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Abstract

Objective. Proton therapy is highly sensitive to range uncertainties due to the nature of the dose
deposition of charged particles. To ensure treatment quality, range verification methods can be used
to verify that the individual spots in a pencil beam scanning treatment fraction match the treatment
plan. This study introduces a novel metric for proton therapy quality control based on uncertainties in
range verification of individual spots. Approach. We employ uncertainty-aware deep neural networks
to predict the Bragg peak depth in an anthropomorphic phantom based on secondary charged particle
detection in a silicon pixel telescope designed for proton computed tomography. The subsequently
predicted Bragg peak positions, along with their uncertainties, are compared to the treatment plan,
rejecting spots which are predicted to be outside the 95% confidence interval. The such-produced spot
rejection rate presents a metric for the quality of the treatment fraction. Main results. The introduced
spot rejection rate metric is shown to be well-defined for range predictors with well-calibrated
uncertainties. Using this method, treatment errors in the form of lateral shifts can be detected down to
1 mm after around 1400 treated spots with spot intensities of 1 x 10” protons. The range verification
model used in this metric predicts the Bragg peak depth to a mean absolute error of
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1.107 £ 0.015 mm. Significance. Uncertainty-aware machine learning has potential applications in
proton therapy quality control. This work presents the foundation for future developments in
this area.

1. Introduction

Proton therapy, first theorized by Wilson (1946), exploits the characteristics of charged particles to treat tumors
with highly conformal dose distributions, while sparing healthy tissue much more effectively compared to x-ray
therapy. Electromagnetic interactions cause charged particles to continuously slow down while travelling
through matter, the rate of which is determined by the energy-dependent stopping power of the material
traversed. The such-deposited energy increases with decreasing velocity and reaches its maximum towards the
end of the particle’s range, at the Bragg peak (BP).

Therefore, the deposited dose can be precisely targeted at the tumor. To cover the entire volume, one
treatment strategy is pencil beam scanning (PBS). In this method, coverage is achieved by varying the direction
and energy of a mono-energetic pencil beam in a way to evenly spread out the dose. Different energy levels along
the same beam direction together form a spread-out Bragg peak (SOBP). Lower energies in an SOBP are
irradiated with fewer primary particles, since they will additionally be covered by the dose of higher-range
particles passing the spot along their path. With this strategy, we get a number of distinct treatment spots, which
can individually be verified to get a quality measure over the treatment fraction (Knopfand Lomax 2013).

The Bragg curve makes particle therapy sensitive to range uncertainties, potentially causing the BP to be
displaced compared to the computed treatment plan. The main causes are patient misalignment, organ motion,
and inaccurate dose calculation (Paganetti 2012). To compensate for such uncertainties, it is common practice
to utilize safety margins, which increase the target volume to ensure full tumor coverage. This in turn degrades
the advantages of particle therapy by putting healthy tissue within the safety margins at increased risk.
Alternatively, robust optimization techniques can be used to directly incorporate uncertainties into the
treatment planning process and model treatment either with a probabilistic or a worst-case approach
(Unkelbach et al 2007). Range uncertainties in proton therapy amount to approximately 2.7% + 1.2 mm on
static targets (Paganetti 2012).

In the presence of such uncertainties, methods of quality control have been proposed to ensure correct dose
delivery to the planned target volume. To reduce errors in patient positioning and in the conversion of
Hounsfield unit to relative stopping power (RSP), proton radiography can be used right before a treatment
fraction, as suggested by Schneider and Pedroni (1995). Other methods for quality control are performed shortly
after the treatment fraction, such as positron emission tomography (PET) (Parodi and Enghardt 2000).
However, the delay between treatment and PET measurements can potentially degrade verification ability.

In contrast, in situ range verification aims to assess treatment quality while it is being delivered by
determining the BP positions of the individual beam spots and comparing them to the treatment plan. Such
methods utilize interactions of protons traversing matter, causing the emission of secondary particles, mainly
neutrons and photons, which can be detected outside the patient. The most prominent methods are based on
prompt gamma (PG) detection, e.g. (Kurosawa et al 2012, Smeets et al 2012). There are also efforts to utilize
neutrons (Clarke et al 2016, Marafini et al 2017), or a combination of modalities, e.g. PG and PET (Moteabbed
etal 2011, Choi et al 2020). When using heavier ions for treatment, it is possible to use tracked secondary charged
particles for in situ range verification through interaction vertex imaging (Amaldi et al 2010, Henriquet et al
2012, Gwosch etal 2013).

Since proton interactions do not produce secondary charged particles with sufficient residual range to exit
the patient, in situ range verification with charged secondaries is limited to heavy ion therapy (Kraan 2015).
However, a sufficiently large detector, containing converter material for neutrons and photons in addition to
silicon detectors, can enable charged particle detection with enough readout yield to be usable for range
verification in proton therapy.

One suitable detector for this task is the digital tracking calorimeter (DTC) designed by the Bergen pCT
collaboration (Alme et al 2020). The readout of this high-granularity pixel detector is a large amorphous point
cloud with little apparent relation to the originating treatment spot. However, there are notable differences, such
as vastly different readout yield, that become visible when looking at aggregate properties. The high
dimensionality and complexity of the problem is the ideal scenario to employ the help of machine learning (ML)
techniques.

There are some efforts to incorporate ML into the range verification process. However, most studies are
limited to improving readout by separating the signal from background noise (Lerendegui-Marco et al 2022,
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Figure 1. Material budget for the digital tracking calorimeter as implemented in the GATE Monte Carlo simulation. Figure
reproduced and updated from Alme et al (2020) (CC BY).

Polfetal 2022) or ordering detector interactions (Polf et al 2022). More recently, methods of integrating deep
learning into the range verification procedure itself have been introduced, e.g. by Jiang et al (2023).

This work aims to utilize uncertainty-aware ML for range verification with a detector built for charged
particle detection. The range predictions are used to compute a metric assessing the quality of a treatment
fraction. The efficacy of the developed methods is evaluated on Monte-Carlo-simulated data. In summary, the
contributions of this work are:

(i) The development of a fully machine-learning-based range verification model for proton therapy utilizing
the high-granularity silicon pixel telescope (‘digital tracking calorimeter’) designed by the Bergen pCT
collaboration.

(ii) The introduction of a novel metric ‘spot rejection rate’ for quality control of proton therapy treatment
fractions based on uncertainty-aware ML.

2. Material and methods

2.1. Digital tracking calorimeter

The DTC was designed for proton computed tomography (pCT) (Cormack 1963) by the Bergen pCT
collaboration (Alme et al 2020). It is constructed with sufficient material to stop protons of 230 MeV, the target
energy used in the pCT application. The energy of incoming particles is estimated by sampling the energy
deposition values at 43 distinct depths along the path, reconstructing the individual tracks, and fitting the
sampled values to the differentiated Bragg-Kleeman rule (Bortfeld and Schlegel 1996).

The detector consists first of two tracking layers with small material budget and 57.8 mm distance from layer
to layer, to determine the incoming angle of the tracked particle with as little deflection as possible. Behind the
tracker, separated by an air gap, is the 41-layer detector-absorber sandwich structure constituting the
calorimeter. In between the individual calorimeter layers, aluminum absorbers are used to slow down incoming
particles.

An absorber consists of the two chip carriers (1 mm aluminum) on either side, in addition to 1.5 mm
aluminum solely used as additional absorber material. The first calorimeter layer is preceded only by 1 mm
aluminum as carrier for the front chips of the first calorimeter layer, while all following layers are separated by
the full 3.5 mm aluminum. In the tracker layers, 310 ;zm carbon fiber is used as a chip carrier to reduce
scattering. The estimated material budget for the full detector can be seen in figure 1.

Each of the 43 sensitive layers of the DTC consists of 108 ALICE pixel detector (ALPIDE) chips
(Mager 2016), whichisa3 x 1.5 cm® monolithic active pixel sensor developed by the ALICE collaboration at
CERN. The chips are arranged in twelve horizontal staves, alternating between front and back-facing chips, with
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Figure 2. Schematic representation of the treatment setup as implemented in the MC simulation, with a pediatric head phantom
between the pencil beam source and the DTC.

a2 mm gap between the respective carrier plates. Each stave is a string of nine chips, creating a sensitive area of
27 x 16.4 cm”.

2.2.Monte Carlo simulation

To evaluate the expected performance of the proposed methods, we use Monte Carlo (MC) simulations with
Geant4 Application for Tomographic Emission (GATE) (Jan et al 2004) version 9.2 and Geant4 (Agostinelli et al
2003, Allison et al 2006, 2016) version 11.0.0. We use the recommended physics list OBBC_EMZ.

The target at the isocenter of the simulation is the pediatric head and neck model 715-HN by CIRS Inc.
(Norfolk, VA, United States), digitized into a voxel phantom by Giacometti et al (2017). This means the ground
truth relative stopping power values of the individual materials are known and can be taken directly from table 2,
‘mean experimental values’ from the original paper (Giacometti et al 2017). It is possible to rotate the phantom
around the vertical axis to simulate treatment from different angles.

To test generalizability, a second phantom can instead be used in the simulation: the visible human female
(VHF) head phantom (Ackerman et al 1995), courtesy of the U.S. National Library of Medicine, resampled to a
resolution of 1 x 1 x 1 mm? voxel size, scaled down to 80% to make it comparable in size to the pediatric head
and to fit within the bounds of the DTC. When not otherwise specified, all tests are conducted with the dataset
from the 715-HN phantom only.

As the particle source, we use a pencil beam located 500 mm from the isocenter, pointing parallel to the z-
axis. To achieve total phantom coverage, the beam can be moved in the xy-plane arbitrarily, while maintaining
the same beam direction. The beam shape is Gaussian with o, = 0, = 2 mm, an angular divergence
09 = 04 = 2.5 mrad, and 3 mrad mm beam emittance.

Analogous to the pCT setup described by Alme et al (2020), the DTC is placed distal to the phantom starting
atz =225 mm with the tracker facing the beam. The DTCitself is modeled as homogenous slabs of
270 x 164 mm® with thicknesses according to figure 1, representing a simplified geometry of the final design,
where the sensitive layers will be divided into front and back-chips. Each ALPIDE layer is subdivided into three
different silicon parts: the front electronics, the epitaxial layer (25 m), and the substrate.

The epitaxial layer is the only sensitive volume in the simulation, recording hits in the form of deposited
energy through creation of electron—hole pairs. For this to occur, neutral particles need to interact inside the
sensitive volume, or close to it, to generate charged secondaries depositing energy to be detected. The simulation
setup is schematically depicted in figure 2.

Possible simulated beam energy values range from 60.13 to 150.35 MeV (31 mm and 157 mm range in
water, respectively) with 3 mm water range interval. These values are taken from the open-source treatment
planning system (TPS) matRad (Wieser et al 2017). Relevant spots to consider should be inside the phantom and
not too close to the distal edge, since those would most likely be treated from a different angle. To find those
spots, we run a series of probing simulations with 1 x 10° primaries. They scan the entire xy-plane in 10mm
intervals for different phantom rotations in 30 deg intervals with all available beam energies. For each lateral
position in each rotation, the lowest and highest energy without any primary hits in the detector are determined,
and all energies in the interval are classified as relevant’ spots resulting in 36 258 and 35 673 data points for the
715-HN and the VHF phantom, respectively (Schilling et al 2023).

The number of primary particles per treatment spot is assumed to be in the order of 10” to 10°. To geta
realistic estimate for the worst-case scenario with the least detector readouts, the lower bound of 1 x 107 protons
is used to run full simulations of all relevant spots.
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In addition to the hits from energy deposition in the detector chips, there is a
ProductionAndStoppingActor attached to the phantom’s parent volume, which is a 200 mm cube with
1 mm voxel size, filtered to only primary particles. The actor records how many primary protons stopped in
which voxel. From this data, the ground truth BP position is extracted by aggregating all voxels in each
dimension and fitting a Gaussian function

2
fx)=a- exp(—u) ey

202

along the respective dimension. The means i, j1,, /1, constitute the BP coordinates in the simulation world,
where only i, is considered for the range verification case, henceforth called z.

2.3. Feature extraction

Each of the simulated spots consists of an arbitrary number of hits, denoting energy deposition in sensitive
volumes of the DTC, as well as the RSP image of the phantom according to its current rotation. Feature
extraction is separated into 416 detector features and 201 phantom features, which are extracted from the detector
hits and the RSP image, respectively.

2.3.1. Detector features

To apply ML methods, the point cloud, formed by an arbitrary number of hits, needs to be transformed into a
representation that can be used as input for a neural network. This is done by extracting a fixed number of
detector features from the raw data. However, the data from the simulation does not consider the properties of
the used ALPIDE chip. Therefore, we perform two pre-processing steps before extracting features.

The first step eliminates duplicate hits from the data. Such hits occur for short-range electrons, which can
produce multiple hit entries within the same pixel because the underlying simulation code records a hit at each
step. These hits are binned together by grouping all hits from the same track in the same layer together to be able
to determine the total deposited energy of the particle in this layer. The hits are aggregated by computing the
mean of the x, y, and z-coordinates of the hit positions, and the sum of the energy deposition values. This
procedure has been done similarly in prior work (Pettersen et al 2021).

Secondly, the deposited energy is discretized. The ALPIDE chip consists of binary pixels with charge sharing,
leading to a cluster of pixels being activated around the incident particle. The cluster size is an indicator of the
deposited energy. The reverse relationship from energy deposition E, in keV pum ™" to cluster size # can be
described by the following power fit from experimental data obtained from a previous experiment, rounded to
the nearest integer (Pettersen et al 2019):

n =423 E}®. )

The resulting cluster size can then be turned into a discretized energy deposition by solving the equation for
Ep and converting to MeV. If a hit activated a cluster of size n = 0, it is removed under the assumption that the
deposited energy did not reach the electron threshold at the chip’s diodes. This procedure emulates the energy
resolution of the ALPIDE chip without computing pixel coordinates. We call this method of conversion
‘pseudo-pixels’. Pseudo-pixels cannot simulate the overlap of two clusters from different hits. However, this
problem is negligible, as the hit rate during treatment is too low for overlaps to occur with the readout frame
duration of 10 s used in the DTC.

The following 383 detector features are extracted:
+ Total number of active pixels
+ Total number of clusters (hits)
+ Number of clusters over threshold (5, 20 pixels)
+ Mean and standard deviation of cluster sizes
+ The number of clusters of any given size (1-72)
+ Mean and standard deviation of x- and y-coordinates over each layer (0—42), and the entire detector
+ Number of active pixels in each layer (0—42)

+ Number of clusters (hits) in each layer (0-42)

+ Total energy deposition of the hits in each layer (0-42)

5



10P Publishing

Phys. Med. Biol. 68 (2023) 194001 A Schilling et al

In addition, some of the aforementioned features are combined into 33 higher-level features through linear,
cubic, and exponential (f (x) = a - exp(—b - x) + ¢) fits to the histogram data, along with their mean squared
residuals:

« Active pixels over layer
+ Number of clusters over layer

+ Total deposited energy over layer

2.3.2. Phantom features

The 201 phantom features are comprised of 200 RSP values from 1 mm slices of the phantom in the world in the
direction of beam traversal symmetric to the isocenter, as well as the sum over these values. Each RSP value is
assumed to represent a combined RSP value for the currently traversed millimeter slice of the phantom. This is
achieved by forming the integral at each depth z over all RSP values at that depth across the phantom, weighted
by a given beam model B:

RSP(z) — / B(x, 7, 2) - RSP(x, y, 2)dx dy 3)

B(x, y, z) describes a probability density function for the particle distribution at a given depth z (in water).
The distribution depends on the traversed matter up to depth z, which is intractable for inhomogeneous targets,
such as a voxelized phantom. Furthermore, it depends on the initial beam energy, which we use as one of the
target variables in the multitask ML setting, making it impossible to include the quantity, to avoid a ground
truth leak.

Consequently, the beam model is simplified to a fixed multivariate normal distribution matching the beam
shape at the source to represent the general area which is expected to be traversed by the beam in this spot:

2 2
— — K
L ep| -1 (x ”X) N R 4)
MOy Oy 2 Oy oy
with o, = 0, = 2 mm and (p,, pt,) the coordinates of the beam spot in the xy-plane.
Calculating this integral is computationally expensive because of the discontinuous nature of the RSP image.

In practice, the values are computed by forming a weighted sum over the 1 mm voxels within the aperture of the
detector (272 x 168 mm®) with the value of the distribution in the voxel center as weight:

B(x, }’) =

83.5 135.5

RSP(z) = Z Z B(x, y) - RSP(x, y, 2) (5)

y=-—83.5x=—135.5

The final phantom feature set consists of RSP(2), z € {0,...,199} and the sum of the values RSP ;-

2.4. Machine learning

2.4.1. Model architecture and training regime

The extracted features and labels from above form the dataset used for ML. Basic outlier detection is applied,
shrinking the datasets from 36 258 to 36 244 samples (715-HN) and from 35 673 to 35 670 samples (VHF). The
data is split into training (70%), validation (10%), and test (20%) sets, separately for each phantom. All617
features, as well as the labels, are scaled to ;t = 0 and o = 1 before training a neural network implemented in
PyTorch (Paszke eral 2019).

The network architecture is depicted in figure 3. The features extracted from a full simulation of a treatment
spot constitute the input for three linear hidden layers with 1024, 512, and 128 units, respectively. All layers use
sigmoid activation and 5% dropout (Srivastava et al 2014). The output is one neuron per regression task with no
activation. This architecture can be used for a single task, predicting either the water range R, or the z-coordinate
Z,as well as for multitask learning, where both quantities are predicted simultaneously.

In a multitask setting, the individual losses for the tasks £y and £ have to be combined in order for both
tasks to contribute to the training by influencing backpropagated gradients. One way to do this is to form a
weighted sum of losses. The weights are set to 0.4 and 0.6 for R and Z, respectively, to ensure that the more
important (and more difficult) task Z has more influence during training, resulting in slightly lower errors than
equal weights.

Instead of manually setting weights for the tasks, we additionally use an alternative approach with
automatically learned weights based on homoscedastic (task) uncertainty, introduced by Kendall et al (2018).
The task uncertainty o', is an additional parameter for optimization, which in practice describes the log-
variance for numerical stability, as recommended by the authors (Kendall et al 2018). The resulting loss term is
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Figure 3. Neural network architecture for multitask learning, predicting both water range R and z-coordinate Z simultaneously, along
with their respective variances.

given as
1

1
L= 2 Lr + 3 Ly + 10g Otask,ROtask, Z- ©)
2Utask,R 2o"cas]K,Z

Both the weighted sum and the homoscedastic uncertainty-weighted loss are evaluated for the multitask
setting.

The Adam optimizer (Kingma and Ba 2015) is used for training with learning rate 1 x 10~ * and weight decay
1 x 10~ The batch size is set to 32 with random shuffle in each epoch. The networks are trained for 500 epochs,
which is sufficient for convergence in all learning scenarios.

2.4.2. Uncertainty

In safety-critical applications, it is paramount to have an accurate uncertainty estimate to make decisions with
confidence, while discarding or manually re-evaluating cases where the machine is highly uncertain.
Uncertainty can be decomposed into three parts: epistemic (model) uncertainty, heteroscedastic aleatoric (data)
uncertainty, and homoscedastic aleatoric (task) uncertainty. Task-dependent uncertainty boils down to a
constant in any given task. Therefore, we only model epistemic and heteroscedastic uncertainty. The total
predictive variance %, is then given as

2 2 2
O total = 9 model + 0 data (7)

Model uncertainty for an architecture with dropout can be estimated through MC dropout (Gal and
Ghahramani 2016). Dropout was originally conceived as a regularization technique during training. However, it
can be used for estimating model uncertainty by using it during inference and sampling over multiple runs with
different randomly dropped-out units. The mean and variance of the samples constitute the final prediction and
their epistemic uncertainty. We use 100 MC forward passes for inference.

In addition to predicting the target value, for each task an additional output is used to interpret the result as a
normal probability distribution with the target value constituting the mean, and the second output predicting
the log-variance of the distribution (see figure 3), as described in (Kendall and Gal 2017). This variance is
interpreted as heteroscedastic aleatoric uncertainty. The loss for each individual task needs to be adjusted to
describe the likelihood of the predicted distribution. Hence, the Gaussian negative log-likelihood loss (Nix and
Weigend 1994) is used:

1 i
Lr=L;= —(log(az) + %—2}/’”) (8)
2 o
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2.4.3. Uncertainty calibration

The epistemic uncertainty through MC dropout is innately uncalibrated (Gal and Ghahramani 2016). To
evaluate the quality of calibration for the trained uncertainties, we can plot the observed confidence interval over
the expected confidence interval and see how closely it follows the diagonal (Kuleshov et al 2018). Since the
predictions follow a Gaussian assumption, we can compute the observed confidence interval by counting how
many predictions fall within the corresponding o-interval around the predicted mean, e.g. for the 95%
confidence, we would compute the fraction of absolute errors less than 1.966, to find the observed confidence
interval.

If the observed confidence intervals do not match the expected confidence interval, Kuleshov et al (2018)
proposed fitting an estimator R on a separate calibration dataset. R translates from the expected confidence to
the point where this confidence level is actually observed. To this end, the points on the aforementioned curve
are fit to an isotonic regression as recommended by the authors (Kuleshov et al 2018). Whenever confidence
level p is evaluated thereafter, we evaluate R(p) instead.

2.5.Simulated treatment errors

To properly evaluate the range verification method, we simulate error cases, which will be used to assess how
large the treatment error must be for the proposed method to be able to detect it, and to investigate the
consistency of a metric, which is supposed to increase proportional to the treatment error.

The full simulation runs are very time-consuming. However, to simulate lateral shifts from the planned spot
to the actual spot, it is possible to re-use the detector readout of the previously conducted full simulations and
compute a differently planned spot for it. For each spot in the test set, lateral shifts in each direction along the x-
and y-axes are considered, while maintaining the beam direction parallel to the z-axis. The shift distance is
between 1 mm and 10 mm in 1 mm intervals to cover the entire gap between two simulated spots.

The dataset then consists of the shifted spot, which is the desired spot according to the treatment plan, for
which the phantom features are re-computed. Additionally, the detector features for the actual spot are kept as
is. The new spot will, however, have a new ground truth BP location, which is determined by simulating
treatment with 2 x 10* primary protons, yielding sufficient statistics to accurately determine the new BP
coordinates.

2.6. Spot rejection rate
Uncertainty-aware predictions evoke a method to determine whether a spot was correctly treated: If the planned
Z-position is outside the predicted 95% confidence interval (12 + 1.96041a1), treatment is considered suboptimal
and the spot is rejected. However, assessing the quality of each individual spot is highly volatile due to the
stochastic nature of the physical processes involved in producing detector hits. Additionally, if the 95%
confidence interval is considered, it is expected to have 5% of the treatment spots rejected, even in case of
successful treatment. To get a more meaningful measure of treatment quality, it is important to consider the
entire treatment fraction.

Over all spots in a treatment fraction, we can define the rate of rejected spots. We call this rejection rate
rr € [0, 1]. It is defined for a collection of ground truth treated spot depths z € Z, along with their detector
readout x € X and the range verification predictor f(x) estimating BP depth Z and uncertainty o°. rris then
defined as the number of rejected spots over the number of treated spots:

r— |{Zt € Z11.960 < |Zt - f(xt)l}l
1ZI '

©

We call such a metric well-defined, if rr oc ¢! with treatment quality g. Therefore, rris well-defined for any
predictor f(x) with calibrated uncertainties o at the 95% confidence interval, which we can achieve with the
uncertainty calibration described in section 2.4.3. We then evaluate the confidence interval R(0.95) instead,
which is perfectly calibrated given enough i.i.d. data (Kuleshov et al 2018).

In real-world situations, we are missing the ground truth BP depth z. We use the planned depth from the
treatment plan instead. As soon as treatment errors occur, the predicted range will generally be further away
from the planned depth, while the input data is still from a similar distribution as the training data, producing
similar uncertainties. This leads to more spots being rejected because their error now exceeds the predicted
uncertainty. Hence, rr will increase from the baseline rr = 0.05, signifying decreasing treatment quality.

The rejection rate is innately a statistical quantity, which tends to its expected value with an increasing
number of spots. As such, 7r needs to be accompanied by a statistical confidence estimate to be able to discard
values with insufficient significance. This can be achieved with a one-sample t-test (Student 1908) with
Hj = 0.05 and the alternative hypothesis H, > H,. The tested sample is a series of ones and zeros for each spot
that was rejected (one) or not rejected (zero). A t-test yields a p-value, which can be compared to a desired
significance value « to decide if the null-hypothesis is rejected, meaning the resulting rr measure is reliable.
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Figure 4. [llustration of the complete workflow presented in this work, starting with the training phase on the left to produce a range
estimator model, which is applied in the inference phase on the right to ultimately result in the rejection rate rr as a quality metric for a

For the choice of o, we propose using two values to signify ‘potential” error (o = 0.05), where additional
imaging is reccommended after the fraction, and ’certain’ error (o = 0.01), which could trigger mid-fraction
treatment termination in future applications.

2.7. The complete workflow

Figure 4 illustrates how all the presented components interact. First, during the training phase, we use the
probing simulations to determine potential treatment spots, for which to do full simulations of the detector
response with 1 x 107 primaries each. From the full simulations and the 3D RSP image, we can extract detector
and phantom features, respectively. Together, these constitute the dataset used to train, calibrate, and test the

model for this patient.

The inference phase is what happens during treatment of the patient. It begins with treatment planning
based on the 3D RSP image, which yields all the spots we want to treat, possibly from multiple different beam
angles. Then treatment delivery starts, where the same steps are repeated for each individual spot. Features are
extracted from the 3D RSP image and the detector readout to generate a dataset analogous to the training data.
These features are used as input for the model repeatedly, using MC dropout to estimate the Bragg peak position
and the predictive uncertainty. With that, it can be determined whether the spot is accepted or rejected.

Finally, with all spots either accepted or rejected, the rejection rate rr and the p-value are computed.
Alternatively, it is possible to update rr and the p-value after each spot is delivered and the decision is made.

3. Results

3.1. Prediction error

The regression networks in the 4 different scenarios (single task R, single task Z, multitask weighted sum, and

multitask homoscedastic) are run 10 times each with different random seeds and the resulting evaluation scores
arerecorded. Mean absolute error (MAE) and root mean squared error (RMSE) scores are listed in table 1 along
with the standard deviation across runs. The results indicate that the multitask scenarios outperform the single-
task setup for both, R and Z. Adding the auxiliary task R leads to a mean absolute error (MAE) of 1.087 mm and
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Figure 5. Histogram of prediction errors for Z in different multitask settings, (a) weighted sum of losses and (b) homoscedastic
uncertainty-weighted loss.

Table 1. MAE and RMSE scores +1 standard deviation in mm computed on the test set over
10 runs with different seeds for different learning scenarios and both targets, Rand Z.

Model MAE MAE, RMSER RMSE,

Single task 0.822 + 0.023 1.254 £ 0.021 1.082 + 0.029 1.745 + 0.025
Weighted sum 0.763 £ 0.013 1.087 = 0.020 0.990 % 0.015 1.526 =+ 0.030
Homoscedastic 0.782 + 0.009 1.107 £ 0.015 1.020 + 0.011 1.559 + 0.023

Table 2. MAE and RMSE scores £1 standard deviation in mm computed with different combinations of
training and test sets over 10 runs with different seeds for both targets, R and Z, trained with the weighted

sum of losses.

Train Test MAE, MAE, RMSE, RMSE,
715-HN 715-HN 0.763 4+ 0.013 1.087 4+ 0.020 0.990 4+ 0.015 1.526 4+ 0.030
VHF VHF 0.826 + 0.022 1.200 4+ 0.017 1.072 + 0.032 1.696 + 0.029
715-HN VHF 2.220 4+ 0.047 5.712 £+ 0.026 3.710 £ 0.034 7.270 £ 0.031
VHF 715-HN 1.666 £ 0.028 4.183 4+ 0.037 2.250 4+ 0.036 5.480 4+ 0.040

1.107 mm for weighted sum and homoscedastic, respectively. However, the homoscedastic uncertainty-
weighted loss appears slightly more stable, with a lower standard deviation across runs.

Itis notable that the training loss in the homoscedastic setup converges around —4.5 x 10'%, which could
indicate potential numerical instability for this approach. This could be a result of combining the Gaussian
negative log-likelihood loss with the homoscedastic uncertainty-weights, since both of the components include
alog-term for regularization.

Figure 5 shows the error distribution histograms for task Z in both multitask settings. The distribution is
approximately Gaussian, centered around 0, indicating the absence of a systematic error in any direction.
Similarly, the prediction plot in figure 6 shows a distribution around the diagonal.

3.2. Uncertainty calibration
Figure 7 shows the calibration plots for the epistemic %, 4, and aleatoric 03,,, uncertainties before and after

calibration in both multitask settings. The plots show that even when calibrated, the individual uncertainty
components alone deviate from the expected confidence level in the critical region for rr computation, around
95%, thereby confirming the necessity to model both, epistemic and aleatoric uncertainty, for a well-calibrated
model. Either component tends to be over-confident, i.e. to underestimate the uncertainty, which is undesirable
for safety-critical applications where the decision dictates further action.
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When both uncertainties are modeled and combined, the resulting uncertainty can be calibrated to follow
the expected confidence levels closely for both tasks, R and Z, as depicted in figure 8. Both multitask settings
perform similarly well when comparing the capability of estimating their uncertainties. Task R is generally
slightly more under-confident than Z. However, after calibration, there is no notable difference between the
tasks.

3.3. Spot rejection rate
Figure 9 shows rr over different degrees of treatment error for different predictors before and after uncertainty
calibration. For a predictor with well-calibrated uncertainties, we expect rr = 0.05 for correct treatment (0 lateral
shift) to reflect the 95% confidence interval used in the definition of rr. With uncalibrated uncertainties, this
assumption does not hold for any of the predictors. After calibration, only the single task setting differs from 5%
for correct treatment.

Increasing lateral shift compared to the treatment plan leads to monotonically increasing rejection rates.
Hence, the condition for a well-defined metric rr oc g~ holds for all tested learning scenarios. Both multitask
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settings show very similar rr across the entire lateral shift spectrum after calibration. We can observe that a shift
of aslittle as 1 mm can be detected through the rr metric.

Further, the monotonic increase, even in cases where uncertainties are not well-calibrated, means that
calibration can be deferred to the metric instead of the predictive uncertainty, by simply subtracting rr, the
rejection rate predicted for correct treatment. The metric then describes poor treatment as soon as the value is
positive, instead of the threshold being 0.05.

3.4. Required treatment spots
Using t-tests allows us to compute the minimum number of spots required for statistical significance (o« = 0.05
or a = 0.01). Different spot counts are evaluated by repeatedly sampling randomly from all predicted spots of
the test set with a certain lateral shift distance. Figure 10 shows the resulting mean p-values computed for 1 mm,
2 mm, and 3 mm shifts with 1 x 10* samples for each spot count.

The plot shows that for the weighted sum of losses, 1 mm shifts can be detected with significance o = 0.05
starting at around 2000 spots, 2 mm shifts starting at around 250 spots, and 3 mm shifts starting at around
150 spots. Larger shifts follow the trend of requiring even fewer spots to reach statistical significance. With
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multitask settings, (a) weighted sum of losses and (b) homoscedastic uncertainty-weighted loss.

homoscedastic uncertainty-weighted losses, the required spots for the detection of 1 mm shifts is much lower on
average, starting at around 1400 spots.

For more confident predictions for the detection of 1 mm shifts with significance & = 0.01, 3700 spots and
2700 spots are required for weighted sum of losses and homoscedastic uncertainty-weighted loss, respectively.

3.5. Generalizability

We differentiate between two different concepts of generalizability. First, the general applicability of the
proposed workflow for different targets through patient-specific re-training. This process is time-consuming
because of the large amount of simulations required to generate the training dataset. Nevertheless, proving
viability of the workflow on a second phantom would underscore its effectiveness.

The second concept of generalizability is the transferability of a model trained on one patient to another,
previously unseen patient. This approach is akin to one-shot learning, which aims to learn a general model from
one or a few examples. To test the one-shot generalizability of the proposed model, it is trained on one phantom
and evaluated on another. Table 2 shows the result for both cases, re-training completely on a patient-by-patient
basis, as well as training on one phantom and evaluating on the other.

When the same phantom is used for training and evaluation, the error scores are close to each other, VHF
being slightly higher than 715-HN with 1.200 = 0.017 mm MAE on task Z. However, the uncertainty calibration
works equally well, leading to similar rr curves for increasing treatment error as in the 715-HN phantom.

Figure 11 shows the uncalibrated and calibrated rejection rates for the VHF phantom in different learning
scenarios.

Concerning the one-shot generalizability from one phantom to another, the table shows a noticeable
increase in errors, with MAE above 4.1 mm for both cases. Additionally, the uncertainties are no longer
calibrated, yielding rr ~ 72% and rr ~ 49% without any treatment error for training on 715-HN and VHF,
respectively.

4, Discussion

4.1. Uncertainty calibration

rris a well-defined metric for perfect uncertainties, which is usually not a reachable goal in practice. However,
the uncertainty calibration considers the entire range of confidence intervals, while the definition of 7 only
considers the 95%-interval. It may be beneficial to incorporate the entire range of confidence intervals, since the
calibration is close to ideal across the board, as shown in section 3.2.

Furthermore, there may be a need for an additional metric to control the rejection rate. If the data is out-of-
distribution for the training set, the epistemic uncertainty will increase. One possibility for out-of-distribution
data could be cases where many primaries reach the detector because the beam is erroneously placed at a much
thinner position of the patient. It needs to be ensured that in such cases, the uncertainty is not too large to accept
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more spots than it should. A foundation for such a metric could be the measure of sharpness, defined by
Kuleshov et al (2018) as the mean of the predicted uncertainties 0.

4.2. Generalizability

The results in section 3.5 indicate viability for the proposed workflow with patient-specific re-training of the
model. However, one-shot learning, with a single phantom providing the training data, does not generalize well
to a second phantom with the current model architecture. It should be the focus of future work to either improve
one-shot or few-shot generalizability, or to find a more easily generalizable workflow to make this method viable
for clinical application. To this end, model architectures with translation invariance are worth evaluating.
Additionally, transfer learning can be employed to fine-tune a model to new patients. This would require much
less data than re-training from scratch and therefore reduce computation time significantly.

Another challenge for generalizability is the gap between simulation and reality. It needs to be investigated if
MC data can be used for training or if it does not match experimental data well enough. Since the 715-HN
phantom used in this work is modeled after a physical counterpart, it may be possible to use this as a foundation
for calibrating a model trained on simulations to the real world.

4.3. Clinical applicability

If the generalization described in the previous section can be achieved without loss of precision, the rr metric
could be applied to the clinical setting. Detection of errors of 1 mm lateral shift with 1 - 107 primaries per spot is
comparable to previously introduced range verification methods in terms of the detected error distance, while
requiring lower spot intensities. In particular, other studies report, e.g. 1-3 mm with 1 x 10® primaries
(Lerendegui-Marco et al 2022),2 mm with 1 - 10° primaries (Draeger et al 2018), and 1 mm with 1.35 x 10°
(Tian et al 2018) primaries.

Another aspect of clinical applicability is the minimum number of spots required for statistical significance
of the rr metric. The average number of spots required to detect 1 mm shifts with homoscedastic uncertainty-
weighted losses is at around 1400. Many clinical treatment plans exceed this requirement. Some example plans
can be found in Maradia et al (2022), where the minimum spot count is around 8400, well above the required
threshold.

However, the number of spots is highly dependent on the size of the tumor. Furthermore, treatment plans
can be created with a spot reduction technique introduced by van de Water et al (2020). This has the potential to
reduce the number of spots by a factor of up to 20. The plans in the above example are reduced to around 800
(Maradia et al 2022). These plans will most likely still detect shifts of 2 mm or more, but not necessarily down
to 1 mm.

The statistical significance levels in the rr metric are currently arbitrarily chosen to be &« = 0.05 and o = 0.01.
Itis unclear, if these represent medically relevant thresholds, or if better values have to be found. Alternatively, it
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is possible to simply compute the p-value of the t-test and display it to the physician to decide on further action
on a case-by-case basis.

Additionally, the combination of the rejection rate with a statistical significance measure enables on-line
evaluation with the potential of automated intervention in case an error is detected with confidence. To
determine the feasibility for this approach, a computation time measurement was added to the current
prototypical Python implementation. The entire inference workflow can be executed in 105 ms on average in all
learning scenarios using a single core of an AMD EPYC 7F72 CPU and an NVIDIA A100 GPU. Assuming a spot
delivery time of around 100 ms, it is well in the realm of possibility to apply the workflow on-line after code
optimization.

4.4.Rasinput

The beam in a proton therapy facility is monitored by internal control mechanisms. We can, therefore, assume
the beam energy and corresponding range in water R to be a known quantity. This enables us to use R as an input
feature instead of using a multitask learning scheme with R as an output. While this has the potential of
improving the MAE of the prediction, it may cause the network to learn to behave like a TPS and simply
compute the expected BP location based on the beam energy as well as the RSP image, entirely ignoring detector
readout. This means the prediction would always correspond to the treatment plan, ignoring what actually
happened during treatment.

To avoid this scenario, R is instead used to improve the predictor by serving as an auxiliary task. However,
there may be other possibilities to model a predictor preventing it from learning this behavior, which is a
possible avenue for future work.

One advantage of including R as an input rather than an output is the potential to compute more accurate
phantom features without a ground truth leak, as described in section 2.3.2. Because the beam diverges
depending on its energy and thus the computed combined RSP value adjusts based on the current beam width at
depth z, this information can lead to better features for a more accurate prediction, even without using R as an
input directly.

5. Conclusion

In this work, we presented spot rejection rate rr as a quality metric for proton therapy, based on ML and predictive
uncertainties for range verification in PBS. We show that the metric is well-defined for well-calibrated
uncertainties, and that it is independent of the range predictor.

An MC study evaluating its efficacy shows promising results for the measurement of treatment quality, with
lateral shifts introduced as error. The metric monotonically increases with increasing treatment error. Modeling
uncertainties in deep neural networks with the prediction of a Gaussian variance and the usage of MC dropout
proves to be a good architecture for a range predictor. With subsequent calibration, the model produces well-
calibrated uncertainties and can be used for the rr metric.

Further, this study showed the feasibility of using a detector meant for charged particle detection for range
verification in proton therapy, which does not produce any charged secondary particles directly.
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