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3. Terms and abbreviations 
16S rRNA 16S ribosomal ribonucleic acid 
AMPs Antimicrobial peptides 
ANC Absolute neutrophil counts 
ANCOM-BC Analysis of Compositions of Microbiomes with Bias Correction 
ANOSIM Analysis of similarities  
ANOVA Analysis of variance  
ASVs Amplicon sequence variants 
(P)BAL (Protected) bronchoalveolar lavage 
BCCS  The Bergen COPD cohort study 
BCES The Bergen COPD exacerbation study 
BLAST Basic Local Alignment Search Tool 
CAT COPD Assessment Test  
CF Cystic fibrosis 
COPD Chronic obstructive pulmonary disease 
CXCL8 C-X-C motif chemokine ligand 8 
DNA Deoxyribonucleic acid 
DTT Dithiothreitol  
ELISA Enzyme-linked immunosorbent assay 
FEV1 Forced expiratory volume at 1 seconds 
FVC Forced vital capacity 
GOLD The Global Initiative for Chronic Obstructive Lung Disease 
HMP The Human Microbiome Project  
HOMD The Human Oral Microbiome Database  
ICS Inhaled corticosteroids 
IL-(#) Interleukin-(#) 
IP-10 Interferon gamma-induced protein 10 
ISS Induced sputum samples 
KOLS Kronisk obstruktiv lungesjukdom 
LOA Limits of agreement 
LPK Leucocyte particle count 
MAFFT Multiple Alignment using Fast Fourier Transform  
MicroCOPD The Bergen COPD microbiome study 
MIG Monokine induced by gamma interferon 
NAST Nearest Alignment Space Termination  
NIH National Institute of Health 
NMDS Non-metric multidimensional scaling 
OTUs Operational taxonomic units  
OW Oral wash 
PBS Phosphate-buffered saline 
PCoA Principal coordinate analysis 
PCR Polymerase chain reaction 
PERMANOVA Permutational multivariate analysis of variance 
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PSB Protected specimen brushes 
pyNAST Python implementation of the NAST algorithm 
QIIME (2) Quantitative Insights Into Microbial Ecology 
RCTs Randomised controlled trials  
RESCRIPt Reference sequence annotation and curation pipeline 
RNA Ribosomal nucleic acid 
SLPI Secretory leucocyte protease inhibitor 
SSS Spontaneous sputum samples 
SVL Small volume lavage 
TNF-α Tumour necrosis factor alpha  
UWUF Unweighted UniFrac 
WBC White blood cell 
WUF Weighted UniFrac 
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5. Summaries 

5.1 English 
Background: Chronic obstructive pulmonary disease (COPD) is a complex 

inflammatory disease causing the death of millions annually. The lower airway 

bacterial community (microbiota) and immune responses could be important for the 

pathogenesis of COPD. The aims for this thesis were to study COPD cohorts 

considering if measures of inflammatory markers and microbiota 1) are affected by 

sputum sampling techniques, 2) differ with COPD state, and 3) if the microbiota 

differ in bronchoalveolar lavage (BAL) comparing patients with COPD with controls.  

Methods: Sputum data originated from the Bergen COPD Cohort and exacerbations 

studies in which 433 patients with COPD were enrolled and 356 followed for 

exacerbations. BAL data originated from the MicroCOPD study in which 130 patients 

with COPD and 103 controls were enrolled. Inflammatory markers in sputum were 

measured by a bead based multiplex immunoassay and antimicrobial peptides by 

enzyme linked immunosorbent assay. DNA sequences were obtained by enzymatic 

and mechanical lysis extraction methods, PCR-amplification of the 16S rRNA gene 

and paired-end sequencing using the Illumina MiSeq System. Data were analysed in 

QIIME 1&2, Stata, and R. 

Results: Inflammatory markers and microbiota differed significantly between induced 

and spontaneous sputum, and between stable state COPD and exacerbations. 

Differences related to disease state showed great heterogeneity looking at individual 

participants. The microbiota in BAL sampled in the COPD cohort had lower evenness 

and higher abundances of Firmicutes compared with controls. Sex, age, smoking, 

disease severity and use of inhaled corticosteroids were not clearly associated with the 

lower airway microbiota. 

Conclusion: Sputum sampling methods influences on measurements of inflammation 

and microbiota. Exacerbations in COPD and the presence of disease are both 

associated with microbiota dysbiosis which indicate importance of the lower airway 

microbiota in the pathogenesis in COPD.  
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5.2 Norsk 
Bakgrunn: Kronisk obstruktiv lungesjukdom (KOLS) er ein kompleks, 

inflammatorisk sjukdom som forårsakar millionar av dødsfall årleg. Bakteriane i dei 

nedre luftvegane (mikrobiotaet) og immunresponsar kan spele ei viktig rolle i KOLS. 

Målingar av dei begge kan tenkast å vera påverka av prøvetakingsmetode. Måla med 

denne oppgåva var å studere KOLS-kohortar med tanke på 1) høve for vekselbruk av 

indusert og spontant sputum for målingar av inflammasjonsmarkørar og mikrobiota, 

2) endringar i inflammasjonsmarkørar og mikrobiota under sjukdomsforverringar 

samanlikna med stabil sjukdomsfase og 3) forskjellar i mikrobiota i 

bronkialskyllevæske (BAL) frå pasientar med KOLS samanlikna med friske 

kontrollar. 

Metode: Sputum data kjem frå studiane BergenKOLS og tilhøyrande 

eksaserbasjonsstudie med 433 pasientar med KOLS inkludert, og 356 som vart følgt 

med tanke på forverringar. BAL data kjem frå studien MikroKOLS med 130 pasientar 

med KOLS og 103 friske kontrollar inkludert. Inflammasjonsmarkørar i sputum vart 

målt med bead based multiplex immunoassay og antimikrobielle peptid med enzyme 

linked immunosorbent assay. DNA sekvensar vart reinska ved hjelp av både enzym 

og mekanisk lysering. PCR-amplifisering av 16S rRNA og paired-end sequencing 

med Illumina MiSeq System vart utført. Data vart analysert i QIIME 1&2, Stata og R. 

Resultat: Inflammasjonsmarkørar og mikrobiota var signifikant forskjellige i indusert 

og spontant sputum, og i stabil fase av KOLS samanlikna med under pågåande 

forverring. I høve til sjukdomsfase var ulikskapane heterogene når ein såg på kvart 

individ. Mikrobiota i BAL var meir ujamn og rikare på Firmicutes hos pasientar med 

KOLS samanlikna med friske. Kjønn, alder, røyking, sjukdomsgrad og bruk av 

inhalasjons-kortikosteroider var ikkje tydeleg assosiert til mikrobiotaet i dei nedre 

luftvegane. 

Konklusjon: Sputumprøvetaking påverkar målingar av inflammasjonsmarkørar og 

mikrobiota. KOLS forverringar og KOLS i seg sjølv er begge assosiert med endringar 

i luftvegsmikrobiotaet. Det tyder på at mikrobiotaet spelar ei rolle i KOLS. 
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6. Introduction 
6.1 Chronic obstructive pulmonary disease (COPD) 
COPD is a multifactorial disease characterised by lower airway inflammation (1). 

Smoking is a trigger of inflammatory processes in the airways and considered the 

main cause of COPD. Examples of less prevalent causes include air pollution, 

exposure to other lung toxic substances, and rare genetic disease (2, 3). While COPD 

is mainly caused by smoking, far from all smokers develop COPD. This observation 

is yet to be explained (4, 5). 

COPD is defined by chronic airflow obstruction assessed with spirometry (6). With a 

spirometer we measure how much air can be forcefully exhaled in the first second of 

expiration (FEV1) and the total amount of air that can be forcefully exhaled (FVC). If 

the FEV1/FVC ratio is less than 70% it indicates obstructed airways. In the case of 

COPD, this obstruction is caused by chronic remodelling of the airways and lung 

tissue (Illustration 1). 

 
Illustration 1: Medical illustration of remodelling of the lower airways and lung parenchyma 
in COPD by Dr Ciléin Kearns (Artibiotics). Reprinted with permission. 
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Narrowing of bronchiole lumens are due to smooth muscle cell hypertrophy and 

alterations of mucus producing Goblet cells. Airflow obstruction is further caused by 

destruction of alveoli and a loss of structural integrity allowing for dynamic collapse 

of the small airways. The resulting emphysematous lung tissue also has a reduced 

surface for gas exchange compared with healthy lung tissue.  

COPD development is progressive, heterogeneous, and unpredictable. While some 

patients may exhibit minimal symptoms, others can develop a debilitating condition 

marked by recurring episodes of increased difficulty in breathing, cough, and sputum 

production. These episodes are referred to as exacerbations, which have been 

associated with a decline in the overall quality of life and life expectancy, as well as 

an increase in disability and the need for hospitalisation (6). Exacerbations are often 
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healthy smokers are prone to developing smoking related disease, including COPD, 

and which patients with COPD are at a high risk of experiencing frequent 

exacerbations and disease advancement. Consequently, researchers studying COPD 

have analysed a diversity of airway samples in the hopes of identifying high risk 

individuals from the inflammation and the microbial community as measured in the 

airway samples.  

 

6.2 Lower airway inflammation in COPD 
It has been recognised that the lower airway immune system is altered in COPD 

compared with in health. Though the immune system in the airways is very complex, 

its main task is to eliminate pathogenic microorganisms and toxic substances before 

they can do harm to the respiratory organ. The airway immune system consists of 

barrier cells like the epithelial cells, specialised immune cells called leucocytes, and 

different molecules produced and released by these cells (Illustration 2).  

 

Illustration 2: Leukocytes and released molecules in chronic obstructive pulmonary disease 
(COPD). Shared under CC BY-NC 3.0 license: Baker et al. doi: 10.2147/COPD.S266394. 
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Typical for the lower airways of patients with COPD is a leucocyte pattern richer than 

normal in macrophages, neutrophils, cytotoxic T-cells, and helper T-cells type 1&17 

(9, 10). Macrophages and neutrophils play a critical role in managing pathogenic 

microorganisms, but an imbalance in their activity in COPD is thought to contribute 

to the destruction of alveoli. This in part by increased release of protein degrading 

molecules called proteases (10). Furthermore, it has been found that the capacity of 

macrophages and neutrophils to eradicate microorganisms is reduced in the airways of 

patients with COPD (10). A subset of patients with COPD exhibits a higher 

prevalence of eosinophils, similar to what can be seen in many patients with asthma. 

For this group of patients inhaled corticosteroids (ICS) can be beneficial (11). 

Important molecules in the immune response includes cytokines involved in cell 

signalling. These can be interleukins allowing for communication between leucocytes, 

and chemokines attracting immune cells to infected sites. The same molecule can 

have different functions, and therefore be recognised as both interleukins and 

chemokines. Interleukin-8 also known as chemokine ligand 8, is one example.  

The immune system in the lower airways also contain cells with non-inflammatory 

functions that under the right circumstances engage with both pro- and anti-

inflammatory activity. As an example, the airway epithelium is equipped with hair 

like cilia that with coordinated movements remove inhaled mucus and foreign 

particles and microorganisms. But the epithelium also possesses pattern recognition 

receptors that facilitate the identification of viruses and microorganisms, prompting 

the release of cytokines and antimicrobial peptides (AMPs) as a response. Moreover, 

the epithelium can release growth factors involved in leukocyte activity and the cell 

hypertrophy causing the bronchioles to narrow in COPD (9). 

Smoking is one cause of COPD, but it is not the sole determinant as not all smokers 

develop COPD. Therefore, there must be unknown factors that play a role in 

triggering the remodelling of lung tissue and airways associated with COPD. Is it 

possible that the microbial community either residing in or visiting the lower airways 

could be such a factor? 
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6.3 The lower airway microbiota 
Microbiota can be defined as the living microorganisms in a defined environment 

(12), as shown in Illustration 3. 

 
Illustration 3: Defining the microbiome. Shared under CC BY 4.0 license: Berg et al. 
doi.org/10.1186/s40168-020-00875-0. 
 

From the work of Berg et al. we can see that the microbiota is not limited to bacteria, 

but also consists of fungi, archaea, protists, and algae. We also notice that the non-

living viruses are not included in this definition. Today, bacteria are the most studied 

microorganism of them all.  

Technological advancements have facilitated the classification of bacteria through 

sequencing of bacterial DNA, leading to valuable microbiota research findings. 

Currently, the most widely used sequencing technique is amplicon sequencing, (also 

called target gene sequencing), primarily because it is cost-effective. The 16S rRNA 

gene is particularly suited for amplicon sequencing due to its universal presence 

among all bacteria, enabling the differentiation of bacterial DNA from human DNA. 
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Additionally, the 16S rRNA gene contains both conserved and variable regions 

facilitating the classification of bacteria with bioinformatic analyses.  

The Human Microbiome Project (HMP) financed by the United States National 

Institute of Health (NIH) was one of the first, large projects aiming to map the human 

microbiota (13). The HMP was initiated in 2008 and included 300 healthy participants 

sampled from many body sites with direct contact with the world around them. 

However, samples were not taken from the lower airways. The possibility of a 

"healthy" airway microbiota was thus not recognised until early 2010s when the 

works of Hilty et al., and Erb-Downward et al. presented a diverse collection of 

bacterial sequences from the lower airways of healthy controls (14). Studies on the 

airway microbiota (microbiome) in COPD available from the NIH online library 

(https://pubmed.ncbi.nlm.nih.gov) by the time my microbiota studies began in 2015 is 

presented in Table 1.
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Table 1. Studies on the airw
ay m
icrobiota (m
icrobiom
e) in C
O
PD
 published by 2015. 

First author: Title. 

Publisher 

A
im
 

Participants  
Sam
pling 

m
ethods 

Sequencing 

technique 

R
esults 

H
ilty, M
arkus: 

D
isordered m
icrobial 

com
m
unities in asthm
atic 

airw
ays. PlosO
ne 2010 

To describe and 

com
pare the airw
ay 

m
icrobiota in 

asthm
a, CO
PD
, and 

healthy controls. 

5 CO
PD
               

11 A
sthm
a             

8 Control 

O
ropharyngeal 

sw
abs          

Bronchial 

brushes 

Pyro-

sequencing 

A
lpha-diversity is rich in CO
PD
, 

asthm
a, and in healthy controls. A
sthm
a 

sam
ples clustered w
ith control sam
ples 

from
 the upper respiratory tract, and 

w
ith CO
PD
 sam
ples from
 the low
er 

respiratory tract. Proteobacteria w
as 

enriched in obstructive lung disease at 

the cost of Bacteroidetes. 

H
uang, Y
vonne: A
 

persistent and diverse 

airw
ay m
icrobiota 

present during chronic 

obstructive pulm
onary 

disease exacerbations. 

O
M
ICS 2010 

To describe the 

airw
ay m
icrobiota in 

patients w
ith 

exacerbated CO
PD
 

treated w
ith 

antibiotics.  

8 CO
PD
 

Endotracheal 

aspirates 

16S rRN
A
 

PhyloChip 

A
lpha-diversity in CO
PD
 is rich, and 

exacerbations could be a polym
icrobial 

process, rather than caused by a single 

pathogenic bacterium
. Taxonom
y 

included genera know
n to inhabit the 

upper respiratory and gastric tract.  

Erb-D
ow
nw
ard, John: 

A
nalysis of the lung 

m
icrobiom
e in the 

“healthy” sm
oker and in 

CO
PD
. PlosO
ne 2011 

To describe the 

airw
ay m
icrobiota in 

CO
PD
 and health, 

and to investigate for 

differences along the 

respiratory tract. 

8 CO
PD
               

14 Control 

Lung tissue  

Bronchoalveolar 

lavage (BA
L)  

Pyro-

sequencing 

The low
er airw
ay m
icrobiota in health is 

diverse, and distinct from
 that of the 

upper respiratory tract. Com
pared w
ith 

controls, the diversity of low
er airw
ay 

m
icrobiota in CO
PD
 is lesser and 

depending on collection site along the 

respiratory tract.  
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From Table 1 we can observe that the earliest lower airway microbiota studies were 

mainly descriptive, had limited numbers of participants, and presented airway 

microbiota from various sample types. Certain aspects from Table 1 can be 

highlighted: 

First and foremost, all studies including healthy controls confirmed the existence of a 

healthy lower airway microbiota as first suggested by Hilty et al. Hence, the belief 

that the healthy lower airways were sterile had already been disregarded by 2015.  

Secondly, Huang et al. challenged the notion that exacerbations were caused by a 

single pathogenic bacterium (15). She proposed that a more complex bacterial 

dysbiosis, involving multiple bacteria, could be responsible for exacerbations. 

Thirdly, measures of alpha- and beta-diversity in both health and COPD were 

inconsistent between studies, as well as in relation to the severity of COPD. Similarly, 

various studies have provided conflicting results on the proportions of prevalent 

bacterial phyla in relation to both health and COPD, as well as in relation to the 

severity of COPD. 

Furthermore, the measurements of the microbiota were affected by the choice of 

sampling sites and methods. In the research conducted by Hilty et al. differences in 

sample sites were only found among patients with obstructive lung disease, not in 

healthy controls. Erb-Downward et al., and Cabrera-Rubio et al. discovered that 

sampling methods and sites influenced the composition of the airway microbiota. 

Notably, there was a lack of studies investigating the relationship between the airway 

microbiota and airway inflammation, as evident in Table 1. 

Studies of the airway microbiota in COPD have grown rapidly in size and complexity, 

with researchers attempting to link the microbiota to host characteristics and host 

inflammation. This shift is exemplified in Table 2, which provides an overview of 

larger studies conducted after 2015.
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Table 2. Selected publications on the airw
ay m
icrobiota in C
O
PD
 focusing on larger studies.  

First author: Title. 

Publisher 

A
im
 

Participants 
Sam
pling 

m
ethods 

Sequencing 

technique 

R
esults 

G
ronseth, Rune: 

Protected sam
pling is 

preferable in 

bronchoscopic studies of 

the airw
ay m
icrobiom
e. 

ERJ O
pen Res 2017 

To investigate the 

susceptibility of 

oropharyngeal 

contam
ination of 

various 

bronchoscopic 

sam
ples from
 a 

CO
PD
 cohort. 

67 CO
PD
    

58 Control 

O
ral w
ash 

(O
W
), sm
all-

volum
e lavage 

(SV
L), 

protected 

broncho-

alveolar lavage 

(BA
L), 

protected 

specim
en 

brushes (PSB) 

Illum
ina M
iSeq 
A
lpha-diversity and Firm
icutes 

decreased and Proteobacteria increased 

in the order O
W
, SV
L, BA
L, PSB. 

Beta-diversity varied by sam
pling 

m
ethod, and visualisation of principal 

coordinates analyses indicated that 

differences in diversity w
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associated w
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6.4 Airway sampling procedures 
It is apparent from both Table 1 and Table 2 that different sample types have been 

used to characterise the airway microbiota. To sampling sputum is convenient as the 

procedures are of a less invasive nature, and require less resources compared with 

bronchoscopic sampling procedures. However, one drawback of sputum is that it must 

pass through the oral cavity and the much richer microbiota present there. This will 

inevitably lead to sample contamination.  

Two types of sputum can be collected: Participants can deliver spontaneous sputum 

simply by coughing and expectorating, or they can be induced. With this procedure a 

machine (nebuliser) turns saline into a mist that can be inhaled. This increases sputum 

production making sampling from non-expectorating participants possible. The 

standardisation of induction techniques has been proposed by a European task force 

over 20 years ago (16). Limited publications exist regarding the potential impact of 

sputum sampling methods on measurements of inflammatory markers and microbiota 

in patients with COPD. When commencing this thesis work in 2013, it had been 

reported that induced sputum from patients with asthma and COPD had higher cell 

viability compared to spontaneous sputum, IL-8 levels were similar across different 

types of sputum in stable COPD (17, 18), and no studies comparing microbiota in 

induced and spontaneous sputum in patients with COPD had been published. 

The use of standardised sampling methods, such as induced sputum, would be a 

logical choice for research purposes, also due to the ability to include a larger number 

of participants. However, it is important to exercise caution when sampling patients 

with exacerbated COPD and asthma, as induction has been shown to obstruct the 

airways (16). The European task force recommended using isotonic saline instead of 

concentrated saline for high-risk patients, gradually increasing the concentration if 

sampling failed and isotonic saline was well-tolerated. By 2013, the safety of 

induction with concentrated saline had been evaluated in stable asthma, stable COPD, 

and exacerbated mild to moderate COPD (19-22). In 2013 Gao et al. published their 

assessment of the safety of induction during exacerbations in severe and very severe 
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COPD using isotonic saline. They concluded that this modified procedure was safe for 

most exacerbated patients with severe and very severe COPD (23).  

Although sputum is commonly used, and safely sampled during most exacerbations of 

COPD, it is obtained from the proximal parts of the lower airways (24). To obtain 

biological samples from the distal airways, bronchoscopy should be performed. 

Bronchoscopic samples, such as bronchoalveolar lavage (BAL), bronchial brushes, 

and transbronchial biopsies, carry substantially less risk of oral contamination 

compared to sputum. This is particularly true when employing procedural steps aimed 

at reducing contamination. One example of measures that should be taken is to refrain 

from suction through the bronchoscope until it has reached the lower airways (25-27). 

Equipment specifically designed to reduce the risk of contamination, such as wax-

sealed sterile specimen brushes and wax-sealed sterile inner catheters for BAL, can 

further decrease the risk of oral contamination (26, 28).  

Currently, there is no consensus on which type of sample is preferable for assessing 

the airway microbiota in COPD. It is reasonable to assume that samples obtained near 

the sites of airway remodelling would provide more accurate insight into the 

environment responsible for such changes. However, both BAL and bronchial brush 

samples cover a more limited portion of the lower airways compared to sputum, 

which is likely to be supplied from both lungs. Another important limitation of 

research bronchoscopy is that the procedure has only been conducted in stable state 

COPD, and not in patients with ongoing exacerbations. 

 

  

 
 

 

30 

COPD using isotonic saline. They concluded that this modified procedure was safe for 

most exacerbated patients with severe and very severe COPD (23).  

Although sputum is commonly used, and safely sampled during most exacerbations of 

COPD, it is obtained from the proximal parts of the lower airways (24). To obtain 

biological samples from the distal airways, bronchoscopy should be performed. 

Bronchoscopic samples, such as bronchoalveolar lavage (BAL), bronchial brushes, 

and transbronchial biopsies, carry substantially less risk of oral contamination 

compared to sputum. This is particularly true when employing procedural steps aimed 

at reducing contamination. One example of measures that should be taken is to refrain 

from suction through the bronchoscope until it has reached the lower airways (25-27). 

Equipment specifically designed to reduce the risk of contamination, such as wax-

sealed sterile specimen brushes and wax-sealed sterile inner catheters for BAL, can 

further decrease the risk of oral contamination (26, 28).  

Currently, there is no consensus on which type of sample is preferable for assessing 

the airway microbiota in COPD. It is reasonable to assume that samples obtained near 

the sites of airway remodelling would provide more accurate insight into the 

environment responsible for such changes. However, both BAL and bronchial brush 

samples cover a more limited portion of the lower airways compared to sputum, 

which is likely to be supplied from both lungs. Another important limitation of 

research bronchoscopy is that the procedure has only been conducted in stable state 

COPD, and not in patients with ongoing exacerbations. 

 

  

 
 

 

30 

COPD using isotonic saline. They concluded that this modified procedure was safe for 

most exacerbated patients with severe and very severe COPD (23).  

Although sputum is commonly used, and safely sampled during most exacerbations of 

COPD, it is obtained from the proximal parts of the lower airways (24). To obtain 

biological samples from the distal airways, bronchoscopy should be performed. 

Bronchoscopic samples, such as bronchoalveolar lavage (BAL), bronchial brushes, 

and transbronchial biopsies, carry substantially less risk of oral contamination 

compared to sputum. This is particularly true when employing procedural steps aimed 

at reducing contamination. One example of measures that should be taken is to refrain 

from suction through the bronchoscope until it has reached the lower airways (25-27). 

Equipment specifically designed to reduce the risk of contamination, such as wax-

sealed sterile specimen brushes and wax-sealed sterile inner catheters for BAL, can 

further decrease the risk of oral contamination (26, 28).  

Currently, there is no consensus on which type of sample is preferable for assessing 

the airway microbiota in COPD. It is reasonable to assume that samples obtained near 

the sites of airway remodelling would provide more accurate insight into the 

environment responsible for such changes. However, both BAL and bronchial brush 

samples cover a more limited portion of the lower airways compared to sputum, 

which is likely to be supplied from both lungs. Another important limitation of 

research bronchoscopy is that the procedure has only been conducted in stable state 

COPD, and not in patients with ongoing exacerbations. 

 

  

 
 

 

30 

COPD using isotonic saline. They concluded that this modified procedure was safe for 

most exacerbated patients with severe and very severe COPD (23).  

Although sputum is commonly used, and safely sampled during most exacerbations of 

COPD, it is obtained from the proximal parts of the lower airways (24). To obtain 

biological samples from the distal airways, bronchoscopy should be performed. 

Bronchoscopic samples, such as bronchoalveolar lavage (BAL), bronchial brushes, 

and transbronchial biopsies, carry substantially less risk of oral contamination 

compared to sputum. This is particularly true when employing procedural steps aimed 

at reducing contamination. One example of measures that should be taken is to refrain 

from suction through the bronchoscope until it has reached the lower airways (25-27). 

Equipment specifically designed to reduce the risk of contamination, such as wax-

sealed sterile specimen brushes and wax-sealed sterile inner catheters for BAL, can 

further decrease the risk of oral contamination (26, 28).  

Currently, there is no consensus on which type of sample is preferable for assessing 

the airway microbiota in COPD. It is reasonable to assume that samples obtained near 

the sites of airway remodelling would provide more accurate insight into the 

environment responsible for such changes. However, both BAL and bronchial brush 

samples cover a more limited portion of the lower airways compared to sputum, 

which is likely to be supplied from both lungs. Another important limitation of 

research bronchoscopy is that the procedure has only been conducted in stable state 

COPD, and not in patients with ongoing exacerbations. 

 

  

 
 

 

30 

COPD using isotonic saline. They concluded that this modified procedure was safe for 

most exacerbated patients with severe and very severe COPD (23).  

Although sputum is commonly used, and safely sampled during most exacerbations of 

COPD, it is obtained from the proximal parts of the lower airways (24). To obtain 

biological samples from the distal airways, bronchoscopy should be performed. 

Bronchoscopic samples, such as bronchoalveolar lavage (BAL), bronchial brushes, 

and transbronchial biopsies, carry substantially less risk of oral contamination 

compared to sputum. This is particularly true when employing procedural steps aimed 

at reducing contamination. One example of measures that should be taken is to refrain 

from suction through the bronchoscope until it has reached the lower airways (25-27). 

Equipment specifically designed to reduce the risk of contamination, such as wax-

sealed sterile specimen brushes and wax-sealed sterile inner catheters for BAL, can 

further decrease the risk of oral contamination (26, 28).  

Currently, there is no consensus on which type of sample is preferable for assessing 

the airway microbiota in COPD. It is reasonable to assume that samples obtained near 

the sites of airway remodelling would provide more accurate insight into the 

environment responsible for such changes. However, both BAL and bronchial brush 

samples cover a more limited portion of the lower airways compared to sputum, 

which is likely to be supplied from both lungs. Another important limitation of 

research bronchoscopy is that the procedure has only been conducted in stable state 

COPD, and not in patients with ongoing exacerbations. 

 

  

 
 

 

30 

COPD using isotonic saline. They concluded that this modified procedure was safe for 

most exacerbated patients with severe and very severe COPD (23).  

Although sputum is commonly used, and safely sampled during most exacerbations of 

COPD, it is obtained from the proximal parts of the lower airways (24). To obtain 

biological samples from the distal airways, bronchoscopy should be performed. 

Bronchoscopic samples, such as bronchoalveolar lavage (BAL), bronchial brushes, 

and transbronchial biopsies, carry substantially less risk of oral contamination 

compared to sputum. This is particularly true when employing procedural steps aimed 

at reducing contamination. One example of measures that should be taken is to refrain 

from suction through the bronchoscope until it has reached the lower airways (25-27). 

Equipment specifically designed to reduce the risk of contamination, such as wax-

sealed sterile specimen brushes and wax-sealed sterile inner catheters for BAL, can 

further decrease the risk of oral contamination (26, 28).  

Currently, there is no consensus on which type of sample is preferable for assessing 

the airway microbiota in COPD. It is reasonable to assume that samples obtained near 

the sites of airway remodelling would provide more accurate insight into the 

environment responsible for such changes. However, both BAL and bronchial brush 

samples cover a more limited portion of the lower airways compared to sputum, 

which is likely to be supplied from both lungs. Another important limitation of 

research bronchoscopy is that the procedure has only been conducted in stable state 

COPD, and not in patients with ongoing exacerbations. 

 

  

 
 

 

30 

COPD using isotonic saline. They concluded that this modified procedure was safe for 

most exacerbated patients with severe and very severe COPD (23).  

Although sputum is commonly used, and safely sampled during most exacerbations of 

COPD, it is obtained from the proximal parts of the lower airways (24). To obtain 

biological samples from the distal airways, bronchoscopy should be performed. 

Bronchoscopic samples, such as bronchoalveolar lavage (BAL), bronchial brushes, 

and transbronchial biopsies, carry substantially less risk of oral contamination 

compared to sputum. This is particularly true when employing procedural steps aimed 

at reducing contamination. One example of measures that should be taken is to refrain 

from suction through the bronchoscope until it has reached the lower airways (25-27). 

Equipment specifically designed to reduce the risk of contamination, such as wax-

sealed sterile specimen brushes and wax-sealed sterile inner catheters for BAL, can 

further decrease the risk of oral contamination (26, 28).  

Currently, there is no consensus on which type of sample is preferable for assessing 

the airway microbiota in COPD. It is reasonable to assume that samples obtained near 

the sites of airway remodelling would provide more accurate insight into the 

environment responsible for such changes. However, both BAL and bronchial brush 

samples cover a more limited portion of the lower airways compared to sputum, 

which is likely to be supplied from both lungs. Another important limitation of 

research bronchoscopy is that the procedure has only been conducted in stable state 

COPD, and not in patients with ongoing exacerbations. 

 

  

 
 

 

30 

COPD using isotonic saline. They concluded that this modified procedure was safe for 

most exacerbated patients with severe and very severe COPD (23).  

Although sputum is commonly used, and safely sampled during most exacerbations of 

COPD, it is obtained from the proximal parts of the lower airways (24). To obtain 

biological samples from the distal airways, bronchoscopy should be performed. 

Bronchoscopic samples, such as bronchoalveolar lavage (BAL), bronchial brushes, 

and transbronchial biopsies, carry substantially less risk of oral contamination 

compared to sputum. This is particularly true when employing procedural steps aimed 

at reducing contamination. One example of measures that should be taken is to refrain 

from suction through the bronchoscope until it has reached the lower airways (25-27). 

Equipment specifically designed to reduce the risk of contamination, such as wax-

sealed sterile specimen brushes and wax-sealed sterile inner catheters for BAL, can 

further decrease the risk of oral contamination (26, 28).  

Currently, there is no consensus on which type of sample is preferable for assessing 

the airway microbiota in COPD. It is reasonable to assume that samples obtained near 

the sites of airway remodelling would provide more accurate insight into the 

environment responsible for such changes. However, both BAL and bronchial brush 

samples cover a more limited portion of the lower airways compared to sputum, 

which is likely to be supplied from both lungs. Another important limitation of 

research bronchoscopy is that the procedure has only been conducted in stable state 

COPD, and not in patients with ongoing exacerbations. 

 

  

 
 

 

30 

COPD using isotonic saline. They concluded that this modified procedure was safe for 

most exacerbated patients with severe and very severe COPD (23).  

Although sputum is commonly used, and safely sampled during most exacerbations of 

COPD, it is obtained from the proximal parts of the lower airways (24). To obtain 

biological samples from the distal airways, bronchoscopy should be performed. 

Bronchoscopic samples, such as bronchoalveolar lavage (BAL), bronchial brushes, 

and transbronchial biopsies, carry substantially less risk of oral contamination 

compared to sputum. This is particularly true when employing procedural steps aimed 

at reducing contamination. One example of measures that should be taken is to refrain 

from suction through the bronchoscope until it has reached the lower airways (25-27). 

Equipment specifically designed to reduce the risk of contamination, such as wax-

sealed sterile specimen brushes and wax-sealed sterile inner catheters for BAL, can 

further decrease the risk of oral contamination (26, 28).  

Currently, there is no consensus on which type of sample is preferable for assessing 

the airway microbiota in COPD. It is reasonable to assume that samples obtained near 

the sites of airway remodelling would provide more accurate insight into the 

environment responsible for such changes. However, both BAL and bronchial brush 

samples cover a more limited portion of the lower airways compared to sputum, 

which is likely to be supplied from both lungs. Another important limitation of 

research bronchoscopy is that the procedure has only been conducted in stable state 

COPD, and not in patients with ongoing exacerbations. 

 

  



 
 

 

31 

6.5 How to plan a study? 
The overall objective of research is to acquire knowledge about a specific subject. The 

selection of a study design is crucial in achieving this objective. In the field of medical 

research, randomised, controlled trials (RCTs) are usually considered the superior 

study design (29), but they do have their limitations, as discussed by Bosdriesz et al. 

(30). For instance, envision a study looking into the correlation between smoking and 

dementia, where one group of healthy individuals is randomly assigned to smoke 20 

cigarettes per day for 20 years, while another group remains smoke-free. Due to the 

well-known health risks associated with smoking, such an RCT would (hopefully) 

never receive approval from an ethics committee. However, an observational cohort 

study could be conducted to examine whether there is a higher incidence of dementia 

among smokers compared to non-smokers, without imposing smoking on the 

participants. Additionally, cohort studies have the advantage of being more cost-

effective, allowing for larger-scale studies compared to RCTs (29). A potential 

drawback with observational cohort studies is the time needed to observe outcomes. 

Case-control studies in which the outcome identifies cases and controls, and inclusion 

depends on available exposure data can effectively overcome this issue. Important 

limitations to such case-control studies include confounding, recall biases and 

inappropriate inclusion of controls (31). Confounding refers to the influence of factors 

other than those under study. To mitigate this, stratification can be used (31). For 

example, dementia is more prevalent in the elderly, who are also more likely to have 

smoked for a longer duration than younger participants. Therefore, studies on smoking 

and dementia should analyse data from young and elderly individuals separately to 

reduce the confounding effect of age. Another approach is to use cases as their own 

controls in a crossover design (31). Traditionally, case reports have been regarded as 

the least reputable study design, with the focus on in-depth investigations of 

individual participants (29). Study designs can either be longitudinal, comparing 

measurements over time, or cross-sectional, where measurements are taken at a single 

point in time. The latter design does not allow for causal inference. 
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measurements over time, or cross-sectional, where measurements are taken at a single 

point in time. The latter design does not allow for causal inference. 
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6.5 How to plan a study? 
The overall objective of research is to acquire knowledge about a specific subject. The 

selection of a study design is crucial in achieving this objective. In the field of medical 

research, randomised, controlled trials (RCTs) are usually considered the superior 

study design (29), but they do have their limitations, as discussed by Bosdriesz et al. 

(30). For instance, envision a study looking into the correlation between smoking and 

dementia, where one group of healthy individuals is randomly assigned to smoke 20 

cigarettes per day for 20 years, while another group remains smoke-free. Due to the 

well-known health risks associated with smoking, such an RCT would (hopefully) 

never receive approval from an ethics committee. However, an observational cohort 

study could be conducted to examine whether there is a higher incidence of dementia 

among smokers compared to non-smokers, without imposing smoking on the 

participants. Additionally, cohort studies have the advantage of being more cost-

effective, allowing for larger-scale studies compared to RCTs (29). A potential 

drawback with observational cohort studies is the time needed to observe outcomes. 

Case-control studies in which the outcome identifies cases and controls, and inclusion 

depends on available exposure data can effectively overcome this issue. Important 

limitations to such case-control studies include confounding, recall biases and 

inappropriate inclusion of controls (31). Confounding refers to the influence of factors 

other than those under study. To mitigate this, stratification can be used (31). For 
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It is essential to obtain and process samples according to validated methods (26, 32). 

The internal validity must be acceptable, meaning that the results should accurately 

reflect the sampled environment. Additionally, external validity is important, as we 

need to ensure that what we observe in the study population is representative of the 

general population. Furthermore, we want the results to be repeatable and reliable. It 

is necessary to determine if observations made are random or not, and if the data 

obtained will suffice to detect significant patterns in our data. This requires us to 

assess if the statistical power is high enough to allow us to draw conclusions.  

Considering the factors mentioned above, it becomes evident that it is important to 

clearly formulate the questions one intends to address and select an appropriate study 

design and sampling methods in alignment with those questions. 

 

6.6 Microbiota data and statistical analyses 
Some challenges arise when working with microbiota data and statistical analyses. 

One of these challenges is the high zero-counts in sequencing data. Many bacterial 

sequences exist in low quantities and can only be found in a few samples. Several 

established statistical methods struggle to handle datasets with high zero-counts, but 

there are ongoing efforts to develop mathematical approaches to address this issue 

(33). Additionally, the compositionality of sequencing data complicates the 

interpretation of changes and differences (34). This was effectively demonstrated in 

Leiten's PhD thesis The airway microbiota of stable COPD (Illustration 4). 
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Illustration 4: Four scenarios of absolute abundances that correspond to the relative 
abundance of Streptococcus and Prevotella in samples 1 and 2. Illustration reprinted with 
permission from PhD, MD Elise Leiten.  

 

6.6.1 Bioinformatic pipelines 
Microbiota data comprises an extensive number of sequences (reads), rendering 

manual curation impractical. Consequently, these data need to be processed with 

bioinformatical pipelines, of which Quantitative Insights Into Microbial Ecology 

(QIIME) 1&2 and Mothur are commonly employed (35, 36). Furthermore, data 

curation can be conducted using diverse tools created within the open statistics 

environment known as R (37). The bioinformatic tools aid in transforming the 

millions of sequences, depicted as lengthy strings of letters, with each letter 

symbolising one base in the amplicon sequence, into comprehensible data. 

 

6.6.2 Microbiota characteristics 
Descriptions of microbiota typically include diversity and taxonomy. In 1972, 

biologist Whittaker introduced the concepts of alpha-, beta-, and gamma-diversity, 
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which help to explain the diversity both within and between samples (38). Since then, 

a wide range of mathematical diversity models have been developed improving our 

understanding of the complexity of microbiota data. It is important to recognise that 

there are differences between diversity analyses to fully grasp the intricacies of the 

microbial diversity. 

The taxonomy of microbiota is described at various hierarchical levels, beginning 

with kingdom followed by phyla, classes, orders, families, genera, species, and even 

sub-species. However, caution must be taken when interpreting bacterial taxonomy 

below the genus rank, due to limitations in 16s rRNA target gene sequencing (39). 

Additionally, including more ranks in analyses increases the number of comparisons 

made and the risk of false positive observations.  

The complexity of microbiota data has led to the development of several statistical 

methods for comparing taxonomy between groups. These differential abundance 

analyses have been constantly evolving, and the methods used for this thesis are 

summarised in the methods section (Table 3).  
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6.7 Potential implications of microbiota research for patient care 
The most notable illustration of utilising microbiota to treat disease is faecal 

transplants for antibiotic resistant Clostridium difficile colitis (40). Unfortunately, 

diseases like COPD are not likely to be caused or worsened by a single treatable 

microorganism, as in the case of C. difficile infections. Therefore, targeting individual 

pathogens would not be effective in preventing COPD.   

Hopefully, methodical, and descriptive studies have laid the foundation for future 

research endeavours focused on unravelling the intricate interplay between host 

inflammation and the airway microbiota and its disease propagating characteristics. 

Aided by continually advancing statistical and bioinformatic tools this research field is 

far from exhausted and can be important for improved patient care. Although we may 

not achieve the same level of success for patients with COPD, as for the C. difficile 

sufferers, there is reason to believe that the lower airway microbiota plays an 

important role for the human health as summarised by Man et al. (41). Perhaps, in the 

future, it may be feasible to administer personalised treatments to distinct sub-groups 

of smokers and patients with COPD by considering their microbiota-inflammatory 

profiles.  

 
 

 

35 

6.7 Potential implications of microbiota research for patient care 
The most notable illustration of utilising microbiota to treat disease is faecal 

transplants for antibiotic resistant Clostridium difficile colitis (40). Unfortunately, 

diseases like COPD are not likely to be caused or worsened by a single treatable 

microorganism, as in the case of C. difficile infections. Therefore, targeting individual 

pathogens would not be effective in preventing COPD.   

Hopefully, methodical, and descriptive studies have laid the foundation for future 

research endeavours focused on unravelling the intricate interplay between host 

inflammation and the airway microbiota and its disease propagating characteristics. 

Aided by continually advancing statistical and bioinformatic tools this research field is 

far from exhausted and can be important for improved patient care. Although we may 

not achieve the same level of success for patients with COPD, as for the C. difficile 

sufferers, there is reason to believe that the lower airway microbiota plays an 

important role for the human health as summarised by Man et al. (41). Perhaps, in the 

future, it may be feasible to administer personalised treatments to distinct sub-groups 

of smokers and patients with COPD by considering their microbiota-inflammatory 

profiles.  

 
 

 

35 

6.7 Potential implications of microbiota research for patient care 
The most notable illustration of utilising microbiota to treat disease is faecal 

transplants for antibiotic resistant Clostridium difficile colitis (40). Unfortunately, 

diseases like COPD are not likely to be caused or worsened by a single treatable 

microorganism, as in the case of C. difficile infections. Therefore, targeting individual 

pathogens would not be effective in preventing COPD.   

Hopefully, methodical, and descriptive studies have laid the foundation for future 

research endeavours focused on unravelling the intricate interplay between host 

inflammation and the airway microbiota and its disease propagating characteristics. 

Aided by continually advancing statistical and bioinformatic tools this research field is 

far from exhausted and can be important for improved patient care. Although we may 

not achieve the same level of success for patients with COPD, as for the C. difficile 

sufferers, there is reason to believe that the lower airway microbiota plays an 

important role for the human health as summarised by Man et al. (41). Perhaps, in the 

future, it may be feasible to administer personalised treatments to distinct sub-groups 

of smokers and patients with COPD by considering their microbiota-inflammatory 

profiles.  

 
 

 

35 

6.7 Potential implications of microbiota research for patient care 
The most notable illustration of utilising microbiota to treat disease is faecal 

transplants for antibiotic resistant Clostridium difficile colitis (40). Unfortunately, 

diseases like COPD are not likely to be caused or worsened by a single treatable 

microorganism, as in the case of C. difficile infections. Therefore, targeting individual 

pathogens would not be effective in preventing COPD.   

Hopefully, methodical, and descriptive studies have laid the foundation for future 

research endeavours focused on unravelling the intricate interplay between host 

inflammation and the airway microbiota and its disease propagating characteristics. 

Aided by continually advancing statistical and bioinformatic tools this research field is 

far from exhausted and can be important for improved patient care. Although we may 

not achieve the same level of success for patients with COPD, as for the C. difficile 

sufferers, there is reason to believe that the lower airway microbiota plays an 

important role for the human health as summarised by Man et al. (41). Perhaps, in the 

future, it may be feasible to administer personalised treatments to distinct sub-groups 

of smokers and patients with COPD by considering their microbiota-inflammatory 

profiles.  

 
 

 

35 

6.7 Potential implications of microbiota research for patient care 
The most notable illustration of utilising microbiota to treat disease is faecal 

transplants for antibiotic resistant Clostridium difficile colitis (40). Unfortunately, 

diseases like COPD are not likely to be caused or worsened by a single treatable 

microorganism, as in the case of C. difficile infections. Therefore, targeting individual 

pathogens would not be effective in preventing COPD.   

Hopefully, methodical, and descriptive studies have laid the foundation for future 

research endeavours focused on unravelling the intricate interplay between host 

inflammation and the airway microbiota and its disease propagating characteristics. 

Aided by continually advancing statistical and bioinformatic tools this research field is 

far from exhausted and can be important for improved patient care. Although we may 

not achieve the same level of success for patients with COPD, as for the C. difficile 

sufferers, there is reason to believe that the lower airway microbiota plays an 

important role for the human health as summarised by Man et al. (41). Perhaps, in the 

future, it may be feasible to administer personalised treatments to distinct sub-groups 

of smokers and patients with COPD by considering their microbiota-inflammatory 

profiles.  

 
 

 

35 

6.7 Potential implications of microbiota research for patient care 
The most notable illustration of utilising microbiota to treat disease is faecal 

transplants for antibiotic resistant Clostridium difficile colitis (40). Unfortunately, 

diseases like COPD are not likely to be caused or worsened by a single treatable 

microorganism, as in the case of C. difficile infections. Therefore, targeting individual 

pathogens would not be effective in preventing COPD.   

Hopefully, methodical, and descriptive studies have laid the foundation for future 

research endeavours focused on unravelling the intricate interplay between host 

inflammation and the airway microbiota and its disease propagating characteristics. 

Aided by continually advancing statistical and bioinformatic tools this research field is 

far from exhausted and can be important for improved patient care. Although we may 

not achieve the same level of success for patients with COPD, as for the C. difficile 

sufferers, there is reason to believe that the lower airway microbiota plays an 

important role for the human health as summarised by Man et al. (41). Perhaps, in the 

future, it may be feasible to administer personalised treatments to distinct sub-groups 

of smokers and patients with COPD by considering their microbiota-inflammatory 

profiles.  

 
 

 

35 

6.7 Potential implications of microbiota research for patient care 
The most notable illustration of utilising microbiota to treat disease is faecal 

transplants for antibiotic resistant Clostridium difficile colitis (40). Unfortunately, 

diseases like COPD are not likely to be caused or worsened by a single treatable 

microorganism, as in the case of C. difficile infections. Therefore, targeting individual 

pathogens would not be effective in preventing COPD.   

Hopefully, methodical, and descriptive studies have laid the foundation for future 

research endeavours focused on unravelling the intricate interplay between host 

inflammation and the airway microbiota and its disease propagating characteristics. 

Aided by continually advancing statistical and bioinformatic tools this research field is 

far from exhausted and can be important for improved patient care. Although we may 

not achieve the same level of success for patients with COPD, as for the C. difficile 

sufferers, there is reason to believe that the lower airway microbiota plays an 

important role for the human health as summarised by Man et al. (41). Perhaps, in the 

future, it may be feasible to administer personalised treatments to distinct sub-groups 

of smokers and patients with COPD by considering their microbiota-inflammatory 

profiles.  

 
 

 

35 

6.7 Potential implications of microbiota research for patient care 
The most notable illustration of utilising microbiota to treat disease is faecal 

transplants for antibiotic resistant Clostridium difficile colitis (40). Unfortunately, 

diseases like COPD are not likely to be caused or worsened by a single treatable 

microorganism, as in the case of C. difficile infections. Therefore, targeting individual 

pathogens would not be effective in preventing COPD.   

Hopefully, methodical, and descriptive studies have laid the foundation for future 

research endeavours focused on unravelling the intricate interplay between host 

inflammation and the airway microbiota and its disease propagating characteristics. 

Aided by continually advancing statistical and bioinformatic tools this research field is 

far from exhausted and can be important for improved patient care. Although we may 

not achieve the same level of success for patients with COPD, as for the C. difficile 

sufferers, there is reason to believe that the lower airway microbiota plays an 

important role for the human health as summarised by Man et al. (41). Perhaps, in the 

future, it may be feasible to administer personalised treatments to distinct sub-groups 

of smokers and patients with COPD by considering their microbiota-inflammatory 

profiles.  

 
 

 

35 

6.7 Potential implications of microbiota research for patient care 
The most notable illustration of utilising microbiota to treat disease is faecal 

transplants for antibiotic resistant Clostridium difficile colitis (40). Unfortunately, 

diseases like COPD are not likely to be caused or worsened by a single treatable 

microorganism, as in the case of C. difficile infections. Therefore, targeting individual 

pathogens would not be effective in preventing COPD.   

Hopefully, methodical, and descriptive studies have laid the foundation for future 

research endeavours focused on unravelling the intricate interplay between host 

inflammation and the airway microbiota and its disease propagating characteristics. 

Aided by continually advancing statistical and bioinformatic tools this research field is 

far from exhausted and can be important for improved patient care. Although we may 

not achieve the same level of success for patients with COPD, as for the C. difficile 

sufferers, there is reason to believe that the lower airway microbiota plays an 

important role for the human health as summarised by Man et al. (41). Perhaps, in the 

future, it may be feasible to administer personalised treatments to distinct sub-groups 

of smokers and patients with COPD by considering their microbiota-inflammatory 

profiles.  



 
 

 

36 

7. Objectives of this thesis 
I conducted the two first studies with the intention to understand the influence of 

different methods of sputum sampling on the measurement of lower airway 

inflammation and microbiota and to use the results to direct the sample selection for 

my third study.  

Next, my goal was to identify specific patterns of change in inflammation and 

microbiota in induced sputum from patients with COPD enrolled if sampled both 

during stable and exacerbated states.  

Lastly, I aimed to find potentially important differences in the lower airway 

microbiota between a large group of patients with COPD and a similarly sized group 

of healthy participants, as measured in BAL. 
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8. Material and methods 
8.1 Research studies 
The data in this thesis was acquired from three extensive cohort studies concerning 

patients with COPD and healthy controls residing in western Norway:  

The Bergen COPD Cohort Study (BCCS) followed 433 patients with COPD over a 

span of three years, from 2006 to 2010 (42-45). To be eligible for inclusion as a 

COPD patient a study physician had to clinically confirm the COPD diagnosis based 

on both respiratory symptoms and spirometric criteria, with post-bronchodilator 

measures of forced expiratory volume in 1 sec/forced vital capacity (FEV1/FVC) <0.7 

and FEV1 <80% of predicted. In addition, patients with COPD were required to have a 

smoking history of ³10 pack years. Candidates with other lung diseases, connective 

tissue disorders, inflammatory bowel disease, or cancer during the last five years were 

excluded. The data collected within the BCCS and used in this thesis consists of 

medical history including age, sex, smoking history, information on medications, 

exacerbation history, body composition measurements, lung function testing with 

COPD severity classification (6), induced sputum samples and spontaneous sputum 

samples. 

The Bergen COPD Exacerbation study (BCES) followed 356 patients from the BCCS 

who resided within the Bergen hospital district (46, 47). These patients were given 

detailed descriptions of COPD exacerbation symptoms and were encouraged to 

contact the hospital if they experienced such symptoms. A telephone service staffed 

by a study nurse was open 12 hours per day, seven days a week, for the duration of the 

study. The study nurse determined if immediate hospitalisation was needed, or if a 

next working day outpatient clinic visit with a study physician was sufficient. The 

data collected within the BCES and used for this thesis is identical to the data from the 

BCCS, but with the addition of serum white blood cell counts (WBC) and absolute 

neutrophil counts (ANC) (9).  
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The Bergen COPD microbiome study (MicroCOPD) included 249 participants, with 

data collected between 2012 and 2016 (26, 48, 49). Among these participants, 130 

were diagnosed with COPD and 103 served as healthy controls. The confirmation 

process for a COPD diagnosis followed the same criteria as in the BCCS, except that 

COPD with the Global initiative for chronic Obstructive Lung Disease (GOLD) stage 

I were also allowed. Participants were excluded if they were deemed unsuitable for 

bronchoscopy. Factors that would prevent bronchoscopy included oxygen saturation 

<90% with oxygen supplementation, pCO2 in arterial blood >6.65 kPa, increased risk 

of bleeding and a known allergy towards the premedication. Cardiac risks such as 

acute coronary syndrome last six weeks, severe pulmonary hypertension, or valve 

prosthesis ruled out bronchoscopy. The use of antibiotics and/or systemic 

corticosteroids two weeks prior to the scheduled bronchoscopy, as well as ongoing 

airway infections, would only delay inclusion. The data collected within the 

MicroCOPD study and used for this thesis include medical history (including age, 

sex, smoking history, information on medications, exacerbation history), lung function 

testing with COPD severity classification (6) and BAL.  

Flowcharts depicts how participants from the three studies were selected for my 

studies, based on availability and stringent quality screening of all biological samples 

(Figure 1 and Figure 2). 
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Figure 1: Sample selection for sputum studies: Flowchart depicting the sample selection 
process from the Bergen COPD cohort study (BCCS) and the Bergen Exacerbation Cohort 
study (BCES). Induced sputum samples (ISS) and spontaneous sputum samples (SSS) for 
evaluation of sampling effect and induced sputum for evaluation of exacerbation effect on 
inflammation and microbiota. 
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Figure 2: Sample selection for the bronchoalveolar lavage (BAL) study: The Bergen 
microbiome study (MicroCOPD) providing BAL for evaluation of differences in microbiota 
in a COPD cohort and healthy controls. COPD: Chronic obstructive pulmonary disease. 
ASVs: Amplicon sequence variants. Unique: Found only in COPD or only in control. 
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8.2 Sampling and sample processing. 

8.2.1 Sputum sampling 
The collection of sputum began by attempting to collect spontaneous sputum. 

Participants were instructed to rinse their mouths with water and blow their noses 

before expectorating into two separate cups. After spontaneous sputum collection was 

attempted, sputum induction was performed. To prevent bronchoconstriction during 

and after induction and to obtain a post-bronchodilator spirometry, participants were 

given salbutamol inhalations as a pre-treatment (19, 50). Induction was only carried 

out if participants had an oxygen saturation level of at least 90% after the salbutamol 

treatment. Inhalations of saline were administered using an ultrasonic wave nebuliser, 

with each inhalation lasting seven minutes and being repeated three times 

consecutively. Sterile hypertonic saline (3%) was the preferred choice, but in 10 cases, 

the procedure was modified to use 0.9% saline due to participants experiencing 

clinical obstruction or refusing to inhale the hypertonic saline. Spirometry tests were 

conducted before and after each induction, using the Vitalograph Ltd. S-model in 

stable states and the EasyOne model 2001 Ndd Medizintechnik AG during 

exacerbations. The induction procedure was stopped if the FEV1 declined by more 

than 20%, if symptoms worsened, or if the participants chose not to continue. 

 

8.2.2 Sputum sample processing 
Both types of sputum samples were immediately placed on ice until processed for 

quality control and storage, typically within 30 minutes. Dithiothreitol 0.1% (DTT) 

was added to break disulphide bonds in mucin at a ratio of 4 ml/gram sputum (51). 

The samples were then homogenised using an Eppendorf homogeniser at 600 rounds 

per minute for 15 minutes at a temperature of 4° Celsius. Phosphate-buffered saline 

(PBS) was added, and the samples were filtered to enhance homogenisation. After 

centrifugation at 450g for 15 minutes at 4° Celsius, the supernatants were removed, 

divided into 0.5ml tubes, and stored at −80° Celsius. These aliquots were used to 

measure inflammatory markers and AMPs. 
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The cell pellets were re-suspended in PBS for quality evaluation and leukocyte 

differential counts. Trained personnel assessed viability after staining with tryptan 

blue. The samples were considered acceptable if they contained >1 million cells/mL, 

<20% epithelial cells, and the leucocyte viability were >70%.  

The cell suspension remaining after preparation of Cytospin slides for leukocyte 

differential counts was centrifuged at 450g (5 minutes, 4° Celsius). The resulting cell 

pellet was resuspended in cold TRIzol (Invitrogen, Product No. 15596-026), divided 

into 0.5 ml tubes, and stored at −80° Celsius. These aliquots were used for microbiota 

analyses. Negative controls were not stored. 

Sputum samples collected after December 2006 were cultured at the Department of 

Microbiology, Haukeland University Hospital. Albumin measurements were 

conducted by enzyme immunoassay for paper I to enable concentration correction of 

measured inflammatory markers. Albumininduced/Albuminspontaneous was multiplied with 

each concentration of the inflammatory markers. 

Cytokine analyses were performed using the Luminex® xMAP® technology 

(Luminex Corporation, Austin, Texas) (52). Standards from BioRad (Bio-Plex Pro 

Human Cytokine Standards Group I 27-Plex #171-D50001, Lot No 5022130. Bio-

Plex Pro Human Cytokine Standards Group II 23-Plex #171-D10502 Lot No 

5015357) along with bead-based multiplex assays allowed for the analysis of 

Interleukin-6, interleukin-8, interleukin-18, interferon gamma-inducible protein-10, 

monokine induced by gamma interferon, and tumour necrosis factor-alpha (IL-6, IL-8, 

IL-18, IP-10, MIG and TNF-α) in simplex analyses. A Luminex 100 instrument was 

used according to the manufacturer´s instructions, and the results were collected and 

stored using STarStation software version 2.0 (STarStation Software Version 2.0, 

Applied Cytometry, Sheffield, UK). 

Two AMPs, LL-37, and secretory leucocyte protease inhibitor (SLPI) were examined. 

Both AMPs were obtained from a previous study (47). LL-37 was measured using an 

enzyme-linked immunosorbent assay (ELISA) according to the manufacturer´s 
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instructions (Hycult Biotech, Uden, the Netherlands). SLPI was measured using an 

ELISA protocol developed at the Laboratory for Respiratory Cell Biology and 

Immunology, Leiden University Medical Centre, the Netherlands (53). 

Albumin was used to adjust for the dilution of sputum following induction. Albumin 

measurements were conducted for 58 pairs of induced/spontaneous sputum samples. 

 

8.2.3 BAL sampling 
Preceding bronchoscopy, participants were fasting for at least four hours and pre-

treated with salbutamol for a post-bronchodilator spirometry. Sterile PBS was used for 

all sampling. Each day a new bottle of 500 mL sterile PBS was opened. All 

participants first delivered an oral wash sample consisting of 10 mL PBS gargled for 

one minute. Then PBS was used for BAL, storage of sterile brushes, and small-

volume lavage samples. It was also used for negative control samples. BAL was not 

sampled if post-bronchodilator FEV1 <30% predicted and <1.0 litre. Participants were 

monitored during bronchoscopy with non-invasive blood pressure, three-lead 

electrocardiogram, and pulse oximetry. Oxygen was supplied nasally (3 litres/min). 

Premedication was administered intravenously (Alfentanil 0.25-1.0 mg according to 

participant preference), and topically (Lidocaine oral spray 10 mg/dose). 

Bronchoscopy was performed via oral access with patients lying in a supine position. 

Topical anaesthesia was administered to the bronchi through the bronchoscope. To 

reduce the risk of upper airway contamination suction was not used until the 

bronchoscope was below the vocal cords. Furthermore, a sterile wax-plug inner 

catheter (Plastimed Combicath, France) was used to instil and collect the BAL fluid in 

two 50 ml fractions from the right middle lobe. The total BAL yield (x mL/100mL) 

was recorded for each sample. After the procedure, the participants were monitored 

for two hours and provided with contact information for the ward in case of any 

adverse effects after discharge. 

 

 
 

 

43 

instructions (Hycult Biotech, Uden, the Netherlands). SLPI was measured using an 

ELISA protocol developed at the Laboratory for Respiratory Cell Biology and 

Immunology, Leiden University Medical Centre, the Netherlands (53). 

Albumin was used to adjust for the dilution of sputum following induction. Albumin 

measurements were conducted for 58 pairs of induced/spontaneous sputum samples. 

 

8.2.3 BAL sampling 
Preceding bronchoscopy, participants were fasting for at least four hours and pre-

treated with salbutamol for a post-bronchodilator spirometry. Sterile PBS was used for 

all sampling. Each day a new bottle of 500 mL sterile PBS was opened. All 

participants first delivered an oral wash sample consisting of 10 mL PBS gargled for 

one minute. Then PBS was used for BAL, storage of sterile brushes, and small-

volume lavage samples. It was also used for negative control samples. BAL was not 

sampled if post-bronchodilator FEV1 <30% predicted and <1.0 litre. Participants were 

monitored during bronchoscopy with non-invasive blood pressure, three-lead 

electrocardiogram, and pulse oximetry. Oxygen was supplied nasally (3 litres/min). 

Premedication was administered intravenously (Alfentanil 0.25-1.0 mg according to 

participant preference), and topically (Lidocaine oral spray 10 mg/dose). 

Bronchoscopy was performed via oral access with patients lying in a supine position. 

Topical anaesthesia was administered to the bronchi through the bronchoscope. To 

reduce the risk of upper airway contamination suction was not used until the 

bronchoscope was below the vocal cords. Furthermore, a sterile wax-plug inner 

catheter (Plastimed Combicath, France) was used to instil and collect the BAL fluid in 

two 50 ml fractions from the right middle lobe. The total BAL yield (x mL/100mL) 

was recorded for each sample. After the procedure, the participants were monitored 

for two hours and provided with contact information for the ward in case of any 

adverse effects after discharge. 

 

 
 

 

43 

instructions (Hycult Biotech, Uden, the Netherlands). SLPI was measured using an 

ELISA protocol developed at the Laboratory for Respiratory Cell Biology and 

Immunology, Leiden University Medical Centre, the Netherlands (53). 

Albumin was used to adjust for the dilution of sputum following induction. Albumin 

measurements were conducted for 58 pairs of induced/spontaneous sputum samples. 

 

8.2.3 BAL sampling 
Preceding bronchoscopy, participants were fasting for at least four hours and pre-

treated with salbutamol for a post-bronchodilator spirometry. Sterile PBS was used for 

all sampling. Each day a new bottle of 500 mL sterile PBS was opened. All 

participants first delivered an oral wash sample consisting of 10 mL PBS gargled for 

one minute. Then PBS was used for BAL, storage of sterile brushes, and small-

volume lavage samples. It was also used for negative control samples. BAL was not 

sampled if post-bronchodilator FEV1 <30% predicted and <1.0 litre. Participants were 

monitored during bronchoscopy with non-invasive blood pressure, three-lead 

electrocardiogram, and pulse oximetry. Oxygen was supplied nasally (3 litres/min). 

Premedication was administered intravenously (Alfentanil 0.25-1.0 mg according to 

participant preference), and topically (Lidocaine oral spray 10 mg/dose). 

Bronchoscopy was performed via oral access with patients lying in a supine position. 

Topical anaesthesia was administered to the bronchi through the bronchoscope. To 

reduce the risk of upper airway contamination suction was not used until the 

bronchoscope was below the vocal cords. Furthermore, a sterile wax-plug inner 

catheter (Plastimed Combicath, France) was used to instil and collect the BAL fluid in 

two 50 ml fractions from the right middle lobe. The total BAL yield (x mL/100mL) 

was recorded for each sample. After the procedure, the participants were monitored 

for two hours and provided with contact information for the ward in case of any 

adverse effects after discharge. 

 

 
 

 

43 

instructions (Hycult Biotech, Uden, the Netherlands). SLPI was measured using an 

ELISA protocol developed at the Laboratory for Respiratory Cell Biology and 

Immunology, Leiden University Medical Centre, the Netherlands (53). 

Albumin was used to adjust for the dilution of sputum following induction. Albumin 

measurements were conducted for 58 pairs of induced/spontaneous sputum samples. 

 

8.2.3 BAL sampling 
Preceding bronchoscopy, participants were fasting for at least four hours and pre-

treated with salbutamol for a post-bronchodilator spirometry. Sterile PBS was used for 

all sampling. Each day a new bottle of 500 mL sterile PBS was opened. All 

participants first delivered an oral wash sample consisting of 10 mL PBS gargled for 

one minute. Then PBS was used for BAL, storage of sterile brushes, and small-

volume lavage samples. It was also used for negative control samples. BAL was not 

sampled if post-bronchodilator FEV1 <30% predicted and <1.0 litre. Participants were 

monitored during bronchoscopy with non-invasive blood pressure, three-lead 

electrocardiogram, and pulse oximetry. Oxygen was supplied nasally (3 litres/min). 

Premedication was administered intravenously (Alfentanil 0.25-1.0 mg according to 

participant preference), and topically (Lidocaine oral spray 10 mg/dose). 

Bronchoscopy was performed via oral access with patients lying in a supine position. 

Topical anaesthesia was administered to the bronchi through the bronchoscope. To 

reduce the risk of upper airway contamination suction was not used until the 

bronchoscope was below the vocal cords. Furthermore, a sterile wax-plug inner 

catheter (Plastimed Combicath, France) was used to instil and collect the BAL fluid in 

two 50 ml fractions from the right middle lobe. The total BAL yield (x mL/100mL) 

was recorded for each sample. After the procedure, the participants were monitored 

for two hours and provided with contact information for the ward in case of any 

adverse effects after discharge. 

 

 
 

 

43 

instructions (Hycult Biotech, Uden, the Netherlands). SLPI was measured using an 

ELISA protocol developed at the Laboratory for Respiratory Cell Biology and 

Immunology, Leiden University Medical Centre, the Netherlands (53). 

Albumin was used to adjust for the dilution of sputum following induction. Albumin 

measurements were conducted for 58 pairs of induced/spontaneous sputum samples. 

 

8.2.3 BAL sampling 
Preceding bronchoscopy, participants were fasting for at least four hours and pre-

treated with salbutamol for a post-bronchodilator spirometry. Sterile PBS was used for 

all sampling. Each day a new bottle of 500 mL sterile PBS was opened. All 

participants first delivered an oral wash sample consisting of 10 mL PBS gargled for 

one minute. Then PBS was used for BAL, storage of sterile brushes, and small-

volume lavage samples. It was also used for negative control samples. BAL was not 

sampled if post-bronchodilator FEV1 <30% predicted and <1.0 litre. Participants were 

monitored during bronchoscopy with non-invasive blood pressure, three-lead 

electrocardiogram, and pulse oximetry. Oxygen was supplied nasally (3 litres/min). 

Premedication was administered intravenously (Alfentanil 0.25-1.0 mg according to 

participant preference), and topically (Lidocaine oral spray 10 mg/dose). 

Bronchoscopy was performed via oral access with patients lying in a supine position. 

Topical anaesthesia was administered to the bronchi through the bronchoscope. To 

reduce the risk of upper airway contamination suction was not used until the 

bronchoscope was below the vocal cords. Furthermore, a sterile wax-plug inner 

catheter (Plastimed Combicath, France) was used to instil and collect the BAL fluid in 

two 50 ml fractions from the right middle lobe. The total BAL yield (x mL/100mL) 

was recorded for each sample. After the procedure, the participants were monitored 

for two hours and provided with contact information for the ward in case of any 

adverse effects after discharge. 

 

 
 

 

43 

instructions (Hycult Biotech, Uden, the Netherlands). SLPI was measured using an 

ELISA protocol developed at the Laboratory for Respiratory Cell Biology and 

Immunology, Leiden University Medical Centre, the Netherlands (53). 

Albumin was used to adjust for the dilution of sputum following induction. Albumin 

measurements were conducted for 58 pairs of induced/spontaneous sputum samples. 

 

8.2.3 BAL sampling 
Preceding bronchoscopy, participants were fasting for at least four hours and pre-

treated with salbutamol for a post-bronchodilator spirometry. Sterile PBS was used for 

all sampling. Each day a new bottle of 500 mL sterile PBS was opened. All 

participants first delivered an oral wash sample consisting of 10 mL PBS gargled for 

one minute. Then PBS was used for BAL, storage of sterile brushes, and small-

volume lavage samples. It was also used for negative control samples. BAL was not 

sampled if post-bronchodilator FEV1 <30% predicted and <1.0 litre. Participants were 

monitored during bronchoscopy with non-invasive blood pressure, three-lead 

electrocardiogram, and pulse oximetry. Oxygen was supplied nasally (3 litres/min). 

Premedication was administered intravenously (Alfentanil 0.25-1.0 mg according to 

participant preference), and topically (Lidocaine oral spray 10 mg/dose). 

Bronchoscopy was performed via oral access with patients lying in a supine position. 

Topical anaesthesia was administered to the bronchi through the bronchoscope. To 

reduce the risk of upper airway contamination suction was not used until the 

bronchoscope was below the vocal cords. Furthermore, a sterile wax-plug inner 

catheter (Plastimed Combicath, France) was used to instil and collect the BAL fluid in 

two 50 ml fractions from the right middle lobe. The total BAL yield (x mL/100mL) 

was recorded for each sample. After the procedure, the participants were monitored 

for two hours and provided with contact information for the ward in case of any 

adverse effects after discharge. 

 

 
 

 

43 

instructions (Hycult Biotech, Uden, the Netherlands). SLPI was measured using an 

ELISA protocol developed at the Laboratory for Respiratory Cell Biology and 

Immunology, Leiden University Medical Centre, the Netherlands (53). 

Albumin was used to adjust for the dilution of sputum following induction. Albumin 

measurements were conducted for 58 pairs of induced/spontaneous sputum samples. 

 

8.2.3 BAL sampling 
Preceding bronchoscopy, participants were fasting for at least four hours and pre-

treated with salbutamol for a post-bronchodilator spirometry. Sterile PBS was used for 

all sampling. Each day a new bottle of 500 mL sterile PBS was opened. All 

participants first delivered an oral wash sample consisting of 10 mL PBS gargled for 

one minute. Then PBS was used for BAL, storage of sterile brushes, and small-

volume lavage samples. It was also used for negative control samples. BAL was not 

sampled if post-bronchodilator FEV1 <30% predicted and <1.0 litre. Participants were 

monitored during bronchoscopy with non-invasive blood pressure, three-lead 

electrocardiogram, and pulse oximetry. Oxygen was supplied nasally (3 litres/min). 

Premedication was administered intravenously (Alfentanil 0.25-1.0 mg according to 

participant preference), and topically (Lidocaine oral spray 10 mg/dose). 

Bronchoscopy was performed via oral access with patients lying in a supine position. 

Topical anaesthesia was administered to the bronchi through the bronchoscope. To 

reduce the risk of upper airway contamination suction was not used until the 

bronchoscope was below the vocal cords. Furthermore, a sterile wax-plug inner 

catheter (Plastimed Combicath, France) was used to instil and collect the BAL fluid in 

two 50 ml fractions from the right middle lobe. The total BAL yield (x mL/100mL) 

was recorded for each sample. After the procedure, the participants were monitored 

for two hours and provided with contact information for the ward in case of any 

adverse effects after discharge. 

 

 
 

 

43 

instructions (Hycult Biotech, Uden, the Netherlands). SLPI was measured using an 

ELISA protocol developed at the Laboratory for Respiratory Cell Biology and 

Immunology, Leiden University Medical Centre, the Netherlands (53). 

Albumin was used to adjust for the dilution of sputum following induction. Albumin 

measurements were conducted for 58 pairs of induced/spontaneous sputum samples. 

 

8.2.3 BAL sampling 
Preceding bronchoscopy, participants were fasting for at least four hours and pre-

treated with salbutamol for a post-bronchodilator spirometry. Sterile PBS was used for 

all sampling. Each day a new bottle of 500 mL sterile PBS was opened. All 

participants first delivered an oral wash sample consisting of 10 mL PBS gargled for 

one minute. Then PBS was used for BAL, storage of sterile brushes, and small-

volume lavage samples. It was also used for negative control samples. BAL was not 

sampled if post-bronchodilator FEV1 <30% predicted and <1.0 litre. Participants were 

monitored during bronchoscopy with non-invasive blood pressure, three-lead 

electrocardiogram, and pulse oximetry. Oxygen was supplied nasally (3 litres/min). 

Premedication was administered intravenously (Alfentanil 0.25-1.0 mg according to 

participant preference), and topically (Lidocaine oral spray 10 mg/dose). 

Bronchoscopy was performed via oral access with patients lying in a supine position. 

Topical anaesthesia was administered to the bronchi through the bronchoscope. To 

reduce the risk of upper airway contamination suction was not used until the 

bronchoscope was below the vocal cords. Furthermore, a sterile wax-plug inner 

catheter (Plastimed Combicath, France) was used to instil and collect the BAL fluid in 

two 50 ml fractions from the right middle lobe. The total BAL yield (x mL/100mL) 

was recorded for each sample. After the procedure, the participants were monitored 

for two hours and provided with contact information for the ward in case of any 

adverse effects after discharge. 

 

 
 

 

43 

instructions (Hycult Biotech, Uden, the Netherlands). SLPI was measured using an 

ELISA protocol developed at the Laboratory for Respiratory Cell Biology and 

Immunology, Leiden University Medical Centre, the Netherlands (53). 

Albumin was used to adjust for the dilution of sputum following induction. Albumin 

measurements were conducted for 58 pairs of induced/spontaneous sputum samples. 

 

8.2.3 BAL sampling 
Preceding bronchoscopy, participants were fasting for at least four hours and pre-

treated with salbutamol for a post-bronchodilator spirometry. Sterile PBS was used for 

all sampling. Each day a new bottle of 500 mL sterile PBS was opened. All 

participants first delivered an oral wash sample consisting of 10 mL PBS gargled for 

one minute. Then PBS was used for BAL, storage of sterile brushes, and small-

volume lavage samples. It was also used for negative control samples. BAL was not 

sampled if post-bronchodilator FEV1 <30% predicted and <1.0 litre. Participants were 

monitored during bronchoscopy with non-invasive blood pressure, three-lead 

electrocardiogram, and pulse oximetry. Oxygen was supplied nasally (3 litres/min). 

Premedication was administered intravenously (Alfentanil 0.25-1.0 mg according to 

participant preference), and topically (Lidocaine oral spray 10 mg/dose). 

Bronchoscopy was performed via oral access with patients lying in a supine position. 

Topical anaesthesia was administered to the bronchi through the bronchoscope. To 

reduce the risk of upper airway contamination suction was not used until the 

bronchoscope was below the vocal cords. Furthermore, a sterile wax-plug inner 

catheter (Plastimed Combicath, France) was used to instil and collect the BAL fluid in 

two 50 ml fractions from the right middle lobe. The total BAL yield (x mL/100mL) 

was recorded for each sample. After the procedure, the participants were monitored 

for two hours and provided with contact information for the ward in case of any 

adverse effects after discharge. 

 



 
 

 

44 

8.2.4 BAL processing 
BAL fluid was immediately processed and partitioned using sterile equipment and 

processed for 16S rRNA sequencing. For the sequencing analyses, 2 mL aliquots of 

BAL fluid were stored in ultra-freezers at -80° C until processed in our laboratory. 

 

8.2.5 DNA extraction and 16S rRNA sequencing 
The detailed procedure for DNA processing and sequencing of the MicroCOPD 

samples can be found on the open access protocols.io website (54). The sputum 

samples from BCCS and BCES were processed using the same procedure. 

To ensure bacterial DNA access, sputasol treatment was performed along with an 

enzymatic pre-lysis step involving Lysostaphin (4000 U/mL), Lysozyme (10 mg/mL), 

and Mutanolysin (25,000 U/mL) (Sigma-Aldrich). Mechanical and chemical lysis 

were carried out using the FastPrep-24 instrument and reagents from the FastDNA 

Spin Kit (MP Biomedicals, LLC, Solon, OH, USA) as the previous steps did not 

guarantee access to bacterial DNA within whole cells. Centrifugation was used to 

separate the samples into supernatants and pellets, and only the pellets underwent 

mechanical and chemical lysis to protect free DNA. The lysates and supernatants were 

then combined, and the extracted DNA further purified using the FastDNA Spin Kit.  

The library preparation and sequencing of the V3/V4 region of the 16S rRNA gene 

were conducted following the protocol for Metagenomic Sequencing Library 

preparation for the Illumina MiSeq System (Part # 15044223 Rev. B, MiSeq Reagent 

Kit v3). Amplicon polymerase chain reaction (PCR) with 45 cycles was performed, 

followed by index PCR using primers from the Nextera XT Index Kit (Illumina Inc., 

San Diego. CA, USA). The samples were pooled and normalised for the paired-end 

sequencing of 2 × 300 base pairs (Figure 3).  
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external software packages. Due to the significant advancements in bioinformatic 

methods over the past few years, there are certain differences between QIIME 1 & 2 

(Figure 4).  

 

Figure 4: QIIME 1 & 2 workflow for microbiota analyses in the current thesis. 
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8.3.1.1 Quality filtering 

In QIIME 1, we followed a recommended approach to prevent the inclusion of 

incorrect amplicon sequences in downstream analyses (56). The specific parameter 

boundaries can be found in Figure 4. For this strategy, we set the quality scores (phred 

scores) generated by Illumina MiSeq to low values. Chimeras were not removed using 

QIIME 1.  

In QIIME 2, we used DADA2 to denoise and generate amplicon sequence variants 

(ASVs) (57). To initiate quality filtering, we examined the quality score graphs 

produced from the Illumina MiSeq phred scores. Forward and reverse reads from the 

paired-end sequencing runs were evaluated separately. The quality score graphs 

displayed the phred scores (Q-score) for each base throughout the length of the reads. 

If the Q-scores consistently dropped below 20, the likelihood of an incorrect base 

insertion was 1:100, and we trimmed the sequences accordingly. Primers containing 

ambiguous nucleotides were removed. Our forward and reverse primers were 17 and 

21 nucleotides long, respectively. Through trimming, there was a risk of shortening 

the sequences to the point where the forward and reverse reads did not overlap by at 

least 20 base pairs, which is necessary for achieving acceptable quality upon joining 

the reads. Thus, a more stringent quality score cut-off could result in the loss of a 

significant number of reads. In this thesis, we set the phred score cut-off at 25 for 

sputum samples and 20 for BAL samples. Additionally, DADA2 discarded reads if 

the number of expected errors in a forward or reverse read exceeded 2. Finally, 

DADA2 removed so-called phiX reads, which are sequences originating from a small 

bacteriophage genome added to the samples for technical purposes.  

We applied both DADA2 and VSEARCH (58) to filter out chimeras in our data, as 

manual examination of the sequences revealed some chimeric sequences remaining 

after using DADA2. Simply put, a chimera is identified when an amplicon sequence 

contains segments that are identical to those of other amplicon sequences present in 

higher quantities. Chimeras are formed during one of the PCR cycles and theoretically 

get duplicated fewer times than their "parents."  
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insertion was 1:100, and we trimmed the sequences accordingly. Primers containing 

ambiguous nucleotides were removed. Our forward and reverse primers were 17 and 

21 nucleotides long, respectively. Through trimming, there was a risk of shortening 

the sequences to the point where the forward and reverse reads did not overlap by at 

least 20 base pairs, which is necessary for achieving acceptable quality upon joining 

the reads. Thus, a more stringent quality score cut-off could result in the loss of a 

significant number of reads. In this thesis, we set the phred score cut-off at 25 for 

sputum samples and 20 for BAL samples. Additionally, DADA2 discarded reads if 

the number of expected errors in a forward or reverse read exceeded 2. Finally, 

DADA2 removed so-called phiX reads, which are sequences originating from a small 

bacteriophage genome added to the samples for technical purposes.  

We applied both DADA2 and VSEARCH (58) to filter out chimeras in our data, as 

manual examination of the sequences revealed some chimeric sequences remaining 

after using DADA2. Simply put, a chimera is identified when an amplicon sequence 

contains segments that are identical to those of other amplicon sequences present in 

higher quantities. Chimeras are formed during one of the PCR cycles and theoretically 

get duplicated fewer times than their "parents."  
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8.3.1.2 Clustering and establishing representative sequences 

Amplicon sequences were categorised for analysis. In QIIME 1 amplicon sequences 

were grouped together based on a 97% similarity threshold, which was believed to 

correspond to the phylogenetic rank of species (59). These clusters were referred to as 

operational taxonomic units (OTUs). We used the uclust open-reference OTU picking 

method (55). Our data was compared to the GreenGenes ribosomal reference 

database, and any sequences resembling the ones found in GreenGenes were included 

in the clusters. If our sequences were not found in GreenGenes, they were added as 

de-novo OTUs. However, QIIME 2 suggests using ASVs instead of OTUs (35, 60). 

DADA2 is a QIIME 2 integrated tool that assign amplicon sequences to ASVs using 

denoising methods rather than clustering. Before adding our sequences to a given 

ASV, error models were built based on Illumina quality scores, and used to correct the 

sequences. As a result, DADA2 allowed for less variability within our ASVs 

compared with our OTUs in paper II. A single base difference was enough to 

categorise amplicon sequences into separate ASVs (60).  

Certain bioinformatic processes required an input consisting of "representative 

sequences". For OTUs, this meant that each amplicon sequence had to be grouped 

with identical sequences within the same OTU. The representative sequence was 

chosen from the largest group of identical amplicon sequences. In contrast, for ASVs, 

the sequences were expected to be identical, and any single sequence could be chosen 

as the representative. The processes that required this subset of representative 

sequences included sequence alignment, taxonomic assignment, and the establishment 

of phylogenetic relationships between OTUs/ASVs. 

8.3.1.3 Alignment and taxonomy 

The alignment of amplicon sequences involves organising representative sequences 

based on their similarities. In QIIME 1, representative sequences were aligned using 

pyNAST, which is a python implementation of the Nearest Alignment Space 

Termination (NAST) algorithm. The GreenGenes ribosomal reference database served 

as a template for this alignment process (61, 62). However, with the introduction of 
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QIIME 2, pyNAST was replaced by the MAFFT algorithm, which performs a de-novo 

alignment of sequences based on the fast Fourier transform. Instead of using 

templates, MAFFT aligns sequences by considering the differences between the 

representative sequences provided (63).  

In QIIME 1, GreenGenes was the recommended reference database for assigning 

taxonomy to each representative sequence. Taxonomy information was added to the 

output files during uclust open-reference OTU clustering. However, as GreenGenes 

updates ceased for many years after a release in 2012, other ribosomal reference 

databases became preferable. In my case, I chose to use the Silva ribosomal RNA 

database (64). To obtain the data from Silva, I used two methods. First, I used the 

QIIME 2 provided taxonomy files, which were pre-processed to only include 

sequences resulting from V3/V4 sequencing, like my own data. Additionally, in paper 

IV, I made use of the RESCRIPt tool to collect and modify relevant taxonomic 

information from Silva (65). In QIIME 2, self-trained Naive Bayes classifiers were 

generated for taxonomy assignment. The taxonomy classification system follows a 

hierarchical structure of ranks, as explained earlier. While assigning taxonomy in both 

QIIME 1 and QIIME 2, it was possible to obtain information ranging from a known 

phylum to a specific species name. However, if a sequence could not be assigned any 

taxonomy or was only assigned up to the kingdom level, these sequences were 

excluded from analysis in the latter two of the three microbiota papers. Further 

examination of such "unassigned" sequences using the online service BLAST (66), 

revealed that they originated from humans.  

8.3.1.4 Phylogeny 

Phylogeny describes the evolutionary connections between OTUs or between ASVs. 

By aligning the representative sequences, sophisticated models can be created using 

tools like FastTree (67) to establish the evolutionary distances. In simple terms, a 

family tree is constructed where the common ancestor is represented by the root and 

trunk of the tree. Each OTU or ASV is depicted as a leaf or external node on this tree. 

Intersections of branches signify the internal nodes, representing the most recent 
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shared ancestor. OTUs/ASVs that are separated by short branch lengths are 

considered more closely related than those separated by long branch lengths. Using 

the available phylogenetic information, we can assess diversity not only in terms of 

the number and abundances of different OTUs/ASVs, but also in relation to their 

evolutionary connections. The larger the family tree, the greater the diversity.  

8.3.1.5 Contamination 

A challenge in microbiota research is the ubiquitous nature of bacteria. They are in 

our laboratory fluids, on our containers and instruments, leading to sample 

contamination despite our efforts to prevent it. Consequently, the accurate 

interpretation of our data is affected by the presence of contaminating DNA (68). 

Contamination was not considered in our QIIME 1 analyses, but we used the online 

tool Decontam in our QIIME 2 analyses (69). In the case of sputum, we measured the 

total DNA-load using Quant-iTTM PicoGreenTM from ThermoFisher Scientific Inc, 

which was available for 50 samples. Based on this data, Decontam was implemented 

with the frequency option, and we examined the data using various threshold settings 

to classify contaminants. Ultimately, we determined an appropriate threshold of 0.2. 

Raising the threshold would increase the algorithm´s identification of contaminants, 

resulting in a higher risk of false positives. In the case of BAL analyses, negative 

controls were available, and Decontam was used with the prevalence option with all 

the MicroCOPD samples pooled together. The threshold was set to 0.2. 

8.3.1.6 Filter OTUs/ASVs 

Bokulich et al. benchmarked quality control and filtering parameters for QIIME 1 and 

recommended removing OTUs containing <0.005% of all sequences in the data (70). 

A similar procedure has not been recommended in QIIME 2 where no or limited 

filtering of the smallest and rarest ASVs are considered sufficient. 

 

8.4 Statistics 
Statistical methods used in this thesis are presented in Table 3.  
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Table 3. Sum
m
ary of statistical m
ethods used in the current thesis. 

Type 

N
am
e of analyses 
Tool 

D
escription 

In 
paper 

A
greem
ent 

Bland-A
ltm
an 

Stata 12.0 

A
ssessing differences betw
een tw
o m
easuring m
ethods. Bland &
 A
ltm
an 

plotted 1) D
ifferences betw
een m
easurem
ents against the m
ean, and 2) The 

m
ean difference to show
 m
easurem
ent bias. If the bias = 0, the tw
o m
ethods 

yield equal m
easurem
ent. The m
ean of all differences +/- 2 standard 

deviations = The 95%
 lim
it of agreem
ent (LO
A
). 95%
 of data w
ill be 

contained w
ithin the lim
its. 

I &
 II 

D
istribution 

Shapiro-W
ilks 

R 

Statistical m
ethod used to assess w
hether data distribution is param
etric. 

III &
 IV
 

Com
parative  
W
ilcoxon sign-

rank test 

Stata 12.0, R 
Statistical m
ethod for paired and non-param
etric data. 

I, III &
 

IV
 

Com
parative  
K
ruskal W
allis test 

w
ith D
unn´s test 

Stata 12.0, R 
Statistical m
ethod for non-paired, non-param
etric data, allow
s variables w
ith 

>2 levels. D
unn´s test only run if K
ruskal W
allis p-values <0.05. D
unn´s test 

com
pares the variable levels pairw
ise. 
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squared test 
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ethod for categorical data. 
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ethod for param
etric data w
ith <3 level variables. 
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ethod for param
etric data w
hen variable >2 levels. Levene´s test 

of hom
ogeneity of variance preceded the tw
o-w
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N
O
V
A
 test. Tukey test 
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N
O
V
A
 p-value <0.05. Tukey tests com
pare the variable levels pairw
ise. 
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data. P-values corrected w
ith Benjam
in-H
ochberg m
ethod. 

III &
 IV
 

Taxonom
ic 

com
position, 

differential 
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Rarefaction 

A
lpha-rarefaction 
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9. Summary of papers 
9.1 Comparison of inflammatory markers in induced and 

spontaneous sputum in a cohort of COPD patients 
Airway inflammation is commonly assessed by measuring concentrations of 

inflammatory markers in sputum. The effects sputum sampling methods may have on 

measured levels of inflammatory markers are understudied. We investigated for 

differences in concentrations of six inflammatory markers based on sputum sampling 

method after albumin correction of concentrations. In addition, we assessed the safety 

of sputum induction in exacerbating patients with COPD. 

Patients were included from the Bergen COPD cohort study (BCCS) and the Bergen 

COPD exacerbation study (BCES) running from 2006-2010. All patients were 

diagnosed and classified with COPD according to the GOLD guidelines. A routine 

follow-up was scheduled every six months, and patients experiencing exacerbations 

came in for additional consultations. For spontaneously expectorating patients 

spontaneous sputum sampling preceded inhalation of nebulised 3% or 0.9% saline 

inducing patients to expectorate. Forty-five patients had delivered sputum samples by 

both methods at 60 consultations. Thus, 60 sputum pairs were available for this study. 

IL-6, IL-8, IL-18, IP-10, TNF-α, and MIG were measured by bead based multiplex 

immunoassay. Albumin was measured by enzyme immunoassay to allow 

concentration correction. Culturing for bacterial growth was performed on 24 

samples. Stata was used for statistical analyses.  

The study showed fair correlation between the levels of markers in induced and 

spontaneous sputum with correlation coefficients between 0.58 (IL-18) and 0.83 (IP-

10). Meanwhile, the Bland-Altman limits of agreements between the two sampling 

methods were low for all six markers. An observation of higher TNF-α during 

exacerbations (p = 0.002) and trending higher at the steady state (p = 0.06) was made 

only in spontaneous sputum. Similarly, only in spontaneous sputum were IL-18 and 

MIG significantly higher in ex-smokers (p <0.05), and IL-6 significantly lower with 

positive Haemophilus influenzae (HI) cultures. Induction with saline during 
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found induction with hypertonic saline to be a safe sampling procedure during 

exacerbations, also in patients with very severe disease.  

 

9.2 Comparing microbiota profiles in induced and spontaneous 

sputum samples in COPD patients 
As with airway inflammation, the airway microbiota is commonly assessed in sputum. 

Whether sputum sampling methods influence on the composition of the airway 

microbiota is understudied. We compared the bacterial microbiota in sputum pairs 

consisting of induced and spontaneous sputum from patients diagnosed with COPD.  

In this study, patients were included from the BCCS and BCES if we had both 

spontaneous and induced sputum from the same consultation. Thirty-six paired 

sputum samples from 30 patients were available for DNA sequencing from our 

biobank. DNA was extracted by enzymatic and mechanical lysis methods. The V3/V4 

region of the 16S rRNA gene was PCR-amplified and prepared for paired-end 

sequencing with the Illumina MiSeq System. QIIME 1 and Stata were used for 

bioinformatics and statistical analyses.  

The study showed that diversity was not associated with sampling method if 

comparing all induced with all spontaneous sputum samples. Looking at individual 

patients, nine had significant differences in beta-diversity linked to sampling method 

according to weighted UniFrac (WUF) significance tests (p <0.01). OTUs were 

assigned taxonomy, and the composition and abundances of bacterial genera were 

investigated. Pair-wise comparisons of composition with Yue-Clayton dissimilarity 

and Bland-Altman agreement analyses showed considerable differences in several 
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patients (Yue-Clayton >0.2 for seven patients, Bland-Altman limit of agreement >0.1 

for 13 patients). Fifteen genera were differentially abundant across sample types 

collected at stable state and/or at exacerbations (log-likelihood ratio tests p <0.05). 

Among the genera with differential abundance were potential pathogens like 

Haemophilus and Moraxella.  

From this study we recommend that sputum sampling methods are standardised upon 

conducting studies on the sputum microbiota to avoid sampling method biases. 

 

9.3 Sputum microbiota and inflammation at stable state and 

during exacerbations in a cohort of chronic obstructive 

pulmonary disease (COPD) patients 
Exacerbations of COPD are often attributed to infections. The dynamics of the airway 

microbiota in exacerbations are not well described. We investigated for differences in 

the microbiota and immune responses in induced sputum samples collected from 

patients with COPD at stable state and during exacerbations. 

In this study, patients were included from the BCCS and BCES if we were able to 

obtain measures of inflammatory markers, and biological material for DNA 

sequencing from induced sputum. Thirty-six paired sputum samples from 36 patients 

were included. In addition, one patient who delivered sputum on 13 different 

occasions during the three-year study period were included for a longitudinal case 

study. DNA was extracted by enzymatic and mechanical lysis methods. The V3/V4 

region of the 16S rRNA gene was PCR-amplified and prepared for paired-end 

sequencing with the Illumina MiSeq System. Sputum inflammatory markers (IL-6, IL-

8, IL-18, IP-10, MIG, TNF-α) and AMPs (LL-37/hCAP-18, SLPI) were measured in 

supernatants, whereas target gene sequencing (16S rRNA) was performed on 

corresponding cell pellets. Serum leukocyte counts were performed at the Haukeland 

University Hospital clinical laboratory. The bioinformatic pipeline QIIME 2 and the 

statistics environment R were used to analyse the data. 
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sputum differed from stable states to exacerbations. Changes in the microbiota were 

more apparent within individual patients with COPD, than for the patient cohort as a 

whole. Except for SLPI, all measures of inflammation were higher during 

exacerbations than at stable state (significantly for IP-10, MIG, TNF-a, SLPI and LL-

37, p <0.05). We observed significant changes in taxonomic composition when 

examining individuals (Yue-Clayton >0.2), rather than all patients at stable state 

against all patients during exacerbations (ALDEx2, p >0.05). The seven patients with 

high serum ANC during exacerbations had significantly higher Shannon diversity 

index in stable state compared with patients with non-elevated serum ANC. The 

bacterial composition in the case study spanning over 13 stable state/exacerbation 

visits was highly dynamic and without a consistent stable state equilibrium.  

From this study we recommend that longitudinal airway microbiota studies include 

analyses of inter-individual differences as well as group analyses to better assess the 

microbiota. Further, our study indicates that establishing guidelines for treatment of 

microbiota dysbiosis can be challenging due to the inter- and intra-individual 

differences observed. 

 

9.4 The lower-airway microbiota in COPD and healthy patients 
The bacterial microbiota in the lower airways has been linked to COPD, smoking, and 

for patients with COPD, the use of ICS. We investigated for possible differences in 

the microbiota in protected BAL across all these factors in a large cohort of patients 

with COPD and healthy controls.  

Participants were included from the MicroCOPD study if we had valid DNA 

sequencing results from BAL available. Ninety-seven patients with COPD and 97 

controls were included. Participant characteristics were obtained through standardised 

questionaries and clinical measurements between 2012-2015. DNA was extracted by 

enzymatic and mechanical lysis methods. The V3/V4 region of the 16S rRNA gene 
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was PCR-amplified and prepared for paired-end sequencing with the Illumina MiSeq 

System. The bioinformatic pipeline QIIME 2 and the statistics environment R were 

used to analyse the data.  

The study showed lower alpha-diversity in COPD compared with controls. The 

difference was explained by a loss of evenness rather than a loss of richness (Pielou 

evenness p = 0.004, Shannon diversity index p = 0.01, Observed ASVs, and Faith´s 

PD p >0.05). Comparing beta-diversity in BAL from smoking and non-smoking 

patients with COPD revealed a significant difference only when abundances and 

phylogenetic information both were considered with weighted UniFrac (permutational 

multivariate analysis of variance (PERMANOVA) R^2 = 0.04, p = 0.01). Differential 

abundance of taxa assessed with Analysis of compositions of microbiomes with bias 

correction (ANCOM-BC) was found for nine genera. The three genera enriched in 

COPD all belonged to the Firmicutes phylum. Among these were Streptococcus, a 

potential pathogenic bacterium. Smoking quantified by pack years was associated 

with a significant reduction in Haemophilus and Lachnoanarobaculum in healthy 

controls only. The only genera associated with smoking in the COPD cohort was 

Oribacterium with lesser abundances in patients still smoking. Neither diversity nor 

taxonomic abundances differed in BAL fluid with the use of ICS or with increased 

COPD severity.  

From this study we conclude that differences observed in the lower airway microbiota 

in patients with COPD compared with controls seem independent of smoking, and 

unaffected by use of ICS among patients with COPD. We recommend conducting 

longitudinal studies to assess causality between the development of COPD and the 

development of a dysbiosis of the lower airway microbiota. 

10. Discussion of methods 
10.1 Study design and study populations 
BCCS, BCES and MicroCOPD were all longitudinal, observational COPD cohort 

studies with control groups enrolled. Paper I-III can best be described as observational 
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evenness p = 0.004, Shannon diversity index p = 0.01, Observed ASVs, and Faith´s 

PD p >0.05). Comparing beta-diversity in BAL from smoking and non-smoking 

patients with COPD revealed a significant difference only when abundances and 

phylogenetic information both were considered with weighted UniFrac (permutational 

multivariate analysis of variance (PERMANOVA) R^2 = 0.04, p = 0.01). Differential 

abundance of taxa assessed with Analysis of compositions of microbiomes with bias 

correction (ANCOM-BC) was found for nine genera. The three genera enriched in 

COPD all belonged to the Firmicutes phylum. Among these were Streptococcus, a 

potential pathogenic bacterium. Smoking quantified by pack years was associated 
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cohort studies with a cross-sectional, and a “crossover” design. Paper III also include 

a longitudinal case report. Paper IV was an observational case-control cohort study 

with a cross-sectional design. 

While the original studies included large numbers of participants and samples, the 

number of available sputum samples for my analyses were small. The reason for this 

is that the microbiota research was initiated in 2012, two years after the completion of 

the sampling period. Samples that were available in our biobank was thus not 

collected nor stored for the purpose of answering the research questions in this thesis. 

Meanwhile, when establishing the MicroCOPD study it became clear that the stored 

sputum cell pellets could be of value, and it was sought to analyse as many as 

possible. Overall, the success rate of sputum induction was around 50%, and in 

addition, quality assessments excluded more samples. Further, for my analyses I 

needed pairs of sputum samples, and thus the number of valid sample pairs were 

reduced accordingly. 

A lack of statistical power is a shared shortcoming for all three sputum studies as the 

number of samples are small. It follows that the larger BAL study should be expected 

to have higher statistical power. Sample size calculations were not performed 

preceding enrolment for the MicroCOPD study. The benefits of calculating sample 

sizes needed to answer research questions are known, but established methods for 

microbiota research seemed to lack in 2012. Ferdous et al. proposed a comprehensive 

and complex set of methods taking the different elements in microbiota research into 

account in 2022 (71). Hopefully, such calculations will be easier to implement in the 

future. However, an observational study such as MicroCOPD has several aims, and 

thus several potential “ideal” sample sizes depending on which aim one examines. 

Thus, the sample size for the MicroCOPD was also determined by what was possible 

to collect within a reasonable timeframe. 

My sputum studies were designed such that confounding was reduced. For paper I and 

II all participants were represented both in the induced and spontaneous sputum 

groups eliminating confounding from static variables like sex. Also, the samples were 
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collected the same day preventing the effect of passed-time which otherwise could 

influence on for example accumulated pack years, COPD severity and age. 

Stratification was challenging for my small sputum studies as sub-groups would 

become very small. For the larger BAL study stratification was used for variables like 

age, sex, and smoking. 

 

10.2 Airway sampling and sample processing 
When conducting research on living human participants, it is not feasible to obtain 

entire lungs for investigation. Therefore, we must use alternatives such as sputum and 

BAL to represent the overall lower airway inflammation and microbiota. However, it 

is important to note that this simplified approach cannot fully capture the complexity 

of these entities along the entire bronchial tree, and lung.  

Sputum and BAL differ significantly, not only in terms of the invasiveness of the 

sampling procedures but also in terms of potential oral contamination. While oral 

contamination could not be avoided in the case of sputum, measures were taken 

during bronchoscopy to minimise oral contamination of BAL. These measures likely 

reduced contamination significantly (26). 

Determining the best sample type for predicting clinical outcomes is challenging. 

Intuitively, one would think that lower airway samples verified through 

bronchoscopy, and with minimal contamination from the upper airways would be 

preferable to sputum samples. However, in clinical practice, sputum samples are far 

more readily obtainable. Should we analyse and examine the lower airways using 

samples that are practical in a clinical setting rather than ones that are limited to 

research protocols? Or will important pathogenetic signals be lost in the presence of 

abundant oral microbiota? These are questions that undoubtedly need further 

investigation.  

In terms of the validity of my data, the first factor to consider is selection biases. All 

participants included in the comparison of induced and spontaneous sputum had to be 
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able to expectorate. Therefore, observations of inflammation and microbiota may not 

be representative of all the patients with COPD who do not expectorate. The external 

validity of the actual measurements may be weakened by the selection criteria. The 

same issue arises in the third study, as the requirement for presence of exacerbations 

may render the measurements not applicable to the general COPD population. 

Selection biases in the BAL study (Under peer-review at the present time, available in 

the supplement of this thesis) were based on safety precautions that eliminated 

participants with certain features (48).  

In my studies, as in so many others, internal validity may have been compromised 

with each step of the sample processing, despite following stringent protocols. It is 

also important to keep in mind that my studies aimed to determine whether sampling 

methods affected measurements, rather than what the measurements were in sputum 

from patients with COPD. 

Lastly, it is worth mentioning that all samples in all four studies were taken as single 

samples. Ideally, we would have divided the original sputum samples into several 

fractions and analysed them in parallel, but this was not possible. For the BAL study, 

we discussed the possibility of amplifying and sequencing the extracted DNA in 

triplets, but tripling the processing expenses was not feasible. This limitation affects 

our ability to discuss whether variation in measurements resulted from processing, 

natural variability, or the variables of interest for analyses. 
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Illustration 5. Freshly delivered induced sputum sample, potentially diluted, and polluted by 
nebulised saline in a potentially contaminated petri dish, ready for processing with 
contaminated laboratory fluids, potentially affecting inflammatory marker concentrations. 

 

10.2.1 Inflammation. 
The impact of using PBS and DTT on recovery of cytokines has been demonstrated 

(72, 73). For paper I all samples were processed according to the same protocol, and 

the effect of chemicals on our measurements should be similar regardless of sputum 

sampling methods. However, the use of these chemicals should be kept in mind if 

comparing our data with other studies processing samples with different chemicals. 

The inflammatory markers and AMPs were measured in simplex due to cost, which 

possibly introduced measurement errors greater than if measured in duplex.  

To address the potential diluting effect of saline inhalation (74), the ratio of albumin 

between induced and spontaneous samples was used as a correction factor as 

suggested by a reviewer for the journal (Respiratory Research). Applying this method 

affected the interpretation of three inflammatory markers. IL-18 measured during 

exacerbations was significantly lower in induced than spontaneous sputum before 

albumin correction, but not after. TNF-α and MIG were both significantly lower in 

induced than spontaneous sputum at stable state before correction, but not after. It 
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should be noted that this concentration correction method has not been validated, but 

in accordance with the journal request, adjusted values were reported in our 

publication. 

Measurements of AMPs were carried out by colleague Persson (47). In her paper she 

discussed how sputum composition can influence on immunoassay-based 

measurements of cathelicidin. We did not examine AMPs across sputum types, but of 

course the composition of induced sputum might vary and thus influence AMPs 

measurements. We had no means to investigate for this comparing sputum AMPs 

across disease states. 

As mentioned earlier, it is difficult to determine which sample type generally has the 

greatest internal validity. However, the induction method allows for the inclusion of 

individuals who do not spontaneously produce sputum, which may improve the 

external validity of airways studies. This also allows for larger sample sizes, leading 

to enhanced statistical power and enabling meaningful stratification. 

 

10.2.2 Microbiota 
To obtain data for the microbiota analysis we started with the isolation of DNA from 

the samples. However, DNA extraction may decrease internal validity due to its 

varying efficiency in extracting DNA from different types of bacteria. To mitigate this 

issue, it is imperative to ensure that the process aligns with the diversity in bacterial 

wall structures. Hence, we initiated the procedure by following the recommended 

enzyme step as described (75). The removal of DNA in supernatants before bead 

beating and chemical lysis was carried out to minimise any potential shearing or 

distortion of DNA. This step was deemed significant because the low biomass airway 

samples necessitated a high number of PCR cycles to obtain a meaningful signal. It 

was hypothesised that sheared and distorted DNA, amplified over numerous PCR 

cycles, could lead to an increase in chimeric sequences. The DNA extraction process 

consisted of several steps and involved laboratory solutions containing significant 
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amounts of contaminating bacterial DNA, which could also interfere with the 

interpretation of the microbiota (68). Further discussion on contamination will be 

provided later. 

 
Illustration 6. Top picture: DNA-extraction laboratory fluids, the habitat of contaminants. 
Bottom pictures: Bead-beating equipment, the likely shearer of DNA. 

 

DNA extraction does not discriminate between human and bacterial DNA. This is first 

possible in polymerase chain reactions (PCR). Primers designed to adhere to the 

bacterial 16S rRNA gene ensured that bacterial DNA was multiplied in each PCR 

cycle. The choice of primers has been shown to impact the results in microbiota 

studies (76). One study on faecal microbiota and mock communities points to primers 

designed for the V3/V4 regions of the 16SrRNA gene to perform better than other 

primers (77). In our own laboratory Drengenes compared V3/V4 sequencing against 
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V4 sequencing with different workflows and showed that V3/V4 resulted in more 

ASVs, and the best taxonomic resolution (76). Index PCR in which primers are 

attached to the amplicon primers allow for further, though not perfect discrimination 

between human and bacterial DNA. 

To obtain an adequate amount of sequencing material from low biomass samples such 

as BAL, and to some extent sputum, it is necessary to increase the number of PCR 

cycles. However, this comes at the expense of a potential amplification of 

contaminating and/or chimeric sequences (78-80). These errors are likely to have 

diminished the internal validity of my data. Moreover, studies with high biomass 

samples using fewer PCR cycles are less likely to be impacted by the variable 

numbers of the 16S rRNA gene present in bacteria compared to studies using a high 

number of PCR cycles.  

Sequencing of the PCR products represented the last step in which biological material 

was processed. Errors from sequencing includes erroneous insertion of bases. The 

median sequencing error rate for the Illumina MiSeq has been estimated by Stoler et 

al. to be 0.47% (81). Bioinformatical tools dealing with such sequencing errors, 

chimeric sequences, and contaminants have been introduced and improved 

continuously during the decade I have researched microbiota. So has my knowledge 

about both the issues and possible solutions.  

Measurement differences can exist between samples processed in different batches, 

resulting in what is known as a batch effect. To mitigate this effect, we processed 

samples collected from the same participants together. Bar charts were used to 

visualise the relative abundances of various genera, and paired samples were 

compared. A notable dissimilarity was observed between the induced and spontaneous 

sputum samples from seven participant, which raised concerns about the processing of 

these samples. To investigate further, these seven pairs, along with three pairs that 

appeared similar, underwent PCR and sequencing twice to determine if the results 

would be consistent. The second run yielded consistent results for all but one pair, and 
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median sequencing error rate for the Illumina MiSeq has been estimated by Stoler et 

al. to be 0.47% (81). Bioinformatical tools dealing with such sequencing errors, 
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continuously during the decade I have researched microbiota. So has my knowledge 

about both the issues and possible solutions.  

Measurement differences can exist between samples processed in different batches, 

resulting in what is known as a batch effect. To mitigate this effect, we processed 

samples collected from the same participants together. Bar charts were used to 

visualise the relative abundances of various genera, and paired samples were 

compared. A notable dissimilarity was observed between the induced and spontaneous 

sputum samples from seven participant, which raised concerns about the processing of 

these samples. To investigate further, these seven pairs, along with three pairs that 

appeared similar, underwent PCR and sequencing twice to determine if the results 

would be consistent. The second run yielded consistent results for all but one pair, and 
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19 out of the 20 samples. However, due to the small number of samples, this 

investigation into variability caused by PCR/sequencing has limited value. 

 

10.3 Statistical and bioinformatic analyses 
Starting in 2013, and wrapping up 10 years later, this thesis hopefully illustrates not 

only the evolution of bioinformatic tools for microbiota research, but also an evolution 

of personal knowledge. Statistical methods used in this thesis will be discussed for 

each paper separately. 

 

10.3.1 Comparison of inflammatory markers in induced and 

spontaneous sputum in a cohort of COPD patients 
10.3.1.1 General considerations 

Data distribution was assessed visually from bar-charts for all analyses, and statistical 

methods chosen accordingly.  

10.3.1.2 Agreement 

I examined the correlation between inflammatory markers sampled by induction and 

by spontaneous expectoration and observed a fair correlation. Bland and Altman 

criticised the use of correlation in such comparisons, and proposed that measuring 

methods should yield similar rather than just correlating results (82). To address this 

concern, they introduced The Bland-Altman plot and limits of agreement (LOA) 

(Table 3). Log transformation of my non-parametric data was recommended before 

plotting, with the upper and lower limits of agreement interpreted after calculating the 

antilogs (83). Whether the limits are acceptable or not is decided by the researcher and 

must be contextualised and evaluated before the analyses are run. For instance, while 

a variability of +/- 50 g may be acceptable when weighing an average person, it would 

not be appropriate when weighing gold. Therefore, the choice of a cut-off for inferring 

differences must be based on existing knowledge and the researcher´s discretion. 
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Regrettably, paper I lacks a pre-discussion of LOA due to my unfamiliarity with this 

method and its significance in setting a cut-off prior to calculating the results.  

 

10.3.2 Comparing microbiota profiles in induced and spontaneous 

sputum samples in COPD patients 
10.3.2.1 General considerations 

Visual assessment of bar-charts was employed to evaluate the data distribution for all 

analyses, and statistical methods were selected accordingly, except for one situation 

that will be elaborated on later. The paired study design represented a challenge in 

finding appropriate statistical methods.  

QIIME 1 was chosen for analyses primarily due to the availability of courses designed 

for researchers venturing into microbiota research, as well as the compatibility of our 

data with the pipeline. Lacking proficiency in bioinformatics, I relied on the tools 

provided by QIIME 1 for data analysis, while employing Stata and worksheets as 

alternatives. 

10.3.2.2 Chimera and contamination 

In QIIME 1 the possibility of removing chimera was acknowledged, but concerns 

were raised about its potential impact on alpha-diversity estimates (84). While 

attending our first QIIME course held in New York, USA in 2015, our research group 

was advised against removing chimera. Instead, it was emphasised that the 

implementation of benchmarked filtering steps was sufficient (56). Furthermore, the 

issue of contamination was disregarded in paper II. I lacked negative control samples 

containing saline used for induction nor did I consider processing a sterile PBS sample 

along with the biological samples to check for laboratory contamination. The latter 

has been confirmed problematic by my fellow researcher Drengenes (68). 

Consequently, this represents a clear shortcoming. However, the confounding from 

potential contamination in the laboratory was reduced by treating all samples 

identically, and all pairs with the same laboratory kits. 
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10.3.2.3 Diversity – measures of that within and that between 

In paper II, rarefaction was employed to normalise samples before conducting 

diversity analyses (Table 3). To ensure that no samples were lost, we set the 

rarefaction limit equal to the number of sequences in the least rich sample. 

Rarefaction removed 2.67 million sequences, reducing the number of OTUs in the 

dataset only by two, from 1004 to 1002. Rarefaction may have heightened the 

discrepancy between the diversity in the actual airway microbiota and the diversity 

analysed statistically.  

For paper II we chose three alpha-diversity metrics provided as default by QIIME 1 

(84). Of these, observed OTUs were the simplest alpha-diversity metric, Chao1 

attempted to estimate what should have been present in the samples but were not due 

to incomplete sampling (85), and Faith´s PD implemented phylogenetics. With this 

choice of alpha-diversity metrics we lacked information about the evenness of OTUs. 

In hindsight Shannon diversity index or Pielou evenness could have been included for 

a fuller picture of the alpha-diversity. For statistical analyses the integrated solution in 

QIIME 1 was a non-parametric two-sample t-test which was chosen (Table 3). In 

retrospect, a better solution would have been to export the alpha-diversity metrics 

from QIIME 1 and to use the Wilcoxon signed rank test based on the paired, non-

parametric nature of the data. 

Beta-diversity could also be calculated with different methods in QIIME 1, but 

UniFrac was recommended (55). UniFrac integrate phylogenetic information from a 

phylogenetic tree, and can be both qualitative and quantitative (86). For paper II we 

restricted beta-diversity analyses to UniFrac, thus we lacked information on sputum 

sampling methods effects on non-phylogenetic beta-diversity. For statistical analyses 

we ran beta_significance.py with weighted UniFrac test (Table 3) This was the only 

available test for pairwise comparisons of UniFrac that I could apply at the time, but it 

later became obsolete as the datasets grew. Its limitation can be illustrated with our 36 

pairs of sputum, resulting in a staggering 2556 comparisons, of which only 36 were of 
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interest as they pertained to the paired samples. Bonferroni correction of p-values was 

used to counter the multiple testing issue.  

The Procrustes transformation of principal coordinates analysis (PCoA) plots 

continues to be a useful visual method for comparing pairwise beta-diversity (Table 

3). These plots are advised to be considered appropriate only when the sum of 

variation explained by the first three axes >50% (87). Like the Bland-Altman limits of 

agreement, the Procrustes transformation lacks a predetermined threshold for the 

outputted M^2, making the reporting and interpretation of results more complex. 

Consequently, it was easier to draw conclusions from the analysis of similarities 

(ANOSIM) between induced and spontaneous sputum, as ANOSIM in QIIME 1 

provided p-values with a significance level of p <0.05. However, it is important to 

note that the ANOSIM test in QIIME 1 were not designed to handle paired data.  

10.3.2.4 Taxonomy 

QIIME 1 made several online taxonomic databases available, but I opted for the 

recommended GreenGenes (61, 84). Selecting a different database could have resulted 

in different assigned taxonomy (88). This discrepancy in sequence classification 

across databases still has the potential to impact comparisons between research 

papers. While taxonomy was assigned down to the species level, limitations in the 16S 

rRNA gene sequencing prevented us from investigating more detailed taxonomic 

ranks beyond genera (39). Some OTUs were not assigned taxonomy, and for some, 

only higher taxonomic ranks such as family, class, and order were assigned. When 

revisiting the GreenGenes taxonomic assignment from 2015, I discovered that 6% of 

sequences lacked taxonomic information beyond the kingdom rank. These sequences 

were not given special attention and were analysed as 

Unassigned;Other;Other;Other;Other;Other (5.7% of sequences in induced sputum, 

6.1% of sequences in spontaneous sputum) and 

k__Bacteria;Other;Other;Other;Other;Other (0.01% of sequences in both induced 

and spontaneous sputum). It later became apparent that these sequences likely 

originated from human DNA.  
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To evaluate the effect of sputum sampling methods on taxonomy, Bland-Altman 

analyses were used, as described in paper I. In paper II, I calculated the range of limits 

of agreement (LOA) to facilitate interpretation. It became clear that an a-priori cut-off 

needed to be established, and this was discussed within our study group. The chosen 

limit allowed for a 10% difference in the relative abundance of taxa between induced 

and spontaneous samples. We recognised that larger differences indicated greater 

variability than what we expected would arise from processing and natural variation. 

Inspired by Bassis et al. (89) I also employed Yue-Clayton dissimilarities (90) to 

express beta-diversity calculated on OTU/ASV data when comparing groups. We 

found this method helpful in quantifying differences in the relative abundances of 

phyla and genera within individual sample pairs. Establishing a cut-off for what could 

be considered different using Yue-Clayton dissimilarities was a challenge, and it was 

discussed with both Bassis and within our research group. This situation exemplifies a 

scenario where running fractioned samples through the laboratory would have been 

valuable. Instead, our solution was to have three members of the research group 

independently classify taxonomic bar plots as visually similar or dissimilar. We 

determined that the Yue-Clayton dissimilarity cut-off needed to align with the a-priori 

visual classification. A cut-off at 0.2 proved sufficient in this regard, although it 

remained somewhat arbitrary. Additionally, we were unable to create comprehensive 

plots including all 106 taxa, so the cut-off was established in relation to the 11 

visualised taxa containing at least 1% of all sequences. Extrapolating the two within-

pair similarity estimates to other studies and populations is therefore challenging.  

To assess the differential abundance of taxa between all induced and spontaneous 

samples, we performed rarefaction using the log-likelihood ratio test provided in the 

QIIME 1 command group_significance (Table 3). We did this although our data had a 

non-parametric distribution, and the statistical test assumed normality. In fact, QIIME 

1 did not offer any statistical methods accepting paired, non-parametric data. The 

development and improvement of tests for differential abundance are ongoing, both 

within the QIIME pipeline and in available packages in R. Consequently, the analyses 

of taxonomic differences in paper II are now somewhat outdated.  
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10.3.3 Sputum microbiota and inflammation at stable state and during 

exacerbations in a cohort of chronic obstructive pulmonary disease 

(COPD) patients 
10.3.3.1 General considerations 

After completion of numerous statistics courses, statistical assessment of data 

distribution was conducted using the Shapiro-Wilks test for all analyses in paper III. 

The selected statistical analyses for the evaluation of inflammatory markers are 

assumed to be well-known and will not be discussed further (Table 3). 

In January 2019, QIIME 1 was replaced by QIIME 2, which provides a more 

comprehensive bioinformatic and statistical toolbox. Additionally, I attended an R 

class by Professor Pat Scloss (Crashcourse in R Workshop for Microbial Ecologists) 

in 2016, giving me the opportunity to analyse data for paper III in R. However, the 

paired study design posed a significant challenge in identifying suitable statistical 

methods and analyses for the microbiota data. 

10.3.3.2 Chimera and contamination 

During the time when paper III was being worked on, the recommendations in QIIME 

2 were to eliminate both chimeric sequences and contaminants as outlined in the 

Methods. It was generally believed that DADA2 was effective in removing chimeras, 

but our manual curation in the laboratory revealed otherwise. Additionally, Drengenes 

highlighted the potential for chimeric sequences due to shearing of DNA during bead 

beating and the high number of PCR cycles in our protocol (91). While it is possible 
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internal validity though 22 samples could not contribute to the identification of 

contaminants. 

For QIIME 1, Bokulich et al. conducted a benchmark study on a quality filtering 

procedure (56), but this has not yet been done for QIIME 2. Therefore, the question of 

whether ASVs should be filtered based on abundances and contingency was discussed 

among our research group and with the QIIME 2 developers. Considering the high 

number of PCR cycles, I made the decision to eliminate ASVs that had less than 10 

sequences across the 72 samples. Additionally, I removed sequences that were not 

found in at least five samples, which corresponds to three participants due to the 

paired design. The features filtered out in this process were extremely rare and low 

abundant, making it difficult to attribute biological meaning to any of them. As a 

result of this filtering, the number of ASVs decreased from 1439 to 408, with an 

average number of sequences per removed ASV of 197. This represented only 0.007% 

of the total number of sequences. It is important to acknowledge that this filtering did 

potentially impact the richness and differential abundance analyses, but I did not 

investigate to which extent it affected the data. 

10.3.3.3 Diversity – measures of that within and that between 

The developer´s recommendation for rarefaction in diversity analyses remained 

unchanged after the transmission to QIIME 2. To avoid losing samples, I set the 

rarefaction limit to match the sample with the lowest number of reads. 

For paper III, I computed Faith´s PD and Shannon diversity index, the later including 

consideration of the evenness of features. These analyses were conducted using the 

Vegan package in R, and the Wilcoxon signed rank test was used to handle both 

paired and non-parametric data, which was an improvement from our previous paper. 

The evaluation of beta-diversity was expanded to include calculations of both 

phylogenetic and non-phylogenetic matrices, as well as Aitchison distances that 

treated microbiota data as compositional (34). The introduction of Aitchison distances 

was directly linked to the availability of differential abundance analyses, which will 
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be discussed later (34). Additionally, the use of the Vegan package allowed me to 

perform PERMANOVA for both paired and non-parametric data, without violating 

the assumptions of the statistical test (92). As a result, the analysis of beta-diversity 

was also enhanced compared to our previous paper.  

After learning more about ordination plots, I decided to replace principal coordinate 

analysis (PCoA) with non-metric, multidimensional scaling plots (NMDS). This 

decision was made because I calculated five different distance matrices that were 

unlikely to satisfy the assumption of linearity in PCoA. Furthermore, the sum of 

variation explained by the first three axes in PCoA was less than 50% for both Bray-

Curtis and unweighted UniFrac distances generated in QIIME 2. By using NMDS, I 

forced the data into two dimensions without considering stress, which is a measure of 

how well the data is represented by the plot. Unfortunately, at that time, I had not yet 

realised that ordinating the data in three dimensions would result in a more acceptable 

level of stress (87, 92). Procrustes transformation of NMDS ordinations were 

performed as described for PCoA in paper II.  

10.3.3.4 Taxonomy 

QIIME 2 could make use of several taxonomic databases, and I chose to use Silva for 

paper III as GreenGenes had not been updated since 2012. After conducting a BLAST 

investigation on the ASVs that were lacking taxonomic annotation, I removed these 

ASVs before conducting any statistical analyses. This step likely contributed to 

enhancing the internal validity of the data in paper III.  

To assess the impact of disease state on taxonomy, I employed Yue-Clayton 

dissimilarities for each participant. I chose to maintain the cut-off value from paper II. 

The samples used in both papers underwent the same processing procedures, with 28 

samples being included in both studies. 

When it came to differential abundance analyses for non-parametric data from a 

paired study design, my options were limited to ANCOM and ALDEx2. The 

statistical method incorporated into ANCOM for paired data was Friedeman´s test, 
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which assumes a minimum of three repeated samples per participant. ALDEx2 was 

the only test I could find that did not have its assumptions violated by my data. In 

addition to analysing the abundances of phyla and genera, I used ALDEx2 for ASVs. 

In comparison to the methods employed in QIIME 1, I consider ALDEx2 to be an 

improvement. 

 

10.3.4 The lower airway microbiota in COPD and healthy controls 
10.3.4.1 General considerations 

The data for paper IV is a sub-selection from the greater MicroCOPD study. Several 

studies have been published by my fellow researchers describing methods and 

statistical challenges in depth (26, 28, 48, 54, 68, 76, 93, 94). I limited the data to 

BAL samples after having discussed the option of also including oral wash collected 

directly prior to the bronchoscopic procedure. This would have allowed me to 

compare the oral microbiota with the lower airway microbiota. We did find it 

necessary to limit the study to only one sample type to answer the main research 

question within the word limits set by the publisher.  

10.3.4.2 Chimera and contamination 

The process of removing chimeric sequences from all 2448 samples in the 

MicroCOPD study was performed in the same manner as described in paper III. 

However, for the MicroCOPD data, Decontam was used with the prevalence-based 

approach since we had negative control samples available (69). As a result, I can 

confidently conclude that the handling of contaminants in my research has 

progressively improved. 

With regards to the filtering of ASVs based on abundances and contingency, our 

research group again debated on this topic. Initially, ASVs comprising less than 10 

sequences throughout the entire MicroCOPD dataset were eliminated after the 

removal of chimeric and contaminating sequences. Subsequently, we implemented the 

strategy outlined in Figure 5. Any ASVs lacking taxonomic annotation were excluded, 
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likely increasing the internal validity. Samples with <500 sequences were not 

included. Both rarefaction for diversity analyses and ANCOM-BC for differential 

abundance analyses required a higher sequencing depth for inclusion of samples. 

10.3.4.3 Diversity – measures of that within and that between 

With data from MicroCOPD it was not feasible to prevent loss of samples by setting 

the rarefaction limit equal to the sparsest sample as I did for the sputum studies. 

Therefore, the rarefaction level of 2200/sequences per sample was chosen as a 

compromise between the goal of keeping as many samples as possible and the aim of 

avoiding an underestimation of diversity. 

For paper IV, I included four alpha-diversity metrics and four distance matrices. A 

detailed description of these is provided in the supplementary materials of paper IV. 

Using this approach, I was able to examine different aspects of the data and identify 

the most prominent differences between the groups. 

10.3.4.4 Taxonomy 

Silva was again chosen for taxonomy in paper IV, despite that the research group 

otherwise had used the Human Oral Microbiome Database (HOMD) for MicroCOPD 

data (28, 93, 94). I wanted to use Silva for continuity, and I personally worried 

HOMD could have limitations with regards to the lower airway microbiota. The 

database comprises of sequencing data from the oral cavity, nasal passages, sinuses, 

pharynx and oesophagus, but not from the airways distal to the vocal cords (95). 

For differential abundance, ANCOM-BC was the only one used in paper IV. 

ANCOM-BC builds on the previous ANCOM and ANCOM-II and claims to handle 

the excessive number of zeros, allow for non-normal distribution of data and the bias 

correction is said to deal with biased sampling. It is vulnerable for false positives due 

to the many comparisons made which is why we present adjusted p-values, or q-

values. It is important to acknowledge that every differential abundance analysis tool 

has its own strengths and weaknesses. Consequently, limiting the differential 

abundance analyses to only ANCOM-BC, could represent a shortcoming.  
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11. Discussion of results 
11.1 Comparing induced and spontaneous sputum samples and 

assessing the safety of hypertonic saline for sputum induction 
The first two studies aimed to examine how the different methods of sputum 

sampling, induced and spontaneous, affected the measurements of sputum 

inflammation and microbiota. This inquiry arose from our intention to investigate the 

microbiota and associated inflammation in stable and exacerbated COPD. We wished 

to use sputum samples from the BCCS and the BCES from which both sputum types 

were stored. We noticed that there was limited knowledge regarding the 

interchangeability of induced and spontaneous sputum for measuring inflammation 

and microbiota. Therefore, we felt it was necessary to investigate this before 

conducting the comparative analyses of stable states versus exacerbations in COPD. 

We also wanted to know more about the safety of the induction procedure performed 

in the BCCS and the BCES for future references. The first two studies would have a 

direct practical application by allowing a more knowledge-based selection of samples 

for paper III. 

I observed discrepancies in the measurements of inflammatory markers and 

microbiota in consecutively collected induced and spontaneous sputum samples 

obtained from patients diagnosed with COPD (52, 96). While the observed differences 

were not statistically significant when the samples were grouped by type, they became 

evident when each participant was examined individually. It was interesting to 

observe that statistically significant associations between inflammatory markers and 

clinical variables like smoking and H. Influenzae-positive cultures were indeed not 

uniformly observed across the two sputum types (52). 

Henderson et al. assessed mucus hydration in induced and spontaneous sputum (74). 

They observed that hypertonic saline had a diluting effect on the induced sputum, 

which could lead to lower concentration measurements. I have previously discussed 

the implementation of concentration corrections with albumin and its impact. 

Henderson et al. did not identify any significant differences in inflammatory markers 
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when comparing all sputum samples across the two sampling methods in stable state 

COPD. However, it is important to note that they did not assess the impact of 

sampling techniques on their measured inflammatory markers for the 18 individual 

participants with consecutively sampled induced and spontaneous sputum (74). 

Earlier studies have suggested that induction can allow for the collection of sputum 

distal to spontaneous samples (97, 98). Additionally, discrepancies in immune cells 

and the microbiota along the airway tractus have been observed (25, 26, 99). Induced 

sputum samples may thus represent a slightly different environment with a different 

pattern of immunity and microbiota compared with spontaneous samples, even if both 

sputa originate from proximal rather than distal airways (24). 

Mayhew et al. included both types of sputum in a comprehensive, longitudinal study 

across stable state and exacerbated COPD (100). Comparisons of sputum types were 

not the main target with their study, and therefor naturally limited. They concluded 

with a lack of discrepancies between induced and spontaneous sputum based only on 

UniFrac distances, and a visualisation of percent abundances for three phyla within 65 

participants. The changes in percent abundances of Haemophilus and Streptococcus 

however seem non-consistent between the plotted panels, and the beta-diversity 

analyses might not be powered to capture differences between individual patient´s 

sputum types. The comparisons were made between samples collected from different 

consultations and with the patients being in different disease states. Thus, it is difficult 

to use these results to advocate for the inclusion of both sputum types without other 

confirmatory studies. Diver et al. acknowledged the potential limitation of using both 

types of sputum in their study and they mentioned that the impact of the sampling 

method had been assessed (101). Unfortunately, the paper they referred to focused on 

inflammation and lacked comparisons for microbiota. 

In a 2019 review conducted by Ditz et al. a summary of studies on the sputum 

microbiota in COPD was provided. Based on this review, it can be inferred that the 

microbiota analysed in sputum samples, whether induced, spontaneous, or analysed 

collectively, may be linked to several clinical outcomes (102). This in turn, reinforces 

 
 

 

78 

when comparing all sputum samples across the two sampling methods in stable state 

COPD. However, it is important to note that they did not assess the impact of 

sampling techniques on their measured inflammatory markers for the 18 individual 

participants with consecutively sampled induced and spontaneous sputum (74). 

Earlier studies have suggested that induction can allow for the collection of sputum 

distal to spontaneous samples (97, 98). Additionally, discrepancies in immune cells 

and the microbiota along the airway tractus have been observed (25, 26, 99). Induced 

sputum samples may thus represent a slightly different environment with a different 

pattern of immunity and microbiota compared with spontaneous samples, even if both 

sputa originate from proximal rather than distal airways (24). 

Mayhew et al. included both types of sputum in a comprehensive, longitudinal study 

across stable state and exacerbated COPD (100). Comparisons of sputum types were 

not the main target with their study, and therefor naturally limited. They concluded 

with a lack of discrepancies between induced and spontaneous sputum based only on 

UniFrac distances, and a visualisation of percent abundances for three phyla within 65 

participants. The changes in percent abundances of Haemophilus and Streptococcus 

however seem non-consistent between the plotted panels, and the beta-diversity 

analyses might not be powered to capture differences between individual patient́s 

sputum types. The comparisons were made between samples collected from different 

consultations and with the patients being in different disease states. Thus, it is difficult 

to use these results to advocate for the inclusion of both sputum types without other 

confirmatory studies. Diver et al. acknowledged the potential limitation of using both 

types of sputum in their study and they mentioned that the impact of the sampling 

method had been assessed (101). Unfortunately, the paper they referred to focused on 

inflammation and lacked comparisons for microbiota. 

In a 2019 review conducted by Ditz et al. a summary of studies on the sputum 

microbiota in COPD was provided. Based on this review, it can be inferred that the 

microbiota analysed in sputum samples, whether induced, spontaneous, or analysed 

collectively, may be linked to several clinical outcomes (102). This in turn, reinforces 

 
 

 

78 

when comparing all sputum samples across the two sampling methods in stable state 

COPD. However, it is important to note that they did not assess the impact of 

sampling techniques on their measured inflammatory markers for the 18 individual 

participants with consecutively sampled induced and spontaneous sputum (74). 

Earlier studies have suggested that induction can allow for the collection of sputum 

distal to spontaneous samples (97, 98). Additionally, discrepancies in immune cells 

and the microbiota along the airway tractus have been observed (25, 26, 99). Induced 

sputum samples may thus represent a slightly different environment with a different 

pattern of immunity and microbiota compared with spontaneous samples, even if both 

sputa originate from proximal rather than distal airways (24). 

Mayhew et al. included both types of sputum in a comprehensive, longitudinal study 

across stable state and exacerbated COPD (100). Comparisons of sputum types were 

not the main target with their study, and therefor naturally limited. They concluded 

with a lack of discrepancies between induced and spontaneous sputum based only on 

UniFrac distances, and a visualisation of percent abundances for three phyla within 65 

participants. The changes in percent abundances of Haemophilus and Streptococcus 

however seem non-consistent between the plotted panels, and the beta-diversity 

analyses might not be powered to capture differences between individual patient́s 

sputum types. The comparisons were made between samples collected from different 

consultations and with the patients being in different disease states. Thus, it is difficult 

to use these results to advocate for the inclusion of both sputum types without other 

confirmatory studies. Diver et al. acknowledged the potential limitation of using both 

types of sputum in their study and they mentioned that the impact of the sampling 

method had been assessed (101). Unfortunately, the paper they referred to focused on 

inflammation and lacked comparisons for microbiota. 

In a 2019 review conducted by Ditz et al. a summary of studies on the sputum 

microbiota in COPD was provided. Based on this review, it can be inferred that the 

microbiota analysed in sputum samples, whether induced, spontaneous, or analysed 

collectively, may be linked to several clinical outcomes (102). This in turn, reinforces 

 
 

 

78 

when comparing all sputum samples across the two sampling methods in stable state 

COPD. However, it is important to note that they did not assess the impact of 

sampling techniques on their measured inflammatory markers for the 18 individual 

participants with consecutively sampled induced and spontaneous sputum (74). 

Earlier studies have suggested that induction can allow for the collection of sputum 

distal to spontaneous samples (97, 98). Additionally, discrepancies in immune cells 

and the microbiota along the airway tractus have been observed (25, 26, 99). Induced 

sputum samples may thus represent a slightly different environment with a different 

pattern of immunity and microbiota compared with spontaneous samples, even if both 

sputa originate from proximal rather than distal airways (24). 

Mayhew et al. included both types of sputum in a comprehensive, longitudinal study 

across stable state and exacerbated COPD (100). Comparisons of sputum types were 

not the main target with their study, and therefor naturally limited. They concluded 

with a lack of discrepancies between induced and spontaneous sputum based only on 

UniFrac distances, and a visualisation of percent abundances for three phyla within 65 

participants. The changes in percent abundances of Haemophilus and Streptococcus 

however seem non-consistent between the plotted panels, and the beta-diversity 

analyses might not be powered to capture differences between individual patient´s 

sputum types. The comparisons were made between samples collected from different 

consultations and with the patients being in different disease states. Thus, it is difficult 

to use these results to advocate for the inclusion of both sputum types without other 

confirmatory studies. Diver et al. acknowledged the potential limitation of using both 

types of sputum in their study and they mentioned that the impact of the sampling 

method had been assessed (101). Unfortunately, the paper they referred to focused on 

inflammation and lacked comparisons for microbiota. 

In a 2019 review conducted by Ditz et al. a summary of studies on the sputum 

microbiota in COPD was provided. Based on this review, it can be inferred that the 

microbiota analysed in sputum samples, whether induced, spontaneous, or analysed 

collectively, may be linked to several clinical outcomes (102). This in turn, reinforces 

 
 

 

78 

when comparing all sputum samples across the two sampling methods in stable state 

COPD. However, it is important to note that they did not assess the impact of 

sampling techniques on their measured inflammatory markers for the 18 individual 

participants with consecutively sampled induced and spontaneous sputum (74). 

Earlier studies have suggested that induction can allow for the collection of sputum 

distal to spontaneous samples (97, 98). Additionally, discrepancies in immune cells 

and the microbiota along the airway tractus have been observed (25, 26, 99). Induced 

sputum samples may thus represent a slightly different environment with a different 

pattern of immunity and microbiota compared with spontaneous samples, even if both 

sputa originate from proximal rather than distal airways (24). 

Mayhew et al. included both types of sputum in a comprehensive, longitudinal study 

across stable state and exacerbated COPD (100). Comparisons of sputum types were 

not the main target with their study, and therefor naturally limited. They concluded 

with a lack of discrepancies between induced and spontaneous sputum based only on 

UniFrac distances, and a visualisation of percent abundances for three phyla within 65 

participants. The changes in percent abundances of Haemophilus and Streptococcus 

however seem non-consistent between the plotted panels, and the beta-diversity 

analyses might not be powered to capture differences between individual patient´s 

sputum types. The comparisons were made between samples collected from different 

consultations and with the patients being in different disease states. Thus, it is difficult 

to use these results to advocate for the inclusion of both sputum types without other 

confirmatory studies. Diver et al. acknowledged the potential limitation of using both 

types of sputum in their study and they mentioned that the impact of the sampling 

method had been assessed (101). Unfortunately, the paper they referred to focused on 

inflammation and lacked comparisons for microbiota. 

In a 2019 review conducted by Ditz et al. a summary of studies on the sputum 

microbiota in COPD was provided. Based on this review, it can be inferred that the 

microbiota analysed in sputum samples, whether induced, spontaneous, or analysed 

collectively, may be linked to several clinical outcomes (102). This in turn, reinforces 

 
 

 

78 

when comparing all sputum samples across the two sampling methods in stable state 

COPD. However, it is important to note that they did not assess the impact of 

sampling techniques on their measured inflammatory markers for the 18 individual 

participants with consecutively sampled induced and spontaneous sputum (74). 

Earlier studies have suggested that induction can allow for the collection of sputum 

distal to spontaneous samples (97, 98). Additionally, discrepancies in immune cells 

and the microbiota along the airway tractus have been observed (25, 26, 99). Induced 

sputum samples may thus represent a slightly different environment with a different 

pattern of immunity and microbiota compared with spontaneous samples, even if both 

sputa originate from proximal rather than distal airways (24). 

Mayhew et al. included both types of sputum in a comprehensive, longitudinal study 

across stable state and exacerbated COPD (100). Comparisons of sputum types were 

not the main target with their study, and therefor naturally limited. They concluded 

with a lack of discrepancies between induced and spontaneous sputum based only on 

UniFrac distances, and a visualisation of percent abundances for three phyla within 65 

participants. The changes in percent abundances of Haemophilus and Streptococcus 

however seem non-consistent between the plotted panels, and the beta-diversity 

analyses might not be powered to capture differences between individual patient´s 

sputum types. The comparisons were made between samples collected from different 

consultations and with the patients being in different disease states. Thus, it is difficult 

to use these results to advocate for the inclusion of both sputum types without other 

confirmatory studies. Diver et al. acknowledged the potential limitation of using both 

types of sputum in their study and they mentioned that the impact of the sampling 

method had been assessed (101). Unfortunately, the paper they referred to focused on 

inflammation and lacked comparisons for microbiota. 

In a 2019 review conducted by Ditz et al. a summary of studies on the sputum 

microbiota in COPD was provided. Based on this review, it can be inferred that the 

microbiota analysed in sputum samples, whether induced, spontaneous, or analysed 

collectively, may be linked to several clinical outcomes (102). This in turn, reinforces 

 
 

 

78 

when comparing all sputum samples across the two sampling methods in stable state 

COPD. However, it is important to note that they did not assess the impact of 

sampling techniques on their measured inflammatory markers for the 18 individual 

participants with consecutively sampled induced and spontaneous sputum (74). 

Earlier studies have suggested that induction can allow for the collection of sputum 

distal to spontaneous samples (97, 98). Additionally, discrepancies in immune cells 

and the microbiota along the airway tractus have been observed (25, 26, 99). Induced 

sputum samples may thus represent a slightly different environment with a different 

pattern of immunity and microbiota compared with spontaneous samples, even if both 

sputa originate from proximal rather than distal airways (24). 

Mayhew et al. included both types of sputum in a comprehensive, longitudinal study 

across stable state and exacerbated COPD (100). Comparisons of sputum types were 

not the main target with their study, and therefor naturally limited. They concluded 

with a lack of discrepancies between induced and spontaneous sputum based only on 

UniFrac distances, and a visualisation of percent abundances for three phyla within 65 

participants. The changes in percent abundances of Haemophilus and Streptococcus 

however seem non-consistent between the plotted panels, and the beta-diversity 

analyses might not be powered to capture differences between individual patient´s 

sputum types. The comparisons were made between samples collected from different 

consultations and with the patients being in different disease states. Thus, it is difficult 

to use these results to advocate for the inclusion of both sputum types without other 

confirmatory studies. Diver et al. acknowledged the potential limitation of using both 

types of sputum in their study and they mentioned that the impact of the sampling 

method had been assessed (101). Unfortunately, the paper they referred to focused on 

inflammation and lacked comparisons for microbiota. 

In a 2019 review conducted by Ditz et al. a summary of studies on the sputum 

microbiota in COPD was provided. Based on this review, it can be inferred that the 

microbiota analysed in sputum samples, whether induced, spontaneous, or analysed 

collectively, may be linked to several clinical outcomes (102). This in turn, reinforces 

 
 

 

78 

when comparing all sputum samples across the two sampling methods in stable state 

COPD. However, it is important to note that they did not assess the impact of 

sampling techniques on their measured inflammatory markers for the 18 individual 

participants with consecutively sampled induced and spontaneous sputum (74). 

Earlier studies have suggested that induction can allow for the collection of sputum 

distal to spontaneous samples (97, 98). Additionally, discrepancies in immune cells 

and the microbiota along the airway tractus have been observed (25, 26, 99). Induced 

sputum samples may thus represent a slightly different environment with a different 

pattern of immunity and microbiota compared with spontaneous samples, even if both 

sputa originate from proximal rather than distal airways (24). 

Mayhew et al. included both types of sputum in a comprehensive, longitudinal study 

across stable state and exacerbated COPD (100). Comparisons of sputum types were 

not the main target with their study, and therefor naturally limited. They concluded 

with a lack of discrepancies between induced and spontaneous sputum based only on 

UniFrac distances, and a visualisation of percent abundances for three phyla within 65 

participants. The changes in percent abundances of Haemophilus and Streptococcus 

however seem non-consistent between the plotted panels, and the beta-diversity 

analyses might not be powered to capture differences between individual patient´s 

sputum types. The comparisons were made between samples collected from different 

consultations and with the patients being in different disease states. Thus, it is difficult 

to use these results to advocate for the inclusion of both sputum types without other 

confirmatory studies. Diver et al. acknowledged the potential limitation of using both 

types of sputum in their study and they mentioned that the impact of the sampling 

method had been assessed (101). Unfortunately, the paper they referred to focused on 

inflammation and lacked comparisons for microbiota. 

In a 2019 review conducted by Ditz et al. a summary of studies on the sputum 

microbiota in COPD was provided. Based on this review, it can be inferred that the 

microbiota analysed in sputum samples, whether induced, spontaneous, or analysed 

collectively, may be linked to several clinical outcomes (102). This in turn, reinforces 

 
 

 

78 

when comparing all sputum samples across the two sampling methods in stable state 

COPD. However, it is important to note that they did not assess the impact of 

sampling techniques on their measured inflammatory markers for the 18 individual 

participants with consecutively sampled induced and spontaneous sputum (74). 

Earlier studies have suggested that induction can allow for the collection of sputum 

distal to spontaneous samples (97, 98). Additionally, discrepancies in immune cells 

and the microbiota along the airway tractus have been observed (25, 26, 99). Induced 

sputum samples may thus represent a slightly different environment with a different 

pattern of immunity and microbiota compared with spontaneous samples, even if both 

sputa originate from proximal rather than distal airways (24). 

Mayhew et al. included both types of sputum in a comprehensive, longitudinal study 

across stable state and exacerbated COPD (100). Comparisons of sputum types were 

not the main target with their study, and therefor naturally limited. They concluded 

with a lack of discrepancies between induced and spontaneous sputum based only on 

UniFrac distances, and a visualisation of percent abundances for three phyla within 65 

participants. The changes in percent abundances of Haemophilus and Streptococcus 

however seem non-consistent between the plotted panels, and the beta-diversity 

analyses might not be powered to capture differences between individual patient´s 

sputum types. The comparisons were made between samples collected from different 

consultations and with the patients being in different disease states. Thus, it is difficult 

to use these results to advocate for the inclusion of both sputum types without other 

confirmatory studies. Diver et al. acknowledged the potential limitation of using both 

types of sputum in their study and they mentioned that the impact of the sampling 

method had been assessed (101). Unfortunately, the paper they referred to focused on 

inflammation and lacked comparisons for microbiota. 

In a 2019 review conducted by Ditz et al. a summary of studies on the sputum 

microbiota in COPD was provided. Based on this review, it can be inferred that the 

microbiota analysed in sputum samples, whether induced, spontaneous, or analysed 

collectively, may be linked to several clinical outcomes (102). This in turn, reinforces 



 
 

 

79 

the utilisation of sputum as a readily accessible and non-invasive sample for studying 

the airway microbiota in COPD. In clinical settings it is highly unlikely that 

bronchoscopic sampling will be routinely performed on admitted patients with COPD 

exacerbations. It is also unlikely that routine bronchoscopic sampling at a stable state 

aimed at mapping the microbiota and inflammation for individual patients will be 

feasible. Consequently, increasing our understanding of the microbiota and 

inflammation in sputum may prove more useful, as recognised associations and 

patterns observed in sputum can be more easily applied in a clinical setting. Ditz et al. 

also discussed the strengths and limitations of different sampling methods (102). 

To the best of my knowledge, large-scale studies aimed at investigating the effects of 

sputum sampling techniques on microbiota and inflammation are still lacking. It is 

important for future research to acquire a better understanding of the impact of sample 

processing methods, the natural variability of inflammation and microbiota in sputum, 

and the specific role of sampling techniques. This knowledge will enable a more 

accurate interpretation of the associations between measurements of inflammation and 

microbiota and the clinical variables studied. Deciding on a preferred sample type for 

microbiota studies would further depend on which sample type correlate strongest 

with clinical variables. 

Taking adequate safety precautions is essential for the researcher as well as the 

clinician. Ethical considerations in research include strict demands to avoid using 

methods potentially putting study participants at risk for adverse events. The risks and 

burdens of induced sputum sampling for study participants have been found 

acceptable in several studies (21-23).  

In our cohort, using hypertonic saline to induce not only stable state but also 

exacerbated patients including those with very severe COPD, did not result in any 

severe adverse events (52). Tolerance for the combination of hypertonic saline and the 

bronchodilator salbutamol might not surprise clinicians as it is offered some 

hospitalised exacerbated patients with excessive sputum. Studies of the usefulness of 

hypertonic saline inhalations for patients with COPD has been conflicting, but also 
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conducted under very different patient settings. This might partially explain why 

different studies conclude differently (103, 104). A key point is to always protect 

patients against bronchoconstriction by administrating bronchodilators before or 

together with the hypertonic saline. Our results on the safety of sputum induction 

align with the previous studies and support the use of induced sputum for research 

purposes. 

Summarising both the discussion of sputum sampling methods and results from paper 

I and II I would advocate for the use of induced sputum over spontaneous sputum 

when studying the lower airway microbiota and inflammation. 
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11.2 Comparing stable state and exacerbated COPD 
My goal for paper III was to identify specific patterns of change in inflammation and 

microbiota in sputum from patients with COPD sampled both during stable and 

exacerbated states. Paper I and II resulted in the selection of induced sputum samples 

exclusively. 

I discovered that over 2/3 of patients had substantial changes in the composition of 

their sputum microbiota from stable to exacerbated state. However, the changes 

observed were not uniform across patients. Furthermore, the longitudinal case study 

demonstrated that even within the same individual, there were no clear patterns of 

change between stable states and exacerbations. For measurements of sputum 

inflammation clearer patterns were observed for the entirety of the cohort, with three 

cytokines significantly elevated during exacerbations. Interestingly, their role in viral 

infections and against intracellular bacteria might be more prominent than their role in 

defeating extracellular bacterial infections (105-107). 

Both stability and variability of the sputum microbiota in patients with COPD have 

been previously observed, both among different groups of patients, and within 

individual patients (100, 108-110). Establishing whether the extent to which changes 

in the microbiota are causally linked to the transition from a stable state to 

exacerbations is a challenging question that needs to be addressed.  

In a comprehensive sputum study published in 2018, Mayhew et al. demonstrated 

several interesting findings (100). They analysed the microbiota in multiple sputum 

samples collected over time, both at stable state and exacerbations. They observed a 

certain level of consistency in the microbial composition within patients, allowing for 

differentiation between participants based on their sputum microbiota. Furthermore, 

they demonstrated that exacerbations were more closely linked to changes in the 

abundance of taxa rather than the acquisition or loss of taxa. These results align with 

our own Procrustes findings, as the matrices sensitive to abundances (Bray-Curtis and 

weighted UniFrac) exhibited higher M^2 values compared to their abundance-

insensitive counterparts (46).  
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Mayhew et al. also observed significantly higher relative abundances of Moraxella in 

samples collected during exacerbations, and that this bacterial genus had the strongest 

association with the frequency of exacerbations (100). Ideally, this would support 

targeted therapy directed at Moraxella in patients with COPD. Alas, it is also 

described that only a minority of exacerbated patients had a substantial increase in 

Moraxella. Our case study aligns with this observation. Figure 9 in paper III 

demonstrates substantial fluctuations in Moraxella abundances within the COPD 

participant both during exacerbations and periods of stability. Moraxella was both 

completely absent and the most abundant genera in both states of COPD (46). 

Previous analysis of our sputum samples revealed that Moraxella was substantially 

more common in spontaneous sputum compared to induced sputum. However, there 

was no discernible correlation with exacerbations when examining all patients 

collectively. Similarly, Wang et al. did not find any correlation either, but they did 

note that higher abundances of Moraxella were negatively correlated with Shannon 

diversity index (111).  

The overall absence of significantly different taxa in my sputum data could be 

attributed to the small number of participants. But it could also be a result of the fact 

that changes in taxa abundances were opposite in different patients. This observation 

can be seen in Figure 4 of paper III for several genera. Our findings suggest that 

employing a single treatment approach for all patients will be ineffective in COPD. 

The lack of consistent changes in the microbiota across disease states in my study 

could be partly explained by the multifactorial nature of COPD. This introduces the 

need for sub-group analyses of larger data to find COPD phenotypes in which there 

are consistent patterns. While my study was too small to run sensible sub-group 

analyses incorporating inflammation measurements, Wang et.al., presented such a 

study in 2021 (112). They classified COPD sputum samples according to leukocyte 

patterns and further sub-classified neutrophilic sputum according to the microbiota 

composition (balanced, Haemophilus). They reported distinct associations between 

the sub-groups and several inflammatory markers from sputum and serum. They also 
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observed that patients with neutrophilic-balanced stable state sputum were more likely 

to experience larger changes in the sputum microbiota during exacerbations. 

Interestingly, in my study, large sputum microbiota changes during exacerbations 

were associated with a depletion of sputum SLPI. Negative associations between 

sputum neutrophil percentages and SLPI were discussed by Persson et al., who also 

pointed at studies linking SLPI with bacterial infections  (47, 113, 114). Links 

between a dysbiotic sputum microbiota in exacerbated COPD and neutrophilic-

balanced sputum at stable state, and a depletion of SLPI during exacerbations, could 

indicate a potentially harmful interplay between the lower airway microbiota and 

inflammatory system.   

The evaluation of serum inflammatory markers in our data was limited. We did 

observe that the seven participants classified with high serum absolute neutrophil 

counts during exacerbations had significantly higher Shannon diversity index when 

sampled at stable state. This contradicts the result from Lonergan et al. on stable state 

COPD showing that high blood neutrophil counts were associated with significantly 

lower Shannon diversity index (115). Wang et al. found a joint association between 

microbiota dysbiosis and blood eosinophilia on the one hand, and a significantly more 

reduced FEV1 at exacerbations compared with stable state on the other (111). Dicker 

et al. were able to observe associations between blood eosinophils and relative 

abundance of Proteobacteria/Haemophilus (negatively associated) and 

Firmicutes/Streptococcus (positively associated) in sputum samples collected at stable 

state of COPD (116). From our data, though not reported in paper III, we did not 

observe any associations between eosinophils in blood and the microbiota in sputum 

either at stable state or during exacerbations. The correlation between blood 

inflammatory markers and the lower airway microbiota remains understudied. 

In summary, there is a need to view the lower airway microbiota in concert with both 

local and systemic inflammation. Expanding analyses to include the effect of fungi 

and viruses is likely necessary to paint a fuller picture of what drives the inflammation 

in COPD airways and lung tissue. To effectively customise treatment for patients with 
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COPD we may depend on identifying well-defined inflammatory-microbial 

phenotypes for which targeted treatment can be prescribed. 

 

11.3 Comparing patients with COPD and healthy controls 
My goal for paper IV was to find potentially important differences in the lower airway 

microbiota between a large group of patients with COPD and a similarly sized group 

of healthy participants. For this paper, the microbiota was measured in BAL. 

The remodelling of airways and lung tissue in COPD, once established, cannot be 

reversed. Therefore, it is crucial to prevent the damage from occurring in the first 

place. If it is too late to prevent the disease, the next best objective is to halt its further 

development. Ultimately, our research goal is to uncover a causal relationship 

between a treatable bacterial dysbiosis in healthy smokers and COPD. Additionally, 

we aim to identify a causal relationship between an equally treatable bacterial 

dysbiosis and disease progression and exacerbations on behalf of those already 

diagnosed with COPD. In the following discussion, I will present our observations 

from paper IV in the context of relevant and available publications regarding the 

lower airway microbiota in COPD and healthy controls. 

We found that BAL microbiota in COPD had lower evenness than in healthy controls. 

The most prevalent phyla and genera found in patients with COPD were also the most 

prevalent in healthy controls. Still, nine genera differed significantly across COPD 

and controls. One phylum was enriched in COPD and that was Firmicutes. In fact, 

only genera belonging to the phylum Firmicutes were significantly more abundant in 

COPD compared with controls. 

Alpha-diversity has previously been reported to be decreased in airway samples from 

patients with COPD compared with controls, and to be further lowered with disease 

progression (27, 117-120). In paper IV, we observed that the richness and the 

phylogenetic diversity within BAL from patients with COPD were comparable to that 

observed in healthy controls. What separated COPD and control BAL was the 
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evenness of the different microbiota members present in the samples. If we dissect the 

studies listed in Table 1 and Table 2 we find that Ramsheh et al. observed a COPD-

associated reduction of all alpha-diversity characteristics (richness, evenness, and 

phylogenetic diversity) in their comprehensive study of 339 patients with COPD and 

207 healthy controls (120). The remaining studies on alpha-diversity across COPD 

and health are far smaller. Sze et al. studied the microbiota in lung tissue and 

compared alpha-diversity between patients with COPD and controls with two 

different mathematical methods (118, 121). The reported lower Shannon diversity 

index in lung tissue from patients with COPD compared with controls was observed 

only at one of six sampled positions within the nine lungs that were examined. The 

Simpson index calculated in their study published in 2012 showed no difference in 

alpha-diversity between COPD and controls. This was also the case for both Pragman 

et al., and Zakharkina et al. who both chose Shannon diversity index to describe 

alpha-diversity (122, 123). One can suspect that some of these studies have been too 

small to detect a difference between COPD and control samples. 

Together with the study of Ramsheh et al., and Opron et al. we have the largest patient 

population sampled from the distal airways. So why are both the richness and 

phylogenetic diversity sustained in our, but not in Ramsheh et al.´s, COPD population 

when compared to controls? Disease severity could have been a suggested cause, as 

Mayhew et al. observed that the severity of COPD was negatively associated with 

alpha-diversity (100). But the percent cases of severe and very severe COPD were 31 

in our study and only 12 in Ramsheh et al.´s study population. The discrepancy 

between our and Ramsheh et al.´s study is thus not in accordance with the 

observations made by Mayhew et al. The lower airway microbiota is proposed to be 

dynamic with bacterial influx through inhalation and micro-aspiration (124), and 

removal through mucociliary clearance, cough, and immune responses. In addition, 

one can postulate that local replication and survival will vary between the different 

microbiota members (125). One possible explanation for the loss of evenness but 

sustained richness and phylogenetic diversity observed in our samples could be that it 
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reflects a regular influx of the upper airway microbiota, combined with local factors in 

the lower airways causing some taxa to thrive. 

The lack of difference in beta-diversity between BAL from patients with COPD and 

controls agrees with previous studies (120, 126, 127). In sputum, Wang et al. observed 

a significant difference in weighted UniFrac distances between COPD and controls, 

but with an effect size of only 3% (R^2), thus having disease explain very little of the 

variation in the model (119). Opron et al. observed significant associations between 

beta-diversity measures and both COPD assessment scores (CAT scores) and 

bronchodilator response. Meanwhile, the significant p-values from the 

PERMANOVA analyses were accompanied by very low R^2 scores (1% - 2%), thus 

the effect sizes of CAT scores and bronchodilator response were also very small.  

In COPD, the shift from a state of good health to chronic obstruction occurs gradually, 

rather than abruptly. Consequently, it is conceivable that alterations in the microbiota 

of the lower airways could also exhibit a continuum of change, making it difficult to 

distinguish between the healthy and the obstructive airways. Additionally, considering 

the continual supply of microorganisms from the upper airway and the dynamic nature 

of the lower airway microbiota, these factors might account for the absence of a 

correlation between beta-diversity and COPD or health. 

Diving into the taxonomy, we observed several taxa with differential abundance 

across COPD and controls, as would have been expected from the alpha-diversity 

results. Differential abundance of taxa associated with disease was more pronounced 

than that associated with other demographics considered in our study (Paper VI). In 

COPD, we observed an increase only in genera belonging to the Firmicutes phylum: 

Granulicatella, Gemella, and Streptococcus. For the potentially pathological genera 

Streptococcus, there was an additional, successive increase in relative abundances 

with increased disease severity. Opron et al., and Wang et al. observed the same 

pattern in BAL and sputum, respectively (119, 126). Ramsheh et al. also observed an 

increase of Gemella and Streptococcus in patients with COPD compared with their 

control group. Furthermore, they observed an enrichment of Prevotella, and 
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Leptotrichia (120). Thus, all three bronchoscopy studies comparing the microbiota in 

COPD with healthy controls observe that the distal airways of patients with COPD 

harbours significantly more Streptococcus than the airways of healthy controls. The 

result of Dicker et al. is interesting in this context as they observed associations 

between Streptococcus in induced sputum in COPD and increased blood eosinophil 

levels. Sputum enriched with Streptococcus was also associated with frequent 

exacerbations (116). Opron et al. found another link between Streptococcus and host 

responses as neutrophils in BAL were positively associated with abundances of 

Streptococcus (126). This indicate that Streptococcus trigger both local and systemic 

inflammatory activity and is putting patients at risk for more frequent exacerbation 

events, which again is linked to declining quality of life and life expectancy and 

increasing disability and need for hospitalisation. Whether the lower airway in COPD 

has an impaired inflammatory profile in which Firmicutes are allowed to multiply, or 

if Firmicutes multiplies with a subsequent change in inflammation should be 

investigated further in longitudinal studies. 

Irrespective of a diagnosis of COPD, the correlations between sex and age and the 

lower airway microbiota were few. Neither sex or age were found associated with 

diversity measures, and although there was a decrease in Bacteroidota with age 

among healthy controls, this trend was not evident at the genus level. Therefore, it is 

challenging to draw any definitive biological conclusions from this observation. 

Additionally, there were no significant associations between the severity of COPD 

and frequency of exacerbations in our COPD patients and the BAL microbiota. In 

fact, none of the observed associations were consistent enough to propose a clear 

biological significance (paper IV). 

Considering the well-established role of cigarette smoking in the development of 

COPD, it is reasonable to expect a connection between smoking and the composition 

of the lower airway microbiota. However, we found minimal evidence of such a 

relationship in the BAL samples of our study participants. In terms of alpha-diversity, 

there were no significant variations in any of the four alpha-diversity metrics included 
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in our study. This remained true even when analysing COPD patients and controls 

individually. Regarding beta-diversity, PERMANOVA analysis confirmed a 

discrepancy in weighted UniFrac between smoking and non-smoking COPD patients, 

but the effect size was only 4%. Smoking thus remain weakly linked to the diversity 

of the lower airway microbiota, as has been observed in other large studies as well 

(100, 119, 126).  

Is it possible that certain members of the microbiota could be affected by smoking 

while the overall diversity remained unchanged? Our findings indicate that smoking, 

measured in terms of pack years, is significantly linked to a decrease in Haemophilus 

and Lachnoanarobaculum in healthy controls (paper IV). This finding aligns with the 

research conducted by Pfeiffer et al. which examined the impact of smoking on the 

airway microbiota in healthy subjects (128). Within our COPD cohort, Oribacterium 

was decreased in smoking patients. Common for Lachnoanarobaculum and three 

genera significantly differentially abundant in all smokers versus non-smokers is a 

low abundance and presence in few samples. The research on smoking and the lower 

airway microbiota has so far not identified convincing links between the two (126, 

129).  

In paper IV we further assessed if ICS could influence the airway microbiota in our 

COPD cohort. This is an interesting question as frequent exacerbators with elevated 

blood eosinophils have been identified as a COPD sub-group who can benefit from 

ICS, while others should better avoid ICS due to the known increase in the risk of 

pneumonia and infectious exacerbations (6, 130, 131). Keir et al. concluded a review 

of ICS and the lung microbiota by stressing that ICS use should be founded on 

leucocyte endotypes to avoid prescription to patients at a higher risk of Streptococcus 

and Haemophilus overgrowth (132). Interestingly, of the studies included in this 

review, only two on COPD in humans showed increased Streptococcus abundances, 

and a third study showed decreased abundances of the taxon in case of ICS use (133-

135). Contradictive observations for Haemophilus are also apparent (135, 136). With 

Dicker showing that both blood eosinophiles and frequent exacerbations were 
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associated with increased Streptococcus in sputum samples (116), it is difficult to fit 

the microbiota observations with the long-accepted observations of an adverse 

association between ICS and pneumonia risk. In my study, 60 of the 97 patients with 

COPD used ICS. In stable COPD, we did not find evidence of a significant influence 

of ICS on the lower airway microbiota, including the abundances of Streptococcus 

and Haemophilus. This is supported by the observations made by both Opron and 

Ramsheh (120, 126).  

Leitao Filjo et al. studied the lower airway microbiota and ICS using bronchial brush 

samples from 56 patients with COPD randomised into two different ICS treatment and 

one non-ICS treatment groups (136). Both lower richness and Shannon diversity index 

were observed in patients receiving ICS. However, the visualisation of within-

individual differences in alpha-diversity between sampling time-points resembles that 

of our paper I (46). Whether these within-individual differences are linked to ICS or 

exacerbations respectively, or if it represents what to be expected between repeated 

samples is unknown. Leitao Filjo et al. observed no associations between ICS and 

Streptococcus, while Haemophilus was reduced after the 12-week treatment period 

with fluticasone (136). The current evidence of a link between ICS treatment and 

unfavourable changes in the lower airway microbiota in patients with COPD thus 

remains rather unclear. 

To summarise our results, there were convincing differences between the BAL 

microbiota measured in our group of patients with COPD and that measured from the 

group of healthy controls. The main cause of COPD, smoking, could not be associated 

any closer to the microbiota than other characteristics, and neither could ICS even 

though it is an established risk factor for infectious COPD exacerbations and 

pneumonia. The lower airway microbiota is likely to play a part in COPD and other 

lung diseases, but to unveil how its conducting its influence proves difficult. Future 

research will call for complex study designs integrating host inflammatory activity 

and using state of the art bioinformatic processing and statistical analyses. 
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12. Conclusion 
I conducted the two first studies with the intention to understand the influence of 

different methods of sputum sampling on the measurement of lower airway 

inflammation and microbiota and to use the results to direct the sample selection for 

my third study.  

Both studies showed there were differences between induced and spontaneous sputum 

in terms of inflammatory markers and microbiota profiles in COPD patients. These 

findings emphasise the importance of understanding the variations between these two 

types of sputum samples. Further research is warranted to fully explore the clinical 

implications and potential applications of this knowledge. Meanwhile, based on the 

findings from paper I and II, I advocate for the use of induced sputum over 

spontaneous sputum when studying the lower airway microbiota and inflammation.  

Next, my goal was to identify specific patterns of change in inflammation and 

microbiota in induced sputum from patients with COPD enrolled if sampled both 

during stable and exacerbated states.  

The study revealed significant variability in the alterations of sputum microbiota 

during the progression from a stable to an exacerbated state. This variation was also 

observed within the same individual over a three-year period. Considering previous 

research findings, our results support that while the bacterial microbiota may play a 

role in both stable and exacerbated COPD, its impact likely intertwines with host 

inflammation and potentially other microorganisms such as fungi and viruses. To 

tailor treatments for COPD patients, it is crucial to identify precise inflammatory-

microbial phenotypes that can guide the prescription of targeted therapies including 

antibiotics, corticosteroids, bacteriophage therapy and pro/prebiotics. 

Lastly, I aimed to find potentially important differences in the lower airway 

microbiota between a large group of patients with COPD and a similarly sized group 

of healthy participants, using bronchoalveolar lavage (BAL). 
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tailor treatments for COPD patients, it is crucial to identify precise inflammatory-

microbial phenotypes that can guide the prescription of targeted therapies including 

antibiotics, corticosteroids, bacteriophage therapy and pro/prebiotics. 

Lastly, I aimed to find potentially important differences in the lower airway 

microbiota between a large group of patients with COPD and a similarly sized group 

of healthy participants, using bronchoalveolar lavage (BAL). 
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12. Conclusion 
I conducted the two first studies with the intention to understand the influence of 

different methods of sputum sampling on the measurement of lower airway 

inflammation and microbiota and to use the results to direct the sample selection for 

my third study.  

Both studies showed there were differences between induced and spontaneous sputum 

in terms of inflammatory markers and microbiota profiles in COPD patients. These 

findings emphasise the importance of understanding the variations between these two 

types of sputum samples. Further research is warranted to fully explore the clinical 

implications and potential applications of this knowledge. Meanwhile, based on the 
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Our findings indicate significant differences between the lower airway microbiota in 

COPD compared to in healthy controls. Despite smoking being a major cause of 

COPD, we were unable to establish a stronger association between smoking and the 

microbiota compared to other factors. Similarly, although ICS are known to increase 

the risk of airway infections, we could not find a link between ICS and the microbiota. 

Understanding the impact of the lower airway microbiota on COPD and other 

respiratory conditions continues to present significant challenges. 
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13. Implications and future perspectives 
Microbiota research has the potential to improve our understanding of COPD and 

pave the way for new treatment strategies. While earlier research has focused on the 

role of inflammation and genetics in COPD, recent studies have begun to unravel the 

influence of the lung microbiota on disease development, progression, and 

exacerbations. Understanding the complex interplay between the lower airway 

microbiota, host immune responses, and disease progression could lead to innovative 

therapeutic strategies including probiotics, prebiotics, or bacteriophage therapy. 

Additionally, manipulation of the lung microbiota could potentially halt or slow down 

disease progression, transforming COPD management into a more proactive approach. 

Meanwhile, significant challenges lie ahead, and a selection of them are listed below. 

1. Standardisation of methods: One major challenge is the lack of standardisation of 

methods for studying the lower airway microbiota. Researchers use different 

techniques, sample types, and analytical methods, making it difficult to compare and 

replicate findings. The high-dimensional, complex data generated through microbiota 

research require advanced computational tools for analysis and interpretation. There is 

a need for standardised bioinformatics pipelines and data sharing platforms facilitating 

collaborative research and meta-analyses, and for standardised protocols and 

methodologies allowing for better comparison of results.  

2. Biological and clinical heterogeneity: COPD encompasses a heterogeneous group 

of patients, with different clinical phenotypes and patterns of disease progression. The 

microbiota composition and its relationship with disease severity, exacerbations, and 

response to therapy varies among individuals. Understanding this heterogeneity and 

identifying microbiota signatures associated with specific subgroups will aid in 

personalised treatment approaches. There is a need to supply the present day single-

kingdom studies with broader examinations including all microbiological kingdoms 

inhabiting the lower airways. Studies integrating information from the bacterial, 

fungal, and archaeal communities and viruses in the lower airways will provide a 

more holistic view on the interplay between host inflammation and microbes. 
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3. Longitudinal studies: COPD is a chronic and progressive disease, and the 

microbiota composition changes over time. Longitudinal studies tracking the 

dynamics of the lower airway microbiota and its association with disease 

development, progression and exacerbations are needed. Large-scale cohort studies 

with long follow-up periods would provide valuable insights into the temporal 

relationship between the lower airway microbiota and COPD.  

4. Therapeutic interventions: Microbiota-targeted interventions may hold promise for 

COPD management, but the development of novel therapies requires rigorous 

research involving larger patient cohorts and long-term follow-up assessing the safety 

and efficacy of new treatments.  

5. Causality and mechanisms: Establishing a causal relationship between altered 

microbiota and disease development or progression is challenging. With the 

limitations of amplicon sequencing techniques, whole genome sequencing represents 

a promising method for improved characterisation and understanding of the 

microbiota. A true understanding of the role of the microbiome requires assessment of 

its functionality. With whole genome sequencing, species resolution of the full 

(bacterial and fungal) microbiota can be used to calculate dysbiosis indexes based on 

which species are differentially abundant between groups, potentially making for new 

disease biomarkers. Further, the functionality of the lower airway microbiome can be 

assessed from whole genome sequencing. To elucidate the mechanistic pathways 

through which microbiota influences COPD pathogenesis and exacerbations 

researchers must now move beyond the 16S rRNA sequencing.  

In conclusion, microbiota research in COPD holds promise for the future. By 

unravelling the intricate connections between the microbiota and disease 

pathogenesis, we may unlock novel therapeutic options and develop personalised 

treatment regimens for COPD patients. With further research, we can anticipate a 

future where microbiota-based interventions are part of the management of COPD. 
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In paper I, I stated that sputum leucocyte particle count (LPK) viability >30% was 

considered sufficient, when in fact it had to be >70%. 
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Abstract

Background: Sputum induction is a non-invasive method for obtaining measurements of inflammation in the airways.
Whether spontaneously sampled sputum can be a valid surrogate is unknown. The aim of this study was to compare
levels of six inflammatory markers in sputum pairs consisting of induced and spontaneous sputum sampled on the
same consultation either in a stable state or during exacerbations of chronic obstructive pulmonary disease (COPD).

Methods: 433 COPD patients aged 40–76, Global initiative for chronic Obstructive Lung Disease (GOLD) stage II-IV were
enrolled in 2006/07 and followed every six months for three years. 356 patients were followed for potential exacerbations.
Interleukin-6, interleukin-8, interleukin-18, interferon gamma-inducible protein-10, monokine induced by gamma
interferon and tumor necrosis factor-alpha (IL-6, IL-8, IL-18, IP-10, MIG and TNF-α) were measured by bead based multiplex
immunoassay in 60 paired sputum samples from 45 patients. Albumin was measured by enzyme immunoassay, for
concentration correction. Culturing for bacterial growth was performed on 24 samples. Bland-Altman plots were used to
assess agreement. The paired non-parametric Wilcoxon signed-rank test, the non-parametric Spearman’s rank correlation
test and Kruskal-Wallis test were used for statistical analyses. For all analyses, a p-value < 0.05 was considered significant.

Results: Agreement between the two measurements was generally low for all six markers. TNF-α was significantly higher
in spontaneous sputum at exacerbations (p = 0.002) and trending higher at the steady state (p = 0.06). Correlation
coefficients between the levels of markers in induced and spontaneous sputum varied between 0.58 (IL-18) to 0.83
(IP-10). In spontaneous sputum IL-18 and MIG were higher in ex-smokers (p < 0.05). The levels of all markers were higher
in GOLD stage III & IV except for IL-6 in spontaneous sputum and IL-18 in induced sputum, compared with GOLD stage II,
although not statistically significant. In spontaneous sputum the levels of IL-6 were significantly higher if Haemophilus
influenzae (HI) was not cultured.

Conclusion: We observed a low agreement and significant differences in inflammatory markers between induced and
spontaneous sputum, both at steady state and exacerbations. We recommend considering sampling method when
reporting on inflammatory markers in sputum.
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Abstract

Background:Sputuminductionisanon-invasivemethodforobtainingmeasurementsofinflammationintheairways.
Whetherspontaneouslysampledsputumcanbeavalidsurrogateisunknown.Theaimofthisstudywastocompare
levelsofsixinflammatorymarkersinsputumpairsconsistingofinducedandspontaneoussputumsampledonthe
sameconsultationeitherinastablestateorduringexacerbationsofchronicobstructivepulmonarydisease(COPD).

Methods:433COPDpatientsaged40–76,GlobalinitiativeforchronicObstructiveLungDisease(GOLD)stageII-IVwere
enrolledin2006/07andfollowedeverysixmonthsforthreeyears.356patientswerefollowedforpotentialexacerbations.
Interleukin-6,interleukin-8,interleukin-18,interferongamma-inducibleprotein-10,monokineinducedbygamma
interferonandtumornecrosisfactor-alpha(IL-6,IL-8,IL-18,IP-10,MIGandTNF-α)weremeasuredbybeadbasedmultiplex
immunoassayin60pairedsputumsamplesfrom45patients.Albuminwasmeasuredbyenzymeimmunoassay,for
concentrationcorrection.Culturingforbacterialgrowthwasperformedon24samples.Bland-Altmanplotswereusedto
assessagreement.Thepairednon-parametricWilcoxonsigned-ranktest,thenon-parametricSpearman’srankcorrelation
testandKruskal-Wallistestwereusedforstatisticalanalyses.Forallanalyses,ap-value<0.05wasconsideredsignificant.

Results:Agreementbetweenthetwomeasurementswasgenerallylowforallsixmarkers.TNF-αwassignificantlyhigher
inspontaneoussputumatexacerbations(p=0.002)andtrendinghigheratthesteadystate(p=0.06).Correlation
coefficientsbetweenthelevelsofmarkersininducedandspontaneoussputumvariedbetween0.58(IL-18)to0.83
(IP-10).InspontaneoussputumIL-18andMIGwerehigherinex-smokers(p<0.05).Thelevelsofallmarkerswerehigher
inGOLDstageIII&IVexceptforIL-6inspontaneoussputumandIL-18ininducedsputum,comparedwithGOLDstageII,
althoughnotstatisticallysignificant.InspontaneoussputumthelevelsofIL-6weresignificantlyhigherifHaemophilus
influenzae(HI)wasnotcultured.

Conclusion:Weobservedalowagreementandsignificantdifferencesininflammatorymarkersbetweeninducedand
spontaneoussputum,bothatsteadystateandexacerbations.Werecommendconsideringsamplingmethodwhen
reportingoninflammatorymarkersinsputum.
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(IP-10).InspontaneoussputumIL-18andMIGwerehigherinex-smokers(p<0.05).Thelevelsofallmarkerswerehigher
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althoughnotstatisticallysignificant.InspontaneoussputumthelevelsofIL-6weresignificantlyhigherifHaemophilus
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Background
Chronic obstructive pulmonary disease (COPD) is a
chronic inflammatory disease affecting both the airways
and lung parenchyma [1]. The increased airway inflam-
mation has been well described, but its role is yet
controversial [2]. Obtaining reliable measurements of
airway inflammation non-invasively can enable large
cohort studies. Biomarkers sampled by methods like
exhaled breath condensate and induced sputum have
been compared recently [3]. Induced sputum sampling
(ISS) is a non-invasive procedure, which has been standard-
ized and used extensively the last 20 years [4]. Nebulized
and inhaled saline increases sputum production in the
lungs [4]. Induction has been reported to provide sputum
samples of sufficient quality for analyses in more than 80%
of asthma and COPD patients [5-8]. In patients with ob-
structive lung disease, ISS is usually performed in the steady
state as it can induce bronchoconstriction [9,10]. However,
at least one study has shown that it can be done safely also
during exacerbations in patients with mild to moderate
COPD [11].
An alternative to ISS is spontaneous sputum sampling

(SSS). Levels of inflammatory markers and cell counts in
spontaneous and induced sputum have been presented
without discriminating between the two sampling methods
in some studies [12-14]. Two studies have found that cell
viability was higher in induced than spontaneous sputum
in patients with asthma or COPD [15,16]. However, few
studies have addressed whether induced and spontaneous
sputum sampled from patients with COPD can actually be
used interchangeably for analyses of inflammatory markers,
as it was pointed to in a review article published as late as
in 2013 [17]. More studies on the subject were recom-
mended already in 2002 [4].
The aim of this study was to compare the levels of the

six common inflammatory markers interleukin 6, 8 & 18
(IL-6, IL-8 IL-18), interferon gamma-inducible protein-
10 (IP-10), tumor necrosis factor-alpha (TNF-α) and
monokine induced by gamma interferon (MIG) in paired
induced and spontaneous sputum samples collected
from COPD patients in the stable state and/or during
acute exacerbations. These markers were chosen for dif-
ferent roles in airways inflammation in COPD, as part of
the analyses in the Bergen COPD Exacerbation Study. In
addition, this study allowed for an assessment of the
safety of sputum induction in COPD patients undergo-
ing an exacerbation.

Methods and material
Study population
The Bergen COPD Cohort Study (BCCS) was a three
year follow-up of 433 COPD patients from western
Norway between 2006 and 2010, previously described in
detail [18]. The patients were invited to our study centre

every six months, and sputum induction was performed
at nearly all visits. Of the 433 COPD patients, 356
patients living in a proximity that meant they belonged
to the Bergen hospital district were offered concomitant
participation in the Bergen COPD Exacerbation Study
(BCES). Patients included in the BCES were given a lam-
inated green-card with detailed instructions regarding
potential symptoms of COPD exacerbations and a tele-
phone number to our study nurse. The telephone was
open 12 hours per day, seven days a week for the three
years the study lasted. Once contact had been made, the
study nurse determined whether immediate hospitalization
was necessary, or whether a visit with a study physician
could be scheduled the next working day. During that visit
or at the ward the day after hospitalization, sputum induc-
tion was attempted if our study physician determined the
event to be a clinical COPD exacerbation, with a formal
assessment according to Wedzicha and Donaldsons’s defin-
ition [19].
Spontaneous sputum samples were collected before

the induced sputum sample at the same time point at
occasions when the patients presented with abundant
sputum. In total 60 sputum pairs of acceptable quality
from 45 patients in the stable state (n = 31) or during
COPD exacerbation (n = 29) were available for analysis.
Classification into Global initiative for chronic Obstructive
Lung Disease (GOLD 2007) stage and information on
smoking habits, were based on the baseline visit in the
BCCS. All patients provided written informed consent,
and both studies were approved by the Norwegian
Regional Ethical Committee.

Sputum sampling and processing
Inductions were performed using an ultrasonic wave
nebulizer. Hypertonic saline (3%) was inhaled seven
minutes times three, and sputum was attempted sam-
pled after each inhalation. If however, the patient was
evaluated by the study physician as being too clinically
obstructive, or if the patient did not want to inhale an
increased saline concentration, the physiological saline
concentration of 0.9% was inhaled instead. Of the 60
sputum pairs evaluated, induction was done with 3%
saline in 47 cases, 0.9% in ten cases, while for three
inductions the concentration was not recorded. Spiromet-
ric evaluations (Vitalograph S-model Vitalograph Ltd.,
Buckingham, England at regular visits in the steady state,
EasyOne model 2001 Ndd Medizintechnik AG, Zurich,
Switzerland at exacerbation visits) were performed after in-
halation of 200–400 ug salbutamol prior to induction with
saline. Spirometry was then repeated after each inhalation
of the saline. The procedure ended if FEV1 declined 20% or
more, if the patient’s symptoms worsened, or if the patient
did not wish to proceed. If the patient’s post-bronchodilator
oxygen saturation was <90%, induction was not performed.
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Background
Chronic obstructive pulmonary disease (COPD) is a
chronic inflammatory disease affecting both the airways
and lung parenchyma [1]. The increased airway inflam-
mation has been well described, but its role is yet
controversial [2]. Obtaining reliable measurements of
airway inflammation non-invasively can enable large
cohort studies. Biomarkers sampled by methods like
exhaled breath condensate and induced sputum have
been compared recently [3]. Induced sputum sampling
(ISS) is a non-invasive procedure, which has been standard-
ized and used extensively the last 20 years [4]. Nebulized
and inhaled saline increases sputum production in the
lungs [4]. Induction has been reported to provide sputum
samples of sufficient quality for analyses in more than 80%
of asthma and COPD patients [5-8]. In patients with ob-
structive lung disease, ISS is usually performed in the steady
state as it can induce bronchoconstriction [9,10]. However,
at least one study has shown that it can be done safely also
during exacerbations in patients with mild to moderate
COPD [11].
An alternative to ISS is spontaneous sputum sampling

(SSS). Levels of inflammatory markers and cell counts in
spontaneous and induced sputum have been presented
without discriminating between the two sampling methods
in some studies [12-14]. Two studies have found that cell
viability was higher in induced than spontaneous sputum
in patients with asthma or COPD [15,16]. However, few
studies have addressed whether induced and spontaneous
sputum sampled from patients with COPD can actually be
used interchangeably for analyses of inflammatory markers,
as it was pointed to in a review article published as late as
in 2013 [17]. More studies on the subject were recom-
mended already in 2002 [4].
The aim of this study was to compare the levels of the

six common inflammatory markers interleukin 6, 8 & 18
(IL-6, IL-8 IL-18), interferon gamma-inducible protein-
10 (IP-10), tumor necrosis factor-alpha (TNF-α) and
monokine induced by gamma interferon (MIG) in paired
induced and spontaneous sputum samples collected
from COPD patients in the stable state and/or during
acute exacerbations. These markers were chosen for dif-
ferent roles in airways inflammation in COPD, as part of
the analyses in the Bergen COPD Exacerbation Study. In
addition, this study allowed for an assessment of the
safety of sputum induction in COPD patients undergo-
ing an exacerbation.

Methods and material
Study population
The Bergen COPD Cohort Study (BCCS) was a three
year follow-up of 433 COPD patients from western
Norway between 2006 and 2010, previously described in
detail [18]. The patients were invited to our study centre

every six months, and sputum induction was performed
at nearly all visits. Of the 433 COPD patients, 356
patients living in a proximity that meant they belonged
to the Bergen hospital district were offered concomitant
participation in the Bergen COPD Exacerbation Study
(BCES). Patients included in the BCES were given a lam-
inated green-card with detailed instructions regarding
potential symptoms of COPD exacerbations and a tele-
phone number to our study nurse. The telephone was
open 12 hours per day, seven days a week for the three
years the study lasted. Once contact had been made, the
study nurse determined whether immediate hospitalization
was necessary, or whether a visit with a study physician
could be scheduled the next working day. During that visit
or at the ward the day after hospitalization, sputum induc-
tion was attempted if our study physician determined the
event to be a clinical COPD exacerbation, with a formal
assessment according to Wedzicha and Donaldsons’s defin-
ition [19].
Spontaneous sputum samples were collected before

the induced sputum sample at the same time point at
occasions when the patients presented with abundant
sputum. In total 60 sputum pairs of acceptable quality
from 45 patients in the stable state (n = 31) or during
COPD exacerbation (n = 29) were available for analysis.
Classification into Global initiative for chronic Obstructive
Lung Disease (GOLD 2007) stage and information on
smoking habits, were based on the baseline visit in the
BCCS. All patients provided written informed consent,
and both studies were approved by the Norwegian
Regional Ethical Committee.

Sputum sampling and processing
Inductions were performed using an ultrasonic wave
nebulizer. Hypertonic saline (3%) was inhaled seven
minutes times three, and sputum was attempted sam-
pled after each inhalation. If however, the patient was
evaluated by the study physician as being too clinically
obstructive, or if the patient did not want to inhale an
increased saline concentration, the physiological saline
concentration of 0.9% was inhaled instead. Of the 60
sputum pairs evaluated, induction was done with 3%
saline in 47 cases, 0.9% in ten cases, while for three
inductions the concentration was not recorded. Spiromet-
ric evaluations (Vitalograph S-model Vitalograph Ltd.,
Buckingham, England at regular visits in the steady state,
EasyOne model 2001 Ndd Medizintechnik AG, Zurich,
Switzerland at exacerbation visits) were performed after in-
halation of 200–400 ug salbutamol prior to induction with
saline. Spirometry was then repeated after each inhalation
of the saline. The procedure ended if FEV1 declined 20% or
more, if the patient’s symptoms worsened, or if the patient
did not wish to proceed. If the patient’s post-bronchodilator
oxygen saturation was <90%, induction was not performed.
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(SSS).Levelsofinflammatorymarkersandcellcountsin
spontaneousandinducedsputumhavebeenpresented
withoutdiscriminatingbetweenthetwosamplingmethods
insomestudies[12-14].Twostudieshavefoundthatcell
viabilitywashigherininducedthanspontaneoussputum
inpatientswithasthmaorCOPD[15,16].However,few
studieshaveaddressedwhetherinducedandspontaneous
sputumsampledfrompatientswithCOPDcanactuallybe
usedinterchangeablyforanalysesofinflammatorymarkers,
asitwaspointedtoinareviewarticlepublishedaslateas
in2013[17].Morestudiesonthesubjectwererecom-
mendedalreadyin2002[4].
Theaimofthisstudywastocomparethelevelsofthe

sixcommoninflammatorymarkersinterleukin6,8&18
(IL-6,IL-8IL-18),interferongamma-inducibleprotein-
10(IP-10),tumornecrosisfactor-alpha(TNF-α)and
monokineinducedbygammainterferon(MIG)inpaired
inducedandspontaneoussputumsamplescollected
fromCOPDpatientsinthestablestateand/orduring
acuteexacerbations.Thesemarkerswerechosenfordif-
ferentrolesinairwaysinflammationinCOPD,aspartof
theanalysesintheBergenCOPDExacerbationStudy.In
addition,thisstudyallowedforanassessmentofthe
safetyofsputuminductioninCOPDpatientsundergo-
inganexacerbation.

Methodsandmaterial
Studypopulation
TheBergenCOPDCohortStudy(BCCS)wasathree
yearfollow-upof433COPDpatientsfromwestern
Norwaybetween2006and2010,previouslydescribedin
detail[18].Thepatientswereinvitedtoourstudycentre

everysixmonths,andsputuminductionwasperformed
atnearlyallvisits.Ofthe433COPDpatients,356
patientslivinginaproximitythatmeanttheybelonged
totheBergenhospitaldistrictwereofferedconcomitant
participationintheBergenCOPDExacerbationStudy
(BCES).PatientsincludedintheBCESweregivenalam-
inatedgreen-cardwithdetailedinstructionsregarding
potentialsymptomsofCOPDexacerbationsandatele-
phonenumbertoourstudynurse.Thetelephonewas
open12hoursperday,sevendaysaweekforthethree
yearsthestudylasted.Oncecontacthadbeenmade,the
studynursedeterminedwhetherimmediatehospitalization
wasnecessary,orwhetheravisitwithastudyphysician
couldbescheduledthenextworkingday.Duringthatvisit
oratthewardthedayafterhospitalization,sputuminduc-
tionwasattemptedifourstudyphysiciandeterminedthe
eventtobeaclinicalCOPDexacerbation,withaformal
assessmentaccordingtoWedzichaandDonaldsons’sdefin-
ition[19].
Spontaneoussputumsampleswerecollectedbefore

theinducedsputumsampleatthesametimepointat
occasionswhenthepatientspresentedwithabundant
sputum.Intotal60sputumpairsofacceptablequality
from45patientsinthestablestate(n=31)orduring
COPDexacerbation(n=29)wereavailableforanalysis.
ClassificationintoGlobalinitiativeforchronicObstructive
LungDisease(GOLD2007)stageandinformationon
smokinghabits,werebasedonthebaselinevisitinthe
BCCS.Allpatientsprovidedwritteninformedconsent,
andbothstudieswereapprovedbytheNorwegian
RegionalEthicalCommittee.

Sputumsamplingandprocessing
Inductionswereperformedusinganultrasonicwave
nebulizer.Hypertonicsaline(3%)wasinhaledseven
minutestimesthree,andsputumwasattemptedsam-
pledaftereachinhalation.Ifhowever,thepatientwas
evaluatedbythestudyphysicianasbeingtooclinically
obstructive,orifthepatientdidnotwanttoinhalean
increasedsalineconcentration,thephysiologicalsaline
concentrationof0.9%wasinhaledinstead.Ofthe60
sputumpairsevaluated,inductionwasdonewith3%
salinein47cases,0.9%intencases,whileforthree
inductionstheconcentrationwasnotrecorded.Spiromet-
ricevaluations(VitalographS-modelVitalographLtd.,
Buckingham,Englandatregularvisitsinthesteadystate,
EasyOnemodel2001NddMedizintechnikAG,Zurich,
Switzerlandatexacerbationvisits)wereperformedafterin-
halationof200–400ugsalbutamolpriortoinductionwith
saline.Spirometrywasthenrepeatedaftereachinhalation
ofthesaline.TheprocedureendedifFEV1declined20%or
more,ifthepatient’ssymptomsworsened,orifthepatient
didnotwishtoproceed.Ifthepatient’spost-bronchodilator
oxygensaturationwas<90%,inductionwasnotperformed.
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sputumsampledfrompatientswithCOPDcanactuallybe
usedinterchangeablyforanalysesofinflammatorymarkers,
asitwaspointedtoinareviewarticlepublishedaslateas
in2013[17].Morestudiesonthesubjectwererecom-
mendedalreadyin2002[4].
Theaimofthisstudywastocomparethelevelsofthe

sixcommoninflammatorymarkersinterleukin6,8&18
(IL-6,IL-8IL-18),interferongamma-inducibleprotein-
10(IP-10),tumornecrosisfactor-alpha(TNF-α)and
monokineinducedbygammainterferon(MIG)inpaired
inducedandspontaneoussputumsamplescollected
fromCOPDpatientsinthestablestateand/orduring
acuteexacerbations.Thesemarkerswerechosenfordif-
ferentrolesinairwaysinflammationinCOPD,aspartof
theanalysesintheBergenCOPDExacerbationStudy.In
addition,thisstudyallowedforanassessmentofthe
safetyofsputuminductioninCOPDpatientsundergo-
inganexacerbation.

Methodsandmaterial
Studypopulation
TheBergenCOPDCohortStudy(BCCS)wasathree
yearfollow-upof433COPDpatientsfromwestern
Norwaybetween2006and2010,previouslydescribedin
detail[18].Thepatientswereinvitedtoourstudycentre

everysixmonths,andsputuminductionwasperformed
atnearlyallvisits.Ofthe433COPDpatients,356
patientslivinginaproximitythatmeanttheybelonged
totheBergenhospitaldistrictwereofferedconcomitant
participationintheBergenCOPDExacerbationStudy
(BCES).PatientsincludedintheBCESweregivenalam-
inatedgreen-cardwithdetailedinstructionsregarding
potentialsymptomsofCOPDexacerbationsandatele-
phonenumbertoourstudynurse.Thetelephonewas
open12hoursperday,sevendaysaweekforthethree
yearsthestudylasted.Oncecontacthadbeenmade,the
studynursedeterminedwhetherimmediatehospitalization
wasnecessary,orwhetheravisitwithastudyphysician
couldbescheduledthenextworkingday.Duringthatvisit
oratthewardthedayafterhospitalization,sputuminduc-
tionwasattemptedifourstudyphysiciandeterminedthe
eventtobeaclinicalCOPDexacerbation,withaformal
assessmentaccordingtoWedzichaandDonaldsons’sdefin-
ition[19].
Spontaneoussputumsampleswerecollectedbefore

theinducedsputumsampleatthesametimepointat
occasionswhenthepatientspresentedwithabundant
sputum.Intotal60sputumpairsofacceptablequality
from45patientsinthestablestate(n=31)orduring
COPDexacerbation(n=29)wereavailableforanalysis.
ClassificationintoGlobalinitiativeforchronicObstructive
LungDisease(GOLD2007)stageandinformationon
smokinghabits,werebasedonthebaselinevisitinthe
BCCS.Allpatientsprovidedwritteninformedconsent,
andbothstudieswereapprovedbytheNorwegian
RegionalEthicalCommittee.

Sputumsamplingandprocessing
Inductionswereperformedusinganultrasonicwave
nebulizer.Hypertonicsaline(3%)wasinhaledseven
minutestimesthree,andsputumwasattemptedsam-
pledaftereachinhalation.Ifhowever,thepatientwas
evaluatedbythestudyphysicianasbeingtooclinically
obstructive,orifthepatientdidnotwanttoinhalean
increasedsalineconcentration,thephysiologicalsaline
concentrationof0.9%wasinhaledinstead.Ofthe60
sputumpairsevaluated,inductionwasdonewith3%
salinein47cases,0.9%intencases,whileforthree
inductionstheconcentrationwasnotrecorded.Spiromet-
ricevaluations(VitalographS-modelVitalographLtd.,
Buckingham,Englandatregularvisitsinthesteadystate,
EasyOnemodel2001NddMedizintechnikAG,Zurich,
Switzerlandatexacerbationvisits)wereperformedafterin-
halationof200–400ugsalbutamolpriortoinductionwith
saline.Spirometrywasthenrepeatedaftereachinhalation
ofthesaline.TheprocedureendedifFEV1declined20%or
more,ifthepatient’ssymptomsworsened,orifthepatient
didnotwishtoproceed.Ifthepatient’spost-bronchodilator
oxygensaturationwas<90%,inductionwasnotperformed.
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For the SSS, patients were asked to expectorate in two
different cups, and the most purulent sputum was proc-
essed. Both types of sputum samples were kept on ice until
processed for quality control and storage, usually within
30 minutes. To break disulphide bonds in mucin, 4 ml di-
thiothreitol 0.1% (DDT) per gram sputum were added [20].
The samples were then homogenized using an Eppendorf
homogenizer at 600 rpm for 15 minutes at a temperature of
4 degrees Celsius. Phosphate-buffered saline (PBS) was
added, and the sample filtered to increase homogenization.
Supernatants were removed after 15 minutes centrifugation
at 4 degrees Celsius, 450 g, aliqouted in 0.5 ml tubes, and
stored at −80 degrees Celsius. Trained personnel evaluated
viability after staining with tryptan blue. For the sputum
samples to be considered of acceptable quality there had to
be > 1 million/mL cells, < 20% epithelial cells and the leuco-
cyte viability had to be > 30%. After December 2006, all
sputum samples were also cultured at the Department of
Microbiology, Haukeland University Hospital.
The sputum samples were analysed for cytokines using

the Luminex® xMAP® technology (Luminex Corporation,
Austin, Texas). The cytokine assay used was made by com-
bining standards from BioRad (Bio-Plex Pro Human Cyto-
kine Standards Group I 27-Plex #171-D50001, Lot No
5022130. Bio-Plex Pro Human Cytokine Standards Group
II 23-Plex #171-D10502 Lot No 5015357) and singleplex
assays containing beads for analyses of IL-6, IL-8 IL-18, IP-
10, TNF-α and MIG. Thus, all six markers were analyzed
in simplex. The samples were processed on a Luminex 100
instrument and the results collected and stored by STarSta-
tion software version 2.0 (STarStation Software Version
2.0, Applied Cytometry, Sheffield, UK.) The procedure was
performed according to the manufacturer’s instructions on
six separate days in September 2011.
For 58 of the 60 sputum pairs we also had enough

material to perform an enzyme immunoassay of levels of
albumin in duplex (Albumin Human ELISA kit, ab
108788, Abcam, Cambridge, UK). Albumin was used as a
correction factor for concentration differences between the
induced and spontaneous sample for each pair in the
following way: The induced to spontaneous albumin ratio
was calculated for each sputum pair, and the level of each
of the six markers in each of the spontaneous sputum sam-
ples multiplied by the corresponding ratio. All later statis-
tical analyses were performed both on “corrected” sputum
levels and “uncorrected” sputum levels.

Statistical analyses
Stata 12.0 was used for the statistical analyses (StataCorp.
College Station, Texas). Bland-Altman plots were made to
assess agreement between the measured levels of the
markers in induced and spontaneous sputum pairs. Bland
& Altman advocates using the difference between the two
measurements as the central measurement of bias, and the

spread of the difference as a measure of limits of agreement
[21]. Usually the difference between the measurements is
plotted against the mean of the two measurements, with 2
standard deviations (SD) of the difference representing the
95% limits of agreement. However, sometimes the differ-
ence is dependent upon the size of the mean, in which
Bland & Altman advocates plotting on a log scale [22]. This
was the case for all six markers in our study.
The inflammatory markers were not normally distrib-

uted, hence the paired non-parametric Wilcoxon signed-
rank test was used to compare levels of the markers and
cell viability between spontaneous and induced sputum.
For correlation analyses between spontaneous and
induced samples the non-parametric Spearman’s rank
correlation test was used. For comparisons of the levels of
inflammatory markers by clinical characteristics, Kruskal-
Wallis test was used. For comparisons of FEV1 decline
between stable state and exacerbations during inductions,
Wilcoxon signed-rank test was used. For all analyses, a
p-value of less than 0.05 was considered significant.

Results
The characteristics of the study population are presented
in Table 1. 60 sputum pairs were available from 45
patients, of which 15 of the patients were women. Of the
60 sputum pairs, 31 were sampled during the stable state
and 29 during COPD exacerbations (Table 1).
Mean cell viability was 98% for both the induced and

spontaneous sputum samples. Among the induced sam-
ples, 2 out of 60 samples had viability below 90%, for the
spontaneous samples all were 90% viable or better.
Of the six inflammatory markers, TNF-α was signifi-

cantly higher when measured in spontaneous sputum
during exacerbations and almost reaching statistical sig-
nificance in the steady state (Table 2). For the other
markers, no clear trend was seen (Table 2).
Bland-Altman plots for all six inflammatory markers on

the log scale are presented in Figure 1. To obtain the
limits of agreement the antilog of the two standard devia-
tions were calculated, and these are presented in Table 3
together with the Spearman’s rank correlation coefficients.
Although the correlation was fair, varying between 0.58
for IL-18 to 0.83 for IP-10, the agreement was quite low
for all six inflammatory markers. Since the 95% limits of
agreement were calculated on the log scale, the upper and
lower limits represents ratios relative to one. Thus, based
on the calculations presented in Table 3, one would expect
the measurement of for instance IL-6 in spontaneous spu-
tum to fall between 6 times higher or 8 times lower than
that measured in induced sputum 95% of the time.
Even though agreement between individual measure-

ments was low, there could be value to the spontaneous
samples if the levels of the markers showed the same asso-
ciations to clinical parameters in spontaneous as in the
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FortheSSS,patientswereaskedtoexpectorateintwo
differentcups,andthemostpurulentsputumwasproc-
essed.Bothtypesofsputumsampleswerekeptoniceuntil
processedforqualitycontrolandstorage,usuallywithin
30minutes.Tobreakdisulphidebondsinmucin,4mldi-
thiothreitol0.1%(DDT)pergramsputumwereadded[20].
ThesampleswerethenhomogenizedusinganEppendorf
homogenizerat600rpmfor15minutesatatemperatureof
4degreesCelsius.Phosphate-bufferedsaline(PBS)was
added,andthesamplefilteredtoincreasehomogenization.
Supernatantswereremovedafter15minutescentrifugation
at4degreesCelsius,450g,aliqoutedin0.5mltubes,and
storedat−80degreesCelsius.Trainedpersonnelevaluated
viabilityafterstainingwithtryptanblue.Forthesputum
samplestobeconsideredofacceptablequalitytherehadto
be>1million/mLcells,<20%epithelialcellsandtheleuco-
cyteviabilityhadtobe>30%.AfterDecember2006,all
sputumsampleswerealsoculturedattheDepartmentof
Microbiology,HaukelandUniversityHospital.

Thesputumsampleswereanalysedforcytokinesusing
theLuminex®xMAP®technology(LuminexCorporation,
Austin,Texas).Thecytokineassayusedwasmadebycom-
biningstandardsfromBioRad(Bio-PlexProHumanCyto-
kineStandardsGroupI27-Plex#171-D50001,LotNo
5022130.Bio-PlexProHumanCytokineStandardsGroup
II23-Plex#171-D10502LotNo5015357)andsingleplex
assayscontainingbeadsforanalysesofIL-6,IL-8IL-18,IP-
10,TNF-αandMIG.Thus,allsixmarkerswereanalyzed
insimplex.ThesampleswereprocessedonaLuminex100
instrumentandtheresultscollectedandstoredbySTarSta-
tionsoftwareversion2.0(STarStationSoftwareVersion
2.0,AppliedCytometry,Sheffield,UK.)Theprocedurewas
performedaccordingtothemanufacturer’sinstructionson
sixseparatedaysinSeptember2011.

For58ofthe60sputumpairswealsohadenough
materialtoperformanenzymeimmunoassayoflevelsof
albumininduplex(AlbuminHumanELISAkit,ab
108788,Abcam,Cambridge,UK).Albuminwasusedasa
correctionfactorforconcentrationdifferencesbetweenthe
inducedandspontaneoussampleforeachpairinthe
followingway:Theinducedtospontaneousalbuminratio
wascalculatedforeachsputumpair,andthelevelofeach
ofthesixmarkersineachofthespontaneoussputumsam-
plesmultipliedbythecorrespondingratio.Alllaterstatis-
ticalanalyseswereperformedbothon“corrected”sputum
levelsand“uncorrected”sputumlevels.

Statisticalanalyses
Stata12.0wasusedforthestatisticalanalyses(StataCorp.
CollegeStation,Texas).Bland-Altmanplotsweremadeto
assessagreementbetweenthemeasuredlevelsofthe
markersininducedandspontaneoussputumpairs.Bland
&Altmanadvocatesusingthedifferencebetweenthetwo
measurementsasthecentralmeasurementofbias,andthe

spreadofthedifferenceasameasureoflimitsofagreement
[21].Usuallythedifferencebetweenthemeasurementsis
plottedagainstthemeanofthetwomeasurements,with2
standarddeviations(SD)ofthedifferencerepresentingthe
95%limitsofagreement.However,sometimesthediffer-
enceisdependentuponthesizeofthemean,inwhich
Bland&Altmanadvocatesplottingonalogscale[22].This
wasthecaseforallsixmarkersinourstudy.

Theinflammatorymarkerswerenotnormallydistrib-
uted,hencethepairednon-parametricWilcoxonsigned-
ranktestwasusedtocomparelevelsofthemarkersand
cellviabilitybetweenspontaneousandinducedsputum.
Forcorrelationanalysesbetweenspontaneousand
inducedsamplesthenon-parametricSpearman’srank
correlationtestwasused.Forcomparisonsofthelevelsof
inflammatorymarkersbyclinicalcharacteristics,Kruskal-
Wallistestwasused.ForcomparisonsofFEV1decline
betweenstablestateandexacerbationsduringinductions,
Wilcoxonsigned-ranktestwasused.Forallanalyses,a
p-valueoflessthan0.05wasconsideredsignificant.

Results
Thecharacteristicsofthestudypopulationarepresented
inTable1.60sputumpairswereavailablefrom45
patients,ofwhich15ofthepatientswerewomen.Ofthe
60sputumpairs,31weresampledduringthestablestate
and29duringCOPDexacerbations(Table1).

Meancellviabilitywas98%forboththeinducedand
spontaneoussputumsamples.Amongtheinducedsam-
ples,2outof60sampleshadviabilitybelow90%,forthe
spontaneoussamplesallwere90%viableorbetter.

Ofthesixinflammatorymarkers,TNF-αwassignifi-
cantlyhigherwhenmeasuredinspontaneoussputum
duringexacerbationsandalmostreachingstatisticalsig-
nificanceinthesteadystate(Table2).Fortheother
markers,nocleartrendwasseen(Table2).

Bland-Altmanplotsforallsixinflammatorymarkerson
thelogscalearepresentedinFigure1.Toobtainthe
limitsofagreementtheantilogofthetwostandarddevia-
tionswerecalculated,andthesearepresentedinTable3
togetherwiththeSpearman’srankcorrelationcoefficients.
Althoughthecorrelationwasfair,varyingbetween0.58
forIL-18to0.83forIP-10,theagreementwasquitelow
forallsixinflammatorymarkers.Sincethe95%limitsof
agreementwerecalculatedonthelogscale,theupperand
lowerlimitsrepresentsratiosrelativetoone.Thus,based
onthecalculationspresentedinTable3,onewouldexpect
themeasurementofforinstanceIL-6inspontaneousspu-
tumtofallbetween6timeshigheror8timeslowerthan
thatmeasuredininducedsputum95%ofthetime.

Eventhoughagreementbetweenindividualmeasure-
mentswaslow,therecouldbevaluetothespontaneous
samplesifthelevelsofthemarkersshowedthesameasso-
ciationstoclinicalparametersinspontaneousasinthe
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processed for quality control and storage, usually within
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performed according to the manufacturer’s instructions on
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For 58 of the 60 sputum pairs we also had enough

material to perform an enzyme immunoassay of levels of
albumin in duplex (Albumin Human ELISA kit, ab
108788, Abcam, Cambridge, UK). Albumin was used as a
correction factor for concentration differences between the
induced and spontaneous sample for each pair in the
following way: The induced to spontaneous albumin ratio
was calculated for each sputum pair, and the level of each
of the six markers in each of the spontaneous sputum sam-
ples multiplied by the corresponding ratio. All later statis-
tical analyses were performed both on “corrected” sputum
levels and “uncorrected” sputum levels.

Statistical analyses
Stata 12.0 was used for the statistical analyses (StataCorp.
College Station, Texas). Bland-Altman plots were made to
assess agreement between the measured levels of the
markers in induced and spontaneous sputum pairs. Bland
& Altman advocates using the difference between the two
measurements as the central measurement of bias, and the

spread of the difference as a measure of limits of agreement
[21]. Usually the difference between the measurements is
plotted against the mean of the two measurements, with 2
standard deviations (SD) of the difference representing the
95% limits of agreement. However, sometimes the differ-
ence is dependent upon the size of the mean, in which
Bland & Altman advocates plotting on a log scale [22]. This
was the case for all six markers in our study.
The inflammatory markers were not normally distrib-

uted, hence the paired non-parametric Wilcoxon signed-
rank test was used to compare levels of the markers and
cell viability between spontaneous and induced sputum.
For correlation analyses between spontaneous and
induced samples the non-parametric Spearman’s rank
correlation test was used. For comparisons of the levels of
inflammatory markers by clinical characteristics, Kruskal-
Wallis test was used. For comparisons of FEV1 decline
between stable state and exacerbations during inductions,
Wilcoxon signed-rank test was used. For all analyses, a
p-value of less than 0.05 was considered significant.

Results
The characteristics of the study population are presented
in Table 1. 60 sputum pairs were available from 45
patients, of which 15 of the patients were women. Of the
60 sputum pairs, 31 were sampled during the stable state
and 29 during COPD exacerbations (Table 1).
Mean cell viability was 98% for both the induced and

spontaneous sputum samples. Among the induced sam-
ples, 2 out of 60 samples had viability below 90%, for the
spontaneous samples all were 90% viable or better.
Of the six inflammatory markers, TNF-α was signifi-

cantly higher when measured in spontaneous sputum
during exacerbations and almost reaching statistical sig-
nificance in the steady state (Table 2). For the other
markers, no clear trend was seen (Table 2).
Bland-Altman plots for all six inflammatory markers on

the log scale are presented in Figure 1. To obtain the
limits of agreement the antilog of the two standard devia-
tions were calculated, and these are presented in Table 3
together with the Spearman’s rank correlation coefficients.
Although the correlation was fair, varying between 0.58
for IL-18 to 0.83 for IP-10, the agreement was quite low
for all six inflammatory markers. Since the 95% limits of
agreement were calculated on the log scale, the upper and
lower limits represents ratios relative to one. Thus, based
on the calculations presented in Table 3, one would expect
the measurement of for instance IL-6 in spontaneous spu-
tum to fall between 6 times higher or 8 times lower than
that measured in induced sputum 95% of the time.
Even though agreement between individual measure-

ments was low, there could be value to the spontaneous
samples if the levels of the markers showed the same asso-
ciations to clinical parameters in spontaneous as in the
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FortheSSS,patientswereaskedtoexpectorateintwo
differentcups,andthemostpurulentsputumwasproc-
essed.Bothtypesofsputumsampleswerekeptoniceuntil
processedforqualitycontrolandstorage,usuallywithin
30minutes.Tobreakdisulphidebondsinmucin,4mldi-
thiothreitol0.1%(DDT)pergramsputumwereadded[20].
ThesampleswerethenhomogenizedusinganEppendorf
homogenizerat600rpmfor15minutesatatemperatureof
4degreesCelsius.Phosphate-bufferedsaline(PBS)was
added,andthesamplefilteredtoincreasehomogenization.
Supernatantswereremovedafter15minutescentrifugation
at4degreesCelsius,450g,aliqoutedin0.5mltubes,and
storedat−80degreesCelsius.Trainedpersonnelevaluated
viabilityafterstainingwithtryptanblue.Forthesputum
samplestobeconsideredofacceptablequalitytherehadto
be>1million/mLcells,<20%epithelialcellsandtheleuco-
cyteviabilityhadtobe>30%.AfterDecember2006,all
sputumsampleswerealsoculturedattheDepartmentof
Microbiology,HaukelandUniversityHospital.
Thesputumsampleswereanalysedforcytokinesusing

theLuminex®xMAP®technology(LuminexCorporation,
Austin,Texas).Thecytokineassayusedwasmadebycom-
biningstandardsfromBioRad(Bio-PlexProHumanCyto-
kineStandardsGroupI27-Plex#171-D50001,LotNo
5022130.Bio-PlexProHumanCytokineStandardsGroup
II23-Plex#171-D10502LotNo5015357)andsingleplex
assayscontainingbeadsforanalysesofIL-6,IL-8IL-18,IP-
10,TNF-αandMIG.Thus,allsixmarkerswereanalyzed
insimplex.ThesampleswereprocessedonaLuminex100
instrumentandtheresultscollectedandstoredbySTarSta-
tionsoftwareversion2.0(STarStationSoftwareVersion
2.0,AppliedCytometry,Sheffield,UK.)Theprocedurewas
performedaccordingtothemanufacturer’sinstructionson
sixseparatedaysinSeptember2011.
For58ofthe60sputumpairswealsohadenough

materialtoperformanenzymeimmunoassayoflevelsof
albumininduplex(AlbuminHumanELISAkit,ab
108788,Abcam,Cambridge,UK).Albuminwasusedasa
correctionfactorforconcentrationdifferencesbetweenthe
inducedandspontaneoussampleforeachpairinthe
followingway:Theinducedtospontaneousalbuminratio
wascalculatedforeachsputumpair,andthelevelofeach
ofthesixmarkersineachofthespontaneoussputumsam-
plesmultipliedbythecorrespondingratio.Alllaterstatis-
ticalanalyseswereperformedbothon“corrected”sputum
levelsand“uncorrected”sputumlevels.

Statisticalanalyses
Stata12.0wasusedforthestatisticalanalyses(StataCorp.
CollegeStation,Texas).Bland-Altmanplotsweremadeto
assessagreementbetweenthemeasuredlevelsofthe
markersininducedandspontaneoussputumpairs.Bland
&Altmanadvocatesusingthedifferencebetweenthetwo
measurementsasthecentralmeasurementofbias,andthe

spreadofthedifferenceasameasureoflimitsofagreement
[21].Usuallythedifferencebetweenthemeasurementsis
plottedagainstthemeanofthetwomeasurements,with2
standarddeviations(SD)ofthedifferencerepresentingthe
95%limitsofagreement.However,sometimesthediffer-
enceisdependentuponthesizeofthemean,inwhich
Bland&Altmanadvocatesplottingonalogscale[22].This
wasthecaseforallsixmarkersinourstudy.
Theinflammatorymarkerswerenotnormallydistrib-

uted,hencethepairednon-parametricWilcoxonsigned-
ranktestwasusedtocomparelevelsofthemarkersand
cellviabilitybetweenspontaneousandinducedsputum.
Forcorrelationanalysesbetweenspontaneousand
inducedsamplesthenon-parametricSpearman’srank
correlationtestwasused.Forcomparisonsofthelevelsof
inflammatorymarkersbyclinicalcharacteristics,Kruskal-
Wallistestwasused.ForcomparisonsofFEV1decline
betweenstablestateandexacerbationsduringinductions,
Wilcoxonsigned-ranktestwasused.Forallanalyses,a
p-valueoflessthan0.05wasconsideredsignificant.

Results
Thecharacteristicsofthestudypopulationarepresented
inTable1.60sputumpairswereavailablefrom45
patients,ofwhich15ofthepatientswerewomen.Ofthe
60sputumpairs,31weresampledduringthestablestate
and29duringCOPDexacerbations(Table1).
Meancellviabilitywas98%forboththeinducedand

spontaneoussputumsamples.Amongtheinducedsam-
ples,2outof60sampleshadviabilitybelow90%,forthe
spontaneoussamplesallwere90%viableorbetter.
Ofthesixinflammatorymarkers,TNF-αwassignifi-

cantlyhigherwhenmeasuredinspontaneoussputum
duringexacerbationsandalmostreachingstatisticalsig-
nificanceinthesteadystate(Table2).Fortheother
markers,nocleartrendwasseen(Table2).
Bland-Altmanplotsforallsixinflammatorymarkerson

thelogscalearepresentedinFigure1.Toobtainthe
limitsofagreementtheantilogofthetwostandarddevia-
tionswerecalculated,andthesearepresentedinTable3
togetherwiththeSpearman’srankcorrelationcoefficients.
Althoughthecorrelationwasfair,varyingbetween0.58
forIL-18to0.83forIP-10,theagreementwasquitelow
forallsixinflammatorymarkers.Sincethe95%limitsof
agreementwerecalculatedonthelogscale,theupperand
lowerlimitsrepresentsratiosrelativetoone.Thus,based
onthecalculationspresentedinTable3,onewouldexpect
themeasurementofforinstanceIL-6inspontaneousspu-
tumtofallbetween6timeshigheror8timeslowerthan
thatmeasuredininducedsputum95%ofthetime.
Eventhoughagreementbetweenindividualmeasure-

mentswaslow,therecouldbevaluetothespontaneous
samplesifthelevelsofthemarkersshowedthesameasso-
ciationstoclinicalparametersinspontaneousasinthe
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ofthesixmarkersineachofthespontaneoussputumsam-
plesmultipliedbythecorrespondingratio.Alllaterstatis-
ticalanalyseswereperformedbothon“corrected”sputum
levelsand“uncorrected”sputumlevels.

Statisticalanalyses
Stata12.0wasusedforthestatisticalanalyses(StataCorp.
CollegeStation,Texas).Bland-Altmanplotsweremadeto
assessagreementbetweenthemeasuredlevelsofthe
markersininducedandspontaneoussputumpairs.Bland
&Altmanadvocatesusingthedifferencebetweenthetwo
measurementsasthecentralmeasurementofbias,andthe

spreadofthedifferenceasameasureoflimitsofagreement
[21].Usuallythedifferencebetweenthemeasurementsis
plottedagainstthemeanofthetwomeasurements,with2
standarddeviations(SD)ofthedifferencerepresentingthe
95%limitsofagreement.However,sometimesthediffer-
enceisdependentuponthesizeofthemean,inwhich
Bland&Altmanadvocatesplottingonalogscale[22].This
wasthecaseforallsixmarkersinourstudy.
Theinflammatorymarkerswerenotnormallydistrib-

uted,hencethepairednon-parametricWilcoxonsigned-
ranktestwasusedtocomparelevelsofthemarkersand
cellviabilitybetweenspontaneousandinducedsputum.
Forcorrelationanalysesbetweenspontaneousand
inducedsamplesthenon-parametricSpearman’srank
correlationtestwasused.Forcomparisonsofthelevelsof
inflammatorymarkersbyclinicalcharacteristics,Kruskal-
Wallistestwasused.ForcomparisonsofFEV1decline
betweenstablestateandexacerbationsduringinductions,
Wilcoxonsigned-ranktestwasused.Forallanalyses,a
p-valueoflessthan0.05wasconsideredsignificant.

Results
Thecharacteristicsofthestudypopulationarepresented
inTable1.60sputumpairswereavailablefrom45
patients,ofwhich15ofthepatientswerewomen.Ofthe
60sputumpairs,31weresampledduringthestablestate
and29duringCOPDexacerbations(Table1).
Meancellviabilitywas98%forboththeinducedand

spontaneoussputumsamples.Amongtheinducedsam-
ples,2outof60sampleshadviabilitybelow90%,forthe
spontaneoussamplesallwere90%viableorbetter.
Ofthesixinflammatorymarkers,TNF-αwassignifi-

cantlyhigherwhenmeasuredinspontaneoussputum
duringexacerbationsandalmostreachingstatisticalsig-
nificanceinthesteadystate(Table2).Fortheother
markers,nocleartrendwasseen(Table2).
Bland-Altmanplotsforallsixinflammatorymarkerson

thelogscalearepresentedinFigure1.Toobtainthe
limitsofagreementtheantilogofthetwostandarddevia-
tionswerecalculated,andthesearepresentedinTable3
togetherwiththeSpearman’srankcorrelationcoefficients.
Althoughthecorrelationwasfair,varyingbetween0.58
forIL-18to0.83forIP-10,theagreementwasquitelow
forallsixinflammatorymarkers.Sincethe95%limitsof
agreementwerecalculatedonthelogscale,theupperand
lowerlimitsrepresentsratiosrelativetoone.Thus,based
onthecalculationspresentedinTable3,onewouldexpect
themeasurementofforinstanceIL-6inspontaneousspu-
tumtofallbetween6timeshigheror8timeslowerthan
thatmeasuredininducedsputum95%ofthetime.
Eventhoughagreementbetweenindividualmeasure-

mentswaslow,therecouldbevaluetothespontaneous
samplesifthelevelsofthemarkersshowedthesameasso-
ciationstoclinicalparametersinspontaneousasinthe
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induced sputum samples. Potential associations between
measured levels of the inflammatory markers in spontan-
eous and induced samples, and clinical variables are pre-
sented in Table 4. There was no consistent difference in
levels of any of the six markers between current and ex-
smokers. However, in the spontaneous samples the mea-
sured levels of IL-18 and MIG were significantly higher in
ex-smokers, an association not found in the induced

samples. For all markers except IL-6 and IL-18, there was
a non-significant trend of higher levels in GOLD stage III
& IV compared with GOLD stage II. Importantly however,
the pattern was the same for both spontaneous and in-
duced sputum samples. Finally, in the 24 sputum pairs
where culture was obtained, we examined which impact
Haemophilus influenzae (HI) had on the pattern of the
sputum markers. In the spontaneous samples HI was as-
sociated with significantly lower levels of IL-6, a difference
not found in the induced samples. In addition, we
observed that in the spontaneous samples levels of MIG
were lower in sputum with HI, whereas the opposite
pattern was seen in the induced samples (Table 4).
To assess the safety of induction during exacerbations

and the stable state we calculated the decline in FEV1%
predicted during induction for all COPD patients who
underwent inductions both in the BCCS and BCES. For
decline in FEV1% predicted from post bronchodilation
values during induction the relative fall was calculated
(thus a fall from 30% predicted to 20% predicted will be
presented as a 33% decline). To avoid repeated measure-
ments from the same patient at steady state and/or at
exacerbations only one registered induction at the two
different disease states was selected for analyses per pa-
tient. 63 patients were induced during exacerbation. 33
of the patients were GOLD stage III or IV, while the
remaining 30 were GOLD stage II. We found no signifi-
cant difference in FEV1% predicted decline caused by
induction related to disease severity (p = 0.07) during
exacerbations. When comparing patient groups in the
stable state we found that patients with more severe
COPD had a statistically larger decline related to induction,
than patients with COPD GOLD stage II (p < 0.001). The
relative fall was significantly higher during the stable state
than during exacerbations (p = 0.03) (Table 5). However,
no adverse events followed inductions regardless of disease
state and severity, and all patients increased in FEV1 after a
rest period and a new inhalation of salbutamol.

Table 1 Characteristics of the study population
n %

Patients 45

Age, mean (range)* 63.4 (46–74)

Sex

Women 15 33

Men 30 67

Smoking habits

Ex 30 67

Current 15 33

GOLD (2007) stage*

II 15 33

III 24 53

IV 6 13

Patients with one sputum pair** 36 80

Patients with multiple sputum pairs 9 20

Sputum pairs 60

stable state 31 52

during exacerbation 29 48

H.influenza positive†

No 12

Yes 12
*At inclusion.
**Consisting of one spontaneous and one induced sputum sample.
†Detected in induced and/or spontaneous sputum sampled from stable state
visits, and/or exacerbations.

Table 2 A comparison of inflammatory markers in induced and spontaneous sputum sampled from the COPD patients
at the time; either during a COPD exacerbation or during the stable state

During a COPD exacerbation n = 28 During the stable state n = 30

Induced sputum
sample

Spontaneous sputum
sample

p* Induced sputum
sample

Spontaneous sputum
sample

p*

IL-6(pg/ml) median, IQR 10.0(4.9-26.6) 10.4(2.8-23.3) 0.29 20.5(6.11-43.2) 13.9(2.2-55.2) 0.46

IL-8(pg/ml) median, IQR 339.7(193.6-663.9) 344.9(173.9-812.2) 0.77 514.2(225.6-1257.2) 3709.9(171.7-976.7) 0.18

IP-10(pg/ml) 735.0(205.4-2099.6) 372.1(218.7-1416.2) 0.15 529.0(215.4-2554.8) 362.3(142.0-1393.1) 0.07

TNF-α (pg/ml) median,
IQR

3.0(0.2-11.8) 6.3(2.0-34.0) 0.002 0.9(0-2.4) 1.3(0.2-4.3) 0.06

IL-18 (pg/ml) median,
IQR

9.2(4.9-12.9) 10.6(3.6-27.3) 0.52 6.5(2.4-25.6) 9.6(0.8-18.2) 0.64

MIG (pg/ml) median,
IQR

539.2(100.1-1496.0) 384.6(221.2-1997.0) 0.41 534.4(56.9-1450.1) 567.4(178.0-2031.7) 0.82

*Wilcoxon sign rank test.
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inducedsputumsamples.Potentialassociationsbetween
measuredlevelsoftheinflammatorymarkersinspontan-
eousandinducedsamples,andclinicalvariablesarepre-
sentedinTable4.Therewasnoconsistentdifferencein
levelsofanyofthesixmarkersbetweencurrentandex-
smokers.However,inthespontaneoussamplesthemea-
suredlevelsofIL-18andMIGweresignificantlyhigherin
ex-smokers,anassociationnotfoundintheinduced

samples.ForallmarkersexceptIL-6andIL-18,therewas
anon-significanttrendofhigherlevelsinGOLDstageIII
&IVcomparedwithGOLDstageII.Importantlyhowever,
thepatternwasthesameforbothspontaneousandin-
ducedsputumsamples.Finally,inthe24sputumpairs
whereculturewasobtained,weexaminedwhichimpact
Haemophilusinfluenzae(HI)hadonthepatternofthe
sputummarkers.InthespontaneoussamplesHIwasas-
sociatedwithsignificantlylowerlevelsofIL-6,adifference
notfoundintheinducedsamples.Inaddition,we
observedthatinthespontaneoussampleslevelsofMIG
werelowerinsputumwithHI,whereastheopposite
patternwasseenintheinducedsamples(Table4).

Toassessthesafetyofinductionduringexacerbations
andthestablestatewecalculatedthedeclineinFEV1%
predictedduringinductionforallCOPDpatientswho
underwentinductionsbothintheBCCSandBCES.For
declineinFEV1%predictedfrompostbronchodilation
valuesduringinductiontherelativefallwascalculated
(thusafallfrom30%predictedto20%predictedwillbe
presentedasa33%decline).Toavoidrepeatedmeasure-
mentsfromthesamepatientatsteadystateand/orat
exacerbationsonlyoneregisteredinductionatthetwo
differentdiseasestateswasselectedforanalysesperpa-
tient.63patientswereinducedduringexacerbation.33
ofthepatientswereGOLDstageIIIorIV,whilethe
remaining30wereGOLDstageII.Wefoundnosignifi-
cantdifferenceinFEV1%predicteddeclinecausedby
inductionrelatedtodiseaseseverity(p=0.07)during
exacerbations.Whencomparingpatientgroupsinthe
stablestatewefoundthatpatientswithmoresevere
COPDhadastatisticallylargerdeclinerelatedtoinduction,
thanpatientswithCOPDGOLDstageII(p<0.001).The
relativefallwassignificantlyhigherduringthestablestate
thanduringexacerbations(p=0.03)(Table5).However,
noadverseeventsfollowedinductionsregardlessofdisease
stateandseverity,andallpatientsincreasedinFEV1aftera
restperiodandanewinhalationofsalbutamol.

Table1Characteristicsofthestudypopulation
n%

Patients45

Age,mean(range)*63.4(46–74)

Sex

Women1533

Men3067

Smokinghabits

Ex3067

Current1533

GOLD(2007)stage*

II1533

III2453

IV613

Patientswithonesputumpair**3680

Patientswithmultiplesputumpairs920

Sputumpairs60

stablestate3152

duringexacerbation2948

H.influenzapositive†

No12

Yes12
*Atinclusion.
**Consistingofonespontaneousandoneinducedsputumsample.
†Detectedininducedand/orspontaneoussputumsampledfromstablestate
visits,and/orexacerbations.

Table2AcomparisonofinflammatorymarkersininducedandspontaneoussputumsampledfromtheCOPDpatients
atthetime;eitherduringaCOPDexacerbationorduringthestablestate

DuringaCOPDexacerbationn=28Duringthestablestaten=30

Inducedsputum
sample

Spontaneoussputum
sample

p*Inducedsputum
sample

Spontaneoussputum
sample

p*

IL-6(pg/ml)median,IQR10.0(4.9-26.6)10.4(2.8-23.3)0.2920.5(6.11-43.2)13.9(2.2-55.2)0.46

IL-8(pg/ml)median,IQR339.7(193.6-663.9)344.9(173.9-812.2)0.77514.2(225.6-1257.2)3709.9(171.7-976.7)0.18

IP-10(pg/ml)735.0(205.4-2099.6)372.1(218.7-1416.2)0.15529.0(215.4-2554.8)362.3(142.0-1393.1)0.07

TNF-α(pg/ml)median,
IQR

3.0(0.2-11.8)6.3(2.0-34.0)0.0020.9(0-2.4)1.3(0.2-4.3)0.06

IL-18(pg/ml)median,
IQR

9.2(4.9-12.9)10.6(3.6-27.3)0.526.5(2.4-25.6)9.6(0.8-18.2)0.64

MIG(pg/ml)median,
IQR

539.2(100.1-1496.0)384.6(221.2-1997.0)0.41534.4(56.9-1450.1)567.4(178.0-2031.7)0.82

*Wilcoxonsignranktest.
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inducedsputumsamples.Potentialassociationsbetween
measuredlevelsoftheinflammatorymarkersinspontan-
eousandinducedsamples,andclinicalvariablesarepre-
sentedinTable4.Therewasnoconsistentdifferencein
levelsofanyofthesixmarkersbetweencurrentandex-
smokers.However,inthespontaneoussamplesthemea-
suredlevelsofIL-18andMIGweresignificantlyhigherin
ex-smokers,anassociationnotfoundintheinduced

samples.ForallmarkersexceptIL-6andIL-18,therewas
anon-significanttrendofhigherlevelsinGOLDstageIII
&IVcomparedwithGOLDstageII.Importantlyhowever,
thepatternwasthesameforbothspontaneousandin-
ducedsputumsamples.Finally,inthe24sputumpairs
whereculturewasobtained,weexaminedwhichimpact
Haemophilusinfluenzae(HI)hadonthepatternofthe
sputummarkers.InthespontaneoussamplesHIwasas-
sociatedwithsignificantlylowerlevelsofIL-6,adifference
notfoundintheinducedsamples.Inaddition,we
observedthatinthespontaneoussampleslevelsofMIG
werelowerinsputumwithHI,whereastheopposite
patternwasseenintheinducedsamples(Table4).

Toassessthesafetyofinductionduringexacerbations
andthestablestatewecalculatedthedeclineinFEV1%
predictedduringinductionforallCOPDpatientswho
underwentinductionsbothintheBCCSandBCES.For
declineinFEV1%predictedfrompostbronchodilation
valuesduringinductiontherelativefallwascalculated
(thusafallfrom30%predictedto20%predictedwillbe
presentedasa33%decline).Toavoidrepeatedmeasure-
mentsfromthesamepatientatsteadystateand/orat
exacerbationsonlyoneregisteredinductionatthetwo
differentdiseasestateswasselectedforanalysesperpa-
tient.63patientswereinducedduringexacerbation.33
ofthepatientswereGOLDstageIIIorIV,whilethe
remaining30wereGOLDstageII.Wefoundnosignifi-
cantdifferenceinFEV1%predicteddeclinecausedby
inductionrelatedtodiseaseseverity(p=0.07)during
exacerbations.Whencomparingpatientgroupsinthe
stablestatewefoundthatpatientswithmoresevere
COPDhadastatisticallylargerdeclinerelatedtoinduction,
thanpatientswithCOPDGOLDstageII(p<0.001).The
relativefallwassignificantlyhigherduringthestablestate
thanduringexacerbations(p=0.03)(Table5).However,
noadverseeventsfollowedinductionsregardlessofdisease
stateandseverity,andallpatientsincreasedinFEV1aftera
restperiodandanewinhalationofsalbutamol.

Table1Characteristicsofthestudypopulation
n%

Patients45

Age,mean(range)*63.4(46–74)

Sex

Women1533

Men3067

Smokinghabits

Ex3067

Current1533

GOLD(2007)stage*

II1533

III2453

IV613

Patientswithonesputumpair**3680

Patientswithmultiplesputumpairs920

Sputumpairs60

stablestate3152

duringexacerbation2948

H.influenzapositive†

No12

Yes12
*Atinclusion.
**Consistingofonespontaneousandoneinducedsputumsample.
†Detectedininducedand/orspontaneoussputumsampledfromstablestate
visits,and/orexacerbations.

Table2AcomparisonofinflammatorymarkersininducedandspontaneoussputumsampledfromtheCOPDpatients
atthetime;eitherduringaCOPDexacerbationorduringthestablestate

DuringaCOPDexacerbationn=28Duringthestablestaten=30

Inducedsputum
sample

Spontaneoussputum
sample

p*Inducedsputum
sample

Spontaneoussputum
sample

p*

IL-6(pg/ml)median,IQR10.0(4.9-26.6)10.4(2.8-23.3)0.2920.5(6.11-43.2)13.9(2.2-55.2)0.46

IL-8(pg/ml)median,IQR339.7(193.6-663.9)344.9(173.9-812.2)0.77514.2(225.6-1257.2)3709.9(171.7-976.7)0.18

IP-10(pg/ml)735.0(205.4-2099.6)372.1(218.7-1416.2)0.15529.0(215.4-2554.8)362.3(142.0-1393.1)0.07

TNF-α(pg/ml)median,
IQR

3.0(0.2-11.8)6.3(2.0-34.0)0.0020.9(0-2.4)1.3(0.2-4.3)0.06

IL-18(pg/ml)median,
IQR

9.2(4.9-12.9)10.6(3.6-27.3)0.526.5(2.4-25.6)9.6(0.8-18.2)0.64

MIG(pg/ml)median,
IQR

539.2(100.1-1496.0)384.6(221.2-1997.0)0.41534.4(56.9-1450.1)567.4(178.0-2031.7)0.82

*Wilcoxonsignranktest.
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induced sputum samples. Potential associations between
measured levels of the inflammatory markers in spontan-
eous and induced samples, and clinical variables are pre-
sented in Table 4. There was no consistent difference in
levels of any of the six markers between current and ex-
smokers. However, in the spontaneous samples the mea-
sured levels of IL-18 and MIG were significantly higher in
ex-smokers, an association not found in the induced

samples. For all markers except IL-6 and IL-18, there was
a non-significant trend of higher levels in GOLD stage III
& IV compared with GOLD stage II. Importantly however,
the pattern was the same for both spontaneous and in-
duced sputum samples. Finally, in the 24 sputum pairs
where culture was obtained, we examined which impact
Haemophilus influenzae (HI) had on the pattern of the
sputum markers. In the spontaneous samples HI was as-
sociated with significantly lower levels of IL-6, a difference
not found in the induced samples. In addition, we
observed that in the spontaneous samples levels of MIG
were lower in sputum with HI, whereas the opposite
pattern was seen in the induced samples (Table 4).
To assess the safety of induction during exacerbations

and the stable state we calculated the decline in FEV1%
predicted during induction for all COPD patients who
underwent inductions both in the BCCS and BCES. For
decline in FEV1% predicted from post bronchodilation
values during induction the relative fall was calculated
(thus a fall from 30% predicted to 20% predicted will be
presented as a 33% decline). To avoid repeated measure-
ments from the same patient at steady state and/or at
exacerbations only one registered induction at the two
different disease states was selected for analyses per pa-
tient. 63 patients were induced during exacerbation. 33
of the patients were GOLD stage III or IV, while the
remaining 30 were GOLD stage II. We found no signifi-
cant difference in FEV1% predicted decline caused by
induction related to disease severity (p = 0.07) during
exacerbations. When comparing patient groups in the
stable state we found that patients with more severe
COPD had a statistically larger decline related to induction,
than patients with COPD GOLD stage II (p < 0.001). The
relative fall was significantly higher during the stable state
than during exacerbations (p = 0.03) (Table 5). However,
no adverse events followed inductions regardless of disease
state and severity, and all patients increased in FEV1 after a
rest period and a new inhalation of salbutamol.

Table 1 Characteristics of the study population
n %

Patients 45

Age, mean (range)
*

63.4 (46–74)

Sex

Women 15 33

Men 30 67

Smoking habits

Ex 30 67

Current 15 33

GOLD (2007) stage
*

II 15 33

III 24 53

IV 6 13

Patients with one sputum pair
**

36 80

Patients with multiple sputum pairs 9 20

Sputum pairs 60

stable state 31 52

during exacerbation 29 48

H.influenza positive
†

No 12

Yes 12
*
At inclusion.
**
Consisting of one spontaneous and one induced sputum sample.

†
Detected in induced and/or spontaneous sputum sampled from stable state
visits, and/or exacerbations.

Table 2 A comparison of inflammatory markers in induced and spontaneous sputum sampled from the COPD patients
at the time; either during a COPD exacerbation or during the stable state

During a COPD exacerbation n = 28 During the stable state n = 30

Induced sputum
sample

Spontaneous sputum
sample

p* Induced sputum
sample

Spontaneous sputum
sample

p*

IL-6(pg/ml) median, IQR 10.0(4.9-26.6) 10.4(2.8-23.3) 0.29 20.5(6.11-43.2) 13.9(2.2-55.2) 0.46

IL-8(pg/ml) median, IQR 339.7(193.6-663.9) 344.9(173.9-812.2) 0.77 514.2(225.6-1257.2) 3709.9(171.7-976.7) 0.18

IP-10(pg/ml) 735.0(205.4-2099.6) 372.1(218.7-1416.2) 0.15 529.0(215.4-2554.8) 362.3(142.0-1393.1) 0.07

TNF-α (pg/ml) median,
IQR

3.0(0.2-11.8) 6.3(2.0-34.0) 0.002 0.9(0-2.4) 1.3(0.2-4.3) 0.06

IL-18 (pg/ml) median,
IQR

9.2(4.9-12.9) 10.6(3.6-27.3) 0.52 6.5(2.4-25.6) 9.6(0.8-18.2) 0.64

MIG (pg/ml) median,
IQR

539.2(100.1-1496.0) 384.6(221.2-1997.0) 0.41 534.4(56.9-1450.1) 567.4(178.0-2031.7) 0.82

*
Wilcoxon sign rank test.
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induced sputum samples. Potential associations between
measured levels of the inflammatory markers in spontan-
eous and induced samples, and clinical variables are pre-
sented in Table 4. There was no consistent difference in
levels of any of the six markers between current and ex-
smokers. However, in the spontaneous samples the mea-
sured levels of IL-18 and MIG were significantly higher in
ex-smokers, an association not found in the induced

samples. For all markers except IL-6 and IL-18, there was
a non-significant trend of higher levels in GOLD stage III
& IV compared with GOLD stage II. Importantly however,
the pattern was the same for both spontaneous and in-
duced sputum samples. Finally, in the 24 sputum pairs
where culture was obtained, we examined which impact
Haemophilus influenzae (HI) had on the pattern of the
sputum markers. In the spontaneous samples HI was as-
sociated with significantly lower levels of IL-6, a difference
not found in the induced samples. In addition, we
observed that in the spontaneous samples levels of MIG
were lower in sputum with HI, whereas the opposite
pattern was seen in the induced samples (Table 4).
To assess the safety of induction during exacerbations

and the stable state we calculated the decline in FEV1%
predicted during induction for all COPD patients who
underwent inductions both in the BCCS and BCES. For
decline in FEV1% predicted from post bronchodilation
values during induction the relative fall was calculated
(thus a fall from 30% predicted to 20% predicted will be
presented as a 33% decline). To avoid repeated measure-
ments from the same patient at steady state and/or at
exacerbations only one registered induction at the two
different disease states was selected for analyses per pa-
tient. 63 patients were induced during exacerbation. 33
of the patients were GOLD stage III or IV, while the
remaining 30 were GOLD stage II. We found no signifi-
cant difference in FEV1% predicted decline caused by
induction related to disease severity (p = 0.07) during
exacerbations. When comparing patient groups in the
stable state we found that patients with more severe
COPD had a statistically larger decline related to induction,
than patients with COPD GOLD stage II (p < 0.001). The
relative fall was significantly higher during the stable state
than during exacerbations (p = 0.03) (Table 5). However,
no adverse events followed inductions regardless of disease
state and severity, and all patients increased in FEV1 after a
rest period and a new inhalation of salbutamol.
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GOLD (2007) stage
*

II 15 33

III 24 53

IV 6 13

Patients with one sputum pair
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No 12
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*
At inclusion.
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Consisting of one spontaneous and one induced sputum sample.

†
Detected in induced and/or spontaneous sputum sampled from stable state
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Table 2 A comparison of inflammatory markers in induced and spontaneous sputum sampled from the COPD patients
at the time; either during a COPD exacerbation or during the stable state
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inducedsputumsamples.Potentialassociationsbetween
measuredlevelsoftheinflammatorymarkersinspontan-
eousandinducedsamples,andclinicalvariablesarepre-
sentedinTable4.Therewasnoconsistentdifferencein
levelsofanyofthesixmarkersbetweencurrentandex-
smokers.However,inthespontaneoussamplesthemea-
suredlevelsofIL-18andMIGweresignificantlyhigherin
ex-smokers,anassociationnotfoundintheinduced

samples.ForallmarkersexceptIL-6andIL-18,therewas
anon-significanttrendofhigherlevelsinGOLDstageIII
&IVcomparedwithGOLDstageII.Importantlyhowever,
thepatternwasthesameforbothspontaneousandin-
ducedsputumsamples.Finally,inthe24sputumpairs
whereculturewasobtained,weexaminedwhichimpact
Haemophilusinfluenzae(HI)hadonthepatternofthe
sputummarkers.InthespontaneoussamplesHIwasas-
sociatedwithsignificantlylowerlevelsofIL-6,adifference
notfoundintheinducedsamples.Inaddition,we
observedthatinthespontaneoussampleslevelsofMIG
werelowerinsputumwithHI,whereastheopposite
patternwasseenintheinducedsamples(Table4).
Toassessthesafetyofinductionduringexacerbations

andthestablestatewecalculatedthedeclineinFEV1%
predictedduringinductionforallCOPDpatientswho
underwentinductionsbothintheBCCSandBCES.For
declineinFEV1%predictedfrompostbronchodilation
valuesduringinductiontherelativefallwascalculated
(thusafallfrom30%predictedto20%predictedwillbe
presentedasa33%decline).Toavoidrepeatedmeasure-
mentsfromthesamepatientatsteadystateand/orat
exacerbationsonlyoneregisteredinductionatthetwo
differentdiseasestateswasselectedforanalysesperpa-
tient.63patientswereinducedduringexacerbation.33
ofthepatientswereGOLDstageIIIorIV,whilethe
remaining30wereGOLDstageII.Wefoundnosignifi-
cantdifferenceinFEV1%predicteddeclinecausedby
inductionrelatedtodiseaseseverity(p=0.07)during
exacerbations.Whencomparingpatientgroupsinthe
stablestatewefoundthatpatientswithmoresevere
COPDhadastatisticallylargerdeclinerelatedtoinduction,
thanpatientswithCOPDGOLDstageII(p<0.001).The
relativefallwassignificantlyhigherduringthestablestate
thanduringexacerbations(p=0.03)(Table5).However,
noadverseeventsfollowedinductionsregardlessofdisease
stateandseverity,andallpatientsincreasedinFEV1aftera
restperiodandanewinhalationofsalbutamol.
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Yes12
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Atinclusion.
**
Consistingofonespontaneousandoneinducedsputumsample.

†
Detectedininducedand/orspontaneoussputumsampledfromstablestate
visits,and/orexacerbations.
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IL-6(pg/ml)median,IQR10.0(4.9-26.6)10.4(2.8-23.3)0.2920.5(6.11-43.2)13.9(2.2-55.2)0.46
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539.2(100.1-1496.0)384.6(221.2-1997.0)0.41534.4(56.9-1450.1)567.4(178.0-2031.7)0.82

*
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Discussion
This study showed that for the six inflammatory
markers, the correlation between levels measured in
induced and spontaneous sputum pairs was fair, but the
agreement was quite low. TNF-α was significantly higher
in spontaneous sputum samples than in induced samples
when measured during a COPD exacerbation. Further,
there was a relationship between HI carrier state and IL-
6, and smoking status and IL-18 and MIG, found only in
spontaneous sputum samples.
There are some methodological issues to consider.

Firstly, it has been shown that both PBS and DTT affect
the recovery of some cytokines [12,23]. However, a
strength of this study was that the exact same processing
protocol was used for all sputum pairs, and this should

thus not impact the measured levels differently between
spontaneous and induced sputum samples. Secondly, all
the inflammatory markers were measured in simplex,
thus the potential measurement error is greater than if
the markers were measured in duplex. The choice of
analysing in simplex was due to cost, since this is part of
a larger analysis of inflammatory markers in sputum.
Most importantly however, all sputum pairs were analysed
on the same plate, on the same day. Thus the measure-
ment error should not differ between spontaneous and in-
duced samples. Thirdly, we found associations between
inflammatory markers and smoking, and inflammatory
markers and colonization with HI only in spontaneous
sputum. We found no association between inflammatory
markers and GOLD stage in either type of sputum, but

Figure 1 Bland-Altman plots of the agreement between measurements of six inflammatory markers in induced and spontaneous
sputum samples.

Table 3 Rank correlation coefficients and the 95% limits of agreement between measurements of six inflammatory
markers in induced and spontaneous sputum samples

Correlation coefficient* Bland & Altmans 95% limit of agreement†

Lower Upper

IL-6 (pg/ml) 0.729 0.12 6.35

IL-8 (pg/ml) 0.695 0.12 5.59

IP-10 (pg/ml) 0.833 0.08 13.7

TNFα (pg/ml) 0.600 0.11 5.53

IL-18 (pg/ml) 0.583 0.09 29.99

MIG (pg/ml) 0.754 0.10 17.24
*Spearman’s rank correlation test.
†±2 SD of the mean difference between the two measurements.
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markersandcolonizationwithHIonlyinspontaneous
sputum.Wefoundnoassociationbetweeninflammatory
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IP-10(pg/ml)0.8330.0813.7
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Tangedaletal.RespiratoryResearch2014,15:138Page5of8
http://respiratory-research.com/content/15/1/138

Discussion
Thisstudyshowedthatforthesixinflammatory
markers,thecorrelationbetweenlevelsmeasuredin
inducedandspontaneoussputumpairswasfair,butthe
agreementwasquitelow.TNF-αwassignificantlyhigher
inspontaneoussputumsamplesthanininducedsamples
whenmeasuredduringaCOPDexacerbation.Further,
therewasarelationshipbetweenHIcarrierstateandIL-
6,andsmokingstatusandIL-18andMIG,foundonlyin
spontaneoussputumsamples.

Therearesomemethodologicalissuestoconsider.
Firstly,ithasbeenshownthatbothPBSandDTTaffect
therecoveryofsomecytokines[12,23].However,a
strengthofthisstudywasthattheexactsameprocessing
protocolwasusedforallsputumpairs,andthisshould

thusnotimpactthemeasuredlevelsdifferentlybetween
spontaneousandinducedsputumsamples.Secondly,all
theinflammatorymarkersweremeasuredinsimplex,
thusthepotentialmeasurementerrorisgreaterthanif
themarkersweremeasuredinduplex.Thechoiceof
analysinginsimplexwasduetocost,sincethisispartof
alargeranalysisofinflammatorymarkersinsputum.
Mostimportantlyhowever,allsputumpairswereanalysed
onthesameplate,onthesameday.Thusthemeasure-
menterrorshouldnotdifferbetweenspontaneousandin-
ducedsamples.Thirdly,wefoundassociationsbetween
inflammatorymarkersandsmoking,andinflammatory
markersandcolonizationwithHIonlyinspontaneous
sputum.Wefoundnoassociationbetweeninflammatory
markersandGOLDstageineithertypeofsputum,but

Figure1Bland-Altmanplotsoftheagreementbetweenmeasurementsofsixinflammatorymarkersininducedandspontaneous
sputumsamples.

Table3Rankcorrelationcoefficientsandthe95%limitsofagreementbetweenmeasurementsofsixinflammatory
markersininducedandspontaneoussputumsamples

Correlationcoefficient*Bland&Altmans95%limitofagreement†

LowerUpper

IL-6(pg/ml)0.7290.126.35

IL-8(pg/ml)0.6950.125.59

IP-10(pg/ml)0.8330.0813.7

TNFα(pg/ml)0.6000.115.53

IL-18(pg/ml)0.5830.0929.99

MIG(pg/ml)0.7540.1017.24
*Spearman’srankcorrelationtest.
†±2SDofthemeandifferencebetweenthetwomeasurements.

Tangedaletal.RespiratoryResearch2014,15:138Page5of8
http://respiratory-research.com/content/15/1/138

Discussion
This study showed that for the six inflammatory
markers, the correlation between levels measured in
induced and spontaneous sputum pairs was fair, but the
agreement was quite low. TNF-α was significantly higher
in spontaneous sputum samples than in induced samples
when measured during a COPD exacerbation. Further,
there was a relationship between HI carrier state and IL-
6, and smoking status and IL-18 and MIG, found only in
spontaneous sputum samples.
There are some methodological issues to consider.

Firstly, it has been shown that both PBS and DTT affect
the recovery of some cytokines [12,23]. However, a
strength of this study was that the exact same processing
protocol was used for all sputum pairs, and this should

thus not impact the measured levels differently between
spontaneous and induced sputum samples. Secondly, all
the inflammatory markers were measured in simplex,
thus the potential measurement error is greater than if
the markers were measured in duplex. The choice of
analysing in simplex was due to cost, since this is part of
a larger analysis of inflammatory markers in sputum.
Most importantly however, all sputum pairs were analysed
on the same plate, on the same day. Thus the measure-
ment error should not differ between spontaneous and in-
duced samples. Thirdly, we found associations between
inflammatory markers and smoking, and inflammatory
markers and colonization with HI only in spontaneous
sputum. We found no association between inflammatory
markers and GOLD stage in either type of sputum, but

Figure 1 Bland-Altman plots of the agreement between measurements of six inflammatory markers in induced and spontaneous
sputum samples.
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markers in induced and spontaneous sputum samples
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*
Spearman’s rank correlation test.
†
±2 SD of the mean difference between the two measurements.
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626.8(222.6-2031.7)
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383.4(205.3-1941.6)

0.47

1473.0
(438.8-4392.9)

740.5(384.6-2088.3)

0.33
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this may be due to lack of strength. Finally, the choice on
whether to induce or not during an exacerbation was based
on several subjective factors in addition to oxygen satur-
ation; most importantly patients’ willingness to be induced
and the clinicians’ evaluation regarding obstructivity. Thus,
it is impossible from this design to conclude that sputum
induction would be safe during all exacerbations.
Although more studies on the subject of whether spon-

taneous and induced sputum samples could be compared
was recommended already in 2002 [4], few studies have
yet been published. We have found one earlier report on
levels of IL-8 in spontaneous versus induced sputum that
showed no significant differences in IL-8 levels between
the two sputum types in COPD patients in stable state
[16]. Our study confirmed the results from this earlier
study, but in addition we were able to show that this is
true also during exacerbations. We have been unable to
find earlier reports on the relationship between levels of
inflammatory markers in spontaneous and induced
sputum for the remaining five inflammatory markers. To
our knowledge comparison of other inflammatory
markers in induced and spontaneous sputum sampled on
the same consultation has not been performed in patients
with obstructive pulmonary disease.
It has previously been shown that the sputum sampled

early during induction has a different consistency and
cell composition than sputum sampled late in the induc-
tion [24,25]. It is likely that more central airways are sam-
pled early, and would thus most resemble spontaneous
sputum. Thus, induced sputum is likely to sample a more
distal airways environment than spontaneous sputum.
Central and distal airways differ by epithelial components
[26], distribution of immune cells [27,28], and possibly re-
spiratory microbiome [29]. Thus, it is theoretically rather
likely that levels of inflammatory markers differ between
spontaneous and induced sputum samples. However, one
can argue that spontaneous sputum could be a favorable
alternative to induced sputum when patients find induc-
tion uncomfortable, or the safety of the induction is uncer-
tain, and enable sampling in primary healthcare settings
where induction is rarely if ever performed to our know-
ledge. Cell viability in spontaneous sputum has in some
studies been shown to be poorer than in induced sputum
samples [15,16]. Such was not the case in our samples,

where viability was as good in the spontaneous samples as
in the induced samples. In our study the time from collec-
tion to processing was usually very short, which could
explain the high viability.
Although agreement for individual measurements was

low, measuring levels of inflammatory markers in spon-
taneous sputum could have value for instance in serial
measurements of spontaneous sputum, something our
study is not equipped to assess. Also, although compari-
sons of inflammatory markers between spontaneous and
induced sputum is invalid for some markers, they may
be valid for others.
There are still sparse data on the safety on induction

in patients with severe COPD during exacerbations, and
in several studies sputum induction is performed during
exacerbation without the published reporting on poten-
tial adverse effects on the procedure [3,30,31].
In our study we found statistical differences in FEV1%

predicted decline between patients with moderate and
severe/very severe COPD only during steady state, while
disease severity did not affect the decline during exacerba-
tions. No adverse events were registered during either the
steady state or during exacerbations. This is in accordance
with other reports [7,11], but we expand by including pa-
tients with severe/very severe COPD. However, it should
be stressed that necessary precautions need to be taken
such as having access to acute rescue medications, and
that all inductions only should be performed by trained
medical personnel [32].
The results from the current study point toward a ne-

cessity for reporting on sampling methods when consider-
ing inflammatory markers in sputum samples collected
from COPD patients both during the steady state and dur-
ing acute exacerbations as the agreement was generally
low as assessed by Bland & Altman’s 95% limits of agree-
ment. Whether levels of inflammatory markers can be
compared between spontaneous and induced sputum
samples likely differ by each inflammatory marker in ques-
tion, and should be addressed within each study. In cases
where induced sputum sampling is impossible, spontan-
eous samples may have value if compared with other
spontaneous samples.
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Table 5 Relative FEV1 decline in % predicted during
sputum induction

Exacerbations Steady state p*

n = 63 n = 390

0.004

Median (IQR) 12.64(5.56-21.79) 18.75(11.11-25)

Mean (SD) 14.80(13.05) 18.51(11.44)
*Wilcoxon sign rank test.
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thismaybeduetolackofstrength.Finally,thechoiceon
whethertoinduceornotduringanexacerbationwasbased
onseveralsubjectivefactorsinadditiontooxygensatur-
ation;mostimportantlypatients’willingnesstobeinduced
andtheclinicians’evaluationregardingobstructivity.Thus,
itisimpossiblefromthisdesigntoconcludethatsputum
inductionwouldbesafeduringallexacerbations.

Althoughmorestudiesonthesubjectofwhetherspon-
taneousandinducedsputumsamplescouldbecompared
wasrecommendedalreadyin2002[4],fewstudieshave
yetbeenpublished.Wehavefoundoneearlierreporton
levelsofIL-8inspontaneousversusinducedsputumthat
showednosignificantdifferencesinIL-8levelsbetween
thetwosputumtypesinCOPDpatientsinstablestate
[16].Ourstudyconfirmedtheresultsfromthisearlier
study,butinadditionwewereabletoshowthatthisis
truealsoduringexacerbations.Wehavebeenunableto
findearlierreportsontherelationshipbetweenlevelsof
inflammatorymarkersinspontaneousandinduced
sputumfortheremainingfiveinflammatorymarkers.To
ourknowledgecomparisonofotherinflammatory
markersininducedandspontaneoussputumsampledon
thesameconsultationhasnotbeenperformedinpatients
withobstructivepulmonarydisease.

Ithaspreviouslybeenshownthatthesputumsampled
earlyduringinductionhasadifferentconsistencyand
cellcompositionthansputumsampledlateintheinduc-
tion[24,25].Itislikelythatmorecentralairwaysaresam-
pledearly,andwouldthusmostresemblespontaneous
sputum.Thus,inducedsputumislikelytosampleamore
distalairwaysenvironmentthanspontaneoussputum.
Centralanddistalairwaysdifferbyepithelialcomponents
[26],distributionofimmunecells[27,28],andpossiblyre-
spiratorymicrobiome[29].Thus,itistheoreticallyrather
likelythatlevelsofinflammatorymarkersdifferbetween
spontaneousandinducedsputumsamples.However,one
canarguethatspontaneoussputumcouldbeafavorable
alternativetoinducedsputumwhenpatientsfindinduc-
tionuncomfortable,orthesafetyoftheinductionisuncer-
tain,andenablesamplinginprimaryhealthcaresettings
whereinductionisrarelyifeverperformedtoourknow-
ledge.Cellviabilityinspontaneoussputumhasinsome
studiesbeenshowntobepoorerthanininducedsputum
samples[15,16].Suchwasnotthecaseinoursamples,

whereviabilitywasasgoodinthespontaneoussamplesas
intheinducedsamples.Inourstudythetimefromcollec-
tiontoprocessingwasusuallyveryshort,whichcould
explainthehighviability.

Althoughagreementforindividualmeasurementswas
low,measuringlevelsofinflammatorymarkersinspon-
taneoussputumcouldhavevalueforinstanceinserial
measurementsofspontaneoussputum,somethingour
studyisnotequippedtoassess.Also,althoughcompari-
sonsofinflammatorymarkersbetweenspontaneousand
inducedsputumisinvalidforsomemarkers,theymay
bevalidforothers.

Therearestillsparsedataonthesafetyoninduction
inpatientswithsevereCOPDduringexacerbations,and
inseveralstudiessputuminductionisperformedduring
exacerbationwithoutthepublishedreportingonpoten-
tialadverseeffectsontheprocedure[3,30,31].

InourstudywefoundstatisticaldifferencesinFEV1%
predicteddeclinebetweenpatientswithmoderateand
severe/verysevereCOPDonlyduringsteadystate,while
diseaseseveritydidnotaffectthedeclineduringexacerba-
tions.Noadverseeventswereregisteredduringeitherthe
steadystateorduringexacerbations.Thisisinaccordance
withotherreports[7,11],butweexpandbyincludingpa-
tientswithsevere/verysevereCOPD.However,itshould
bestressedthatnecessaryprecautionsneedtobetaken
suchashavingaccesstoacuterescuemedications,and
thatallinductionsonlyshouldbeperformedbytrained
medicalpersonnel[32].

Theresultsfromthecurrentstudypointtowardane-
cessityforreportingonsamplingmethodswhenconsider-
inginflammatorymarkersinsputumsamplescollected
fromCOPDpatientsbothduringthesteadystateanddur-
ingacuteexacerbationsastheagreementwasgenerally
lowasassessedbyBland&Altman’s95%limitsofagree-
ment.Whetherlevelsofinflammatorymarkerscanbe
comparedbetweenspontaneousandinducedsputum
sampleslikelydifferbyeachinflammatorymarkerinques-
tion,andshouldbeaddressedwithineachstudy.Incases
whereinducedsputumsamplingisimpossible,spontan-
eoussamplesmayhavevalueifcomparedwithother
spontaneoussamples.
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Table5RelativeFEV1declinein%predictedduring
sputuminduction

ExacerbationsSteadystatep*

n=63n=390

0.004

Median(IQR)12.64(5.56-21.79)18.75(11.11-25)

Mean(SD)14.80(13.05)18.51(11.44)
*Wilcoxonsignranktest.
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itisimpossiblefromthisdesigntoconcludethatsputum
inductionwouldbesafeduringallexacerbations.
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tion[24,25].Itislikelythatmorecentralairwaysaresam-
pledearly,andwouldthusmostresemblespontaneous
sputum.Thus,inducedsputumislikelytosampleamore
distalairwaysenvironmentthanspontaneoussputum.
Centralanddistalairwaysdifferbyepithelialcomponents
[26],distributionofimmunecells[27,28],andpossiblyre-
spiratorymicrobiome[29].Thus,itistheoreticallyrather
likelythatlevelsofinflammatorymarkersdifferbetween
spontaneousandinducedsputumsamples.However,one
canarguethatspontaneoussputumcouldbeafavorable
alternativetoinducedsputumwhenpatientsfindinduc-
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whereinductionisrarelyifeverperformedtoourknow-
ledge.Cellviabilityinspontaneoussputumhasinsome
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samples[15,16].Suchwasnotthecaseinoursamples,

whereviabilitywasasgoodinthespontaneoussamplesas
intheinducedsamples.Inourstudythetimefromcollec-
tiontoprocessingwasusuallyveryshort,whichcould
explainthehighviability.

Althoughagreementforindividualmeasurementswas
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taneoussputumcouldhavevalueforinstanceinserial
measurementsofspontaneoussputum,somethingour
studyisnotequippedtoassess.Also,althoughcompari-
sonsofinflammatorymarkersbetweenspontaneousand
inducedsputumisinvalidforsomemarkers,theymay
bevalidforothers.

Therearestillsparsedataonthesafetyoninduction
inpatientswithsevereCOPDduringexacerbations,and
inseveralstudiessputuminductionisperformedduring
exacerbationwithoutthepublishedreportingonpoten-
tialadverseeffectsontheprocedure[3,30,31].

InourstudywefoundstatisticaldifferencesinFEV1%
predicteddeclinebetweenpatientswithmoderateand
severe/verysevereCOPDonlyduringsteadystate,while
diseaseseveritydidnotaffectthedeclineduringexacerba-
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this may be due to lack of strength. Finally, the choice on
whether to induce or not during an exacerbation was based
on several subjective factors in addition to oxygen satur-
ation; most importantly patients’ willingness to be induced
and the clinicians’ evaluation regarding obstructivity. Thus,
it is impossible from this design to conclude that sputum
induction would be safe during all exacerbations.
Although more studies on the subject of whether spon-

taneous and induced sputum samples could be compared
was recommended already in 2002 [4], few studies have
yet been published. We have found one earlier report on
levels of IL-8 in spontaneous versus induced sputum that
showed no significant differences in IL-8 levels between
the two sputum types in COPD patients in stable state
[16]. Our study confirmed the results from this earlier
study, but in addition we were able to show that this is
true also during exacerbations. We have been unable to
find earlier reports on the relationship between levels of
inflammatory markers in spontaneous and induced
sputum for the remaining five inflammatory markers. To
our knowledge comparison of other inflammatory
markers in induced and spontaneous sputum sampled on
the same consultation has not been performed in patients
with obstructive pulmonary disease.
It has previously been shown that the sputum sampled

early during induction has a different consistency and
cell composition than sputum sampled late in the induc-
tion [24,25]. It is likely that more central airways are sam-
pled early, and would thus most resemble spontaneous
sputum. Thus, induced sputum is likely to sample a more
distal airways environment than spontaneous sputum.
Central and distal airways differ by epithelial components
[26], distribution of immune cells [27,28], and possibly re-
spiratory microbiome [29]. Thus, it is theoretically rather
likely that levels of inflammatory markers differ between
spontaneous and induced sputum samples. However, one
can argue that spontaneous sputum could be a favorable
alternative to induced sputum when patients find induc-
tion uncomfortable, or the safety of the induction is uncer-
tain, and enable sampling in primary healthcare settings
where induction is rarely if ever performed to our know-
ledge. Cell viability in spontaneous sputum has in some
studies been shown to be poorer than in induced sputum
samples [15,16]. Such was not the case in our samples,

where viability was as good in the spontaneous samples as
in the induced samples. In our study the time from collec-
tion to processing was usually very short, which could
explain the high viability.
Although agreement for individual measurements was

low, measuring levels of inflammatory markers in spon-
taneous sputum could have value for instance in serial
measurements of spontaneous sputum, something our
study is not equipped to assess. Also, although compari-
sons of inflammatory markers between spontaneous and
induced sputum is invalid for some markers, they may
be valid for others.
There are still sparse data on the safety on induction

in patients with severe COPD during exacerbations, and
in several studies sputum induction is performed during
exacerbation without the published reporting on poten-
tial adverse effects on the procedure [3,30,31].
In our study we found statistical differences in FEV1%

predicted decline between patients with moderate and
severe/very severe COPD only during steady state, while
disease severity did not affect the decline during exacerba-
tions. No adverse events were registered during either the
steady state or during exacerbations. This is in accordance
with other reports [7,11], but we expand by including pa-
tients with severe/very severe COPD. However, it should
be stressed that necessary precautions need to be taken
such as having access to acute rescue medications, and
that all inductions only should be performed by trained
medical personnel [32].
The results from the current study point toward a ne-

cessity for reporting on sampling methods when consider-
ing inflammatory markers in sputum samples collected
from COPD patients both during the steady state and dur-
ing acute exacerbations as the agreement was generally
low as assessed by Bland & Altman’s 95% limits of agree-
ment. Whether levels of inflammatory markers can be
compared between spontaneous and induced sputum
samples likely differ by each inflammatory marker in ques-
tion, and should be addressed within each study. In cases
where induced sputum sampling is impossible, spontan-
eous samples may have value if compared with other
spontaneous samples.

Abbreviations
BCCS: Bergen COPD cohort study; BCES: Bergen COPD exacerbation study;
COPD: Chronic obstructive pulmonary disease; DDT: Dithiothreitol;
GOLD: Global initiative for chronic obstructive lung disease; HI: Haemophilus
influenza; IL-6: Interleukin 6; IL-8: Interleukin 8; IL-18: Interleukin 18;
IP-10: Interferon gamma-inducible protein-10; MIG, Monokine induced by
gamma interferon; ISS: Induced sputum sampling; PBS: Phosphate-buffered
saline; SSS: Spontaneous sputum sampling; TNF-α: Tumornecrosis factor-
alpha.

Competing interests
The authors declare that they have no competing interests.

Table 5 Relative FEV1 decline in % predicted during
sputum induction

Exacerbations Steady state p
*

n = 63 n = 390

0.004

Median (IQR) 12.64(5.56-21.79) 18.75(11.11-25)

Mean (SD) 14.80(13.05) 18.51(11.44)
*
Wilcoxon sign rank test.

Tangedal et al. Respiratory Research 2014, 15:138 Page 7 of 8
http://respiratory-research.com/content/15/1/138

this may be due to lack of strength. Finally, the choice on
whether to induce or not during an exacerbation was based
on several subjective factors in addition to oxygen satur-
ation; most importantly patients’ willingness to be induced
and the clinicians’ evaluation regarding obstructivity. Thus,
it is impossible from this design to conclude that sputum
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pled early, and would thus most resemble spontaneous
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Central and distal airways differ by epithelial components
[26], distribution of immune cells [27,28], and possibly re-
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study is not equipped to assess. Also, although compari-
sons of inflammatory markers between spontaneous and
induced sputum is invalid for some markers, they may
be valid for others.
There are still sparse data on the safety on induction

in patients with severe COPD during exacerbations, and
in several studies sputum induction is performed during
exacerbation without the published reporting on poten-
tial adverse effects on the procedure [3,30,31].
In our study we found statistical differences in FEV1%

predicted decline between patients with moderate and
severe/very severe COPD only during steady state, while
disease severity did not affect the decline during exacerba-
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that all inductions only should be performed by trained
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thismaybeduetolackofstrength.Finally,thechoiceon
whethertoinduceornotduringanexacerbationwasbased
onseveralsubjectivefactorsinadditiontooxygensatur-
ation;mostimportantlypatients’willingnesstobeinduced
andtheclinicians’evaluationregardingobstructivity.Thus,
itisimpossiblefromthisdesigntoconcludethatsputum
inductionwouldbesafeduringallexacerbations.
Althoughmorestudiesonthesubjectofwhetherspon-

taneousandinducedsputumsamplescouldbecompared
wasrecommendedalreadyin2002[4],fewstudieshave
yetbeenpublished.Wehavefoundoneearlierreporton
levelsofIL-8inspontaneousversusinducedsputumthat
showednosignificantdifferencesinIL-8levelsbetween
thetwosputumtypesinCOPDpatientsinstablestate
[16].Ourstudyconfirmedtheresultsfromthisearlier
study,butinadditionwewereabletoshowthatthisis
truealsoduringexacerbations.Wehavebeenunableto
findearlierreportsontherelationshipbetweenlevelsof
inflammatorymarkersinspontaneousandinduced
sputumfortheremainingfiveinflammatorymarkers.To
ourknowledgecomparisonofotherinflammatory
markersininducedandspontaneoussputumsampledon
thesameconsultationhasnotbeenperformedinpatients
withobstructivepulmonarydisease.
Ithaspreviouslybeenshownthatthesputumsampled

earlyduringinductionhasadifferentconsistencyand
cellcompositionthansputumsampledlateintheinduc-
tion[24,25].Itislikelythatmorecentralairwaysaresam-
pledearly,andwouldthusmostresemblespontaneous
sputum.Thus,inducedsputumislikelytosampleamore
distalairwaysenvironmentthanspontaneoussputum.
Centralanddistalairwaysdifferbyepithelialcomponents
[26],distributionofimmunecells[27,28],andpossiblyre-
spiratorymicrobiome[29].Thus,itistheoreticallyrather
likelythatlevelsofinflammatorymarkersdifferbetween
spontaneousandinducedsputumsamples.However,one
canarguethatspontaneoussputumcouldbeafavorable
alternativetoinducedsputumwhenpatientsfindinduc-
tionuncomfortable,orthesafetyoftheinductionisuncer-
tain,andenablesamplinginprimaryhealthcaresettings
whereinductionisrarelyifeverperformedtoourknow-
ledge.Cellviabilityinspontaneoussputumhasinsome
studiesbeenshowntobepoorerthanininducedsputum
samples[15,16].Suchwasnotthecaseinoursamples,

whereviabilitywasasgoodinthespontaneoussamplesas
intheinducedsamples.Inourstudythetimefromcollec-
tiontoprocessingwasusuallyveryshort,whichcould
explainthehighviability.
Althoughagreementforindividualmeasurementswas

low,measuringlevelsofinflammatorymarkersinspon-
taneoussputumcouldhavevalueforinstanceinserial
measurementsofspontaneoussputum,somethingour
studyisnotequippedtoassess.Also,althoughcompari-
sonsofinflammatorymarkersbetweenspontaneousand
inducedsputumisinvalidforsomemarkers,theymay
bevalidforothers.
Therearestillsparsedataonthesafetyoninduction

inpatientswithsevereCOPDduringexacerbations,and
inseveralstudiessputuminductionisperformedduring
exacerbationwithoutthepublishedreportingonpoten-
tialadverseeffectsontheprocedure[3,30,31].
InourstudywefoundstatisticaldifferencesinFEV1%

predicteddeclinebetweenpatientswithmoderateand
severe/verysevereCOPDonlyduringsteadystate,while
diseaseseveritydidnotaffectthedeclineduringexacerba-
tions.Noadverseeventswereregisteredduringeitherthe
steadystateorduringexacerbations.Thisisinaccordance
withotherreports[7,11],butweexpandbyincludingpa-
tientswithsevere/verysevereCOPD.However,itshould
bestressedthatnecessaryprecautionsneedtobetaken
suchashavingaccesstoacuterescuemedications,and
thatallinductionsonlyshouldbeperformedbytrained
medicalpersonnel[32].
Theresultsfromthecurrentstudypointtowardane-

cessityforreportingonsamplingmethodswhenconsider-
inginflammatorymarkersinsputumsamplescollected
fromCOPDpatientsbothduringthesteadystateanddur-
ingacuteexacerbationsastheagreementwasgenerally
lowasassessedbyBland&Altman’s95%limitsofagree-
ment.Whetherlevelsofinflammatorymarkerscanbe
comparedbetweenspontaneousandinducedsputum
sampleslikelydifferbyeachinflammatorymarkerinques-
tion,andshouldbeaddressedwithineachstudy.Incases
whereinducedsputumsamplingisimpossible,spontan-
eoussamplesmayhavevalueifcomparedwithother
spontaneoussamples.
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pledearly,andwouldthusmostresemblespontaneous
sputum.Thus,inducedsputumislikelytosampleamore
distalairwaysenvironmentthanspontaneoussputum.
Centralanddistalairwaysdifferbyepithelialcomponents
[26],distributionofimmunecells[27,28],andpossiblyre-
spiratorymicrobiome[29].Thus,itistheoreticallyrather
likelythatlevelsofinflammatorymarkersdifferbetween
spontaneousandinducedsputumsamples.However,one
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thismaybeduetolackofstrength.Finally,thechoiceon
whethertoinduceornotduringanexacerbationwasbased
onseveralsubjectivefactorsinadditiontooxygensatur-
ation;mostimportantlypatients’willingnesstobeinduced
andtheclinicians’evaluationregardingobstructivity.Thus,
itisimpossiblefromthisdesigntoconcludethatsputum
inductionwouldbesafeduringallexacerbations.
Althoughmorestudiesonthesubjectofwhetherspon-

taneousandinducedsputumsamplescouldbecompared
wasrecommendedalreadyin2002[4],fewstudieshave
yetbeenpublished.Wehavefoundoneearlierreporton
levelsofIL-8inspontaneousversusinducedsputumthat
showednosignificantdifferencesinIL-8levelsbetween
thetwosputumtypesinCOPDpatientsinstablestate
[16].Ourstudyconfirmedtheresultsfromthisearlier
study,butinadditionwewereabletoshowthatthisis
truealsoduringexacerbations.Wehavebeenunableto
findearlierreportsontherelationshipbetweenlevelsof
inflammatorymarkersinspontaneousandinduced
sputumfortheremainingfiveinflammatorymarkers.To
ourknowledgecomparisonofotherinflammatory
markersininducedandspontaneoussputumsampledon
thesameconsultationhasnotbeenperformedinpatients
withobstructivepulmonarydisease.
Ithaspreviouslybeenshownthatthesputumsampled

earlyduringinductionhasadifferentconsistencyand
cellcompositionthansputumsampledlateintheinduc-
tion[24,25].Itislikelythatmorecentralairwaysaresam-
pledearly,andwouldthusmostresemblespontaneous
sputum.Thus,inducedsputumislikelytosampleamore
distalairwaysenvironmentthanspontaneoussputum.
Centralanddistalairwaysdifferbyepithelialcomponents
[26],distributionofimmunecells[27,28],andpossiblyre-
spiratorymicrobiome[29].Thus,itistheoreticallyrather
likelythatlevelsofinflammatorymarkersdifferbetween
spontaneousandinducedsputumsamples.However,one
canarguethatspontaneoussputumcouldbeafavorable
alternativetoinducedsputumwhenpatientsfindinduc-
tionuncomfortable,orthesafetyoftheinductionisuncer-
tain,andenablesamplinginprimaryhealthcaresettings
whereinductionisrarelyifeverperformedtoourknow-
ledge.Cellviabilityinspontaneoussputumhasinsome
studiesbeenshowntobepoorerthanininducedsputum
samples[15,16].Suchwasnotthecaseinoursamples,

whereviabilitywasasgoodinthespontaneoussamplesas
intheinducedsamples.Inourstudythetimefromcollec-
tiontoprocessingwasusuallyveryshort,whichcould
explainthehighviability.
Althoughagreementforindividualmeasurementswas

low,measuringlevelsofinflammatorymarkersinspon-
taneoussputumcouldhavevalueforinstanceinserial
measurementsofspontaneoussputum,somethingour
studyisnotequippedtoassess.Also,althoughcompari-
sonsofinflammatorymarkersbetweenspontaneousand
inducedsputumisinvalidforsomemarkers,theymay
bevalidforothers.
Therearestillsparsedataonthesafetyoninduction

inpatientswithsevereCOPDduringexacerbations,and
inseveralstudiessputuminductionisperformedduring
exacerbationwithoutthepublishedreportingonpoten-
tialadverseeffectsontheprocedure[3,30,31].
InourstudywefoundstatisticaldifferencesinFEV1%

predicteddeclinebetweenpatientswithmoderateand
severe/verysevereCOPDonlyduringsteadystate,while
diseaseseveritydidnotaffectthedeclineduringexacerba-
tions.Noadverseeventswereregisteredduringeitherthe
steadystateorduringexacerbations.Thisisinaccordance
withotherreports[7,11],butweexpandbyincludingpa-
tientswithsevere/verysevereCOPD.However,itshould
bestressedthatnecessaryprecautionsneedtobetaken
suchashavingaccesstoacuterescuemedications,and
thatallinductionsonlyshouldbeperformedbytrained
medicalpersonnel[32].
Theresultsfromthecurrentstudypointtowardane-

cessityforreportingonsamplingmethodswhenconsider-
inginflammatorymarkersinsputumsamplescollected
fromCOPDpatientsbothduringthesteadystateanddur-
ingacuteexacerbationsastheagreementwasgenerally
lowasassessedbyBland&Altman’s95%limitsofagree-
ment.Whetherlevelsofinflammatorymarkerscanbe
comparedbetweenspontaneousandinducedsputum
sampleslikelydifferbyeachinflammatorymarkerinques-
tion,andshouldbeaddressedwithineachstudy.Incases
whereinducedsputumsamplingisimpossible,spontan-
eoussamplesmayhavevalueifcomparedwithother
spontaneoussamples.
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Comparing microbiota profiles in induced
and spontaneous sputum samples in COPD
patients
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Per S. Bakke2 and Tomas M. Eagan1,2*

Abstract

Background: Induced and spontaneous sputum are used to evaluate the airways microbiota. Whether the sputum
types can be used interchangeably in microbiota research is unknown. Our aim was to compare microbiota in
induced and spontaneous sputum from COPD patients sampled during the same consultation.

Methods: COPD patients from Bergen, Norway, were followed between 2006/2010, examined during the stable
state and exacerbations. 30 patients delivered 36 sample pairs. DNA was extracted by enzymatic and mechanical
lysis methods. The V3-V4 region of the 16S rRNA gene was PCR-amplified and prepared for paired-end sequencing.
Illumina Miseq System was used for sequencing, and Quantitative Insights Into Microbial Ecology (QIIME) and Stata
were used for bioinformatics and statistical analyses.

Results: Approximately 4 million sequences were sorted into 1004 different OTUs and further assigned to 106 different
taxa. Pair-wise comparison of both taxonomic composition and beta-diversity revealed significant differences in one or
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Background
Chronic obstructive pulmonary disease (COPD) is char-
acterized by a chronic inflammation of the lower air-
ways, dominated by an influx of innate immune cells.
Recent marker-gene studies indicate the existence of a
pulmonary microbial flora (microbiota) present in both
health and disease [1]. The chronic inflammation seen in
COPD might be a consequence of a disrupted equilib-
rium between the pulmonary microbiota and the innate
immune system. To explore this hypothesis, accurate
measurements of the microbiota during both stable state

and acute exacerbation of chronic obstructive pulmon-
ary disease (AECOPD) are necessary.
The emerging gold standard for exploring the micro-

biota in the lower airways with minimal oral contamin-
ation is through bronchoscopy, but this is impossible
during most AECOPD. Collecting induced sputum sam-
ples (ISS) is therefore a standardized sampling method
of choice [2]. However, in several studies spontaneous
sputum samples (SSS) have also been used since they are
easier to retrieve [3, 4]. The validity of SSS with regard
to microbiota studies is uncertain to date. Two previous
studies have compared the microbial composition in ISS
and SSS samples from cystic fibrosis (CF) patients, find-
ing comparable results between the two methods [5, 6].
However, CF patients usually produce more sputum
spontaneously, have a relatively high biomass in the
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Background:Inducedandspontaneoussputumareusedtoevaluatetheairwaysmicrobiota.Whetherthesputum
typescanbeusedinterchangeablyinmicrobiotaresearchisunknown.Ouraimwastocomparemicrobiotain
inducedandspontaneoussputumfromCOPDpatientssampledduringthesameconsultation.

Methods:COPDpatientsfromBergen,Norway,werefollowedbetween2006/2010,examinedduringthestable
stateandexacerbations.30patientsdelivered36samplepairs.DNAwasextractedbyenzymaticandmechanical
lysismethods.TheV3-V4regionofthe16SrRNAgenewasPCR-amplifiedandpreparedforpaired-endsequencing.
IlluminaMiseqSystemwasusedforsequencing,andQuantitativeInsightsIntoMicrobialEcology(QIIME)andStata
wereusedforbioinformaticsandstatisticalanalyses.

Results:Approximately4millionsequencesweresortedinto1004differentOTUsandfurtherassignedto106different
taxa.Pair-wisecomparisonofbothtaxonomiccompositionandbeta-diversityrevealedsignificantdifferencesinoneor
bothparametersin1/3ofsamplepairs.Alpha-diversitydidnotdiffer.Comparingabundancesforeachtaxaidentified,
showedstatisticallysignificantdifferencesbetweenthemeanabundancesininducedversusspontaneoussamplesfor
15taxawhendiseasestatewasconsidered.ThisincludedpotentialpathogenslikeHaemophilusandMoraxella.

Conclusion:Whenstudyingmicrobiotainsputumsamplesoneshouldtakeintoconsiderationhowsamplesare
collectedandavoidtheusageofbothinducedandspontaneoussputuminthesamestudy.
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Background
Chronicobstructivepulmonarydisease(COPD)ischar-
acterizedbyachronicinflammationofthelowerair-
ways,dominatedbyaninfluxofinnateimmunecells.
Recentmarker-genestudiesindicatetheexistenceofa
pulmonarymicrobialflora(microbiota)presentinboth
healthanddisease[1].Thechronicinflammationseenin
COPDmightbeaconsequenceofadisruptedequilib-
riumbetweenthepulmonarymicrobiotaandtheinnate
immunesystem.Toexplorethishypothesis,accurate
measurementsofthemicrobiotaduringbothstablestate

andacuteexacerbationofchronicobstructivepulmon-
arydisease(AECOPD)arenecessary.

Theemerginggoldstandardforexploringthemicro-
biotainthelowerairwayswithminimaloralcontamin-
ationisthroughbronchoscopy,butthisisimpossible
duringmostAECOPD.Collectinginducedsputumsam-
ples(ISS)isthereforeastandardizedsamplingmethod
ofchoice[2].However,inseveralstudiesspontaneous
sputumsamples(SSS)havealsobeenusedsincetheyare
easiertoretrieve[3,4].ThevalidityofSSSwithregard
tomicrobiotastudiesisuncertaintodate.Twoprevious
studieshavecomparedthemicrobialcompositioninISS
andSSSsamplesfromcysticfibrosis(CF)patients,find-
ingcomparableresultsbetweenthetwomethods[5,6].
However,CFpatientsusuallyproducemoresputum
spontaneously,havearelativelyhighbiomassinthe
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Abstract

Background: Induced and spontaneous sputum are used to evaluate the airways microbiota. Whether the sputum
types can be used interchangeably in microbiota research is unknown. Our aim was to compare microbiota in
induced and spontaneous sputum from COPD patients sampled during the same consultation.

Methods: COPD patients from Bergen, Norway, were followed between 2006/2010, examined during the stable
state and exacerbations. 30 patients delivered 36 sample pairs. DNA was extracted by enzymatic and mechanical
lysis methods. The V3-V4 region of the 16S rRNA gene was PCR-amplified and prepared for paired-end sequencing.
Illumina Miseq System was used for sequencing, and Quantitative Insights Into Microbial Ecology (QIIME) and Stata
were used for bioinformatics and statistical analyses.

Results: Approximately 4 million sequences were sorted into 1004 different OTUs and further assigned to 106 different
taxa. Pair-wise comparison of both taxonomic composition and beta-diversity revealed significant differences in one or
both parameters in 1/3 of sample pairs. Alpha-diversity did not differ. Comparing abundances for each taxa identified,
showed statistically significant differences between the mean abundances in induced versus spontaneous samples for
15 taxa when disease state was considered. This included potential pathogens like Haemophilus and Moraxella.

Conclusion: When studying microbiota in sputum samples one should take into consideration how samples are
collected and avoid the usage of both induced and spontaneous sputum in the same study.
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Background
Chronic obstructive pulmonary disease (COPD) is char-
acterized by a chronic inflammation of the lower air-
ways, dominated by an influx of innate immune cells.
Recent marker-gene studies indicate the existence of a
pulmonary microbial flora (microbiota) present in both
health and disease [1]. The chronic inflammation seen in
COPD might be a consequence of a disrupted equilib-
rium between the pulmonary microbiota and the innate
immune system. To explore this hypothesis, accurate
measurements of the microbiota during both stable state

and acute exacerbation of chronic obstructive pulmon-
ary disease (AECOPD) are necessary.
The emerging gold standard for exploring the micro-

biota in the lower airways with minimal oral contamin-
ation is through bronchoscopy, but this is impossible
during most AECOPD. Collecting induced sputum sam-
ples (ISS) is therefore a standardized sampling method
of choice [2]. However, in several studies spontaneous
sputum samples (SSS) have also been used since they are
easier to retrieve [3, 4]. The validity of SSS with regard
to microbiota studies is uncertain to date. Two previous
studies have compared the microbial composition in ISS
and SSS samples from cystic fibrosis (CF) patients, find-
ing comparable results between the two methods [5, 6].
However, CF patients usually produce more sputum
spontaneously, have a relatively high biomass in the
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health and disease [1]. The chronic inflammation seen in
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measurements of the microbiota during both stable state
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of choice [2]. However, in several studies spontaneous
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lysismethods.TheV3-V4regionofthe16SrRNAgenewasPCR-amplifiedandpreparedforpaired-endsequencing.
IlluminaMiseqSystemwasusedforsequencing,andQuantitativeInsightsIntoMicrobialEcology(QIIME)andStata
wereusedforbioinformaticsandstatisticalanalyses.

Results:Approximately4millionsequencesweresortedinto1004differentOTUsandfurtherassignedto106different
taxa.Pair-wisecomparisonofbothtaxonomiccompositionandbeta-diversityrevealedsignificantdifferencesinoneor
bothparametersin1/3ofsamplepairs.Alpha-diversitydidnotdiffer.Comparingabundancesforeachtaxaidentified,
showedstatisticallysignificantdifferencesbetweenthemeanabundancesininducedversusspontaneoussamplesfor
15taxawhendiseasestatewasconsidered.ThisincludedpotentialpathogenslikeHaemophilusandMoraxella.
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Background
Chronicobstructivepulmonarydisease(COPD)ischar-
acterizedbyachronicinflammationofthelowerair-
ways,dominatedbyaninfluxofinnateimmunecells.
Recentmarker-genestudiesindicatetheexistenceofa
pulmonarymicrobialflora(microbiota)presentinboth
healthanddisease[1].Thechronicinflammationseenin
COPDmightbeaconsequenceofadisruptedequilib-
riumbetweenthepulmonarymicrobiotaandtheinnate
immunesystem.Toexplorethishypothesis,accurate
measurementsofthemicrobiotaduringbothstablestate

andacuteexacerbationofchronicobstructivepulmon-
arydisease(AECOPD)arenecessary.
Theemerginggoldstandardforexploringthemicro-

biotainthelowerairwayswithminimaloralcontamin-
ationisthroughbronchoscopy,butthisisimpossible
duringmostAECOPD.Collectinginducedsputumsam-
ples(ISS)isthereforeastandardizedsamplingmethod
ofchoice[2].However,inseveralstudiesspontaneous
sputumsamples(SSS)havealsobeenusedsincetheyare
easiertoretrieve[3,4].ThevalidityofSSSwithregard
tomicrobiotastudiesisuncertaintodate.Twoprevious
studieshavecomparedthemicrobialcompositioninISS
andSSSsamplesfromcysticfibrosis(CF)patients,find-
ingcomparableresultsbetweenthetwomethods[5,6].
However,CFpatientsusuallyproducemoresputum
spontaneously,havearelativelyhighbiomassinthe
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airways, and one of the cited studies used an earlier
method of bacterial profiling (Terminal Restriction Frag-
ment Length Polymorphism Profiling) [6], wheras the
other had only 15 sputum pairs [5]. The validity of SSS
with regard to 16S rRNA marker-gene based studies on
non-CF patients is unknown to date.
The Bergen COPD Cohort Study (BCCS) and its

adjunct Bergen COPD Exacerbation Study (BCES) offers
an opportunity to address this issue in COPD patients as
we have sampled sputum both induced and spontan-
eously in a number of our COPD patients repeatedly
during follow-up. We have previously shown that levels
of inflammatory markers differed between sputum types
in a study from the same population [7]. In the present
study we compared the taxonomic composition and
diversity measures in 36 sputum pairs consisting of SSS
and ISS sampled sequencially from COPD patients
either during AECOPD or at the stable state.

Methods
Study design
The current study sample consisted of 36 sputum pairs col-
lected from 30 COPD patients who participated in both the
BCCS & BCES. The study design and sampling of the
BCCS [8] and the BCES [7] has previously been described
in detail. The COPD patients had a smoking history of ≥10
pack-years, and a post-bronchodilation FEV1/FVC ratio < 0.7
and FEV1 < 80% predicted. Active autoimmune diseases or
cancer within the last 5 years were cause for non-inclusion.
A study physician examined and undertook a structured
interview of all patients upon inclusion and at half-yearly
follow-up visits when the patients were in the stable state.
Patients were instructed to contact the study-staff at

periods with worsening of symptoms (malaise, fever,
airway symptoms). The study physician offered a clinical
examination at the outpatient clinic, Dept. of Thoracic
Medicine, Haukeland University Hospital within 24 h of
contact, or on the first working day after the weekend.
Hospitalized patients were examined by a study
physician the first day after admission.
The study was approved by the regional ethical board

(REK-Vest), case number 165.08.

Sputum sampling and processing
Both sputum sampling and immediate processing have
been described in detail [7]. SSS was collected first from
patients expectorating. If the patient’s clinical state allowed
it, induction with hypertonic saline (3%) was performed.
Patients inhaled the saline for 7 min three times, and
sputum was collected and pooled after each inhalation.
Spirometric evaluations were performed before and after
each inhalation during induction (Vitalograph S-model
Vitalograph Ltd., Buckingham, England at regular visits in
the steady state, EasyOne model 2001 Ndd Medizintechnik

AG, Zurich, Switzerland at exacerbation visits). Sputum
samples were kept on ice until undergoing quality control
less than 30 min after sampling. For the sputum samples
to be considered of acceptable quality there had to be >1
million/mL cells, <20% epithelial cells and the leucocyte
viability had to be >30%. If the samples were of sufficient
quality, they were further treated by standard protocol [7]
to separate the supernatant from the cell pellet. All mate-
rials were aliqouted and frozen at −80 °C.

DNA extraction and 16S rRNA sequencing
The samples were thawed and treated with sputasol
(Oxoid). They underwent pre-lysis with Lysostaphin
(4000 U/mL), Lysozyme (10 mg/mL) and Mutanolysin
(25,000 U/mL) (Sigma-Aldrich). To avoid shearing of
free DNA each sample was centrifuged and supernatants
and pellets separated. The pellets underwent mechanical
and chemical lysis using the FastPrep-24 Instrument and
reagents from the FastDNA Spin Kit (MP Biomedicals,
LLC, Solon, OH, USA). Lysates and supernatants from
each sample were recombined and the extracted DNA
was further purified using the FastDNA Spin Kit. Library
preparation and sequencing of the V3-V4 region of the
16S rRNA gene was carried out according to the proto-
col for Metagenomic Sequencing Library Preparation for
the Illumina Miseq System (Part # 15044223 Rev. B,
MiSeq Reagent Kit v3). Amplicon PCR was carried out
with a total of 45 cycles and followed by Index PCR
using primers from the Nextera XT Index Kit (Illumina
Inc., San Diego. CA, USA). Pooled, normalized samples
went through 2 × 300 cycles of paired-end sequencing.
Each of the sample pairs were processed on the same
day, and for all pairs we used the same reagent kits
throughout DNA extraction, PCR and sequencing.

Bioinformatics analyses
FASTQ-files were computed using Quantitative Insights
Into Microbial Ecology (QIIME) v.1.9.1 [9, 10]. First,
forward and reverse reads were assembled, after which
sequences that did not pass quality demands as advised
by QIIME were removed [11]. The accepted sequences
were clustered into operational taxonomic units (OTUs)
through open reference OTU-picking using uclust
v.1.2.22 [12] and the GreenGenes Database v.13_08 [13].
The latter was also used for taxonomic assignment with
analyses performed on GreenGenes taxonomic level 6
(genus). The clustering was based on sequence similarity
with a threshold of 97%, which is considered the con-
ventional cut-off for 16S rRNA maker-gene surveys and
representative for bacterial species [14]. For each OTU a
representative sequence was aligned using PyNAST
v.1.2.2 [15], and sequences not successfully aligned were
omitted from further analyses. A phylogenetic tree was
built using FastTree v.2.1.3 [16]. Counts of observations
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airways,andoneofthecitedstudiesusedanearlier
methodofbacterialprofiling(TerminalRestrictionFrag-
mentLengthPolymorphismProfiling)[6],wherasthe
otherhadonly15sputumpairs[5].ThevalidityofSSS
withregardto16SrRNAmarker-genebasedstudieson
non-CFpatientsisunknowntodate.

TheBergenCOPDCohortStudy(BCCS)andits
adjunctBergenCOPDExacerbationStudy(BCES)offers
anopportunitytoaddressthisissueinCOPDpatientsas
wehavesampledsputumbothinducedandspontan-
eouslyinanumberofourCOPDpatientsrepeatedly
duringfollow-up.Wehavepreviouslyshownthatlevels
ofinflammatorymarkersdifferedbetweensputumtypes
inastudyfromthesamepopulation[7].Inthepresent
studywecomparedthetaxonomiccompositionand
diversitymeasuresin36sputumpairsconsistingofSSS
andISSsampledsequenciallyfromCOPDpatients
eitherduringAECOPDoratthestablestate.

Methods
Studydesign
Thecurrentstudysampleconsistedof36sputumpairscol-
lectedfrom30COPDpatientswhoparticipatedinboththe
BCCS&BCES.Thestudydesignandsamplingofthe
BCCS[8]andtheBCES[7]haspreviouslybeendescribed
indetail.TheCOPDpatientshadasmokinghistoryof≥10
pack-years,andapost-bronchodilationFEV1/FVCratio<0.7
andFEV1<80%predicted.Activeautoimmunediseasesor
cancerwithinthelast5yearswerecausefornon-inclusion.
Astudyphysicianexaminedandundertookastructured
interviewofallpatientsuponinclusionandathalf-yearly
follow-upvisitswhenthepatientswereinthestablestate.

Patientswereinstructedtocontactthestudy-staffat
periodswithworseningofsymptoms(malaise,fever,
airwaysymptoms).Thestudyphysicianofferedaclinical
examinationattheoutpatientclinic,Dept.ofThoracic
Medicine,HaukelandUniversityHospitalwithin24hof
contact,oronthefirstworkingdayaftertheweekend.
Hospitalizedpatientswereexaminedbyastudy
physicianthefirstdayafteradmission.

Thestudywasapprovedbytheregionalethicalboard
(REK-Vest),casenumber165.08.

Sputumsamplingandprocessing
Bothsputumsamplingandimmediateprocessinghave
beendescribedindetail[7].SSSwascollectedfirstfrom
patientsexpectorating.Ifthepatient’sclinicalstateallowed
it,inductionwithhypertonicsaline(3%)wasperformed.
Patientsinhaledthesalinefor7minthreetimes,and
sputumwascollectedandpooledaftereachinhalation.
Spirometricevaluationswereperformedbeforeandafter
eachinhalationduringinduction(VitalographS-model
VitalographLtd.,Buckingham,Englandatregularvisitsin
thesteadystate,EasyOnemodel2001NddMedizintechnik

AG,Zurich,Switzerlandatexacerbationvisits).Sputum
sampleswerekeptoniceuntilundergoingqualitycontrol
lessthan30minaftersampling.Forthesputumsamples
tobeconsideredofacceptablequalitytherehadtobe>1
million/mLcells,<20%epithelialcellsandtheleucocyte
viabilityhadtobe>30%.Ifthesampleswereofsufficient
quality,theywerefurthertreatedbystandardprotocol[7]
toseparatethesupernatantfromthecellpellet.Allmate-
rialswerealiqoutedandfrozenat−80°C.

DNAextractionand16SrRNAsequencing
Thesampleswerethawedandtreatedwithsputasol
(Oxoid).Theyunderwentpre-lysiswithLysostaphin
(4000U/mL),Lysozyme(10mg/mL)andMutanolysin
(25,000U/mL)(Sigma-Aldrich).Toavoidshearingof
freeDNAeachsamplewascentrifugedandsupernatants
andpelletsseparated.Thepelletsunderwentmechanical
andchemicallysisusingtheFastPrep-24Instrumentand
reagentsfromtheFastDNASpinKit(MPBiomedicals,
LLC,Solon,OH,USA).Lysatesandsupernatantsfrom
eachsamplewererecombinedandtheextractedDNA
wasfurtherpurifiedusingtheFastDNASpinKit.Library
preparationandsequencingoftheV3-V4regionofthe
16SrRNAgenewascarriedoutaccordingtotheproto-
colforMetagenomicSequencingLibraryPreparationfor
theIlluminaMiseqSystem(Part#15044223Rev.B,
MiSeqReagentKitv3).AmpliconPCRwascarriedout
withatotalof45cyclesandfollowedbyIndexPCR
usingprimersfromtheNexteraXTIndexKit(Illumina
Inc.,SanDiego.CA,USA).Pooled,normalizedsamples
wentthrough2×300cyclesofpaired-endsequencing.
Eachofthesamplepairswereprocessedonthesame
day,andforallpairsweusedthesamereagentkits
throughoutDNAextraction,PCRandsequencing.

Bioinformaticsanalyses
FASTQ-fileswerecomputedusingQuantitativeInsights
IntoMicrobialEcology(QIIME)v.1.9.1[9,10].First,
forwardandreversereadswereassembled,afterwhich
sequencesthatdidnotpassqualitydemandsasadvised
byQIIMEwereremoved[11].Theacceptedsequences
wereclusteredintooperationaltaxonomicunits(OTUs)
throughopenreferenceOTU-pickingusinguclust
v.1.2.22[12]andtheGreenGenesDatabasev.13_08[13].
Thelatterwasalsousedfortaxonomicassignmentwith
analysesperformedonGreenGenestaxonomiclevel6
(genus).Theclusteringwasbasedonsequencesimilarity
withathresholdof97%,whichisconsideredthecon-
ventionalcut-offfor16SrRNAmaker-genesurveysand
representativeforbacterialspecies[14].ForeachOTUa
representativesequencewasalignedusingPyNAST
v.1.2.2[15],andsequencesnotsuccessfullyalignedwere
omittedfromfurtheranalyses.Aphylogenetictreewas
builtusingFastTreev.2.1.3[16].Countsofobservations
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IntoMicrobialEcology(QIIME)v.1.9.1[9,10].First,
forwardandreversereadswereassembled,afterwhich
sequencesthatdidnotpassqualitydemandsasadvised
byQIIMEwereremoved[11].Theacceptedsequences
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throughopenreferenceOTU-pickingusinguclust
v.1.2.22[12]andtheGreenGenesDatabasev.13_08[13].
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v.1.2.2[15],andsequencesnotsuccessfullyalignedwere
omittedfromfurtheranalyses.Aphylogenetictreewas
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airways, and one of the cited studies used an earlier
method of bacterial profiling (Terminal Restriction Frag-
ment Length Polymorphism Profiling) [6], wheras the
other had only 15 sputum pairs [5]. The validity of SSS
with regard to 16S rRNA marker-gene based studies on
non-CF patients is unknown to date.
The Bergen COPD Cohort Study (BCCS) and its

adjunct Bergen COPD Exacerbation Study (BCES) offers
an opportunity to address this issue in COPD patients as
we have sampled sputum both induced and spontan-
eously in a number of our COPD patients repeatedly
during follow-up. We have previously shown that levels
of inflammatory markers differed between sputum types
in a study from the same population [7]. In the present
study we compared the taxonomic composition and
diversity measures in 36 sputum pairs consisting of SSS
and ISS sampled sequencially from COPD patients
either during AECOPD or at the stable state.

Methods
Study design
The current study sample consisted of 36 sputum pairs col-
lected from 30 COPD patients who participated in both the
BCCS & BCES. The study design and sampling of the
BCCS [8] and the BCES [7] has previously been described
in detail. The COPD patients had a smoking history of ≥10
pack-years, and a post-bronchodilation FEV1/FVC ratio < 0.7
and FEV1 < 80% predicted. Active autoimmune diseases or
cancer within the last 5 years were cause for non-inclusion.
A study physician examined and undertook a structured
interview of all patients upon inclusion and at half-yearly
follow-up visits when the patients were in the stable state.
Patients were instructed to contact the study-staff at

periods with worsening of symptoms (malaise, fever,
airway symptoms). The study physician offered a clinical
examination at the outpatient clinic, Dept. of Thoracic
Medicine, Haukeland University Hospital within 24 h of
contact, or on the first working day after the weekend.
Hospitalized patients were examined by a study
physician the first day after admission.
The study was approved by the regional ethical board

(REK-Vest), case number 165.08.

Sputum sampling and processing
Both sputum sampling and immediate processing have
been described in detail [7]. SSS was collected first from
patients expectorating. If the patient’s clinical state allowed
it, induction with hypertonic saline (3%) was performed.
Patients inhaled the saline for 7 min three times, and
sputum was collected and pooled after each inhalation.
Spirometric evaluations were performed before and after
each inhalation during induction (Vitalograph S-model
Vitalograph Ltd., Buckingham, England at regular visits in
the steady state, EasyOne model 2001 Ndd Medizintechnik

AG, Zurich, Switzerland at exacerbation visits). Sputum
samples were kept on ice until undergoing quality control
less than 30 min after sampling. For the sputum samples
to be considered of acceptable quality there had to be >1
million/mL cells, <20% epithelial cells and the leucocyte
viability had to be >30%. If the samples were of sufficient
quality, they were further treated by standard protocol [7]
to separate the supernatant from the cell pellet. All mate-
rials were aliqouted and frozen at −80 °C.

DNA extraction and 16S rRNA sequencing
The samples were thawed and treated with sputasol
(Oxoid). They underwent pre-lysis with Lysostaphin
(4000 U/mL), Lysozyme (10 mg/mL) and Mutanolysin
(25,000 U/mL) (Sigma-Aldrich). To avoid shearing of
free DNA each sample was centrifuged and supernatants
and pellets separated. The pellets underwent mechanical
and chemical lysis using the FastPrep-24 Instrument and
reagents from the FastDNA Spin Kit (MP Biomedicals,
LLC, Solon, OH, USA). Lysates and supernatants from
each sample were recombined and the extracted DNA
was further purified using the FastDNA Spin Kit. Library
preparation and sequencing of the V3-V4 region of the
16S rRNA gene was carried out according to the proto-
col for Metagenomic Sequencing Library Preparation for
the Illumina Miseq System (Part # 15044223 Rev. B,
MiSeq Reagent Kit v3). Amplicon PCR was carried out
with a total of 45 cycles and followed by Index PCR
using primers from the Nextera XT Index Kit (Illumina
Inc., San Diego. CA, USA). Pooled, normalized samples
went through 2 × 300 cycles of paired-end sequencing.
Each of the sample pairs were processed on the same
day, and for all pairs we used the same reagent kits
throughout DNA extraction, PCR and sequencing.

Bioinformatics analyses
FASTQ-files were computed using Quantitative Insights
Into Microbial Ecology (QIIME) v.1.9.1 [9, 10]. First,
forward and reverse reads were assembled, after which
sequences that did not pass quality demands as advised
by QIIME were removed [11]. The accepted sequences
were clustered into operational taxonomic units (OTUs)
through open reference OTU-picking using uclust
v.1.2.22 [12] and the GreenGenes Database v.13_08 [13].
The latter was also used for taxonomic assignment with
analyses performed on GreenGenes taxonomic level 6
(genus). The clustering was based on sequence similarity
with a threshold of 97%, which is considered the con-
ventional cut-off for 16S rRNA maker-gene surveys and
representative for bacterial species [14]. For each OTU a
representative sequence was aligned using PyNAST
v.1.2.2 [15], and sequences not successfully aligned were
omitted from further analyses. A phylogenetic tree was
built using FastTree v.2.1.3 [16]. Counts of observations
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in a study from the same population [7]. In the present
study we compared the taxonomic composition and
diversity measures in 36 sputum pairs consisting of SSS
and ISS sampled sequencially from COPD patients
either during AECOPD or at the stable state.

Methods
Study design
The current study sample consisted of 36 sputum pairs col-
lected from 30 COPD patients who participated in both the
BCCS & BCES. The study design and sampling of the
BCCS [8] and the BCES [7] has previously been described
in detail. The COPD patients had a smoking history of ≥10
pack-years, and a post-bronchodilation FEV1/FVC ratio < 0.7
and FEV1 < 80% predicted. Active autoimmune diseases or
cancer within the last 5 years were cause for non-inclusion.
A study physician examined and undertook a structured
interview of all patients upon inclusion and at half-yearly
follow-up visits when the patients were in the stable state.
Patients were instructed to contact the study-staff at

periods with worsening of symptoms (malaise, fever,
airway symptoms). The study physician offered a clinical
examination at the outpatient clinic, Dept. of Thoracic
Medicine, Haukeland University Hospital within 24 h of
contact, or on the first working day after the weekend.
Hospitalized patients were examined by a study
physician the first day after admission.
The study was approved by the regional ethical board

(REK-Vest), case number 165.08.

Sputum sampling and processing
Both sputum sampling and immediate processing have
been described in detail [7]. SSS was collected first from
patients expectorating. If the patient’s clinical state allowed
it, induction with hypertonic saline (3%) was performed.
Patients inhaled the saline for 7 min three times, and
sputum was collected and pooled after each inhalation.
Spirometric evaluations were performed before and after
each inhalation during induction (Vitalograph S-model
Vitalograph Ltd., Buckingham, England at regular visits in
the steady state, EasyOne model 2001 Ndd Medizintechnik

AG, Zurich, Switzerland at exacerbation visits). Sputum
samples were kept on ice until undergoing quality control
less than 30 min after sampling. For the sputum samples
to be considered of acceptable quality there had to be >1
million/mL cells, <20% epithelial cells and the leucocyte
viability had to be >30%. If the samples were of sufficient
quality, they were further treated by standard protocol [7]
to separate the supernatant from the cell pellet. All mate-
rials were aliqouted and frozen at −80 °C.

DNA extraction and 16S rRNA sequencing
The samples were thawed and treated with sputasol
(Oxoid). They underwent pre-lysis with Lysostaphin
(4000 U/mL), Lysozyme (10 mg/mL) and Mutanolysin
(25,000 U/mL) (Sigma-Aldrich). To avoid shearing of
free DNA each sample was centrifuged and supernatants
and pellets separated. The pellets underwent mechanical
and chemical lysis using the FastPrep-24 Instrument and
reagents from the FastDNA Spin Kit (MP Biomedicals,
LLC, Solon, OH, USA). Lysates and supernatants from
each sample were recombined and the extracted DNA
was further purified using the FastDNA Spin Kit. Library
preparation and sequencing of the V3-V4 region of the
16S rRNA gene was carried out according to the proto-
col for Metagenomic Sequencing Library Preparation for
the Illumina Miseq System (Part # 15044223 Rev. B,
MiSeq Reagent Kit v3). Amplicon PCR was carried out
with a total of 45 cycles and followed by Index PCR
using primers from the Nextera XT Index Kit (Illumina
Inc., San Diego. CA, USA). Pooled, normalized samples
went through 2 × 300 cycles of paired-end sequencing.
Each of the sample pairs were processed on the same
day, and for all pairs we used the same reagent kits
throughout DNA extraction, PCR and sequencing.

Bioinformatics analyses
FASTQ-files were computed using Quantitative Insights
Into Microbial Ecology (QIIME) v.1.9.1 [9, 10]. First,
forward and reverse reads were assembled, after which
sequences that did not pass quality demands as advised
by QIIME were removed [11]. The accepted sequences
were clustered into operational taxonomic units (OTUs)
through open reference OTU-picking using uclust
v.1.2.22 [12] and the GreenGenes Database v.13_08 [13].
The latter was also used for taxonomic assignment with
analyses performed on GreenGenes taxonomic level 6
(genus). The clustering was based on sequence similarity
with a threshold of 97%, which is considered the con-
ventional cut-off for 16S rRNA maker-gene surveys and
representative for bacterial species [14]. For each OTU a
representative sequence was aligned using PyNAST
v.1.2.2 [15], and sequences not successfully aligned were
omitted from further analyses. A phylogenetic tree was
built using FastTree v.2.1.3 [16]. Counts of observations
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airways,andoneofthecitedstudiesusedanearlier
methodofbacterialprofiling(TerminalRestrictionFrag-
mentLengthPolymorphismProfiling)[6],wherasthe
otherhadonly15sputumpairs[5].ThevalidityofSSS
withregardto16SrRNAmarker-genebasedstudieson
non-CFpatientsisunknowntodate.
TheBergenCOPDCohortStudy(BCCS)andits

adjunctBergenCOPDExacerbationStudy(BCES)offers
anopportunitytoaddressthisissueinCOPDpatientsas
wehavesampledsputumbothinducedandspontan-
eouslyinanumberofourCOPDpatientsrepeatedly
duringfollow-up.Wehavepreviouslyshownthatlevels
ofinflammatorymarkersdifferedbetweensputumtypes
inastudyfromthesamepopulation[7].Inthepresent
studywecomparedthetaxonomiccompositionand
diversitymeasuresin36sputumpairsconsistingofSSS
andISSsampledsequenciallyfromCOPDpatients
eitherduringAECOPDoratthestablestate.

Methods
Studydesign
Thecurrentstudysampleconsistedof36sputumpairscol-
lectedfrom30COPDpatientswhoparticipatedinboththe
BCCS&BCES.Thestudydesignandsamplingofthe
BCCS[8]andtheBCES[7]haspreviouslybeendescribed
indetail.TheCOPDpatientshadasmokinghistoryof≥10
pack-years,andapost-bronchodilationFEV1/FVCratio<0.7
andFEV1<80%predicted.Activeautoimmunediseasesor
cancerwithinthelast5yearswerecausefornon-inclusion.
Astudyphysicianexaminedandundertookastructured
interviewofallpatientsuponinclusionandathalf-yearly
follow-upvisitswhenthepatientswereinthestablestate.
Patientswereinstructedtocontactthestudy-staffat

periodswithworseningofsymptoms(malaise,fever,
airwaysymptoms).Thestudyphysicianofferedaclinical
examinationattheoutpatientclinic,Dept.ofThoracic
Medicine,HaukelandUniversityHospitalwithin24hof
contact,oronthefirstworkingdayaftertheweekend.
Hospitalizedpatientswereexaminedbyastudy
physicianthefirstdayafteradmission.
Thestudywasapprovedbytheregionalethicalboard

(REK-Vest),casenumber165.08.

Sputumsamplingandprocessing
Bothsputumsamplingandimmediateprocessinghave
beendescribedindetail[7].SSSwascollectedfirstfrom
patientsexpectorating.Ifthepatient’sclinicalstateallowed
it,inductionwithhypertonicsaline(3%)wasperformed.
Patientsinhaledthesalinefor7minthreetimes,and
sputumwascollectedandpooledaftereachinhalation.
Spirometricevaluationswereperformedbeforeandafter
eachinhalationduringinduction(VitalographS-model
VitalographLtd.,Buckingham,Englandatregularvisitsin
thesteadystate,EasyOnemodel2001NddMedizintechnik

AG,Zurich,Switzerlandatexacerbationvisits).Sputum
sampleswerekeptoniceuntilundergoingqualitycontrol
lessthan30minaftersampling.Forthesputumsamples
tobeconsideredofacceptablequalitytherehadtobe>1
million/mLcells,<20%epithelialcellsandtheleucocyte
viabilityhadtobe>30%.Ifthesampleswereofsufficient
quality,theywerefurthertreatedbystandardprotocol[7]
toseparatethesupernatantfromthecellpellet.Allmate-
rialswerealiqoutedandfrozenat−80°C.

DNAextractionand16SrRNAsequencing
Thesampleswerethawedandtreatedwithsputasol
(Oxoid).Theyunderwentpre-lysiswithLysostaphin
(4000U/mL),Lysozyme(10mg/mL)andMutanolysin
(25,000U/mL)(Sigma-Aldrich).Toavoidshearingof
freeDNAeachsamplewascentrifugedandsupernatants
andpelletsseparated.Thepelletsunderwentmechanical
andchemicallysisusingtheFastPrep-24Instrumentand
reagentsfromtheFastDNASpinKit(MPBiomedicals,
LLC,Solon,OH,USA).Lysatesandsupernatantsfrom
eachsamplewererecombinedandtheextractedDNA
wasfurtherpurifiedusingtheFastDNASpinKit.Library
preparationandsequencingoftheV3-V4regionofthe
16SrRNAgenewascarriedoutaccordingtotheproto-
colforMetagenomicSequencingLibraryPreparationfor
theIlluminaMiseqSystem(Part#15044223Rev.B,
MiSeqReagentKitv3).AmpliconPCRwascarriedout
withatotalof45cyclesandfollowedbyIndexPCR
usingprimersfromtheNexteraXTIndexKit(Illumina
Inc.,SanDiego.CA,USA).Pooled,normalizedsamples
wentthrough2×300cyclesofpaired-endsequencing.
Eachofthesamplepairswereprocessedonthesame
day,andforallpairsweusedthesamereagentkits
throughoutDNAextraction,PCRandsequencing.

Bioinformaticsanalyses
FASTQ-fileswerecomputedusingQuantitativeInsights
IntoMicrobialEcology(QIIME)v.1.9.1[9,10].First,
forwardandreversereadswereassembled,afterwhich
sequencesthatdidnotpassqualitydemandsasadvised
byQIIMEwereremoved[11].Theacceptedsequences
wereclusteredintooperationaltaxonomicunits(OTUs)
throughopenreferenceOTU-pickingusinguclust
v.1.2.22[12]andtheGreenGenesDatabasev.13_08[13].
Thelatterwasalsousedfortaxonomicassignmentwith
analysesperformedonGreenGenestaxonomiclevel6
(genus).Theclusteringwasbasedonsequencesimilarity
withathresholdof97%,whichisconsideredthecon-
ventionalcut-offfor16SrRNAmaker-genesurveysand
representativeforbacterialspecies[14].ForeachOTUa
representativesequencewasalignedusingPyNAST
v.1.2.2[15],andsequencesnotsuccessfullyalignedwere
omittedfromfurtheranalyses.Aphylogenetictreewas
builtusingFastTreev.2.1.3[16].Countsofobservations
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(OTUs) on a per-sample basis were stored in Biological
Observation Matrix (BIOM) format and OTUs contain-
ing less than 0.005% of the total number of sequences
were removed according to QIIME guidelines [10, 11].

Statistical analyses
Comparisons of the taxonomic distribution between
pairs were performed both by calculating the Yue-
Clayton measure of dissimilarity (1-θYC - range 0 to 1; 0
indicates perfect similarity, 1 perfect dissimilarity) [17],
and using limits of agreement (LOA) calculated from
Bland-Altman plots [18, 19]. Both methods allow evalu-
ation of quantitative differences within each pair.
The mean number of sequences allocated to each identi-

fied taxa in the 36 ISS was compared to that found in the
36 SSS, using log-likelihood ratio tests with Bonferroni cor-
rected p-values due to multiple comparisons. The compari-
sons were made between samples normalized through
rarefaction with random subsampling without replacement.
Comparisons of alpha- and beta-diversity were performed
on rarefied OTU-tables [20] with available statistical
analyses incorporated in QIIME-scripts. Alpha-diversity
(within-sample diversity) was estimated using Faith’s phylo-
genetic diversity, Chao1 and counts of observed OTUs.
Beta-diversity is a measure of diversity between samples.
To evaluate differences in phylogenetic, quantitative beta-
diversity pair-wise, weighted UniFrac (WUF) significance
tests were applied [21]. All 72 samples were compared gen-
erating 2556 comparisons, for which Bonferroni corrected
p-values were used.
Principal coordinates analysis (PCoA)-plots of WUF

distances between sampling methods were used for
visualization of distances in three-dimensional space
using Procrustes analyses and transformations of prin-
cipal coordinates 1-3 [22]. Analyses of similarities
(ANOSIM), were used to compare differences in beta-
diversity between ISS and SSS when samples were
grouped by type [23], both considering WUF and its quali-
tative equivalent unweighted UniFrac distances (UWUF).
Stata 13.1 (StataCorp LP. 2013. College Station, TX)

was used for generation of the Bland-Altman plots.
All relevant data were deposited at the Dryad Digital

Repository (www.datadryad.org) and are referenced in
the text using the following doi: http://dx.doi.org/
10.5061/dryad.5gc82.

Results
We obtained a total of 36 high-quality pairs of spu-
tum from 30 different COPD patients. Eleven patients
were women; two thirds of patients were aged 55-
64 years at inclusion. Patient characteristics are
summarized in Table 1.
After processing of the raw data, 1004 different OTUs

were identified with 2.5 of 4 million sequences belonging

to samples delivered at exacerbations (25 of the 36
sputum pairs).

Taxonomy
The 1004 OTUs identified by QIIME were sorted into
106 different taxa by QIIME’s taxonomic summary
command. First, we calculated the Yue-Clayton measure
of dissimilarity between the mean abundances of the
most dominating OTUs (each containing ≥1% of all
sequences) assigned to 11 different taxa in all ISS versus
all SSS. This represents a group comparison and not a
pair by pair comparison. The samples were then sorted
with regards to disease state at time of sampling. The
dissimilarity (1-θYC) measure was 0.04 when disease
state was not considered. For exacerbation samples the
dissimilarity (1-θYC) measure was also 0.04, and for
stable state samples 0.03. Performing the same analyses
including also low-abundance OTUs gave a dissimilarity

Table 1 Patient characteristics
n (%)

Sex

Women 11 (37%)

Men 19 (63%)

Age

40-54 years 4 (13%)

55 - 64 years 18 (60%)

65 - 75 years 8 (27%)

Body composition

Normal 21 (70%)

Obese 4 (13%)

Cachectic 5 (17%)

Smoking

Ex 18 (60%)

Current 12 (40%)

GOLD stage

II (FEV1 50-80%) 14 (47%)

III (FEV1 30-50%) 12 (40%)

IV (FEV1 < 30%) 4 (13%)

Frequent exacerbatora

No 20 (67%)

Yes 10 (33%)

Using inhaled steroids

No 6 (20%)

Yes 24 (80%)

Using antibioticsb

No 30 (100%)

Yes 0 (0%)
a>1 exacerbation last 12 months prior to inclusion
bAt time of sampling
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(OTUs)onaper-samplebasiswerestoredinBiological
ObservationMatrix(BIOM)formatandOTUscontain-
inglessthan0.005%ofthetotalnumberofsequences
wereremovedaccordingtoQIIMEguidelines[10,11].

Statisticalanalyses
Comparisonsofthetaxonomicdistributionbetween
pairswereperformedbothbycalculatingtheYue-
Claytonmeasureofdissimilarity(1-θYC-range0to1;0
indicatesperfectsimilarity,1perfectdissimilarity)[17],
andusinglimitsofagreement(LOA)calculatedfrom
Bland-Altmanplots[18,19].Bothmethodsallowevalu-
ationofquantitativedifferenceswithineachpair.

Themeannumberofsequencesallocatedtoeachidenti-
fiedtaxainthe36ISSwascomparedtothatfoundinthe
36SSS,usinglog-likelihoodratiotestswithBonferronicor-
rectedp-valuesduetomultiplecomparisons.Thecompari-
sonsweremadebetweensamplesnormalizedthrough
rarefactionwithrandomsubsamplingwithoutreplacement.
Comparisonsofalpha-andbeta-diversitywereperformed
onrarefiedOTU-tables[20]withavailablestatistical
analysesincorporatedinQIIME-scripts.Alpha-diversity
(within-samplediversity)wasestimatedusingFaith’sphylo-
geneticdiversity,Chao1andcountsofobservedOTUs.
Beta-diversityisameasureofdiversitybetweensamples.
Toevaluatedifferencesinphylogenetic,quantitativebeta-
diversitypair-wise,weightedUniFrac(WUF)significance
testswereapplied[21].All72sampleswerecomparedgen-
erating2556comparisons,forwhichBonferronicorrected
p-valueswereused.

Principalcoordinatesanalysis(PCoA)-plotsofWUF
distancesbetweensamplingmethodswereusedfor
visualizationofdistancesinthree-dimensionalspace
usingProcrustesanalysesandtransformationsofprin-
cipalcoordinates1-3[22].Analysesofsimilarities
(ANOSIM),wereusedtocomparedifferencesinbeta-
diversitybetweenISSandSSSwhensampleswere
groupedbytype[23],bothconsideringWUFanditsquali-
tativeequivalentunweightedUniFracdistances(UWUF).

Stata13.1(StataCorpLP.2013.CollegeStation,TX)
wasusedforgenerationoftheBland-Altmanplots.

AllrelevantdataweredepositedattheDryadDigital
Repository(www.datadryad.org)andarereferencedin
thetextusingthefollowingdoi:http://dx.doi.org/
10.5061/dryad.5gc82.

Results
Weobtainedatotalof36high-qualitypairsofspu-
tumfrom30differentCOPDpatients.Elevenpatients
werewomen;twothirdsofpatientswereaged55-
64yearsatinclusion.Patientcharacteristicsare
summarizedinTable1.

Afterprocessingoftherawdata,1004differentOTUs
wereidentifiedwith2.5of4millionsequencesbelonging

tosamplesdeliveredatexacerbations(25ofthe36
sputumpairs).

Taxonomy
The1004OTUsidentifiedbyQIIMEweresortedinto
106differenttaxabyQIIME’staxonomicsummary
command.First,wecalculatedtheYue-Claytonmeasure
ofdissimilaritybetweenthemeanabundancesofthe
mostdominatingOTUs(eachcontaining≥1%ofall
sequences)assignedto11differenttaxainallISSversus
allSSS.Thisrepresentsagroupcomparisonandnota
pairbypaircomparison.Thesampleswerethensorted
withregardstodiseasestateattimeofsampling.The
dissimilarity(1-θYC)measurewas0.04whendisease
statewasnotconsidered.Forexacerbationsamplesthe
dissimilarity(1-θYC)measurewasalso0.04,andfor
stablestatesamples0.03.Performingthesameanalyses
includingalsolow-abundanceOTUsgaveadissimilarity
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bAttimeofsampling

Tangedaletal.RespiratoryResearch (2017) 18:164 Page3of9

(OTUs)onaper-samplebasiswerestoredinBiological
ObservationMatrix(BIOM)formatandOTUscontain-
inglessthan0.005%ofthetotalnumberofsequences
wereremovedaccordingtoQIIMEguidelines[10,11].

Statisticalanalyses
Comparisonsofthetaxonomicdistributionbetween
pairswereperformedbothbycalculatingtheYue-
Claytonmeasureofdissimilarity(1-θYC-range0to1;0
indicatesperfectsimilarity,1perfectdissimilarity)[17],
andusinglimitsofagreement(LOA)calculatedfrom
Bland-Altmanplots[18,19].Bothmethodsallowevalu-
ationofquantitativedifferenceswithineachpair.

Themeannumberofsequencesallocatedtoeachidenti-
fiedtaxainthe36ISSwascomparedtothatfoundinthe
36SSS,usinglog-likelihoodratiotestswithBonferronicor-
rectedp-valuesduetomultiplecomparisons.Thecompari-
sonsweremadebetweensamplesnormalizedthrough
rarefactionwithrandomsubsamplingwithoutreplacement.
Comparisonsofalpha-andbeta-diversitywereperformed
onrarefiedOTU-tables[20]withavailablestatistical
analysesincorporatedinQIIME-scripts.Alpha-diversity
(within-samplediversity)wasestimatedusingFaith’sphylo-
geneticdiversity,Chao1andcountsofobservedOTUs.
Beta-diversityisameasureofdiversitybetweensamples.
Toevaluatedifferencesinphylogenetic,quantitativebeta-
diversitypair-wise,weightedUniFrac(WUF)significance
testswereapplied[21].All72sampleswerecomparedgen-
erating2556comparisons,forwhichBonferronicorrected
p-valueswereused.

Principalcoordinatesanalysis(PCoA)-plotsofWUF
distancesbetweensamplingmethodswereusedfor
visualizationofdistancesinthree-dimensionalspace
usingProcrustesanalysesandtransformationsofprin-
cipalcoordinates1-3[22].Analysesofsimilarities
(ANOSIM),wereusedtocomparedifferencesinbeta-
diversitybetweenISSandSSSwhensampleswere
groupedbytype[23],bothconsideringWUFanditsquali-
tativeequivalentunweightedUniFracdistances(UWUF).

Stata13.1(StataCorpLP.2013.CollegeStation,TX)
wasusedforgenerationoftheBland-Altmanplots.

AllrelevantdataweredepositedattheDryadDigital
Repository(www.datadryad.org)andarereferencedin
thetextusingthefollowingdoi:http://dx.doi.org/
10.5061/dryad.5gc82.

Results
Weobtainedatotalof36high-qualitypairsofspu-
tumfrom30differentCOPDpatients.Elevenpatients
werewomen;twothirdsofpatientswereaged55-
64yearsatinclusion.Patientcharacteristicsare
summarizedinTable1.

Afterprocessingoftherawdata,1004differentOTUs
wereidentifiedwith2.5of4millionsequencesbelonging

tosamplesdeliveredatexacerbations(25ofthe36
sputumpairs).

Taxonomy
The1004OTUsidentifiedbyQIIMEweresortedinto
106differenttaxabyQIIME’staxonomicsummary
command.First,wecalculatedtheYue-Claytonmeasure
ofdissimilaritybetweenthemeanabundancesofthe
mostdominatingOTUs(eachcontaining≥1%ofall
sequences)assignedto11differenttaxainallISSversus
allSSS.Thisrepresentsagroupcomparisonandnota
pairbypaircomparison.Thesampleswerethensorted
withregardstodiseasestateattimeofsampling.The
dissimilarity(1-θYC)measurewas0.04whendisease
statewasnotconsidered.Forexacerbationsamplesthe
dissimilarity(1-θYC)measurewasalso0.04,andfor
stablestatesamples0.03.Performingthesameanalyses
includingalsolow-abundanceOTUsgaveadissimilarity

Table1Patientcharacteristics
n(%)

Sex

Women11(37%)

Men19(63%)

Age

40-54years4(13%)

55-64years18(60%)

65-75years8(27%)

Bodycomposition

Normal21(70%)

Obese4(13%)

Cachectic5(17%)

Smoking

Ex18(60%)

Current12(40%)

GOLDstage

II(FEV150-80%)14(47%)

III(FEV130-50%)12(40%)

IV(FEV1<30%)4(13%)

Frequentexacerbatora

No20(67%)

Yes10(33%)

Usinginhaledsteroids

No6(20%)

Yes24(80%)

Usingantibioticsb

No30(100%)

Yes0(0%)
a>1exacerbationlast12monthspriortoinclusion
bAttimeofsampling

Tangedaletal.RespiratoryResearch (2017) 18:164 Page3of9

(OTUs) on a per-sample basis were stored in Biological
Observation Matrix (BIOM) format and OTUs contain-
ing less than 0.005% of the total number of sequences
were removed according to QIIME guidelines [10, 11].

Statistical analyses
Comparisons of the taxonomic distribution between
pairs were performed both by calculating the Yue-
Clayton measure of dissimilarity (1-θYC - range 0 to 1; 0
indicates perfect similarity, 1 perfect dissimilarity) [17],
and using limits of agreement (LOA) calculated from
Bland-Altman plots [18, 19]. Both methods allow evalu-
ation of quantitative differences within each pair.
The mean number of sequences allocated to each identi-

fied taxa in the 36 ISS was compared to that found in the
36 SSS, using log-likelihood ratio tests with Bonferroni cor-
rected p-values due to multiple comparisons. The compari-
sons were made between samples normalized through
rarefaction with random subsampling without replacement.
Comparisons of alpha- and beta-diversity were performed
on rarefied OTU-tables [20] with available statistical
analyses incorporated in QIIME-scripts. Alpha-diversity
(within-sample diversity) was estimated using Faith’s phylo-
genetic diversity, Chao1 and counts of observed OTUs.
Beta-diversity is a measure of diversity between samples.
To evaluate differences in phylogenetic, quantitative beta-
diversity pair-wise, weighted UniFrac (WUF) significance
tests were applied [21]. All 72 samples were compared gen-
erating 2556 comparisons, for which Bonferroni corrected
p-values were used.
Principal coordinates analysis (PCoA)-plots of WUF

distances between sampling methods were used for
visualization of distances in three-dimensional space
using Procrustes analyses and transformations of prin-
cipal coordinates 1-3 [22]. Analyses of similarities
(ANOSIM), were used to compare differences in beta-
diversity between ISS and SSS when samples were
grouped by type [23], both considering WUF and its quali-
tative equivalent unweighted UniFrac distances (UWUF).
Stata 13.1 (StataCorp LP. 2013. College Station, TX)

was used for generation of the Bland-Altman plots.
All relevant data were deposited at the Dryad Digital

Repository (www.datadryad.org) and are referenced in
the text using the following doi: http://dx.doi.org/
10.5061/dryad.5gc82.

Results
We obtained a total of 36 high-quality pairs of spu-
tum from 30 different COPD patients. Eleven patients
were women; two thirds of patients were aged 55-
64 years at inclusion. Patient characteristics are
summarized in Table 1.
After processing of the raw data, 1004 different OTUs

were identified with 2.5 of 4 million sequences belonging

to samples delivered at exacerbations (25 of the 36
sputum pairs).

Taxonomy
The 1004 OTUs identified by QIIME were sorted into
106 different taxa by QIIME’s taxonomic summary
command. First, we calculated the Yue-Clayton measure
of dissimilarity between the mean abundances of the
most dominating OTUs (each containing ≥1% of all
sequences) assigned to 11 different taxa in all ISS versus
all SSS. This represents a group comparison and not a
pair by pair comparison. The samples were then sorted
with regards to disease state at time of sampling. The
dissimilarity (1-θYC) measure was 0.04 when disease
state was not considered. For exacerbation samples the
dissimilarity (1-θYC) measure was also 0.04, and for
stable state samples 0.03. Performing the same analyses
including also low-abundance OTUs gave a dissimilarity
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ing less than 0.005% of the total number of sequences
were removed according to QIIME guidelines [10, 11].
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pairs were performed both by calculating the Yue-
Clayton measure of dissimilarity (1-θYC - range 0 to 1; 0
indicates perfect similarity, 1 perfect dissimilarity) [17],
and using limits of agreement (LOA) calculated from
Bland-Altman plots [18, 19]. Both methods allow evalu-
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The mean number of sequences allocated to each identi-

fied taxa in the 36 ISS was compared to that found in the
36 SSS, using log-likelihood ratio tests with Bonferroni cor-
rected p-values due to multiple comparisons. The compari-
sons were made between samples normalized through
rarefaction with random subsampling without replacement.
Comparisons of alpha- and beta-diversity were performed
on rarefied OTU-tables [20] with available statistical
analyses incorporated in QIIME-scripts. Alpha-diversity
(within-sample diversity) was estimated using Faith’s phylo-
genetic diversity, Chao1 and counts of observed OTUs.
Beta-diversity is a measure of diversity between samples.
To evaluate differences in phylogenetic, quantitative beta-
diversity pair-wise, weighted UniFrac (WUF) significance
tests were applied [21]. All 72 samples were compared gen-
erating 2556 comparisons, for which Bonferroni corrected
p-values were used.
Principal coordinates analysis (PCoA)-plots of WUF

distances between sampling methods were used for
visualization of distances in three-dimensional space
using Procrustes analyses and transformations of prin-
cipal coordinates 1-3 [22]. Analyses of similarities
(ANOSIM), were used to compare differences in beta-
diversity between ISS and SSS when samples were
grouped by type [23], both considering WUF and its quali-
tative equivalent unweighted UniFrac distances (UWUF).
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of dissimilarity between the mean abundances of the
most dominating OTUs (each containing ≥1% of all
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all SSS. This represents a group comparison and not a
pair by pair comparison. The samples were then sorted
with regards to disease state at time of sampling. The
dissimilarity (1-θYC) measure was 0.04 when disease
state was not considered. For exacerbation samples the
dissimilarity (1-θYC) measure was also 0.04, and for
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(OTUs)onaper-samplebasiswerestoredinBiological
ObservationMatrix(BIOM)formatandOTUscontain-
inglessthan0.005%ofthetotalnumberofsequences
wereremovedaccordingtoQIIMEguidelines[10,11].

Statisticalanalyses
Comparisonsofthetaxonomicdistributionbetween
pairswereperformedbothbycalculatingtheYue-
Claytonmeasureofdissimilarity(1-θYC-range0to1;0
indicatesperfectsimilarity,1perfectdissimilarity)[17],
andusinglimitsofagreement(LOA)calculatedfrom
Bland-Altmanplots[18,19].Bothmethodsallowevalu-
ationofquantitativedifferenceswithineachpair.
Themeannumberofsequencesallocatedtoeachidenti-

fiedtaxainthe36ISSwascomparedtothatfoundinthe
36SSS,usinglog-likelihoodratiotestswithBonferronicor-
rectedp-valuesduetomultiplecomparisons.Thecompari-
sonsweremadebetweensamplesnormalizedthrough
rarefactionwithrandomsubsamplingwithoutreplacement.
Comparisonsofalpha-andbeta-diversitywereperformed
onrarefiedOTU-tables[20]withavailablestatistical
analysesincorporatedinQIIME-scripts.Alpha-diversity
(within-samplediversity)wasestimatedusingFaith’sphylo-
geneticdiversity,Chao1andcountsofobservedOTUs.
Beta-diversityisameasureofdiversitybetweensamples.
Toevaluatedifferencesinphylogenetic,quantitativebeta-
diversitypair-wise,weightedUniFrac(WUF)significance
testswereapplied[21].All72sampleswerecomparedgen-
erating2556comparisons,forwhichBonferronicorrected
p-valueswereused.
Principalcoordinatesanalysis(PCoA)-plotsofWUF

distancesbetweensamplingmethodswereusedfor
visualizationofdistancesinthree-dimensionalspace
usingProcrustesanalysesandtransformationsofprin-
cipalcoordinates1-3[22].Analysesofsimilarities
(ANOSIM),wereusedtocomparedifferencesinbeta-
diversitybetweenISSandSSSwhensampleswere
groupedbytype[23],bothconsideringWUFanditsquali-
tativeequivalentunweightedUniFracdistances(UWUF).
Stata13.1(StataCorpLP.2013.CollegeStation,TX)

wasusedforgenerationoftheBland-Altmanplots.
AllrelevantdataweredepositedattheDryadDigital

Repository(www.datadryad.org)andarereferencedin
thetextusingthefollowingdoi:http://dx.doi.org/
10.5061/dryad.5gc82.

Results
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tumfrom30differentCOPDpatients.Elevenpatients
werewomen;twothirdsofpatientswereaged55-
64yearsatinclusion.Patientcharacteristicsare
summarizedinTable1.
Afterprocessingoftherawdata,1004differentOTUs

wereidentifiedwith2.5of4millionsequencesbelonging

tosamplesdeliveredatexacerbations(25ofthe36
sputumpairs).
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106differenttaxabyQIIME’staxonomicsummary
command.First,wecalculatedtheYue-Claytonmeasure
ofdissimilaritybetweenthemeanabundancesofthe
mostdominatingOTUs(eachcontaining≥1%ofall
sequences)assignedto11differenttaxainallISSversus
allSSS.Thisrepresentsagroupcomparisonandnota
pairbypaircomparison.Thesampleswerethensorted
withregardstodiseasestateattimeofsampling.The
dissimilarity(1-θYC)measurewas0.04whendisease
statewasnotconsidered.Forexacerbationsamplesthe
dissimilarity(1-θYC)measurewasalso0.04,andfor
stablestatesamples0.03.Performingthesameanalyses
includingalsolow-abundanceOTUsgaveadissimilarity
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rectedp-valuesduetomultiplecomparisons.Thecompari-
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analysesincorporatedinQIIME-scripts.Alpha-diversity
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Toevaluatedifferencesinphylogenetic,quantitativebeta-
diversitypair-wise,weightedUniFrac(WUF)significance
testswereapplied[21].All72sampleswerecomparedgen-
erating2556comparisons,forwhichBonferronicorrected
p-valueswereused.
Principalcoordinatesanalysis(PCoA)-plotsofWUF

distancesbetweensamplingmethodswereusedfor
visualizationofdistancesinthree-dimensionalspace
usingProcrustesanalysesandtransformationsofprin-
cipalcoordinates1-3[22].Analysesofsimilarities
(ANOSIM),wereusedtocomparedifferencesinbeta-
diversitybetweenISSandSSSwhensampleswere
groupedbytype[23],bothconsideringWUFanditsquali-
tativeequivalentunweightedUniFracdistances(UWUF).
Stata13.1(StataCorpLP.2013.CollegeStation,TX)

wasusedforgenerationoftheBland-Altmanplots.
AllrelevantdataweredepositedattheDryadDigital

Repository(www.datadryad.org)andarereferencedin
thetextusingthefollowingdoi:http://dx.doi.org/
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Results
Weobtainedatotalof36high-qualitypairsofspu-
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summarizedinTable1.
Afterprocessingoftherawdata,1004differentOTUs

wereidentifiedwith2.5of4millionsequencesbelonging
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dissimilarity(1-θYC)measurewas0.04whendisease
statewasnotconsidered.Forexacerbationsamplesthe
dissimilarity(1-θYC)measurewasalso0.04,andfor
stablestatesamples0.03.Performingthesameanalyses
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(1-θYC) measure of 0.04 when all samples were included,
and 1-θYC of 0.04, and 0.05 for exacerbation and stable
samples respectively.
Taxonomic compositional differences within sample

pairs were visualized as bar graphs for the same 11 dom-
inating taxa (Fig. 1). As shown, there were obvious visual
differences within some pairs. 1-θYC was calculated both
for dominating OTUs exclusively, and for all OTUs.
When evaluating dissimilarities pair-wise for dominating
OTUs and their associated taxa, 1-θYC ranged from
<0.01 – 0.92 (Fig. 1). 1-θYC ranged from <0.01 – 0.58
when also including sparse OTUs and corresponding
taxa (data not shown). With 0.2 as limit for acceptable

within-pair 1-θYC, seven pairs were found dissimilar
regardless of OTU-abundance (pairs 8, 11, 19, 20, 27, 34
and 36), while four pairs were found dissimilar only if
filtering out low-abundance OTUs (pairs 6, 14, 24 and
28) or keeping low-abundance OTUs respectively (pairs
3, 13, 22 and 26).
To further assess differences in taxonomy between

sample pairs, one Bland-Altman plot of the relative
abundances of our 106 taxa was generated for each pair.
From the upper and lower 95% LOA, the range is calcu-
lated (upper-lower/100) corresponding to a number
between 0 and 1, where 0 indicates perfect agreement.
Using this approach, we found ranges in LOA between

Fig. 1 Compositional taxonomic differences for each sample pair** on genus level for the 11 most dominating taxa***. * Yue-Clayton dissimilarity = Range
0-1. **Pair 1-11: Stable state Pair 12-36: Exacerbation. ***OTUs containing <1% of sequences were omitted from the data before performing taxonomic
summaries (GreenGenes database level 6 = genus)
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(1-θYC)measureof0.04whenallsampleswereincluded,
and1-θYCof0.04,and0.05forexacerbationandstable
samplesrespectively.

Taxonomiccompositionaldifferenceswithinsample
pairswerevisualizedasbargraphsforthesame11dom-
inatingtaxa(Fig.1).Asshown,therewereobviousvisual
differenceswithinsomepairs.1-θYCwascalculatedboth
fordominatingOTUsexclusively,andforallOTUs.
Whenevaluatingdissimilaritiespair-wisefordominating
OTUsandtheirassociatedtaxa,1-θYCrangedfrom
<0.01–0.92(Fig.1).1-θYCrangedfrom<0.01–0.58
whenalsoincludingsparseOTUsandcorresponding
taxa(datanotshown).With0.2aslimitforacceptable

within-pair1-θYC,sevenpairswerefounddissimilar
regardlessofOTU-abundance(pairs8,11,19,20,27,34
and36),whilefourpairswerefounddissimilaronlyif
filteringoutlow-abundanceOTUs(pairs6,14,24and
28)orkeepinglow-abundanceOTUsrespectively(pairs
3,13,22and26).

Tofurtherassessdifferencesintaxonomybetween
samplepairs,oneBland-Altmanplotoftherelative
abundancesofour106taxawasgeneratedforeachpair.
Fromtheupperandlower95%LOA,therangeiscalcu-
lated(upper-lower/100)correspondingtoanumber
between0and1,where0indicatesperfectagreement.
Usingthisapproach,wefoundrangesinLOAbetween

Fig.1Compositionaltaxonomicdifferencesforeachsamplepair**ongenuslevelforthe11mostdominatingtaxa***.*Yue-Claytondissimilarity=Range
0-1.**Pair1-11:StablestatePair12-36:Exacerbation.***OTUscontaining<1%ofsequenceswereomittedfromthedatabeforeperformingtaxonomic
summaries(GreenGenesdatabaselevel6=genus)
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0.02-0.66 (Fig. 2). Setting an acceptable limit for LOA at
0.1 allows the relative abundance in each taxa to vary
from ISS to SSS by 10%. With this limit 13 pairs could
not be accepted as equal, including the seven pairs
found too different by 1-θYC regardless of OTU-
abundance (Fig. 2).
There were significant differences between the mean

abundances in induced versus spontaneous samples for 15
taxa in either the exacerbated or the stable state (Table 2).
For instance for the well known pathogenic Moraxella,
there were almost twice as many sequences in all spontan-
eous samples compared with all the induced samples both
during exacerbations and in the stable state (p < 0.001,
Table 2). Also Haemophilus was consistently more abun-
dant in spontaneous than in induced samples.

Diversity
No statistically significant differences were found in
alpha-diversity (Table 3).
However, we found statistically significant differences

(p < 0.01, Bonferroni corrected due to multiple compari-
sons) in the pair-wise quantitative, phylogenetic beta-
diversity as evaluated by weighted UniFrac for 9 pairs
(Pair 3, 14, 17, 19, 26, 30, 32, 33 and 36).
The principal coordinates analysis (PCoA) plots are

presented in Fig. 3.
Each dot represents the weighted UniFrac distance

diversity measure for each sample, and lines illustrating
the distance between paired sputum are shown (Blue
line attaches to ISS, red to SSS). The greater the
distance, the greater is the difference. Although this is a
two-dimensional visualization of a three-dimensional
calculation, Fig. 3 clearly shows that the distances be-
tween paired samples varied. A Monte Carlo simulation

with 1000 permutations was applied giving M2 = 0.5,
confirming the visual interpretation (Identical plots:
M2 = 0, if completely dissimilar M2 = 1).
Using analyses of similarities (ANOSIM), we found no

significant differences in means of beta-diversity (UWUF
and WUF) between ISS and SSS when samples were
grouped by type. This was true both in stable state and
at exacerbations (p > 0.05).

Discussion
This study on sputum samples collected sequentially
using two different methodologies from COPD patients
and treated equally by the same protocol shows that in
approximately 1/3 of sputum pairs either taxonomical
and/or diversity analyses differ significantly. Discordance
between induced and spontaneous samples were seen
both at exacerbations and during stable state.
The strength of the current study is the unique data

material; including induced and spontaneous sputum
samples collected simultaneously, treated by the same
protocol [7, 8], both at the stable state and during exac-
erbations. However, there are some methodological
issues to discuss. First, after either induction or through
sampling of spontaneous sputum, sputum was kept in a
clean collection dish, and material selected by trained
technicians for further analyses. This is the standard
approach [24], but entails a natural variation of sample
selection. However, there is no reason to believe the
judgment of the technician should differ between sample
types, and all other processing was the same for both
types of sputum.
Second, errors may occur during DNA extraction,

PCR or sequencing steps. All pairs were run simultan-
eously for all steps in the laboratory protocol, including
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foundtoodifferentby1-θYCregardlessofOTU-
abundance(Fig.2).

Thereweresignificantdifferencesbetweenthemean
abundancesininducedversusspontaneoussamplesfor15
taxaineithertheexacerbatedorthestablestate(Table2).
ForinstanceforthewellknownpathogenicMoraxella,
therewerealmosttwiceasmanysequencesinallspontan-
eoussamplescomparedwithalltheinducedsamplesboth
duringexacerbationsandinthestablestate(p<0.001,
Table2).AlsoHaemophiluswasconsistentlymoreabun-
dantinspontaneousthanininducedsamples.

Diversity
Nostatisticallysignificantdifferenceswerefoundin
alpha-diversity(Table3).

However,wefoundstatisticallysignificantdifferences
(p<0.01,Bonferronicorrectedduetomultiplecompari-
sons)inthepair-wisequantitative,phylogeneticbeta-
diversityasevaluatedbyweightedUniFracfor9pairs
(Pair3,14,17,19,26,30,32,33and36).

Theprincipalcoordinatesanalysis(PCoA)plotsare
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two-dimensionalvisualizationofathree-dimensional
calculation,Fig.3clearlyshowsthatthedistancesbe-
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with1000permutationswasappliedgivingM2=0.5,
confirmingthevisualinterpretation(Identicalplots:
M2=0,ifcompletelydissimilarM2=1).

Usinganalysesofsimilarities(ANOSIM),wefoundno
significantdifferencesinmeansofbeta-diversity(UWUF
andWUF)betweenISSandSSSwhensampleswere
groupedbytype.Thiswastruebothinstablestateand
atexacerbations(p>0.05).

Discussion
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samplescollectedsimultaneously,treatedbythesame
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erbations.However,therearesomemethodological
issuestodiscuss.First,aftereitherinductionorthrough
samplingofspontaneoussputum,sputumwaskeptina
cleancollectiondish,andmaterialselectedbytrained
techniciansforfurtheranalyses.Thisisthestandard
approach[24],butentailsanaturalvariationofsample
selection.However,thereisnoreasontobelievethe
judgmentofthetechnicianshoulddifferbetweensample
types,andallotherprocessingwasthesameforboth
typesofsputum.

Second,errorsmayoccurduringDNAextraction,
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0.02-0.66 (Fig. 2). Setting an acceptable limit for LOA at
0.1 allows the relative abundance in each taxa to vary
from ISS to SSS by 10%. With this limit 13 pairs could
not be accepted as equal, including the seven pairs
found too different by 1-θYC regardless of OTU-
abundance (Fig. 2).
There were significant differences between the mean

abundances in induced versus spontaneous samples for 15
taxa in either the exacerbated or the stable state (Table 2).
For instance for the well known pathogenic Moraxella,
there were almost twice as many sequences in all spontan-
eous samples compared with all the induced samples both
during exacerbations and in the stable state (p < 0.001,
Table 2). Also Haemophilus was consistently more abun-
dant in spontaneous than in induced samples.

Diversity
No statistically significant differences were found in
alpha-diversity (Table 3).
However, we found statistically significant differences

(p < 0.01, Bonferroni corrected due to multiple compari-
sons) in the pair-wise quantitative, phylogenetic beta-
diversity as evaluated by weighted UniFrac for 9 pairs
(Pair 3, 14, 17, 19, 26, 30, 32, 33 and 36).
The principal coordinates analysis (PCoA) plots are

presented in Fig. 3.
Each dot represents the weighted UniFrac distance

diversity measure for each sample, and lines illustrating
the distance between paired sputum are shown (Blue
line attaches to ISS, red to SSS). The greater the
distance, the greater is the difference. Although this is a
two-dimensional visualization of a three-dimensional
calculation, Fig. 3 clearly shows that the distances be-
tween paired samples varied. A Monte Carlo simulation

with 1000 permutations was applied giving M
2
= 0.5,

confirming the visual interpretation (Identical plots:
M

2
= 0, if completely dissimilar M

2
= 1).

Using analyses of similarities (ANOSIM), we found no
significant differences in means of beta-diversity (UWUF
and WUF) between ISS and SSS when samples were
grouped by type. This was true both in stable state and
at exacerbations (p > 0.05).

Discussion
This study on sputum samples collected sequentially
using two different methodologies from COPD patients
and treated equally by the same protocol shows that in
approximately 1/3 of sputum pairs either taxonomical
and/or diversity analyses differ significantly. Discordance
between induced and spontaneous samples were seen
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material; including induced and spontaneous sputum
samples collected simultaneously, treated by the same
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Thereweresignificantdifferencesbetweenthemean

abundancesininducedversusspontaneoussamplesfor15
taxaineithertheexacerbatedorthestablestate(Table2).
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duringexacerbationsandinthestablestate(p<0.001,
Table2).AlsoHaemophiluswasconsistentlymoreabun-
dantinspontaneousthanininducedsamples.
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sons)inthepair-wisequantitative,phylogeneticbeta-
diversityasevaluatedbyweightedUniFracfor9pairs
(Pair3,14,17,19,26,30,32,33and36).
Theprincipalcoordinatesanalysis(PCoA)plotsare
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diversitymeasureforeachsample,andlinesillustrating
thedistancebetweenpairedsputumareshown(Blue
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two-dimensionalvisualizationofathree-dimensional
calculation,Fig.3clearlyshowsthatthedistancesbe-
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andWUF)betweenISSandSSSwhensampleswere
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samplescollectedsimultaneously,treatedbythesame
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issuestodiscuss.First,aftereitherinductionorthrough
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cleancollectiondish,andmaterialselectedbytrained
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on the same flowcell in the Illumina MiSeq. However,
random errors could be a factor, and based on the plots
of the dominant taxa in Fig. 1, we chose the seven most
visually dissimilar pairs (pairs 11, 14, 19, 20, 26, 27 and
36) and three visually similar pairs (pairs 2, 5 and 29)
and redid the laboratory analyses. For only one of the 20
samples (pair 26, ISS) were the results convincingly
different visually from the first to the second run. Since
this was not a random selection, the likely error is much
lower than 5%, and we do not believe our results are
due to random laboratory error. For data analyses we
chose to keep the sequences from run two for the ten
re-run pairs.
Third, low biomass samples are prone to contamin-

ation from multiple sources during laboratory handling

[25]. Approaches to handle the potential contamination
include sequencing of known (“mock”) communities,
negative control samples, and manual curation of the
sequencing output. A potential contaminator in our
study is the saline used for induction. Unfortunately it
was not stored at the time the procedures were
performed, and so an important limitation to the current
study is that we were not been able to examine the influ-
ence of negative saline controls on our samples. All sam-
ples were treated exactly similar at all steps of analyses,
thus minimizing confounding from potential contamin-
ation. However, as the biomass and dilution of each
sample in a pair may differ, we cannot exclude that
samples could be differentially affected by contamination
from saline. Finally, as in other studies comparing

Table 2 Mean number of sequences per sample constituting the 15 taxaa found in significantly different amounts in induced and
spontaneous sputum from COPD patients with and without respect to disease state

All samples Exacerbation Stable state

Taxonomyb Induced Spontaneous pc Induced Spontaneous pc Induced Spontaneous pc

f_Prevotellaceae;g_Prevotella 2499.2 1760.3 <0.001 2633.1 1817.1 <0.001 2349.5 1763.0 <0.001

f_Pasteurellaceae;g_Haemophilus 1471.9 2440.3 <0.001 1308.2 2356.6 <0.001 1957.7 2859.8 <0.001

f_Moraxellaceae;g_Moraxella 259.2 542.3 <0.001 234.4 456.5 <0.001 353.9 798.0 0.001
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f_Veillonellaceae;g_Megasphaera 179.9 100.0 <0.001 201.9 111.5 <0.001 134.8 79.4 0.01

f_Corynebacteriaceae;g_
Corynebacterium

44.9 12.0 <0.001 60.3 14.9 <0.001

f_Oxalobacteraceae;g_Ralstonia 423.3 604.7 <0.001 331.8 213.3 <0.001

f_Comamonadaceae;g_Curvibacter 518.7 713.0 <0.001 430.7 269.5 <0.001

f_Leptotrichiaceae;g_Leptotrichia 171.8 95.2 <0.001

f_Neisseriaceae;g_Neisseria 344.5 149.8 <0.001

f_Gemellaceae;g_Gemella 84.9 16.5 <0.001

f_Gemellaceae;g_ 452.7 273.6 <0.001

f_Neisseriaceae;g_ 79.5 17.5 <0.001

f_Leptotrichiaceae;g_Leptotrichia 123.6 217.6 <0.001
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Table 3 Mean within sample diversity (alpha diversity) in induced versus spontaneous sputum in COPD by different alpha diversity
indices

All samples Exacerbation Stable state

Diversity Indices Induced Spontaneous pa Induced Spontaneous pa Induced Spontaneous pa

Faith’s Phylogenetic Diversity

mean (std) 56.9 (9.3) 56.2 (8.6) 0.7 57.3 (9.5) 56.2 (8.8) 0.7 57.1 (8.5) 56.6 (8.4) 0.9

Chao1

mean (std) 646.5 (116) 638.3 (107.5) 0.7 655.0 (118.5) 642.1 (105.1) 0.7 640.8 (110.4) 643.6 (105.3) 0.9
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onthesameflowcellintheIlluminaMiSeq.However,
randomerrorscouldbeafactor,andbasedontheplots
ofthedominanttaxainFig.1,wechosethesevenmost
visuallydissimilarpairs(pairs11,14,19,20,26,27and
36)andthreevisuallysimilarpairs(pairs2,5and29)
andredidthelaboratoryanalyses.Foronlyoneofthe20
samples(pair26,ISS)weretheresultsconvincingly
differentvisuallyfromthefirsttothesecondrun.Since
thiswasnotarandomselection,thelikelyerrorismuch
lowerthan5%,andwedonotbelieveourresultsare
duetorandomlaboratoryerror.Fordataanalyseswe
chosetokeepthesequencesfromruntwofortheten
re-runpairs.

Third,lowbiomasssamplesarepronetocontamin-
ationfrommultiplesourcesduringlaboratoryhandling

[25].Approachestohandlethepotentialcontamination
includesequencingofknown(“mock”)communities,
negativecontrolsamples,andmanualcurationofthe
sequencingoutput.Apotentialcontaminatorinour
studyisthesalineusedforinduction.Unfortunatelyit
wasnotstoredatthetimetheprocedureswere
performed,andsoanimportantlimitationtothecurrent
studyisthatwewerenotbeenabletoexaminetheinflu-
enceofnegativesalinecontrolsonoursamples.Allsam-
plesweretreatedexactlysimilaratallstepsofanalyses,
thusminimizingconfoundingfrompotentialcontamin-
ation.However,asthebiomassanddilutionofeach
sampleinapairmaydiffer,wecannotexcludethat
samplescouldbedifferentiallyaffectedbycontamination
fromsaline.Finally,asinotherstudiescomparing

Table2Meannumberofsequencespersampleconstitutingthe15taxaafoundinsignificantlydifferentamountsininducedand
spontaneoussputumfromCOPDpatientswithandwithoutrespecttodiseasestate

AllsamplesExacerbationStablestate

TaxonomybInducedSpontaneouspcInducedSpontaneouspcInducedSpontaneouspc

f_Prevotellaceae;g_Prevotella2499.21760.3<0.0012633.11817.1<0.0012349.51763.0<0.001

f_Pasteurellaceae;g_Haemophilus1471.92440.3<0.0011308.22356.6<0.0011957.72859.8<0.001

f_Moraxellaceae;g_Moraxella259.2542.3<0.001234.4456.5<0.001353.9798.00.001

f_Veillonellaceae;g_Veillonella1488.31170.8<0.0011618.81173.1<0.001

f_Veillonellaceae;g_Megasphaera179.9100.0<0.001201.9111.5<0.001134.879.40.01

f_Corynebacteriaceae;g_
Corynebacterium

44.912.0<0.00160.314.9<0.001

f_Oxalobacteraceae;g_Ralstonia423.3604.7<0.001331.8213.3<0.001

f_Comamonadaceae;g_Curvibacter518.7713.0<0.001430.7269.5<0.001

f_Leptotrichiaceae;g_Leptotrichia171.895.2<0.001

f_Neisseriaceae;g_Neisseria344.5149.8<0.001

f_Gemellaceae;g_Gemella84.916.5<0.001

f_Gemellaceae;g_452.7273.6<0.001

f_Neisseriaceae;g_79.517.5<0.001

f_Leptotrichiaceae;g_Leptotrichia123.6217.6<0.001

f_Actinomycetaceae;g_Actinomyces350.1256.00.001
aRarefiedOTU-tables:Sequences/Sample=18,250forAllsamplesandExacerbations,forStablestate:19,743
bGreenGenesLevel6:f_=Nameoffamilylevelg_=Nameofgenuslevel.Onehundredsixdifferenttaxaintotal
clog-likelihoodratiotest,Bonferronicorrectedduetomultiplecomparisons

Table3Meanwithinsamplediversity(alphadiversity)ininducedversusspontaneoussputuminCOPDbydifferentalphadiversity
indices

AllsamplesExacerbationStablestate

DiversityIndicesInducedSpontaneouspaInducedSpontaneouspaInducedSpontaneouspa

Faith’sPhylogeneticDiversity

mean(std)56.9(9.3)56.2(8.6)0.757.3(9.5)56.2(8.8)0.757.1(8.5)56.6(8.4)0.9

Chao1

mean(std)646.5(116)638.3(107.5)0.7655.0(118.5)642.1(105.1)0.7640.8(110.4)643.6(105.3)0.9

ObservedOTUs

mean(std)543.2(104.9)528.8(106.1)0.6552.9(105)534.3(107.1)0.6531.6(102.4)527.7(103.2)0.9
aNon-parametrictwo-samplet-testusingMonteCarlopermutations
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on the same flowcell in the Illumina MiSeq. However,
random errors could be a factor, and based on the plots
of the dominant taxa in Fig. 1, we chose the seven most
visually dissimilar pairs (pairs 11, 14, 19, 20, 26, 27 and
36) and three visually similar pairs (pairs 2, 5 and 29)
and redid the laboratory analyses. For only one of the 20
samples (pair 26, ISS) were the results convincingly
different visually from the first to the second run. Since
this was not a random selection, the likely error is much
lower than 5%, and we do not believe our results are
due to random laboratory error. For data analyses we
chose to keep the sequences from run two for the ten
re-run pairs.
Third, low biomass samples are prone to contamin-

ation from multiple sources during laboratory handling

[25]. Approaches to handle the potential contamination
include sequencing of known (“mock”) communities,
negative control samples, and manual curation of the
sequencing output. A potential contaminator in our
study is the saline used for induction. Unfortunately it
was not stored at the time the procedures were
performed, and so an important limitation to the current
study is that we were not been able to examine the influ-
ence of negative saline controls on our samples. All sam-
ples were treated exactly similar at all steps of analyses,
thus minimizing confounding from potential contamin-
ation. However, as the biomass and dilution of each
sample in a pair may differ, we cannot exclude that
samples could be differentially affected by contamination
from saline. Finally, as in other studies comparing

Table 2 Mean number of sequences per sample constituting the 15 taxa
a
found in significantly different amounts in induced and

spontaneous sputum from COPD patients with and without respect to disease state
All samples Exacerbation Stable state

Taxonomy
b

Induced Spontaneous p
c

Induced Spontaneous p
c

Induced Spontaneous p
c

f_Prevotellaceae;g_Prevotella 2499.2 1760.3 <0.001 2633.1 1817.1 <0.001 2349.5 1763.0 <0.001

f_Pasteurellaceae;g_Haemophilus 1471.9 2440.3 <0.001 1308.2 2356.6 <0.001 1957.7 2859.8 <0.001

f_Moraxellaceae;g_Moraxella 259.2 542.3 <0.001 234.4 456.5 <0.001 353.9 798.0 0.001

f_Veillonellaceae;g_Veillonella 1488.3 1170.8 <0.001 1618.8 1173.1 <0.001

f_Veillonellaceae;g_Megasphaera 179.9 100.0 <0.001 201.9 111.5 <0.001 134.8 79.4 0.01

f_Corynebacteriaceae;g_
Corynebacterium

44.9 12.0 <0.001 60.3 14.9 <0.001

f_Oxalobacteraceae;g_Ralstonia 423.3 604.7 <0.001 331.8 213.3 <0.001

f_Comamonadaceae;g_Curvibacter 518.7 713.0 <0.001 430.7 269.5 <0.001

f_Leptotrichiaceae;g_Leptotrichia 171.8 95.2 <0.001

f_Neisseriaceae;g_Neisseria 344.5 149.8 <0.001

f_Gemellaceae;g_Gemella 84.9 16.5 <0.001

f_Gemellaceae;g_ 452.7 273.6 <0.001

f_Neisseriaceae;g_ 79.5 17.5 <0.001

f_Leptotrichiaceae;g_Leptotrichia 123.6 217.6 <0.001

f_Actinomycetaceae;g_Actinomyces 350.1 256.0 0.001
a
Rarefied OTU-tables: Sequences/Sample = 18,250 for All samples and Exacerbations, for Stable state: 19,743
b
GreenGenes Level 6: f_ = Name of family level g_ = Name of genus level. One hundred six different taxa in total

c
log-likelihood ratio test, Bonferroni corrected due to multiple comparisons

Table 3 Mean within sample diversity (alpha diversity) in induced versus spontaneous sputum in COPD by different alpha diversity
indices
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Diversity Indices Induced Spontaneous p
a
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mean (std) 56.9 (9.3) 56.2 (8.6) 0.7 57.3 (9.5) 56.2 (8.8) 0.7 57.1 (8.5) 56.6 (8.4) 0.9
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mean (std) 646.5 (116) 638.3 (107.5) 0.7 655.0 (118.5) 642.1 (105.1) 0.7 640.8 (110.4) 643.6 (105.3) 0.9
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Non-parametric two-sample t-test using Monte Carlo permutations

Tangedal et al. Respiratory Research  (2017) 18:164 Page 6 of 9

on the same flowcell in the Illumina MiSeq. However,
random errors could be a factor, and based on the plots
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different visually from the first to the second run. Since
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lower than 5%, and we do not believe our results are
due to random laboratory error. For data analyses we
chose to keep the sequences from run two for the ten
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ation from multiple sources during laboratory handling
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include sequencing of known (“mock”) communities,
negative control samples, and manual curation of the
sequencing output. A potential contaminator in our
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ence of negative saline controls on our samples. All sam-
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samples could be differentially affected by contamination
from saline. Finally, as in other studies comparing

Table 2 Mean number of sequences per sample constituting the 15 taxa
a
found in significantly different amounts in induced and

spontaneous sputum from COPD patients with and without respect to disease state
All samples Exacerbation Stable state

Taxonomy
b

Induced Spontaneous p
c

Induced Spontaneous p
c

Induced Spontaneous p
c

f_Prevotellaceae;g_Prevotella 2499.2 1760.3 <0.001 2633.1 1817.1 <0.001 2349.5 1763.0 <0.001

f_Pasteurellaceae;g_Haemophilus 1471.9 2440.3 <0.001 1308.2 2356.6 <0.001 1957.7 2859.8 <0.001

f_Moraxellaceae;g_Moraxella 259.2 542.3 <0.001 234.4 456.5 <0.001 353.9 798.0 0.001

f_Veillonellaceae;g_Veillonella 1488.3 1170.8 <0.001 1618.8 1173.1 <0.001

f_Veillonellaceae;g_Megasphaera 179.9 100.0 <0.001 201.9 111.5 <0.001 134.8 79.4 0.01

f_Corynebacteriaceae;g_
Corynebacterium

44.9 12.0 <0.001 60.3 14.9 <0.001

f_Oxalobacteraceae;g_Ralstonia 423.3 604.7 <0.001 331.8 213.3 <0.001

f_Comamonadaceae;g_Curvibacter 518.7 713.0 <0.001 430.7 269.5 <0.001

f_Leptotrichiaceae;g_Leptotrichia 171.8 95.2 <0.001

f_Neisseriaceae;g_Neisseria 344.5 149.8 <0.001

f_Gemellaceae;g_Gemella 84.9 16.5 <0.001

f_Gemellaceae;g_ 452.7 273.6 <0.001

f_Neisseriaceae;g_ 79.5 17.5 <0.001

f_Leptotrichiaceae;g_Leptotrichia 123.6 217.6 <0.001

f_Actinomycetaceae;g_Actinomyces 350.1 256.0 0.001
a
Rarefied OTU-tables: Sequences/Sample = 18,250 for All samples and Exacerbations, for Stable state: 19,743
b
GreenGenes Level 6: f_ = Name of family level g_ = Name of genus level. One hundred six different taxa in total

c
log-likelihood ratio test, Bonferroni corrected due to multiple comparisons

Table 3 Mean within sample diversity (alpha diversity) in induced versus spontaneous sputum in COPD by different alpha diversity
indices

All samples Exacerbation Stable state

Diversity Indices Induced Spontaneous p
a

Induced Spontaneous p
a

Induced Spontaneous p
a

Faith’s Phylogenetic Diversity

mean (std) 56.9 (9.3) 56.2 (8.6) 0.7 57.3 (9.5) 56.2 (8.8) 0.7 57.1 (8.5) 56.6 (8.4) 0.9

Chao1

mean (std) 646.5 (116) 638.3 (107.5) 0.7 655.0 (118.5) 642.1 (105.1) 0.7 640.8 (110.4) 643.6 (105.3) 0.9

Observed OTUs

mean (std) 543.2 (104.9) 528.8 (106.1) 0.6 552.9 (105) 534.3 (107.1) 0.6 531.6 (102.4) 527.7 (103.2) 0.9
a
Non-parametric two-sample t-test using Monte Carlo permutations

Tangedal et al. Respiratory Research  (2017) 18:164 Page 6 of 9

onthesameflowcellintheIlluminaMiSeq.However,
randomerrorscouldbeafactor,andbasedontheplots
ofthedominanttaxainFig.1,wechosethesevenmost
visuallydissimilarpairs(pairs11,14,19,20,26,27and
36)andthreevisuallysimilarpairs(pairs2,5and29)
andredidthelaboratoryanalyses.Foronlyoneofthe20
samples(pair26,ISS)weretheresultsconvincingly
differentvisuallyfromthefirsttothesecondrun.Since
thiswasnotarandomselection,thelikelyerrorismuch
lowerthan5%,andwedonotbelieveourresultsare
duetorandomlaboratoryerror.Fordataanalyseswe
chosetokeepthesequencesfromruntwofortheten
re-runpairs.
Third,lowbiomasssamplesarepronetocontamin-

ationfrommultiplesourcesduringlaboratoryhandling

[25].Approachestohandlethepotentialcontamination
includesequencingofknown(“mock”)communities,
negativecontrolsamples,andmanualcurationofthe
sequencingoutput.Apotentialcontaminatorinour
studyisthesalineusedforinduction.Unfortunatelyit
wasnotstoredatthetimetheprocedureswere
performed,andsoanimportantlimitationtothecurrent
studyisthatwewerenotbeenabletoexaminetheinflu-
enceofnegativesalinecontrolsonoursamples.Allsam-
plesweretreatedexactlysimilaratallstepsofanalyses,
thusminimizingconfoundingfrompotentialcontamin-
ation.However,asthebiomassanddilutionofeach
sampleinapairmaydiffer,wecannotexcludethat
samplescouldbedifferentiallyaffectedbycontamination
fromsaline.Finally,asinotherstudiescomparing

Table2Meannumberofsequencespersampleconstitutingthe15taxa
a
foundinsignificantlydifferentamountsininducedand

spontaneoussputumfromCOPDpatientswithandwithoutrespecttodiseasestate
AllsamplesExacerbationStablestate

Taxonomy
b

InducedSpontaneousp
c

InducedSpontaneousp
c

InducedSpontaneousp
c

f_Prevotellaceae;g_Prevotella2499.21760.3<0.0012633.11817.1<0.0012349.51763.0<0.001

f_Pasteurellaceae;g_Haemophilus1471.92440.3<0.0011308.22356.6<0.0011957.72859.8<0.001

f_Moraxellaceae;g_Moraxella259.2542.3<0.001234.4456.5<0.001353.9798.00.001

f_Veillonellaceae;g_Veillonella1488.31170.8<0.0011618.81173.1<0.001

f_Veillonellaceae;g_Megasphaera179.9100.0<0.001201.9111.5<0.001134.879.40.01

f_Corynebacteriaceae;g_
Corynebacterium

44.912.0<0.00160.314.9<0.001

f_Oxalobacteraceae;g_Ralstonia423.3604.7<0.001331.8213.3<0.001

f_Comamonadaceae;g_Curvibacter518.7713.0<0.001430.7269.5<0.001

f_Leptotrichiaceae;g_Leptotrichia171.895.2<0.001

f_Neisseriaceae;g_Neisseria344.5149.8<0.001

f_Gemellaceae;g_Gemella84.916.5<0.001

f_Gemellaceae;g_452.7273.6<0.001

f_Neisseriaceae;g_79.517.5<0.001

f_Leptotrichiaceae;g_Leptotrichia123.6217.6<0.001

f_Actinomycetaceae;g_Actinomyces350.1256.00.001
a
RarefiedOTU-tables:Sequences/Sample=18,250forAllsamplesandExacerbations,forStablestate:19,743
b
GreenGenesLevel6:f_=Nameoffamilylevelg_=Nameofgenuslevel.Onehundredsixdifferenttaxaintotal

c
log-likelihoodratiotest,Bonferronicorrectedduetomultiplecomparisons

Table3Meanwithinsamplediversity(alphadiversity)ininducedversusspontaneoussputuminCOPDbydifferentalphadiversity
indices

AllsamplesExacerbationStablestate

DiversityIndicesInducedSpontaneousp
a

InducedSpontaneousp
a

InducedSpontaneousp
a

Faith’sPhylogeneticDiversity

mean(std)56.9(9.3)56.2(8.6)0.757.3(9.5)56.2(8.8)0.757.1(8.5)56.6(8.4)0.9

Chao1

mean(std)646.5(116)638.3(107.5)0.7655.0(118.5)642.1(105.1)0.7640.8(110.4)643.6(105.3)0.9

ObservedOTUs

mean(std)543.2(104.9)528.8(106.1)0.6552.9(105)534.3(107.1)0.6531.6(102.4)527.7(103.2)0.9
a
Non-parametrictwo-samplet-testusingMonteCarlopermutations

Tangedaletal.RespiratoryResearch (2017) 18:164 Page6of9

onthesameflowcellintheIlluminaMiSeq.However,
randomerrorscouldbeafactor,andbasedontheplots
ofthedominanttaxainFig.1,wechosethesevenmost
visuallydissimilarpairs(pairs11,14,19,20,26,27and
36)andthreevisuallysimilarpairs(pairs2,5and29)
andredidthelaboratoryanalyses.Foronlyoneofthe20
samples(pair26,ISS)weretheresultsconvincingly
differentvisuallyfromthefirsttothesecondrun.Since
thiswasnotarandomselection,thelikelyerrorismuch
lowerthan5%,andwedonotbelieveourresultsare
duetorandomlaboratoryerror.Fordataanalyseswe
chosetokeepthesequencesfromruntwofortheten
re-runpairs.
Third,lowbiomasssamplesarepronetocontamin-

ationfrommultiplesourcesduringlaboratoryhandling

[25].Approachestohandlethepotentialcontamination
includesequencingofknown(“mock”)communities,
negativecontrolsamples,andmanualcurationofthe
sequencingoutput.Apotentialcontaminatorinour
studyisthesalineusedforinduction.Unfortunatelyit
wasnotstoredatthetimetheprocedureswere
performed,andsoanimportantlimitationtothecurrent
studyisthatwewerenotbeenabletoexaminetheinflu-
enceofnegativesalinecontrolsonoursamples.Allsam-
plesweretreatedexactlysimilaratallstepsofanalyses,
thusminimizingconfoundingfrompotentialcontamin-
ation.However,asthebiomassanddilutionofeach
sampleinapairmaydiffer,wecannotexcludethat
samplescouldbedifferentiallyaffectedbycontamination
fromsaline.Finally,asinotherstudiescomparing
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sampling methods’ impact on microbiota [5, 26, 27], the
number of samples is limited, and the statistical power
therefore reduced.
One of the challenges in microbiome research is

that the technological advancements develop faster
than the establishment of statistical tools to assess
results. What signifies a true compositional difference
between two supposedly similar samples where each
contains a large number of relative abundances of
sequences is still an unsettled question. The cut-off
for the two indices used for assessment of taxonomic
differences, <0.2 for the Yue-Clayton dissimilarity
index (1-θYC) and <0.1 for LOA from the Bland
Altman plots, are arbitrary, and no established con-
sensus regarding these values exist. Similar for the
Procrustes M2 value there are no defined limit [28].
Finally, what constitutes a true clinically important

difference is also an unsettled question. It could be that
the entire ecological content of a sample is more relevant
for disease, or it could be the presence of a few, perhaps
even only one, low-abundant pathogen. If the latter is true,
a cut off <0.2 for 1-θYC and <0.1 for LOA will be too
crude. With a sample size of 36 sputum pairs, this study
did not have the power to evaluate whether ISS or SSS
better correlated with clinical data. Future studies with lar-
ger sample sizes are needed to elucidate this question.
This study brings forward new information on the

much used sputum samples in studies on COPD pa-
tients. Pair-wise comparisons of taxonomic composition
on genus-level between ISS and SSS from lung patients
have not previously been done to our knowledge.
Neither have comparisons of alpha- or beta-diversity
between ISS and SSS earlier been reported. Induced
sputum sampling is an established protocol for studying

COPD patients at stable state [29]. Common for both
ISS and SSS is that they sample both lungs in contrast
to bronchoalveolar lavage and biopsies, and are more
easily accessible material. Spontaneous sputum is easier
to collect during AECOPD when sputum production
increase, and may be preferred by some for fear that
induction may worsen airway obstruction. However, we
have previously shown that induction can safely be
performed during COPD exacerbations, at least with up
to 3% hypertonic saline [7].
There are potential reasons why spontaneous and

induced sputum samples would differ in their microbial
content. Different airways regions have been shown to
harbor different communities [30, 31], possibly partly
due to different ventilation-circulation ratios in the
lower and upper parts of the lungs, and possibly due to
differences between proximal and distal airways. It has
been shown before that sputum sampled early during
induction has a different composition of cells than spu-
tum sampled late during induction [32, 33]. Spontaneous
samples may resemble proximal airways more than the
distal sampled by induction, and possible differ in ability
to sample upper and lower airways.
Abundant OTUs and correspondingly dominating

taxa in different environments have been shown to be
particularly important in their habitats [34]. However,
sparse members of the microbiota have also been
found to contribute in pathogenic processes in the
lungs [35, 36]. With this in mind we chose to exam-
ine the identified taxa emphasizing both dominating
and sparse OTUs. The group comparison of mean
abundances of taxa by Yue-Clayton dissimilarity
showed that pooling of observations can hide differ-
ences seen between individual sample pairs.
The strength of the 1-θYC index is that it measures

structural dissimilarity by calculating the proportions of
both shared and unshared components in a community
[17]. The number of pairs where ISS and SSS were con-
sidered too dissimilar to be accepted as good substitutes
for each other (1-θYC > 0.2) was the same regardless of
focusing on taxonomic assignment of only abundant
OTUs or accepting all OTUs. In both cases 1 of 3 pairs
would render different results depending on which sam-
ple type was picked to represent the patient.
The Bland-Altman’s LOA analyses confirmed the find-

ings using Yue-Clayton’s dissimilarity, in that ISS and
SSS did not provide the same results in a significant
fraction (13 of 36) of pairs when evaluating taxonomical
composition in sputum from COPD patients.
Summarizing our findings on GreenGenes genus-

level left 106 unique taxa. When comparing the mean
abundance of sequences in each taxa between sample
types, 8.5% of taxa were found in statistically signifi-
cant different levels between sputum types during

Fig. 3 PCoA plots modeling multi-dimentional distribution of OTUs
derived from induced and spontaneous sputum samples*. *Sample
pairs connected by bars - blue bars attach to induced sputum samples,
red bars attach to spontaneous sputum samples

Tangedal et al. Respiratory Research  (2017) 18:164 Page 7 of 9

samplingmethods’impactonmicrobiota[5,26,27],the
numberofsamplesislimited,andthestatisticalpower
thereforereduced.

Oneofthechallengesinmicrobiomeresearchis
thatthetechnologicaladvancementsdevelopfaster
thantheestablishmentofstatisticaltoolstoassess
results.Whatsignifiesatruecompositionaldifference
betweentwosupposedlysimilarsampleswhereeach
containsalargenumberofrelativeabundancesof
sequencesisstillanunsettledquestion.Thecut-off
forthetwoindicesusedforassessmentoftaxonomic
differences,<0.2fortheYue-Claytondissimilarity
index(1-θYC)and<0.1forLOAfromtheBland
Altmanplots,arearbitrary,andnoestablishedcon-
sensusregardingthesevaluesexist.Similarforthe
ProcrustesM2valuetherearenodefinedlimit[28].

Finally,whatconstitutesatrueclinicallyimportant
differenceisalsoanunsettledquestion.Itcouldbethat
theentireecologicalcontentofasampleismorerelevant
fordisease,oritcouldbethepresenceofafew,perhaps
evenonlyone,low-abundantpathogen.Ifthelatteristrue,
acutoff<0.2for1-θYCand<0.1forLOAwillbetoo
crude.Withasamplesizeof36sputumpairs,thisstudy
didnothavethepowertoevaluatewhetherISSorSSS
bettercorrelatedwithclinicaldata.Futurestudieswithlar-
gersamplesizesareneededtoelucidatethisquestion.

Thisstudybringsforwardnewinformationonthe
muchusedsputumsamplesinstudiesonCOPDpa-
tients.Pair-wisecomparisonsoftaxonomiccomposition
ongenus-levelbetweenISSandSSSfromlungpatients
havenotpreviouslybeendonetoourknowledge.
Neitherhavecomparisonsofalpha-orbeta-diversity
betweenISSandSSSearlierbeenreported.Induced
sputumsamplingisanestablishedprotocolforstudying

COPDpatientsatstablestate[29].Commonforboth
ISSandSSSisthattheysamplebothlungsincontrast
tobronchoalveolarlavageandbiopsies,andaremore
easilyaccessiblematerial.Spontaneoussputumiseasier
tocollectduringAECOPDwhensputumproduction
increase,andmaybepreferredbysomeforfearthat
inductionmayworsenairwayobstruction.However,we
havepreviouslyshownthatinductioncansafelybe
performedduringCOPDexacerbations,atleastwithup
to3%hypertonicsaline[7].

Therearepotentialreasonswhyspontaneousand
inducedsputumsampleswoulddifferintheirmicrobial
content.Differentairwaysregionshavebeenshownto
harbordifferentcommunities[30,31],possiblypartly
duetodifferentventilation-circulationratiosinthe
lowerandupperpartsofthelungs,andpossiblydueto
differencesbetweenproximalanddistalairways.Ithas
beenshownbeforethatsputumsampledearlyduring
inductionhasadifferentcompositionofcellsthanspu-
tumsampledlateduringinduction[32,33].Spontaneous
samplesmayresembleproximalairwaysmorethanthe
distalsampledbyinduction,andpossibledifferinability
tosampleupperandlowerairways.

AbundantOTUsandcorrespondinglydominating
taxaindifferentenvironmentshavebeenshowntobe
particularlyimportantintheirhabitats[34].However,
sparsemembersofthemicrobiotahavealsobeen
foundtocontributeinpathogenicprocessesinthe
lungs[35,36].Withthisinmindwechosetoexam-
inetheidentifiedtaxaemphasizingbothdominating
andsparseOTUs.Thegroupcomparisonofmean
abundancesoftaxabyYue-Claytondissimilarity
showedthatpoolingofobservationscanhidediffer-
encesseenbetweenindividualsamplepairs.

Thestrengthofthe1-θYCindexisthatitmeasures
structuraldissimilaritybycalculatingtheproportionsof
bothsharedandunsharedcomponentsinacommunity
[17].ThenumberofpairswhereISSandSSSwerecon-
sideredtoodissimilartobeacceptedasgoodsubstitutes
foreachother(1-θYC>0.2)wasthesameregardlessof
focusingontaxonomicassignmentofonlyabundant
OTUsoracceptingallOTUs.Inbothcases1of3pairs
wouldrenderdifferentresultsdependingonwhichsam-
pletypewaspickedtorepresentthepatient.

TheBland-Altman’sLOAanalysesconfirmedthefind-
ingsusingYue-Clayton’sdissimilarity,inthatISSand
SSSdidnotprovidethesameresultsinasignificant
fraction(13of36)ofpairswhenevaluatingtaxonomical
compositioninsputumfromCOPDpatients.

SummarizingourfindingsonGreenGenesgenus-
levelleft106uniquetaxa.Whencomparingthemean
abundanceofsequencesineachtaxabetweensample
types,8.5%oftaxawerefoundinstatisticallysignifi-
cantdifferentlevelsbetweensputumtypesduring
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sampling methods’ impact on microbiota [5, 26, 27], the
number of samples is limited, and the statistical power
therefore reduced.
One of the challenges in microbiome research is

that the technological advancements develop faster
than the establishment of statistical tools to assess
results. What signifies a true compositional difference
between two supposedly similar samples where each
contains a large number of relative abundances of
sequences is still an unsettled question. The cut-off
for the two indices used for assessment of taxonomic
differences, <0.2 for the Yue-Clayton dissimilarity
index (1-θYC) and <0.1 for LOA from the Bland
Altman plots, are arbitrary, and no established con-
sensus regarding these values exist. Similar for the
Procrustes M

2
value there are no defined limit [28].

Finally, what constitutes a true clinically important
difference is also an unsettled question. It could be that
the entire ecological content of a sample is more relevant
for disease, or it could be the presence of a few, perhaps
even only one, low-abundant pathogen. If the latter is true,
a cut off <0.2 for 1-θYC and <0.1 for LOA will be too
crude. With a sample size of 36 sputum pairs, this study
did not have the power to evaluate whether ISS or SSS
better correlated with clinical data. Future studies with lar-
ger sample sizes are needed to elucidate this question.
This study brings forward new information on the

much used sputum samples in studies on COPD pa-
tients. Pair-wise comparisons of taxonomic composition
on genus-level between ISS and SSS from lung patients
have not previously been done to our knowledge.
Neither have comparisons of alpha- or beta-diversity
between ISS and SSS earlier been reported. Induced
sputum sampling is an established protocol for studying

COPD patients at stable state [29]. Common for both
ISS and SSS is that they sample both lungs in contrast
to bronchoalveolar lavage and biopsies, and are more
easily accessible material. Spontaneous sputum is easier
to collect during AECOPD when sputum production
increase, and may be preferred by some for fear that
induction may worsen airway obstruction. However, we
have previously shown that induction can safely be
performed during COPD exacerbations, at least with up
to 3% hypertonic saline [7].
There are potential reasons why spontaneous and

induced sputum samples would differ in their microbial
content. Different airways regions have been shown to
harbor different communities [30, 31], possibly partly
due to different ventilation-circulation ratios in the
lower and upper parts of the lungs, and possibly due to
differences between proximal and distal airways. It has
been shown before that sputum sampled early during
induction has a different composition of cells than spu-
tum sampled late during induction [32, 33]. Spontaneous
samples may resemble proximal airways more than the
distal sampled by induction, and possible differ in ability
to sample upper and lower airways.
Abundant OTUs and correspondingly dominating

taxa in different environments have been shown to be
particularly important in their habitats [34]. However,
sparse members of the microbiota have also been
found to contribute in pathogenic processes in the
lungs [35, 36]. With this in mind we chose to exam-
ine the identified taxa emphasizing both dominating
and sparse OTUs. The group comparison of mean
abundances of taxa by Yue-Clayton dissimilarity
showed that pooling of observations can hide differ-
ences seen between individual sample pairs.
The strength of the 1-θYC index is that it measures

structural dissimilarity by calculating the proportions of
both shared and unshared components in a community
[17]. The number of pairs where ISS and SSS were con-
sidered too dissimilar to be accepted as good substitutes
for each other (1-θYC > 0.2) was the same regardless of
focusing on taxonomic assignment of only abundant
OTUs or accepting all OTUs. In both cases 1 of 3 pairs
would render different results depending on which sam-
ple type was picked to represent the patient.
The Bland-Altman’s LOA analyses confirmed the find-

ings using Yue-Clayton’s dissimilarity, in that ISS and
SSS did not provide the same results in a significant
fraction (13 of 36) of pairs when evaluating taxonomical
composition in sputum from COPD patients.
Summarizing our findings on GreenGenes genus-

level left 106 unique taxa. When comparing the mean
abundance of sequences in each taxa between sample
types, 8.5% of taxa were found in statistically signifi-
cant different levels between sputum types during

Fig. 3 PCoA plots modeling multi-dimentional distribution of OTUs
derived from induced and spontaneous sputum samples*. *Sample
pairs connected by bars - blue bars attach to induced sputum samples,
red bars attach to spontaneous sputum samples
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sampling methods’ impact on microbiota [5, 26, 27], the
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a cut off <0.2 for 1-θYC and <0.1 for LOA will be too
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samples may resemble proximal airways more than the
distal sampled by induction, and possible differ in ability
to sample upper and lower airways.
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taxa in different environments have been shown to be
particularly important in their habitats [34]. However,
sparse members of the microbiota have also been
found to contribute in pathogenic processes in the
lungs [35, 36]. With this in mind we chose to exam-
ine the identified taxa emphasizing both dominating
and sparse OTUs. The group comparison of mean
abundances of taxa by Yue-Clayton dissimilarity
showed that pooling of observations can hide differ-
ences seen between individual sample pairs.
The strength of the 1-θYC index is that it measures

structural dissimilarity by calculating the proportions of
both shared and unshared components in a community
[17]. The number of pairs where ISS and SSS were con-
sidered too dissimilar to be accepted as good substitutes
for each other (1-θYC > 0.2) was the same regardless of
focusing on taxonomic assignment of only abundant
OTUs or accepting all OTUs. In both cases 1 of 3 pairs
would render different results depending on which sam-
ple type was picked to represent the patient.
The Bland-Altman’s LOA analyses confirmed the find-

ings using Yue-Clayton’s dissimilarity, in that ISS and
SSS did not provide the same results in a significant
fraction (13 of 36) of pairs when evaluating taxonomical
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samplingmethods’impactonmicrobiota[5,26,27],the
numberofsamplesislimited,andthestatisticalpower
thereforereduced.
Oneofthechallengesinmicrobiomeresearchis

thatthetechnologicaladvancementsdevelopfaster
thantheestablishmentofstatisticaltoolstoassess
results.Whatsignifiesatruecompositionaldifference
betweentwosupposedlysimilarsampleswhereeach
containsalargenumberofrelativeabundancesof
sequencesisstillanunsettledquestion.Thecut-off
forthetwoindicesusedforassessmentoftaxonomic
differences,<0.2fortheYue-Claytondissimilarity
index(1-θYC)and<0.1forLOAfromtheBland
Altmanplots,arearbitrary,andnoestablishedcon-
sensusregardingthesevaluesexist.Similarforthe
ProcrustesM

2
valuetherearenodefinedlimit[28].

Finally,whatconstitutesatrueclinicallyimportant
differenceisalsoanunsettledquestion.Itcouldbethat
theentireecologicalcontentofasampleismorerelevant
fordisease,oritcouldbethepresenceofafew,perhaps
evenonlyone,low-abundantpathogen.Ifthelatteristrue,
acutoff<0.2for1-θYCand<0.1forLOAwillbetoo
crude.Withasamplesizeof36sputumpairs,thisstudy
didnothavethepowertoevaluatewhetherISSorSSS
bettercorrelatedwithclinicaldata.Futurestudieswithlar-
gersamplesizesareneededtoelucidatethisquestion.
Thisstudybringsforwardnewinformationonthe

muchusedsputumsamplesinstudiesonCOPDpa-
tients.Pair-wisecomparisonsoftaxonomiccomposition
ongenus-levelbetweenISSandSSSfromlungpatients
havenotpreviouslybeendonetoourknowledge.
Neitherhavecomparisonsofalpha-orbeta-diversity
betweenISSandSSSearlierbeenreported.Induced
sputumsamplingisanestablishedprotocolforstudying

COPDpatientsatstablestate[29].Commonforboth
ISSandSSSisthattheysamplebothlungsincontrast
tobronchoalveolarlavageandbiopsies,andaremore
easilyaccessiblematerial.Spontaneoussputumiseasier
tocollectduringAECOPDwhensputumproduction
increase,andmaybepreferredbysomeforfearthat
inductionmayworsenairwayobstruction.However,we
havepreviouslyshownthatinductioncansafelybe
performedduringCOPDexacerbations,atleastwithup
to3%hypertonicsaline[7].
Therearepotentialreasonswhyspontaneousand

inducedsputumsampleswoulddifferintheirmicrobial
content.Differentairwaysregionshavebeenshownto
harbordifferentcommunities[30,31],possiblypartly
duetodifferentventilation-circulationratiosinthe
lowerandupperpartsofthelungs,andpossiblydueto
differencesbetweenproximalanddistalairways.Ithas
beenshownbeforethatsputumsampledearlyduring
inductionhasadifferentcompositionofcellsthanspu-
tumsampledlateduringinduction[32,33].Spontaneous
samplesmayresembleproximalairwaysmorethanthe
distalsampledbyinduction,andpossibledifferinability
tosampleupperandlowerairways.
AbundantOTUsandcorrespondinglydominating

taxaindifferentenvironmentshavebeenshowntobe
particularlyimportantintheirhabitats[34].However,
sparsemembersofthemicrobiotahavealsobeen
foundtocontributeinpathogenicprocessesinthe
lungs[35,36].Withthisinmindwechosetoexam-
inetheidentifiedtaxaemphasizingbothdominating
andsparseOTUs.Thegroupcomparisonofmean
abundancesoftaxabyYue-Claytondissimilarity
showedthatpoolingofobservationscanhidediffer-
encesseenbetweenindividualsamplepairs.
Thestrengthofthe1-θYCindexisthatitmeasures

structuraldissimilaritybycalculatingtheproportionsof
bothsharedandunsharedcomponentsinacommunity
[17].ThenumberofpairswhereISSandSSSwerecon-
sideredtoodissimilartobeacceptedasgoodsubstitutes
foreachother(1-θYC>0.2)wasthesameregardlessof
focusingontaxonomicassignmentofonlyabundant
OTUsoracceptingallOTUs.Inbothcases1of3pairs
wouldrenderdifferentresultsdependingonwhichsam-
pletypewaspickedtorepresentthepatient.
TheBland-Altman’sLOAanalysesconfirmedthefind-

ingsusingYue-Clayton’sdissimilarity,inthatISSand
SSSdidnotprovidethesameresultsinasignificant
fraction(13of36)ofpairswhenevaluatingtaxonomical
compositioninsputumfromCOPDpatients.
SummarizingourfindingsonGreenGenesgenus-

levelleft106uniquetaxa.Whencomparingthemean
abundanceofsequencesineachtaxabetweensample
types,8.5%oftaxawerefoundinstatisticallysignifi-
cantdifferentlevelsbetweensputumtypesduring
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to3%hypertonicsaline[7].
Therearepotentialreasonswhyspontaneousand
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particularlyimportantintheirhabitats[34].However,
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foundtocontributeinpathogenicprocessesinthe
lungs[35,36].Withthisinmindwechosetoexam-
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andsparseOTUs.Thegroupcomparisonofmean
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samplingmethods’impactonmicrobiota[5,26,27],the
numberofsamplesislimited,andthestatisticalpower
thereforereduced.
Oneofthechallengesinmicrobiomeresearchis

thatthetechnologicaladvancementsdevelopfaster
thantheestablishmentofstatisticaltoolstoassess
results.Whatsignifiesatruecompositionaldifference
betweentwosupposedlysimilarsampleswhereeach
containsalargenumberofrelativeabundancesof
sequencesisstillanunsettledquestion.Thecut-off
forthetwoindicesusedforassessmentoftaxonomic
differences,<0.2fortheYue-Claytondissimilarity
index(1-θYC)and<0.1forLOAfromtheBland
Altmanplots,arearbitrary,andnoestablishedcon-
sensusregardingthesevaluesexist.Similarforthe
ProcrustesM

2
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fordisease,oritcouldbethepresenceofafew,perhaps
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tocollectduringAECOPDwhensputumproduction
increase,andmaybepreferredbysomeforfearthat
inductionmayworsenairwayobstruction.However,we
havepreviouslyshownthatinductioncansafelybe
performedduringCOPDexacerbations,atleastwithup
to3%hypertonicsaline[7].
Therearepotentialreasonswhyspontaneousand

inducedsputumsampleswoulddifferintheirmicrobial
content.Differentairwaysregionshavebeenshownto
harbordifferentcommunities[30,31],possiblypartly
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lowerandupperpartsofthelungs,andpossiblydueto
differencesbetweenproximalanddistalairways.Ithas
beenshownbeforethatsputumsampledearlyduring
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andsparseOTUs.Thegroupcomparisonofmean
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Thestrengthofthe1-θYCindexisthatitmeasures

structuraldissimilaritybycalculatingtheproportionsof
bothsharedandunsharedcomponentsinacommunity
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levelleft106uniquetaxa.Whencomparingthemean
abundanceofsequencesineachtaxabetweensample
types,8.5%oftaxawerefoundinstatisticallysignifi-
cantdifferentlevelsbetweensputumtypesduring

Fig.3PCoAplotsmodelingmulti-dimentionaldistributionofOTUs
derivedfrominducedandspontaneoussputumsamples*.*Sample
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exacerbations, and 11.3% in the stable state. Both of
the known potential pathogens Haemophilus and
Moraxella were significantly more abundant in spon-
taneous samples compared with induced samples,
both in the stable state and during exacerbations. In
this new era, where the whole composition of a
microbiome may be relevant for disease, it may be
that induced sputum samples better reflect presence
of low-abundant species in the distal airways, which
are masked by frequent colonization of genera like
Haemophilus and Moraxella in spontaneous samples.
However, presence of both Haemophilus [37, 38] and
Moraxella [39] in stable state sputum samples have shown
similar higher levels of inflammatory markers in the spu-
tum samples indicating stimulation of the immune system.
Thus either sampling method may have important value
in research, but important differences in interpretation of
the microbiota could result from using the sputum types
interchangeably.
We could not find differences in alpha-diversity be-

tween sample types. This should perhaps not be surpris-
ing considering the shared route of delivery through the
oral cavity and the samples not discriminating between
right and left airways. It has been shown that diversity in
sputum is higher than in explant lung samples, likely
due to oral contamination [30].
There were no significant differences in mean phylo-

genetic beta-diversity between ISS and SSS, neither
when considering absence/presence data, nor when
emphasizing abundances (UWUF/WUF). However,
when considering samples pair-wise we found differ-
ences in WUF in 1 of 4 pairs and for UWUF differences
were found in 50% of the sputum pairs. With focus on
quantitative data Procrustes transformation of PCoA-
plots of WUF distances this pair-wise difference was
confirmed, as the distances in multidimensional space
were too large to ignore for several pairs. A defined limit
for Procrustes M2 to be considered too high to claim
similarity does not exist, but levels >0.3 is indicative of
influential differences.

Conclusions
In this study we found clear discrepancies in both
taxonomic composition and beta-diversity between
ISS and SSS collected concurrently from COPD
patients in the stable state and during exacerbations
when comparing samples pair-wise. For grouped ana-
lyses the differences were subtler, potentially masking
important differences. The most prudent approach in
studies using sputum for microbiota analyses is to
only rely on either induced or spontaneous sputum.
We advise that sampling method is always reported,
and that comparisons are made and presented, if both
sample types are used.
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exacerbations,and11.3%inthestablestate.Bothof
theknownpotentialpathogensHaemophilusand
Moraxellaweresignificantlymoreabundantinspon-
taneoussamplescomparedwithinducedsamples,
bothinthestablestateandduringexacerbations.In
thisnewera,wherethewholecompositionofa
microbiomemayberelevantfordisease,itmaybe
thatinducedsputumsamplesbetterreflectpresence
oflow-abundantspeciesinthedistalairways,which
aremaskedbyfrequentcolonizationofgeneralike
HaemophilusandMoraxellainspontaneoussamples.
However,presenceofbothHaemophilus[37,38]and
Moraxella[39]instablestatesputumsampleshaveshown
similarhigherlevelsofinflammatorymarkersinthespu-
tumsamplesindicatingstimulationoftheimmunesystem.
Thuseithersamplingmethodmayhaveimportantvalue
inresearch,butimportantdifferencesininterpretationof
themicrobiotacouldresultfromusingthesputumtypes
interchangeably.

Wecouldnotfinddifferencesinalpha-diversitybe-
tweensampletypes.Thisshouldperhapsnotbesurpris-
ingconsideringthesharedrouteofdeliverythroughthe
oralcavityandthesamplesnotdiscriminatingbetween
rightandleftairways.Ithasbeenshownthatdiversityin
sputumishigherthaninexplantlungsamples,likely
duetooralcontamination[30].

Therewerenosignificantdifferencesinmeanphylo-
geneticbeta-diversitybetweenISSandSSS,neither
whenconsideringabsence/presencedata,norwhen
emphasizingabundances(UWUF/WUF).However,
whenconsideringsamplespair-wisewefounddiffer-
encesinWUFin1of4pairsandforUWUFdifferences
werefoundin50%ofthesputumpairs.Withfocuson
quantitativedataProcrustestransformationofPCoA-
plotsofWUFdistancesthispair-wisedifferencewas
confirmed,asthedistancesinmultidimensionalspace
weretoolargetoignoreforseveralpairs.Adefinedlimit
forProcrustesM2tobeconsideredtoohightoclaim
similaritydoesnotexist,butlevels>0.3isindicativeof
influentialdifferences.

Conclusions
Inthisstudywefoundcleardiscrepanciesinboth
taxonomiccompositionandbeta-diversitybetween
ISSandSSScollectedconcurrentlyfromCOPD
patientsinthestablestateandduringexacerbations
whencomparingsamplespair-wise.Forgroupedana-
lysesthedifferencesweresubtler,potentiallymasking
importantdifferences.Themostprudentapproachin
studiesusingsputumformicrobiotaanalysesisto
onlyrelyoneitherinducedorspontaneoussputum.
Weadvisethatsamplingmethodisalwaysreported,
andthatcomparisonsaremadeandpresented,ifboth
sampletypesareused.
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whencomparingsamplespair-wise.Forgroupedana-
lysesthedifferencesweresubtler,potentiallymasking
importantdifferences.Themostprudentapproachin
studiesusingsputumformicrobiotaanalysesisto
onlyrelyoneitherinducedorspontaneoussputum.
Weadvisethatsamplingmethodisalwaysreported,
andthatcomparisonsaremadeandpresented,ifboth
sampletypesareused.

Abbreviations
AECOPD:AcuteexacerbationofCOPD;BCCS:BergenCOPDcohortstudy;
BCES:BergenCOPDexacerbationstudy;CF:Cysticfibrosis;COPD:Chronic
obstructivepulmonarydisease;ISS:Inducedsputumsamples;LOA:Limitsof
agreement;OTU:Operationaltaxonomicunit;PCoA:Principalcoordinates
analysis;QIIME:Quantitativeinsightsintomicrobialecology;SSS:Spontaneous
sputumsamples;UFUW:Unweightedunifrac;WUF:Weightedunifrac

Acknowledgements
TheauthorswishtothankLeneSvendsen1,TinaEndresen-Vinsjevik1,Margrete
Klemmetsby1,MarieWåtevik1andEliNordeide1forhelpindatacollection,Inge
Zwetzig1andHildaAndersen2forperformingthesputumprocessing,andHeidi
EllisHaraldsen2andTuyenHoang1forhelpwiththeDNAextraction,PCRand
Illuminasequencing.
1DepartmentofThoracicMedicine,HaukelandUniversityHospital,Bergen,
Norway.
2DepartmentofClinicalScience,UniversityofBergen,Bergen,Norway.
(Affiliationsrelatetopositionsatthetimeofthework).

Funding
ThestudywasfundedpartiallybytheDepartmentofThoracicMedicineand
theUniversityofBergenintermsofsalaries.Analyseswerefundedbya
grantfromtheBergenMedicalResearchFoundation.

Availabilityofdataandmaterials
Thefastqfiles,metadataandcommandlinesnecessaryforrunningtheanalyses
presentedinthisarticlewillbepubliclyavailableatDRYADwhenthearticleis
acceptedforpublishing.DOI:http://dx.doi.org/10.5061/dryad.5gc82.

Authors’contributions
STperformedDNAextraction,allbioinformaticsanalyses,andstatistical
analysesanddraftedthemanuscript.MAparticipatedondatacollection,
statisticalanalysesandrevisionofthemanuscript.RGparticipatedindata
collection,bioinformaticsanalyses,statisticalanalysesandrevisionofthe
manuscript.CDperformedthePCRandIlluminasequencinganalyses,and
participatedinrevisionofthemanuscript.HGWplanedallaspectsofthe
sequencinganalyses,andparticipatedinthebioinformaticsanalysesand
revisionofthemanuscript.PSBplanedandparticipatedindatacollection
andparticipatedintherevisionofthemanuscript.TMEplanedand
participatedindatacollection,designedthestudy,andparticipatedinthe
bioinformatics,statisticalanalysesandrevisionofthemanuscript.Allauthors
readandapprovedthefinalmanuscript.

Ethicsapprovalandconsenttoparticipate
Thestudywasapprovedbytheregionalethicalboard(REK-VestNorway),
casenumber165.08.Allparticipantssignedaconsentformuponinclusion.

Consentforpublication
Notapplicable.

Competinginterests
ST:Nothingtodeclare.
MA:Withinthelast5yearsMAhasreceivedalecturefeefromNovartis.
RG:ReportsgrantsfromtheNorwegianAssociationofHeartandLung
PatientsandEXTRAfundsfromtheNorwegianFoundationforHealthand
RehabilitationaswellasYaraPraxairduringtheconductofthestudy,grants
andpersonalfeesfromBoehringerIngelheim,personalfeesfromAstraZeneca,
andpersonalfeesfromGlaxoSmithKlineoutsidethesubmittedwork.
CD:Nothingtodeclare.
HGW:Nothingtodeclare.
PSB:Withinthelast5yearsPSBhasreceivedlecturefeesoradvisoryboardfees
fromAstraZeneca,GlaxoSmithKline,Boehringer-Ingelheim,Mundipharma,Chiesi,
MSD.PSBisamemberofthesteeringcommitteeandscientificcommitteeofthe
ECLIPSEstudyandisPIoftheECLIPSEextensionstudy,bothstudiessponsoredby
GlaxoSmithKline.
TME:Inthelast5yearsTMEhasreceivedunrestrictedgrantsfromBoehringer
Ingelheimoutsidethiswork,speakerfeesfromAstraZeneca,Boehringer
IngelheimandGlaxoSmithKline,andsupportfortraveltotheAIRconference
fromInterMune.

Tangedaletal.RespiratoryResearch (2017) 18:164 Page8of9

exacerbations, and 11.3% in the stable state. Both of
the known potential pathogens Haemophilus and
Moraxella were significantly more abundant in spon-
taneous samples compared with induced samples,
both in the stable state and during exacerbations. In
this new era, where the whole composition of a
microbiome may be relevant for disease, it may be
that induced sputum samples better reflect presence
of low-abundant species in the distal airways, which
are masked by frequent colonization of genera like
Haemophilus and Moraxella in spontaneous samples.
However, presence of both Haemophilus [37, 38] and
Moraxella [39] in stable state sputum samples have shown
similar higher levels of inflammatory markers in the spu-
tum samples indicating stimulation of the immune system.
Thus either sampling method may have important value
in research, but important differences in interpretation of
the microbiota could result from using the sputum types
interchangeably.
We could not find differences in alpha-diversity be-

tween sample types. This should perhaps not be surpris-
ing considering the shared route of delivery through the
oral cavity and the samples not discriminating between
right and left airways. It has been shown that diversity in
sputum is higher than in explant lung samples, likely
due to oral contamination [30].
There were no significant differences in mean phylo-

genetic beta-diversity between ISS and SSS, neither
when considering absence/presence data, nor when
emphasizing abundances (UWUF/WUF). However,
when considering samples pair-wise we found differ-
ences in WUF in 1 of 4 pairs and for UWUF differences
were found in 50% of the sputum pairs. With focus on
quantitative data Procrustes transformation of PCoA-
plots of WUF distances this pair-wise difference was
confirmed, as the distances in multidimensional space
were too large to ignore for several pairs. A defined limit
for Procrustes M

2
to be considered too high to claim

similarity does not exist, but levels >0.3 is indicative of
influential differences.

Conclusions
In this study we found clear discrepancies in both
taxonomic composition and beta-diversity between
ISS and SSS collected concurrently from COPD
patients in the stable state and during exacerbations
when comparing samples pair-wise. For grouped ana-
lyses the differences were subtler, potentially masking
important differences. The most prudent approach in
studies using sputum for microbiota analyses is to
only rely on either induced or spontaneous sputum.
We advise that sampling method is always reported,
and that comparisons are made and presented, if both
sample types are used.
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exacerbations, and 11.3% in the stable state. Both of
the known potential pathogens Haemophilus and
Moraxella were significantly more abundant in spon-
taneous samples compared with induced samples,
both in the stable state and during exacerbations. In
this new era, where the whole composition of a
microbiome may be relevant for disease, it may be
that induced sputum samples better reflect presence
of low-abundant species in the distal airways, which
are masked by frequent colonization of genera like
Haemophilus and Moraxella in spontaneous samples.
However, presence of both Haemophilus [37, 38] and
Moraxella [39] in stable state sputum samples have shown
similar higher levels of inflammatory markers in the spu-
tum samples indicating stimulation of the immune system.
Thus either sampling method may have important value
in research, but important differences in interpretation of
the microbiota could result from using the sputum types
interchangeably.
We could not find differences in alpha-diversity be-

tween sample types. This should perhaps not be surpris-
ing considering the shared route of delivery through the
oral cavity and the samples not discriminating between
right and left airways. It has been shown that diversity in
sputum is higher than in explant lung samples, likely
due to oral contamination [30].
There were no significant differences in mean phylo-

genetic beta-diversity between ISS and SSS, neither
when considering absence/presence data, nor when
emphasizing abundances (UWUF/WUF). However,
when considering samples pair-wise we found differ-
ences in WUF in 1 of 4 pairs and for UWUF differences
were found in 50% of the sputum pairs. With focus on
quantitative data Procrustes transformation of PCoA-
plots of WUF distances this pair-wise difference was
confirmed, as the distances in multidimensional space
were too large to ignore for several pairs. A defined limit
for Procrustes M

2
to be considered too high to claim

similarity does not exist, but levels >0.3 is indicative of
influential differences.

Conclusions
In this study we found clear discrepancies in both
taxonomic composition and beta-diversity between
ISS and SSS collected concurrently from COPD
patients in the stable state and during exacerbations
when comparing samples pair-wise. For grouped ana-
lyses the differences were subtler, potentially masking
important differences. The most prudent approach in
studies using sputum for microbiota analyses is to
only rely on either induced or spontaneous sputum.
We advise that sampling method is always reported,
and that comparisons are made and presented, if both
sample types are used.
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exacerbations,and11.3%inthestablestate.Bothof
theknownpotentialpathogensHaemophilusand
Moraxellaweresignificantlymoreabundantinspon-
taneoussamplescomparedwithinducedsamples,
bothinthestablestateandduringexacerbations.In
thisnewera,wherethewholecompositionofa
microbiomemayberelevantfordisease,itmaybe
thatinducedsputumsamplesbetterreflectpresence
oflow-abundantspeciesinthedistalairways,which
aremaskedbyfrequentcolonizationofgeneralike
HaemophilusandMoraxellainspontaneoussamples.
However,presenceofbothHaemophilus[37,38]and
Moraxella[39]instablestatesputumsampleshaveshown
similarhigherlevelsofinflammatorymarkersinthespu-
tumsamplesindicatingstimulationoftheimmunesystem.
Thuseithersamplingmethodmayhaveimportantvalue
inresearch,butimportantdifferencesininterpretationof
themicrobiotacouldresultfromusingthesputumtypes
interchangeably.
Wecouldnotfinddifferencesinalpha-diversitybe-

tweensampletypes.Thisshouldperhapsnotbesurpris-
ingconsideringthesharedrouteofdeliverythroughthe
oralcavityandthesamplesnotdiscriminatingbetween
rightandleftairways.Ithasbeenshownthatdiversityin
sputumishigherthaninexplantlungsamples,likely
duetooralcontamination[30].
Therewerenosignificantdifferencesinmeanphylo-

geneticbeta-diversitybetweenISSandSSS,neither
whenconsideringabsence/presencedata,norwhen
emphasizingabundances(UWUF/WUF).However,
whenconsideringsamplespair-wisewefounddiffer-
encesinWUFin1of4pairsandforUWUFdifferences
werefoundin50%ofthesputumpairs.Withfocuson
quantitativedataProcrustestransformationofPCoA-
plotsofWUFdistancesthispair-wisedifferencewas
confirmed,asthedistancesinmultidimensionalspace
weretoolargetoignoreforseveralpairs.Adefinedlimit
forProcrustesM

2
tobeconsideredtoohightoclaim

similaritydoesnotexist,butlevels>0.3isindicativeof
influentialdifferences.

Conclusions
Inthisstudywefoundcleardiscrepanciesinboth
taxonomiccompositionandbeta-diversitybetween
ISSandSSScollectedconcurrentlyfromCOPD
patientsinthestablestateandduringexacerbations
whencomparingsamplespair-wise.Forgroupedana-
lysesthedifferencesweresubtler,potentiallymasking
importantdifferences.Themostprudentapproachin
studiesusingsputumformicrobiotaanalysesisto
onlyrelyoneitherinducedorspontaneoussputum.
Weadvisethatsamplingmethodisalwaysreported,
andthatcomparisonsaremadeandpresented,ifboth
sampletypesareused.
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Abstract

Background

Exacerbations of chronic obstructive pulmonary disease (COPD) are debilitating events and

spur disease progression. Infectious causes are frequent; however, it is unknown to what

extent exacerbations are caused by larger shifts in the airways’ microbiota. The aim of the

current study was to analyse the changes in microbial composition between stable state and

during exacerbations, and the corresponding immune response.

Methods

The study sample included 36 COPD patients examined at stable state and exacerbation

from the Bergen COPD Cohort and Exacerbations studies, and one patient who delivered

sputum on 13 different occasions during the three-year study period. A physician examined

the patients at all time points, and sputum induction was performed by stringent protocol.

Only induced sputum samples were used in the current study, not spontaneously expecto-

rated sputum. Sputum inflammatory markers (IL-6, IL-8, IL-18, IP-10, MIG, TNF-α) and anti-

microbial peptides (AMPs, i.e. LL-37/hCAP-18, SLPI) were measured in supernatants,

whereas target gene sequencing (16S rRNA) was performed on corresponding cell pellets.

The microbiome bioinformatics platform QIIME2TM and the statistics environment R were

applied for bioinformatics analyses.

Results

Levels of IP-10, MIG, TNF-α and AMPs were significantly different between the two disease

states. Of 36 sample pairs, 24 had significant differences in the 12 most abundant genera

between disease states. The diversity was significantly different in several individuals, but

not when data was analysed on a group level. The one patient case study showed longitudi-

nal dynamics in microbiota unrelated to disease state.
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Background

Exacerbationsofchronicobstructivepulmonarydisease(COPD)aredebilitatingeventsand

spurdiseaseprogression.Infectiouscausesarefrequent;however,itisunknowntowhat

extentexacerbationsarecausedbylargershiftsintheairways’microbiota.Theaimofthe

currentstudywastoanalysethechangesinmicrobialcompositionbetweenstablestateand

duringexacerbations,andthecorrespondingimmuneresponse.

Methods

Thestudysampleincluded36COPDpatientsexaminedatstablestateandexacerbation

fromtheBergenCOPDCohortandExacerbationsstudies,andonepatientwhodelivered

sputumon13differentoccasionsduringthethree-yearstudyperiod.Aphysicianexamined

thepatientsatalltimepoints,andsputuminductionwasperformedbystringentprotocol.

Onlyinducedsputumsampleswereusedinthecurrentstudy,notspontaneouslyexpecto-

ratedsputum.Sputuminflammatorymarkers(IL-6,IL-8,IL-18,IP-10,MIG,TNF-α)andanti-

microbialpeptides(AMPs,i.e.LL-37/hCAP-18,SLPI)weremeasuredinsupernatants,

whereastargetgenesequencing(16SrRNA)wasperformedoncorrespondingcellpellets.

ThemicrobiomebioinformaticsplatformQIIME2TMandthestatisticsenvironmentRwere

appliedforbioinformaticsanalyses.

Results

LevelsofIP-10,MIG,TNF-αandAMPsweresignificantlydifferentbetweenthetwodisease

states.Of36samplepairs,24hadsignificantdifferencesinthe12mostabundantgenera

betweendiseasestates.Thediversitywassignificantlydifferentinseveralindividuals,but

notwhendatawasanalysedonagrouplevel.Theonepatientcasestudyshowedlongitudi-

naldynamicsinmicrobiotaunrelatedtodiseasestate.
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Conclusion

Changes in the sputummicrobiota with changing COPD disease states are common, and

are accompanied by changes in inflammatory markers. However, the changes are highly

individual and heterogeneous events.

Introduction

Amyriad of bacteria and other microorganisms, collectively called the human microbiota,
inhabits the human body. With modern marker-gene DNA-sequencing technology more
knowledge of how bacteria affect the human host is rapidly being acquired. It was long
believed that the lower airways were sterile, but recent studies have shown a present micro-
biota also in healthy subjects [1–3].

Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation
in the airways [4], and an increase in systemic inflammation [5, 6]. The cause of the inflamma-
tion has been unknown, but toxic effects of inhaled tobacco or other substances [7] and auto-
immunity has been suggested [8].

A dramatic manifestation of COPD, the acute exacerbations [9] with potentially life-threat-
ening airways obstruction, is most often seen in combination with symptoms of infection.
Indeed, bacteria and viruses are believed to trigger most exacerbations [10, 11]. Traditionally
this has been seen as single-agent infections, and one debate has been whether any such agent
was acquired by contagion or an upswing of pre-existing colonizing agents [12]. Although
most exacerbations are likely due to infections, it is suspected that environmental factors like
air-borne pollution and air-temperature can trigger these episodes [10]. Thus, single-agent
infections are unlikely explanations for all or the entire COPD exacerbation event.

We suggest that the chronic inflammation of COPD reflects a chronically distorted micro-
biota. And, that the COPD exacerbations may reflect an acutely imbalanced respiratory ecosys-
tem, with an accompanying inflammatory response to this imbalance.

However, little information exists to date on the dynamics of the airways microbiota in
COPD patients shifting from a steady state to a COPD exacerbation [13]. In the current study
we examined the microbiota in 36 COPD patients from whom we had induced sputum sam-
ples collected both during the stable state and during COPD exacerbations. And in one partic-
ular patient prone to experience frequent exacerbations we assessed the temporal changes of
the sputum microbiota over 36 months in six samples from stable state visits, and seven col-
lected during exacerbations.

Methods

Study population

The Bergen COPD Exacerbation Study (BCES) included all COPD patients from the Bergen
COPD Cohort Study (BCCS) that belonged to the Haukeland University Hospital district for
emergency care (356 out of 433 COPD patients in the BCCS). Detailed descriptions of study
design and inclusion for the BCCS and the BCES has been published [6, 14]. Only induced
sputum samples were used in the current study, not spontaneously expectorated sputum. A
flowchart depicting the selection of the study sample is presented in Fig 1. Of the 356 included
patients, 154 had one or more examined exacerbation events. Sputum induction was
attempted unless the patient declined or in some instances when we did not have available
technicians to process the sputum fresh after the induction. A total of 36 patients had induced
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ChangesinthesputummicrobiotawithchangingCOPDdiseasestatesarecommon,and

areaccompaniedbychangesininflammatorymarkers.However,thechangesarehighly

individualandheterogeneousevents.

Introduction

Amyriadofbacteriaandothermicroorganisms,collectivelycalledthehumanmicrobiota,
inhabitsthehumanbody.Withmodernmarker-geneDNA-sequencingtechnologymore
knowledgeofhowbacteriaaffectthehumanhostisrapidlybeingacquired.Itwaslong
believedthatthelowerairwaysweresterile,butrecentstudieshaveshownapresentmicro-
biotaalsoinhealthysubjects[1–3].

Chronicobstructivepulmonarydisease(COPD)ischaracterizedbychronicinflammation
intheairways[4],andanincreaseinsystemicinflammation[5,6].Thecauseoftheinflamma-
tionhasbeenunknown,buttoxiceffectsofinhaledtobaccoorothersubstances[7]andauto-
immunityhasbeensuggested[8].

AdramaticmanifestationofCOPD,theacuteexacerbations[9]withpotentiallylife-threat-
eningairwaysobstruction,ismostoftenseenincombinationwithsymptomsofinfection.
Indeed,bacteriaandvirusesarebelievedtotriggermostexacerbations[10,11].Traditionally
thishasbeenseenassingle-agentinfections,andonedebatehasbeenwhetheranysuchagent
wasacquiredbycontagionoranupswingofpre-existingcolonizingagents[12].Although
mostexacerbationsarelikelyduetoinfections,itissuspectedthatenvironmentalfactorslike
air-bornepollutionandair-temperaturecantriggertheseepisodes[10].Thus,single-agent
infectionsareunlikelyexplanationsforallortheentireCOPDexacerbationevent.

WesuggestthatthechronicinflammationofCOPDreflectsachronicallydistortedmicro-
biota.And,thattheCOPDexacerbationsmayreflectanacutelyimbalancedrespiratoryecosys-
tem,withanaccompanyinginflammatoryresponsetothisimbalance.

However,littleinformationexiststodateonthedynamicsoftheairwaysmicrobiotain
COPDpatientsshiftingfromasteadystatetoaCOPDexacerbation[13].Inthecurrentstudy
weexaminedthemicrobiotain36COPDpatientsfromwhomwehadinducedsputumsam-
plescollectedbothduringthestablestateandduringCOPDexacerbations.Andinonepartic-
ularpatientpronetoexperiencefrequentexacerbationsweassessedthetemporalchangesof
thesputummicrobiotaover36monthsinsixsamplesfromstablestatevisits,andsevencol-
lectedduringexacerbations.

Methods

Studypopulation

TheBergenCOPDExacerbationStudy(BCES)includedallCOPDpatientsfromtheBergen
COPDCohortStudy(BCCS)thatbelongedtotheHaukelandUniversityHospitaldistrictfor
emergencycare(356outof433COPDpatientsintheBCCS).Detaileddescriptionsofstudy
designandinclusionfortheBCCSandtheBCEShasbeenpublished[6,14].Onlyinduced
sputumsampleswereusedinthecurrentstudy,notspontaneouslyexpectoratedsputum.A
flowchartdepictingtheselectionofthestudysampleispresentedinFig1.Ofthe356included
patients,154hadoneormoreexaminedexacerbationevents.Sputuminductionwas
attemptedunlessthepatientdeclinedorinsomeinstanceswhenwedidnothaveavailable
technicianstoprocessthesputumfreshaftertheinduction.Atotalof36patientshadinduced
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we examined the microbiota in 36 COPD patients from whom we had induced sputum sam-
ples collected both during the stable state and during COPD exacerbations. And in one partic-
ular patient prone to experience frequent exacerbations we assessed the temporal changes of
the sputum microbiota over 36 months in six samples from stable state visits, and seven col-
lected during exacerbations.

Methods

Study population

The Bergen COPD Exacerbation Study (BCES) included all COPD patients from the Bergen
COPD Cohort Study (BCCS) that belonged to the Haukeland University Hospital district for
emergency care (356 out of 433 COPD patients in the BCCS). Detailed descriptions of study
design and inclusion for the BCCS and the BCES has been published [6, 14]. Only induced
sputum samples were used in the current study, not spontaneously expectorated sputum. A
flowchart depicting the selection of the study sample is presented in Fig 1. Of the 356 included
patients, 154 had one or more examined exacerbation events. Sputum induction was
attempted unless the patient declined or in some instances when we did not have available
technicians to process the sputum fresh after the induction. A total of 36 patients had induced
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Conclusion

ChangesinthesputummicrobiotawithchangingCOPDdiseasestatesarecommon,and

areaccompaniedbychangesininflammatorymarkers.However,thechangesarehighly

individualandheterogeneousevents.

Introduction

Amyriadofbacteriaandothermicroorganisms,collectivelycalledthehumanmicrobiota,
inhabitsthehumanbody.Withmodernmarker-geneDNA-sequencingtechnologymore
knowledgeofhowbacteriaaffectthehumanhostisrapidlybeingacquired.Itwaslong
believedthatthelowerairwaysweresterile,butrecentstudieshaveshownapresentmicro-
biotaalsoinhealthysubjects[1–3].

Chronicobstructivepulmonarydisease(COPD)ischaracterizedbychronicinflammation
intheairways[4],andanincreaseinsystemicinflammation[5,6].Thecauseoftheinflamma-
tionhasbeenunknown,buttoxiceffectsofinhaledtobaccoorothersubstances[7]andauto-
immunityhasbeensuggested[8].

AdramaticmanifestationofCOPD,theacuteexacerbations[9]withpotentiallylife-threat-
eningairwaysobstruction,ismostoftenseenincombinationwithsymptomsofinfection.
Indeed,bacteriaandvirusesarebelievedtotriggermostexacerbations[10,11].Traditionally
thishasbeenseenassingle-agentinfections,andonedebatehasbeenwhetheranysuchagent
wasacquiredbycontagionoranupswingofpre-existingcolonizingagents[12].Although
mostexacerbationsarelikelyduetoinfections,itissuspectedthatenvironmentalfactorslike
air-bornepollutionandair-temperaturecantriggertheseepisodes[10].Thus,single-agent
infectionsareunlikelyexplanationsforallortheentireCOPDexacerbationevent.

WesuggestthatthechronicinflammationofCOPDreflectsachronicallydistortedmicro-
biota.And,thattheCOPDexacerbationsmayreflectanacutelyimbalancedrespiratoryecosys-
tem,withanaccompanyinginflammatoryresponsetothisimbalance.

However,littleinformationexiststodateonthedynamicsoftheairwaysmicrobiotain
COPDpatientsshiftingfromasteadystatetoaCOPDexacerbation[13].Inthecurrentstudy
weexaminedthemicrobiotain36COPDpatientsfromwhomwehadinducedsputumsam-
plescollectedbothduringthestablestateandduringCOPDexacerbations.Andinonepartic-
ularpatientpronetoexperiencefrequentexacerbationsweassessedthetemporalchangesof
thesputummicrobiotaover36monthsinsixsamplesfromstablestatevisits,andsevencol-
lectedduringexacerbations.

Methods

Studypopulation

TheBergenCOPDExacerbationStudy(BCES)includedallCOPDpatientsfromtheBergen
COPDCohortStudy(BCCS)thatbelongedtotheHaukelandUniversityHospitaldistrictfor
emergencycare(356outof433COPDpatientsintheBCCS).Detaileddescriptionsofstudy
designandinclusionfortheBCCSandtheBCEShasbeenpublished[6,14].Onlyinduced
sputumsampleswereusedinthecurrentstudy,notspontaneouslyexpectoratedsputum.A
flowchartdepictingtheselectionofthestudysampleispresentedinFig1.Ofthe356included
patients,154hadoneormoreexaminedexacerbationevents.Sputuminductionwas
attemptedunlessthepatientdeclinedorinsomeinstanceswhenwedidnothaveavailable
technicianstoprocessthesputumfreshaftertheinduction.Atotalof36patientshadinduced
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sputum of acceptable quality available both from a stable state and an exacerbation visit, and
these 36 sputum pairs define the current study population (Fig 1).

All patients provided written informed consent, and the Norwegian Regional Ethical Com-
mittee approved the study (REK-Vest, case number 165.08).

Data collection

A trained study physician examined all patients both at regular BCCS-visits and during BCES-
exacerbation visits. Classification of airways obstruction was according to Global initiative for

Fig 1. Flowchart depicting selection of the 36 patients in the current study, from the Bergen COPD Exacerbation
Study (BCES) and the Bergen COPD Cohort Study (BCCS).

https://doi.org/10.1371/journal.pone.0222449.g001
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Fig1.Flowchartdepictingselectionofthe36patientsinthecurrentstudy,fromtheBergenCOPDExacerbation
Study(BCES)andtheBergenCOPDCohortStudy(BCCS).
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chronic obstructive lung disease (GOLD) guidelines [15]. Body composition was determined
with bioelectrical impedance measurements, and patients categorized as normal, obese or
cachectic [16]. COPD exacerbation history was taken by the study physician at the baseline
visit of the study, based on patient recall. An exacerbation was defined as a worsening of symp-
toms requiring treatment with either antibiotics or oral steroids. Induced sputum sampling
was performed depending on patients’ cooperation and availability of study technicians
trained in sputum processing.

Laboratory analyses

Sputum samples had to fulfill quality measures ensuring lower airway sampling. The details of
sputum induction and processing are previously published [14, 17].

Sputum processing was performed immediately after sampling. After the filtering step, sam-
ples were centrifuged at 4˚C for> 15 minutes at 450 g. The resulting supernatants and cell pel-
lets were frozen separately at -80˚C. DNA was extracted from cell pellets using the FastPrep-24
Instrument and reagents from the FastDNA Spin Kit (MP Biomedicals, LLC, Solon, OH, USA).
Amplicon PCR (45 cycles) and index PCR were run using primers from the Nextera XT Index
Kit (Illumina Inc., San Diego, CA, USA). Paired-end sequencing (2 x 300 cycles) of the V3-V4
region of the 16S rRNA gene followed the protocol for Metagenomic Sequencing Library Prepa-
ration for the Illumina Miseq System (Part # 15044223 Rev. B, MiSeq Reagent Kit v3).

The inflammatory markers interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-18 (IL-
18), interferon gamma-inducible protein-10 (IP-10), tumor necrosis factor-alpha (TNF-α) and
monokine induced by gamma interferon (MIG) in sputum supernatants were processed using
bead-based multiplex assays and the Luminex1 xMAP1 technology (Luminex Corporation,
Austin, Texas). The data on sputum levels of LL-37 (a cathelicidin peptide derived from
human hCAP-18) and secretory leucocyte protease inhibitor (SLPI) derived from previously
unfrozen, aliquots of the same sputum supernatants by enzyme immunoassays, were derived
from a previous analysis [18, 19].

Bioinformatics analyses

The amplicon sequences were quality and chimera filtered through the microbiota pipeline
Quantitative Insights Into Microbial Ecology 2 (QIIME2) (v.2017.9 – v.2018.11) [20], using
the Divisive Amplicon Denoising Algorithm 2 (DADA2) [21]. Laboratory-made sequences
(chimeras) were removed first through DADA2 [21] and then VSEARCH [22]. Negative con-
trols were unavailable, so to filter contaminants we used the total DNA-load measurements
(Quant-iT™ PicoGreen™, ThermoFisher Scientific Inc) and the Decontam algorithm in R [23].
Amplicon sequence variants (ASVs) created by DADA2 were assigned taxonomy, using a self-
trained Naïve Bayes classifier and the Silva database [24]. ASVs that could not be assigned tax-
onomy beyond kingdom level were omitted. After de-novo alignment, FastTree was used to
build a phylogenetic tree for diversity analyses [25].

Statistical analyses

To compare inflammatory markers and antimicrobial peptides in sputum during the stable
state and during exacerbations, Wilcoxon signed rank test was used to account for the paired
design. To compare taxonomic composition between pairs of samples we calculated the Yue-
Clayton measure of dissimilarity (1-θYC) [26]. This was performed at the genus level, after
omitting ASVs containing< 1% of the total amount of sequences. Differential abundances of
taxa between disease states were analysed using an ANOVA-like differential expression proce-
dure (Aldex2) in R [27]. Diversity analyses were performed after sub-setting all samples at the
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chronicobstructivelungdisease(GOLD)guidelines[15].Bodycompositionwasdetermined
withbioelectricalimpedancemeasurements,andpatientscategorizedasnormal,obeseor
cachectic[16].COPDexacerbationhistorywastakenbythestudyphysicianatthebaseline
visitofthestudy,basedonpatientrecall.Anexacerbationwasdefinedasaworseningofsymp-
tomsrequiringtreatmentwitheitherantibioticsororalsteroids.Inducedsputumsampling
wasperformeddependingonpatients’cooperationandavailabilityofstudytechnicians
trainedinsputumprocessing.

Laboratoryanalyses

Sputumsampleshadtofulfillqualitymeasuresensuringlowerairwaysampling.Thedetailsof
sputuminductionandprocessingarepreviouslypublished[14,17].

Sputumprocessingwasperformedimmediatelyaftersampling.Afterthefilteringstep,sam-
pleswerecentrifugedat4C̊for>15minutesat450g.Theresultingsupernatantsandcellpel-
letswerefrozenseparatelyat-80C̊.DNAwasextractedfromcellpelletsusingtheFastPrep-24
InstrumentandreagentsfromtheFastDNASpinKit(MPBiomedicals,LLC,Solon,OH,USA).
AmpliconPCR(45cycles)andindexPCRwererunusingprimersfromtheNexteraXTIndex
Kit(IlluminaInc.,SanDiego,CA,USA).Paired-endsequencing(2x300cycles)oftheV3-V4
regionofthe16SrRNAgenefollowedtheprotocolforMetagenomicSequencingLibraryPrepa-
rationfortheIlluminaMiseqSystem(Part#15044223Rev.B,MiSeqReagentKitv3).

Theinflammatorymarkersinterleukin-6(IL-6),interleukin-8(IL-8),interleukin-18(IL-
18),interferongamma-inducibleprotein-10(IP-10),tumornecrosisfactor-alpha(TNF-α)and
monokineinducedbygammainterferon(MIG)insputumsupernatantswereprocessedusing
bead-basedmultiplexassaysandtheLuminex1xMAP1technology(LuminexCorporation,
Austin,Texas).ThedataonsputumlevelsofLL-37(acathelicidinpeptidederivedfrom
humanhCAP-18)andsecretoryleucocyteproteaseinhibitor(SLPI)derivedfrompreviously
unfrozen,aliquotsofthesamesputumsupernatantsbyenzymeimmunoassays,werederived
fromapreviousanalysis[18,19].

Bioinformaticsanalyses

Theampliconsequenceswerequalityandchimerafilteredthroughthemicrobiotapipeline
QuantitativeInsightsIntoMicrobialEcology2(QIIME2)(v.2017.9–v.2018.11)[20],using
theDivisiveAmpliconDenoisingAlgorithm2(DADA2)[21].Laboratory-madesequences
(chimeras)wereremovedfirstthroughDADA2[21]andthenVSEARCH[22].Negativecon-
trolswereunavailable,sotofiltercontaminantsweusedthetotalDNA-loadmeasurements
(Quant-iT™PicoGreen™,ThermoFisherScientificInc)andtheDecontamalgorithminR[23].
Ampliconsequencevariants(ASVs)createdbyDADA2wereassignedtaxonomy,usingaself-
trainedNaïveBayesclassifierandtheSilvadatabase[24].ASVsthatcouldnotbeassignedtax-
onomybeyondkingdomlevelwereomitted.Afterde-novoalignment,FastTreewasusedto
buildaphylogenetictreefordiversityanalyses[25].

Statisticalanalyses

Tocompareinflammatorymarkersandantimicrobialpeptidesinsputumduringthestable
stateandduringexacerbations,Wilcoxonsignedranktestwasusedtoaccountforthepaired
design.TocomparetaxonomiccompositionbetweenpairsofsampleswecalculatedtheYue-
Claytonmeasureofdissimilarity(1-θYC)[26].Thiswasperformedatthegenuslevel,after
omittingASVscontaining<1%ofthetotalamountofsequences.Differentialabundancesof
taxabetweendiseasestateswereanalysedusinganANOVA-likedifferentialexpressionproce-
dure(Aldex2)inR[27].Diversityanalyseswereperformedaftersub-settingallsamplesatthe
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wasperformeddependingonpatients’cooperationandavailabilityofstudytechnicians
trainedinsputumprocessing.

Laboratoryanalyses

Sputumsampleshadtofulfillqualitymeasuresensuringlowerairwaysampling.Thedetailsof
sputuminductionandprocessingarepreviouslypublished[14,17].

Sputumprocessingwasperformedimmediatelyaftersampling.Afterthefilteringstep,sam-
pleswerecentrifugedat4˚Cfor>15minutesat450g.Theresultingsupernatantsandcellpel-
letswerefrozenseparatelyat-80˚C.DNAwasextractedfromcellpelletsusingtheFastPrep-24
InstrumentandreagentsfromtheFastDNASpinKit(MPBiomedicals,LLC,Solon,OH,USA).
AmpliconPCR(45cycles)andindexPCRwererunusingprimersfromtheNexteraXTIndex
Kit(IlluminaInc.,SanDiego,CA,USA).Paired-endsequencing(2x300cycles)oftheV3-V4
regionofthe16SrRNAgenefollowedtheprotocolforMetagenomicSequencingLibraryPrepa-
rationfortheIlluminaMiseqSystem(Part#15044223Rev.B,MiSeqReagentKitv3).

Theinflammatorymarkersinterleukin-6(IL-6),interleukin-8(IL-8),interleukin-18(IL-
18),interferongamma-inducibleprotein-10(IP-10),tumornecrosisfactor-alpha(TNF-α)and
monokineinducedbygammainterferon(MIG)insputumsupernatantswereprocessedusing
bead-basedmultiplexassaysandtheLuminex1xMAP1technology(LuminexCorporation,
Austin,Texas).ThedataonsputumlevelsofLL-37(acathelicidinpeptidederivedfrom
humanhCAP-18)andsecretoryleucocyteproteaseinhibitor(SLPI)derivedfrompreviously
unfrozen,aliquotsofthesamesputumsupernatantsbyenzymeimmunoassays,werederived
fromapreviousanalysis[18,19].

Bioinformaticsanalyses

Theampliconsequenceswerequalityandchimerafilteredthroughthemicrobiotapipeline
QuantitativeInsightsIntoMicrobialEcology2(QIIME2)(v.2017.9–v.2018.11)[20],using
theDivisiveAmpliconDenoisingAlgorithm2(DADA2)[21].Laboratory-madesequences
(chimeras)wereremovedfirstthroughDADA2[21]andthenVSEARCH[22].Negativecon-
trolswereunavailable,sotofiltercontaminantsweusedthetotalDNA-loadmeasurements
(Quant-iT™PicoGreen™,ThermoFisherScientificInc)andtheDecontamalgorithminR[23].
Ampliconsequencevariants(ASVs)createdbyDADA2wereassignedtaxonomy,usingaself-
trainedNaïveBayesclassifierandtheSilvadatabase[24].ASVsthatcouldnotbeassignedtax-
onomybeyondkingdomlevelwereomitted.Afterde-novoalignment,FastTreewasusedto
buildaphylogenetictreefordiversityanalyses[25].

Statisticalanalyses

Tocompareinflammatorymarkersandantimicrobialpeptidesinsputumduringthestable
stateandduringexacerbations,Wilcoxonsignedranktestwasusedtoaccountforthepaired
design.TocomparetaxonomiccompositionbetweenpairsofsampleswecalculatedtheYue-
Claytonmeasureofdissimilarity(1-θYC)[26].Thiswasperformedatthegenuslevel,after
omittingASVscontaining<1%ofthetotalamountofsequences.Differentialabundancesof
taxabetweendiseasestateswereanalysedusinganANOVA-likedifferentialexpressionproce-
dure(Aldex2)inR[27].Diversityanalyseswereperformedaftersub-settingallsamplesatthe
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number of sequences of the sparsest sample (rarefaction). Beta-diversity visualized as non-
metric multidimensional scaling plots (NMDS), were analysed with permutation tests of mul-
tivariate homogeneity of variances, permuted analysis of variance (PERMANOVA) and Pro-
crustes analyses in the Vegan package in R [28]. For analyses of clinical data relative to
measurements from biological samples StataSE (StataCorp LP. Release 14. College Station,
TX) was used. Further details on bioinformatics and statistical methods are available in the
online supplement S1 Text. More on bioinformatics and statistical methods.

Results

Table 1 shows the patient characteristics for the 36 included COPD patients.
Eleven patients had experienced two or more exacerbations the last 12 months before inclu-

sion. At inclusion 28 participants used inhaled corticosteroids. No patients used antibiotics or
oral corticosteroids at stable state, whereas at exacerbation visits, one patient used antibiotics,
one used oral corticosteroids, and one patient used both (Table 1). For 26 of the 36 sputum
pairs, the stable sputum was collected prior to an exacerbation event, and vice versa for the
other 10 pairs. The median number of days between the two collections were 257 days.

Inflammatory markers and antimicrobial peptides

Levels of the two AMPs and three of the measured inflammatory markers (IP-10, MIG, TNF-
α) differed significantly in sputum sampled between disease states (Fig 2), with levels of all

Table 1. Patient characteristics at inclusion in the Bergen COPD Cohort Study.

n (%)

Sex

Women 15 (42%)

Men 21 (58%)

Age

40–54 years 4 (11%)

55–64 years 21 (58%)

65–75 years 11 (31%)

Body composition

Normal 27 (75%)

Obese 6 (17%)

Cachectic 3 (8%)

Smoking

Ex 21 (58%)

Current 15 (42%)

GOLD COPD stage

II (FEV1 50–80%) 18 (50%)

III (FEV1 30–50%) 14 (39%)

IV (FEV1<30%) 4 (11%)

Frequent exacerbator⇤

No 24 (67%)

Yes 11 (31%)

⇤ >1 exacerbation last 12 months prior to inclusion. One patient missing information. GOLD: Global Initiative for

Chronic Obstructive Lunge Disease. COPD: Chronic obstructive lunge disease. FEV1: Forced expiratory volume 1st

second

https://doi.org/10.1371/journal.pone.0222449.t001
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Inflammatorymarkersandantimicrobialpeptides

LevelsofthetwoAMPsandthreeofthemeasuredinflammatorymarkers(IP-10,MIG,TNF-
α)differedsignificantlyinsputumsampledbetweendiseasestates(Fig2),withlevelsofall

Table1.PatientcharacteristicsatinclusionintheBergenCOPDCohortStudy.

n(%)

Sex

Women15(42%)

Men21(58%)

Age

40–54years4(11%)

55–64years21(58%)

65–75years11(31%)

Bodycomposition

Normal27(75%)

Obese6(17%)

Cachectic3(8%)

Smoking

Ex21(58%)

Current15(42%)

GOLDCOPDstage

II(FEV150–80%)18(50%)

III(FEV130–50%)14(39%)

IV(FEV1<30%)4(11%)

Frequentexacerbator⇤

No24(67%)

Yes11(31%)

⇤>1exacerbationlast12monthspriortoinclusion.Onepatientmissinginformation.GOLD:GlobalInitiativefor

ChronicObstructiveLungeDisease.COPD:Chronicobstructivelungedisease.FEV1:Forcedexpiratoryvolume1st

second

https://doi.org/10.1371/journal.pone.0222449.t001
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mediators being higher during exacerbation except for SLPI. One patient had no measurement
of inflammatory markers and two patients had no measurement of LL-37/hCAP.

Taxonomy

Of 15 phyla identified, Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria were the
most abundant, containing 97% of all sequences at both disease states. Proteobacteria was rela-
tively more dominating in samples collected during exacerbations compared to stable state.
Streptococcus, Rothia, Prevotella 7, Veillonella, and Haemophilus; which altogether contained
68% of all sequences at both disease states were the most abundant genera (Fig 3).

Fig 2. Inflammatory markers and antimicrobial peptides in induced sputum collected from a COPD cohort at
stable state and during exacerbation. Interleukin-6 (IL-6), Interleukin-8 (IL-8), Interleukin-18 (IL-18), Interferon
Gamma-Induced Protein 10 (IP-10), Monokine induced by gamma interferon (MIG): n = 35. Secretory Leukocyte
Protease Inhibitor (SLPI): n = 36. LL-37/hCAP-18: n = 34. Boxes show the interquartile range (IQR = 75th percentile-
25th percentile), with medians marked by the horizontal line within each box. Samples collected from the same patient
at different disease states are connected by lines. Wilcoxon signed rank test was applied based on the paired, non-
parametric data.
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The differential abundances of different taxa (often designated “features” in bioinformatics
analyses) between disease states were tested at Silva’s phyla and genus level, and for each ASV.
Differential abundances in features between the stable state-sample group and the exacerba-
tion-sample group were not found (FDR-corrected, effect size cut off 0.5. Wilcoxon p>0.05
for all taxa at all three levels, all data available in S1 Table.).

The taxonomic composition and 1-θYC of the 36 sputum pairs are shown in Fig 4. The Yue-
Clayton measure is 0 with perfect similarity and 1 with perfect dissimilarity. To evaluate the
similarity within each sputum pair, 0.2 was set as the Yue-Clayton limit for acceptable within-
pair similarity. With this cut-off, 26 patients had sputum pairs considered dissimilar.

The ten patients with low 1-θYC, and thus similar taxonomic composition across disease
states, did not differ significantly from the other participants with regards to sex, age, body com-
position, smoking status, COPD stage, exacerbation frequency or use of inhaled corticosteroids
(p>0.05, results not shown). Considering levels of inflammatory markers and AMPs at both
disease states, only levels of SLPI during exacerbations were significantly lower in patients with
dissimilar sputum pairs (Fig 5), whereas IL-8 trended towards higher levels in patients with dis-
similar sputum during exacerbations (1-θYC<0.2: Median IL-8 200.5 pg/ml, IQR (59.4–659.1)
1-θYC�0.2: Median IL-8 614.0 pg/ml, IQR (199.9–812.0), Kruskal Wallis p = 0.053).

Diversity

Rarefaction curves of alpha-diversity (within-sample diversity) showed asymptote at 1000
sequences/sample (Fig 1 in S1 Text. More on bioinformatics and statistical methods). Faith’s
phylogenetic diversity (PD) and Shannon’s non-phylogenetic diversity (non-PD) indices
showed no significant differences in alpha-diversity between the two disease states (Table 1 in
S1 Text. More on bioinformatics and statistical methods).

Changes in individual alpha-diversity between disease states are visualized in Fig 6. There
were inconsistent directionality and magnitude of alpha-diversity change between patients.
Faith’s PD was higher at stable state in 15 patients and for Shannon’s non-PD this was the case
in 17 patients (Fig 6A).

Fig 3. The four most abundant phylae and the five most abundant genera found in induced sputum samples from COPD patients during the stable state, and
during exacerbations.

https://doi.org/10.1371/journal.pone.0222449.g003
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tion-samplegroupwerenotfound(FDR-corrected,effectsizecutoff0.5.Wilcoxonp>0.05
foralltaxaatallthreelevels,alldataavailableinS1Table.).
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pairsimilarity.Withthiscut-off,26patientshadsputumpairsconsidereddissimilar.
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states,didnotdiffersignificantlyfromtheotherparticipantswithregardstosex,age,bodycom-
position,smokingstatus,COPDstage,exacerbationfrequencyoruseofinhaledcorticosteroids
(p>0.05,resultsnotshown).ConsideringlevelsofinflammatorymarkersandAMPsatboth
diseasestates,onlylevelsofSLPIduringexacerbationsweresignificantlylowerinpatientswith
dissimilarsputumpairs(Fig5),whereasIL-8trendedtowardshigherlevelsinpatientswithdis-
similarsputumduringexacerbations(1-θYC<0.2:MedianIL-8200.5pg/ml,IQR(59.4–659.1)
1-θYC�0.2:MedianIL-8614.0pg/ml,IQR(199.9–812.0),KruskalWallisp=0.053).

Diversity
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sequences/sample(Fig1inS1Text.Moreonbioinformaticsandstatisticalmethods).Faith’s
phylogeneticdiversity(PD)andShannon’snon-phylogeneticdiversity(non-PD)indices
showednosignificantdifferencesinalpha-diversitybetweenthetwodiseasestates(Table1in
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wereinconsistentdirectionalityandmagnitudeofalpha-diversitychangebetweenpatients.
Faith’sPDwashigheratstablestatein15patientsandforShannon’snon-PDthiswasthecase
in17patients(Fig6A).

Fig3.ThefourmostabundantphylaeandthefivemostabundantgenerafoundininducedsputumsamplesfromCOPDpatientsduringthestablestate,and
duringexacerbations.
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Fig 3. The four most abundant phylae and the five most abundant genera found in induced sputum samples from COPD patients during the stable state, and
during exacerbations.
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Differentialabundancesinfeaturesbetweenthestablestate-samplegroupandtheexacerba-
tion-samplegroupwerenotfound(FDR-corrected,effectsizecutoff0.5.Wilcoxonp>0.05
foralltaxaatallthreelevels,alldataavailableinS1Table.).

Thetaxonomiccompositionand1-θYCofthe36sputumpairsareshowninFig4.TheYue-
Claytonmeasureis0withperfectsimilarityand1withperfectdissimilarity.Toevaluatethe
similaritywithineachsputumpair,0.2wassetastheYue-Claytonlimitforacceptablewithin-
pairsimilarity.Withthiscut-off,26patientshadsputumpairsconsidereddissimilar.

Thetenpatientswithlow1-θYC,andthussimilartaxonomiccompositionacrossdisease
states,didnotdiffersignificantlyfromtheotherparticipantswithregardstosex,age,bodycom-
position,smokingstatus,COPDstage,exacerbationfrequencyoruseofinhaledcorticosteroids
(p>0.05,resultsnotshown).ConsideringlevelsofinflammatorymarkersandAMPsatboth
diseasestates,onlylevelsofSLPIduringexacerbationsweresignificantlylowerinpatientswith
dissimilarsputumpairs(Fig5),whereasIL-8trendedtowardshigherlevelsinpatientswithdis-
similarsputumduringexacerbations(1-θYC<0.2:MedianIL-8200.5pg/ml,IQR(59.4–659.1)
1-θYC�0.2:MedianIL-8614.0pg/ml,IQR(199.9–812.0),KruskalWallisp=0.053).

Diversity

Rarefactioncurvesofalpha-diversity(within-samplediversity)showedasymptoteat1000
sequences/sample(Fig1inS1Text.Moreonbioinformaticsandstatisticalmethods).Faith’s
phylogeneticdiversity(PD)andShannon’snon-phylogeneticdiversity(non-PD)indices
showednosignificantdifferencesinalpha-diversitybetweenthetwodiseasestates(Table1in
S1Text.Moreonbioinformaticsandstatisticalmethods).

Changesinindividualalpha-diversitybetweendiseasestatesarevisualizedinFig6.There
wereinconsistentdirectionalityandmagnitudeofalpha-diversitychangebetweenpatients.
Faith’sPDwashigheratstablestatein15patientsandforShannon’snon-PDthiswasthecase
in17patients(Fig6A).

Fig3.ThefourmostabundantphylaeandthefivemostabundantgenerafoundininducedsputumsamplesfromCOPDpatientsduringthestablestate,and
duringexacerbations.
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Changes in Faith’s PD by disease state were not related to levels of white blood cell counts
(WBC) or absolute neutrophil counts (ANC), while Shannon’s non-PD was lower at stable
state among patients whose ANC did not become elevated during exacerbations (Kruskal Wal-
lis, p = 0.04) (Fig 6B).

Fig 4. Comparison of bacterial composition in pairs of induced sputum samples (stable state and exacerbation)
from 36 patients suffering from chronic obstructive lung disease. Presenting level 6 taxonomy (genus) provided by
Silva database for amplicon sequence variants containing at least 1% of all sequences. ⇤Yue-Clayton dissimilarity (1-
θYC) Range 0 to 1; 0 = perfect similarity, 1 = perfect dissimilarity. S: Stable state E: Exacerbation.

https://doi.org/10.1371/journal.pone.0222449.g004
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stateamongpatientswhoseANCdidnotbecomeelevatedduringexacerbations(KruskalWal-
lis,p=0.04)(Fig6B).
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We did not find clustering by disease state when we examined different ordinance plots of
beta-diversity (between-sample diversity) (Fig 7). With the PERMANOVA test to compare the
average community value (centroid) between disease-states, significant differences were found
only for non-phylogenetic matrices (Bray-Curtis p = 0.017, and Sørensen p = 0.004), however
the corresponding R^2 values were only 0.02 for both.

To investigate beta-diversity within individuals, one distance matrix was created for each
disease state. Overlaying stable state and exacerbation ordinance plots after Procrustes trans-
formation showed ample distance within several sample pairs (Fig 8). M^2 values> 0.3 indi-
cate that the samples delivered at the different disease states have poor resemblance.
Information on which pairs have the least similar samples is given in Fig 2 in S1 Text. More on
bioinformatics and statistical methods.

Longitudinal case study

One patient (NN) delivered induced sputum samples from six stable state visits and seven
exacerbations. NN was a 66-year old ex-smoker, diagnosed with COPD stage IV at inclusion.
NN continued being a frequent exacerbator the three years the study lasted.

The taxonomic composition (including ASVs consisting of � 1% of all sequences) for
each of the 13 samples are shown in Fig 9A. Of the six dominating genera, Streptococcus,

Fig 5. Comparing Secretory Leukocyte Protease Inhibitor (SLPI) measured in induced sputum in exacerbated
COPD patients with regards to microbial composition alterations between disease states.Unaltered = Yue-Clayton
dissimilarity index<0.2 (n = 10), Altered = Yue-Clayton dissimilarity index>0.2 (n = 26). Boxes show the
interquartile range (IQR = 75th percentile-25th percentile), with medians marked by the horizontal line within each
box. Kruskal Wallis test used due to non-parametric data.

https://doi.org/10.1371/journal.pone.0222449.g005
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beta-diversity(between-samplediversity)(Fig7).WiththePERMANOVAtesttocomparethe
averagecommunityvalue(centroid)betweendisease-states,significantdifferenceswerefound
onlyfornon-phylogeneticmatrices(Bray-Curtisp=0.017,andSørensenp=0.004),however
thecorrespondingR^2valueswereonly0.02forboth.

Toinvestigatebeta-diversitywithinindividuals,onedistancematrixwascreatedforeach
diseasestate.OverlayingstablestateandexacerbationordinanceplotsafterProcrustestrans-
formationshowedampledistancewithinseveralsamplepairs(Fig8).M^2values>0.3indi-
catethatthesamplesdeliveredatthedifferentdiseasestateshavepoorresemblance.
InformationonwhichpairshavetheleastsimilarsamplesisgiveninFig2inS1Text.Moreon
bioinformaticsandstatisticalmethods.

Longitudinalcasestudy

Onepatient(NN)deliveredinducedsputumsamplesfromsixstablestatevisitsandseven
exacerbations.NNwasa66-yearoldex-smoker,diagnosedwithCOPDstageIVatinclusion.
NNcontinuedbeingafrequentexacerbatorthethreeyearsthestudylasted.

Thetaxonomiccomposition(includingASVsconsistingof�1%ofallsequences)for
eachofthe13samplesareshowninFig9A.Ofthesixdominatinggenera,Streptococcus,

Fig5.ComparingSecretoryLeukocyteProteaseInhibitor(SLPI)measuredininducedsputuminexacerbated
COPDpatientswithregardstomicrobialcompositionalterationsbetweendiseasestates.Unaltered=Yue-Clayton
dissimilarityindex<0.2(n=10),Altered=Yue-Claytondissimilarityindex>0.2(n=26).Boxesshowthe
interquartilerange(IQR=75thpercentile-25thpercentile),withmediansmarkedbythehorizontallinewithineach
box.KruskalWallistestusedduetonon-parametricdata.
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We did not find clustering by disease state when we examined different ordinance plots of
beta-diversity (between-sample diversity) (Fig 7). With the PERMANOVA test to compare the
average community value (centroid) between disease-states, significant differences were found
only for non-phylogenetic matrices (Bray-Curtis p = 0.017, and Sørensen p = 0.004), however
the corresponding R^2 values were only 0.02 for both.

To investigate beta-diversity within individuals, one distance matrix was created for each
disease state. Overlaying stable state and exacerbation ordinance plots after Procrustes trans-
formation showed ample distance within several sample pairs (Fig 8). M^2 values> 0.3 indi-
cate that the samples delivered at the different disease states have poor resemblance.
Information on which pairs have the least similar samples is given in Fig 2 in S1 Text. More on
bioinformatics and statistical methods.

Longitudinal case study

One patient (NN) delivered induced sputum samples from six stable state visits and seven
exacerbations. NN was a 66-year old ex-smoker, diagnosed with COPD stage IV at inclusion.
NN continued being a frequent exacerbator the three years the study lasted.

The taxonomic composition (including ASVs consisting of � 1% of all sequences) for
each of the 13 samples are shown in Fig 9A. Of the six dominating genera, Streptococcus,

Fig 5. Comparing Secretory Leukocyte Protease Inhibitor (SLPI) measured in induced sputum in exacerbated
COPD patients with regards to microbial composition alterations between disease states.Unaltered = Yue-Clayton
dissimilarity index<0.2 (n = 10), Altered = Yue-Clayton dissimilarity index>0.2 (n = 26). Boxes show the
interquartile range (IQR = 75

th
percentile-25

th
percentile), with medians marked by the horizontal line within each

box. Kruskal Wallis test used due to non-parametric data.
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beta-diversity(between-samplediversity)(Fig7).WiththePERMANOVAtesttocomparethe
averagecommunityvalue(centroid)betweendisease-states,significantdifferenceswerefound
onlyfornon-phylogeneticmatrices(Bray-Curtisp=0.017,andSørensenp=0.004),however
thecorrespondingR^2valueswereonly0.02forboth.

Toinvestigatebeta-diversitywithinindividuals,onedistancematrixwascreatedforeach
diseasestate.OverlayingstablestateandexacerbationordinanceplotsafterProcrustestrans-
formationshowedampledistancewithinseveralsamplepairs(Fig8).M^2values>0.3indi-
catethatthesamplesdeliveredatthedifferentdiseasestateshavepoorresemblance.
InformationonwhichpairshavetheleastsimilarsamplesisgiveninFig2inS1Text.Moreon
bioinformaticsandstatisticalmethods.

Longitudinalcasestudy

Onepatient(NN)deliveredinducedsputumsamplesfromsixstablestatevisitsandseven
exacerbations.NNwasa66-yearoldex-smoker,diagnosedwithCOPDstageIVatinclusion.
NNcontinuedbeingafrequentexacerbatorthethreeyearsthestudylasted.

Thetaxonomiccomposition(includingASVsconsistingof�1%ofallsequences)for
eachofthe13samplesareshowninFig9A.Ofthesixdominatinggenera,Streptococcus,

Fig5.ComparingSecretoryLeukocyteProteaseInhibitor(SLPI)measuredininducedsputuminexacerbated
COPDpatientswithregardstomicrobialcompositionalterationsbetweendiseasestates.Unaltered=Yue-Clayton
dissimilarityindex<0.2(n=10),Altered=Yue-Claytondissimilarityindex>0.2(n=26).Boxesshowthe
interquartilerange(IQR=75
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th
percentile),withmediansmarkedbythehorizontallinewithineach

box.KruskalWallistestusedduetonon-parametricdata.
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Fig 6. Alpha-diversity in induced sputum collected from 36 COPD patients. A: Comparison of phylogenetic (Faith
PD) and non-phylogenetic (Shannon non-PD) alpha-diversity in sputum collected at stable state and during
exacerbation. Lines connect samples from the same individual. Wilcoxon signed rank test was applied based on the
paired, non-parametric data. B: Relations between Shannon’s alpha-diversity at stable state and serum inflammatory
markers during exacerbations. WBC:White Blood Cell counts high>11.3 109/L (n = 8) ANC: Absolute Neutrophil
Count high>8.4 109/L (n = 7). Kruskal Wallis test used due to non-parametric data. Boxes show the interquartile
range (IQR = 75th percentile-25th percentile), with medians marked by the horizontal line within each box.

https://doi.org/10.1371/journal.pone.0222449.g006
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Ralstonia and Comamonadaceae were seen in all samples. Rothia,Moraxella and Gemella
were the other genera found to dominate, though not consistently seen at each sampling
occasion.

Variability in phylogenetic diversity measures are displayed in Fig 9B. Alpha-diversity
changed between sampling time points, but there was no consistent pattern in directionality
between the stable state samples and the samples collected during exacerbations. When com-
paring beta-diversity, there was a trending increase in distances over time with unweighted
UniFrac. However, this could not be seen for weighted UniFrac distances, which also varied
over time unrelated to disease state.

Fig 7. Beta-diversity in induced sputum collected from 36 chronic obstructive pulmonary disease sufferers both at
stable state and during exacerbations, presented with non-metric multidimensional scaling (NMDS) ordinations.
The X- and Y-axes display the first and second NMDS dimension respectively. Distance matrices: Sørensen and Bray
Curtis: Both non-phylogenetic; qualitative and quantitative information respectively. Unweighted and weighted
UniFrac: Both phylogenetic; qualitative and quantitative information respectively. Aitchison: Compositional
interpretation of sequence counts.

https://doi.org/10.1371/journal.pone.0222449.g007
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RalstoniaandComamonadaceaewereseeninallsamples.Rothia,MoraxellaandGemella
weretheothergenerafoundtodominate,thoughnotconsistentlyseenateachsampling
occasion.

VariabilityinphylogeneticdiversitymeasuresaredisplayedinFig9B.Alpha-diversity
changedbetweensamplingtimepoints,buttherewasnoconsistentpatternindirectionality
betweenthestablestatesamplesandthesamplescollectedduringexacerbations.Whencom-
paringbeta-diversity,therewasatrendingincreaseindistancesovertimewithunweighted
UniFrac.However,thiscouldnotbeseenforweightedUniFracdistances,whichalsovaried
overtimeunrelatedtodiseasestate.

Fig7.Beta-diversityininducedsputumcollectedfrom36chronicobstructivepulmonarydiseasesufferersbothat
stablestateandduringexacerbations,presentedwithnon-metricmultidimensionalscaling(NMDS)ordinations.
TheX-andY-axesdisplaythefirstandsecondNMDSdimensionrespectively.Distancematrices:SørensenandBray
Curtis:Bothnon-phylogenetic;qualitativeandquantitativeinformationrespectively.Unweightedandweighted
UniFrac:Bothphylogenetic;qualitativeandquantitativeinformationrespectively.Aitchison:Compositional
interpretationofsequencecounts.
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Discussion

This study has shown that individual COPD patients had evident changes in the sputum
microbiota from stable state to exacerbation, in parallel with significant changes in sputum
inflammatory markers. The individual’s changes in microbiota were to some extent camou-
flaged when analyses were run on groups of patients. Considerable shifts in bacterial composi-
tion were seen in the case study over 13 repeated stable state/exacerbation samples, but
without a consistent stable state equilibrium.

COPD exacerbations are heterogeneous events, differing in length, symptom burden and
need for treatment. In the current study, only patients who met the clinical criteria for an
exacerbation, defined by the Wedzicha and Donaldsons’ definition [29] and the judgment of

Fig 8. Non-metric multidimensional scaling plots after symmetric Procrustes transformation, illustrating
differences in microbiota as distance between paired samples collected at stable state and during exacerbations of
COPD.Distance matrices: Sørensen and Bray Curtis: Both non-phylogenetic; qualitative and quantitative information
respectively. Unweighted and weighted UniFrac: Both phylogenetic; qualitative and quantitative information
respectively. Aitchison: Compositional interpretation of sequencing data. M^2 = Summed squares of distances. The
significance of M^2 was tested for all comparisons, with p<0.05 for all but WUF (PROTEST p = 0.25).
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an experienced study physician were included. All patients came to the outpatient clinic by
themselves, and only those patients deemed not in need for hospitalization were considered
for induced sputum sampling. Thus, all exacerbations were moderate at the time of sampling.
Still, the sputum inflammatory markers confirmed an altered local immune state during these
events, showing both that the exacerbation state was truly different from the stable state, and
also that microbiota likely was affecting, or affected by, the airways inflammation.

We observed significantly higher levels of TNF-α, IP-10 and MIG during exacerbations.
TNF-α is an upstream inflammatory cytokine with a wide range of effects. It has an important
role in Th1-mediated immune responses, augmenting both IP-10 and MIG signaling down-
stream [30]. These are cytokines induced by interferon-gamma (IFN-γ) as part of a

Fig 9. Taxonomic composition and diversity in 13 induced sputum samples collected from the same patient
(chronic obstructive pulmonary disease) at different consultations. A: Presenting taxonomic composition at level 6
taxonomy (genus), provided by Silva database for amplicon sequence variants containing at least 1% of all sequences.
Numbers are given as relative abundances per sample. B: Phylogenetic alpha- and beta-diversity. Alpha-diversity
measured by Faith phylogenetic diversity (right y-axis). Non-quantitative and quantitative beta-diversity measured by
UniFrac (UWUF,WUF respectively, left y-axis). Except from the first sampling time point beta diversity is calculated
between consecutive samples. A+B: Disease state given in A by S = Stable state, E = Exacerbations. Samples are ordered
chronologically and collection dates are given in B.

https://doi.org/10.1371/journal.pone.0222449.g009
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themselves,andonlythosepatientsdeemednotinneedforhospitalizationwereconsidered
forinducedsputumsampling.Thus,allexacerbationsweremoderateatthetimeofsampling.
Still,thesputuminflammatorymarkersconfirmedanalteredlocalimmunestateduringthese
events,showingboththattheexacerbationstatewastrulydifferentfromthestablestate,and
alsothatmicrobiotalikelywasaffecting,oraffectedby,theairwaysinflammation.

WeobservedsignificantlyhigherlevelsofTNF-α,IP-10andMIGduringexacerbations.
TNF-αisanupstreaminflammatorycytokinewithawiderangeofeffects.Ithasanimportant
roleinTh1-mediatedimmuneresponses,augmentingbothIP-10andMIGsignalingdown-
stream[30].Thesearecytokinesinducedbyinterferon-gamma(IFN-γ)aspartofa
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measuredbyFaithphylogeneticdiversity(righty-axis).Non-quantitativeandquantitativebeta-diversitymeasuredby
UniFrac(UWUF,WUFrespectively,lefty-axis).Exceptfromthefirstsamplingtimepointbetadiversityiscalculated
betweenconsecutivesamples.A+B:DiseasestategiveninAbyS=Stablestate,E=Exacerbations.Samplesareordered
chronologicallyandcollectiondatesaregiveninB.
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events,showingboththattheexacerbationstatewastrulydifferentfromthestablestate,and
alsothatmicrobiotalikelywasaffecting,oraffectedby,theairwaysinflammation.

WeobservedsignificantlyhigherlevelsofTNF-α,IP-10andMIGduringexacerbations.
TNF-αisanupstreaminflammatorycytokinewithawiderangeofeffects.Ithasanimportant
roleinTh1-mediatedimmuneresponses,augmentingbothIP-10andMIGsignalingdown-
stream[30].Thesearecytokinesinducedbyinterferon-gamma(IFN-γ)aspartofa
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Th1-mediated immune response [30]. All three cytokines have been shown to play a role
against viral infections, intracellular bacteria and to some extracellular bacteria [31–33].

The AMPs are part of the innate immune response against a wide variety of microbes
including bacteria, fungi and viruses. In a previous study from the BCCS and BCES, we have
shown the same disease state related pattern of change as found in the current study [18]. In
patients where the composition of the taxa in sputum changed with disease state, SLPI was sig-
nificantly lower during exacerbations compared to those patients where the sputum composi-
tion was unchanged. Presumably this is a response to the microbial shift, for instance by
degradation of SLPI by host and microbial proteases. However, in theory it could also be oppo-
site; that during an exacerbation the immune response leads to changes in taxonomic compo-
sitions. In vitro studies are likely necessary to elucidate specific mechanisms. For the other
markers, we could not find an association with shifts in taxonomic composition. Low sample
size is perhaps the most likely explanation for this, in addition to the inherent heterogeneity of
the COPD exacerbations.

The four most abundant phyla in our samples were coherent with previous studies on
COPD sputum microbiota [34, 35]. It was the same four phyla dominating the samples inde-
pendently of disease state, though we did see a shift involving increases in Proteobacteria dur-
ing exacerbations, and a parallel decrease in Bacteroidetes. In the previous study by Mayhew
et al [34], it was further shown that the fraction of Proteobacteria increased with increasing
exacerbation severity, something the current study did not have power to examine. However,
the current study adds to the other studies by showing an accompanied immune response with
the shifts in microbial profiles.

Another important difference between our study and previous studies is that the current
study only included induced sputum samples. We have previously shown that induced and
spontaneous sputum collected during the same visits will not be sufficiently similar in micro-
bial composition to allow them to be used interchangeably [17].

The most abundant genus belonging to the Proteobacteria phylum in our cohort wasHae-
mophilus. This was the case for both stable state and exacerbation, and there were no signifi-
cant changes in its abundance across disease states. Even though several studies have found
Haemophilus to be of importance related to inflammation and exacerbation risk [36, 37], we
could not find thatHaemophilus discriminated between disease states when measured in
induced sputum. This could reflect the sample size in the current study, and should not be
interpreted as changes inHaemophilus being without importance. An imperative consider-
ation when evaluating taxonomic composition is that increasing levels of one taxon invariably
will result in decreases in others, since the sum total is 100%. We have used the Yue-Clayton
index (1-θYC) in an attempt to quantify the difference, but the cut-off value of 0.2 is arbitrary
and no established consensus on what constitutes a biologically meaningful cut-off value exist.
If the entire ecological content of a sample, or the overabundance of one low-abundant patho-
gen is more relevant to exacerbation risk, then a cut-off of 0.2 may be too high.

With that caveat, a very important finding in the current study was that there appeared to
be significant changes in taxonomic composition when we examined individual (paired-sam-
ples) changes (1-θYC>0.2, n = 26) again confirming findings by Mayhew et al. However, we
did not find significant changes in composition when all samples were pooled by disease state
(Aldex2 analyses p>0.05). Thus, paired analyses are necessary to evaluate changes in taxo-
nomic compositions, and they confirm heterogeneity among patients.

With an infectious exacerbation, where the compositional taxonomy changes, one would
imagine that the diversity would change as well. If one pathogenic organism dominated, it
would presumably displace others completely (leading to a loss in richness) or skew the distri-
bution significantly (leading to a loss of evenness).
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againstviralinfections,intracellularbacteriaandtosomeextracellularbacteria[31–33].

TheAMPsarepartoftheinnateimmuneresponseagainstawidevarietyofmicrobes
includingbacteria,fungiandviruses.InapreviousstudyfromtheBCCSandBCES,wehave
shownthesamediseasestaterelatedpatternofchangeasfoundinthecurrentstudy[18].In
patientswherethecompositionofthetaxainsputumchangedwithdiseasestate,SLPIwassig-
nificantlylowerduringexacerbationscomparedtothosepatientswherethesputumcomposi-
tionwasunchanged.Presumablythisisaresponsetothemicrobialshift,forinstanceby
degradationofSLPIbyhostandmicrobialproteases.However,intheoryitcouldalsobeoppo-
site;thatduringanexacerbationtheimmuneresponseleadstochangesintaxonomiccompo-
sitions.Invitrostudiesarelikelynecessarytoelucidatespecificmechanisms.Fortheother
markers,wecouldnotfindanassociationwithshiftsintaxonomiccomposition.Lowsample
sizeisperhapsthemostlikelyexplanationforthis,inadditiontotheinherentheterogeneityof
theCOPDexacerbations.

Thefourmostabundantphylainoursampleswerecoherentwithpreviousstudieson
COPDsputummicrobiota[34,35].Itwasthesamefourphyladominatingthesamplesinde-
pendentlyofdiseasestate,thoughwedidseeashiftinvolvingincreasesinProteobacteriadur-
ingexacerbations,andaparalleldecreaseinBacteroidetes.InthepreviousstudybyMayhew
etal[34],itwasfurthershownthatthefractionofProteobacteriaincreasedwithincreasing
exacerbationseverity,somethingthecurrentstudydidnothavepowertoexamine.However,
thecurrentstudyaddstotheotherstudiesbyshowinganaccompaniedimmuneresponsewith
theshiftsinmicrobialprofiles.

Anotherimportantdifferencebetweenourstudyandpreviousstudiesisthatthecurrent
studyonlyincludedinducedsputumsamples.Wehavepreviouslyshownthatinducedand
spontaneoussputumcollectedduringthesamevisitswillnotbesufficientlysimilarinmicro-
bialcompositiontoallowthemtobeusedinterchangeably[17].

ThemostabundantgenusbelongingtotheProteobacteriaphyluminourcohortwasHae-
mophilus.Thiswasthecaseforbothstablestateandexacerbation,andtherewerenosignifi-
cantchangesinitsabundanceacrossdiseasestates.Eventhoughseveralstudieshavefound
Haemophilustobeofimportancerelatedtoinflammationandexacerbationrisk[36,37],we
couldnotfindthatHaemophilusdiscriminatedbetweendiseasestateswhenmeasuredin
inducedsputum.Thiscouldreflectthesamplesizeinthecurrentstudy,andshouldnotbe
interpretedaschangesinHaemophilusbeingwithoutimportance.Animperativeconsider-
ationwhenevaluatingtaxonomiccompositionisthatincreasinglevelsofonetaxoninvariably
willresultindecreasesinothers,sincethesumtotalis100%.WehaveusedtheYue-Clayton
index(1-θYC)inanattempttoquantifythedifference,butthecut-offvalueof0.2isarbitrary
andnoestablishedconsensusonwhatconstitutesabiologicallymeaningfulcut-offvalueexist.
Iftheentireecologicalcontentofasample,ortheoverabundanceofonelow-abundantpatho-
genismorerelevanttoexacerbationrisk,thenacut-offof0.2maybetoohigh.

Withthatcaveat,averyimportantfindinginthecurrentstudywasthatthereappearedto
besignificantchangesintaxonomiccompositionwhenweexaminedindividual(paired-sam-
ples)changes(1-θYC>0.2,n=26)againconfirmingfindingsbyMayhewetal.However,we
didnotfindsignificantchangesincompositionwhenallsampleswerepooledbydiseasestate
(Aldex2analysesp>0.05).Thus,pairedanalysesarenecessarytoevaluatechangesintaxo-
nomiccompositions,andtheyconfirmheterogeneityamongpatients.

Withaninfectiousexacerbation,wherethecompositionaltaxonomychanges,onewould
imaginethatthediversitywouldchangeaswell.Ifonepathogenicorganismdominated,it
wouldpresumablydisplaceotherscompletely(leadingtoalossinrichness)orskewthedistri-
butionsignificantly(leadingtoalossofevenness).
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Haemophilus to be of importance related to inflammation and exacerbation risk [36, 37], we
could not find thatHaemophilus discriminated between disease states when measured in
induced sputum. This could reflect the sample size in the current study, and should not be
interpreted as changes inHaemophilus being without importance. An imperative consider-
ation when evaluating taxonomic composition is that increasing levels of one taxon invariably
will result in decreases in others, since the sum total is 100%. We have used the Yue-Clayton
index (1-θYC) in an attempt to quantify the difference, but the cut-off value of 0.2 is arbitrary
and no established consensus on what constitutes a biologically meaningful cut-off value exist.
If the entire ecological content of a sample, or the overabundance of one low-abundant patho-
gen is more relevant to exacerbation risk, then a cut-off of 0.2 may be too high.

With that caveat, a very important finding in the current study was that there appeared to
be significant changes in taxonomic composition when we examined individual (paired-sam-
ples) changes (1-θYC>0.2, n = 26) again confirming findings by Mayhew et al. However, we
did not find significant changes in composition when all samples were pooled by disease state
(Aldex2 analyses p>0.05). Thus, paired analyses are necessary to evaluate changes in taxo-
nomic compositions, and they confirm heterogeneity among patients.

With an infectious exacerbation, where the compositional taxonomy changes, one would
imagine that the diversity would change as well. If one pathogenic organism dominated, it
would presumably displace others completely (leading to a loss in richness) or skew the distri-
bution significantly (leading to a loss of evenness).
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In this study, we could not find a significant difference in alpha diversity between disease
states on the group level with either non-phylogenetic or phylogenetic indices. However, we
did detect higher diversity at stable state in patients with elevated ANC during exacerbations,
indicating that reduced diversity can impair systemic immune responses. The plot showing
individual changes revealed that alpha-diversity takes on all directionalities with changing dis-
ease states, thus larger numbers would be needed to look at sub-types in more detail.

For beta diversity, using several indices we again saw no convincing change in diversity
from stable state to exacerbation with group comparisons, while such changes were supported
when looking at diversity with paired analyses. Further, the larger change detected with
weighted UniFrac than unweighted, could imply that we see predominately a change in pre-
existing bacteria rather than addition or loss of new species.

Some methodological shortcomings need to be considered. First, we lack negative controls
of the fluids used in the sputum induction in our study. We used the Decontam algorithm in R
to identify likely contaminants, which were then excluded from the study. However, the lack of
negative controls remains a weakness, as that could possibly have led to a more precise identifi-
cation of contaminants. Second, over the three years of the study, two different technicians per-
formed the initial processing of the samples, although with the same protocol. And, although
the same study personnel later analyzed all samples with the same protocol, all paired samples
were not always analyzed on the same laboratory runs. Analyses of taxonomy and beta diversity
did not reveal clear differences in relative abundance between runs or significant differences in
beta-diversity, and thus no adjustment for runs were used. However, some laboratory induced
inter-pair variation cannot be excluded. Third, since the study compares pairs both where the
stable state comes prior to the exacerbation and vice versa, the study is a comparison between
disease states, and no chronological sequence of events can be assumed. Fourth, the sample size
of the study is too small to make inferences about whether some subgroups like patients with
different disease severity have larger variations in their microbiota than other subgroups. Fifth,
variability between consecutive samples could not be addressed as participants delivered only
one sample at each visit. Sixth, sputum was examined and discarded if the number of cells
was< 1 million/mL or number of epithelial cells> 20%. However, even if deemed representa-
tive of the lower airways, sputum will invariably contain some microbial contamination from
the relatively high-biomass oral cavity. For less contamination prone sampling of the lower air-
ways, bronchoscopy is preferred, however, that is not feasible during COPD exacerbations. Sev-
enth, the true stability of the airways’ microbiome is yet unknown, thus some of the change
between the stable state and the exacerbations, may just reflect the fluctuating nature of the
microbiome. Finally, amplicon sequencing only tells us which bacteria are present and their rel-
ative abundance based on the amplicon sequenced (in our case 16S rDNA).

This study not only confirms that there are considerable changes in the respiratory micro-
biota between disease states in COPD patients, it further shows an important heterogeneity
between patient’s microbiota. This is indicative of future challenges in development of applica-
ble anti/pro-biotic treatment for groups of COPD patients. At the same time local inflamma-
tion is associated with the changes in microbiota, indicating the microbiota has significant
implications for respiratory health. Further mechanistic studies are needed to examine the
interaction between the microbiota and local inflammation.
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S1 Text. More on bioinformatics and statistical methods. Supplementary details on bioin-
formatics and statistical methods.
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Inthisstudy,wecouldnotfindasignificantdifferenceinalphadiversitybetweendisease
statesonthegrouplevelwitheithernon-phylogeneticorphylogeneticindices.However,we
diddetecthigherdiversityatstablestateinpatientswithelevatedANCduringexacerbations,
indicatingthatreduceddiversitycanimpairsystemicimmuneresponses.Theplotshowing
individualchangesrevealedthatalpha-diversitytakesonalldirectionalitieswithchangingdis-
easestates,thuslargernumberswouldbeneededtolookatsub-typesinmoredetail.

Forbetadiversity,usingseveralindicesweagainsawnoconvincingchangeindiversity
fromstablestatetoexacerbationwithgroupcomparisons,whilesuchchangesweresupported
whenlookingatdiversitywithpairedanalyses.Further,thelargerchangedetectedwith
weightedUniFracthanunweighted,couldimplythatweseepredominatelyachangeinpre-
existingbacteriaratherthanadditionorlossofnewspecies.

Somemethodologicalshortcomingsneedtobeconsidered.First,welacknegativecontrols
ofthefluidsusedinthesputuminductioninourstudy.WeusedtheDecontamalgorithminR
toidentifylikelycontaminants,whichwerethenexcludedfromthestudy.However,thelackof
negativecontrolsremainsaweakness,asthatcouldpossiblyhaveledtoamorepreciseidentifi-
cationofcontaminants.Second,overthethreeyearsofthestudy,twodifferenttechniciansper-
formedtheinitialprocessingofthesamples,althoughwiththesameprotocol.And,although
thesamestudypersonnellateranalyzedallsampleswiththesameprotocol,allpairedsamples
werenotalwaysanalyzedonthesamelaboratoryruns.Analysesoftaxonomyandbetadiversity
didnotrevealcleardifferencesinrelativeabundancebetweenrunsorsignificantdifferencesin
beta-diversity,andthusnoadjustmentforrunswereused.However,somelaboratoryinduced
inter-pairvariationcannotbeexcluded.Third,sincethestudycomparespairsbothwherethe
stablestatecomespriortotheexacerbationandviceversa,thestudyisacomparisonbetween
diseasestates,andnochronologicalsequenceofeventscanbeassumed.Fourth,thesamplesize
ofthestudyistoosmalltomakeinferencesaboutwhethersomesubgroupslikepatientswith
differentdiseaseseverityhavelargervariationsintheirmicrobiotathanothersubgroups.Fifth,
variabilitybetweenconsecutivesamplescouldnotbeaddressedasparticipantsdeliveredonly
onesampleateachvisit.Sixth,sputumwasexaminedanddiscardedifthenumberofcells
was<1million/mLornumberofepithelialcells>20%.However,evenifdeemedrepresenta-
tiveofthelowerairways,sputumwillinvariablycontainsomemicrobialcontaminationfrom
therelativelyhigh-biomassoralcavity.Forlesscontaminationpronesamplingofthelowerair-
ways,bronchoscopyispreferred,however,thatisnotfeasibleduringCOPDexacerbations.Sev-
enth,thetruestabilityoftheairways’microbiomeisyetunknown,thussomeofthechange
betweenthestablestateandtheexacerbations,mayjustreflectthefluctuatingnatureofthe
microbiome.Finally,ampliconsequencingonlytellsuswhichbacteriaarepresentandtheirrel-
ativeabundancebasedontheampliconsequenced(inourcase16SrDNA).

Thisstudynotonlyconfirmsthatthereareconsiderablechangesintherespiratorymicro-
biotabetweendiseasestatesinCOPDpatients,itfurthershowsanimportantheterogeneity
betweenpatient’smicrobiota.Thisisindicativeoffuturechallengesindevelopmentofapplica-
bleanti/pro-biotictreatmentforgroupsofCOPDpatients.Atthesametimelocalinflamma-
tionisassociatedwiththechangesinmicrobiota,indicatingthemicrobiotahassignificant
implicationsforrespiratoryhealth.Furthermechanisticstudiesareneededtoexaminethe
interactionbetweenthemicrobiotaandlocalinflammation.
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In this study, we could not find a significant difference in alpha diversity between disease
states on the group level with either non-phylogenetic or phylogenetic indices. However, we
did detect higher diversity at stable state in patients with elevated ANC during exacerbations,
indicating that reduced diversity can impair systemic immune responses. The plot showing
individual changes revealed that alpha-diversity takes on all directionalities with changing dis-
ease states, thus larger numbers would be needed to look at sub-types in more detail.

For beta diversity, using several indices we again saw no convincing change in diversity
from stable state to exacerbation with group comparisons, while such changes were supported
when looking at diversity with paired analyses. Further, the larger change detected with
weighted UniFrac than unweighted, could imply that we see predominately a change in pre-
existing bacteria rather than addition or loss of new species.

Some methodological shortcomings need to be considered. First, we lack negative controls
of the fluids used in the sputum induction in our study. We used the Decontam algorithm in R
to identify likely contaminants, which were then excluded from the study. However, the lack of
negative controls remains a weakness, as that could possibly have led to a more precise identifi-
cation of contaminants. Second, over the three years of the study, two different technicians per-
formed the initial processing of the samples, although with the same protocol. And, although
the same study personnel later analyzed all samples with the same protocol, all paired samples
were not always analyzed on the same laboratory runs. Analyses of taxonomy and beta diversity
did not reveal clear differences in relative abundance between runs or significant differences in
beta-diversity, and thus no adjustment for runs were used. However, some laboratory induced
inter-pair variation cannot be excluded. Third, since the study compares pairs both where the
stable state comes prior to the exacerbation and vice versa, the study is a comparison between
disease states, and no chronological sequence of events can be assumed. Fourth, the sample size
of the study is too small to make inferences about whether some subgroups like patients with
different disease severity have larger variations in their microbiota than other subgroups. Fifth,
variability between consecutive samples could not be addressed as participants delivered only
one sample at each visit. Sixth, sputum was examined and discarded if the number of cells
was< 1 million/mL or number of epithelial cells> 20%. However, even if deemed representa-
tive of the lower airways, sputum will invariably contain some microbial contamination from
the relatively high-biomass oral cavity. For less contamination prone sampling of the lower air-
ways, bronchoscopy is preferred, however, that is not feasible during COPD exacerbations. Sev-
enth, the true stability of the airways’ microbiome is yet unknown, thus some of the change
between the stable state and the exacerbations, may just reflect the fluctuating nature of the
microbiome. Finally, amplicon sequencing only tells us which bacteria are present and their rel-
ative abundance based on the amplicon sequenced (in our case 16S rDNA).

This study not only confirms that there are considerable changes in the respiratory micro-
biota between disease states in COPD patients, it further shows an important heterogeneity
between patient’s microbiota. This is indicative of future challenges in development of applica-
ble anti/pro-biotic treatment for groups of COPD patients. At the same time local inflamma-
tion is associated with the changes in microbiota, indicating the microbiota has significant
implications for respiratory health. Further mechanistic studies are needed to examine the
interaction between the microbiota and local inflammation.
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