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Abstract

Haminoea are herbivorous, coastal snails occurring in temperate and tropical
waters of the Atlantic and Eastern Pacific oceans, with one species present in
temperate South Africa (Indian Ocean). The genus is taxonomically difficult as
several available nominal species were introduced based on shell descriptions
alone, or described based on subtle differences in morpho-anatomical features,
without a phylogenetic molecular framework. Fifteen species are currently ac-
cepted as valid in recent scientific literature and field guides (eight Eastern
Atlantic, one temperate Indian Ocean, four Western Atlantic and three Eastern
Pacific). Here we generate the first complete phylogeny (Bayesian and Maximum
Likelihood) of this genus based on multilocus molecular data (COI, 12S rRNA,
16S rRNA, 28S rRNA) using a taxon set accumulated over a period of 15years,
coupled with species delimitation analyses methods (ABGD, ASAP, bPTP) and
morpho-anatomical studies. The goal of this study is to provide insights into the
taxonomy, phylogenetic relationships and geographical distributions of species
while generating a framework for future systematic reviews of the genus, as well
as to study speciation and historical biogeography. Our results rendered four pos-
sible hypotheses of species diversity: with 14, 15, 19 and 20 candidate species and
point to the fact that several taxa presently regarded as valid might be conspecific
(e.g. H. orteai-H. templadoi-H. exigua; and H. alfredensis-H. antillarum-H. orbig-
nyana), while highlighting the existence of a complex of four or five species often
identified as H. elegans. Pervasive nomenclatural problems in the genus, includ-
ing with the type species H. hydatis, are highlighted and discussed.
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1 | INTRODUCTION

The marine gastropods of the genus Haminoea Turton &
Kingston in Carrington, 1830 have been long considered to
have a worldwide distribution, inhabiting temperate and
tropical shorelines (Burn & Thompson, 1998; Malaquias
& Cervera, 2006; Rudman, 1971). Yet, Oskars et al. (2019)
and Oskars and Malaquias (2019) found Haminoea to be a
paraphyletic assemblage of five distinct evolutionary lin-
eages; three mostly tropical and restricted to the Indo-West
Pacific (Haloa Pilsbry, 1921, Lamprohaminoea Habe, 1952
and Bakawan Oskars & Malaquias, 2020a), one confined
to Australasian (Papawera Oskars & Malaquias, 2020b)
and Haminoea proper, geographically restricted to the
Atlantic Ocean (including the Mediterranean Sea), the
Eastern Pacific Ocean and with a single lineage repre-
sented in temperate stretches of the Indian Ocean coast-
line of South Africa.

The small, globose, semi-translucent and thin shells
of these five genera are similar in shape, colour and size,
which coupled with a lack of broad comparative mor-
phological studies and phylogenetic frameworks, led the
majority of authors to accept Haminoea as the only valid
genus across the world (e.g. Burn & Thompson, 1998;
Cervera et al., 2004; Gosliner et al., 2008; Malaquias &
Cervera, 2006; Thompson, 1981; Valdés et al., 2006). The
modern concept of Haminoea was proposed by Oskars
et al. (2019) and Oskars and Malaquias (2019) who iden-
tified several diagnostic features to separate it from their
Indo-West Pacific closely related genera, namely the
higher number of lateral radular teeth, the presence of
a muscular penis and a Hancock organ with a perfoliate
structure.

Species of Haminoea are herbivorous and live predom-
inantly in estuaries and coastal lagoons, where they are
often found on seagrass, algae or sandy-muddy bottoms,
but can also occur on rocky shores in tidepools or shal-
low depths always among algal mats (Boulch-Bleas, 1983;
Malaquias et al., 2002, 2004, 2009; Rudman, 1971).

At present, eight species of Haminoea are recog-
nized as valid in the Eastern Atlantic (EA) between the
southern shores of the British Isles and Angola in West
Africa, namely H. hydatis (Linnaeus, 1758; type locality
Mediterranean Sea), H. navicula (Da Costa, 1778; type
locality Weymouth, Dorset, England), H. orbignyana
(Férussac, 1822; type locality near La Rochelle, Bay of
Biscay, France), H. elegans (Gray, 1825; type locality south
of British Isles and Mediterranean Sea), H. orteai Talavera,
Murillo & Templado, 1987 (type locality Salinas del Rasall,
Murcia, Spain), H. templadoi Garcia, Pérez-Hurtado &
Garcia-Gomez, 1991 (type locality Huelva, Spain), H.
exigua (Schaefer, 1992; type locality Adriatic Sea, Italy/
Croatia) and H. fusari (Alvarez, Garcia & Villani, 1993; type

locality Lake Fusaro, Italy) (Malaquias & Cervera, 2006;
Martinez & Ortea, 1997; Rolan & Ryall, 1999). In the
Western Atlantic (WA) four species are often accepted
as valid in current literature occurring between Florida,
USA and Rio Grande do Sul in Brazil, namely H. ele-
gans, H. antillarum (d'Orbigny, 1841; type locality Saint
Thomas, U.S. Virgin Islands), H. petitii (d'Orbigny, 1841;
type locality Cuba) and H. succinea (Conrad, 1846; type
locality Tampa Bay, Florida, USA) (Caballer et al., 2015;
Garcia et al., 2008; Rios, 2009; Valdés et al., 2006). In the
Eastern Pacific (EP) three species are commonly recog-
nized as valid between Alaska and Panama, namely H.
ovalis Pease, 1868 (type locality Tahiti, French Polynesia),
H. virescens (Sowerby, 1833; type locality Pitcarin Island
or California, USA; see Valdés, 2019) and H. vesicula
(Gould, 1855; type locality San Diego, California, USA)
(Behrens & Hermosillo, 2005; Hermosillo et al., 2006;
Valdés & Camacho-Garcia, 2004). In addition, one species
of Haminoea occurs in temperate stretches of the Indian
Ocean coastline of South Africa (tWIO), namely H. al-
fredensis Bartsch, 1915 (type locality Port Alfred, South
Africa), distributed on both sides of the Cape Peninsula
eastwards up to East London (Gosliner, 1987).

In total, 15 species of Haminoea are currently accepted
as valid in current scientific literature and field guides.
However, in a literature search we were able to identify
48 nominal species, most of them of uncertain taxonomic
status because of short and ambiguous species descrip-
tions based only on shells, which are similar in shape, co-
lour and dimensions (e.g. Leach, 1852 for H. dilatata; A.
Adams, 1850 for H. glabra; Baker & Hanna, 1927 for H.
angelensis; Petuch, 1987 for H. taylorae).

Furthermore, even among the ‘well-established” spe-
cies, there are questions about the taxonomic status of
several of them. For example, the definition of the type
species of the genus—H. hydatis—is problematic. This
species was described by Linnaeus (1758) based on shells
(unclear if only one or several) from the Mediterranean
Sea but later assumed by various authors to be conspecific
with specimens occurring between the British Isles and
the Adriatic Sea, and characterized by having a smooth
shell, a bilobed prostate separated by a constricted re-
gion and a radula with the first lateral tooth denticu-
lated (Pruvot-Fol, 1954; Tchang, 1931; Thompson, 1981;
Thompson & Brown, 1976; Vayssiere, 1885). Another
case is the species name H. elegans introduced by
Gray (1825) based on shells from the British Isles and
the Mediterranean Sea, yet, the name is commonly at-
tributed to one of the tropical western Atlantic species
(e.g. Caballer et al., 2015; Malaquias, 2014; Marcus, 1976;
Marcus & Marcus, 1967; Redfern, 2001; Valdés et al., 2006)
and also to spiralled shells occurring in tropical West
Africa (Gabon, Republic of the Congo, Sdo Tomé and
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Principe, Angola; Bernard, 1984; Martinez & Ortea, 1997;
Rolan & Ryall, 1999). Likewise, the name H. ovalis is com-
monly employed to designate animals with tiny orange or
yellow dots on the body occurring in the Eastern Pacific,
between Mexico and Peru (Behrens & Hermosillo, 2005;
Hermosillo et al., 2006; Oskars & Malaquias, 2019; Valdés
& Camacho-Garcia, 2004); nonetheless, H. ovalis was
described by Pease (1868) from Tahiti and was recently
reassigned to the genus Lamprohaminoea by Oskars
and Malaquias (2020c), who confirmed the species to
be widespread in the Indo-West Pacific and absent from
the Eastern Pacific. In fact, in a previous study, Oskars &
Malaquias (2019, as Haminoea sp.1 475) showed that dot-
ted orange haminoeids from Peru were phylogenetically
related to all other Atlantic and Eastern Pacific Haminoea
species.

In the present study, we generate the first complete
phylogeny of the genus Haminoea based on multilocus
molecular characters using a taxon set accumulated over
a period of 15years, which we believe to likely cover the
entire diversity of the genus and include a comprehensive
geographical coverage of the distribution of species. The
main goals of this paper are to define the number of spe-
cies in Haminoea and provide insights on their taxonomy,
phylogenetic relationships and geographical distributions
while establishing a framework for future detailed system-
atic reviews and studies on speciation and historical bio-
geography of this genus.

2 | MATERIALS AND METHODS

2.1 | Sampling of taxa

Specimens of Haminoea were obtained during fieldwork
in Bermuda (2009), Venezuela (2010), Brazil (2012),
Bahamas (2013), Portugal (2014) and Florida Keys, USA
(2015), from donations from colleagues, and loans of mu-
seum collections; e. g., University Museum of Bergen,
Norway (ZMBN), The Natural History Museum, London,
UK (NHMUK), The Natural History Museum of Florida,
USA (UF), Museu Municipal do Funchal (Historia
Natural) (MMF(HN)), California Academy of Sciences
(CAS), Museo de Ciencias Naturales de Madrid (MCNM),
Bavarian State Collections of Zoology (ZSM) and Cal Poly
Pomona Invertebrate Collection, USA (CPIC).

For the majority of the 15 recognized valid species (see
Introduction) our dataset includes specimens from the
type localities or nearby places (50-100km). The excep-
tions are H. orbignyana, H. orteai, H. antillarum and H.
succinea, but in these last four cases, specimens were still
assembled from the same biogeographical areas of the
type localities (see Introduction and Table 1).
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Outgroup taxa consisted of species from two additional
genera, namely Haloa (represented by four species) and
Lamprohaminoea (represented by one species). The trees
were rooted with Smaragdinella, a genus closely related to
Haminoea (Oskars et al., 2019). In total, this study includes
206 specimens (94 EA Haminoea, 69 WA Haminoea, 18 EP
Haminoea, 5 tWI10 Haminoea and 16 outgroup taxa) and a
total of 608 sequences, of which 426 were newly generated
for this study (Table 1).

2.2 | DNA extraction,
amplification and sequencing

DNA was extracted from tissue obtained from the foot
or parapodial lobes using the Qiagen DNeasy Blood and
Tissue Kit (catalogue no. 69504) following the protocol
recommended by the manufacturer. For small specimens
with shell height between 2 and 3 mm, the whole speci-
men was digested and hard parts such as the shell, rad-
ula and gizzard plates were collected for morphological
examination.

Partial sequences of the mitochondrial genes cytochrome
¢ oxidase subunit I (COI; primers: LCO1490 (F) GGTCA
ACAAATCATAAAGATATTGG and HCO2198 (R) TAAAC
TTCAGGGTGACCAAAAATCA by Folmer et al., 1994; C_
GasF1_t1 (F) TGTAAAACGACGGCCAGTTTTCAACAAA
CCATAARGATATTGG and GasR1_t1 (R) CAGGAAACAG
CTATGACACTTCWGGRTGHCCRAARAATCARAA by
Steinke et al., 2016), 16S rRNA (16S; primers: 16Sar-L (F)
CGCCTGTTTATCAAAAACAT and 16Sbr-H (R) CCGGT
CTGAACTCAGATCACGT by Palumbi et al., 1991), and
12S rRNA (12S; primers: 12SA-L (F) AAACTGGGATTAGA
TACCCCACTAT and 12SB-H (R) GAGGGTGACGGGCG
GTGTGT by Palumbi, 1996), as well as the nuclear gene 28S
rRNA (28S; LSU5-F TAGGTCGACCCGCTGAAYTTAAGCA
by Littlewood et al., 2000; 900-F CCGTCTTGAAACACGGA
CCAAG by Olson et al., 2003; LSU1600-R AGCGCCATCCA
TTTTCAGG by Williams et al., 2003; ECD2S-R CTTGGTCC
GTGTTTCAAGACGG modified from Littlewood et al., 2000
by Williams et al., 2003) were amplified and sequenced.
Polymerase chain reactions (PCR) were performed in 25pL
volume and for the COI and 28S genes followed the proto-
cols described by Malaquias et al. (2009), whereas for the
16S the protocol described by Oskars et al. (2015) was used,
and for the 12S gene we applied the protocol described by
Oskars and Malaquias (2019). Annealing temperatures were
45°C for the COI gene, 51.5°C for 168, 49.4°C for 12S and
52°C for the 28S gene.

For samples that did not amplify with Qiagen Tagq,
additional 25pL reactions were set with TaKaRa Ex Taq
Polymerase HS (250 U) (Cat. number: RR006A), following
the protocol described by Oskars et al. (2015). For some
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samples, the amount of MgCl, and DNA was increased,
and the volume of water adjusted accordingly in the PCR
cocktail. In addition, 10x dilutions of DNA extractions
were attempted for samples that did not yield results with
all previous approaches.

The quality and quantity of PCR products were as-
sessed by gel electrophoresis following standard methods
(see Eilertsen & Malaquias, 2013). Successful PCR prod-
ucts were purified according to the EXO-SAP method
described by Eilertsen and Malaquias (2013). Sequence
reactions were run on an ABI 3730XL DNA Analyser
(Applied Biosystems).

2.3 | Phylogenetic analyses

Geneious (v. R11, Kearse et al., 2012) was used to inspect,
edit, and assemble the chromatograms of the forward
and reverse DNA strands. All sequences were blasted
in GenBank to check for contamination. Single gene
sequences were aligned with Muscle (Edgar, 2004) im-
plemented in Geneious. Alignments were trimmed to a
position where at least 50% of the sequences had nucleo-
tides and missing positions at the ends were coded as miss-
ing data (?). All sequences were deposited in GenBank
(Table 1).

Blocks of ambiguous data in the single gene alignments
of the ribosomal genes were identified and excluded using
Gblocks with stringent and relaxed settings (Talavera &
Castresana, 2007) (Appendix S1). The JModeltest software
(Darriba et al., 2012) was used to find the best-fit model of
evolution for each single gene dataset under the Akaike in-
formation criterion (Akaike, 1974). Seven individual gene
analyses were initially performed: COI (Appendix S2; 681 bp;
GTR+G), 12S Gblocks-relaxed (Appendix S3;355bp; TVM +
G),12S Gblocks-stringent (Appendix S4; 267 bp; TrN + 1+ G),
16S Gblocks-relaxed (Appendix S5;420bp; GTR+ G +1), 16S
Gblocks-stringent (Appendix S6; 393bp; TVM+I1+G),
28S Gblocks-relaxed (Appendix S7; 1047 bp; TN + 1+ G) and
28S Gblocks-stringent (Appendix S8; 1036 bp; GTR+1+G).

Bayesian inference analyses (BI) using MrBayes
(Huelsenbeck & Ronquist, 2001) were run through the por-
tal CIPRES Science gateway V.3.3 (https://www.phylo.org)
on the initial single gene datasets (Appendix S2-S8) and
all-genes concatenated dataset (Figure 1, Appendices S9
and S10; 2492bp). For the ribosomal genes, the datasets
selected for concatenation were those that yielded the
best-resolved trees with higher node support. All samples
with sequences available for two or more genes were used
in the concatenation analysis. In addition, samples with a
single gene from unique geographical localities or with a
unique phylogenetic position in the single gene trees were
also included in the concatenated dataset. The analyses

used three parallel runs of 5 million generations for the
single gene analyses and 15 million generations for the
concatenated dataset, with sampling every 100 genera-
tions. The concatenated dataset was partitioned by gene
and each partition was run under the best-fit model of evo-
lution. Convergence of runs was inspected in Tracer v1.7
(Rambaut et al., 2018) with a burn-in set to 25% by com-
paring the likelihood of trees drawn by the independent
runs. Posterior probabilities (PP) higher than 0.95 were
considered statistically significant (Alfaro et al., 2003;
Huelsenbeck et al., 2001). A Maximum Likelihood anal-
ysis (ML) of the concatenated dataset was run with the
RAXML (v.8.2; Stamatakis, 2014) plug-in implemented in
Geneious. The analysis was partitioned by gene and run
under the ‘rapid bootstrapping and search for best scor-
ing ML tree’ algorithm, using a random starting tree and
the model GTR+G+1 with 1000 bootstrap (BS) repli-
cates. Bootstrap values higher than 75% were considered
significantly supported (Felsenstein, 1985). Consensus
phylograms were converted to graphics in FigTree v1.3.1
(Rambaut & Drummond, 2009).

COI uncorrected p-distances were calculated in MEGA
(ver. 7, Kumar et al., 2016) (Table 2) within and between
candidate species, by plotting pairwise uncorrected p-
distances against total distances (transversions + transi-
tions). This is a common approach to calculate genetic
distances in Heterobranchia taxonomic research (e.g.
Austin et al., 2018; Carmona et al., 2011; Jorger et al., 2012;
Kienberger et al., 2016).

2.4 | Molecular species
delimitation analyses

We used the DNA sequences of the COI gene to evalu-
ate candidate species by using the Automatic Barcode
Gap Discovery delimitation method (ABGD) (Puillandre
et al., 2012) and the Assembling Species by Automatic
Partitioning (ASAP) (Puillandre et al., 2021) under default
settings and three different models of molecular evolution
(Jukes—Cantor (JC69), Kimura TS/TV =2.0 (K80), Simple
Distance). In addition, we used the bPTP method (Poison
tree processes) on the same COI dataset. This method is
intended to delimiting species that are consistent with
the phylogenetic species concept and model speciation in
terms of the number of substitutions (Zhang et al., 2013).

2.5 | Haplotype network analyses

Haplotype networks were generated based on the COIDNA
sequences for the groups recognized by the phylogenetic
analyses as putative candidate species, but which were
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FIGURE 1 Cartoon based on

the Bayesian phylogeny of Haminoea
species depicted in Appendix S9 and
resulting from the combined analysis of
the mitochondrial COI, 12S rRNA and
16S rRNA and nuclear 28S rRNA gene
markers. Figures above branches are
Bayesian posterior probabilities and those
below branches are bootstrap values
derived by maximum likelihood. The
trees were rooted with Smaragdinella

sp. and representatives of the genera
Haloa and Lamprohaminoea were
included as outgroups. Both rooting and
outgroups were removed for clarity (see
Appendices S9 and S10 for complete
trees). Images groups 1, 7, 14, 19 by
Manuel Malaquias; images groups 8, 10,
11 by Angel Valdés; images groups 2, 4, 6,
9 courtesy of Jakov Prkic; image group 3
courtesy of Marina Poddubetskaia; image
group 12 courtesy of Joana Bahia; image
group 13 courtesy of George Branch;
image group 15 courtesy of Jazmin
Ortigosa; images groups 16, 17 courtesy of
Colin Redfern; image group 18 courtesy
of Marlo Krisberg. Image not available for
group 15.
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clustered together by all or some of the ABGD and ASAP
species delimitation analyses. This was the case for groups
4+5+6; groups 13+ 14+15+16; and groups 18+19. The
COI alignment derived for phylogenetic inference was ed-
ited to remove all sequences from non-target groups using
the text editor programme Notepad++ v.8.3.3. Empty
positions at both ends of the alignments were treated as
missing data, yielding final alignments of 677 bp. The pro-
gramme DnaSP v.5 (Librado & Rozas, 2009) was used to
identify the number and sequences of the different haplo-
types. Notepad++ was additionally used to generate trait
files with geographic area codes based on a binary coding
where 0 stands for sample absent and 1 for sample present
and to edit the file into nexus format (nex). Alignments
and trait files were finally run in PopArt v. 1.7 (Population
Analysis with Reticulate Trees; Leigh & Bryant, 2015) to
create a standard tight compact spanning (TCS; Clement
et al., 2002) network analysis to visualize the relationships
and distances between the individual haplotypes from
different groups and geographical areas. The TCS haplo-
type networks were edited in PopArt for more satisfying
visualization.

2.6 | Morpho-anatomical analysis

The shell and anatomical features of selected specimens
were studied to aid in interpreting the taxonomic status
of some problematic lineages or to address complex taxo-
nomic cases resulting from the molecular phylogenetic
analyses (see Section 4 for details).

The shells were gently separated from the animals
with the aid of forceps. The male reproductive system,
gizzard and buccal bulb were dissected by a dorsal in-
cision through the cephalic shield. Shells were pho-
tographed with a digital DSLR camera equipped with
a macro lens and strobe lights. Shell height (H) was
measured with a digital Vernier calliper. The repro-
ductive system was drawn using a stereo microscope
fitted with a drawing tube and the penial sheath was
removed to expose the penial papilla. The gizzard and
buccal bulb were placed in a solution containing 180 pL.
buffer ATL with 20puL of proteinase K solution (both
from the Qiagen DNeasy® Blood and Tissue Kit) and in-
cubated at 56°C at night in order to clean the gizzard
plates, jaws and radulae. The penial papillae, gizzard
plates, jaws and radulae were mounted on metallic
stubs using carbon sticky tabs and then sputter-coated
with gold-palladium for scanning electron micros-
copy (SEM). Prior to sputter coating and SEM, the giz-
zard plates and penial papillae were dehydrated with
Hexamethyldisilazane (HMDS) by covering each sam-
ple inside small square watch glasses and left to dry

O-WILEY-®

Zoologica Script

between 30 min and 1h inside a fume hood. All samples
were scanned and imaged with a Fei Quanta 450 scan-
ning electron microscope.

3 | RESULTS

3.1 | Phylogenetic analyses

The ribosomal gene datasets selected for concatenation
were the 12S-relaxed, 16S-relaxed and the 28S-stringent.
Though, it must be stressed that differences between
relaxed and stringent datasets were minor in all cases
(Appendix S5-S8). Thus, the all-genes concatenated data-
set was based on the COI (178 sequences), 12S-relaxed
(136 sequences), 16S-relaxed (162 sequences) and 28S-
stringent (134 sequences).

The COI gene analyses rendered 19 groups puta-
tively compatible with candidate species of Haminoea
(Appendix S2). All groups but one (H. orbignyana;
PP =0.88), received maximum or nearly maximum sup-
port. The 12S rendered 18 groups, but clade support was
comparatively lower and often below statistical thresholds;
the group missing is a singleton only represented in the
COI dataset (Haminoea sp. 256 Croatia) (Appendix S2).
The 16S tree rendered 15 groups and clustered together
with no support (PP=0.72) four groups recognized in the
COI analyses (groups 13+14+15+16). None of these
four groups formed supported sub-clades. Only group 13
(H. alfredensis) was nearly supported (PP=0.91) but one
representative branched apart (Appendix S5). The 28S
gene tree was the less resolved with several of the groups
recognized by the mitochondrial gene analyses, rendered
non-monophyletic (Appendix S8). On the contrary, the
concatenated analyses rendered the same 19 groups as the
COI analysis, with two groups represented by singletons
(Haminoea sp. 256 [Croatia; group 2] and Haminoea sp.
543 [Spanish Mediterranean; group 3]), one group (group
14) with moderate support (PP=0.95) and all remain-
ing 16 groups with maximum support (PP=1) (Figure 1,
Appendices S9 and S10).

3.2 | Molecular species delimitation
analyses and genetic distances

The ABGD analyses using the simple distance (SD) and
Jukes-Cantor (JC69) models suggested the presence of 13
candidate species of Haminoea, clustering together groups
44+5+46; groups 13+14+15+16; and groups 18+19.
With the K2P model, the ABGD hypothesized the pres-
ence of 14 species by considering groups 15 and 16 distinct
lineages (Appendix S11).
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The ASAP results based on the three best ASAP-scores
and for the same three evolutionary models used in ABGD
rendered 11 candidate species of Haminoea (SD ASAP-
score =4; JC69 ASAP-score=3.5; K2P ASAP-score=3; SD
genetic threshold =9.3%), 14 species (SD ASAP-score=>5;
JC69 ASAP-score=5; K2P ASAP-score=1.5; SD genetic
threshold=5.9%) and 17 species (SD ASAP-score=4.5;
JC69 ASAP-score=4.5; K2P ASAP-score=6; SD genetic
threshold =3.1%) (Appendix S12). The best ASAP score
was 1.5 retrieved with the K2P model, suggesting 14 can-
didate species. This hypothesizes the same scenario as
with the ABGD method under the same model, render-
ing 14 species and clustering groups 4+ 5+ 6 and groups
13+14+15+16, but separating groups 18 and 19 as dis-
tinct lineages.

The bPTP analysis suggested 20 candidate species, cor-
responding to the same 19 groups rendered by the COI
and concatenated analyses, yet group 17 (H. ‘elegans 3’)
represented by two samples was inferred to correspond to
two putative species (sample 266 from Abaco, Bahamas
and sample 568 from Eleuthera, Bahamas; Table 1,
Appendices S2 and S13).

The estimated uncorrected p-distances between the 19
groups depicted in Figure 1 varied between a maximum
of 19.8% (Haminoea ‘elegans 4’; Western Atlantic [group
7] and Haminoea sp. Mediterranean Sea [group 2]) and a
minimum of 2.4% (Haminoea alfredensis [group 13] and
Haminoea orbignyana [group 14]). Genetic distances be-
tween several sister groups, namely those considered by
the species delimitation methods to be conspecific were

Group 6 - Haminoea “hydatis”

a Group 5 - Haminoea sp.

comparatively low; for example, between groups 13, 14,
15,16 (2.4%-4.7%), between groups 4, 5, 6 (5.1%-7.4%) and
between groups 18, 19 (7.5%). All other sister groups have
genetic distances equal to or higher than 10% (Table 2).
The genetic distance between the two samples of H. ‘ele-
gans 3’ recognized as distinct lineages by the bPTP analy-
ses was 2.4%. This corresponds to the intraspecific genetic
distance for this species depicted in Table 2.

3.3 | Haplotype network analyses

The haplotype network of groups 4 + 5+ 6 formed by sam-
ples from the eastern and central Mediterranean Sea was
well structured with 14 haplotypes and three recognizable
haplogroups separated by 28 substitutions (between groups
4 and 6) and 21 substitutions (between groups 5 and 6).
Only one case of shared haplotypes was detected in group
6 between samples from Spain and France (Figure 2). The
haplotype network of groups 13+14+15+16 with sam-
ples from Europe, West Africa, temperate South Africa
and Caribbean Sea, includes 19 haplotypes and four recog-
nizable haplogroups connected through hypothetical hap-
lotypes (black circles; Figure 3). The highest number of
substitutions among haplogroups was 23 between group
13 (H. alfredensis) and 15 (H. ‘antillarum 2’). The haplo-
type network of groups 18+ 19 formed by samples from
Brazil, Caribbean Sea and Cape Verde Islands includes
21 distinct haplotypes and two recognizable haplogroups
separated by 36 substitutions (Figure 4).

Group 4 - Haminoea “fusari”

CROATIAI
ITALY1
SLVAGENS
CROATIA2
FRANCE

SPAIN

0000000

ITALY2

FIGURE 2 COI haplotype network produced with the TCS method in PopART for groups 4, 5 and 6. Colours of circles refer to the
geographic origin of each haplotype. The relative size of circles is proportional to the number of sequences of that same haplotype. Black

circles refer to hypothetical haplotypes and black bars to mutations.
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Group 16 - Haminoea “antillarum 1”

Group 15 - Haminoea “antillarum 2”

Group 14 - Haminoea orbignyana

O-WILEY-"

Group 13 - Haminoea alfredensis

0@000@0000

FIGURE 3 COI haplotype network produced with the TCS method in PopART for groups 13, 14, 15 and 16. Colours of circles refer to
the geographic origin of each haplotype. The relative size of circles is proportional to the number of sequences of that same haplotype. Black

circles refer to hypothetical haplotypes and black bars to mutations.

4 | DISCUSSION

Our results rendered four possible hypotheses of species
diversity for the genus Haminoea: 19 candidate species
consistent with the number of supported clades in the
phylogenetic analyses (Figure 1); 14 species, where groups
4 (H. ‘fusari’ Mediterranean)+ 5 (Haminoea sp. Selvagens
Islands)+6 (Haminoea ‘hydatis Mediterranean) and
groups 13 (H. alfredensis)+ 14 (H. orbignyana)+15 (H.
‘antillarum 2’ Gulf of Mexico)+16 (H. ‘antillarum 1’
Caribbean) are suggested to be single species; 13 species —
a hypothesis similar to the latter, but where groups 18 (H.
‘elegans 1" EA+WA)+19 (H. ‘elegans 2’ WA) are hypothe-
sized to be one candidate species; and 20 species—similar

to the first hypothesis (19 species) but where group 17 (H.
‘elegans 3) splits in two candidate species.

4.1 | The Haminoea orbignyana-
alfredensis-antillarum complex

Probably, the most surprising result of this study is the
hypothetical conspecificity of the Eastern Atlantic and
Mediterranean Sea species H. orbignyana, with H. alfre-
densis from the temperate Indian Ocean shores of South
Africa, and the Western Atlantic lineages of H. antil-
larum (groups 15 and 16). Despite the fact that our phylo-
genetic analyses (Figure 1) rendered these four lineages
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FIGURE 4 COI haplotype network produced with the TCS method in PopART for groups 18 and 19. Colours of circles refer to the
geographic origin of each haplotype. The relative size of circles is proportional to the number of sequences of that same haplotype. Black

circles refer to hypothetical haplotypes and black bars to mutations.

monophyletic, the genetic distances among them are
comparatively lower varying between a minimum of
2.4% (H. alfredensis and H.orbignyana) and a maximum
of 4.5% (H. antillarum group 16 and H. orbignyana),
with the genetic distance between the two lineages of
H. antillarum estimated at 3.9%. These four lineages are
only supported by the COI gene, whereas the 12S and
28S genes rendered support for the clade containing the
specimens of H. antillarum from Yucatan (group 15), and
the latter gene also provided support for the clade with
specimens of H. alfredensis (Figure 1, Appendices S2,
S3, S8, S10, S11 and S11). None of the four lineages was
supported by the 16S gene analysis, which nevertheless
clustered all representatives together but with low node
support (PP=0.72).

The species H. orbignyana, H. antillarum and H. alfre-
densis are well established in the literature, yet they were
never studied in a comparative framework. A closer look
at the literature together with our own preliminary data
on the morphology of specimens reveals that all these
nominal species share a pear-shaped smooth shell and a
body colouration characterized by dense black pigmenta-
tion along the edges of the cephalic shield and parapodial
lobes. In contrast, H. antillarum has mildly denticulated
inner lateral radular teeth, whereas in H. alfredensis and
H. orbignyana these teeth are smooth. Likewise, whereas
in the latter two species, the proximal lobe of the pros-
tate is wider, conferring the prostate an acorn-like shape,
in H. antillarum seems to be the opposite with the distal
lobe wider compared to the proximal one (Gosliner, 1987;
Macnae, 1962; Malaquias & Cervera, 2006; Marcus &
Marcus, 1967; Thompson, 1981; Valdés et al., 2006;

personal observations), but this requires further anatomi-
cal investigations in order to be confirmed.

Even if our molecular results based on the species
delimitation analyses and genetic distances suggest the
occurrence of a single ubiquitous species with amphi-
Atlantic distribution encompassing the Iberian Peninsula,
the Mediterranean Sea, West Africa including the Canary
Islands, the temperate shores of South Africa in the
Indian Ocean and the western Atlantic along the Yucatan
Peninsula, Florida and Bermuda, this warrants caution
and further corroboration by conchological and morpho-
anatomical data. As highlighted above, H. antillarum
seems to be characterized by relevant anatomical differ-
ences from the digestive and reproductive systems, and
even if genetic distances are comparatively low, this could
be due to different evolutionary rates between species of
Haminoea.

On the contrary, and even in the absence of sound data
on the duration of the pelagic larval stage of Haminoea
(Schaefer, 1996), the confirmed occurrence of specimens
attributed to H. elegans (group 18) on both sides of the
Atlantic (Figure 1; only 0.3% different in the COI gene;
Table 2) supports a high dispersal capability, at least in
some species of the genus (Martinez & Ortea, 1997; cur-
rent study as H. ‘elegans 1’ [group 18]; Figure 1). Thus,
we cannot discard that representatives of the orbignyana-
alfredensis-antillarum complex may have larvae with high
dispersal capability favouring gene flow between distant
populations. However, we must admit that the genetic dis-
tance between the two putative lineages of H. antillarum
from nearby locations, namely the Yucatan side of the
Gulf of Mexico (group 15) and the Florida Keys/Florida
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Peninsula-Bermuda (group 16), estimated at 3.9% and 14
substitutions between these two haplogroups (Figure 3)
challenges this view. Even if the prevalent ocean cur-
rent system in the area suggests putative connectivity
between Yucatan and the Florida Peninsula through the
Loop Current (Gyory et al., 2011), faunal breaks between
tropical Florida and the more temperate/sub-tropical Gulf
of Mexico have been documented for several groups of
molluscs and fish (Briggs, 1974; Lee & O Foighil, 2004;
Mikkelsen & Bieler, 2000; Reeb & Avise, 1990), likely
reflecting seasonal changes in the current systems and
water temperatures oscillations. These factors may hinder
gene flow between the Yucatan and the Florida-Bermuda
populations, creating periods of temporary isolation that
could explain the observed genetic discontinuity.

Another interesting aspect is the sister relationship
between the lineages H. orbignyana (Eastern Atlantic)
and H. alfredensis (temperate South Africa). The cold
water of the Benguela current established at the end of
the Miocene (Siesser, 1980) is regarded as a strong barrier
for temperate and tropical marine coastal species isolating
the faunas of the Atlantic and Indian Oceans, while at the
same time, paleontological and morphological evidence
suggests that this barrier was sporadically bridged by sev-
eral coastal invertebrate organisms (Briggs, 1995; Vermeij
& Rosenberg, 1993). Few molecular evidence for dispersal
from the Atlantic into the Indian Ocean is still available.
This is the case for reef fish (Floeter et al., 2008; Rocha
et al., 2005) and sea slugs (Churchill et al., 2014; Golestani
et al., 2019), which seem to have taken advantage of the
disruption of the Benguela and Agulhas currents during
warmer interglacial periods of the Pleistocene. Because
Haminoea is a genus of Atlantic and Eastern Pacific af-
finity, the sister relationship between H. orbignyana and
H. alfredensis is more parsimoniously explained as being
the result of dispersal of larvae or H. orbignyana into the
Indian Ocean during these warmer periods, with the es-
tablishment of viable populations followed by isolation
after the reestablishment of the current system.

4.2 | The Haminoea elegans complex

Haminoea elegans is characterized by having whitish
translucent spiralled shells and it has been regarded as
widely distributed in the Western Atlantic throughout the
Gulf of Mexico and the Caribbean Sea southwards to Brazil
(Valdés et al., 2006) with records in West Africa between
the Gulf of Guinea and Angola (Bernard, 1984; Martinez
& Ortea, 1997; Rolan & Ryall, 1999). However, the attribu-
tion of the name ‘elegans’ to this tropical amphi-Atlantic
species stems certainly from a misidentification perpetu-
ated in the literature over time. The name H. elegans was

introduced by Gray (1825) based on spiralled shells from
the British Isles and the Mediterranean Sea, and the name
is most certainly a junior synonym of Haminoea navicula,
the only European species with a deeply spiralled shell
(Malaquias & Cervera, 2006).

Our results showed the existence of cryptic diversity in
this ‘species’ with specimens provisionally ascribed by us
to H. elegans splitting in four (or five) clades of possible
species status (groups 7, 17-19; Figure 1, Appendices S2,
S9, S10 and S13). Representatives of groups 17, 18 and
19 clustered together with maximum support, whereas
group 7 branched off elsewhere in the tree (Figure 1,
Appendix S2, S9 and S10).

If, in contrast, our results unequivocally support group
7 as a good species, they are not conclusive about the
eventual status of group 17, with one of the species de-
limitation analysis (bPTP), suggesting the possible occur-
rence of two lineages in this group. However, none of the
single gene and combined analyses retrieved reciprocal
monophyly between sub-clades within group 17. When
present, the sub-clades are not statistically supported
(Appendices S3-S10).

The results are also not entirely conclusive about the
conspecificity of groups 18 and 19 (see Section 3 - theme
3.2). Groups 18 and 19 are the only two in the complex
with a genetic distance between themselves below 10%,
but still moderately high (=7.5%). Moreover, in the hap-
lotype network analysis, they were separated by 36 sub-
stitutions, the largest number of substitutions between
putative conspecific groups among all our haplotype net-
work analyses (Figure 4).

There are several names available in the literature that
could be regarded as previous attempts to describe the
shells variability in the H. elegans complex (e.g. H. guildin-
gii (Swainson, 1840) [shells globose with visible spiral
striae], H. petitii (d'Orbigny, 1841) [shells lacking or with
inconspicuous spiral striae], H. succinea (Conrad, 1846)
[shells cylindrical with tightly arranged spiral striae], H.
taylorae (Petuch, 1987) [shells globose with numerous
fine spiral striae]). These names have been in part consid-
ered synonyms of H. elegans (MolluscaBase, 2022; Valdés
et al., 2006) or hardly used in scientific literature, but our
results show the need to carefully re-evaluate the status
of these names since some of them may apply to lineages
revealed by our analyses.

The only study that provided a comparative analysis of
the various types of shells of ‘H. elegans’ in the Western
Atlantic was by Redfern (2013: 266-268). This author rec-
ognized five different types of whitish shells that could
be associated with H. elegans; four with spiral striae and
one apparently smooth. One of these forms was named
by Redfern (2013) Haminoea elegans proper and the other
four Haminoea A, B, C and D. According to the author,
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Haminoea elegans and Haminoea sp. A are characterized
by globose-quadrate opaque shells with wavy-spiral striae
and a partially concealed involute spire; Haminoea sp. B
by a more oval translucent shell, with numerous tightly
arranged spiral striae and a spire concealed by a callus;
Haminoea sp. C by a globose opaque smooth shell and a
spire concealed by a callus; Haminoea sp. D by cylindrical
translucent shells, with lightly impressed spiral striae and
a spire concealed by a callus.

Here we provide for the first time a phylogenetic frame-
work to properly explore the diversity of the Haminoea ‘el-
egans’ species-complex. Yet confirming whether our four
(or five) candidate species correspond to the shell types
identified by Redfern (2013) and are compatible with the
names available in the literature, requires additional tax-
onomic work based on detailed analyses of conchological
and morpho-anatomical characters.

4.3 | The Haminoea hydatis-
Jusari complex

Another difficult case consists of groups 4, 5 and 6 in our
phylogeny (Figure 1), which were rendered a single can-
didate species by the ABGD and ASAP molecular spe-
cies delimitation methods. These three clades received
maximum or nearly maximum support in both BI and
ML analyses, but interestingly if considered together as a
single clade the support lowers to 0.84 (PP) and 59% (BS),
although this seems to be mostly influenced by the 16S
gene data (Appendix S5). On the contrary, the haplotype
network analysis (Figure 2) recovered the three groups as
distinct, separated by 28 substitutions (between groups 4
and 6) and 21 substitutions (between groups 5 and 6) and
showed a lack of shared haplotypes. Genetic distances
were moderately high, ranging between 5.1% (between
groups 5 and 6), 6.2% (between groups 4 and 6) and 7.4%
(between groups 4 and 5).

Thislarger clade, including the three groups (4 + 5 +6),
contains only specimens from the Mediterranean Sea and
one from the Eastern Atlantic island of Selvagem Grande
(Madeira Archipelago). They are all characterized by a
distinct anatomical feature among Haminoea, namely a
prostate with a constricted zone between the proximal
and distal lobes (see Thompson, 1988). This feature has
been described for the type species of the genus H. hyda-
tis (Talavera et al., 1987; Tchang, 1931; Thompson, 1976,
1981, 1988) and H. fusari (Alvarez et al., 1993). According
to the literature these two species are basically distin-
guished by the presence of denticulated inner lateral
teeth in H. hydatis (Talavera et al., 1987; Tchang, 1931;
Vayssiere, 1885) while they are smooth in H. fusari
(Alvarez et al., 1993).

Haminoea hydatis is the type species of the genus
described by Linnaeus (1758) based on shells from the
Mediterranean Sea. The type specimen illustrated in the
webpage of the Linnean Collections, London (https://
linnean-online.org/16897/#7s=0&cv=0&z=0.0365%2C-
0.0109%2C1.232%2C1.503), is a shell about 9 mm in height
with a smooth surface. Vayssiére (1885) studied spec-
imens from the Gulf of Marseille on the Mediterranean
French coast with smooth shells and a radula with inner
lateral teeth denticulated, which he identified as H. hyda-
tis. Later, Tchang (1931) described the male reproductive
system of specimens from the same region as having a
prostate with the proximal and distal lobes separated by
a narrow tubular region, and Talavera et al. (1987) men-
tioned a smooth, cylindrical pointed penis. Thus, progres-
sively it became established in the scientific literature the
idea that H. hydays (originally only known from shells)
was characterized by having smooth shells, radulae with
denticulated inner lateral teeth and a prostate with a nar-
row region separating the two lobes. This view was rein-
forced by the fact that up until the end of the first half
of the 20th century, the European fauna of Haminoea
was basically restricted to two accepted species; either H.
hydatis with its small smooth shells or H. navicula with
larger and deeply spiralled shells.

However, several species with smooth shells accepted
as valid (see Introduction) were described during the sec-
ond half of the last century, one of them (H. fusari) also
with a prostate with two lobes separated by a narrow re-
gion, but with smooth radular inner lateral teeth (Alvarez
et al., 1993). But the study of the holotype of H. fusari
(MNCN 15.05/5356) revealed in fact the presence of mostly
smooth inner lateral teeth, but interestingly some of them
had the lower half denticulated. Intraspecific radular vari-
ability was described by Malaquias and Cervera (2006) for
H. navicula and might occur also in specimens identified
as H. fusari. This would basically make the two species
anatomically undistinguishable and thus likely conspe-
cific, rendering the name H. fusari a junior synonym of
H. hydatis. In addition, the colour patterns of specimens
in groups 4 and 5 are alike (data not available for group
3), with large unpigmented peri-ocular areas, dark upper
sides of the parapodial lobes and fine bright-white dots
along the edge of the cephalic shield, which further sup-
ports their conspecificity (see Figure 1).

4.4 | The eastern Pacific species

In the Eastern Pacific coastlines of North and Central
America, there are three species of Haminoea com-
monly recognized as valid between Alaska and Panama,
namely H. ovalis, H. virescens and H. vesicula (Behrens
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& Hermosillo, 2005; Hermosillo et al., 2006; Valdés &
Camacho-Garcia, 2004). For this region, our analyses
recognized lineages compatible with these three species.
The species H. virescens (group 11) with pear-shaped
shells and monolobated prostates (Gibson & Chia, 1989;
Valdés, 2019; personal observations) split off as sister to
the eastern Atlantic/Indian Ocean complex H. alfreden-
sis—H. orbignyana-H. antillarum, although with no sup-
port (PP=0.83, BS=59%; Figure 1). A similar pattern was
found for the species H. vesicula (group 8) characterized
by a globose-quadrate shell and bilobed prostate (Gibson
& Chia, 1989; Valdés, 2019; personal observations), which
was rendered sister to the eastern European H. orteai,
but again with no support (PP=0.51, BS=45%; Figure 1).
This phylogenetic pattern with putative speciation across
these two oceanic realms could be explained by processes
related to the uplift of the Isthmus of Panama, which sepa-
rated the Atlantic from the eastern Pacific around 3 Mya
(Coates & Obando, 1996), however, the low support val-
ues hamper any sound explanation.

Finally, we retrieved a lineage morphologically com-
patible with what has been named in recent literature
as H. ovalis (Behrens & Hermosillo, 2005; Hermosillo
et al., 2006; Valdés & Camacho-Garcia, 2004). However,
as explained in the Introduction this name applies to an
Indo-West Pacific species in the genus Lamprohaminoea
(Oskars & Malaquias, 2020c; Pease, 1868). This Eastern
Pacific species has globose smooth shells and a body doted
by abundant tiny orange dots. We could not find any avail-
able name fitting the features known for this lineage,
which thus may represent an undescribed species.

4.5 | Notes on other Atlantic species

An additional five species were recovered by the phylo-
genetic and species delimitation analyses (H. navicula
[group 1], Haminoea sp. [group 2], Haminoea sp. [group
3], H. orteai [group 9], Haminoea sp. [group 12]). The spe-
cies H. navicula is well established, characterized by large
shells, with conspicuous spiral striae and an armed penis
(for details see Lobo-da-Cunha et al., 2018; Malaquias
& Cervera, 2006). The species H. orteai was the first de-
scribed European species characterized by a penis with an
apical crest with 10 lamellae and the peculiarity of lack-
ing an unpigmented periocular area in the cephalic shield
(Talaveraetal., 1987). However, our observations revealed
that the description of this latter feature is not entirely ac-
curate; in fact, like all other species of the genus, H. orteai
has an unpigmented periocular area yet rounded and of
a much smaller diameter. This can even be seen in the
original description of the species (Talavera et al., 1987:
66, figure 15). Later, two additional species also with

penises with apical crests were described for European
waters, namely H. templadoi (Garcia et al., 1991) and H.
exigua (Schaefer, 1992). These two species are morpho-
anatomically very similar to H. orteai when it comes to the
radula, the male reproductive system, the shell and the
reduced diameter of the periocular area. Haminoea temp-
ladoi was described as having a shell with transverse folds
interconnecting longitudinal growth lines and a radula
with the first two inner lateral teeth denticulated (Garcia
et al., 1991: 396, figures 2, 3), but the study of the holotype
(MNCN 15.05/854) showed a radula with only the inner
lateral teeth denticulated. Moreover, according to our in-
terpretation, the distinct shell structure likely relates to
the comparatively larger size of the shell (H=21.6mm). A
thorough systematic review of species combining detailed
morphological work and the current phylogenetic frame-
work is necessary to address the putative conspecificity of
the species H. orteai, H. templadoi and H. exigua.

Three additional and unidentified species were ren-
dered by our analyses; Haminoea sp. [group 12] from Brazil,
and two species represented by single individuals, namely
Haminoea sp. [group 2] from Croatia and Haminoea sp.
[group 3] from Roses, Girona, Spain (Mediterranean Sea).
The specimens from Brazil externally resemble H. ‘ova-
lis’ from the eastern Pacific and are interestingly part of
a fully supported clade which includes the later species
(Figure 1). The remaining two Mediterranean species
might represent undescribed taxa, but this requires ad-
ditional work to be confirmed. The colourations of these
species are quite unique among European species with
more or less uniform orangish and brownish background
colour patterns (Figure 1).

4.6 | Concluding remarks

The genus Haminoea is a difficult taxonomic group with
many available names introduced based on shell descrip-
tions alone or described based on their morpho-anatomical
features outside a phylogenetic molecular framework,
several of them grounded on subtle differences.

The current literature consensus accepts eight species
as valid in the Eastern Atlantic (including the amphi-
Atlantic H. ‘elegans’), four in the Western Atlantic (in-
cluding H. ‘elegans’), three in the Eastern Pacific and
one in temperate South Africa. As explained in the
Discussion, we open the possibility that several of the
Eastern Atlantic taxa, presently regarded as valid spe-
cies, might be conspecific (e.g. H. orteai, H. templadoi,
H. exigua). A re-evaluation of the literature and type
material, preliminary anatomical work, combined with
our molecular phylogenetic framework seem to indicate
that several of the subtle differences used in the past to
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introduce new species might not be sound enough. On
the contrary, there were several cases where our results
were not sufficient to reach definitive conclusions about
the taxonomic status of certain species (e.g. H. alfreden-
sis, H. antillarum, H. elegans, H. orbignyana) and further
morphological work is necessary to understand their di-
versity and draw a robust taxonomic hypothesis. A pre-
liminary combination of conchological, morphological
and phylogenetic data demonstrated that putative cases
of cryptic diversity may, in fact, reflect previously de-
tected differences in shell characters that led to the de-
scription of species currently considered invalid (e.g. the
cryptic species complex H. ‘elegans’).

There are several paradigmatic examples of pervasive
nomenclature confusion that need to be evaluated, such
as the status of the type species H. hydatis, H. elegans—a
name introduced for a European species but largely in
use for western Atlantic animals, and H. ovalis—an ITWP
species in the genus Lamprohaminoea, but a name com-
monly used to also refer to an Eastern Pacific lineage.

With this work, progress was made to underhand the
diversity of Haminoea snails and the relationships be-
tween species, and for the first time a phylogeny of the
genus is presented. This new framework combined with
a detailed study of shells, morpho-anatomy of wet speci-
mens, revision of original descriptions and type material,
can help solve the many issues remaining with the tax-
onomy of Haminoea snails in the Atlantic and Eastern
Pacific Oceans.
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