian spectra detect
structures that are not detected by the ordinary spectrum.

The three points considered in Figure 9 all lie on the diagonal, since it seems easier
to give an interpretation for those points. In particular, the point 10%::10% represents
a situation where the market moves down both in Germany and France, whereas the
points 50%::50% and 90%::90% similarly represent cases where the market either is stable
or moves up in both countries. For the purpose of the present paper, it suffices to point
out that the Co-, Quad-, and Phase-plots of Figure 9 indicate that the data contain nonlinear
traits, which in particular is visible in the Co-plot for the point 10%::10% and for all the plots
related to the point 90%::90%. It should be noted that the Co-plots at the frequency ω = 0
simply give a weighted sum of the local Gaussian cross-correlations (between

(
Y1,t+h, Y3,t

)
)

seen in Figure 8, so the Co-plot peaks at ω = 0 for the points 10%::10% and 90%::90% are
thus as expected, and the lack of a Co-plot peak at ω = 0 for the point 50%::50% also seems
natural in view of Figure 8. It should also be noted that the ω = 0 peak for the 90%::90%
Co-plot is lower than the corresponding peak for 10%::10%, but this seems, in this case, to be
due to the low truncation level used for the plots, i.e., these two peaks attain approximately
the same height when a higher truncation level is applied.

It seems, for the particular parameter configuration that generated the plots in Figure 9,
to be the case that the point 90%::90% has the most interesting Quad- and Phase-plots, but
again, as noted above, it may be premature to place too much emphasis on this particular
plot given the uncertainties involved in the selection of the bandwidth b and the truncation
level m. As mentioned before, the effects of changes to the block length L, are quite minimal,
cf. the discussion in Section S5.3, in the Supplementary Material.

It should also be noted that a low number of bootstrapped replicates can be a source
of small sample variation for the width of the estimated pointwise confidence intervals,
and this is important to keep in mind if a minor gap is observed between the pointwise
confidence intervals for the local and global spectra. Such gaps could appear or disappear
when the algorithm is used to generate new computations based on the same number of
bootstrapped replicates, a behavior that, in particular, has been observed for the rightmost
peak/trough of the Quad- and Phase-plots at the point 90%::90% in Figure 9. This kind of
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ambiguity can be countered by increasing the number of bootstrapped replicates, but that
was not carried out for the present example due to the increased computational cost.

The peak at the center of the 90%::90% Phase-plot in Figure 9 seems to be significantly
different from the global spectrum, which strengthens the impression that something of
interest might be present at that frequency. However, it is important to keep in mind
that this impression is based on the present combination of bandwidth and truncation
level—and there are, at the moment, no data-driven methods for the selection of these
parameters. (A positive phase difference is consistent with the 90%::90% cross-correlation
plot in Figure 8, which might indicate that the DAX is leading over CAC when the market is
going up. We were not able to find similar evidence in the ordinary spectrum-based litera-
ture, but there are other methods for determining lead–lag relationships using comparisons
in terms of intensity of jumps of the two series involved, cf. Eyjolfsson and Tjøstheim (2023)
for the index pair S&P 500 and Nikkei 225, and Aït-Sahalia et al. (2015) in their investigation
of financial contagion.)

Note that the shiny-interface in the R-package localgaussSpec should be used if it is
of interest to pursue a further analysis of the local Gaussian spectra of the log-returns of
the EuStockMarkets-data, since that enables an interactive investigation that shows how
the estimates vary based on different bandwidths b and truncation levels m. Moreover, as
discussed in Section S5.3, it is also possible to check how the selection of the block length
L for the bootstrap procedure developed in JT22 influences the widths of the pointwise
confidence intervals in the Co-, Quad-, and Phase-plots.

3.2.2. A Simple Copula-GARCH-Model Fitted to the EuStockMarkets Log-Returns

It might not be obvious how to interpret the Co-, Quad-, and Phase spectra based on the
log-returns of the EuStockMarkets-data, but they do at least provide an approach where
nonlinear dependencies might be detected from a visual inspection of the plots.

Furthermore, it is possible to use this as an exploratory tool in order to investigate
whether a model fitted to the original data is capable of reproducing nonlinear traits that
match those observed for the data. The procedure is straightforward:

1. Fit the selected model to the data.
2. Perform a local Gaussian spectrum investigation based on simulated samples from

the fitted model. The parameters should match those used in the investigation of the
original data.

3. Compare the plots based on the original data with corresponding plots based on the
simulated data from the model. It can be of interest to not only compare the Co-, Quad-,
and Phase-plots, but also include plots that show the traces and the estimated local
Gaussian auto- and cross-spectra.

For the present case of interest, Item 2 of the list above implies that 100 independent
samples of length 1859 will be used as the basis for the construction of the Co-, Quad-,
and Phase-plots of the fitted model, and the bandwidth b = (0.6, 0.6) will be used for the
estimation of the local Gaussian cross-correlations at the three diagonal points 10%::10%,
50%::50%, and 90%::90%.

The model: The R-package rmgarch was used to fit a simple multivariate GARCH-
type model to the log-returns of the EuStockMarkets-data, in order to exemplify the proce-
dure outlined above, i.e., a copula-GARCH-model (cGARCH) with the simplest available
univariate models for the marginals9 was fitted to the data, and the resulting model was
then used to produce Figures 10–12. See Section S6.3 for further details. Note that this
simple model was selected simply in order to provide a proof-of-principle example for
the investigations encountered later on. It was, in particular, of interest, as discussed in
Section S5.1, to use a “too-simple model” in order to highlight the ideas related to the local
Gaussian sanity testing of parametric models fitted to a sample.

The traces: Figure 10 shows the pseudo-normalized trace of the Y1- and Y3-variables
for one sample from the tetravariate cGARCH-model, and this can be compared with
the corresponding pseudo-normalized trace of the DAX and CAC plot for the pseudo-
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normalized log-returns of the EuStockMarkets-data (see Figure 6). Obviously, a comparison
of one single simulated trace with the trace of the original data might not reveal much, and
it should also be noted that it, in general, might be preferable to compare the traces before
they are subjected to the pseudo-normalization, since that could detect if the model might
fail to produce sufficiently extreme outliers.

cGARCH, Y1

−2

0

2

0 500 1000 1500

cGARCH, Y3

−2

0

2

0 500 1000 1500

Figure 10. The pseudo-normalized pairs
(

Y1,t+h, Y3,t

)
from a sample from the cGARCH model fitted

to the EuStockMarkets-data, where Y1,t+h and Y3,t correspond to the DAX- and CAC-components
shown in Figure 6.

The local Gaussian correlations: Boxplots, based on the 100 independent estimates
of the local Gaussian cross-correlations from the cGARCH-model, are shown in Figure 11.
These can be compared with the local Gaussian cross-correlations estimated from the
original sample, shown in Figure 8. It should be noted that the computational cost for
the production of the boxplots in Figure 11 is substantially larger than the cost for the
production of the simpler plots shown in Figure 8, so it is preferable to restrict the attention
to a shorter range of lags in Figure 11. Note also that the wide range of lags included in
Figure 8 is related to the desire for an initial investigation of the sensitivity of the truncation
level m, and it is, as seen here, possible to judge the suitability of the fitted model from the
shorter range of lags included in Figure 11.
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Figure 11. Local Gaussian cross-correlations ρ̂k`:v(h) for three diagonal points, based on samples of

the pseudo-normalized pairs
(

Y1,t+h, Y3,t

)
from the cGARCH model fitted to the EuStockMarkets-

data, where Y1,t+h and Y3,t correspond to the DAX- and CAC-components shown in Figure 6. These
values were used for the construction of Figure 12.

The impression from the lags included in Figure 11 is that the medians of the estimated
local Gaussian cross-correlations for the point 50%::50% are quite close to zero, whereas
the medians for the points 10%::10% and 90%::90% are mostly slightly above zero. Almost
none of the boxes for the two latter points appear to be positioned in a manner consistent
with the desired outcome for a good match with the corresponding estimated values in
Figure 8, and it might thus be ample reason to suspect that this cGARCH-model might
better be replaced with another model instead.

The Co- Quad-, and Phase-plots: Figure 12 shows the local Gaussian spectra for the
same points v and the same configuration of parameters as those used in Figure 9.
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Figure 12. Co-, Quad-, and Phase-plots for three diagonal points, based on samples of the pseudo-

normalized pairs
(

Y1,t+h, Y3,t

)
from the cGARCH model fitted to the EuStockMarkets-data, where

Y1,t+h and Y3,t correspond to the DAX- and CAC-components shown in Figure 6. A comparison with
Figure 9 reveals that this model failed to pick up some of the local interdependency structures seen in
the EuStockMarkets-data.

The Co-, Quad-, and Phase-plots of Figure 12 look as if they could originate from
i.i.d. white noise—which comes as no surprise in view of the information about the local
Gaussian cross-correlations in Figure 11. The Co-plots for the two points 10%::10% and
90%::90% show that the estimates of the m-truncated local Gaussian co-spectra, i.e., the
blue dashed lines, might have a peak at ω = 0—but the 90% pointwise confidence intervals
are too wide to support a claim that these peaks are significant. A further comparison of
these two Co-plots with the corresponding Co-plots in Figure 9 (beware of different scales
for the axes) shows that the confidence intervals from Figure 12 are too narrow (at ω = 0)
to encompass the peaks observed in Figure 9—which indicates that the selected model
might be a rather bad approximation to the log-returns of the EuStockMarkets-data. It thus
seems advisable to look for some other model instead, a natural conclusion given that no
effort whatsoever was made with regard to finding reasonable marginal distributions for
the copula-GARCH-model used in this discussion.

It should be noted that a local Gaussian spectra comparison of the original data and the
fitted model in practice also should include a comparison of the local Gaussian auto-spectra
of the marginals, as was performed in JT22. These auto-spectra plots (not included in this
paper, but see Section S3.2.1 for some related heatmap and distance plots) can provide some
additional information useful for the model selection process. In particular, if a model
selection algorithm for GARCH-type models is used to pick one marginal model from
a given collection of marginal models, then an investigation based on the local Gaussian
auto-spectrum might reveal if the selected marginal model captures the local traits of the
corresponding marginal observations in a reasonable manner.

The preceding discussion was restricted to three diagonal points, but the local Gaussian
sanity testing of a fitted parametric model can also be performed for points outside of the
diagonal. Such an approach was discussed for the univariate case in JT22 [Appendix F.2],
and a natural extension to the multivariate case is presented in Section S5.1 in the online
Supplementary Material.

4. Conclusions

The local Gaussian auto-spectrum from JT22 can, as seen in this paper, be extended to
cover the multivariate case, too—and estimates of the m-truncated local Gaussian cross-
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spectrum f m
k`:v(ω) can be used to detect nonlinear cross-temporal dependencies between the

marginals Yk,t and Y`,t of a multivariate time series
{

Yt =
(

Y1,t, · · · , Yd,t

)}
t∈Z

.

The resulting local Gaussian approach to spectral analysis can, in particular, be used to
detect if the interdependency structure of the time series under investigation deviates from
being Gaussian. For time series whose ordinary auto- and cross-spectra are flat, any peaks
and troughs from the local Gaussian approach can then be considered indicators of local
nonlinear traits and local periodicities.

The m-truncated estimates f̂ m
k`:v(ω) can, as discussed for GARCH-models in Section 3.2,

also be of interest with regard to local comparisons of models fitted to a given sample. In
particular, it is possible to use this approach to check if a model fitted to the data can
reproduce local traits detected in the original sample, and an investigator can thus use
a local Gaussian sanity test of the fitted models as a supplement to other model selection
methods.

All the examples in this paper can be reproduced with the help of the scripts that are
included as a part of the R-package localgaussSpec. The interested reader can run these
scripts, and then use the integrated shiny-application from this R-package to investigate
how the resulting plots change when the tuning parameters in the estimation algorithm
are modified. This enables a much deeper inspection of the results than the static plots
contained in this paper. These scripts can also be used as templates for new investigations,
and they can hopefully help any interested readers to test out the local Gaussian approach
to spectral analysis on their own data.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/econometrics11020012/s1. The online Supplementary Material,
contains the proofs of the theoretical results, discussions related to the sensitivity of the different
input parameters in the estimation algorithm, and also a discussion of the sensitivity of the block
length in the bootstrapped-based resampling algorithm that was developed in JT22 for the local
Gaussian spectral investigation. The Supplementary Material also contains a discussion related to
how the local Gaussian spectra (based on samples) of a parametric model can be compared to the
local Gaussian spectra from the sample the model was fitted to. The reproduction of all the results in
this paper can be achieved with the help of the scripts contained in the R-package localgaussSpec,10

and details about this are also available in the Supplementary Material. The Supplementary Material
ends with a discussion related to the construction of the test data used for the sanity testing of
the estimation algorithm, and this part also highlights some limitations that a practitioner should
keep in mind when the local Gaussian approach is used in the extreme tails of the sample at hand.
Note that the references Birr et al. (2019); Bollerslev and Ghysels (1996); Brockwell and Davis (1986);
Ghalanos (2022b); Klimko and Nelson (1978); Künsch (1989); Politis and Romano (1992) are cited in
the Supplementary Material.
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Notes
1 This multivariate approach was initiated in the first author’s Ph.D. thesis, available at https://bora.uib.no/handle/1956/16950.

The version in this paper has been extended with new methods and visualizations that were developed due to review comments
related to the univariate theory published in JT22.

2 This is due to the way the local Gaussian correlation is defined; see Tjøstheim and Hufthammer (2013) for details.
3 The corresponding coordinates are (−1.28,−1.28), (0, 0), and (1.28, 1.28).
4 The Amplitude-plots are not included here since the interesting details (in most cases) would already have been detected by the

other plots.
5 If you have a black and white copy of this paper, then read “blue” as “light” and “red” as “dark”.
6 The dotted lines represent the means of the estimated values, whereas the 90% pointwise confidence intervals are based on the

5% and 95% quantiles of these samples.
7 In this respect, the situation is similar to the detection of a pure sinusoidal for the global spectrum.
8 The corresponding script in the R-package localgaussSpec enables an investigation of all the combinations between DAX, SMI,

CAC, and FTSE, but only the DAX–CAC subset will be discussed here.
9 See Ghalanos (2022a) for details about the cGARCH-model and other options available in the rmgarch-package.

10 Use remotes::install_github("LAJordanger/localgaussSpec") to install the package. See Section S6.1 in the online Supple-
mentary Material for further details.
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