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Abstract
Motivation: Recent advances in highly multiplexed imaging have provided unprecedented insights into the complex cellular organization of
tissues, with many applications in translational medicine. However, downstream analyses of multiplexed imaging data face several technical
limitations, and although some computational methods and bioinformatics tools are available, deciphering the complex spatial organization of
cellular ecosystems remains a challenging problem.

Results: To mitigate this problem, we develop a novel computational tool, LOCATOR (anaLysis Of CAncer Tissue micrOenviRonment), for spatial
analysis of cancer tissue microenvironments using data acquired from mass cytometry imaging technologies. LOCATOR introduces a graph-
based representation of tissue images to describe features of the cellular organization and deploys downstream analysis and visualization utilities
that can be used for data-driven patient-risk stratification. Our case studies using mass cytometry imaging data from two well-annotated breast
cancer cohorts re-confirmed that the spatial organization of the tumour-immune microenvironment is strongly associated with the clinical
outcome in breast cancer. In addition, we report interesting potential associations between the spatial organization of macrophages and patients’
survival. Our work introduces an automated and versatile analysis tool for mass cytometry imaging data with many applications in future cancer
research projects.

Availability and implementation: Datasets and codes of LOCATOR are publicly available at https://github.com/RezvanEhsani/LOCATOR.

1 Introduction

Mass cytometry imaging (MCI) is becoming an important tech-
nology for basic science and clinical research (Giesen et al. 2014).
With MCI clinical samples can be simultaneously analysed for
up to 40 proteins/markers with spatial resolution, providing un-
precedented opportunities for the in-depth study of the histology
and pathophysiology of tissues (Baharlou et al. 2019, Milosevic
2023). So far, the prevalent technologies, namely Imaging Mass
Cytometry (IMC) and Multiplexed Ion Beam Imaging (MIBI),
have been used for biomarker discoveries, exploration of intercel-
lular interactions and investigation of cellular micro-niches focus-
ing on cancer, diabetes, and other complex diseases. Especially in
cancer research, the use of MCI provides novel understanding of
the heterogeneity of cell phenotypes (Angelo et al. 2014, Yuan
2016, Groom 2019, Helmink et al. 2020, Fu et al. 2021,
Nascimento et al. 2022) within the tumour-immune microenvi-
ronment (TIME). TIMEs association with the clinical outcome
via MCI has also opened new avenues for personalized diagnosis
and treatment (Goltsev et al. 2018, Cabrita et al. 2020, Chen
et al. 2020, Jackson et al. 2020, Bhate et al. 2022).

Although the MCI data acquisition is conceptually simple,
the analysis of imaging data faces many challenges. Typically,

image denoising is required to eliminate technical artefacts
and channel crosstalk, followed by image segmentation to
identify individual cells and tissue and cell-type annotation
(e.g. phenotypic characterization of cell populations). Next,
novel analytical approaches are needed to dissect spatial and
multiparametric datasets. Milosevic (2023) reviews many of
the available computational tools/methods for MCI that can
be outlined as follows:

1) data visualization and denoising including tools and
pipelines available, such as CellProfiler (Carpenter et al.
2006), CATALYST (Chevrier et al. 2018), RedSEA (Bai
et al. 2021), Steinbock, ImcRtools (Windhager et al.
2023), and MCMICRO (Schapiro et al. 2022);

2) cell segmentation including the tools DeepCell (Van
Valen et al. 2016), Ilastik (Berg et al. 2019), MATISSE
(Baars et al. 2021), and CellPose (Stringer et al. 2021);

3) cell phenotyping with tools, such as Astir (Geuenich et al.
2021), CELESTA (Zhang et al. 2022), and CellSighter
(Amitay et al. 2023) including state-of-the-art unsupervised
clustering algorithms, such as Phenograph (Levine et al.
2015) and FlowSOM (Gassen et al. 2015); and
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4) downstream spatial analysis tools/methods.
It should be noted that some tools falling within (1), also in-

clude cell segmentation and phenotyping utilities so that they
can also be used for data exploration tasks. The available
downstream analysis tools/methods in (4) are closer to preci-
sion medicine applications, and they can be in principle used
to answer important biological and clinical questions utilizing
the lens of MCI. These tools can be divided into two main
subgroups:

a) general spatial analysis toolboxes;
b) cancer-specific spatial analysis frameworks.

A striking example within subgroup (a) is CytoMAP
(Stoltzfus et al. 2020) that has been used to explore the mye-
loid cell localization in lymph nodes of murine samples.
Another general toolbox for data visualization with some
downstream analysis options available is called ImaCytE
(Somarakis et al. 2021). The Giotto (Dries et al. 2021) tool-
box is more appropriate for the analysis and visualization of
spatial transcriptomic data. SPF and DenVar (Seal et al. 2022,
Vu et al. 2022) are ‘threshold-free’ algorithms to stratify tis-
sue images given the expression profile of a functional marker
for the purpose of risk assessment, whereas the lisaClust
(Patrick et al. 2023) algorithm can be used to identify distinct
cellular regions within tissue images.

Focusing on subgroup (b), several spatial analysis frame-
works have been proposed to associate TIMEs with the clini-
cal outcome of cancer patients. In a seminal study, Keren
et al. developed a data-driven approach to investigate the spa-
tial proximity of cell types within breast cancer tissues. The al-
gorithm was used to stratify a cohort of 41 triple-negative
breast cancer (TNBC) patients and link specific tissue organi-
zation patterns with immune regulation and patient survival
(Keren et al. 2018). Other seminal studies in breast cancer uti-
lized spatial community analyses to unravel phenotypic–geno-
typic associations linked with patients’ clinical outcome (Ali
et al. 2020, Jackson et al. 2020). A cellular neighbourhood
analysis was implemented by Schürch et al. (2020) to investi-
gate the organization of tumour and immune components in
low- versus high-risk colorectal cancer patients. Another algo-
rithm for the detection of connected sets of similar cells (re-
ferred to as patches) was proposed by Hock and colleagues
and used to assess the expression of multiple chemokines in
infiltrated tumours of melanoma patients (Hoch et al. 2022).
Finally, Danenberg et al. (2022) performed a large-scale
analysis of MCI data (>690 samples) from breast tumours
and demonstrated the importance of ‘connectivity features’
within TIMEs to link pheno-genomic characteristics with clin-
ically relevant subgroups.

Most of the previous computational studies, although very
influential within the cancer research field, have some techni-
cal shortcomings or limitations. Many of the developed
frameworks are neither automated nor open source hindering
effective re-use and reproducibility. Also, there is a lack of
general cancer research tools enabling association of TIME
patterns with clinicopathological characteristics of patients in
a flexible/modular manner. The existing algorithms are
mainly designed to answer study-specific questions, and thus
they cannot be readily extended or generalized to investigate
the role of arbitrary cell types of interest within TIMEs.
Moreover, the lack of a standardized mathematical model to
describe cell-to-cell relationships, makes it challenging to

generalize findings and compare results from different studies,
potentially also utilizing different MCI technologies. Finally,
the existing methodologies cannot be readily used to engineer
numerical variables (i.e. features) of TIMEs, that can subse-
quently be fed to machine-learning algorithms for improved
patient-risk stratification. Supplementary Table S1 provides
an overview of the most relevant methods. Altogether, we
conclude that there is an increasing need for the development
of cancer research tools to facilitate hypothesis testing and
data-driven MCI research in the new era of precision cancer
medicine.

To mitigate these limitations, we introduce LOCATOR
(anaLysis Of CAncer Tissue micrOenviRonment), a novel spatial
analysis tool for MCI data from cancer patients. LOCATOR is
implemented in the R language that is widely used in biomedical
research, and it is specifically designed to engineer features de-
scribing local/global cellular composition of tissues, as well as
structural features of cells and their interactions within TIMEs.
To achieve this goal, LOCATOR proposes a graph-based feature
engineering approach. Importantly, LOCATOR is versatile, inde-
pendent of the imaging technology used (e.g. IMC or MIBI), and
can be applied to identify possible associations between TIMEs
and other molecular and clinical variables.

We use LOCATOR to analyse publicly available data from
two breast cancer cohorts as well as synthetic data. Our
results corroborate previous findings about the role of
TIMEs, highlighting LOCATOR’s ability for TIME-driven
patient-risk stratification. With LOCATOR, we also investi-
gate novel multicellular features of macrophages and report
potentially interesting associations with distinct clinicopatho-
logical parameters. We anticipate that LOCATOR could find
many useful applications in future cancer research projects.

2 Methods

2.1 LOCATOR overview
2.1.1 Required input data
LOCATOR consists of the two programmes ExtractFeatures
and TIMEClust, both written in the R language containing
functions respectively for feature calculation and for down-
stream analysis including TIME-driven patient stratification.
The method requires the availability of data for a cohort of
patient samples screened with any of the available tissue imag-
ing technologies using an antibody panel. LOCATOR can be
applied after the raw images have been externally pre-
processed, segmented and cells phenotyped. For tissue image
segmentation, we recommend any of the available state-of-
the-art frameworks DeepCell (Bannon et al. 2021), or
ImcSegmentationPipeline (Zanotelli and Bodenmiller 2022).
Once the segmented images have been produced, cell pheno-
typing can be performed using any of the available state-of-
the-art approaches (Milosevic 2023). A data schema of the
required input data is shown in Fig. 1. Technically the input
data can be provided in an aggregated tabular file (e.g. csv),
where each patient is indexed by a unique ID, followed by
other relevant cohort-specific clinical information, such as
molecular subtype (e.g. PAM50 in breast cancer), histological
grade, mutational status or hormone receptor status, and time
of death/relapse. We note that LOCATOR’s software imple-
mentation also supports SingleCellExperiment R structures.
Each patient’s tissue image contains individual cells indexed
by their unique ID, X and Y coordinates. Depending on the
antibody panel design, every individual cell is associated with
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a vector of up to 40 antibody intensities. Every cell is also
assigned to a unique phenotype (cell type) returned during the
pre-processing step.

Once LOCATOR’s required input data have been loaded,
the user must select the target cell type from the available ‘ca-
nonical’ phenotypes (e.g. T-cells, B-cells, and Macrophages
etc.) identified during the cell phenotyping step. In addition,
with LOCATOR it is also possible for users to select ‘custom’
subsets of cells based for example on the expression of a single
functional marker (e.g. all cells enriched/depleted for PDL1
see Section 3.4).

2.1.2 Feature discovery
LOCATOR uses the programme ExtractFeatures to engineer
features of TIMEs. LOCATOR deploys a graph-based repre-
sentation of cellular neighbourhoods to engineer features as
follows: for every target cell LOCATOR creates a circular
neighbourhood using a predefined radius centred around the
cell of interest using the X and Y coordinates. Choosing an
appropriate value for the radius depends on the resolution of
the imaging technology used. After experimentation (see
Section 3.3), we recommend radius¼ 100 pixels for MIBI and
radius¼ 50 for Hyperion IMC technologies. Within each cel-
lular neighbourhood LOCATOR constructs an individual un-
directed graph where cells are vertices and interactions
between them are edges. To identify all possible cell-to-cell
interactions within a neighbourhood, the Voronoi algorithm
is used (Aurenhammer 1991). To speed this process up, the
Voronoi algorithm considers only the cells within the neigh-
bourhood, neglecting possible interactions of cells between
different neighbourhoods (e.g. circles that are far apart).
Based on this approach, three different categories of features
are computed for every neighbourhood/graph (i.e. number of

neighbourhoods equals the number of cells of interest) to cap-
ture phenotypic, functional, and structural information.

1) Cellular abundance (%) within the neighbourhood/
graph: where the number of features equals the number
of phenotypes found in the dataset.

2) Connectivity score: a weighted score reflecting the number
of interactions and their importance within the neighbour-
hood. For each cell type within the neighbourhood, we
first compute the number of interactions found with all
other cell types (i.e. number of edges). Then, each edge is
weighted with w1 if both vertexes (cells) are of the same
cell type, with w2 if the vertices are of different cell types
but they are both non-tumour cells or both tumour cells,
and with w3 if the vertices are of different cell type but
one is non-tumour cell and the other is tumour cell.
Default weight parameters are w1¼1, w2¼ 0.5, and
w3¼0.1, but this can be adjusted by the user. The final
CS for each cell type within a neighbourhood, is com-
puted by summing up all partial weighted scores.

3) Graph theory metrics: for every neighbourhood/graph,
we compute the number of vertices, the number of edges,
average vertex degree, entropy, density, diameter, eccen-
tricity (max., min., mean), transitivity, algebraic connec-
tivity, and spectral radius. Standard definitions of these
metrics can be found in Li et al. (2012).

Note that the feature extraction process is performed once
for each cohort and cell type of interest, and it can be used
multiple times for subsequent downstream analysis tasks.

2.1.3 Data visualization and exploration
Once the feature matrix has been calculated, it can be fed to
the TIMEClust program. TIMEClust deploys an unsupervised

Figure 1. LOCATOR workflow. The flowchart describes the data acquisition and pre-processing process of multiplexed imaging data that is required to

generate the LOCATOR’s input data. LOCATORworkflow uses two programmes written in R language namely, ExtractFeatures and TIMEClust.

ExtractFeatures is used to define cellular neighbourhoods and generate graphs. These graphs are used for feature extraction. Next, TIMEClust program uses

these features to cluster the cellular neighbourhoods of interest. At the patient level, patients as enriched or decreased for each of the identified clusters. This

provides opportunities for MCI data visualization and downstream analyses for data-driven patient stratification tasks (image created with BioRender.com).
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clustering approach to group together single cells based on
their neighbourhood’s phenotypic, functional, and structural
similarity. The consensus clustering method from the Spectre
package (Ashhurst et al. 2022) is used to identify a statisti-
cally robust number of clusters, without manual tuning.
Based on this unbiased stratification of cellular neighbour-
hoods, LOCATOR offers several data exploration and visual-
ization utilities. Users can generate and export box plots and
bar plots to visualize the abundance of clustered cells, and
subsequently produce summary heatmaps of the feature ma-
trices (using standard R packages, such as ggplot and pheat-
map). Using LOCATOR’s API users can also perform the t-
SNE, a state-of-the-art statistical method (Maaten and
Hinton 2008) for visualizing multidimensional cellular clus-
ters into the 2D space. The Rtsne implementation has been in-
corporated into our R software implementation. Single-cell
clusters can be also mapped to their original tissue coordi-
nates providing as an output high-resolution tissue images for
data inspection and exploration.

Furthermore, TIMEClust offers utilities for TIME-driven
exploration at the patient/cohort level. For each cellular clus-
ter, we compute the abundance of clustered cells per patient.
Then, the average/median abundance per cluster at the cohort
level is used as a cut-off to identify individual patients that are
enriched or depleted for the corresponding cellular cluster.
Supplementary Fig. S7 shows examples of tissue images that
are enriched and depleted for specific cellular clusters. At the
patient level, this simple quantification can be used as a basis
for data-driven patient stratification and association with clin-
ical and biological annotations. The LOCATOR software
provides univariate survival analysis based on Kaplan–Meier
method (survminer R package), and survival plots are auto-
matically generated for every cellular cluster. A list of Alluvial
plots (alluvial R package) is also produced to visualize cellular
clusters and their association with clinicopathological infor-
mation. Command-line syntax for running ExtractFeatures
and TIMEClust programs is provided on our GitHub page.
More detailed information about the dependent R packages
and examples/tutorials are also available.

2.2 Breast cancer cohorts and clinicopathological

information used in this study

For the development and evaluation of LOCATOR, we use
publicly available MCI data from Keren et al. (2018) and
Danenberg et al. (2022) herein we call them as ‘Keren dataset’
and ‘Danenberg dataset’, respectively. In the first dataset/
study, Keren et al. used multiplexed ion beam imaging by
time-of-flight to quantify 36 markers in 41 TNBC patients.
The authors deployed an algorithm to investigate how im-
mune and tumour cells interact with each other in respect to
immune cell interactions. Using the deployed algorithm,
TIME architectures were annotated as Mixed and
Compartmentalized tissue types and the authors validated
that the Compartmentalized type was associated with im-
proved survival. The authors also explored the expression of
PDL1 immunoregulatory protein, in association to the spatial
structure of the Compartmentalized and Mixed tissue types.

In the second dataset/study, Danenberg et al. used Hyperion
IMC to generate 37D images of 693 breast cancer tumours
matched with genomic and clinical information. Using spatial
tissue-based analyses and clustering of spatial regions the
authors identified 10 TIME structures/clusters and explored

how these clusters (IntClust information is available) were linked
with patient-specific somatic alterations, ER status, tumour
grade, and PAM50 breast cancer subgroups. Summary statistics
about the datasets and patient-specific annotations used in both
studies/datasets can be found in Supplementary Fig. S2.

3 Results

3.1 LOCATOR utilizes a graph-based representation

of cellular ecosystems for feature discoveries

The tumour microenvironment is composed of different cell types
that form spatially organized cellular ecosystems. Within these cel-
lular neighbourhoods immune and tumour cells interact directly
or indirectly with each other adopting different mechanisms and
functions, and many studies have emphasized the role of TIMEs in
suppressing or promoting tumour growth (Yuan 2016, Fu et al.
2021, Biswas et al. 2022, Hsieh et al. 2022). With this idea in
mind and to be able to easily data-drive research towards better
patient stratification, we present LOCATOR. LOCATOR utilizes
the spatial location (i.e. X and Y coordinates in 2D) of cells to gen-
erate local cellular neighbourhoods in the tissue microenviron-
ments using a user-defined radius. LOCATOR’s implementation is
‘flexible’ since different investigators may use it appropriately to
dissect cellular neighbourhoods screened with any of the prevalent
MCI technologies. To gain maximized information about each in-
dividual cellular neighbourhood and subsequently generate com-
prehensive spatial features (i.e. numerical variables) describing the
interactions between cells, LOCATOR adapts a graph-based rep-
resentation. With this abstract formulation, all cells in a cellular
neighbourhood are modelled as vertices and links between them
are represented as edges (i.e. cell–cell interactions). LOCATOR
defines and computes three different categories of features: (i) cellu-
lar abundance (%) in the neighbourhood; (ii) features describing
the connectivity of cell types in the neighbourhood; and (iii) fea-
tures described by standard graph theory metrics and graph algo-
rithms. A more detailed technical overview of the feature matrix
generated by LOCATOR is described in Section 2. Figure 1 shows
a blueprint of LOCATOR’s feature engineering component.

After the feature generation step, LOCATOR deploys an
unsupervised consensus clustering approach to group together
cellular neighbourhoods with similar/dissimilar spatial prop-
erties as described by numerical TIME features. For each of
the identified cellular clusters, patients can be enriched or de-
pleted by comparing patient-specific values to the mean/me-
dian cluster values computed at the cohort level. This
information can be directly used to infer associations between
TIMEs and patient-specific clinicopathological parameters.
The proposed data engineering approach is quite versatile en-
abling effective downstream analyses, in combination with ar-
tificial intelligence algorithms or any other data science
technique. A step-by-step description of LOCATOR’s work-
flow is available in the Supplementary Fig. S1.

3.2 LOCATOR systematizes TIME-driven patient

stratification in breast cancer

To showcase the use of LOCATOR for MCI data exploration
and TIME-driven patient stratification, we performed two
case studies using as input data from two independent breast
cancer studies (Keren et al. 2018, Danenberg et al. 2022).
Since one of the most promising clinical applications of MCI
is to investigate the role of immune cells in the cellular
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microenvironment, our case studies are anchored around im-
mune cell types, with a primary focus on macrophages.

Macrophages are innate immune cells with phagocytic
function and heterogeneous characteristics (Qiu et al. 2018).
In several breast cancer studies, high infiltration of tumour-
associated macrophages (TAM) is associated with shorter pa-
tient survival, but unfortunately, our knowledge about their
role and regulation is rather limited (Choi et al. 2018, Lin
et al. 2019, Kumari and Choi 2022). For extra experimenta-
tion with LOCATOR, we also provide computational analy-
sis results for another immune cell type, the T-cytotoxic cells,
with known (Dushyanthen et al. 2015, Stanton and Disis
2016, Li et al. 2021) prognostic and predictive value in spe-
cific breast cancer subgroups (HER2þ and Triple-negative).

To explore LOCATOR’s capabilities, we compared its
results to independent clinicopathological information of
patients, such as survival time, PAM50 molecular subtype,
histological grade, and hormone receptor status when avail-
able (Supplementary Fig. S2a and b). Next, LOCATOR’s
results are compared with computationally derived results
published independently by Keren et al. and Danenberg et al.

3.2.1 Case study using Keren dataset
We apply LOCATOR to analyse 33 TNBC samples available in
the Keren dataset. From the original 41 samples of this dataset,
five samples are ‘cold’ tumours (i.e. very low immune presence)
and they are filtered out. We also filter out three samples with
<20 macrophages to ensure robust feature matrices calculations

for all samples included in the study. Note that this parameter
can be customized by the users depending on the study design
and the available cells of interest. LOCATOR’s consensus clus-
tering approach identifies four cellular clusters of macrophages
(NC1, NC2, NC3, and NC4), and the mean abundance at the
cohort level is used as a cut-off to identify patients enriched and
depleted for each of these clusters. Figure 2 shows example
images produced using LOCATOR’s API, including a heatmap
representation of TIME features, summary plots focusing on the
cellular neighbourhoods surrounding macrophages, a t-distrib-
uted stochastic neighbour embedding (t-SNE) of the clustering
results, and an example of tissue reconstruction mappings with
clustering annotations. Similar outputs focusing on cellular
neighbourhoods surrounding T-cytotoxic cells are shown in
Supplementary Fig. S3.

3.2.1.1 Associating LOCATOR’s clustering results with patient
survival

Based on LOCATOR’s consensus clustering results for mac-
rophages, we identify potential associations with disease out-
come. Since survival information is independent from the
data generation and clustering processes used by LOCATOR,
it suggests that the spatial patterns found by LOCATOR have
relevance for disease development and outcome. Using cellu-
lar clustering results at the patient level (i.e. number of
patients enriched or depleted for each of NC1–NC4 clusters),
we perform univariate Kaplan–Meier survival analysis.
Figure 3a shows the survival analysis results for cluster NC2.

Figure 2. LOCATOR outputs for Keren dataset focusing on macrophage cell type. (a) Heatmap representation of the feature vector for the identified

clusters. (b) Bar plot showing cellular abundance of the identified cellular clusters. (c) Boxplot showing the number of macrophages per patients across

different cellular clusters. (d) t-SNE visualization of the identified cellular clusters. (e) Example of tissue mapping with cellular cluster annotation from one

patient (patient No. 5). Gray colour indicates tumour cells and pink colour indicates non-tumour cells. All other colours in the image correspond to the

detected cellular clusters from subplots (c) and (d).
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We observe that patients enriched for this cluster (called
NC2þ) achieve worse survival compared to the depleted
(NC2�) patients (long-rank P-value¼ .018). Upon inspection
of the connectivity features (Fig. 2a), we observe that cluster
NC2 has higher feature values for tumour-macrophages con-
nectivity scores (CSs), whereas from the graph metric-based
features the number of vertices is also high. Such findings
might be linked to the underlying biology of TAM within
TIMEs, opening new avenues for deciphering complex mech-
anisms of macrophage activation/regulation.

3.2.1.2 Comparison with the published mixing score for tissue
classification

Next, we compare our clustering results using the mixed and
compartmentalized tissue annotation derived from the mixing
score deployed by Keren et al. Figure 3b shows that patients
of the NC2þ subgroup belong mainly to the mixed tissue
type, which is linked with poorer survival, whereas patients of
NC2� subgroup have mainly compartmentalized tissue types
and better survival.

Further we compare LOCATOR’s NC2 patient subgroups
with the PDL1 immunoregulatory protein score published by
Keren et al. In the original study by Keren et al. higher PDL1
score levels are associated with poorer survival, mixed tissue type,
and cancer progression. Our results (Fig. 3c) focusing on NC2 cel-
lular cluster of macrophages corroborate all the previous findings
about PDL1 levels and the underlying tissue architecture.

3.2.2 Case study using Danenberg dataset
We also apply LOCATOR to analyse 497 cases from the
Danenberg dataset. From the original 693 cases of this dataset,
we filter out 196 samples with <20 macrophages to ensure ro-
bust feature matrix calculation. Focusing on macrophages,
LOCATOR’s consensus clustering approach identifies 14 cellu-
lar clusters (NC1–NC14). We use the mean abundance at the
cohort level as a cut-off to determine enriched and depleted
patients for each of these cellular clusters. Figure 4 shows ex-
ample images that can be produced using LOCATOR’s visuali-
zation functions for this dataset. Similar outputs focusing on
cellular neighbourhoods surrounding T-cytotoxic cells for this
dataset are shown in Supplementary Fig. S4.

3.2.2.1 Associating LOCATOR’s clustering results with patient
survival and other clinical information

Using LOCATOR, we investigate whether the acquired cellu-
lar clustering results are associated with patient survival and
other independent clinical information, namely PAM50, his-
tological grade, and hormone receptor status. Based on uni-
variate Kaplan–Meier survival analysis, we find that patients
enriched for NC2 (NC2þ) and NC8 (NC8þ) cellular clusters
are linked with shorter survival whereas patients enriched for
cellular cluster NC3 (NC3þ) are associated with longer sur-
vival (Fig. 5a–c).

Based on PAM50 criteria, we find that NC2þ patient sub-
group includes mainly Her2þ and Basal-like cases, whereas

Figure 3. Case study 1: association of the identified NC2 cellular cluster with clinicopathological parameters and independent published results. (a)

Survival plot where patients are classified as enriched (NC2þ) or depleted (NC2�) based on their mean abundance for NC2. (b) Alluvial plot showing the

fraction of NC2 enriched/depleted patients and their underlying tissue mixing classification. (c) From left to right, original classification of patients and

PDL1 score from Keren et al., where colour code is based on the patients enriched/decreased for NC2 cellular cluster. The stack bar shows the

abundance of different macrophage cellular clusters identified by TIMEClust across all patients.
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Figure 4. LOCATOR outputs for Danenberg dataset focusing on macrophage cell type. (a) Heatmap representation of the feature vector for the identified

clusters. (b) Bar plot showing cellular abundance of the identified cellular clusters. (c) Boxplot showing the number of macrophages per patients across

different cellular clusters. (d) t-SNE visualization of the identified cellular clusters. (e) Example of tissue mapping with cellular cluster annotation from one

patient (patient No. 191). Gray colour indicates tumour cells and pink colour indicates non-tumour cells. All other colours in the image correspond to the

detected cellular clusters from subplots (c) and (d).

Figure 5. Case study 2: association of NC2, NC3, and NC8 identified cellular clusters with patient survival and PAM50 classification. (a–c) Survival plots

where patients are classified as enriched (NC2þ, NC3þ, and NC8þ) or depleted (NC2�, NC3�, and NC8�) based on their mean cellular abundances.

(d–f) Alluvial plots showing the fraction of NC2, NC3, and NC8 enriched/depleted patients and their underlying PAM50 classification. Significance of the

results is obtained using Fishers-exact test at a P-value levels of .05 (results marked with *, and Supplementary Fig. S7 for details).
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the number of LumA cases, which are in principle associated
with favourable outcome, is proportionally smaller compared
to NC2� patient subgroup. Based on histological grade infor-
mation, we observe that the NC2þ subgroup includes more
Grade 3 cases compared to NC2�. Using ER hormone recep-
tor status, we also see more ER� cases for the NC2þ patient
subgroup compared to NC2�.

Based on histological grade information, we find that
NC3þ patient subgroup includes proportionally smaller num-
ber of Grade 3 cases compared to NC3�, and as expected
NC3þ contains mainly patients with Grade 1. Based on ER
hormone receptor status, NC3þ patients include less cases
with ER� and more ERþ cases compared to NC3�.

Focusing on PAM50 criteria, for cluster NC8þ, we observe
proportionally smaller number of LumA cases and more cases
with Her2 compared to NC8�. According to histological
grade, NC8þ patient subgroup includes more Grade 3 cases
(Supplementary Fig. S5) compared to NC8�. At last, based
on ER hormone receptor status, we observe that NC8þ
patients are in their majority ER� cases. Supplementary
Figure S4 shows additional clustering analysis results focusing
on T-cytotoxic cells. We emphasize on three clusters
(Supplementary Fig. S6), namely NC2, NC3, and NC4, that
are potentially linked with clinically relevant features of
TIMEs. Specifically, patient subgroups NC2þ, NC4þ, and
NC3� that achieve shorter survival are enriched for some
clinical features of ‘aggressive cancers’, namely basal-like
PAM50 phenotypes, ER negativity, and higher tumour grade.

3.2.2.2 Comparison with published clustering results

We also compare LOCATOR’s clustering results with the
clustering results reported by Danenberg et al. (Fig. 5,
Supplementary Table S2, and Supplementary Fig. S5).
Focusing on NC2þ patient subgroup that achieve shorter sur-
vival, we find that this cluster includes an increased number
of cases from IntClust 4� and IntClust 10 reported by
Danenberg et al. compared to NC2� patient subgroup. Both
IntClust 4� and IntClust 10 are linked to poor prognosis in
the original publication. In NC2þ patient subgroup, we also
find proportionally less cases from IntClust 8 and IntClust 7
clusters reported by Denenberg et al. compared to NC2� pa-
tient subgroup. Note that both IntClust 8 and IntClust 7 clus-
ters are linked with good prognosis based on the original
published results.

Focusing on NC3þ patient subgroup that achieve longer
survival compared to NC3�, we find (Fig. 5, Supplementary
Table S2, and Supplementary Fig. S5) that NC3þ includes
proportionally more Normal Like cases.

Finally, for NC8þ patient subgroup that achieve shorter
survival compared to NC8�, we observe that NC8þ includes
mostly cases from IntClust 5� cluster of the published results
that is linked with poor survival, whereas it includes propor-
tionally smaller number of cases from IntClust 3, IntClust 7,
and IntClust 8 clusters, all associated with good survival
based on the original results published by Danenberg et al.

Taken together, the results of both case studies with a pri-
mary focus on macrophages, corroborate findings from inde-
pendent publications/analyses (Keren et al. 2018, Danenberg
et al. 2022). Our results highlight LOCATOR’s ability to test
hypotheses and discover novel TIME-dependent patient sub-
groups that can be used for effective patient stratification in
subsequent cancer research projects.

3.3 Investigating the potential impact of

neighbourhood size for TIME-driven patient

stratification

The ability to investigate accurately cellular microenviron-
ments via MCI depends strongly on which value is chosen for
the neighbourhood size parameter (i.e. radius). For example,
‘over-binning’ cells into very large cellular neighbourhoods
might lead to loss of important biological signals. Conversely,
reducing the neighbourhood size might generate many and
noisy small networks that might not be biologically and clini-
cally relevant. The selection of appropriate neighbourhood
size is also important for practical reasons: it affects the com-
plexity of the computational analysis and subsequently the
running time of the tool and the required computational
resources. Existing tools, such as CytoMAP and the analysis
frameworks implemented by Keren et al., Jackson et al., and
Danenberg et al., selected the neighbourhood size after empir-
ical assessment leading to a radius of 100 pixels for the Keren
dataset (MIBI) and of 50 pixels for the Danenberg dataset, re-
spectively (IMC Hyperion). The same neighbourhood sizes
were used by LOCATOR in the case studies described above.

Here, to systematically assess the potential impact of neigh-
bourhood size for TIME-driven patient stratification by
LOCATOR’s TIMEClust program, we perform additional
analyses. Using the Keren dataset as a benchmark, we repeat
the clustering step with neighbourhood sizes [50, 75, 100,
125, 150]. For every run, we focus on the cluster that achieves
the lowest log-rank P-value of Kaplan–Meier survival analy-
sis, assuming that this is the cluster most closely linked to the
clinical outcome. We use the mixed and compartmentalized
tissue types reported by Keren et al., and we estimate accu-
racy, sensitivity, and specificity using known formulas
(Soufan et al. 2015). Figure 6a conveniency demonstrates that
the neighbourhood size does indeed matter, with the value of
50 achieving the lowest specificity. Interestingly, sizes between
75 and 125 achieve very comparable results with size of 75
being the best in terms of accuracy and specificity, but the
Kaplan–Meier survival results did not reach statistically sig-
nificant levels (Fig. 6b, P-value threshold of .05). In summary,
our experimentation indicates that size of 100 is indeed a very
reasonable selection for the Keren dataset (MIBI).

3.4 Comparing LOCATOR with independent spatial

analysis methods

We compare LOCATOR’s clustering results at the patient
level with two alternative spatial analysis methods, namely
DenVar and lisaClust. As a benchmark, we focus on Keren
dataset, and we consider the mixed and compartmentalized
tissue annotations. Since DenVar requires as input the expres-
sion of a single marker, we run LOCATOR with input cell
annotations based on the scaled expression of PDL1 and
CD68 markers (i.e. cells with expression greater/lower than
z-score 0.5). To facilitate fair assessment of the competitor
methods, we also run lisaClust using as input the same set of
positive/negative cells for PDL1 and CD68 markers.
However, lisaClust’s original implementation cannot be used
for patient stratification. To mitigate this limitation, we de-
ploy our own version of lisaClust that enables patient stratifi-
cation called lisaClust_modified. In this version, the outputs
returned by lisaClust algorithm are used to identify subgroups
of patients depleted/enriched for LISA outputs following the
same methodology as in LOCATOR’s TimeClust program.
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Figure 6c shows the average sensitivity, specificity, and ac-
curacy of the competitor methods (see Supplementary Table
S3 for the complete set of results). We observe that in most
cases LOCATOR achieves the best results on average,

whereas using PDL1 lisaClust_modified achieves slightly bet-
ter accuracy and sensitivity. Next, for the best cluster in terms
of accuracy, we perform Kaplan–Meier survival analysis.
Interestingly (Fig. 6d), using PDL1 LOCATOR and

Figure 6. LOCATOR’s performance evaluation. (a) Barplot showing sensitivity, specificity, and accuracy of LOCATOR’s results for different values of

Radius parameter. Tissue annotations from Keren dataset are used as a benchmark. (b) Dot plot summarizing the survival analysis (log-rank P-values)

using the clustering results from (a). All P-values were obtained using univariate Kaplan–Meier method, considering a P-value cutoff of .05. (c) Comparison

analysis results between DenVar, LisaClust, and LOCATOR. We report average sensitivity, specificity, and accuracy, using as benchmark tissue

annotations from Keren dataset. (d) Dot plot summarizing the survival analysis (log-rank P-values) using the clustering results from (c). All P-values were

obtained using univariate Kaplan–Meier method, considering a P-value cutoff of .05. (e) Assessing the significance of LOCATOR’s survival analysis results

using as input synthetic data.
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LisaClust_modified achieved statistically significant results
for only one of the detected clusters (NC2 and NC3, P-val-
ues¼ .02 and .01, respectively). When considering CD68
marker as input, only LOCATOR was able to stratify patients
into subgroups of different survival (both NC1 and NC3 clus-
ters with P-values¼ .03 and .02, respectively).

3.5 Experimentation with synthetic data

In this subsection, we perform a self-consistency test using as
input synthetic data. Generating synthetic imaging data is not a
straightforward task, as our knowledge about ‘aggressive’ spa-
tial features of cancer is rather limited. Here, to mitigate this
limitation, we follow the complete spatial randomness assump-
tion (CRS). Based on CRS, cells do not have any preference for
any spatial location and connection with other cell types
(Stoltzfus et al. 2020). However, since there is increasing evi-
dence that the cellular abundance and the ratio of cancer and
immune cells (i.e. infiltration) are clinically relevant features of
breast cancer, we maintain the cellular abundances from the
Keren dataset as presented in Supplementary Fig. S2c. Thus,
using as ‘seed’ real cellular abundance distributions, we gener-
ate a more realistic synthetic MCI cohort with random spatial
locations and connections between cells.

Using this synthetic cohort, we repeat LOCATOR’s analysis
1000 times, and for the resulting clusters we perform univariate
Kaplan–Meier survival analysis. In this way, it is possible to
compute the number of times a statistic (i.e. log-rank P-value)
smaller than that found for the Keren dataset itself, is observed.
Figure 6e summarizes the original statistic and the statistics
found using the experimentation with simulated data. The
results of Fig. 6e are translated to a P-value of .012, which is
significant at a 0.05 threshold. In summary, our self-consistency
test conveniently highlights LOCATOR’s power to produce re-
liable and robust clustering results at the patient level.

4 Discussion

In this study we present the development and use of
LOCATOR, a new computational tool to analyse highly mul-
tiplexed imaging data from cancer tissues. LOCATOR
deploys a versatile graph-based representation of cellular
neighbourhoods to engineer features reflecting cellular pheno-
type abundance, cellular connectivity, and cell-to-cell spatial
relationships. Subsequently, it offers visualization utilities as
well as a simple unsupervised clustering approach to stratify
patients based on the spatial similarity of their cellular neigh-
bourhoods. The tool is automated and modular, its pro-
grammes are customizable by users, and they can be widely
applied irrespective of the study design, the imaging technol-
ogy used, and the available antibody panels. In this way,
LOCATOR opens possibilities to standardize MCI down-
stream analyses contributing towards hypothesis testing and
TIME-driven exploration of cellular microenvironments via
MCI.

To test LOCATOR, we perform two case studies using
publicly available data from two seminal studies in breast
cancer. Since the knowledge about the role of macrophages
for patient stratification is limited, we use LOCATOR to ana-
lyse cellular microenvironments with macrophages as target
cell type. Focusing on the Keren dataset, our patient stratifica-
tion results are in concordance with clinicopathological
parameters and other computationally derived published
results. This is also the case for a larger cohort of MCI

samples (Danenberg dataset), where LOCATOR contributes
an alternative way for patient stratification based on the spa-
tial organization of macrophages. When compared with two
independent spatial analysis algorithms, DenVar and
lisaClust, LOCATOR achieves superior performance using
Keren dataset as benchmark. In addition, a self-consistency
test with synthetic data demonstrates LOCATOR’s power to
produce reliable and robust results when analysing unseen pa-
tient cohorts. LOCATOR runs fast (�15 min for feature gen-
eration and downstream analyses for �500 samples) in a
commodity computer (16 GB RAM with Intel i5 CPU
1.7 GHz), without requiring significant programming knowl-
edge. Thus, it opens interesting possibilities to complement
existing patient-risk stratification methods and enhance data-
driven biomarker discoveries in future studies.

Focusing on technical aspects, many technical improve-
ments are feasible. For example, implementing a graphical
user interface would make LOCATOR even more interactive
and easier for users with no prior programming knowledge
skills. We are working towards this direction, providing im-
proved customization of LOCATOR’s utilities. In addition,
incorporating state-of-the-art feature selection methods
(Soufan et al. 2015) to select the most important features of
TIMEs, might be useful for more effective TIME-driven pa-
tient-risk stratification tasks. In addition, other machine-
learning-based methods can be incorporated for biomarker
discoveries (Tislevoll et al. 2023). Furthermore, the proposed
graph-based representation of cellular neighbourhoods can be
subjected to more advanced graph algorithms and analytic
platforms taking advantage of high-performance computing
infrastructures.

In terms of data analyses, the results presented here focus-
ing mainly on macrophages corroborate many clinically rele-
vant characteristics of patients. However, not all the detected
patient clusters reach statistically significant associations with
clinicopathological parameters. This is also the case for many
of our clustering analysis results focusing on T-cytotoxic cells
from the Keren dataset. We argue that this is expected given
the complexity of the underlying datasets, the size of the clus-
ters and the performance of the unsupervised clustering ap-
proach we deployed. Thus, new methods are needed that can
combine data from multiple studies, and LOCATOR provides
a step in this direction. Here, both case studies presented high-
light LOCATOR’s ability to test hypotheses and unbiasedly
explore and stratify patients using features of their TIMEs’.

In summary, LOCATOR streamlines the application of tis-
sue imaging technologies for TIME-driven patient stratifica-
tion. The outcome of this work may be useful for cancer
research studies focusing on cellular heterogeneity, and preci-
sion cancer medicine. LOCATOR’s graph-based representa-
tion can be easily extended to describe even more
comprehensive molecular profiles from single-cell multimodal
assays and spatial transcriptomics (e.g. 10X Visium). In con-
clusion, we believe that the use of LOCATOR could provide
a more general bioinformatics framework to explore the spa-
tial organization of cellular communities in the broad context
of human diseases.
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