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Abstract
Objective.Proton therapy is highly sensitive to range uncertainties due to the nature of the dose
deposition of charged particles. To ensure treatment quality, range verificationmethods can be used
to verify that the individual spots in a pencil beam scanning treatment fractionmatch the treatment
plan. This study introduces a novelmetric for proton therapy quality control based on uncertainties in
range verification of individual spots.Approach.Weemploy uncertainty-aware deep neural networks
to predict the Bragg peak depth in an anthropomorphic phantombased on secondary charged particle
detection in a silicon pixel telescope designed for proton computed tomography. The subsequently
predicted Bragg peak positions, alongwith their uncertainties, are compared to the treatment plan,
rejecting spots which are predicted to be outside the 95% confidence interval. The such-produced spot
rejection rate presents ametric for the quality of the treatment fraction.Main results.The introduced
spot rejection ratemetric is shown to bewell-defined for range predictors withwell-calibrated
uncertainties. Using thismethod, treatment errors in the formof lateral shifts can be detected down to
1mmafter around 1400 treated spots with spot intensities of 1× 107 protons. The range verification
model used in thismetric predicts the Bragg peak depth to amean absolute error of
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1.107± 0.015mm. Significance.Uncertainty-awaremachine learning has potential applications in
proton therapy quality control. This work presents the foundation for future developments in
this area.

1. Introduction

Proton therapy,first theorized byWilson (1946), exploits the characteristics of charged particles to treat tumors
with highly conformal dose distributions, while sparing healthy tissuemuchmore effectively compared to x-ray
therapy. Electromagnetic interactions cause charged particles to continuously slow downwhile travelling
throughmatter, the rate of which is determined by the energy-dependent stopping power of thematerial
traversed. The such-deposited energy increases with decreasing velocity and reaches itsmaximum towards the
end of the particle’s range, at the Bragg peak (BP).

Therefore, the deposited dose can be precisely targeted at the tumor. To cover the entire volume, one
treatment strategy is pencil beam scanning (PBS). In thismethod, coverage is achieved by varying the direction
and energy of amono-energetic pencil beam in away to evenly spread out the dose. Different energy levels along
the same beamdirection together form a spread-out Bragg peak (SOBP). Lower energies in an SOBP are
irradiatedwith fewer primary particles, since theywill additionally be covered by the dose of higher-range
particles passing the spot along their path.With this strategy, we get a number of distinct treatment spots, which
can individually be verified to get a qualitymeasure over the treatment fraction (Knopf and Lomax 2013).

The Bragg curvemakes particle therapy sensitive to range uncertainties, potentially causing the BP to be
displaced compared to the computed treatment plan. Themain causes are patientmisalignment, organmotion,
and inaccurate dose calculation (Paganetti 2012). To compensate for such uncertainties, it is common practice
to utilize safetymargins, which increase the target volume to ensure full tumor coverage. This in turn degrades
the advantages of particle therapy by putting healthy tissuewithin the safetymargins at increased risk.
Alternatively, robust optimization techniques can be used to directly incorporate uncertainties into the
treatment planning process andmodel treatment either with a probabilistic or aworst-case approach
(Unkelbach et al 2007). Range uncertainties in proton therapy amount to approximately 2.7%+ 1.2 mmon
static targets (Paganetti 2012).

In the presence of such uncertainties,methods of quality control have been proposed to ensure correct dose
delivery to the planned target volume. To reduce errors in patient positioning and in the conversion of
Hounsfield unit to relative stopping power (RSP), proton radiography can be used right before a treatment
fraction, as suggested by Schneider and Pedroni (1995). Othermethods for quality control are performed shortly
after the treatment fraction, such as positron emission tomography (PET) (Parodi and Enghardt 2000).
However, the delay between treatment and PETmeasurements can potentially degrade verification ability.

In contrast, in situ range verification aims to assess treatment quality while it is being delivered by
determining the BP positions of the individual beam spots and comparing them to the treatment plan. Such
methods utilize interactions of protons traversingmatter, causing the emission of secondary particles,mainly
neutrons and photons, which can be detected outside the patient. Themost prominentmethods are based on
prompt gamma (PG) detection, e.g. (Kurosawa et al 2012, Smeets et al 2012). There are also efforts to utilize
neutrons (Clarke et al 2016,Marafini et al 2017), or a combination ofmodalities, e.g. PG and PET (Moteabbed
et al 2011, Choi et al 2020).When using heavier ions for treatment, it is possible to use tracked secondary charged
particles for in situ range verification through interaction vertex imaging (Amaldi et al 2010,Henriquet et al
2012, Gwosch et al 2013).

Since proton interactions do not produce secondary charged particles with sufficient residual range to exit
the patient, in situ range verificationwith charged secondaries is limited to heavy ion therapy (Kraan 2015).
However, a sufficiently large detector, containing convertermaterial for neutrons and photons in addition to
silicon detectors, can enable charged particle detectionwith enough readout yield to be usable for range
verification in proton therapy.

One suitable detector for this task is the digital tracking calorimeter (DTC) designed by the Bergen pCT
collaboration (Alme et al 2020). The readout of this high-granularity pixel detector is a large amorphous point
cloudwith little apparent relation to the originating treatment spot. However, there are notable differences, such
as vastly different readout yield, that become visible when looking at aggregate properties. The high
dimensionality and complexity of the problem is the ideal scenario to employ the help ofmachine learning (ML)
techniques.

There are some efforts to incorporateML into the range verification process. However,most studies are
limited to improving readout by separating the signal frombackground noise (Lerendegui-Marco et al 2022,
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Polf et al 2022) or ordering detector interactions (Polf et al 2022).More recently,methods of integrating deep
learning into the range verification procedure itself have been introduced, e.g. by Jiang et al (2023).

This work aims to utilize uncertainty-awareML for range verificationwith a detector built for charged
particle detection. The range predictions are used to compute ametric assessing the quality of a treatment
fraction. The efficacy of the developedmethods is evaluated onMonte-Carlo-simulated data. In summary, the
contributions of this work are:

(i) The development of a fully machine-learning-based range verification model for proton therapy utilizing
the high-granularity silicon pixel telescope (‘digital tracking calorimeter’) designed by the Bergen pCT
collaboration.

(ii) The introduction of a novel metric ‘spot rejection rate’ for quality control of proton therapy treatment
fractions based on uncertainty-awareML.

2.Material andmethods

2.1.Digital tracking calorimeter
TheDTCwas designed for proton computed tomography (pCT) (Cormack 1963) by the Bergen pCT
collaboration (Alme et al 2020). It is constructedwith sufficientmaterial to stop protons of 230MeV, the target
energy used in the pCT application. The energy of incoming particles is estimated by sampling the energy
deposition values at 43 distinct depths along the path, reconstructing the individual tracks, and fitting the
sampled values to the differentiated Bragg-Kleeman rule (Bortfeld and Schlegel 1996).

The detector consists first of two tracking layers with smallmaterial budget and 57.8 mmdistance from layer
to layer, to determine the incoming angle of the tracked particle with as little deflection as possible. Behind the
tracker, separated by an air gap, is the 41-layer detector-absorber sandwich structure constituting the
calorimeter. In between the individual calorimeter layers, aluminumabsorbers are used to slow down incoming
particles.

An absorber consists of the two chip carriers (1 mmaluminum) on either side, in addition to 1.5 mm
aluminum solely used as additional absorbermaterial. Thefirst calorimeter layer is preceded only by 1 mm
aluminumas carrier for the front chips of the first calorimeter layer, while all following layers are separated by
the full 3.5 mmaluminum. In the tracker layers, 310 μmcarbon fiber is used as a chip carrier to reduce
scattering. The estimatedmaterial budget for the full detector can be seen infigure 1.

Each of the 43 sensitive layers of theDTC consists of 108ALICE pixel detector (ALPIDE) chips
(Mager 2016), which is a 3× 1.5 cm2monolithic active pixel sensor developed by the ALICE collaboration at
CERN. The chips are arranged in twelve horizontal staves, alternating between front and back-facing chips, with

Figure 1.Material budget for the digital tracking calorimeter as implemented in theGATEMonteCarlo simulation. Figure
reproduced and updated fromAlme et al (2020) (CCBY).
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a 2 mmgap between the respective carrier plates. Each stave is a string of nine chips, creating a sensitive area of
27× 16.4 cm2.

2.2.MonteCarlo simulation
To evaluate the expected performance of the proposedmethods, we useMonte Carlo (MC) simulationswith
Geant4Application for Tomographic Emission (GATE) (Jan et al 2004) version 9.2 andGeant4 (Agostinelli et al
2003, Allison et al 2006, 2016) version 11.0.0.We use the recommended physics list QBBC_EMZ.

The target at the isocenter of the simulation is the pediatric head andneckmodel 715-HNbyCIRS Inc.
(Norfolk, VA,United States), digitized into a voxel phantombyGiacometti et al (2017). Thismeans the ground
truth relative stopping power values of the individualmaterials are known and can be taken directly from table 2,
‘mean experimental values’ from the original paper (Giacometti et al 2017). It is possible to rotate the phantom
around the vertical axis to simulate treatment fromdifferent angles.

To test generalizability, a second phantom can instead be used in the simulation: the visible human female
(VHF) head phantom (Ackerman et al 1995), courtesy of theU.S. National Library ofMedicine, resampled to a
resolution of 1× 1× 1 mm3 voxel size, scaled down to 80% tomake it comparable in size to the pediatric head
and tofit within the bounds of theDTC.Whennot otherwise specified, all tests are conductedwith the dataset
from the 715-HNphantomonly.

As the particle source, we use a pencil beam located 500 mm from the isocenter, pointing parallel to the z-
axis. To achieve total phantom coverage, the beam can bemoved in the xy-plane arbitrarily, whilemaintaining
the same beamdirection. The beam shape is Gaussianwithσx= σy= 2mm, an angular divergence
σθ= σf= 2.5mrad, and 3 mrad mmbeam emittance.

Analogous to the pCT setup described byAlme et al (2020), theDTC is placed distal to the phantom starting
at z= 225 mmwith the tracker facing the beam. TheDTC itself ismodeled as homogenous slabs of
270× 164 mm2with thicknesses according tofigure 1, representing a simplified geometry of the final design,
where the sensitive layers will be divided into front and back-chips. EachALPIDE layer is subdivided into three
different silicon parts: the front electronics, the epitaxial layer (25 μm), and the substrate.

The epitaxial layer is the only sensitive volume in the simulation, recording hits in the formof deposited
energy through creation of electron–hole pairs. For this to occur, neutral particles need to interact inside the
sensitive volume, or close to it, to generate charged secondaries depositing energy to be detected. The simulation
setup is schematically depicted infigure 2.

Possible simulated beam energy values range from60.13 to 150.35MeV (31 mmand 157 mmrange in
water, respectively)with 3 mmwater range interval. These values are taken from the open-source treatment
planning system (TPS)matRad (Wieser et al 2017). Relevant spots to consider should be inside the phantom and
not too close to the distal edge, since thosewouldmost likely be treated from a different angle. Tofind those
spots, we run a series of probing simulationswith 1× 105 primaries. They scan the entire xy-plane in 10mm
intervals for different phantom rotations in 30 deg intervals with all available beam energies. For each lateral
position in each rotation, the lowest and highest energy without any primary hits in the detector are determined,
and all energies in the interval are classified as ’relevant’ spots resulting in 36 258 and 35 673 data points for the
715-HNand theVHFphantom, respectively (Schilling et al 2023).

The number of primary particles per treatment spot is assumed to be in the order of 107 to 108. To get a
realistic estimate for theworst-case scenario with the least detector readouts, the lower bound of 1× 107 protons
is used to run full simulations of all relevant spots.

Figure 2. Schematic representation of the treatment setup as implemented in theMC simulation, with a pediatric head phantom
between the pencil beam source and theDTC.
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In addition to the hits from energy deposition in the detector chips, there is a
ProductionAndStoppingActor attached to the phantom’s parent volume, which is a 200 mmcubewith
1 mmvoxel size, filtered to only primary particles. The actor records howmany primary protons stopped in
which voxel. From this data, the ground truth BPposition is extracted by aggregating all voxels in each
dimension andfitting aGaussian function

f x a
x

exp
2

1
2

2
( ) · ( ) ( )m

s
= -

-
⎜ ⎟⎛
⎝

⎞
⎠

along the respective dimension. Themeansμx,μy,μz constitute the BP coordinates in the simulationworld,
where onlyμz is considered for the range verification case, henceforth called z.

2.3. Feature extraction
Each of the simulated spots consists of an arbitrary number of hits, denoting energy deposition in sensitive
volumes of theDTC, as well as the RSP image of the phantom according to its current rotation. Feature
extraction is separated into 416 detector features and 201 phantom features, which are extracted from the detector
hits and the RSP image, respectively.

2.3.1. Detector features
To applyMLmethods, the point cloud, formed by an arbitrary number of hits, needs to be transformed into a
representation that can be used as input for a neural network. This is done by extracting a fixed number of
detector features from the rawdata.However, the data from the simulation does not consider the properties of
the usedALPIDE chip. Therefore, we perform two pre-processing steps before extracting features.

Thefirst step eliminates duplicate hits from the data. Such hits occur for short-range electrons, which can
producemultiple hit entries within the same pixel because the underlying simulation code records a hit at each
step. These hits are binned together by grouping all hits from the same track in the same layer together to be able
to determine the total deposited energy of the particle in this layer. The hits are aggregated by computing the
mean of the x, y, and z-coordinates of the hit positions, and the sumof the energy deposition values. This
procedure has been done similarly in prior work (Pettersen et al 2021).

Secondly, the deposited energy is discretized. TheALPIDE chip consists of binary pixels with charge sharing,
leading to a cluster of pixels being activated around the incident particle. The cluster size is an indicator of the
deposited energy. The reverse relationship from energy deposition ED in keV μm−1 to cluster size n can be
described by the following power fit from experimental data obtained from a previous experiment, rounded to
the nearest integer (Pettersen et al 2019):

n E4.23 . 2D
0.65· ( )=

The resulting cluster size can then be turned into a discretized energy deposition by solving the equation for
ED and converting toMeV. If a hit activated a cluster of size n= 0, it is removed under the assumption that the
deposited energy did not reach the electron threshold at the chip’s diodes. This procedure emulates the energy
resolution of the ALPIDE chipwithout computing pixel coordinates.We call thismethod of conversion
‘pseudo-pixels’. Pseudo-pixels cannot simulate the overlap of two clusters fromdifferent hits. However, this
problem is negligible, as the hit rate during treatment is too low for overlaps to occurwith the readout frame
duration of 10 μs used in theDTC.

The following 383 detector features are extracted:

• Total number of active pixels

• Total number of clusters (hits)

• Number of clusters over threshold (5, 20 pixels)

• Mean and standard deviation of cluster sizes

• The number of clusters of any given size (1–72)

• Mean and standard deviation of x- and y-coordinates over each layer (0–42), and the entire detector

• Number of active pixels in each layer (0–42)

• Number of clusters (hits) in each layer (0–42)

• Total energy deposition of the hits in each layer (0–42)
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In addition, some of the aforementioned features are combined into 33 higher-level features through linear,
cubic, and exponential ( f x a b x cexp( ) · ( · )= - + )fits to the histogramdata, alongwith theirmean squared
residuals:

• Active pixels over layer

• Number of clusters over layer

• Total deposited energy over layer

2.3.2. Phantom features
The 201 phantom features are comprised of 200RSP values from1mmslices of the phantom in theworld in the
direction of beam traversal symmetric to the isocenter, as well as the sumover these values. EachRSP value is
assumed to represent a combined RSP value for the currently traversedmillimeter slice of the phantom. This is
achieved by forming the integral at each depth z over all RSP values at that depth across the phantom,weighted
by a given beammodelB:

z B x y z x y z x yRSP , , RSP , , d d 3∬( ) ( ) · ( ) ( )=

B(x, y, z)describes a probability density function for the particle distribution at a given depth z (inwater).
The distribution depends on the traversedmatter up to depth z, which is intractable for inhomogeneous targets,
such as a voxelized phantom. Furthermore, it depends on the initial beam energy, whichwe use as one of the
target variables in themultitaskML setting,making it impossible to include the quantity, to avoid a ground
truth leak.

Consequently, the beammodel is simplified to afixedmultivariate normal distributionmatching the beam
shape at the source to represent the general area which is expected to be traversed by the beam in this spot:
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withσx= σy= 2mmand (μx,μy) the coordinates of the beam spot in the xy-plane.
Calculating this integral is computationally expensive because of the discontinuous nature of the RSP image.

In practice, the values are computed by forming aweighted sumover the 1 mmvoxels within the aperture of the
detector (272× 168 mm2)with the value of the distribution in the voxel center asweight:

z B x y x y zRSP , RSP , , 5
y x83.5

83.5

135.5

135.5

( ) ( ) · ( ) ( )å å=
=- =-

Thefinal phantom feature set consists of RSP(z), z ä {0,...,199} and the sumof the values RSPtotal.

2.4.Machine learning
2.4.1.Model architecture and training regime
The extracted features and labels from above form the dataset used forML. Basic outlier detection is applied,
shrinking the datasets from36 258 to 36 244 samples (715-HN) and from35 673 to 35 670 samples (VHF). The
data is split into training (70%), validation (10%), and test (20%) sets, separately for each phantom. All 617
features, as well as the labels, are scaled toμ= 0 andσ= 1 before training a neural network implemented in
PyTorch (Paszke et al 2019).

The network architecture is depicted infigure 3. The features extracted from a full simulation of a treatment
spot constitute the input for three linear hidden layers with 1024, 512, and 128 units, respectively. All layers use
sigmoid activation and 5%dropout (Srivastava et al 2014). The output is one neuron per regression taskwith no
activation. This architecture can be used for a single task, predicting either thewater rangeR, or the z-coordinate
Z, as well as formultitask learning, where both quantities are predicted simultaneously.

In amultitask setting, the individual losses for the tasks R and Z have to be combined in order for both
tasks to contribute to the training by influencing backpropagated gradients. Oneway to do this is to form a
weighted sumof losses. Theweights are set to 0.4 and 0.6 forR andZ, respectively, to ensure that themore
important (andmore difficult) taskZ hasmore influence during training, resulting in slightly lower errors than
equal weights.

Instead ofmanually settingweights for the tasks, we additionally use an alternative approachwith
automatically learnedweights based on homoscedastic (task) uncertainty, introduced byKendall et al (2018).
The task uncertainty task

2s is an additional parameter for optimization, which in practice describes the log-
variance for numerical stability, as recommended by the authors (Kendall et al 2018). The resulting loss term is
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given as

  
1

2

1

2
log . 6

R
R

Z
Z R Z

task,
2

task,
2 task, task, ( )

s s
s s= + +

Both theweighted sumand the homoscedastic uncertainty-weighted loss are evaluated for themultitask
setting.

TheAdamoptimizer (Kingma andBa 2015) is used for trainingwith learning rate 1× 10−4 andweight decay
1× 10−4. The batch size is set to 32with random shuffle in each epoch. The networks are trained for 500 epochs,
which is sufficient for convergence in all learning scenarios.

2.4.2. Uncertainty
In safety-critical applications, it is paramount to have an accurate uncertainty estimate tomake decisions with
confidence, while discarding ormanually re-evaluating cases where themachine is highly uncertain.
Uncertainty can be decomposed into three parts: epistemic (model) uncertainty, heteroscedastic aleatoric (data)
uncertainty, and homoscedastic aleatoric (task) uncertainty. Task-dependent uncertainty boils down to a
constant in any given task. Therefore, we onlymodel epistemic and heteroscedastic uncertainty. The total
predictive variance total

2s is then given as

. 7total
2

model
2

data
2 ( )s s s= +

Model uncertainty for an architecture with dropout can be estimated throughMCdropout (Gal and
Ghahramani 2016). Dropout was originally conceived as a regularization technique during training.However, it
can be used for estimatingmodel uncertainty by using it during inference and sampling overmultiple runswith
different randomly dropped-out units. Themean and variance of the samples constitute the final prediction and
their epistemic uncertainty.We use 100MC forward passes for inference.

In addition to predicting the target value, for each task an additional output is used to interpret the result as a
normal probability distributionwith the target value constituting themean, and the second output predicting
the log-variance of the distribution (see figure 3), as described in (Kendall andGal 2017). This variance is
interpreted as heteroscedastic aleatoric uncertainty. The loss for each individual task needs to be adjusted to
describe the likelihood of the predicted distribution.Hence, theGaussian negative log-likelihood loss (Nix and
Weigend 1994) is used:

 
 

y y1

2
log . 8R Z

i i2
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Figure 3.Neural network architecture formultitask learning, predicting bothwater rangeR and z-coordinateZ simultaneously, along
with their respective variances.
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2.4.3. Uncertainty calibration
The epistemic uncertainty throughMCdropout is innately uncalibrated (Gal andGhahramani 2016). To
evaluate the quality of calibration for the trained uncertainties, we can plot the observed confidence interval over
the expected confidence interval and see how closely it follows the diagonal (Kuleshov et al 2018). Since the
predictions follow aGaussian assumption, we can compute the observed confidence interval by counting how
many predictions fall within the corresponding σ-interval around the predictedmean, e.g. for the 95%
confidence, wewould compute the fraction of absolute errors less than 1.96σtotal tofind the observed confidence
interval.

If the observed confidence intervals do notmatch the expected confidence interval, Kuleshov et al (2018)
proposedfitting an estimatorR on a separate calibration dataset.R translates from the expected confidence to
the point where this confidence level is actually observed. To this end, the points on the aforementioned curve
arefit to an isotonic regression as recommended by the authors (Kuleshov et al 2018).Whenever confidence
level p is evaluated thereafter, we evaluateR(p) instead.

2.5. Simulated treatment errors
Toproperly evaluate the range verificationmethod, we simulate error cases, whichwill be used to assess how
large the treatment errormust be for the proposedmethod to be able to detect it, and to investigate the
consistency of ametric, which is supposed to increase proportional to the treatment error.

The full simulation runs are very time-consuming. However, to simulate lateral shifts from the planned spot
to the actual spot, it is possible to re-use the detector readout of the previously conducted full simulations and
compute a differently planned spot for it. For each spot in the test set, lateral shifts in each direction along the x-
and y-axes are considered, whilemaintaining the beamdirection parallel to the z-axis. The shift distance is
between 1 mmand 10 mm in 1mm intervals to cover the entire gap between two simulated spots.

The dataset then consists of the shifted spot, which is the desired spot according to the treatment plan, for
which the phantom features are re-computed. Additionally, the detector features for the actual spot are kept as
is. The new spot will, however, have a new ground truth BP location, which is determined by simulating
treatmentwith 2× 104 primary protons, yielding sufficient statistics to accurately determine the newBP
coordinates.

2.6. Spot rejection rate
Uncertainty-aware predictions evoke amethod to determinewhether a spot was correctly treated: If the planned
Z-position is outside the predicted 95%confidence interval (μ± 1.96σtotal), treatment is considered suboptimal
and the spot is rejected. However, assessing the quality of each individual spot is highly volatile due to the
stochastic nature of the physical processes involved in producing detector hits. Additionally, if the 95%
confidence interval is considered, it is expected to have 5%of the treatment spots rejected, even in case of
successful treatment. To get amoremeaningfulmeasure of treatment quality, it is important to consider the
entire treatment fraction.

Over all spots in a treatment fraction, we can define the rate of rejected spots.We call this rejection rate
rr ä [0, 1]. It is defined for a collection of ground truth treated spot depths z ä Z, alongwith their detector
readout x ä X and the range verification predictor f (x) estimating BP depth ẑ and uncertaintyσ2. rr is then
defined as the number of rejected spots over the number of treated spots:

rr
z Z z f x

Z

1.96
. 9t t t|{ | | ( ) |}|

| |
( )s

=
Î < -

Wecall such ametric well-defined, if rr∝ q−1 with treatment quality q. Therefore, rr is well-defined for any
predictor f (x)with calibrated uncertaintiesσ2 at the 95% confidence interval, whichwe can achieve with the
uncertainty calibration described in section 2.4.3.We then evaluate the confidence intervalR(0.95) instead,
which is perfectly calibrated given enough i.i.d. data (Kuleshov et al 2018).

In real-world situations, we aremissing the ground truth BP depth z.We use the planned depth from the
treatment plan instead. As soon as treatment errors occur, the predicted rangewill generally be further away
from the planned depth, while the input data is still from a similar distribution as the training data, producing
similar uncertainties. This leads tomore spots being rejected because their error now exceeds the predicted
uncertainty. Hence, rrwill increase from the baseline rr= 0.05, signifying decreasing treatment quality.

The rejection rate is innately a statistical quantity, which tends to its expected valuewith an increasing
number of spots. As such, rrneeds to be accompanied by a statistical confidence estimate to be able to discard
valueswith insufficient significance. This can be achievedwith a one-sample t-test (Student 1908)with
H0= 0.05 and the alternative hypothesisHa>H0. The tested sample is a series of ones and zeros for each spot
thatwas rejected (one) or not rejected (zero). A t-test yields a p-value, which can be compared to a desired
significance valueα to decide if the null-hypothesis is rejected,meaning the resulting rrmeasure is reliable.
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For the choice ofα, we propose using two values to signify ‘potential’ error (α= 0.05), where additional
imaging is recommended after the fraction, and ’certain’ error (α= 0.01), which could triggermid-fraction
treatment termination in future applications.

2.7. The completeworkflow
Figure 4 illustrates how all the presented components interact. First, during the training phase, we use the
probing simulations to determine potential treatment spots, for which to do full simulations of the detector
responsewith 1× 107 primaries each. From the full simulations and the 3DRSP image, we can extract detector
and phantom features, respectively. Together, these constitute the dataset used to train, calibrate, and test the
model for this patient.

The inference phase is what happens during treatment of the patient. It begins with treatment planning
based on the 3DRSP image, which yields all the spots wewant to treat, possibly frommultiple different beam
angles. Then treatment delivery starts, where the same steps are repeated for each individual spot. Features are
extracted from the 3DRSP image and the detector readout to generate a dataset analogous to the training data.
These features are used as input for themodel repeatedly, usingMCdropout to estimate the Bragg peak position
and the predictive uncertainty.With that, it can be determinedwhether the spot is accepted or rejected.

Finally, with all spots either accepted or rejected, the rejection rate rr and the p-value are computed.
Alternatively, it is possible to update rr and the p-value after each spot is delivered and the decision ismade.

3. Results

3.1. Prediction error
The regression networks in the 4 different scenarios (single taskR, single taskZ, multitaskweighted sum, and
multitask homoscedastic) are run 10 times eachwith different random seeds and the resulting evaluation scores
are recorded.Mean absolute error (MAE) and rootmean squared error (RMSE) scores are listed in table 1 along
with the standard deviation across runs. The results indicate that themultitask scenarios outperform the single-
task setup for both,R andZ. Adding the auxiliary taskR leads to amean absolute error (MAE) of 1.087 mmand

Figure 4. Illustration of the complete workflowpresented in this work, startingwith the training phase on the left to produce a range
estimatormodel, which is applied in the inference phase on the right to ultimately result in the rejection rate rr as a qualitymetric for a
treatment fraction.
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1.107 mm forweighted sum andhomoscedastic, respectively. However, the homoscedastic uncertainty-
weighted loss appears slightlymore stable, with a lower standard deviation across runs.

It is notable that the training loss in the homoscedastic setup converges around−4.5× 1019, which could
indicate potential numerical instability for this approach. This could be a result of combining theGaussian
negative log-likelihood loss with the homoscedastic uncertainty-weights, since both of the components include
a log-term for regularization.

Figure 5 shows the error distribution histograms for taskZ in bothmultitask settings. The distribution is
approximately Gaussian, centered around 0, indicating the absence of a systematic error in any direction.
Similarly, the prediction plot infigure 6 shows a distribution around the diagonal.

3.2. Uncertainty calibration
Figure 7 shows the calibration plots for the epistemic model

2s and aleatoric data
2s uncertainties before and after

calibration in bothmultitask settings. The plots show that evenwhen calibrated, the individual uncertainty
components alone deviate from the expected confidence level in the critical region for rr computation, around
95%, thereby confirming the necessity tomodel both, epistemic and aleatoric uncertainty, for awell-calibrated
model. Either component tends to be over-confident, i.e. to underestimate the uncertainty, which is undesirable
for safety-critical applications where the decision dictates further action.

Figure 5.Histogramof prediction errors forZ in differentmultitask settings, (a)weighted sumof losses and (b) homoscedastic
uncertainty-weighted loss.

Table 1.MAEandRMSE scores ±1 standard deviation in mmcomputed on the test set over
10 runswith different seeds for different learning scenarios and both targets,R andZ.

Model MAER MAEZ RMSER RMSEZ

Single task 0.822 ± 0.023 1.254 ± 0.021 1.082 ± 0.029 1.745 ± 0.025

Weighted sum 0.763 ± 0.013 1.087 ± 0.020 0.990 ± 0.015 1.526 ± 0.030

Homoscedastic 0.782 ± 0.009 1.107 ± 0.015 1.020 ± 0.011 1.559 ± 0.023

Table 2.MAEandRMSE scores±1 standard deviation in mmcomputedwith different combinations of
training and test sets over 10 runswith different seeds for both targets,R andZ, trainedwith theweighted
sumof losses.

Train Test MAER MAEZ RMSER RMSEZ

715-HN 715-HN 0.763 ± 0.013 1.087 ± 0.020 0.990 ± 0.015 1.526 ± 0.030

VHF VHF 0.826 ± 0.022 1.200 ± 0.017 1.072 ± 0.032 1.696 ± 0.029

715-HN VHF 2.220 ± 0.047 5.712 ± 0.026 3.710 ± 0.034 7.270 ± 0.031

VHF 715-HN 1.666 ± 0.028 4.183 ± 0.037 2.250 ± 0.036 5.480 ± 0.040
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When both uncertainties aremodeled and combined, the resulting uncertainty can be calibrated to follow
the expected confidence levels closely for both tasks,R andZ, as depicted infigure 8. Bothmultitask settings
perform similarly well when comparing the capability of estimating their uncertainties. TaskR is generally
slightlymore under-confident thanZ. However, after calibration, there is no notable difference between the
tasks.

3.3. Spot rejection rate
Figure 9 shows rr over different degrees of treatment error for different predictors before and after uncertainty
calibration. For a predictor withwell-calibrated uncertainties, we expect rr= 0.05 for correct treatment (0 lateral
shift) to reflect the 95% confidence interval used in the definition of rr.With uncalibrated uncertainties, this
assumption does not hold for any of the predictors. After calibration, only the single task setting differs from5%
for correct treatment.

Increasing lateral shift compared to the treatment plan leads tomonotonically increasing rejection rates.
Hence, the condition for awell-definedmetric rr∝ q−1 holds for all tested learning scenarios. Bothmultitask

Figure 6.Predictions ofZ over their true values in differentmultitask settings, (a)weighted sumof losses and (b) homoscedastic
uncertainty-weighted loss.

Figure 7.Uncertainty calibration curves for the individual components, epistemic and aleatoric uncertainty, for taskZ in different
multitask settings, (a)weighted sumof losses and (b) homoscedastic uncertainty-weighted loss, before and after calibration.
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settings show very similar rr across the entire lateral shift spectrum after calibration.We can observe that a shift
of as little as 1 mmcan be detected through the rrmetric.

Further, themonotonic increase, even in cases where uncertainties are notwell-calibrated,means that
calibration can be deferred to themetric instead of the predictive uncertainty, by simply subtracting rr0, the
rejection rate predicted for correct treatment. Themetric then describes poor treatment as soon as the value is
positive, instead of the threshold being 0.05.

3.4. Required treatment spots
Using t-tests allows us to compute theminimumnumber of spots required for statistical significance (α= 0.05
orα= 0.01). Different spot counts are evaluated by repeatedly sampling randomly from all predicted spots of
the test set with a certain lateral shift distance. Figure 10 shows the resultingmean p-values computed for 1 mm,
2 mm, and 3 mmshifts with 1× 104 samples for each spot count.

The plot shows that for theweighted sumof losses, 1 mm shifts can be detectedwith significanceα= 0.05
starting at around 2000 spots, 2 mmshifts starting at around 250 spots, and 3 mmshifts starting at around
150 spots. Larger shifts follow the trend of requiring even fewer spots to reach statistical significance.With

Figure 8.Uncertainty calibration curves for the total uncertainty for both tasks,R andZ, in differentmultitask settings, (a)weighted
sumof losses and (b) homoscedastic uncertainty-weighted loss, before and after calibration.

Figure 9.Rejection rates of different learning scenarios for the 95% confidence interval of predictions, (a) uncalibrated and (b)
calibrated, with increasing lateral shift, representing treatment error.
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homoscedastic uncertainty-weighted losses, the required spots for the detection of 1 mmshifts ismuch lower on
average, starting at around 1400 spots.

Formore confident predictions for the detection of 1 mmshifts with significanceα= 0.01, 3700 spots and
2700 spots are required forweighted sumof losses and homoscedastic uncertainty-weighted loss, respectively.

3.5. Generalizability
Wedifferentiate between two different concepts of generalizability. First, the general applicability of the
proposedworkflow for different targets through patient-specific re-training. This process is time-consuming
because of the large amount of simulations required to generate the training dataset. Nevertheless, proving
viability of theworkflowon a second phantomwould underscore its effectiveness.

The second concept of generalizability is the transferability of amodel trained on one patient to another,
previously unseen patient. This approach is akin to one-shot learning, which aims to learn a generalmodel from
one or a few examples. To test the one-shot generalizability of the proposedmodel, it is trained on one phantom
and evaluated on another. Table 2 shows the result for both cases, re-training completely on a patient-by-patient
basis, as well as training on one phantom and evaluating on the other.

When the same phantom is used for training and evaluation, the error scores are close to each other, VHF
being slightly higher than 715-HNwith 1.200± 0.017 mmMAEon task Z.However, the uncertainty calibration
works equally well, leading to similar rr curves for increasing treatment error as in the 715-HNphantom.
Figure 11 shows the uncalibrated and calibrated rejection rates for theVHFphantom in different learning
scenarios.

Concerning the one-shot generalizability fromone phantom to another, the table shows a noticeable
increase in errors, withMAE above 4.1 mm for both cases. Additionally, the uncertainties are no longer
calibrated, yielding rr≈ 72%and rr≈ 49%without any treatment error for training on 715-HNandVHF,
respectively.

4.Discussion

4.1. Uncertainty calibration
rr is a well-definedmetric for perfect uncertainties, which is usually not a reachable goal in practice. However,
the uncertainty calibration considers the entire range of confidence intervals, while the definition of rr only
considers the 95%-interval. Itmay be beneficial to incorporate the entire range of confidence intervals, since the
calibration is close to ideal across the board, as shown in section 3.2.

Furthermore, theremay be a need for an additionalmetric to control the rejection rate. If the data is out-of-
distribution for the training set, the epistemic uncertainty will increase. One possibility for out-of-distribution
data could be cases wheremany primaries reach the detector because the beam is erroneously placed at amuch
thinner position of the patient. It needs to be ensured that in such cases, the uncertainty is not too large to accept

Figure 10.Average p-values for t-tests sampled 10 000 times for different spot counts with 1, 2, and 3 mm lateral shift in different
multitask settings, (a)weighted sumof losses and (b) homoscedastic uncertainty-weighted loss.
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more spots than it should. A foundation for such ametric could be themeasure of sharpness, defined by
Kuleshov et al (2018) as themean of the predicted uncertaintiesσ2.

4.2. Generalizability
The results in section 3.5 indicate viability for the proposedworkflowwith patient-specific re-training of the
model. However, one-shot learning, with a single phantomproviding the training data, does not generalize well
to a second phantomwith the currentmodel architecture. It should be the focus of futurework to either improve
one-shot or few-shot generalizability, or tofind amore easily generalizable workflow tomake thismethod viable
for clinical application. To this end,model architectures with translation invariance areworth evaluating.
Additionally, transfer learning can be employed tofine-tune amodel to new patients. This would requiremuch
less data than re-training from scratch and therefore reduce computation time significantly.

Another challenge for generalizability is the gap between simulation and reality. It needs to be investigated if
MCdata can be used for training or if it does notmatch experimental data well enough. Since the 715-HN
phantomused in this work ismodeled after a physical counterpart, itmay be possible to use this as a foundation
for calibrating amodel trained on simulations to the real world.

4.3. Clinical applicability
If the generalization described in the previous section can be achievedwithout loss of precision, the rrmetric
could be applied to the clinical setting. Detection of errors of 1 mm lateral shift with 1 · 107 primaries per spot is
comparable to previously introduced range verificationmethods in terms of the detected error distance, while
requiring lower spot intensities. In particular, other studies report, e.g. 1–3 mmwith 1× 108 primaries
(Lerendegui-Marco et al 2022), 2 mmwith 1 · 108 primaries (Draeger et al 2018), and 1 mmwith 1.35× 108

(Tian et al 2018) primaries.
Another aspect of clinical applicability is theminimumnumber of spots required for statistical significance

of the rrmetric. The average number of spots required to detect 1 mmshifts with homoscedastic uncertainty-
weighted losses is at around 1400.Many clinical treatment plans exceed this requirement. Some example plans
can be found inMaradia et al (2022), where theminimum spot count is around 8400, well above the required
threshold.

However, the number of spots is highly dependent on the size of the tumor. Furthermore, treatment plans
can be createdwith a spot reduction technique introduced by van deWater et al (2020). This has the potential to
reduce the number of spots by a factor of up to 20. The plans in the above example are reduced to around 800
(Maradia et al 2022). These planswillmost likely still detect shifts of 2 mmormore, but not necessarily down
to 1 mm.

The statistical significance levels in the rrmetric are currently arbitrarily chosen to beα= 0.05 andα= 0.01.
It is unclear, if these representmedically relevant thresholds, or if better values have to be found. Alternatively, it

Figure 11.Rejection rates of different learning scenarios on theVHFphantom for the 95% confidence interval of predictions, (a)
uncalibrated and (b) calibrated, with increasing lateral shift, representing treatment error.
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is possible to simply compute the p-value of the t-test and display it to the physician to decide on further action
on a case-by-case basis.

Additionally, the combination of the rejection ratewith a statistical significancemeasure enables on-line
evaluationwith the potential of automated intervention in case an error is detectedwith confidence. To
determine the feasibility for this approach, a computation timemeasurement was added to the current
prototypical Python implementation. The entire inference workflow can be executed in 105 ms on average in all
learning scenarios using a single core of anAMDEPYC7F72CPU and anNVIDIAA100GPU.Assuming a spot
delivery time of around 100 ms, it is well in the realmof possibility to apply theworkflowon-line after code
optimization.

4.4. R as input
The beam in a proton therapy facility ismonitored by internal controlmechanisms.We can, therefore, assume
the beam energy and corresponding range inwaterR to be a knownquantity. This enables us to useR as an input
feature instead of using amultitask learning schemewithR as an output.While this has the potential of
improving theMAEof the prediction, itmay cause the network to learn to behave like a TPS and simply
compute the expected BP location based on the beam energy aswell as the RSP image, entirely ignoring detector
readout. Thismeans the predictionwould always correspond to the treatment plan, ignoringwhat actually
happened during treatment.

To avoid this scenario,R is instead used to improve the predictor by serving as an auxiliary task.However,
theremay be other possibilities tomodel a predictor preventing it from learning this behavior, which is a
possible avenue for future work.

One advantage of includingR as an input rather than an output is the potential to computemore accurate
phantom features without a ground truth leak, as described in section 2.3.2. Because the beamdiverges
depending on its energy and thus the computed combinedRSP value adjusts based on the current beamwidth at
depth z, this information can lead to better features for amore accurate prediction, evenwithout usingR as an
input directly.

5. Conclusion

In this work, we presented spot rejection rate rr as a qualitymetric for proton therapy, based onML and predictive
uncertainties for range verification in PBS.We show that themetric is well-defined forwell-calibrated
uncertainties, and that it is independent of the range predictor.

AnMC study evaluating its efficacy shows promising results for themeasurement of treatment quality, with
lateral shifts introduced as error. Themetricmonotonically increases with increasing treatment error.Modeling
uncertainties in deep neural networks with the prediction of aGaussian variance and the usage ofMCdropout
proves to be a good architecture for a range predictor.With subsequent calibration, themodel produces well-
calibrated uncertainties and can be used for the rrmetric.

Further, this study showed the feasibility of using a detectormeant for charged particle detection for range
verification in proton therapy, which does not produce any charged secondary particles directly.
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