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Abstract: Using 3D CNNs on high-resolution medical volumes is very computationally demanding,
especially for large datasets like UK Biobank, which aims to scan 100,000 subjects. Here, we demon-
strate that using 2D CNNs on a few 2D projections (representing mean and standard deviation across
axial, sagittal and coronal slices) of 3D volumes leads to reasonable test accuracy (mean absolute
error of about 3.5 years) when predicting age from brain volumes. Using our approach, one training
epoch with 20,324 subjects takes 20–50 s using a single GPU, which is two orders of magnitude faster
than a small 3D CNN. This speedup is explained by the fact that 3D brain volumes contain a lot of
redundant information, which can be efficiently compressed using 2D projections. These results are
important for researchers who do not have access to expensive GPU hardware for 3D CNNs.

Keywords: brain age; 3D CNN; 2D projections; deep learning

1. Introduction

Predicting brain age from magnetic resonance imaging (MRI) volumes using deep
learning has become a popular research topic recently [1–13]; see Tanveer et al. [14] for
a recent review. More traditional machine learning methods such as regression (often
using different features such as the size of different brain regions) have also been used
for predicting brain age [15–17]. If there is a large difference between the predicted brain
age and the biological age of a patient, one can suspect that some disease is present and
the difference is therefore an important biomarker [4,18,19]. The motivation behind this
is that the brain may age more quickly due to different diseases. Virtually all of the
previous deep-learning-based works have used 3D convolutional neural networks (CNNs)
to predict brain age, or trained 2D CNNs on all slices in each volume and then combined
all the slice predictions for a prediction for the entire volume [2,6,9]. Since 3D CNNs are
computationally demanding and require a lot of GPU memory, we therefore propose to
instead use 2D projections of the 3D volumes. Compared to previous approaches that use
2D CNNs on volume data [2,6,9], we only use 1–6 images per patient (compared to using
all 100–300 slices in a volume).

Using 2D CNNs has many benefits compared to 3D CNNs. For example, 2D CNNs
can use cheaper hardware (important for low-income countries), can use networks pre-
trained on ImageNet or RadImageNet [20] (there are very few pre-trained 3D CNNs)
and in general benefit from the more mature and better optimized 2D CNN ecosystem.
They can also have fewer parameters (which can benefit federated learning due to lower
bandwith consumption). Furthermore, due to the faster training it is much easier to tune
the hyperparameters.
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Langner et al. [21] demonstrated that 2D projections of full-body MRI volumes can
be used to train 2D CNNs to predict different measures like age. Since brain volumes
contain less anatomical variation compared to full-body volumes, it is not clear if the same
approach is well suited for brain volumes. Furthermore, Langner et al. only used mean
intensity projections, while we also use the standard deviation projections (to better capture
the variation between slices).

2. Materials and Methods
2.1. Data

The experiments in this paper are based on T1-weighted brain volumes from
29,035 subjects in UK Biobank [22–24]. The age range is 44–82 years with a resolution
of 1 year; see Figure 1 for the age distribution. The subjects were divided into 20,324
for training, 4356 for validation and 4355 for testing. FSL FAST [25] was used for each
skull-stripped volume, to obtain maps of gray matter (as they have proven to yield bet-
ter age predictions compared to raw MRI volumes). These gray matter volumes were
zeropadded, symmetrically, to match the largest grid (matrix size), resulting in volumes
of 256 × 256 × 208 voxels. Each volume was then projected into six 2D images, which
represent the mean and standard deviation across axial, sagittal and coronal slices (for one
subject at a time). See Figure 2 for the six projections of one subject. The original dataset is
about 1.5 TB as 32 bit floats.
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Figure 1. Age distribution for the 29,035 subjects used in this work. The individual bars are further
divided to reflect the proportion of each gender within that age group.
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Figure 2. Top: mean grey matter likelihood projections on coronal, axial and sagittal planes, for one
subject. Bottom: standard deviation grey matter likelihood projections on coronal, axial and sagittal
planes, for the same subject.

2.2. Two-Dimensional Projections

In this work, we implemented a set of 2D CNNs using the Julia programming language
(version 1.6.4) [26] and the Flux machine learning framework (version 0.12.8) [27], wherein
the aforementioned projections—typically with two channels each—were fed into their
respective stack of convolutional and auxiliary layers (see Figure 3). Instead of training a
single multi-channel CNN, three separate CNNs were trained as the important features for
sagittal images may be different from the important features for axial images, for example.
Each CNN produced 256 features, which were concatenated and fed into a fully connected
layer ending in one node with linear output.

Figure 3. Our proposed approach to obtain efficient brain age prediction using 2D projections of 3D
volumes. Each volume is summarized as six 2D images, which represent the mean and standard
deviation across axial, sagittal and coronal slices. These 2D images are then fed into three 2D CNNs,
and the resulting feature vectors are concatenated and fed into a fully connected layer to predict the
brain age.
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The models tested had 13 convolutional layers for each projection (axial, coronal or
sagittal). The convolutional stacks had 4 filters in the first layer, which then progressed
as the resolution was reduced to 256 filters as mentioned earlier. To explore how some
hyperparameters affect the accuracy, the number of convolutional layers was increased to
19 and 25. Furthermore, the number of filters per convolutional layer was also decreased
by 50% or increased by 100%. The models had from a little more than 0.8 million to over
8 million trainable parameters.

The training was performed using mean squared error (MSE) as a loss function. Batch
normalization and dropout regularization (probability 0.2) were used after every second (or
for the models with more layers, third or fourth) convolutional layer, or between the dense
layers (probability 0.3 or 0.5). In all cases, the layers follow the order convolution/dense
layer→ batch normalization→ activation→ dropout→ convolution/dense layer, in accor-
dance with the usage in the articles introducing batch normalization and dropout [28,29].
It has been demonstrated that using dropout and batch normalization together can cause
disharmony, but we believe this phenomenon to be alleviated by the layers following the
dropout that precede the next batch normalization, especially since these layers always
include an increase in the number of features, which Li et al. indicate would be helpful [30].
The dropout rate was arrived at empirically during preliminary tests (not published in this
article), which also seems to belie any significant dysergies. Optimization was carried out
using the Adam optimizer, with a learning rate of 0.003. Training was always performed
for 400 epochs, and the weights were saved every time the validation loss decreased. Fur-
thermore, the training was also performed where the weights of the three 2D CNNs were
fixed to be the same (here called iso).

Data augmentation was tentatively explored using the Augmentor module [31],
wherein an augmentation pipeline was constructed. The augmented data set consisted
of the unaugmented set concatenated with three copies that had been passed through a
pipeline of small random pertubations in the form of scaling, shearing, rotation and elastic
deformation. This set was randomly shuffled for each epoch of training. As of yet, the code
has not successfully been made to work with on-the-fly augmentation, nor have we been
able to utilize GPUs for these calculations.

Training the networks was performed using an Nvidia (USA) RTX 8000 graphics
card with 48 GB of memory. A major benefit of our approach is that all the training
images fit in GPU memory (when augmentation was not used), making the training
substantially faster since the images did not need to be streamed from the main memory
or from the hard drive. One epoch of training with 6 projections from 20,324 subjects
took 20–50 s for models with 13 convolution layers per projection (which can be compared
to 1 hour for a 3D CNN trained with 12,949 subjects [7]). Our code is available at https:
//github.com/emojjon/brain-projection-age (accessed on 1 September 2023), and a Julia
code for an example network is given in Figure 4.

https://github.com/emojjon/brain-projection-age
https://github.com/emojjon/brain-projection-age
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1 Chain(
2 Parallel(
3 var "#61#77"() ,
4 Chain(
5 Conv((3, 3), 2 => 4, σ, pad=1), # 76 parameters
6 Conv((3, 3), 4 => 4, pad=1, stride=2, bias=false), # 144 parameters
7 BatchNorm(4, σ), # 8 parameters , plus 8
8 Dropout (0.2) ,
9 Conv((3, 3), 4 => 8, σ, pad=1), # 296 parameters

10 Conv((3, 3), 8 => 8, pad=1, stride=2, bias=false), # 576 parameters
11 BatchNorm(8, σ), # 16 parameters , plus 16
12 Dropout (0.2) ,
13 Conv((3, 3), 8 => 16, σ, pad=1), # 1_168 parameters
14 Conv((3, 3), 16 => 16, pad=1, stride=2, bias=false), # 2_304 p
15 BatchNorm (16, σ), # 32 parameters , plus 32
16 Dropout (0.2) ,
17 Conv((3, 3), 16 => 32, σ, pad=1), # 4_640 parameters
18 Conv((3, 3), 32 => 32, pad=1, stride=2, bias=false), # 9_216 p
19 BatchNorm (32, σ), # 64 parameters , plus 64
20 Dropout (0.2) ,
21 Conv((3, 3), 32 => 64, σ, pad=1), # 18_496 parameters
22 Conv((3, 3), 64 => 64, pad=1, stride=2, bias=false), # 36_864 p
23 BatchNorm (64, σ), # 128 parameters , plus 128
24 Dropout (0.2) ,
25 Conv((3, 3), 64 => 128, σ, pad=1), # 73_856 parameters
26 Conv((3, 3), 128 => 128, pad=1, stride=2, bias=false), # 147 _456 p
27 BatchNorm (128, σ), # 256 parameters , plus 256
28 Dropout (0.2) ,
29 Conv((4, 4), 128 => 256, σ), # 524 _544 parameters
30 var "#52#67"() ,
31 ),
32 Chain(
33 # Omitted for brevity
34 ),
35 Chain(
36 # Omitted for brevity
37 ),
38 ),
39 Dense (768 => 10, σ), # 7_690 parameters
40 Dense (10 => 1), # 11 parameters
41 ) # Total: 100 trainable arrays , 2_009_369 parameters ,
42 # plus 36 non -trainable , 1_512 parameters , summarysize 40.289 KiB.
43

Figure 4. A report on a typical network automatically generated by the Flux framework, expressed as
Julia code. Here the Parallel structure holds the three stacks (represented by Chain structures within
the Flux framework) of convolutional layers (and some auxiliary layers), which process axial, sagittal
and coronal projections. Here σ denotes the activation function employed after a layer. Because the
three stacks are very similar, only the first one is shown. The odd looking expressions in lines 3 and
30 are anonymous functions used to suitably reformat the data.

Figure 4. A report on a typical network automatically generated by the Flux framework, expressed as
Julia code. Here the Parallel structure holds the three stacks (represented by Chain structures within
the Flux framework) of convolutional layers (and some auxiliary layers), which process axial, sagittal
and coronal projections. Here, σ denotes the activation function employed after a layer. Because the
three stacks are very similar, only the first one is shown. The odd-looking expressions in lines 3 and
30 are anonymous functions used to suitably reformat the data.

3. Results

Table 1 shows the test prediction accuracies and training times for previously published
papers (using 3D CNNs, or 2D CNNs on all slices) and our approach using 2D projections.
While several papers used the UK Biobank dataset, the test sets are different, which makes
a direct comparison of the test accuracy difficult (we would need to implement and train
all other networks on our specific data). Table 2 shows the results from changing the
hyperparameters, and when training with fewer subjects. As expected, a smaller training
set deteriorates the test accuracy. Increasing the number of filters per layer has a small
positive effect, while the effect of increasing the number of convolution layers is not so
clear.
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Table 1. Comparison of our 2D projection approach and previous publications on brain age prediction
(using 3D CNNs, or 2D CNNs on all slices), regarding number of training subjects (N), brain age
test accuracy (mean absolute error (MAE) in years, RMSE in parenthesis) and training time. Iso
here refers to the fact that the three parallel 2D CNNs (for axial, sagittal and coronal projections) are
forced to use the same weights. Even though several publications use the UK Biobank data, a direct
comparison of the test accuracy is not possible as different test sets, in terms of size and the specific
subjects, were used. The available training times were rescaled to a single GPU, if multi-GPU training
was mentioned. The training time for our approach is presented for early stopping, and for the full
400 epochs in parenthesis.

Paper/Settings Approach N Subjects Test Accuracy Parameters Training Time

Huang et al., 2017 [2] 2D slices 600 4.00 MAE - 12 h
Cole et al., 2017 [3] 3D CNN 1601 4.16 MAE 889,960 72–332 h

Wang et al., 2019 [4] 3D CNN 3688 4.45 MAE - 30 h
Jonsson et al., 2019 [5] 3D CNN 809 3.39 MAE - 48 h

Bashyam et al., 2020 [6] 2D slices 9383 3.70 MAE - 10 h
Peng et al., 2021 [7] 3D CNN 12,949 2.14 MAE 3 million 130 h

Bellantuono et al., 2021 [8] Dense 800 2.19 MAE - -
Gupta et al., 2021 [9] 2D slices 7312 2.82 MAE 998,625 6.75 h
Ning et al., 2021 [10] 3D CNN 13,598 2.70 MAE - 96 h

Dinsdale et al., 2021 [11] 3D CNN 12,802 2.90 MAE - -
Lee et al., 2022 [12] 3D CNN 1805 3.49 MAE 70,183,073 24 h

Dropout between conv
0.2 dropout rate

Ours, 3 mean channels 2D proj 20,324 3.55 (4.49) 2,009,261 22 min (3 h 53 min)
Ours, 3 std channels 2D proj 20,324 3.51 (4.43) 2,009,261 24 min (3 h 30 min)
Ours, all 6 channels 2D proj 20,324 3.53 (4.44) 2,009,369 24 min (3 h 26 min)

Ours, all 6 channels, iso 2D proj 20,324 3.46 (4.38) 827,841 25 min (4 h 36 min)

Dropout between dense
0.3 dropout rate

Ours, 3 mean channels 2D proj 20,324 3.70 (4.66) 2,009,261 22 min (3 h 12 min)
Ours, 3 std channels 2D proj 20,324 3.67 (4.62) 2,009,261 27 min (4 h 27 min)
Ours, all 6 channels 2D proj 20,324 3.56 (4.47) 2,009,369 27 min (3 h 32 min)

Ours, all 6 channels, iso 2D proj 20,324 3.63 (4.56) 827,841 28 min (4 h 23 min)

Dropout between conv
0.2 dropout rate

trained with augmentation
Ours, 3 mean channels 2D proj 20,324 1 3.44 (4.31) 2,009,261 >3 days 2

Ours, 3 std channels 2D proj 20,324 1 3.40 (4.33) 2,009,261 >3 days 2

Ours, all 6 channels 2D proj 20,324 1 3.47 (4.40) 2,009,369 >3 days 2

Ours, all 6 channels, iso 2D proj 20,324 1 3.85 (4.80) 827,841 >3 days 2

1 The model is trained with an augmented set of 20,324 + 60,972 = 81,296 pseudo subjects, but all are derived from
the original 20,324 subjects. 2 This was a preliminary exploration of whether augmentation was motivated. For
more competitive speeds, further optimisation is required

Our approach is substantially faster compared to previously published papers, even
though we are using the largest training set, while our test accuracy is worse. Using the
standard deviation to produce 2D projections leads to a slightly higher accuracy, compared
to using the mean across slices. Using both mean and standard deviation projections
sometimes provides a small improvement, compared to only using the standard deviation.
Forcing the three 2D CNNs to use the same weights (referred to as iso) sometimes leads
to a higher accuracy, compared to using three independent CNNs. Data augmentation
helps to further improve the accuracy, but is currently much slower. To better visualize
the relationship between real and predicted age, these are plotted against each other in
Figure 5 for an example model.
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Table 2. Here, we show variations of other aspects of the model in order to evaluate their effect. All
modifications are relative to the models in the second section of Table 1. The training time for our
approach is presented for early stopping, and for the full 400 epochs in parentheses.

Settings Approach N Subjects Test Accuracy Parameters Training Time

Dropout between conv
0.2 dropout rate

trained using only
2000 subjects

Ours, 3 mean channels 2D proj 2000 4.05 (5.09) 2,009,261 18 min (22 min)
Ours, 3 std channels 2D proj 2000 4.01 (5.08) 2,009,261 20 min (22 min)
Ours, all 6 channels 2D proj 2000 4.06 (5.13) 2,009,369 7 min (22 min)

Ours, all 6 channels, iso 2D proj 2000 4.13 (5.18) 827,841 8 min (27 min)

Dropout between conv
0.2 dropout rate

trained using only
6376 subjects

Ours, 3 mean channels 2D proj 6376 3.75 (4.74) 2,009,261 7 min (58 min)
Ours, 3 std channels 2D proj 6376 3.73 (4.72) 2,009,261 4 min (58 min)
Ours, all 6 channels 2D proj 6376 3.73 (4.73) 2,009,369 50 min (1 h 7 min)

Ours, all 6 channels, iso 2D proj 6376 3.77 (4.75) 827,841 53 min (1 h 16 min)

Dropout between conv
0.2 dropout rate

half as many filters
Ours, 3 mean channels 2D proj 20,324 3.61 (4.51) 505,037 37 min (2 h 40 min)

Ours, 3 std channels 2D proj 20,324 3.61 (4.57) 505,037 43 min (3 h 3 min)
Ours, all 6 channels 2D proj 20,324 3.49 (4.40) 505,091 17 min (3 h 10 min)

Ours, all 6 channels, iso 2D proj 20,324 3.49 (4.39) 209,167 40 min (4 h 52 min)

Dropout between conv
0.2 dropout rate

twice as many filters
Ours, 3 mean channels 2D proj 20,324 3.45 (4.39) 8,015,333 25 min (4 h 51 min)

Ours, 3 std channels 2D proj 20,324 3.45 (4.37) 8,015,333 23 min (4 h 52 min)
Ours, all 6 channels 2D proj 20,324 3.40 (4.30) 8,015,549 23 min (4 h 55 min)

Ours, all 6 channels, iso 2D proj 20,324 3.42 (4.33) 3,293,773 19 min (5 h 39 min)

Dropout between conv
0.2 dropout rate

with 19 convolution layers
per stack rather than 13
Ours, 3 mean channels 2D proj 20,324 3.56 (4.50) 2,599,697 37 min (4 h 24 min)

Ours, 3 std channels 2D proj 20,324 3.49 (4.40) 2,599,697 50 min (4 h 39 min)
Ours, all 6 channels 2D proj 20,324 3.40 (4.28) 2,599,805 31 min (4 h 43 min)

Ours, all 6 channels, iso 2D proj 20,324 3.37 (4.26) 1,024,653 60 min (5 h 44 min)

Dropout between conv
0.2 dropout rate

with 25 convolution layers
per stack rather than 13
Ours, 3 mean channels 2D proj 20,324 3.49 (4.41) 3,189,985 1 h 22 min (5 h 29 min)

Ours, 3 std channels 2D proj 20,324 3.47 (4.38) 3,189,985 1 h 20 min (5 h 27 min)
Ours, all 6 channels 2D proj 20,324 3.50 (4.47) 3,190,093 1 h 37 min (5 h 46 min)

Ours, all 6 channels, iso 2D proj 20,324 3.48 (4.38) 1,221,465 1 h 14 min (7 h 26 min)
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Figure 5. Comparison of real and predicted age in the test set of 4355 subjects, for a model with
19 convolution layers for each projection and using all six channels. The coefficient of determination
r2 is 0.691.

While several measures could be employed to measure the accuracy of the model,
we prefer reporting the mean absolute error on the test set and have also included the
root of the mean squared error on the same. This is partly because the former is the most
common measure to report in models predicting brain age, and the latter was natural to
include because we used the mean squared error as the loss function during training (partly
because these measures have the unit years, which we feel make them more intuitive).
As an example, the coefficient of determination r2 calculated on the test set for the model
visualized in Figure 5 is 0.691. It is, however, uncertain to what extent r2 lends itself to
measure non-linear models such as this.

In a preliminary study, we trained the 2D CNNs repeatedly with 1–6 input projections
from the original intensity volumes (the results largely follow the same pattern as grey
matter likelihood but with slightly lower accuracy) to see which projections are the most
important for the network, resulting in a total of 64 combinations. This was repeated
for two learning rates, for a total of 128 trainings. Figure 6 shows the decrease in loss
when adding each channel, averaged over said trainings. Clearly, the standard deviation
projections are more informative compared to the mean intensity projections.

In the process of training the models, RMSE for both the training set and validation
set was observed. While these values are not listed for each model, we noted that for the
validation set the values closely follow those for the test set. For the training set, RMSE
was typically little more than half that of the test set (at early stopping), indicating some
overfitting. As one might expect, this effect became more pronounced as the numbers of
trainable parameters grew.
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Figure 6. The effect—in the preliminary study on raw intensity volumes—of adding additional
channels on the prediction accuracy, averaged over 128 trainings when using different combinations
of input channels (64 different input combinations for 2 different learning rates). Adding the standard
deviation images (marked with dots in this plot) from the different views has the largest effects and
the mean images the smallest.

4. Discussion

Our results show that our 2D projection approach is substantially faster compared
to previous work, although several papers do not report the training time. The speedup
will, in our case, not be as large for GPUs with smaller memory, as it is then not possible to
put all the training images in the GPU memory (for a preliminary test on a 11 GB card, the
training took 3–4 times longer, but this can probably be further optimized). Nevertheless,
the possibility to use cheaper hardware is important for many researchers. Compared to
other 2D approaches, which use all slices in each volume, our 2D projection approach is
substantially faster compared to Huang et al. [2] and Bashyam et al. [6], and our accuracy
is also better. Compared to Gupta et al. [9], our approach is faster while our accuracy is
lower. Our test accuracy is in general slightly worse compared to 3D CNNs, but our work
should rather be seen as a proof of concept. It would be interesting to instead use 2D CNNs
pre-trained on ImageNet or RadImageNet [20] as a starting point, instead of training from
scratch. However, this option is currently more difficult in Flux compared to other machine
learning frameworks. Yet another way to improve test accuracy is to use an ensemble
of networks. Using the mean prediction of 5–10 networks will most likely improve the
accuracy, while still only requiring about 125–250 min of training.

Although our proposed solution results in a lower accuracy compared to much more
time-consuming 3D approaches, an approximate brain age estimate can still be valuable for
diagnostic purposes. For example, if a person’s biological age is 35 years and the predicted
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brain age is 50 years, a slightly lower or higher prediction will still lead to the conclusion
that the person’s brain is abnormal.

Langner et al. [21], who used 2D projections of full-body MRI scans (not including
the head), obtained a mean absolute error of 2.49 years when training with 23,120 subjects
from UK Biobank (training the network took about 8 h). It is difficult to determine if
the higher accuracy compared to our work is due to using a VGG16 architecture (pre-
trained on ImageNet), or due to the fact that full-body scans contain more information
regarding a person’s age, or that the full-body scans in UK Biobank contain separate images
representing fat and water. No comparison with a 3D CNN is included in their work.

The demographic in the UK Biobank dataset is relatively homogenous (94.6% of
participants were of white ethnicity) and there is evidence of a “healthy volunteer” selection
bias [32]. Our 2D projection models are therefore expected to perform less well when
applied to data from a more diverse population (e.g., regarding neurological disease, brain
size, ethnicity, age). However, this is also true for 3D CNNs trained on UK Biobank data.
Whether 2D or 3D CNNs are more affected by a more diverse dataset will be explored in
future research.

In future work, we also plan to investigate the effect of adding additional images
(channels) that represent the third and fourth moment (skew and kurtosis) across slices,
since the results indicate that the standard deviation images are more informative compared
to the mean intensity images. Another idea is to use principal component analysis (PCA)
across each direction, to instead use eigen slices that represent most of the variance. As
can be seen in Table 1, adding more channels will not substantially increase the training
time as a higher number of input channels will only affect the first layer of each 2D CNN.
This is different from adding more training images to a 2D CNN using each slice in a
volume independently, where the training time will increase more or less linearly with
more images.

5. Conclusions

The conclusion is that using 2D projections from 3D volumes results in large speedups,
compared to 3D CNNs. The accuracy is slightly lower with our approach, but we believe
that the results can still be used to, for example, detect abnormal brains.
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