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Abstract

Parasitic salmon lice (Lepeophtheirus salmonis, Krøyer 1837) are a threat to the health and welfare

of farmed salmonids and to the sustainability of wild salmon populations in Norway. Accordingly,

the opportunities for growth of the farming industry are strictly regulated by the Norwegian govern-

ment based on the relative abundance of salmon lice in commercial sea cages. Farmers are obliged

to disclose weekly lice counts per location and to perform delousing treatments when preset thresh-

olds are exceeded. Reported lice numbers are by default based on manual counts that are obtained

by physical inspection of a limited sample of fish. In recent years, advanced camera technology

and artificial intelligence have made it possible to obtain image-based lice counts based on repre-

sentative sample sizes and without stressful handling of the fish. However, camera-based solutions

do not usually represent the entire fish. In this thesis, a correction factor between image-based

and manual parasite counts in Atlantic salmon (Salmo salar, Linnaeus 1758) aquaculture is there-

fore being explored. The objective was to determine a factor that accurately adjusts image-based

parasite counts to account for lice on the opposite site of the fish. For this purpose, simple linear

models and linear mixed-effects models were developed and validated, to model manual lice counts

that were reported to the Norwegian authorities. Image-based and human-verified lice counts from

Stingray Marine Solutions AS of equivalent sample sizes were used as the main predictor variable.

Additional predictors included farmer-reported production data such as fish counts, average fish

weight, delousing treatments, and sea temperature, as well as operational data from the Stingray

system, which is designed to detect, target, and eliminate sea lice on freely swimming fish by means

of machine vision and laser technology. Various candidate models were compared and tested on

unseen data. Results did not confirm the hypothesis that image-based counts require upward adjust-

ment to faithfully represent the accuracy of manual counts. Instead, the resulting correction factor

suggested that the opposite was the case. Statistical and procedural explanations were explored by

means of simulated lice counts and are discussed with regard to current regulations.
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1 Introduction

Aquaculture is the husbandry and propagation of aquatic organisms such as plants and animals in

all types of water environments. According to Norway’s Directorate of Fisheries, referred to as

Fiskeridirektoratet in Norwegian, approximately 1,551,972 tons of Norwegian produced salmon

were sold in 2022. In addition 84,928 tons of rainbow trout were sold the same year. Fiskeridirek-

toratet is the advisory and executive body within fisheries and aquaculture management in Norway

(fiskeridir.no).

Figure 1: This figure shows quantity (tons) of salmon (dark blue) and rainbow trout (light blue)

sold in Norway between 1994 and 2022 (primary y-axis). The orange line shows sale in tons per

employee (secondary y-axis). This figure is adapted from Norwegian. Source: Fiskeridirektoratet,

https://www.fiskeridir.no/Akvakultur/Tall-og-analyse/Akvakulturstatistikk-tidsserier/Laks-regnbueoerret-og-

oerret/salg-av-laks-og-regnbueorret. Last accessed 05.11.2023
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Figure 1 shows steady increase in quantity of sold trout and salmon since 1994 and reflects

the expansive nature of the aquaculture in Norway. The export of Atlantic salmon made up over

60% of the total seafood export value in Norway in 2021 (Johnsen et al., 2021). Therefore, salmon

farming can be considered one of the most important industries in Norway (F. Johnsen et al., 2022).

Salmon farming in Norway has been established along the entire West coast and is structured in

thirteen salmon production areas (Produksjonsområdeforskriften, 2017, §3). The high density of

salmon, as well as the close proximity of salmon farms to each other, lead to a large biomass of

fish. As a result, similar to all intensive farming practices (Mennerat et al., 2010), disease outbreaks

must be expected. The most common parasitic disease for salmonids in Norway is the salmon louse

(Lepeophtheirus salmonis, Krøyer), a parasitic temperate marine copepod species.

Salmon lice are parasites that feed off the skin, mucus and blood of salmonid hosts (Torrissen

et al., 2013; Grimnes and Jakobsen, 1996). Low to medium louse levels can lead to injured and

sick fish with reduced appetite and growth. High infection levels can lead to increased mortality

in fish (Costello, 2006; Hamre et al., 2009). However all sea louse grazing on the host’s body can

cause secondary viral, bacterial or fungal infections detrimental to the fish (Ugelvik and Dalvin,

2022). In addition to being a threat to the welfare of the farmed salmonids, and a potential threat

to wild salmon populations (Taranger et al., 2015), salmon lice cost the salmon industry economi-

cally around 5 billion NOK per year in Norway in 2017 (Iversen et al., 2017). This includes direct

costs for treatments against salmon lice as well as indirect costs related to monitoring the sea louse

levels. In Norway, the government and its governing body, the Norwegian food safety authority,

referred to as Mattilsynet in Norwegian, have enforced a strict sea louse monitoring program (mat-

tilsynet.no; Forskrift om lakselusbekjempelse, 2013). All salmon farms have to count and report

sea louse abundance to Mattilsynet every week. The Norwegian government have fixed limits on

allowed amount of adult female lice per fish. When exceeding the sea louse limit, treatment against

the parasite has to be initiated (Forskrift om lakselusbekjempelse, 2013).

The threshold for allowed sea louse abundance is set between 0.2 and 0.5 adult female sea lice

per fish with limits depending on location and time of the year (Forskrift om lakselusbekjempelse,

2013). The abundance of salmon lice in a fish farm is measured by calculating the number of lice
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per fish on a minimum of ten or twenty fish per pen, depending on time of the year. The aver-

age is calculated for all sea louse life cycle stages, namely adult females, mobile stages and fixed

stages, but only increased levels in adult females can trigger a legal response. The different louse

stages will be explained in further detail in Section 2. As of today, sea lice are counted by physical

handling and visually inspecting the fish, unless the farmer has obtained a dispensation from this

obligation by Mattilsynet (Mattilsynet, 2020). This counting method is not ideal due to practical

restraints such as rough weather, or the difficulty to obtain a representative sample of fish (Thor-

valdsen et al., 2019). In addition, physical handling is stressful for the fish (Delfosse et al., 2021)

and it has been shown that manual counts can be biased downwards (Elmoslemany et al., 2013;

Godwin et al., 2021) and prone to human counting error. The main problem might, however, be the

physical limitations of manual counting since it is only practically possible to count a small amount

of fish each week.

In recent years, the Norwegian aquaculture industry has been pushing to implement novel technol-

ogy to streamline all aspects of salmonid production. This push includes upgrades of infrastructure,

such as hybrid barges for clean and stable electricity, 4G and 5G internet coverage and the use of

robotics and artificial intelligence for welfare and behaviour logging (Føre et al., 2018). Stingray

Marine Solutions AS specialises in sea louse treatment using a method referred to as optical de-

lousing (stingray.no). Stingray uses a guided laser pulse and machine learning to recognise and

shoot sea lice on fish in salmon or trout pens.

Additionally the Norwegian government has encouraged the use of modern technology to mon-

itor sea louse levels. Stingray, among others, offers image-based lice counts to improve fish health

and fish welfare monitoring. Image-based counts are counts performed on random images of fish.

These counts are analysed by a machine learning detector for sea lice and can be verified by a hu-

man operator. Image-based counts are approved for commercial use on a case to case basis, granted

by the authorities (Mattilsynet, 2020). In addition, Norway’s standardisation organisation, referred

to as Standard Norge in Norwegian, has been appointed to establish a standard for automated louse

counts in Norway to fully replace manual, physical lice counts with image detection technology

(Standard Norge).
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The advantages of incorporating modern machine vision, neural networks and detector technol-

ogy in aquaculture as compared to manual human counting and analysis must be understood in

a statistical context. It is now possible to monitor sea lice more frequently and at much higher

sample sizes. Theoretically there is no limit to both parameters, but practically constraints are im-

posed by data volume and up/download capabilities. Whereas it is possible to fully examine a fish

manually, using a combination of human senses for a full 3-dimensional check, images only offer

a 2-dimensional view, without the possibility of physically handling the fish. Thus any camera-

recorded image will not be able to present the whole fish, from every angle. This problem can be

solved by correcting for the lee side of the fish, which is not captured by the camera. Therefore

image-based sea louse counts need to be subjected to a mathematical algorithm which estimates

the total amount of sea lice on the whole fish from the number of sea lice counted in the picture.

This algorithm is referred to as a correction factor for image-based lice counting. It is thought that

the automatic counts will underestimate the true louse abundance, hence a correction is needed to

get closer to a correct sample estimate. To my knowledge, there exists no published information

on finding a correction factor in this context. However, statistically, manual sea louse counts can-

not be taken as the ground truth for comparison due to a large sample size needed in a pen with

up to 200,000 individuals (Departementenes sikkerhets- og serviceorganisasjon Teknisk redaksjon,

2023). This thesis will highlight ways, possibilities and challenges to implement a correction for

Stingray’s image-based sea louse counting method. This author will treat manual louse counts as

the ground truth, and the dependent variable in the mixed-effects models throughout the analysis.

Furthermore, I will explore why finding a correction factor is such a challenging task given the data

we have access to today, by means of a simulation study. The word ”count” will be used frequently

throughout this thesis, but this is not to be confused with discrete counts. When the word ”count”

is used in this thesis, we are referring to average salmon lice counts, which are continuous values.
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2 Biological background

In this section, some biological information about salmon lice and treatment against them will be

provided to better the understanding of the content of this thesis. A salmon louse is a copepod crus-

tacean from the caligid family. It is a marine parasitic crustacean on salmonids and damages the

fish by eating mucus, skin and blood (Torrissen et al., 2013; Grimnes and Jakobsen, 1996). The in-

fected fish host can die if infection levels are high, have reduced growth of the host, osmoregulatory

problems, severe skin wounds and secondary infections (Costello, 2006; Hamre et al., 2009).

2.1 Life cycle of the salmon louse

Figure 2: Life cycle of the salmon louse (Lepeophtheirus salmonis). Once a salmon louse has hatched

from an egg, it has a life cycle consisting of eight stages, each separated by a molt. This illustration shows

an obvious difference in appearance and size for male and female lice in the final three stages of their life

cycle. Illustration: Sea Lice Research Centre, 2020, ”SLRC - Life cycle of the salmon louse (Lepeophtheirus

salmonis)”, https://doi.org/10.18710/GQTYYL, DataverseNO, V1, last accessed 23.04.2022.
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Figure 2 shows the life cycle of a salmon louse, consisting of eight stages. The first two stages are

called the nauplius stages. At this stage the lice are planktonic, orient themselves through visual

cues and light and float freely in the water column. The copepodid stage is the infective stage when

the salmon louse attaches itself to a salmonid host, often on the fins and the skin on the side of

the fish (Tucker et al., 2002). If failing to attach itself to a host, the copepodid will not be able to

complete its life cycle (Nordtug et al., 2021). After attaching, the louse anchors itself to the host

and starts to feed on the fish (Grimnes and Jakobsen, 1996). Once fully attached, the sea louse will

enter the first of two chalimus stages (Hamre et al., 2013). The chalimus stages are also referred to

as fixed stages because they remain attached in a fixed position and do not move around on the fish.

The preadult and adult stages of the salmon louse are mobile, which means that they can move

around freely on the fish (Igboeli et al., 2014). Since adult female lice give raise to new offspring,

they are of particular importance when managing salmon lice infestation in fish farms (Forskrift

om lakselusbekjempelse, 2013). It is therefore commonly distinguished between adult females and

all other mobile stages (Forskrift om lakselusbekjempelse, 2013). Mobiles include all lice in the

preadult I, preadult II and adult male stages, whereas adult females are represented in their own

category. After mating, an adult female louse produces pairs of egg strings from her abdomen,

which might contain between seventy and 290 eggs per string (Heuch et al., 2000). The female

carries these eggs until they hatch. Salmon lice larvae are hatched into the planktonic nauplius I

stage, repeating the cycle.

2.2 Reproduction time

Salmon lice transition through the different stages of their life cycle depending on temperature

and sex (Hamre et al., 2019). Salmon lice generally have greater infestation success, transit faster

through the different stages of their life cycle, reaching sexual maturity at a greater rate, and repro-

duce faster with higher sea temperatures. Sea temperatures along the Norwegian coastline vary a

lot depending on season and geography. The sea temperatures in the north of Norway are generally

lower than the sea temperatures further south all year round. For reference, one of the locations

used in this assignment is located in the western part of Norway and reached a maximum tempera-

ture of 16.5 ◦C in the data collection period. The rest of the six locations used in this assignment,
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located in the north of Norway, never reached a temperature higher than 13.3 ◦C, having an aver-

age maximum temperature of 12.6 ◦C in the same period. The temperatures in the north of Norway

usually increase later in the season, giving the northernmost fish farm locations a shorter period

of time with higher sea temperatures. Because of higher temperatures, longer periods with higher

temperatures and a greater density of fish farms in the western part of Norway, sea louse infestation

levels are usually greater here than further north in the country (Hoddevik, 2021).

Table 1: Table showing the amount of days before the early developers and the amount of days before all

(above 85% of all lice within each group) have reached a given stage for both sexes, for different water

temperatures in a controlled environment. RA stands for relative age and frac stands for fraction. Ch is

Chalimus, Pa is Pre-adult, Adult is the adult stage and N stands for Nauplius. The table, exactly as it is

presented here, is Table 4 in ”Development of the salmon louse Lepeophtheirus salmonis parasitic stages in

temperatures ranging from 3 to 24 ◦C” (Hamre et al., 2019).

Table 1 shows that salmon lice transition faster through their respective life stages with increas-

7



ing temperature within their physiological optimum between 3 ◦C and 21 ◦C. Adult female sea lice

transition through the different stages at an 80% slower rate than the males. At 21 ◦C, the amount

of days from infection to the first eggs produced was 16.3 days. At 3 ◦C, the amount of days it took

before the first egg production was 190.5 days. Typically in Norway, sea temperatures can drop

below 4 ◦C in the winter time. There are special laws in place to account for the lower reproduction

rate and slower transition time of salmon lice when that is the case. More about laws around salmon

lice in Norwegian fish farms will be presented in Section 3.

2.3 Delousing treatments

Treatments against sea lice can be categorised as medicinal and non-medicinal treatments. This

section will provide a short overview of the different delousing methods used in Norway between

2014 and 2019.

Delousing category Frequency Per cent (%)

Thermal 2692 57.97

Mechanical 619 13.33

Hydrogen peroxide 445 9.58

Medicinal bath 198 4.26

Freshwater bath 172 3.70

Combination 518 11.15

Total 4644 100

Table 2: Table showing different types of delousing methods, the frequency of them and the overall per-

centage of all treatments conducted in Norway between 2014 and 2019. Combination is a combination of

medicinal baths, or a combination of hydrogen peroxide and medicinal bath. The values in the table are

taken from Table 2 in ”Estimating cage-level mortality distributions following different delousing treatments

of Atlantic salmon (Salmo salar) in Norway” (Sviland Walde et al., 2021)

Table 2 shows the treatment methods used in Norway between 2014 and 2019. Thermal delous-

ing is an invasive, non-medicinal method, and is performed by crowding fish, pumping them into

a vessel and exposing them to approximately 28-38 ◦C, for approximately thirty seconds (Folkedal

8



et al., 2021). Thermal delousing was the most common delousing method in the given observation

period. Mechanical delousing is an invasive, non-medicinal delousing method, where lice get re-

moved by flushing, brushing or turbulence (Østevik et al., 2022). Hydrogen peroxide is a substance

used as a medicinal delousing method. Fish get exposed to hydrogen peroxide within well-boats

or as regular bath treatments using tarpaulin enclosed cages (Overton et al., 2018). Medicinal bath

treatments are performed in the same way as the hydrogen peroxide method, but other substances

may be used (Gautam et al., 2017). Freshwater baths are non-medicinal treatments that are per-

formed in a similar manner to other bath treatments, but the fish are exposed to freshwater instead

of medicinal substances for a period approximately between three and five hours (Thompson et al.,

2023).

An increased mortality rate has been shown after all of the delousing methods described in Ta-

ble 2 (Sviland Walde et al., 2021). The accumulated mortality of the standing stock of salmonid

fish increased from 2014 to 2018, from 14.3% to 16.8% (Bang Jensen et al., 2020). Resistance to

different medicines has become an increasing problem, and was acknowledged as a serious prob-

lem in the last years prior to 2008 (Myhre Jensen et al., 2020). This study also concluded that it is

important to avoid heavy reliance on one or a few substance groups, as it has been shown to be a

catalyst for the evolution of resistances. The resistance problem is likely the reason for an increased

focus on other treatment methods, but the increased mortality rate and fish welfare issues follow-

ing the alternative methods (Thompson et al., 2023) make the salmon louse situation a complex

problem.
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3 Methods

3.1 Data sets

This section will provide an overview of where data was collected from, how it was collected and

why these specific data sets were included in the analysis to construct a correction factor. A total of

twenty-one data sets have been collected across multiple platforms. Stingray has provided image-

based lice counts, number of laser pulses, number of laser units and number of fish passing the

lasers. Selected Stingray customers have provided fish weight and number of fish at the different

locations. Manual lice counts, sea temperature and louse treatments have been collected from the

governmental website barentswatch.no, where all this information is open access for everyone.

In addition, the most important Norwegian laws regarding salmon lice have been included since

regulations may explain missing data points as well as standard, established sea louse counting

practices.

3.1.1 Data origin

The initial data sets contained data collected from fish farms at six different locations in Norway.

Five of these locations are located in Northern Norway, whilst the last one is close to Florø. Dif-

ferent locations have different numbers of pens and numbers of fish per pen. A pen is an enclosure

for fish. The pens at the locations reviewed in this assignment contain anything between zero and

200,000 individuals. The pens usually have one to two lasers working at all times, this varies from

pen to pen. Pens with two lasers will cover a larger area than the pens with only one laser.
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Figure 3: Figure showing an example fish farm location utilising the Stingray technology in all its pens.

Cabinets are denoted ”NC-123”, ”NC-356”, ”NC-789” and ”FC-007”, and is shown as white rectangles

with blue edges. The green circles, denoted ”1”, ”2” and ”3” are pens, the blue circles within the green

circles denoted ”111”, ”222”, ”333”, ”444” and ”555” are nodes, or laser setups. Pen 1 and pen 2

contain two lasers, pen 3 contains one laser. Feedbarge is the fleet where the fish are fed from. The example

feedbarge has a cabinet. The blue lines stretching across the pens from the cabinets, ”through” the nodes,

and stopping at the edge of the pen are cables. Furthermore, the map contains arrows containing information

about currents, winds and what direction North is in relation to the pens.

Figure 3 illustrates an example of a laser setup at a location. It gets clear from Figure 3 that

pen 3 with only one laser covers a smaller area as the lasers can only be moved along the cable

as well as up and down. All locations have a cabinet set up at the feedbarge. In Figure 3, that

cabinet is denoted ”FC-007”. The cabinet on the feedbarge is the distribution point for the other

cabinets. The distribution point cabinet supplies the other cabinets with internet. All ingress and

egress traffic goes through the distribution point.
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The data sets in this assignment have each been collected from different locations. To protect

the privacy of the customers, all data sets have been anonymised and will be referred to as Location

1 through 6.

Figure 4: Map with zones outlined where the fish farms are located. Location 1-5 are located in the north-

ernmost circle and Location 6 is within the bottom circle. Norwegian counties are outlined with colours on

the right side. Image taken from kommunaldepartementet.

Figure 4 shows roughly where the fish farm locations analysed are located. Location 1 to 5

are close to each other in the north, whereas Location 6 is further south, on the Western coast of

Norway.
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Location Collection

period

Production area Population size Lasers Pens

Location 1 04.01.2021-

23.08.2021

Close to Mo i Rana 383.640 fish 5 4

Location 2 04.01.2021-

23.08.2021

Close to Lofoten 1.375.978 fish 12 10

Location 3 04.01.2021-

02.08.2021

Close to Lofoten 817.230 fish 6 5

Location 4 04.01.2021-

23.08.2021

North of Harstad 941.055 fish 17 10

Location 5 04.01.2021-

19.07.2021

Close to Lofoten 310.374 fish 3 6

Location 6 04.01.2021-

23.08.2021

Close to Florø 1.494.980 fish 16 8

Table 3: The table shows the time periods the data has been collected in, production areas of the locations

and the population sizes on location level (accumulated over all pens in that location). In addition, informa-

tion about how many lasers each location had at the beginning of the data collection period, as well as how

many pens each location consisted of, has been included.

Table 3 shows general information about the locations that provided the data foundation for this

assignment. The locations had varying numbers of fish, lasers, and pens. Location 5 had the fewest

fish and the lowest number of lasers, and Location 6 had the most fish and the largest amount

of lasers of all the locations. Location 5 was the only location with fewer lasers than of pens.

However, after inspecting the relationships between manual counts and image-based counts, it was

evident that none of the locations were displaying obvious relationships or trends between the two

variables, except from at Location 6. Additional observations were therefore needed and collected

later on for all of the locations, with some exceptions. The fish in Location 3 and 5 were harvested

in week 35 in 2021, it was therefore impossible to gather more data for these two locations. Harvest

found place at Location 6 in week 38, but the louse numbers were generally higher for this location

and it was possible to somewhat observe a trend between manual and image-based counts. Hence,

it was possible to use this location for analysis without additional observations.
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(a) Image-based counts plotted against manual counts for the available data in Location 3.

(b) Image-based counts plotted against manual counts for the available data in Location 5.

Figure 5: Plots of image-based counts against manual counts for Location 3 and 5 with the available

observations, both with image-based counts on the x-axis and image-based counts on the y-axis. It was not

possible to obtain more data for the two locations than what is displayed here.
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Figure 5 shows little to no trend in the plots of Panel (a) and (b). Based on this, the decision to

remove Location 3 and 5 for further analysis was made. The locations and time periods used for

further analysis were therefore:

• Location 1: 04.01.2021-27.12.2021

• Location 2: 04.01.2021-20.12.2021

• Location 4: 04.01.2021-15.11.2021

• Location 6: 04.01.2021-06.09.2021.

Lastly, a test data set was included to test how well the final models of the analysis performed on

unseen data. The test data set included manual counts, image-based counts, time of treatments and

normalised laser pulses for Location 1, 2, 4 and 6. Observations in the test data were collected for

all four locations between 03.01.2022 and 23.10.2023. Many observations were missing. Rows

with missing values were deleted. The test data set with missing values removed consisted of 113

observations in total.

3.1.2 Laws about salmon lice in Norwegian fish farms

Strict laws are in place for controlling salmon louse populations in Norwegian fish farms. All

fish farms have to report louse numbers and sea temperatures measured 3m below the surface to

Mattilsynet every seven days (Forskrift om lakselusbekjempelse, 2013). There are two exceptions

to the law of having to report louse numbers once every week:

1) The sea temperature measured 3m below the surface is below 4 ◦C.

2) Harvest of the fish is to happen within fourteen days after the lice count was meant to be

conducted.

Fish farms are only required to report louse numbers once every fourteen days when the sea tem-

perature is below 4 ◦C. They are not required to report louse numbers if exception 2) is the case

due to fish welfare concerns when counting fish in cold temperatures. Because of the two excep-

tions, missing data values can occur during winter time and close to harvesting time. If the fish are

harvested in the winter at low temperatures, lice counts can be missing for as much as four weeks

15



before the fish are being harvested.

The reports of manual counts need to categorised by life cycle stage:

1) fixed stages

2) mobile stages

3) adult females lice

All stages listed here are described in Section 2.1. A sample size of a minimum of ten fish from

each pen of a fish farm location needs to be counted. Exceptions to this rule are described under

(Forskrift om lakselusbekjempelse, 2013):

• Exception 1: starting at Monday week 14 until and including Sunday week 21, a sample size

of twenty fish per pen is required at all locations from Nord-Trøndelag and southwards.

• Exception 2: starting at Monday week 19 to and until and including Sunday week 26, the

same rules as exception 1 applies to all locations in Nordland, Troms and Finnmark.

Exception 1 applies for Location 6, whereas exception 2 applies for the remaining locations.

Delousing

Strict rules for sea louse thresholds are enforced by Norwegian law (Forskrift om lakelusbekjem-

pelse, 2013). A limit of 0.5 adult female lice per fish is the common limit for most locations most

times of the year. Stricter limits are in place during spring when wild salmon smolts migrate from

their natal freshwater habitats into the open ocean (Hatlem). Norway is divided into geographical

areas when deciding general louse limits (Forskrift om lakselusbekjempelse, 2013):

• In Nord-Trønderlag and southwards, the upper louse limit is an average of 0.2 adult female

lice per fish from and with Monday week 16, to and with Sunday week 21. An upper limit of

an average of 0.5 adult female lice per fish is valid the rest of the year.

• In Nordland, Troms and Finnmark, a limit of 0.2 adult female lice per fish is set from and

with Monday week 21, to and with Sunday week 26. The 0.5 limit is valid for the rest of the

year.
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If the number of adult female lice in a fish farm location exceeds any of these limits, the fish farm

is required by law to use approved delousing methods to reduce louse numbers. If failing to do so,

fines and potentially jail time are possible punishments, depending on the severity.

3.1.3 Data collection

In this section, all variables used in the analysis of this thesis will be described. How they were

collected, why they may be relevant to describe manual counts, and missing values and how they

were dealt with are included.

Barentswatch data

Manual counts

The relevant number of fish to be examined for manual counts from each pen are collected with

special nets and collected in such a manner that the sample is as representative of the population as

possible. All of the collected fish are then quickly sedated to make it as stress-free as possible for

the fish. When sedated, the counting teams will count lice of the different stage groups on each fish

and add them together separately.

Manual counts can be performed in different ways, but the principles are the same. First, the

counters have to collect the fish. A surrounding net or lift net is used to collect a sub sample of fish

from a pen. Fish feed is often used as a way of attracting fish before collecting the subset. From

this subset, a handheld net is used to collect ten to twenty fish, depending on the time of the year.

The fish caught with a handheld net are then transferred to an anaesthetising tub to sedate the fish

prior to sampling. When sufficiently sedated, the fish, one by one, are being inspected by trained

site staff. The lice are sedated in the process as well, and some fall off the fish host into the tub. By

law, the lice in the tub are to be counted as well. The process of counting the lice in the tub varies.

Some have a white cloth at the bottom of the tub so they can count the lice directly in the tub they

fell into. Others have a type of sieve that they pour the liquid through, for then to count the lice

that are left in the sieve. The manual count procedure as described here has been gathered from a

SINTEF 2018 report (Torvaldsen et al., 2018). Some manual counts were missing in the data set.
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Location Amount missing Week number Sea temperature [◦C] Observations left

1 0 NA NA 52

2 1 12 5 50

4 3 11, 13, 15 All < 4 45

6 3 15, 36, 37 6.4, 13.1, 11.9 34

Table 4: Missing values in the manual count data. Amount missing is the number of missing values in

total for each location. Week number is the week numbers of the weeks the values were missing for. Sea

temperatures for the weeks where observations were missing is included as well, in the same order as the

week numbers are displayed in the table from left to right. Observations left is the number of observations

left for each location, after removing the missing values.

Table 4 shows the amount of missing values. For Location 4, all missing values were due to the

exceptions for manual counts when sea temperatures are below 4 ◦C as mentioned in Section 3.1.2.

For Location 6, the observations for week 36 and 37 were missing because of the upcoming harvest

in week 38, allowing them to not count the last two weeks prior to harvest. The observations miss-

ing for week 12 at Location 2, and for week 15 at Location 6, are missing for unknown reasons.

Removing values in time-series data may be problematic, because important correlation structures

on a week-to-week basis may get lost or altered. However, both image-based and manual counts

were very small for several weeks before and after the missing values occurred, except from week

36 and 37 at Location 6. The low values over several weeks indicated that there was little change in

louse pressure in the time periods where observations were missing. The risk of losing or changing

important time-related correlation structures was therefore smaller than if the lice numbers were

higher and changing significantly every week. All rows containing the week numbers in 4 were

thus deleted. The missing observations for week 36 and 37 at Location 6 could be removed without

issues, because they were the end points of the data collection period for that location.

Sea temperature

The sea temperatures measured 3m below the surface have been gathered from the governmental

website barentswatch.no. The sea temperature gets registered together with sea lice abundance

estimates each week from fish farmers, and is public information that can be accessed through this

18



website. No missing values occurred for the sea temperatures. Sea temperatures affect the develop-

ment speed of lice as seen in Table 1. Therefore, sea temperatures are of importance for lice counts,

because increased sea temperatures may explain increased manual counts. The sea temperatures

measured 3m below the surface at the different fish farm locations in this assignment range between

the lower temperatures of Table 1 and 17 ◦C.

Louse treatments

Louse treatments in this context are the week numbers of when an anti sea louse treatment has been

initiated at the relevant fish farm locations in the data collection periods. The customers of Stingray

register the time of treatment in the Stingray system, and the dates have therefore been gathered

from Stingray. Time of treatments can also be found on barentswatch.no, information from the

Stingray platform was checked on barentswatch.no as well. After a treatment, the louse numbers

are thought to ”reset” back to zero or close to zero, and it is possible to see a clear drop in lice

numbers directly after treatments. This variable is logical, where TRUE indicates that a treatment

found place for a specific week, whereas FALSE means that no treatment was initiated that week.

Stingray data

Image-based counts

Image-based louse counts in Stingray are based on human inspections of sequences of images. This

type of counting is performed by image analysts, who are trained to correctly identify sea lice on

images. Unlike the manual counts, image-based counts account for only two groups of salmon lice:

adult females and mobiles. The Stingray system uses advanced computation, stereo cameras, and

an optical rig with a laser to kill sea lice and collect data about fish, sea lice, and the number of laser

pulses shot. These data are stored and sent back to servers in the headquarters in Oslo. Random

sequences of images are taken in this way and stored. A minimum of twenty random sequences

are analysed per pen at each location, per week. There are two main requirements that need to be

fulfilled for a sequence of images to be used as a sample:

1) The sequence needs to show a fish from head to tail, including the end of the tail and the

snout of the fish, clearly showing all parts of the fish.
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2) The quality of the images needs to hold a certain standard to be used, such that the sea lice

can be identified as accurately as possible.

(a) A short sequence of images of a fish that gets approved as an adequate sample.

(b) A short sequence of images of a fish that does not get approved as an adequate sample. The numbers in

the bottom right corners show what images from the real sequence of twenty-five images have been chosen

to make the simplified illustration.

Figure 6: Figure showing an approved sample to be used for image-based lice counts (Panel (a)), and one

that gets rejected as an appropiate sample (Panel (b)).
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Figure 6 (a) shows a sequence of four images and is a qualified sequence to be used as a sample.

A sequence usually consists of more than four images, but the sequences shown here are shorter to

be used as illustrations. A full sequence consists of up to twenty-five images. The quality of the

images of Panel (a) is adequate and the whole fish is visible.

Panel (b) shows an example of a sample that gets discarded. The quality of the images is good, but

a fish is swimming in front of the fish in focus and it is impossible to see the whole fish. When

a sample gets discarded, the analyser will get another random sequence to analyse. When twenty

sequences have been analysed, the count is complete, inline with guidelines for purely manual

counting (Forskrift om lakselusbekjempelse, 2013).

Location Amount missing Week number Observations left

1 0 NA 52

2 0 NA 50

4 2 22, 29 43

6 1 15 34

Table 5: Missing values in the image-based count data. Amount missing is the number of missing values

in total for each location. Week number is the week numbers of the weeks the values were missing for.

Observations left is the number of observations that are left for each location after removing the rows with

the missing values (including the missing values from the manual counts).

Table 5 shows that three observations were missing in total of the image-based counts, two for

Location 4 and one for Location 6. The rows in the data set for the week numbers listed were

removed. For Location 4, the number of observations was reduced from forty-five to forty-three

observations, and for Location 6, the number of observations remained unchanged. The reasoning

behind the removal of the observations were the same for manual and image-based counts, and can

be found under missing data for the manual counts.

Laser pulses shot

Every time the Stingray laser unit fires a laser pulse, the pulse is registered. Laser pulses shot is the
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number of times the Stingray unit pulses in a given time interval. The number of laser pulses has

been collected from the Stingray platform stingrayonline.no and are weekly sums. The amount of

shots can be affected by how many fish there are in a fish-farming location as well as how many

lasers there are in each location. This variable has therefore been altered to account for that. The

new variable will later be referred to as normalised pulses.

Normalised pulses = laserpulses/numbero f f ish/amounto f lasers.

The amount of lasers has been gathered manually, by reading from the most currently updated maps

from each location for the relevant time periods, of the type in Figure 3. There were no missing

values of the laser pulses at any of the locations. The normalised laser pulses are of interest in

relation to a correction factor mainly for two reasons. Firstly, laser pulses shot are usually going up

when there are more lice present. Therefore, it might be a relationship between increased number

of pulses and increased manual counts. Secondly, more shots fired may have an effect on manual

counts, because lice are being shot and killed.

Fish passings

Fish passings are the number of fish that are swimming past the Stingray cameras. Passings are

weekly estimates and are the number of fish swimming past the Stingray system per week. The

way fish passings are estimated are through tracking fish eyes within a specified distance from the

cameras. There were no missing values of the fish passings at any of the locations in the relevant

time periods. This variable can give an indication of how well the laser units are positioned in a

pen. If there are almost no fish swimming in front of the cameras over time, it can have an effect on

the relationship between image-based counts and manual counts because it may affect the sampling

process of the image-based counts.

Stingray customer data

Fish weight

Fish weight has been collected by each of the remaining four customers that helped provide data for

this assignment. An estimate of the average of the fish weight has been used. The weight estimates

are measured weekly. The weight is estimated by calculating a theoretical growth of the fish by the
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amount of fish feed fed. This value is typically provided by the fish feed manufacturers in so called

feeding tables. No missing values occurred for this variable. Fish weight is relevant for describing

the manual counts because bigger fish may have more lice. Therefore, an increase in weight may

affect louse numbers.

Number of fish

Number of fish is a measurement provided by the customers. The number of fish are weekly esti-

mates. The fish farmers estimate number of fish by deducting all fish losses from a starting number

of fish when first stocking a pen at the start of a production of a production cycle. This variable was

used as it is as a variable, and as a way to normalise the laser pulses. No missing values occurred

for this variable. Number of fish in a location may affect lice numbers because more fish can have

more lice. On the other hand, lice counts are reported as lice per fish, it might therefore be more

lice per fish observed when there are less fish.

3.1.4 Estimates of salmon louse populations

Both image-based and manual louse counts are estimating the louse populations based on averages

from counts. The values in the data sets for both image-based and manual counts are reported as

lice per fish. Both counting methods are on location level, not on pen level. Fish are being counted

from all pens, but the population mean in this case is the total mean for the whole location.

For the image-based counts, the analyser will count sea lice of different groups as described in

Section 3.1.3. Total number of the different louse stage groups are then divided by the sample

size to get the number of lice per fish, of each group. This method is used on all the pens at each

location, where a sample of a minimum of twenty sequences of images are drawn from each pen.

The averages of each pen are then added together and divided by the number of pens, to get a total

average of each group. The averages of adult females are the measurements used in the data sets

for both manual and image-based counts.

Similarly, the manual estimates are conducted by averaging the averages of each louse stage group

from each pen over the whole location. The counting teams will sedate the minimum of ten random
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fish and count lice of the three different groups described in Section 2.2 in all pens at each location.

The total numbers of each group in every pen are divided by sample sizes, to get an estimate of lice

per fish. Averages of every pen are then added together and divided by the number of pens to get

an estimate of the louse situation in the whole location.

3.2 Mixed-effects models

Mixed-effects models are powerful and versatile tools for analysing grouped data. Grouped data

appears in many fields like medicine, biology and economics. Longitudinal data being measured

at multiple locations is an example of grouped data, which is the type of data analysed in this as-

signment. Mixed-effects models are practical tools when within-group correlation in a grouped

dataset is high and the between-group correlation is low. High within-group correlation between

a response variable Y and an independent variable X indicates that X can predict Y, but not nec-

essarily across the groups (Marzban et al. 2013). The manuscript of Mixed-Effects Models in S

and S-PLUS (Pinheiro and Bates, 2006) has been heavily referenced in other books and articles

dealing with mixed-effects modeling. In addition, the nlme library in R is based on a lot of in-

formation from that book, which is the library used for analysing grouped data in this assignment.

Because of the many citations, the theory in the Method section will be heavily based on Pinheiro

and Bates (2000). The sources of information from other literature will be mentioned or outlined

within parentheses.

Linear Mixed-Effects Models (LMMs) are a versatile statistical framework used to analyse data

with complex structures, such as repeated measurements, hierarchical data, or clustered observa-

tions. These models extend traditional linear regression by incorporating both fixed effects, which

capture population-level trends, and random effects, which account for within-group variability. In

this section, we explore the key components and principles of LMMs as outlined by Pinheiro and

Bates (2000), both the theoretical approach and practical implementation.

3.2.1 Linear mixed-effects models

Theoretical implementation

At the core of LMMs is the linear relationship between the response variable (y) and a combination
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of fixed and random effects:

yi = Xiβ +Zibi + εi, i = 1, ...,M,

bi ∼ N(000,ΣΣΣ), εi ∼ N(0,σ2I)
(1)

where:

• yi is the ni-dimensional vector of observed responses for the ith group.

• Xi is the known ni × p regressor matrix for so-called fixed effects, and βββ represents the p-

dimensional vector of fixed effect coefficients.

• Zi is the known ni × q regressor matrix for so-called random effects, and bbbi represents the

q-dimensional vector of random effects. The random effects bbbi are assumed to be normally

distributed with mean 000, and is characterised by by its variance-covariance matrix ΨΨΨ.

• εεε i represents the ni-dimensional vector of within-group errors, assumed to follow a spherical

Gaussian distribution with mean zero and a covariance matrix as shown in Equation (1). We

describe the terms fixed/random effects in the following sections.

Fixed Effects (βββ )

Fixed effects capture the systematic and population-level variation in the data. The model assumes

that the fixed effects are constants that apply to the entire population. The goal is to estimate the

values of βββ that best explain the observed variation in the response variable y.

One estimation method to estimate the fixed effects involves minimizing the residual sum of squares

(RSS) to find the values of βββ that minimize the discrepancy between the observed data and the

model predictions:

β̂ββ = argmin
βββ

{
n

∑
i=1

(yi −xT
i βββ )2

}

However, for this assignment, maximum likelihood and restricted maximum likelihood estimation

will be used for this purpose. Both methods will be described in detail in two separate sections.
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Random Effects (bbbi)

Random effects account for the unexplained variability within groups or clusters in the data. Unlike

fixed effects, random effects are assumed to follow a multivariate normal distribution with a mean

vector of zeros and a covariance matrix that characterizes the within-group variability.

The estimation of random effects involves finding the values of bbbi that maximize the likelihood

of the observed data, given the estimated fixed effects β̂ββ :

b̂bbi = argmax
bbbi

{
L(bbbi|yi,Xi,Zi, β̂ββ )

}

By estimating fixed effects (βββ ) and random effects (bbbi) while considering the underlying assump-

tions of multivariate normality and covariance structure, LMMs provide a valuable tool for statisti-

cal modeling and inference.

Practical implementation

The nlme library in R has been used to fit the linear mixed-effects models. The specific function

used for this is the lme(fixed, data, random, correlation, weights, method, subset,...)

function. It is a generic function that fits a linear mixed-effects model as described in the theoreti-

cal implementation of the mixed-effects model part. Fixed effects can be specified as a two-sided

linear formula object, with the response on the left of a ’∼’ operator. The independent variables

are separated by ’+’ operators on the right side. Random effects can be specified as a one-sided

formula of the form ’random = x1 + x2 +...+ xn | g1/g2/.../gm’, where x1 +...+ xn

specify the model for the random effects and g1,..., gm are the grouping structure. A random

intercept model could for example be expressed as 1|g, where g is just a one-level grouping factor

in this case.

To extract valuable information, like the coefficient estimates of the fixed effects or the standard

deviation estimates for the random effects, the function summary(object,...) is useful. When

the object is a LME model, the function outputs valuable information like mentioned above as
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well as AIC, BIC and log-likelihood values, p-values corresponding to the fixed effects and esti-

mates of the additional parameters of the alternative correlation and variance-covariance structures

when these are specified.

3.2.2 Maximum likelihood estimation

Estimating the model parameters for LMMs, both fixed and random, is crucial for making in-

ferences and predictions. Maximum Likelihood Estimation (MLE) is a widely used method for

parameter estimation in LMMs, and in this section, we delve into the details of MLE in the context

of LMMs.

Theoretical implementation

Maximum Likelihood Estimation seeks to find the parameter values that maximize the likelihood

function given the observed data. In the context of LMMs, we assume that the observations y fol-

low a multivariate normal distribution with mean Xβ and covariance matrix R+ZDZT , where D

represents the covariance structure of the random effects.

The likelihood function for LMMs is:

L(β ,u,εεε|y,X,Z) =
1

(2π)n/2|R+ZDZT |1/2

× exp
(
−1

2
(y−Xβ −Zu)T (R+ZDZT )−1(y−Xβ −Zu)

)
,

where:

• n is the number of observations.

• | · | denotes the determinant of a matrix.

MLE for Fixed Effects (β )

To estimate the fixed effects β , we maximize the likelihood function by finding the values of β that

maximize L(β ,u,εεε|y,X,Z). This is typically done using numerical optimization algorithms like
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the Newton-Raphson method or the Expectation-Maximization (EM) algorithm.

The MLE for β is the set of values that maximizes the likelihood:

β̂ = argmax
β

L(β , û, ε̂εε|y,X,Z)

MLE for Random Effects (u)

Estimating the random effects u is more challenging because they are not directly observed. In-

stead, we estimate them as part of the joint optimization problem. The MLE for u can be found

through the restricted profile likelihood:

LR(u|y,X,Z, β̂ ) = L(β̂ ,u,εεε|y,X,Z),

where β̂ is the MLE of the fixed effects obtained in the previous step.

The key steps involve of maximum likelihood estimation is maximizing the likelihood function

with respect to fixed effects β and estimating random effects u using restricted profile likelihood.

Practical implementation

Within the lme() function, the parameter estimation method can be specified to maximum like-

lihood by writing ’method = "ML"’. The default is restricted maximum likelihood, hence it is

important to specify the method if another estimation procedure is to be used.

3.2.3 Restricted maximum likelihood estimation

Restricted maximum likelihood Estimation (REML) is a statistical method used for parameter esti-

mation in linear mixed-effects models. In this section, we explore the principles and techniques of

REML estimation within the context of LMMs.
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Theoretical implementation

REML estimation is a variant of maximum likelihood estimation (MLE) that focuses on estimat-

ing the variance-covariance parameters of the random effects while ”marginalizing out” the fixed

effects. Unlike MLE, which estimates both fixed and random effects jointly, REML only estimates

the parameters of the random effects. The key idea is to construct a likelihood function that con-

ditions on the observed data and the estimated fixed effects, resulting in a ”restricted” likelihood

function.

The REML likelihood function is constructed by integrating out the fixed effects, yielding a likeli-

hood function for the random effects parameters only:

LREML(u|y,X,Z) =
∫

L(β ,u,εεε|y,X,Z)dβ

Estimating u in this context provides a measure of the ”conditional” variance-covariance parame-

ters of the random effects, which are adjusted for the uncertainty in the fixed effects estimates.

REML Estimation Procedure

The REML estimation procedure involves the following steps:

1. Specify the LMM, including the fixed and random effects structures.

2. Condition on the observed data and estimate the fixed effects β̂ .

3. Compute the restricted likelihood LREML(u|y,X,Z) by integrating out the fixed effects using

numerical techniques.

4. Maximize LREML(u|y,X,Z) to obtain the REML estimates of the random effects û.

Restricted Maximum Likelihood Estimation (REML) is a valuable method for estimating the

variance-covariance parameters of random effects in Linear Mixed Effects Models (LMMs). By

focusing on the conditional likelihood of the random effects while marginalizing out the fixed

effects, REML provides robust parameter estimates that are especially useful when the primary

interest is in modeling the within-cluster variability.
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Practical implementation

Restricted maximum likelihood estimation is the default within the lme function. If you want to

specify it either way, it can be done by specifying the method as ’method = "REML"’.

3.2.4 Correlation and variance-covariance structures

The relevant correlation and variance-covariance structures to account for within-group errors, as

well as heteroskedasticity and unequal variance in the model residuals across groups in the data in

this thesis, will be presented in the following section. Both theoretical and practical implementa-

tion of the structures are included.

Theoretical implementation

Correlation structures

Correlation structures in linear mixed-effects models are used to model the dependence among

within-group errors. We assume here that within-group errors εi j are associated with integer scalar

position vectors pppi j. The correlation between two within-group errors, εi j and εi j′ , is assumed to

depend on the corresponding position vectors pppi j and pppi j′ through some distance between them,

and not through the exact values of εi j and εi j′ . The distance can be denoted d(pppi j, pppi j′). The gen-

eral within-group correlation structure for single-level grouping is expressed by Pinheiro and Bates

(2000) as

cor(εi j,εi j′) = h[d(pppi j, pppi j′),ρρρ], i = 1, ...,M j, j′ = 1, ...,ni, (2)

where ρρρ is a vector containing correlation parameters and h() is a correlation function that can take

on a value between -1 and 1. A value close to 1 or -1 indicates a strong linear relationship whereas

a value close to 0 indicates a weaker relationship. The function h() is assumed to be continuous in

ρρρ , in such a way that h(0,ρρρ) = 1. The 0 in h(0,ρρρ) means that the distance between the positions

of εi j and εi j′ is 0, and they must therefore be the same observation and their correlation must be

equal to 1. Now let ri j =
yi j−ŷi j

σ̂i j
be the standardised residuals of a fitted linear mixed-effects model.

The empirical autocorrelation function at lag l is then defined as

ρ̂(l) =
∑

M
i=1 ∑

ni−l
j=1 ri jri( j+l)/N(l)

∑
M
i=1 ∑

ni
j=1 r2

i j/N(0)
, (3)
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where σ2
i j =Var(εi j) and N(l) is the number of residual pairs used in the numerator. The empirical

autocorrelation function is a nonparametric estimate of the autocorrelation function.

The data in this assignment is time-series data of longitudinal form. The observations have been

gathered weekly and are indexed by a one-dimensional position vector, where its values correspond

to the week numbers. Serial correlation structures can be used to model dependence in time-series

data. Autoregressive-moving average models can be useful tools to model such dependence, and

consist of three different classes of linear stationary models: autoregressive models, moving aver-

age models and a mixture of the two. They all assume that data is observed at discrete time points,

for example every week. Let xt denote an observation. The time step, or the lag, between two

observations xt and xs is given by |t − s|. The definition of an autoregressive process of order p, as

described in Compertwait and Metcalfe (2009), is the following:

The series {xt} is an autoregressive process of order p, abbreviated to AR(p), if

xt = α1xt−1 +α2xt−2 + ...+αpxt−p +wt , (4)

where {wt} is white noise and the αi are the model parameters with αp ̸= 0 for an order p process.

An AR(1) model can hence be expressed as

xt = αxt−1 +wt . (5)

The white noise term wt has mean 0 and is assumed independent of the previous observations. The

correlation function of the AR(1) process is given by

h(α,k) = α
k, k = 1,2, .... (6)

The function h(α,k) decreases in absolute value as the lags increases and decays to 0 quicker with

smaller α . A time series is informally said to be stationary if it does not have a trend or a seasonal

effect.
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(a) Simulated AR(1) time series, called x on the y-axis.

(b) Empirical auto correlation plot of the raw simulated AR(1) time series data in (a).

(c) Empirical auto correlation plot of the residuals of an AR(1) model fitted on the simulated data.

Figure 7
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Figure 7 shows three plots. Panel (a) shows a simulated stationary time series x with the fol-

lowing parameterisation:

xt = 0.7xt−1 +wt ,

where the initial x0 is equal to -0.560 and wt ∼ N(0,1). Panel (b) shows the empirical auto correla-

tion function of the data in Panel (a). There are significant values at several lags (significant values

are values above or below the dashed blue lines), whereas the greatest value is observed at lag 1.

Panel (c) shows the first twenty lags of the empirical auto correlation function of the residuals of a

fitted AR(1) model, fitted on the simulated data as described above. The plot in Panel (c) shows no

significant values at any lags > 0 as expected. This indicates that the residuals of the AR(1) model

are uncorrelated, and that an AR(1) model might be a good fit, as it should be.

Variance-covariance structures

It is possible to relax the assumption for the variance-covariance structure for the within-group er-

rors in Equation (1). If the variance is different between groups, or heterogeneity is present in the

standardised residuals of an LMM, it might be helpful with alternative variance structures. For the

case when variance is different between groups, we may express the error term in Equation (1) as

εi j ∼ N(0,σ2
j ). This allows j different variances when there are j groups.

The variance can also be modeled as the power of a covariate. This allows modeling heteroscedas-

ticity of residuals that might be related to the level of some covariate. The theoretical formula of

such a variance structure can be expressed as the following:

Var(εi j) = σ
2|covariatei j|2δ ,

where covariatei j is the value of the covariate for the i-th subject at the j-th level of the grouping

factor. The delta δ is the power parameter that determines how much the variance of the residuals

is affected by the covariate. This gets estimated from the data. It is possible to let the δ vary across

groups.
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Practical implementation

The within-group errors are allowed to have different correlation and variance-covariance struc-

tures, and are easily incorporated in the ’correlation’ and ’weights’ within the lme function.

There are multiple different correlation and variance-covariance structures to choose between that

are inbuilt functions to be used within the lme function. The relevant structures for this the-

sis are however the functions ’corAR1()’ for the correlation structure, and ’varIdent()’ and

’varPower()’ for the variance-covariance structures, as described in the theoretical part. The cor-

relation function is simply incorporated as ’correlation = corAR1()’ within lme.

For the case where we simply want to allow the variance to be different between groups, we

can implement this as ’weights = varIdent(form = ∼ 1|Location)’, where Locations are

our groups. This specification allows for different variance between Locations, and is one of

the variance structures we use in the model building process in this thesis. The other structure

we use, is the power function. We can specify the weights as ’weights = varPower(form =

normPulses|Location)’ within the lme function. In this case, the variable normPulses is the

covariate, and it is allowed to be different between Locations.

3.2.5 Model selection

It is important to evaluate models and assess whether or not they are a good fit. This section will

be about the methods we will use for evaluating candidate models later on. Both theoretical and

practical implementation in R, of the methods in the following section will be included. A signifi-

cance level of 0.05 will be used to evaluate p-values in relation to all hypothesis tests in this thesis

(coefficient estimates, likelihood ratio tests etc).

Theoretical implementation

AIC and BIC

Analysing data using different modeling techniques usually includes making multiple candidate

models to evaluate for the best fit. Two methods for evaluating the better fit of several candidate

models are by using Aikake information criterion (AIC) (Sakamoto et al., 1986) or Bayesian in-

formation criterion (BIC) (Schwarz, 1978). Lower value of either AIC or BIC indicates a better
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fitting model. A low value in itself does not reveal anything about the model fit in general, but it

can assist in choosing the best model of multiple candidates relative to each other. AIC and BIC

can be expressed:

AIC = 2k−2ln(L̂)

BIC = kln(N)−2ln(L̂)

where k is the number of estimated parameters and L̂ is the maximum value of the likelihood

function for the model. BIC includes the number of observations N of the observed data. It is im-

portant to specify the method used for estimating parameters in a model. When comparing models

using AIC or BIC, the models need to be fit using the ML method. It is possible to calculate the

AIC and BIC with the REML method, but it is only possible to compare models with the same

fixed effects structure using this method. The author of (Zuur et al., 2009) uses ML estimation in

all models until a proper model is picked. They change the method to REML after the model selec-

tion process to obtain the final parameter estimates, which is what will be done in this thesis as well.

Likelihood ratio test

The likelihood ratio test can be used to assess the best fit of two candidate models relative to each

other, based on the ratio of their likelihoods. The likelihood ratio statistic λLR is given by

λLR = 2log(
L2

L1
) = 2[log(L2)− log(L1)]. (7)

It is here assumed that L2 is the likelihood of the more general model of the two, whilst L1 is the

likelihood of the restricted model, meaning L2 > L1 and λLR is positive. It is not uncommon to see

λLR expressed as −2[log(L1)− log(L2)], which is the same expression. The likelihood ratio statistic

statistic λLR follows the χ2-distribution with d2−d1 (numbers of parameters in the models) degrees

of freedom under the null hypothesis that the simpler model is satisfactory, when parameters are

fitted with maximum likelihood. A low p-value (usually below 0.05) associated with the likelihood

ratio statistic therefore suggests that the null hypothesis should be rejected.
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Backward and forward selection

Building a model includes excluding non-significant predictors based on some criteria. The goal

is to build a model with as few attributes as possible, without compromising the predictive ability

of the model. In this thesis, BIC will be used as an exclusion criteria. Methods to determine what

variables that are insignificant include backward and forward selection, or a combination of the

two. In this section, backward and forward selection will be described.

Backward selection starts with a full model. In this case, that is a model that includes image-

based counts, normalised laser pulses, sea temperature, fish weight, number of fish and relevant

interaction terms between two or more variables. From the full model, one predictor is removed at

the time, based on what variable removal that yields the biggest improvement in BIC values. This

process is repeated until removing a variable no longer favourably changes the BIC value. When

removing variables no longer result in lower BIC, the backward selection process stops.

Forward selection operates the opposite way of backward selection. In the forward selection pro-

cess, the initial model contains an intercept only. One predictor is added to the model at the time,

based on what variable yields the biggest improvement in BIC values. When adding more variables

no longer result in a lower BIC value, the forward selection process stops.

Both backward and forward selection were used as methods to help determine what variables to

exclude from the models in this thesis. The results were the same for both methods. Therefore,

only backward selection is included in the Result section.

Practical implementation

In R, the AIC, BIC and likelihood ratio test can be carried out by the anova() function. This func-

tion takes two or more objects containing the results returned by a model fitting function such as

linear models (lm). The output of the anova function shows AIC and BIC values, and the statistics

needed to carry out the likelihood ratio test. The AIC and BIC values can also be calculated directly

for a model through the AIC() and BIC() functions.
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3.2.6 Fitted values

Theoretical implementation

Fitted values are the predicted values of the observed responses under the fitted model. They can

be used for evaluating the general goodness of fit for a model. A well fitted model will also predict

new observations well. In mixed-effects models, fitted values and predictions may be obtained

on different nesting levels or on the population level. As described by Pinheiro and Bates (2000),

letting xxxh be a vector of fixed covariates, the marginal expected value of the corresponding response

yh (at the population level) is given by:

E[yh] = xxxT
h βββ . (8)

The conditional expectation of the response given the random effects at levels ≤ k are estimates

of the predicted values at the kth level of nesting. At the first level of nesting, let zzzh(i) denote a

covariance vector corresponding to the random effects at the ith group. The conditional expectation

is then given by:

E[yh(i)|bbbi] = xxxT
h βββ + zzzh(i)T bbbi. (9)

The best linear unbiased predictors can be obtained by replacing the βββ and bbbi in Equation (2) and

(3) with β̂ββ (((θθθ))) for βββ and b̂bbi(θθθ) for bbbi. The unknown parameter vector θθθ can be replaced by its MLE

or REML estimate, which produces estimated best linear unbiased predictors for the expected val-

ues.

Practical implementation

Fitted values of a model can easily be extracted for simple linear models through the ’$’-operator

in R. By writing ’model$fitted’, where model is some specified model, fitted values can be ob-

tained. For mixed-effects models, it is possible to extract predictions by excluding or including

random effects. This can be specified through the ’level’ function within the predict() func-

tion. Level can be set to zero or one, where zero excludes the random effects, and one includes

them.
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3.3 Goodness of fit

Theoretical implementation

Assumptions in linear mixed-effects models

Making inferences about a fitted model is meaningless if the model is ill-fitting. It is possible to get

a long way in evaluating the goodness of fit of a model by making diagnostic plots and visualising

results. There are numerous tests and more formal ways to test that some criteria for well-fitted

models are met as well. Certain assumptions about the underlying distribution of the data need to

be valid for a properly fitted model. There are two assumptions for the simple linear mixed-effects

model:

• Assumption 1: the first assumption is made about the within-group errors. They are assumed

to be normal i.i.d.d. with mean zero and common variance σ2, and being independent of the

random effects.

• Assumption 2: the second assumption is about the random effects. The random effects are

assumed to be following a normal distribution with mean zero and covariance matrix ΨΨΨ, and

being independent for each group.

There are formal hypothesis tests suitable for checking the validity of these assumptions, but a

more intuitive approach may be to plot residuals, fitted values and the estimated random effects

and inspect them all. Plotting the residuals for each group can give a quick indication of whether

or not the means of the residuals are centered around 0, and whether or not the residuals of each

group have constant variance. Making a plot, for example a box plot, can be a powerful tool for

visualisation, but if there are few observations in each group, strong conclusions about the variances

can not be drawn from plots alone. If the number of observations are reasonably large, and a clear

pattern is found in the residuals of each group, for example being larger for two locations than

any other locations, the variance pattern could be accounted for in the model through a variance

function. Residuals centered around a value ̸= 0 can be shifted by adding a constant to the fixed

effect term.
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Plots and figures

(a) A normal Q-Q plot with a good fit. (b) A normal Q-Q plot with a bad fit.

Figure 8: Panel (a) is a Q-Q plot of a well-fitting linear model, with normally distributed residuals. Panel

(b) is an ill-fitting linear model with non-normal residuals. The dotted line is a reference line. The data used

to produce the plots was from self-simulated variables in R.

Figure 8 shows two panels, both containing Normal Q-Q plots of simulated data. Normal plots

like a Q-Q plot of the estimated random effects for each group can be used to evaluate whether

the random effects are following a normal distribution or if they are far away from that. Figure 8

shows two normal Q-Q plots for illustrative purposes. Both plots show normal Q-Q plots, which in

this case are plots of standardised residuals of a fitted linear model versus the theoretical quantiles

of a standard normal distribution. A Q-Q plot of a well-fitting linear model should have points

laying close to the reference line. Panel a) shows a Q-Q plot of a well-fitting linear model, fitted

on simulated normally distributed data. The points are mainly laying close to the dotted line, with

some outliers. Panel b) on the other hand shows a Q-Q plot of an ill-fitting linear model, where

the response variable follows an exponential distribution (simulated exponentially distributed data)

and has non-normal residuals. The points in Panel 8 b) are not mainly on the reference line, and

we can already get a hint of the distribution of the response variable from the plot. It is the same

concept for Q-Q plots of estimated random effects.

More formal tests for testing the assumption of normality of the estimates of the random effects

exist. They can often be complicated, and the importance of visualising data still stands, as showed
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by Anscombe’s quartet, amongst other.

Figure 9: The Anscombe’s quartet plots. The Anscombe data set can be found in the R library, and the plots

have been produced with this data set.

Anscombe’s quartet as shown in Figure 9 is a series of four very different data sets with different

underlying distributions, but with the same summary statistics after fitting a linear model to them

all.

Property Value Accuracy

Mean of x (x̄) 9 Exact

Standard deviation of x (s2
x) 11 Exact

Mean of y (ȳ) 7.50 To three decimal places

Standard deviation of y (s2
y) 4.125 ± 0.003

Linear regression line 0.30 + 0.500x To two and three decimal places

R2 0.66 To two decimal places

Table 6: Summary statistics of all of the Anscombe data sets. Property is the type of values being measured,

value is the value of each property and the accuracy displays to what degree the values for each data set

agreed with each other. The R2 is the coefficient of determination.
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Table 6 shows that only studying summary statistics of data sets may be problematic. The sum-

mary statistics for four different data sets are almost identical, although three out of four data sets

should not be modelled through linear regression. Plots can be problematic when there are few

levels of a group, say if the observations are gathered from four locations and we want to plot the

intercepts for models of each level. A plot consisting of four points will struggle to relay a proper

pattern, and the pattern will be heavily influenced by each individual point. Inferences should not

be drawn from plots alone, but should be reviewed as an aid for model selection and indications of

potential variance heterogeneity.

Coefficient of determination and Mean squared error

The coefficient of determination also called R-squared, or R2, is a statistical measure that mea-

sures the proportion of variance in a dependent variable that is being explained by an independent

variable. This measure can take a value between zero and one, where zero means that the inde-

pendent variable explains nothing of the variance, and a value of one means that all the variance is

explained by the independent variable. The R2 value is a useful metric to evaluate goodness of fit in

a linear model. The R2 coefficient is calculated by looking at the relationship between the residual

sum of squares (SSR) and total sum of squares (SST). The SSR is defined for a model with one

independent variable by:

SSR = ∑(yi − ŷi)
2,

the SST is defined by:

SST = ∑(yi − ȳ)2,

where yi is the dependent variable, ŷi is the predicted value of yi, and ȳ is the mean of y. The R2

coefficient can be calculated by

R2 = 1− SSR
SST

.

If SSR is equal to zero, the fraction will become equal to zero, and the R2 is equal to one. On the

other hand, if the SSR is equal to the SST, the expression will be equal to one, and the R2 coefficient

is equal to zero.
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The mean squared error (MSE) measures the average of the errors in predictions squared. The

MSE in the context of predictions can be used as a tool to determine how well a model performed

on unseen data. A high value of MSE indicates poor predictions in a sample. Mean squared errors

can be calculated as

MSE =
1
n ∑(yi − ŷi)

2,

where yi are the true values of the dependent variable and ŷi are the predicted values of yi.

Practical implementation

Normal Q-Q plots can be produced in R by using the qqnorm() and qqline() functions. The

qqnorm() function produces the Normal Q-Q plot for a variable, whereas qqline() produces a

reference line. The R2 and MSE coefficients can be calculated as described above, with standard

operators in R. The concentration can be calculated with the mean() function and the predicted

values can be found using the predict() function.

3.4 Bootstrap-type Monte Carlo simulation

According to the literature and observations from Stingray louse data, there is evidence that the

distribution of number of lice per fish in a pen is positively skewed. The consensus is that the neg-

ative binomial distribution describes the distribution of number of sea lice between fish well. The

Norwegian veterinary institute, called Veterinærinstituttet in Norwegian, is a biomedical institute

that delivers research based knowledge and contingency support in fields of fish health amongst

other. The veterinary institute produced a series of reports in 2016, 2017, and 2018 (van Son et al.,

2016; Viljugrein and Helgesen, 2017; Helgesen and Kristoffersen, 2018) that suggested solutions

to deal with uncertainty in lice counts as they are being conducted in Norway today. In these reports

the authors estimated the parameters of the negative binomial distribution, by fitting a negative bi-

nomial model to count data that they gathered from manual counts of individual fish from counts

with varying louse pressure. The negative binomial distribution was the model that best described

the number of lice between fish out of a set of candidate models. The candidate models were:

• Poisson distribution

42



• Zero-inflated Poisson distribution

• Negative binomial distribution

• Zero-inflated negative binomial distribution.

Knowledge about the distribution of lice between fish can be used to better understand the un-

certainty that is presented when counting lice on very few fish from a large population. Monte

Carlo simulation, similar to the simulation used in the veterinary institute reports, will be used to

illustrate the potential uncertainty in the counting results from lice counts in Norwegian fish farms

today. We have not estimated the parameters of the negative binomial model for this assignment,

and will use veterinary institute estimates for the simulations. Currently in Norway, the average of

adult female lice counted on ten to twenty fish are used as an estimate for the population mean in

a pen. In this section, the simulation method of how to construct theoretical confidence intervals

around different population means, when the sample sizes are twenty fish (pen level) and 120 fish

(location level), will be described. We assume that the theoretical underlying distribution correctly

describes the distribution of lice between fish. For the location level, we assume that all pens have

equal louse pressure. The number 120 was chosen because the average of operational pens in a fish

farm location in Norway in 2021 was six pens. We calculated this average from the operational

locations and pens overview per county between 2005 and 2023, within the biomass statistics page

on fiskeridir.no. Six pens multiplied by twenty, which is the required sample size per pen, is equal

to 120.

3.4.1 Negative binomial distribution

The negative binomial distribution is often used to model count data where the variance and mean

of the data are significantly different from each other. The parameterisation of the negative binomial

distribution used for the simulation study is given by:

NegBin(y|µ,θ) =
(

y+θ −1
y

)(
µ

µ +θ

)y(
θ

µ +θ

)θ

, (10)

where E[Y] = µ and Var[Y] = µ + µ2

θ
. The parameter theta (θ ) is often referred to as the dis-

persion parameter. If the dispersion parameter is very large and the concentration µ is small, the
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second term of the variance will get closer to zero and the distribution will get closer to the Poisson

distribution. On the other hand, the variance will become greater with decreasing θ and fixed µ ,

hence the dispersion of the data depends on θ . In this parameterisation, the success probability p is

expressed as

p =
θ

µ +θ
. (11)

The veterinary institute used the parameterisation in Equation (10) and estimated the dispersion

parameter θ using this. In the programming language R, the rnbinom(n, size, prob, mu)

function can be used to produce n random values drawn from the negative binomial distribution

and has Equation (10) as a default if you only specify size as the dispersion parameter, set mu as the

concentration and leave prob blank within the function.

3.4.2 Constructing confidence intervals

The following section will describe in detail how confidence intervals around specified population

means have been calculated. The intervals have been calculated through the steps:

1. create 10,000 samples of size twenty or 120 by drawing twenty or 120 random values from

Equation (10),

2. calculate the means of the 10,000 samples,

3. set the lower limit as the 2.5th percentile and the upper limit of the confidence interval as the

97.5th percentile of the calculated means.

The dispersion parameter of Equation (10) is set according to what was found in the veterinary

institute reports. Confidence intervals have been calculated around population means ranging from

zero to 1.5, with 0.01 increments.
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4 Results

4.1 Plots and figures for adult female lice counts

Image-based counts

Figure 10: Relationship between image-based counts on the x-axis and manual counts on the y-axis at the

four different locations denoted by a number.

Figure 10 shows the relationship between manual counts and image-based counts of adult fe-

male lice per fish at four locations. All plots show a positive trend with different levels of disper-

sion. The plot of Location 1 potentially shows two significant outliers, and there are a few potential

outliers at Location 4. The plot of Location 6 seem to have a heteroskedastic trend. The plot of

Location 2 has the least dispersion. Location 1 has two extreme observations of the manual counts

compared to image-based counts, whereas Location 2 have a couple of observations with higher

image-based count compared to the manual count.
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Normalised laser pulses

Figure 11: Plots of different locations with normalised laser pulses (laser pulses / number of fish / number

of lasers) on the x-axis and manual counts on the y-axis at the four different locations denoted by a number.

Figure 11 shows the relationships between normalised laser pulses shot and manual counts. All

plots have positive trends, indicating that there are higher manual counts when there are higher

numbers of laser pulses shot per fish per laser unit. The plots of Location 2 and 4 potentially show

positive linear trends. The plot of Location 1 may show a linear relationship between manual counts

and normalised laser pulses. The plots of Location 1 and 6 appear more dispersed than the other

two locations, and had the highest observed normalised laser pulses of the locations.
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Average fish weight

Figure 12: Plots of different locations with fish weight on the x-axis and manual counts on the y-axis at the

four different locations denoted by a number.

Figure 12 shows that Location 2 and 4 have a positive non-linear trend. The plots at Location 1

and 6 are harder to interpret, but they both seem to have a positive trend. Location 4 has a decline in

manual louse counts with increasing weight to begin with, before it starts to increase when average

fish weight is around 3.5 kg. This may be due to missing data points for that particular location.

Location 4 has the biggest and fastest growing fish throughout the observation period, despite

covering a shorter observation period than Location 1 and 2. The plots of Location 1 and 2 show

that the initial fish weight at the beginning of observation period was very small, well below one

kg. The average weight of the fish of Location 6 does not change much throughout the observation

period. Two significant outliers of Location 1 are standing out in this plot as well.
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Number of fish

Figure 13: Plots of different locations with number of fish in millions on the x-axis and manual counts on

the y-axis at the four different locations denoted by a number.

Figure 13 shows that the number of fish varies considerably between locations. All of the plots

suggest a negative trend, indicating that there are less lice per fish with more fish. Location 6 has

the greatest amount of dispersion. Location 4 appear to have increasing variance with increasing

number of fish. Location 4 and 6 have the greatest reduction in fish populations, whereas the fish

population in Location 1 barely changes at all. At the end of the collection period, Location 4

had a reduced fish population consisting of less than 100,000 fish. The number of fish is declining

gradually in Location 2, with two bigger jumps when the fish population was about 1.3 million and

just over 1 million fish.
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Sea temperature

Figure 14: Plots of different locations with sea temperature on the x-axis and manual counts on the y-axis

at the four different locations denoted by a number.

Figure 14 shows the relationships between sea temperature and manual counts. Location 1 and

4 have positive trends whereas the plots of Location 2 and 6 have more unusual patterns. Location

6 has the highest sea temperatures, with a maximum temperature of over 16 ◦C. Location 2 and 4

have the lowest sea temperatures, reaching a maximum temperature of around 12.5 ◦C.

4.2 Linear models

The figures of Section 4.1 show that there are tendencies of linear relationships between the manual

counts and image-based counts, and between normalised laser pulses and number of fish. The plots

of manual counts versus fish weight, and manual counts versus sea temperatures, did not show any

clear sign of linear relationships. In this section, I continue to look further into these relationships
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by fitting multiple linear models with manual counts as the responses accompanied by every vari-

able looked at in Section 4.1, one by one. The reason for making such simple isolated models to

begin with is to help determine the random structure of the mixed-effects models later on, if in need

of a random structure at all, to account for between-group variation.

Image-based counts

Location Coefficients Estimate Std.error t.value p.value R2

1 intercept 0.0291 0.0383 0.760 0.448 0.396

2 intercept 0.0153 0.0317 0.482 0.631 0.798

4 intercept 0.0533 0.0366 1.456 0.147 0.549

6 intercept 0.0768 0.0552 1.391 0.166 0.366

1 imageFem 0.974 0.144 6.751 < 0.0001 0.396

2 imageFem 0.888 0.114 7.821 < 0.0001 0.798

4 imageFem 0.515 0.124 4.146 < 0.0001 0.549

6 imageFem 0.982 0.171 5.756 < 0.0001 0.366

Table 7: Summary statistics of the linmodImFem model, with manual counts as dependent variable and

image-based counts as independent variable. Locations are denoted under Location by their respective

numbers, coefficients are the names of the coefficients, whereas the values under estimate are the coefficient

estimates for the intercept and image-based count variables. The std.error stands for standard error. The

t-value is a statistic that measures the number of standard errors that the estimate is away from zero. The

p-value can aid in determining if a coefficient is significant or not. The R2-values for each model are added

twice, but it is important to note that it is only one unique R2-value per model, they were added twice to make

the table look better.

Table 7 shows the summary of the linear models where manual counts is a function of image-

based counts. The estimates of the intercepts at each location are close to zero and each of them

have insignificant p-values. The estimates of the slope coefficients vary between locations. For

Location 1 and 6, the estimates are 0.974 and 0.982 respectively which indicates that image-based

counts and manual counts are quite similar. Location 2 has a slope estimate relatively close to one.

In contrast, the model of Location 4 has a slope estimate of 0.515 which is lower than the other
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locations. All of the slope estimates are below one, which means that image-based counts tend to be

slightly higher than manual counts. All p-values of the slope estimates are far under the significance

level of 0.05. The R2 coefficients are highest for Location 2 and 4, with the highest value being

0.798 for Location 2. This indicates that image-based counts explain a high degree of the variance

at Location 2. On the other hand, the R2 values of the models at Location 1 and 6 indicate that

image-based counts explain less of the variation in manual counts. We plot the confidence intervals

of the intercept and slope estimates:

Figure 15: Plots of 95% confidence intervals on the intercept (left) and slope estimates (right) at the loca-

tions denoted by a number on the left for the linear model with manual counts as dependent variable, and

image-based counts as independent variable. The x-axis shows coefficient estimates for each coefficient.

All of the intervals in both the intercepts and slopes are overlapping. An overlap indicates that

random effects might not be necessary to adjust for varying intercepts and slopes. The slope of

Location 4 has the most unique interval of all of the locations as we also saw in the summary of

the linear model with image-based counts as independent variable, where Location 4 had a lower

slope estimate.
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Normalised laser pulses

Location Coefficients Estimate Std.error t.value p.value R2

1 intercept -0.0904 0.0450 -1.788 0.076 0.488

2 intercept -0.0100 0.0324 -0.309 0.758 0.833

4 intercept 0.0231 0.0363 0.636 0.526 0.811

6 intercept 0.0306 0.0695 0.440 0.661 0.239

1 normPulses 0.401 0.0488 8.219 < 0.0001 0.488

2 normPulses 0.994 0.120 8.302 < 0.0001 0.833

4 normPulses 0.297 0.0565 5.254 < 0.0001 0.811

6 normPulses 1.353 0.279 4.848 < 0.0001 0.239

Table 8: Summary statistics of the linmodNormPulses model, with manual counts as dependent variable and

normalised laser pulses as independent variable. Locations are denoted under Location by their respective

numbers, coefficients are the names of the coefficients, whereas the values under estimate are the coefficient

estimates for the intercept and normalised laser pulses variables. The Std.error stands for standard error.

The t-value is a statistic that measures the number of standard errors that the estimate is away from zero.

The p-value can aid in determining if a coefficient is significant or not. The R2-values for each model are

added twice, but it is important to note that it is only one unique R2-value per model, they were added twice

to make the table look better.

Table 8 shows that intercept estimates are close to zero for all locations. Location 1 and 2

have negative values whereas Location 4 and 6 have positive values. All corresponding p-values

are large and above the significance level. The slope estimates of all the locations have positive

values. Positive values indicate a positive relationship between normalised laser pulses (laser pulses

/ number of fish / number of lasers) and manual counts. The slope estimates vary between locations,

where Location 6 has the highest slope estimate of 1.353 and Location 4 has the lowest slope

estimate of 0.297. All slope estimates have significant p-values. The R2 coefficients are highest for

the model at Location 2 and 4. The highest R2 value of 0.833 was observed at Location 2, and the

lowest R2 value of 0.239 was observed at Location 6.
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Figure 16: Plots of 95% confidence intervals on the intercept (left) and slope estimates (right) at the lo-

cations denoted by a number on the left. The intervals are based on the linear model with manual counts

as dependent variable and normalised laser pulses as independent variable. The x-axis shows coefficient

estimates for each coefficient.

Figure 16 shows that the confidence intervals for the intercepts are overlapping for all of the

locations. The interval of the intercept at Location 6 is wider than the rest which is expected because

of the imbalance in the data. Location 6 has the highest slope estimate, and the confidence interval

of its estimate is only overlapping with the confidence interval of Location 2. A random effect to

account for the varying slopes might be needed for the normalised pulses.
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Fish weight

Location Coefficients Estimate Std.error t.value p.value R2

1 intercept 0.0161 0.058 0.280 0.780 0.174

2 intercept -0.130 0.0525 -2.474 0.0143 0.728

4 intercept -0.170 0.0874 -1.940 0.0541 0.632

6 intercept -0.195 0.204 -0.955 0.341 0.0983

1 weight 0.000107 2.615e-05 4.077 < 0.0001 0.174

2 weight 0.000170 2.596e-05 6.536 < 0.0001 0.728

4 weight 0.0000725 1.859e-05 3.899 0.000139 0.632

6 weight 0.000294 1.123e-04 2.615 0.00972 0.0983

Table 9: Summary statistics of the linmodWeight model, with manual counts as dependent variable and

fish weight as independent variable. Locations are denoted under Location by their respective numbers,

coefficients are the names of the coefficients, whereas the values under estimate are the coefficient estimates

for the intercept and fish weight variables. The std.error stands for standard error. The t-value is a statistic

that measures the number of standard errors that the estimate is away from zero. The p-value can aid in

determining if a coefficient is significant or not. The R2-values for each model are added twice, but it is

important to note that it is only one unique R2-value per model, they were added twice to make the table look

better.

Table 9 shows that all the locations except from Location 1 have negative intercept estimates.

The corresponding p-values of the intercept estimates of all locations are insignificant. The slope

estimates are positive and very small values, indicating a positive relationship between average fish

weight and manual counts. All corresponding p-values are below 0.05. The R2 coefficients are

again higher for Location 2 and 4, and lower for Location 1 and 6. Low R2 values indicate that fish

weight struggle to describe the variance in the manual counts. The highest R2 value was observed

at Location 2.
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Figure 17: Plots of 95% confidence intervals on the intercept (left) and slope (right) estimates at the loca-

tions denoted by a number on the left. The intervals are based on the linear model with manual counts as

dependent variable and fish weight as independent variable. The x-axis shows coefficient estimates for each

coefficient.

Figure 17 shows an overlap between all intercept intervals and all slope intervals, indicating

that there would be no need for a random effect. Location 1, 2 and 4 have a higher intercept

compensated by lower slopes. Location 6 has wide intervals covering most of the widths of the

plots both for the intercept and slope.
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Number of fish

Location Coefficients Estimate Std.error t.value p.value R2

1 intercept 1.585 0.295 5.381 < 0.0001 0.195

2 intercept 1.985 0.249 7.982 < 0.0001 0.839

4 intercept 0.415 0.0685 6.0573 < 0.0001 0.723

6 intercept 0.879 0.149 5.882 < 0.0001 0.185

1 numFish -3.837 0.822 -4.667 < 0.0001 0.195

2 numFish -1.441 0.194 -7.427 < 0.0001 0.839

4 numFish -0.419 0.0950 -4.409 < 0.0001 0.723

6 numFish -0.460 0.121 -3.794 0.000206 0.185

Table 10: Summary statistics of the linmodNumFish model, with manual counts as dependent variable and

number of fish as independent variable. Locations are denoted under Location by their respective numbers,

coefficients are the names of the coefficients, whereas the values under estimate are the coefficient estimates

for the intercept and number of fish variables. The std.error stands for standard error. The t-value is a

statistic that measures the number of standard errors that the estimate is away from zero. The p-value can

aid in determining if a coefficient is significant or not. The R2-values for each model are added twice, but it

is important to note that it is only one unique R2-value per model, they were added twice to make the table

look better.

The intercepts for Location 1 and 2 are high compared to Location 4 and 6. All corresponding

p-values of the intercept estimates indicate a significant fit. The slope estimates are negative and

greater for Location 1 and 2 as well, which means that the two locations have a higher starting

point and steeper decline. Location 4 and 6 have negative values, but their slopes are not as steep,

indicating a more gradual decline. The p-values corresponding to the slope estimates are significant.

The negative values indicate more lice with fewer fish, as we saw in Figure 13. The R2 coefficients

are higher for Location 2 and 4, with the highest value being equal to 0.839 at Location 2. At this

location, the number of fish variable explains a lot of the variance in manual counts. The lowest R2

value of 0.185 was observed at Location 6, indicating that number of fish to a small degree manages

to describe the variance of the manual counts at this location.
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Figure 18: Plots of 95% confidence intervals on the intercept (left) and slope estimates (right) at the loca-

tions denoted by a number on the left. The intervals are based on the model with manual count as dependent

variable and number of fish as independent variable. The x-axis shows coefficient estimates for each coeffi-

cient.

Figure 18 shows that the intercepts and slopes have some overlap. The intercept estimate for

Location 4 has the lowest value, and the confidence interval overlaps slightly with the interval of

Location 6. The intercept estimate of Location 6 is low compared to Location 1 and 2, and the

confidence interval overlaps with Location 1. The intercept of Location 2 only overlaps with the

interval of Location 1. A random effect might be needed to compensate for the varying intercept.

Location 1 has the lowest slope estimate followed by Location 2. Neither of the two estimates over-

lap with each other or with the other locations. Location 4 and 6 have higher slope estimates and

their confidence intervals overlap with each other. Random effects might be needed to compensate

for the varying slope estimates.
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Sea temperature

Location Coefficients Estimate Std.error t.value p.value R2

1 intercept -0.126 0.105 -1.199 0.232 0.174

2 intercept 0.146 0.112 1.307 0.193 0.000305

4 intercept 0.050 0.106 0.473 0.637 0.0530

6 intercept 0.183 0.115 1.587 0.114 0.0370

1 seaTemp 0.0427 0.0123 3.463 0.000676 0.174

2 seaTemp 0.000518 0.0136 0.0382 0.970 0.000305

4 seaTemp 0.0127 0.0131 0.968 0.334 0.0530

6 seaTemp 0.0157 0.0114 1.376 0.171 0.0370

Table 11: Summary statistics of the linmodSeaTemp model, with manual counts as dependent variable and

sea temperature as independent variable. Locations are denoted under Location by their respective numbers,

coefficients are the names of the coefficients, whereas the values under estimate are the coefficient estimates

for the intercept and sea temperature variables. The std.error stands for standard error. The t-value is a

statistic that measures the number of standard errors that the estimate is away from zero. The p-value can

aid in determining if a coefficient is significant or not. The R2-values for each model are added twice, but it

is important to note that it is only one unique R2-value per model, they were added twice to make the table

look better.

Table 11 shows that Location 1 has a negative intercept whereas Location 2, 4 and 6 have posi-

tive intercepts. Location 2 and 6 have the highest estimates of intercepts. The intercept of Location

4 is close to 0. None of the corresponding p-values are significant. The slope estimates are quite

low, with the lowest being that of Location 2. All slope estimates are positive which indicate more

lice with warmer water. The p-values of the slope estimates are insignificant at Location 1 and 4,

and significant at Location 2 and 6. The R2 coefficients are very low for all of the locations, with the

highest value observed being 0.174 at Location 1. The low values indicate that a linear relationship

between sea temperatures and manual counts are not appropriate. Confidence intervals will not be

plotted as there are strong indications from Table 11 that sea temperature and manual counts do not

have a linear relationship. The relationships between manual counts and sea temperatures as shown

in Figure 14 generally displays different behaviour between locations.
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The purpose of conducting the preliminary analysis described in the last two subsections has been

to get an impression of the relationships between manual counts and different variables of interest.

More information is needed to conclude whether or not linear models are sufficient to describe

these relationships, but we will not draw further inferences at this point.

4.3 Linear mixed-effects models

The previous steps of the analysis have provided an idea of what the final model will look like. In

this section we will fit linear mixed-effects models. An interaction term has been included between

treatment and image-based counts in the initial model. The previous steps of the analysis have

shown indications that random effects may be needed. We start off the second part of the analysis

with a backward selection process, where multiple models with and without random effects are

fitted, and compare them with AIC and BIC values.

Model Covariates (fixed) Random AIC BIC

linModFull intercept + IF + NP + ST + W + NFM + IF:treat none -97.925 -72.653

linMod2 intercept + IF + NP + ST + NFM + IF:treat none -98.210 -76.093

linMod3 intercept + IF + NP + ST + NFM none -96.645 -77.554

mlmeFull intercept + IF + NP + ST + W + NFM + IF:treat intercept -95.925 -67.494

mlme2 intercept + IF + NP + ST + NFM + IF:treat intercept -96.444 -71.172

mlme3 intercept + IF + NP + ST + IF:treat intercept -97.500 -75.387

mlme4 intercept + IF + NP + ST intercept -95.743 -76.789

mlme5 intercept + IF + NP intercept -94.875 -78.966

Table 12: Table showing the backward model selection process of simple linear and linear mixed-effects

models. All models have manual counts as dependent variable. The variable names have been shortened to

fit in the table. IF stands for image-based counts for female lice, NP stands for normalised pulses, ST is sea

temperature, W is weight, NFM is number of fish in millions, and IF:treat is the interaction between louse

treatment and image-based counts. Names in the Model column are model names, Covariates (fixed) are

the fixed effects in each model. Random is the random effects where that applies, and AIC and BIC are the

calculated AIC and BIC values from each model. The model with lowest BIC is coloured in gray.
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Table 12 shows the results of a backward selection process for both simple linear models and

linear mixed-effects models. The model with an intercept, image-based counts and normalised

pulses as fixed effects, as well as a random intercept, had the lowest BIC of all the candidates, with

a small margin. It was made an attempt on fitting random slope models as well, but this was not

possible due to convergence issues.

Figure 19: Empirical autocorrelation function (ACF) corresponding to the standardised residuals of the

mlme5 model for the first thirty-five lags. The dotted lines are significance levels.

Figure 19 shows a significant spike at lag 1, indicating a potential autocorrelation issue. The

spikes are generally lower for higher lags. The plot indicates that an alternative correlation structure

might be needed in the model.
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call df AIC BIC logLik Test L.Ratio p-value

mlme5 1 5.00 -94.87 -78.97 53.44

mlme5Cor 2 6.00 -104.98 -85.89 58.49 1 vs 2 12.10 5e-04

Table 13: Anova test on the mlme5 model in Table 12 versus the same model, with an AR(1) correlation

structure added. The numbers under call are the order of the models, df is degrees of freedom, AIC and

BIC are values calculated for each model, logLik is the log likelihood. Test shows what models are being

compared, L.Ratio stands for likelihood ratio, and the p-value is the significance level of the likelihood ratio

test.

Table 13 shows the result of a likelihood ratio test performed on the winning model of Table

12 versus the alternative model with an AR(1) correlation structure. The result shows a very low

p-value in the test as well as lower AIC and BIC values for the more complex model. This indicates

strong evidence that the more complex model with the AR(1) correlation structure is a better fit.

Figure 20: Location-wise standardised residuals of the mlme5Cor model. The y-axis shows standardised

residuals, and the x-axis shows fitted values of the model with manual counts as dependent variable, image-

based counts and normalised laser pulses as independent variables, and an AR(1) correlation structure.
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Figure 20 shows that the standardised residuals of all the locations were mostly centered around

zero, with different levels of dispersion. In addition, the residuals of the different locations showed

signs of heteroskedasticity.

Model Covariates (fixed) Variance AIC BIC

mlme5Cor intercept + IF + NP none -104.980 -85.889

mlme5V1 intercept + IF + NP varIdent -165.320 -136.684

mlme5V2 intercept + IF + NP varPower (normPulses) -362.924 -334.493

Table 14: Table showing a model selection process. All models have manual counts as dependent variable,

as well as an AR(1) correlation structure and random intercept. The variable names have been shortened to

fit in the table. IF stands for image based counts for female lice, NP stands for normalised pulses and ST is

sea temperature. Names in the Model column are model names, covariates (fixed) are the fixed effects in each

model. Random is the random effects where that applies, Variance is the variance-covariance structure, and

AIC and BIC are the calculated AIC and BIC values from each model. varIdent and varPower are variance

functions as described in the Methods section. The model with lowest BIC is coloured in gray.

In the final model selection part, different variance-covariance structures were added to the

winning model in Table 12, in addition to the AR(1) correlation structure. The final model of this

model selection process was the mixed-effects model, with an intercept, image-based counts and

normalised laser pulses as fixed effects, a random intercept, a power function to model the variance

of the residuals and an AR(1) structure to model the correlation in the residuals. The coefficients

of the final model were estimated again with the restricted maximum likelihood estimation method

to obtain the final coefficient estimates.
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Figure 21: Location-wise residuals of the mlme5V2 model. The y-axis shows standardised residuals, and

the x-axis shows fitted values of the model. Each location is denoted by a number within each plot.

Figure 21 shows that the residuals seem to mostly be centered around zero, and display no

apparent trend. The location-wise residuals of the final model have several outliers. To test model

robustness, all residuals more than two standard deviations away from the residual mean were

removed (in total twelve), and the coefficients were estimated again without the outliers. The main

objective with this thesis is to explore the relationship between manual counts and image-based

counts. For the next part, a simple linear model with only image-based counts as a predictor, and

a linear model with image-based counts and an interaction term between image-based counts and

delousing treatments as predictors, fitted with the original data set and the data set without outliers,

were added.
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Model robustness

Model Covariates (fixed) Random Data set

Intercept IF IF:treat NP Intercept Residuals

linModIFA 0.0413 0.853 NA NA NA NA Original

linModIFB 0.0354 0.787 NA NA NA NA Altered

linModIFTA 0.0416 0.877 -0.238 NA NA NA Original

linModIFTB 0.03518 0.774 0.155 NA NA NA Altered

mlme5V2AltA -0.00684 0.548 NA 0.228 2.451e-08 0.263 Original

mlme5V2AltB -0.00797 0.661 NA 0.166 2.860e-07 0.209 Altered

Table 15: Estimates of the coefficients of the different models. Model is model name. Covariates (fixed) are

the fixed effects in each model, where Intercept is the intercept, IF is image-based counts, IF:treat is an in-

teraction between image-based counts and treatment, and NP is normalised laser pulses. Random is random

effects, where the values under Residuals and Intercept are the estimates for their standard deviations. The

values under Dataset states whether the models were fitted with the original data set or the altered data set

with outliers removed. Models fitted with the altered data are coloured in gray.

Table 15 shows that the image-based coefficient estimates were not very robust. The esti-

mates changed significantly for image-based counts, the interaction between image-based counts

and treatment, and the normalised pulses. The interaction term changed sign in the model fitted with

the altered data, whereas the other coefficient estimates kept the same direction. For the random

effects, the standard deviations for the random intercepts were small for both models containing

random effects, compared to the residual estimates. The big difference indicates that the random

intercept did not explain the variation in the data well. The estimates of the random intercepts were

all very close to zero and varied little between locations.

Predictions on unseen data

As a final evaluation of the models in Table 15, all the models were used to predict manual counts

on a test data set. The mean square errors (MSE) were calculated for each model.
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Model MSE

linModIFA 0.0675

linModIFB 0.0491

linModIFTA 0.0665

linModIFTB 0.0488

linMod5V2AltA 0.0845

linMod5V2AltB 0.0746

Table 16: Results of the calculated MSE values of predictions versus actual values of a test data set, for

each model of Table 15. The bottom two models were fitted with the fixed effects only, because the random

intercept estimates are very close to zero. Models fitted with the altered data set are coloured in gray.

Table 16 shows that the simple linear model, with manual counts as dependent variable, and

image-based counts and an interaction term between treatments and image-based counts, fitted on

the altered data set, had the lowest MSE values of the candidate models. The more complex winning

model of the model selection process, with an AR(1) structure to model correlation and a power

structure of the normalised laser pulses to model the heteroskedasticity and different variance in

the residuals between Locations, had the highest MSE values of all the models.

(a) Model with the lowest MSE values (linModIFTB). (b) Model with the highest MSE values (linMod5V2AltA).

Figure 22: Figure showing two panels (a) and (b), where both plots have predicted values on the y-axis, and

actual values on the x-axis. The red line shows where the points should lie for a perfect fit.

Figure 22 shows that both the model with lowest MSE, and the complex model with higher

MSE have a poor fit. They tended to overestimate the manual counts on the unseen data.
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4.4 Simulation study

In this section, theoretical confidence intervals are being constructed around means of populations

thought to follow the negative binomial distribution. The confidence intervals will be constructed

on pen level (twenty fish) and location level (120 fish). For details, see the Methods section. The

resulting confidence intervals will be presented in Table 17 and Table 18. The objective of this

section is to show why, in theory, we are dealing with a great amount of uncertainty in our manual

count and image-based count data. Uncertainty, or a great amount of variation, has been evident in

the model selection process of the previous sections.

Confidence intervals, sample size (20)

Population

mean

Lower limit Upper limit Margin of error Dispersion

parameter

0.10 0 0.30 -100%, +200% 0.4

0.30 0.05 0.65 -83%, +120% 0.5

0.50 0.20 0.90 -60%, +80% 1.1

0.70 0.30 1.20 -57%, + 71% 1.1

0.90 0.40 1.50 -56%, +67% 1.1

1.10 0.50 1.80 -55%, +64% 1.1

1.30 0.65 2.10 -50%, +62% 1.1

Table 17: Table showing a selection of 95% confidence intervals calculated around the means listed under

population mean. Population mean is the mean of the theoretical negative binomial distributed population.

Lower and upper limit are the resulting limits of the confidence intervals. Margin of error is the calculated

size of the margin of error of each interval (rounded to the closest whole number). The dispersion param-

eter column shows the dispersion parameters that have been used in the simulations ran to calculate the

confidence intervals. The confidence intervals were calculated based on twenty samples (pen level), with

replacement.

Table 17 shows seven different confidence intervals around different population means. The

confidence level is set to be 95% for all of them. Each interval represents a large margin of error.

The margins of error get relatively narrower as the population mean increases. It is evident from
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the table that the confidence intervals around multiple different population means are overlapping.

An observed value of 0.53 adult female lice can for example fall within the upper and lower bounds

of 95% confidence intervals around population means ranging from 0.3 to as much as 1.1 in Table

17. Such big intervals indicate a lot of uncertainty in louse counting data, when the average of lice

is used as a measurement to determine how much lice there are in a pen, and the measurement is

extracted from a very small sample.

Confidence intervals, sample size (120)

Population

mean

Lower limit Upper limit Margin of error Dispersion

parameter

0.10 0.0417 0.167 -58%, +67% 0.4

0.30 0.183 0.433 -39%, +44% 0.5

0.50 0.350 0.667 -30%, +33% 1.1

0.70 0.517 0.900 -26%, +29% 1.1

0.90 0.683 1.133 -24%, +26% 1.1

1.10 0.850 1.375 -23%, +25% 1.1

1.30 1.0167 1.608 -22%, +24% 1.1

Table 18: Table showing a selection of 95% confidence intervals calculated around the means listed under

population mean. Population mean is the mean of the theoretical negative binomial distributed population.

Lower and upper limit are the resulting limits of the confidence intervals. Margin of error is the calculated

size of the margin of error of each interval (rounded to the closest number). The dispersion parameter column

shows the dispersion parameters that have been used in the simulations ran to calculate the confidence

intervals. The confidence intervals were calculated based on 120 samples (location level), with replacement.

Table 18 shows the confidence intervals calculated, based on 120 samples. The margins of error

are smaller in this table than in Table 17. All of the confidence intervals are overlapping, with the

exception of the the interval around 0.1, this interval does not overlap with the other confidence

intervals listed.
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Figure 23: 95% confidence intervals around different population means when the sample sizes are twenty

and 120 fish, with replacement. The upper darker red line is the upper bounds of the intervals, whereas

the lower lighter line is the lower bounds of the intervals based on twenty samples. Equivalently the lower

blue line is the lower bounds and the upper blue line is the upper bounds of the intervals based on 120

samples. The black line in the middle is the population means (True mean in the figure). The x-axis shows the

population means and the y-axis shows the estimated mean lice per fish. The intervals have been calculated

for theoretical population means ranging from zero to 1.5, with 0.01 step increments.

Figure 23 shows a visual representation of the size of the confidence intervals around different

population means. The black line is where the estimated means should lie if they perfectly align

with the true population means. The figure shows that the confidence intervals are not symmetric

around the population means, but have a wider margin of error above the population mean. The

asymmetric confidence intervals suggest that it is not unlikely to observe a value that is relatively

much greater than the population mean in question, whereas it is less likely to observe a value as

extreme in relation to the population mean below the respective population mean.
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Figure 24: 95% confidence intervals around different population means when the sample size is twenty

(Group 1 in red) and 120 (Group 2 in black), with replacement. The top of the vertical lines are the upper

limits of each interval, the bottom of the lines are the lower limits. The red and black dots in the middle of

each vertical line are the population means. The three horizontal lines in orange (0.61), green (0.57) and

yellow (0.43) are examples of possible observed counting estimates to illustrate that the same values can fall

within the bounds of multiple confidence intervals around theoretical population means.

Figure 24 further highlights the overlapping confidence intervals (CIs). It is possible to see

from this that an observed mean can fall within confidence intervals around multiple population

means. For instance, the observed value of 0.57 (green line) can fall within a 95% CI when the

population mean is 0.3, as well as a 95% CI when the population mean is 1.1, when the sample size

is twenty fish. In other words, it is not unlikely to observe an average of 0.57 lice per fish when the

population mean in reality is any of the values between 0.3 and 1.1 lice per fish. The value of 0.57

falls within the bounds of the confidence intervals around 0.5 and 0.7 when the sample size is 120

fish.
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5 Discussion and conclusion

In this thesis we have used linear mixed-effects models to derive a correction factor between man-

ual and image-based lice counts, with the influence of other variables, that compensates for missed

lice on the side of the fish that faces away from the camera. The model selection process has mainly

been based on comparison through AIC and BIC values, and backwards selection for variable se-

lection. Additional correlation and variance structures of the residuals were added after inspecting

the residual plots of the final model, after the variable selection process. This improved the fit of

the final model in terms of AIC and BIC values. In cases where AIC and BIC values disagreed

with each other, lower BIC was preferred. Throughout the model selection process, the estima-

tion method for the fixed effects in the mixed-effects models were maximum likelihood estimation.

When the final model was selected, restricted maximum likelihood was used to obtain the coeffi-

cient estimates. The final model was implemented for counts of adult female lice. Manual counts

have been treated as the variable we want to model. The results in Table 12 show that a random

intercept model with a complex structure of the residuals, is better than a simple linear regression

model due to lower AIC and BIC values. However, when tested on unseen data, the complex model

did not perform well, and the simple linear model with image-based counts and an interaction term

between image-based counts and treatments, performed better on unseen data in terms of MSE.

Model interpretation

The model produced in this thesis was designed to correct the image-based counts of adult female

lice, describe the relationship between manual counts and image-based counts, and investigate to

what extent such relationships are impacted by other variables, such as normalised laser pulses, fish

weight, number of fish, fish passings, sea temperature and louse treatments. The final model was a

random intercept model, with image-based counts and normalised pulses as independent variables.

An AR(1) correlation structure as well as a power structure of the residuals were included in this

model.

The coefficient estimates of the fixed effects were positive, except from the intercept which was

negative and close to zero. For image-based counts, the coefficient estimate was equal to 0.548,
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which is smaller than one. This indicates that image-based counts tended to be higher than manual

counts, and therefore adjust manual counts down. The normalised pulses had a coefficient esti-

mate equal to 0.228, which indicates a positive relationship between normalised pulses and manual

counts. The coefficient estimate of image-based counts did not confirm prior expectations regard-

ing their relationship with manual counts. The object of this thesis was to find a correction factor

to adjust for the part of a fish we cannot see, meaning we are looking to adjust image-based counts

upwards. The resulting model however, adjusts the manual counts down. Image-based counts are

systematically higher than manual counts, which was not initially expected. The relationship be-

tween manual counts and normalised pulses makes sense, as we expect the lasers to shoot more

when there are more lice present.

The standard deviation of the random intercept in the final model is small compared to the standard

deviation of the residuals. In addition, the random intercept estimates for each location were very

small and close to zero. This is an indication that the random intercept failed to capture the variance

in the data, although the random intercept model beat the simpler linear models in terms of BIC

values at the beginning of the model selection process.

When fitting the same model on an altered data set, where the worst outliers of the residuals of

the first model were removed, the fixed coefficient estimates changed significantly. The coefficient

estimates went up to 0.661 for image-based counts and down to 0.166 for normalised pulses. For

the simple linear models in Table 15, the coefficient estimates for image-based counts got reduced

when fitted on the altered data. The interaction term between image-based counts and treatments

changed sign, which indicates that whenever a treatment happened, an additional increase in man-

ual counts would be applied. Such a change make no logical sense, and is probably due to important

drops after treatments in lice numbers being removed with the outliers. The original model fitted

on the unchanged data had a coefficient estimate of the interaction equal to -0.238, which indicates

that whenever a treatment happened, manual counts were adjusted down for that particular week,

which is more in line with what would be expected. Removing twelve outliers from such a small

data set is somewhat extreme, a change in estimates could be expected. However, all models fitted

on the altered data had lower MSE of the predictions on the unseen data, compared to the identical
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models fitted on the original data. This indicates that the outliers were influential on the original

models, and removing them with care may still be a good idea.

Simulation study and uncertainty in the data

There are several statistical uncertainties, biological and operational effects and biases, which may

account for these results. Both image-based counts and manual counts are estimates based on the

legally required sample size of twenty fish per pen. However, the distribution of lice between fish

is heavily skewed to the right (Baillie et al., 2009; Jeong and Revie, 2020) and is considered to fol-

low a negative binomial distribution rather than a normal distribution, particularly at low levels of

infestation. We illustrated in Table 17 and Table 18 in Section 4.4 how counting very few fish from

a large population affects the confidence intervals around the theoretical population means from

such skewed distributions, on pen level and location level (Helgesen and Kristoffersen, 2018). The

confidence intervals calculated on location level assume equal louse pressure in all pens. This is

not always the case. It has been shown that the louse pressure can vary between pens (Revie et al.,

2005, 2007). The intervals as shown in the simulation study of this thesis are therefore potentially

narrower than they should be on location level, if difference in louse pressure between pens was

accounted for. However, Figure 23 shows that the margins of error are wide for counts on location

level as well. The situation is even more extreme on pen level, when only twenty fish are being

counted. All count estimates used in this assignment are based on the legally required sample sizes

of twenty fish per pen, which cannot be considered to be numerically representative for a population

of up to 200,000 fish per pen. In addition, another statistical uncertainty stems from the fact that

lice counts are reported on location level, even though the statistically meaningful level of analysis

would be on pen level (Revie et al., 2007). This makes it challenging to generate a well-fitting

model from the available data.

However, small sample sizes and resulting statistical uncertainty alone may explain a lack of fit

in the resulting model, but they do not explain why image-based counts generally were higher than

manual counts for all locations. Biological, environmental and operational factors can affect and

indeed support this finding. Simple human error, biases, or insufficient training in both sampling

methods will have significant effects on the final results (Thorvaldsen et al., 2019). Biological fac-
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tors, such as feeding dominance when using feed to catch fish leads to only dominant bigger fish to

be counted. When not feeding the fish, you may only catch subordinate or even sick fish who tend

to hang around near the surface. There are more salmon lice in the upper water columns (Frenzl

et al., 2014; Oppedal et al., 2011). In addition, we know that salmon lice do not infect salmonid

hosts randomly, and there are fewer fish with a lot of lice, and a lot of fish with little to no lice

in a pen (Heuch et al., 2011). There are also indications that both fish size (Folkedal et al., 2012)

and sea lice infestation level (Bui et al., 2016) have an influence on swimming depth of farmed

salmon. Operational factors include placement of cameras during the sampling process, as well as

how fish are physically collected for manual counts. For instance, some lice can be lost if the fish

are crowded tightly together and they rub against each other physically, dislodging lice. The man-

ual counts are restricted because of physical limitations. It is only a limited number of ways it is

possible to catch fish with a handheld net, and it has been demonstrated by (Nilsson and Folkedal,

2019) that sampling Atlantic salmon from sea cages does not return unbiased results, at least not

with respect to fish size. Although Stingray units register the positions of the cameras within a pen

during the sampling process, this information was not available during the data collection period of

this thesis and is thus not included. For future analysis, the position of the camera whilst collecting

samples should be included. However, the Stingray units do not underlie the same physical limita-

tions as the manual sampling process, as they are mobile and are continuously and actively placed

at more varied depths and widths in the pen in order to optimize the amount of fish passing in front

of the cameras. Because of the skewed distribution of lice between fish, getting an unbiased and

representative sample for any counting method may be challenging, especially for small samples.

During manual lice counts, fish may get stressed, and they are being crowded for a period of time

to get collected for counting. Lice can fall off during crowding as fish are rubbing together, during

the crowding period as the fish get stressed, during the handheld netting process as the lice might

fall off in the process, and during the sedating process. Salmon lice get sedated as well as the fish,

and may end up in the tub that the fish are kept in during the counting process (Torvaldsen et al.,

2018). The lice in the tub are also counted after the fish themselves have been counted, but some

can potentially be lost when the liquid in the tub is poured through a sieve (Torvaldsen et al., 2018).

Based on such procedural limitations, it may not be surprising that image-based counts tend to be
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higher than manual counts. Image-based counts do not face the same limitations when it comes to

escaping salmon lice, as the images are being taken in real time, while the fish are swimming by

undisturbed.

The fact that image-based counts are performed by humans on images can contribute to higher

lice estimates. Another parasite similar to the salmon louse is Caligus elongatus (von Nordmann

1832). Caligus is not of significance when it comes to reporting lice numbers in a fish farm, but

they could mistakenly be reported as salmon lice when analysed on images. It could be challenging

to, for example, distinguish between a mobile salmon louse and a caligus on an image. On the

other hand, the analysis of this thesis has been conducted on counts of adult female salmon lice,

which are much bigger than the caligus adult females, and it should be easier to distinguish these.

C. elongatus are mostly found further north in the country, and are not a big problem for the fish

farms in the western part of the country.

Method

Manual counts have been used as the dependent variable for modeling in this assignment. However,

there are several reasons to assume that they do not necessarily represent the true lice situation in

a pen at any given time. Using manual counts as the ground truth is therefore problematic (Jeong

et al., 2023). In addition to the constraints on sample size and sampling procedure that apply for

mandatory reporting of weekly lice numbers to the Norwegian government, there are procedural

aspects that may influence or bias these data (Thorvaldsen et al., 2019). I will argue that the man-

ual counts were still the right alternative to represent the population mean when constructing a

correction factor. Manual counts are based on inspection of the entire fish and are performed by

trained people. If it was possible to remove all potential biases, these estimates should be closer to

the true population mean than the image-based counts. The Norwegian government has regulated

salmon farmers based on manual lice counts for years, and the reported counts constitute the input

to several sea lice dispersion models, which in turn inform the so-called ’traffic light system’ that

is used to regulate the opportunities for growth of the entire industry by production area (Sandvik

et al., 2021; Myksvoll et al., 2018). It was thus a reasonable starting point to assume that manual

counts correctly reflect the population mean.
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Image-based lice counts in the Stingray system are performed on sequences of images that make

the fish accessible for counting from different perspectives. The attachment distribution of salmon

lice on the host fish does not occur at random (Bui et al., 2020). Instead, several authors have iden-

tified preferred attachment areas for adult female and mobile lice, particularly on the operculum

and along the dorsal- and ventroposterior midlines (Jaworski and Holm, 1992; Todd et al., 2000).

This means that a significant proportion of lice is attached close to the sagittal midline of the host

fish, where they may be visible from both sides and do not need to be corrected for.

In the preliminary part of the analysis, we observed high R2 values for simple linear models pro-

duced, at Location 2 and 4. These two locations stood out in terms of higher R2 values for all of the

simple linear models as shown in Table 7 through 10. A potential improvement on the final models

could perhaps be made if Location 1 and 6 were removed.

Conclusion

In conclusion, different lice-counting methods are subject to different biases and constraint that

may influence the respective estimates in opposite directions. These effects may be difficult to

disentangle based on empirical data where sample sizes are constrained by operational concerns.

In the absence of an objectively verifiable ground truth about the true lice situation in a pen or

location, deriving a correction factor for only one of these constraints through linear mixed-effects

modeling, remains a non-trivial problem.

Future work

The analysis done in this thesis may be improved by simply having bigger sample sizes for both

manual and image-based counts, and performing it on pen level. The manual counts to be used for

analysis should be counted by independent professional teams, and the louse estimates should not

be reported to the government. This way, some of the potential ”reporting” bias may be reduced.

However, counting on potentially hundreds of fish is physically challenging, if not impossible. Ad-

ditionally, as we have seen in this thesis, collecting representative fish for counting is challenging

in itself. Physically counting that many fish pose an arguably unnecessary risk to the welfare of
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the salmon that are being counted. Handling of the fish should be restricted to a minimum. The

benefit of conducting such an experiment may not be worth it. By including more samples, the gap

between manual counts and image-based counts should however get smaller.

Even with more samples, the problem of not knowing ”the ground truth” still remains. We do

not know what the population mean is in a pen. The fact that we do not know this, makes it even

harder to determine what a good estimate is. Controlled experiments may be a possibility, if it is

possible to mark the fish somehow and contain them in a smaller pen. That would however not

remove the problem of having to handle the same fish multiple times. In addition, performing a

controlled experiment like this would be extremely challenging.

The authors of (Jeong and Revie, 2020) discuss the use of prevalence to predict abundance. Abun-

dance is the average of sea lice per fish, whereas prevalence is defined as the proportion of fish with

one or more sea lice. It would be interesting to conduct further research on this topic in relation

to computer vision-based counting, because it might solve the correction factor problem. If the

proportion of fish with one or more lice can describe abundance, we do not need to see the whole

fish. The risk of missing a louse on the side of a fish that can not be seen on images is still present,

but the likelihood of that happening is smaller.

Correction factors may not be the way to go. It is still undoubtedly important to monitor sea

lice severity in fish farms, and the goal should be to get as good estimates of the louse situation in a

pen as possible. However, we might need to change our perspective on the issue concerning that we

can not see a whole fish on images. The concentration of salmon lice may not be a good measure of

the louse situation in a fish farm at all, independent of counting method. It may be possible to use

the change in lice counts per some time unit, for example per day, to predict how much lice there

is in a pen. For computer vision-based counting, a combination of prevalence-predicted abundance

of large sample sizes and the rate of increase in louse numbers may perhaps be possible to use to

predict louse abundance in the future.
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