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Nucleated red blood cells explain most of the
association between DNA methylation and
gestational age
Kristine L. Haftorn 1,2✉, William R. P. Denault 1,3, Yunsung Lee 1, Christian M. Page1,4,

Julia Romanowska 1,5, Robert Lyle 1,6, Øyvind E. Næss2,7, Dana Kristjansson1,8, Per M. Magnus1,

Siri E. Håberg1, Jon Bohlin 1,9,10 & Astanand Jugessur1,5,10

Determining if specific cell type(s) are responsible for an association between DNA

methylation (DNAm) and a given phenotype is important for understanding the biological

mechanisms underlying the association. Our EWAS of gestational age (GA) in 953 newborns

from the Norwegian MoBa study identified 13,660 CpGs significantly associated with GA

(pBonferroni<0.05) after adjustment for cell type composition. When the CellDMC algorithm

was applied to explore cell-type specific effects, 2,330 CpGs were significantly associated

with GA, mostly in nucleated red blood cells [nRBCs; n= 2,030 (87%)]. Similar patterns

were found in another dataset based on a different array and when applying an alternative

algorithm to CellDMC called Tensor Composition Analysis (TCA). Our findings point to

nRBCs as the main cell type driving the DNAm–GA association, implicating an epigenetic

signature of erythropoiesis as a likely mechanism. They also explain the poor correlation

observed between epigenetic age clocks for newborns and those for adults.
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Gestational age (GA) is intimately linked to fetal develop-
ment. Even slight variations in GA at birth are associated
with a wide variety of perinatal health outcomes, some of

which have important clinical consequences1–5. Epigenetic
modifications, such as DNA methylation (DNAm), play a critical
role in fetal development6–8. DNAm has also been shown to be
robustly associated with GA at thousands of CpG sites5,9–12. The
strong association between DNAm and GA probably reflects
biological processes related to fetal development, but the specific
mechanisms underlying this association are still unknown. Thus,
elucidating these mechanisms may provide a deeper under-
standing of the molecular processes involved in normal as well as
aberrant fetal growth and development.

Most of the previous epigenome-wide association studies
(EWASs) of GA were based on DNAm data generated on the
Illumina Infinium HumanMethylation450 array (450k) or its
predecessor, the Illumina Infinium HumanMethylation27 array
(27k)5,9,12. These arrays were designed to cover mainly gene
promoters and protein-coding regions13,14. In December 2015,
450k was replaced by the more comprehensive Illumina Infinium
MethylationEPIC array (EPIC), which employs the same tech-
nology as 450k for measuring DNAm but contains almost twice
the number of CpG sites (~850,000) and has a higher coverage of
CpGs in regulatory regions13. Despite the substantial improve-
ment in genome-wide coverage of regulatory regions and the
higher reproducibility and reliability of EPIC13, studies investi-
gating the association between GA and DNAm data generated on
EPIC are lacking. It is also uncertain whether the extra regulatory
CpGs on EPIC are useful in explaining the association between
GA and DNAm.

Most studies exploring the link between DNAm and GA are
based on samples from cord blood, which comprises a mixture of
cell types15. As cell-type proportions vary substantially across
individuals and DNAm is highly cell-type specific16, it is cus-
tomary to adjust for cell-type proportions in statistical models in
order to avoid bias17. Several cellular deconvolution algorithms
and cord-blood reference panels are available to infer cell-type
proportions from heterogeneous samples and adjust for cord
blood cell-type composition in newborn DNAm data18–20.
However, including cell-type proportions as covariates in the
statistical model will not necessarily provide insight as to how cell
types influence the association between the explanatory variable
and DNAm. One solution is to perform an EWAS in isolated cell
types. However, cell sorting of whole-blood samples is costly,
especially in large cohort studies with hundreds of thousands of
participants.

To counter this, statistical algorithms have been developed to
allow the detection of cell-type specific differential DNAm within
a heterogeneous mixture of cells without the need for cell sorting
or single-cell methods21–24. One example is CellDMC, by Zheng
et al.24, which incorporates interaction terms between the phe-
notype of interest and the estimated cell-type fractions in a linear
modeling framework. Another example is Tensor Composition
Analysis (TCA), by Rahmani et al.23. which employs matrix
factorization to infer cell-type specific DNAm signals that are
subsequently used to search for associations in each cell type
separately. Exploring cell-type specific associations can be
essential to decipher the biological underpinnings of an associa-
tion between DNAm and a specific phenotype of interest25.
Whilst changes in cord blood cell-type proportions have been
reported for GA26,27, studies on cell-type specific epigenetic
associations with GA are lacking.

To bridge these knowledge gaps, we investigate the association
between cord blood DNAm and GA using an EPIC-derived
DNAm dataset comprising 953 newborns and a 450k-derived
dataset comprising 1062 newborns. Both datasets are from the
Norwegian Mother, Father, and Child Cohort Study (MoBa)28.
We apply CellDMC to these datasets to determine the relation-
ship between cell-type specific DNAm and GA. We also apply
TCA as an alternative method for cell-type-specific analysis. The
results show many CpGs associated with GA, predominantly in
nucleated red blood cells (nRBCs). This association reflects an
epigenetic signature of erythropoiesis in fetal development and
provides a biologically plausible rationale for the consistently
observed strong association between DNAm and GA. It also helps
explain the observed incompatibility between epigenetic age
clocks for newborns and those for adults.

Results
Study sample characteristics. We analysed cord blood DNAm in
newborns from two substudies in MoBa. The main study sample
consisted of 953 naturally conceived newborns from the Study of
Assisted Reproductive Technology (START), in which DNAm
was measured using the EPIC array29,30. We also used another
dataset consisting of 1062 newborns (referred to as MoBa1
hereafter) with DNAm measured using the 450k array10. GA
ranged from 216–305 days (mean 280.1 days, SD ± 10.7 days) in
START and 209–301 days (mean 279.8 days, SD ± 10.8 days) in
MoBa1. Table 1 summarizes the key demographic and clinical
characteristics of these two datasets. More MoBa1 mothers con-
tinued to smoke during pregnancy compared to START mothers

Table 1 Characteristics of the mothers and newborns in START and MoBa1.

Characteristics START n= 956 MoBa1 n= 1062 p valuea

Mothers
Age (years), mean (SD) 29.9 (4.7) 29.9 (4.3) 0.800
Smoking, n (%) 0.033
No smoking before or during pregnancy 478 (50%) 522 (49%)
Smoked, but quit before pregnancy 245 (26%) 233 (22%)
Smoked, but quit early in pregnancy 131 (14%) 154 (15%)
Continued smoking during pregnancy 102 (11%) 153 (14%)
Newborns
GA in days, mean (SD) 280.1 (10.7) 279.8 (10.8) 0.400
GA in days, min 216 209
GA in days, max 305 301
Birth weight in grams, mean (SD) 3657 (521) 3643 (539) 0.500
Sex (male), n (%) 455 (47%) 569 (54%) 0.007

SD standard deviation, GA gestational age.
aWilcoxon rank-sum test; Pearson’s Chi-squared test.
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(p= 0.033, Table 1). There were also more boys in MoBa1 than in
START (p= 0.007, Table 1).

Analyses of cell-type composition. We estimated the proportion
of each of the seven main cell types in cord blood (B-cells,
CD4+ T-cells, CD8+ T-cells, granulocytes, monocytes, natural
killer cells, and nRBCs) separately in START and MoBa1, using a
combined reference dataset consisting of cell-type specific DNAm
profiles in cord blood19 (Fig. 1 and Supplementary Data 1). As
expected from the reference data, granulocytes and nRBCs were
the two most abundant cell types in both datasets. The results of a
principal component analysis (PCA) of cell-type proportions in
START further confirmed that granulocytes and nRBCs
explained most of the variance in cell-type composition (Sup-
plementary Fig. 1 and Supplementary Table 1).

We examined the proportion of each cell type in START and
found significant correlations with GA in B-cells (Pearson
correlation r= –0.21, p= 6.30 × 10−11), CD4+ T-cells
(r=−0.10, p= 0.002), granulocytes (r= 0.20, p= 5.77 × 10−10),
and nRBCs (r=−0.08, p= 0.010; see Supplementary Fig. 2 for
more details).

Conventional EWAS of GA. First, we applied a linear mixed
effects regression model to the EPIC-derived START dataset
where the outcome was DNAm level at each CpG, the exposure
was GA, and the following were included as covariates: cell-type
proportions, newborn sex, maternal age, maternal smoking, and
batch (see Methods for details). This model is referred to as the
conventional EWAS model throughout this paper, since this
framework is routinely adopted in the majority of published
EWASs. We identified 13,660 CpGs significantly associated with
GA after applying a Bonferroni correction for multiple testing
(Bonferroni-corrected p value (pB) <0.05, Fig. 2a and Supple-
mentary Data 2). About 7639 (56%) of the GA-associated CpGs
were only present on the EPIC array and were distributed across
the genome (Supplementary Fig. 3). Most of the GA-associated
CpGs in the conventional EWAS were hypermethylated
[n= 9503 (70%), Fig. 3a].

Cell-type specific analyses of the association between DNAm
and GA. We applied CellDMC to investigate cell-type specific

DNAm in the START dataset and identified 2,330 CpGs sig-
nificantly associated with GA (pB <0.05, Fig. 2b–h). Most of these
CpGs (n= 2030, 87%) were specific for nRBCs (Fig. 2h), and only
a few of the CpGs (n= 31–157 and 1.3–6.7%) were identified in
the other cell types. Moreover, 522 of the 2330 cell-type-specific
CpGs associated with GA were also identified in the conventional
EWAS. Detailed results of the CellDMC analyses are provided in
Supplementary Data 3.

CpGs that were associated with GA in CD4+T-cells and
monocytes were predominantly hypermethylated [CD4+T-cells:
n= 67 (65%), Fig. 3c; monocytes: n= 29 (78%), Fig. 3f]. We found
an almost equal number of hyper- and hypomethylated CpGs
associated with GA in B-cells [hypermethylated n= 29 (55%);
hypomethylated n= 24 (45%); Fig. 3b] and CD8+T-cells [hyper-
methylated n= 13 (42%); hypomethylated n= 18 (58%); Fig. 3d]. In
contrast, GA-associated CpGs specific for granulocytes, natural killer
cells, and nRBCs were predominantly hypomethylated [granulocytes:
n= 97 (71%), Fig. 3e; natural killer cells: n= 97 (62%), Fig. 3g;
nRBCs: n= 1888 (93%), Fig. 3h].

Impact of the type of DNAm array: 450k versus EPIC. To
determine whether the type of DNAm array had an impact on the
cell-type specific results, given the lower coverage of regulatory
CpGs on 450k compared to EPIC, we repeated the CellDMC
analysis on MoBa1 (n= 1062 newborns) in which DNAm was
measured using 450k. The results showed a similar pattern of cell-
type specific DNAm associated with GA, despite fewer significant
CpGs overall (n= 373, pB < 0.05, Supplementary Data 4 and
Supplementary Fig. 4). Specifically, 62% (n= 231) of the
Bonferroni-significant CpGs mapped to nRBCs.

To further assess the robustness of our findings, we used the r
value approach of ref. 31 to compare the results from START and
MoBa1. This approach tests if a CpG is significantly associated in two
separate studies and then computes the corresponding false discovery
rate (FDR) value of this test, which is referred to as the r value (see
Methods for details). If the r value was <0.05, we deemed a GA–CpG
association detected in START as successfully replicated in MoBa1.
Among 1129 nRBC-specific CpGs detected in START that were also
available on the 450k array, 174 CpGs were significantly replicated in
MoBa1 (r < 0.05, Fig. 4 and Supplementary Data 5). The results were
also consistent in terms of the direction of effect, except for one CpG
(cg13746414). Importantly, there was no overlap in CpGs between
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Fig. 1 Estimated proportions of seven main cell types in cord blood. a Estimated proportions of cell types in the START dataset (n= 953, EPIC-based).
b Estimated proportions of cell types in the MoBa1 dataset (n= 1062, 450k-based). The upper and lower box limits correspond to the interquartile range
(25 to 75% of the values for each cell type) and the horizontal line in the box represents the median value. The whiskers outstretch 1.5 times the box height
from the top and bottom of the box. The dots outside the whiskers represent outliers beyond the interquartile range. The percentage below each cell type
denotes the median proportion of that cell type. Bcell B-cell, CD4T CD4+ T-cell, CD8T CD8+ T-cell, Gran granulocyte, Mono monocyte, NK natural killer
cell, nRBC nucleated red blood cell.
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Fig. 2 Manhattan plots of the epigenome-wide DNAm associated with GA in START (n= 953). a Results from the conventional EWAS where we
adjusted for the estimated cell-type proportions (see Methods for details of the statistical model). b–h Results for each of the seven cell types from the cell-
type specific analysis using CellDMC. CpG loci are aligned on the x-axis according to their genomic coordinates. The y-axis represents the −log10 p values.
The dashed black line denotes the Bonferroni-corrected genome-wide significance threshold (pB < 0.05).
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Fig. 3 Volcano plots of the epigenome-wide DNAm associated with GA in START (n= 953). a Results from the conventional EWAS in which we
adjusted for estimated cell-type proportions (see Methods for details of the statistical model). b–h Results for each of the seven cell types from the cell-
type specific analysis using CellDMC. Gray dots indicate nonsignificant associations and colored dots indicate those that are Bonferroni-significant
(pB < 0.05). Blue-colored dots show CpGs with a negative effect size and orange dots show CpGs with a positive effect size. The x-axis represents
coefficient estimates (β-values) for the DNAm–GA association, and the y-axis the corresponding -log10 p values. The horizontal dashed line denotes the
Bonferroni-corrected genome-wide significance threshold (pB < 0.05).
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START and MoBa1 for the remaining six cell types (r < 0.05,
Supplementary Fig. 5).

Validation with a different cell-type specific method. To further
validate the cell-type specific associations between DNAm and
GA, we applied TCA to the START dataset using two different
approaches. First, we applied a one-stage implementation of TCA
which runs marginal conditional tests for each cell type, analo-
gous to CellDMC. We then applied a two-stage implementation
of TCA, by first extracting the cell-type tensors additionally
adjusted for the above-mentioned covariates and then performing
separate EWAS regressions on each tensor with respect to GA.
With the one-stage approach, we identified 979 GA-associated
CpGs (pB <0.05), whereas with the two-stage approach, we
identified 4714 GA-associated CpGs (pB <0.05). Both approaches
map most of the cell-type specific significant CpGs to nRBCs
[n= 836 (85%) in the one-stage approach (Supplementary Fig. 6)
and n= 3130 (66%) in the two-stage approach (Supplementary
Fig. 7)]. For all cell types, more CpGs were statistically significant
using the two-stage approach compared to the one-stage
approach. In granulocytes specifically, 1668 CpGs were identi-
fied as significantly associated with GA, of which 829 were also
mapped to nRBCs. The results from the one-stage and two-stage
TCA analyses can be found in Supplementary Data 6 and 7,
respectively.

Among the 2030 nRBC-specific CpGs detected by CellDMC,
623 CpGs were also detected when applying the one-stage TCA
(Supplementary Fig. 8). Overall, 260 nRBC-specific CpGs were
detected by both CellDMC and the two-stage TCA approach
(Supplementary Fig. 9). The results from the one-stage TCA
analysis were also generally consistent with those of the CellDMC
analysis for the other six cell types (Supplementary Fig. 8), while
the two-stage TCA results showed more divergent associations for
the other cell types (Supplementary Fig. 9).

Location of GA-associated CpGs. We scrutinized the GA-
associated CpGs identified by the conventional EWAS and

CellDMC analyses according to their location in the genome
(Fig. 5 and Supplementary Data 2 and 3). The 2030 nRBC-
specific CpGs that were significantly associated with GA in
START were predominantly localized to gene bodies (48% of the
nRBC-specific CpGs versus 30% of all CpGs on EPIC,
p= 2.5 × 10−67, Fig. 5a), open sea (75% versus 56%,
p= 2.2 × 10−69, Fig. 5b), and CpG island shelves (8.2% versus
7.1%, p= 0.023, Fig. 5b). Markedly fewer nRBC-specific CpGs
were in promoter regions (22 versus 38%, p= 2.8 ×10−55,
Fig. 5a), shores (12 versus 18%, p= 1.0 × 10−12, Fig. 5b), and
CpG islands (4.7% versus 19%, p= 5.3 × 10−77, Fig. 5b). We
discovered a similar pattern of CpG localization in the nRBC-
specific MoBa1 results. The corresponding patterns for the other
cell types showed more variation between the two datasets
(Supplementary Fig. 10), which may be due to a substantially
lower number of CpGs in each category.

Gene annotation and enrichment analysis of nRBC-specific
CpGs associated with GA. We used the online Genomic Regions
Enrichment of Annotations Tool (GREAT)32 to examine whether
the 2030 GA-associated CpGs for nRBC were located near or
within any gene of known pathway annotation. 2836 genes were
identified using this approach (Supplementary Data 8), 198 of
which were associated with more than three differentially
methylated CpGs. A foreground/background hypergeometric test
was performed on the 2030 GA-associated nRBC-specific CpGs.
The results of this test revealed four clusters of Gene Ontology
(GO) biological processes significantly enriched in our data
(Supplementary Data 9). These processes were related to (i)
response to corticosteroid (75 CpGs/55 genes, pB= 0.0001), (ii)
response to purine-containing compound (65 CpGs/45 genes,
pB= 0.002), (iii) granulocyte migration (34 CpGs/23 genes,
pB= 0.006), and (iv) stress-activated protein kinase signaling
cascade (58 CpGs/32 genes, pB= 0.01). When the analyses were
restricted to only those CpGs that are present on both 450k and
EPIC, we did not find any significantly enriched biological
pathways.

Discussion
Although epigenome-wide associations between GA and DNAm
in cord blood are now well established, little is known about the
contribution of different cell types and the biological mechanisms
underlying these associations. In this study, we explored the
association between GA and DNAm using data from two types of
DNAm arrays (EPIC and 450k) and conducted both a conven-
tional EWAS as well an investigation of cell-type specific asso-
ciations. We found that most of the cell-type-specific associations
between DNAm and GA were restricted to nRBCs. These results
were robust across different datasets, DNAm arrays, and analysis
methods. Our results point to a strong link between red blood cell
development (erythropoiesis) in fetal life and fetal growth as
measured by GA, providing critical insights and implications for
further studies on the relationship between DNAm and GA.

In the conventional EWAS, we identified 13,660 CpGs linked
to 8669 genes as being differentially methylated with GA. Slightly
more of the significant CpGs were specific for the EPIC array
(56%), despite only 48% of the CpGs being EPIC-specific. Bohlin
et al.10 previously applied a similar model to the MoBa1 dataset
and identified 5474 CpGs associated with GA. 2556 of the CpGs
and 1741 of the genes identified in that study overlap with our
results in the START EPIC-based dataset. We also compared our
results to the “all births model” from a recent meta-analysis by
Merid et al.5 where the authors investigated GA and DNAm
measured on 450k in cord-blood DNA from 6885 newborns in 20
different cohorts. The authors identified 17,095 CpGs

Fig. 4 Comparison of nRBC-specific CpGs associated with GA in the
EPIC-based START dataset (n= 953) and the 450k-based MoBa1
dataset (n= 1062). Gray dots indicate nonsignificant CpGs, blue dots
CpGs significantly associated only in MoBa1 (pB < 0.05), green dots CpGs
significantly associated only in START (pB < 0.05), and orange dots CpGs
significantly associated in both datasets (r < 0.05). Black isolines indicate
the density of the points, increasing towards the crossing point of the axes.
The x and y axes represent z-scores (i.e., the coefficient estimate divided by
the standard error) for START and MoBa1, respectively.
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significantly associated with GA, of which 4688 CpGs and 4437
genes overlap with our results. Of note, MoBa1 and yet another
MoBa-based dataset (MoBa2) were also included in the meta-
analysis by Merid et al. Nevertheless, these comparisons show
that the results from our conventional EWAS model are con-
cordant with those of previous studies on DNAm and GA.

As a primary step to explore cell-type specific changes in
DNAm with GA, we used the interaction-based algorithm
CellDMC that has been validated in several EWAS datasets and
data in which the actual cell-type composition is known24,33,34.
We identified 2330 differentially methylated CpGs associated
with GA, with an overwhelming number of the significant CpGs
confined to nRBCs (2030 CpGs linked to 2836 genes). This is
particularly striking given that nRBCs are not the dominant cell
type in terms of variation and abundance. Taken together, these
findings strongly suggest that DNAm changes in nRBCs are
responsible for the observed DNAm–GA association.

It is nevertheless important to account for the limited sensi-
tivity of CellDMC when including seven different cell types in the
analysis33. To assess this limited sensitivity and verify that the
nRBC-specific results were not an array-based artifact, we repe-
ated the CellDMC analyses in MoBa1, which is a 450k-based
dataset stemming from the same source population as the START
dataset (MoBa). We observed a similar pattern of cell-type-
specific association with GA as with the START dataset, although
there were fewer significant CpGs in the MoBa1 dataset. More-
over, 174 nRBC-specific CpGs were significantly associated with
GA in both datasets, as opposed to no such overlap in CpGs
across the other six cell types. One option to further increase the
power of the CellDMC analysis would have been to merge the
two datasets over the common set of 450k CpGs. Even though
this would have increased the sample size substantially, such an
approach has several major drawbacks. First, one would lose the
much greater coverage of the EPIC array and possibly miss
important associations between GA and CpGs that are only
detectable using EPIC-derived DNAm data. Second, merging the
datasets would introduce a new batch variable that would need to
be accounted for in the model. We thus opted to keep the ana-
lyses of the two datasets separate.

To further validate our results, we applied another method for
cell-type specific analysis, TCA, to the START data. TCA utilizes

a statistical framework based on matrix factorization23. The
results from both the one-stage and two-stage applications of
TCA showed a similar pattern of cell-type specific association
with GA as observed with CellDMC. Our findings are also con-
sistent with a previous study on nRBCs pointing to extensive
DNAm changes in nRBCs between preterm and term
newborns35. In that study, the authors identified 9258 differen-
tially methylated sites when comparing nRBCs from preterm and
term newborns. These sites were predominantly hypomethylated
and enriched in gene body and intergenic regions35. Taken
together, these results strengthen the interpretation that nRBCs
are the primary cell type driving the association between DNAm
and GA in cord blood.

nRBCs are an integral part of erythropoiesis, the process by
which mature red blood cells (erythrocytes) are produced in adult
and fetal bone marrow, fetal liver, and the embryonic yolk sac.
Erythropoiesis is crucial for embryonic and fetal growth. During
the third trimester of pregnancy, the production of erythrocytes is
approximately three to five times that of the adult steady-state
levels36. Although nRBCs circulate in the fetal bloodstream
throughout pregnancy, they stay in circulation for only a few days
after birth37. Several genes annotated to the nRBC-specific CpGs
that we found to be associated with GA are implicated in a wide
array of biological processes involved in erythropoiesis. A subset
of the genes related to these processes are described in more detail
in Supplementary Data 10. Briefly, these processes include cell-
cycle progression and cytokinesis38,39, chromatin
condensation39,40, hemoglobin synthesis38, mitochondrial func-
tion and iron metabolism38,41,42, degradation of proteins and
organelles34,43, erythroblastic island formation44, and
enucleation39,40. Moreover, several of the genes are essential for
the switch from fetal to adult hemoglobin, which occurs shortly
after birth45. Taken together, our findings provide strong support
for fetal erythropoiesis representing an important biological
mechanism underlying the association between DNAm and GA.

To learn more about the mechanisms contributing to the
nRBC-specific association between DNAm and GA, we searched
for the enrichment of specific biological pathways in the set of
nRBC-specific CpGs. One of the main clusters of biological
pathways was the response to corticosteroids, and more specifi-
cally, the response to glucocorticoids. Glucocorticoids are a class
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Fig. 5 Position enrichment results of CpGs associated with GA compared to all CpGs on the EPIC array. Position enrichment results of all the CpGs on
the EPIC array (n= 770,586; denoted as EPIC on the x-axis), those specifically associated with GA in the conventional EWAS (n= 13,660; EWAS), and
each cell type in the CellDMC analyses in START (Bcell, n= 53; CD4T, n= 103; CD8T, n= 31; Gran, n= 136; Mono, n= 37; NK, n= 157; nRBC, n= 2030).
a The proportion of CpGs in the promoter (orange), gene body (yellow), and intergenic (blue) regions. b The proportion of CpGs in CpG islands (orange),
shores (green), shelves (yellow), and open sea (blue). Bcell B-cell, CD4T CD4+ T-cell, CD8T CD8+ T-cell, Gran granulocyte, Mono monocyte, NK natural
killer cell, nRBC nucleated red blood cell.
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of corticosteroids that are essential for a wide variety of biological
processes, including proliferation, differentiation, and apoptosis
of many cell types in response to stress. They also play a pivotal
role in pregnancy and normal fetal development46, even though
prenatal overexposure to glucocorticoids has also been reported
to be detrimental to fetal growth and postnatal physiology47,48.
Glucocorticoids are known regulators of erythroid
progenitors49,50, and the glucocorticoid receptor encoded by
NR3C1 controls several processes involved in erythropoiesis51–53.
In particular, the glucocorticoid receptor controls erythroid
response to stress54–56. Stress, such as hypoxia, leads to the glu-
cocorticoid receptor-dependent activation of the BMP4-depen-
dent stress erythropoiesis pathway, in which many new
erythrocytes are generated to maintain homeostasis57. Interest-
ingly, stress erythropoiesis shares several similarities with fetal
erythropoiesis58.

The link between erythropoiesis and GA is not unprecedented.
Several of the genes found to be relevant for erythropoiesis in our
data have previously been identified in other studies of GA. A few
examples include NCOR25,10,59,60, HDAC45,10,60, CASP85,10,60,61,
and RAPGEF25,60,62. The nuclear receptor co-repressor encoded
by NCOR2 interacts with the transcription factor BCL11A in
regulating the expression of fetal hemoglobin63. NCOR2 also
promotes chromatin condensation, which is a crucial step during
terminal erythropoiesis. Histone deacetylase 4 (HDAC4) also
plays a key role in chromatin condensation and associates directly
with the key erythroid transcription factor GATA164. CASP8
encodes the protease Caspase 8, which is a key activator of
effector caspases required for terminal erythroid differentiation65.
Finally, RAPGEF2 encodes a guanine nucleotide exchange factor
known to play an important role in embryonic hematopoiesis66.

The results of our study, as well as those of others described
above, strongly suggest that DNAm patterns related to ery-
thropoiesis are at least partly responsible for the observed asso-
ciation between DNAm and GA. Our findings of predominantly
hypomethylated nRBC-specific CpGs are in line with previous
studies showing progressive global DNA hypomethylation
involved in erythroid lineage commitment and differentiation as
well as chromatin condensation and enucleation of nRBCs during
erythropoiesis67,68. Other studies have consistently shown a
higher proportion of hypomethylated CpGs amongst those
associated with GA5,10,59,61.

Further, the findings that nRBCs are the primary drivers
behind the association between DNAm and GA may help explain
the poor correlation observed between epigenetic clocks for
newborn GA and those for chronological age in adults10,11.
Indeed, GA-related changes in cord blood DNAm do not persist
through childhood and adolescence, as shown in a longitudinal
analysis of DNAm associated with GA59 and a meta-analysis of
several EWASs of GA5. This could be due to the rapid loss of
nRBCs with increasing GA and its subsequent disappearance
from the bloodstream of healthy newborns within the first few
days after birth. In other words, the disappearance of nRBCs
shortly after birth implies that the main driver behind the GA-
related changes in cord blood DNAm also disappears. Moreover,
the association between GA and specific DNAm changes in
nRBCs, as demonstrated by our study, may also help explain why
GA acceleration (GAA, defined as the discrepancy between GA
predicted from DNAm data and GA determined by clinical
measurements) has been linked to several adverse
outcomes11,69,70. In this regard, it is interesting to note that
increased nRBC counts at birth are associated with a higher risk
of mortality and adverse neonatal outcomes and have been sug-
gested as a predictive marker for perinatal hypoxia, intrauterine
growth restriction, and preeclampsia71–75. Further studies are
needed to determine if GAA is indeed related to these or other

adverse outcomes, and if differences in nRBCs may be driving
these associations.

The results of our study may have important clinical impli-
cations. For instance, fetal nRBCs are routinely isolated from the
mother’s peripheral blood during pregnancy for prenatal diag-
nostics, and several experimental approaches are available for the
rapid isolation of nRBCs76,77. Our findings may help pave the
way for the development of DNAm-based GA prediction during
pregnancy based on nRBC-specific assays, which may provide a
more targeted assessment of fetal growth and prenatal
development.

One important limitation of our study is the use of in silico
estimations of cell-type proportions. Although we have used a
reference-based method with validated cord blood-specific
reference data, it is important to bear in mind that the propor-
tions we have used here are only estimates. In addition, since the
cell-type proportions are essentially fractions that sum up to one,
they are not independent of each other, and the correlation
between them may impact our analyses. However, since our
results were robust despite the use of different DNAm arrays,
datasets, and methods, our findings are unlikely to be severely
affected by these limitations.

In conclusion, the results of our study strongly indicate that
nRBCs are the primary drivers behind the observed DNAm–GA
association. Importantly, an epigenetic signature of erythropoiesis
seems to be partly responsible for this association, providing a
biologically compelling mechanism that links GA, DNAm, and
nRBCs. Furthermore, our findings provide an explanation for the
poor correlation observed between epigenetic clocks for newborn
GA and those for chronological age in adults, contributing
important mechanistic insights into the epigenetic regulation of
fetal growth and development.

Methods
Study population. MoBa is a population-based pregnancy cohort study in which
~114,500 newborns, 95,200 mothers, and 75,200 fathers were recruited from all
over Norway from 1999 to 200828. The mothers consented to participation in 41%
of the pregnancies. The study participants have been followed at different time
points via self-administered questionnaires and linkage to the Medical Birth Reg-
istry of Norway (MBRN). Further details on MoBa have been provided in our
previous publications28,78.

For this study specifically, we used two non-overlapping subsamples: (i) the
Study of Assisted Reproductive Technology (START; n= 953 newborns) and (ii)
MoBa1 (n= 1062 newborns). Both datasets are based on cord blood samples from
the same source population (MoBa). However, they differ in the methylation array
used to generate the DNAm data: START used EPIC whereas MoBa1 used 450k
(see below for details). An overview of the sample selection and analysis flow is
provided in Supplementary Fig. 11. Detailed characteristics and eligibility criteria
for the START and MoBa1 datasets have been provided in our previous work29,79.

Sample processing, DNAm measurement, and quality control. The sample
processing, DNAm measurement, and quality control pipeline used for data
cleaning have been extensively detailed in our previous works29,79. Briefly, cord
blood samples taken by a midwife immediately after birth were frozen. For the
START dataset, DNAm was measured at 885,000 CpG sites using the Illumina
Infinium MethylationEPIC BeadChip (Illumina, San Diego, USA). The raw iDAT
files were processed in four batches using the R package RnBeads80. Cross-
hybridizing probes81 and probes that had a detection p value above 0.01 were
removed using the greedycut algorithm in RnBeads. We also excluded probes in
which the last three bases overlapped with a single-nucleotide polymorphism
(SNP). The remaining DNAm signal was processed using BMIQ82 to normalize the
type I and type II probe chemistries83. The RnBeads output of control probes were
visually inspected for all samples, and those with low overall signals were removed.
The greedycut algorithm was used to remove outliers with markedly different
DNAm signals than the rest of the samples, resulting in the removal of 58 samples
in total. For consistency, CpG sites excluded from one batch due to poor quality
and low detection p value were also removed from all subsequent batches.

For the MoBa1 samples, DNAm was measured at 485,577 CpG sites using the
Illumina Infinium HumanMethylation450 BeadChip (Illumina, San Diego, USA).
Arrays not fulfilling the 5% detection p value were removed together with all
duplicates. Within-array normalization was carried out using BMIQ from the
wateRmelon R package84.
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Variables. Information on GA, newborn sex and birth weight, maternal age,
parity, and whether the birth was induced was extracted from MBRN. GA at birth
was estimated by ultrasound measurements around week 18 of pregnancy. Since
newborn sex may occasionally be incorrectly recorded in MBRN, we inferred sex
from the DNAm data. As a result, one female was reclassified as male, and five
males were reclassified as females. Information on maternal smoking was derived
from the MoBa questionnaires and was included as a four-level categorical variable:
(i) no smoking before or during pregnancy; (ii) smoked, but quit before pregnancy;
(iii) smoked, but quit early in pregnancy; and (iv) continued smoking during
pregnancy.

Estimation of cell-type proportions. To estimate cell-type proportions in our
samples, we used the filtered and combined reference dataset “FlowSorted.Cord-
BloodCombined.450 k” from ref. 19, which specifies seven main cell types in cord
blood (B-cells, CD4+ T-cells, CD8+ T-cells, granulocytes, monocytes, natural
killer cells, and nRBCs). We used the estimateCellCounts2 function in the
FlowSorted.Blood.EPIC R package85 and the IDentifying Optimal Libraries (IDOL)
probe selection to perform cellular deconvolution and noob preprocessing.

Statistics and reproducibility. After quality control, the sample available for the
current analyses in the START dataset consisted of 770,586 autosomal CpGs and
953 newborns conceived naturally and for whom we had information on
ultrasound-based GA (Supplementary Fig. 9). For the MoBa1 dataset, the sample
available for the current analyses comprised 473,731 autosomal CpGs and 1062
newborns with information on ultrasound-based GA (Supplementary Fig. 9).

Principal component analysis (PCA) of estimated cell-type proportions was
conducted using the prcomp R function. The R package robustbase86 for MM-type
robust regression was used to assess the relationship between cell-type composition
and GA. Bonferroni correction was applied to the results from the conventional
EWAS and cell-type-specific models to control for multiple testing. A Bonferroni p
value (pB) <0.05 was declared statistically significant.

Analyses in START. In the conventional EWAS model, we screened for asso-
ciations between DNAm in cord blood and GA at birth by applying a linear mixed-
effect model to each of the 770,586 CpG sites remaining after quality control. The
β-values of the individual CpGs were used as the response (dependent) variables
and GA was used as the explanatory (independent) variable, with adjustments
made for newborn sex, maternal age, maternal smoking, cell-type proportions, and
array plate in the regression model.

To assess interactions between cell-type specific DNAm and GA, we performed
epigenome-wide analyses using the CellDMC framework as outlined in ref. 24 and
the corresponding CellDMC function in the EpiDISH R package. Briefly,
CellDMC runs a linear model similar to that used in our conventional EWAS, but
it also includes an interaction term to inform the model whether there is a
significant interaction between the exposure and the corresponding fraction of each
specific cell type. Estimates of the regression coefficients and p values are calculated
for each cell type using least squares. As with the conventional EWAS, newborn
sex, maternal age, maternal smoking, and plate were also included as covariates in
the CellDMC model. Bonferroni correction was applied to all the results from the
conventional EWAS and CellDMC models to control for multiple testing. As
before, a Bonferroni p value (pB) <0.05 was declared statistically significant.

Besides CellDMC, we also applied the TCA framework developed by ref. 23 to
detect cell-type specific DNAm–GA associations. In contrast to CellDMC, TCA is
based on the concept of matrix factorization. Specifically, TCA uses the DNAm
measurements from the mixed samples along with information on cell-type
proportions (in our case, the ones that are estimated) for each individual and
calculates a three-dimensional tensor of DNAm values for each cell type in each
individual. The TCA framework further allows a search for statistical associations
between cell-type specific signals and an outcome or exposure of interest. We used
two different approaches for TCA based on the available functions in the TCA
package23. First, we applied a one-stage approach using the tca function, which
fits a model for all cell types jointly and tests the effect of each cell type separately
for statistical significance. We included the same covariates in the TCA model as in
the CellDMC and conventional EWAS models (newborn sex, maternal age,
maternal smoking, and array plate). Additionally, we applied a two-stage approach,
where a tensor for each cell type is first inferred and then an EWAS of GA is
conducted for each tensor. This was carried out by first using the tca function to
fit a model including all covariates mentioned above except GA. The model
resulting from the tca function was subsequently added as input for the tensor
function, obtaining new DNAm tensors for each cell type. An EWAS of GA was
then performed for each cell-type-specific tensor.

Analyses in MoBa1. To test whether array type had an impact on the findings
obtained from the analysis of the EPIC-based START dataset, we re-ran the
CellDMC analysis on the 450k-based MoBa1 dataset, testing all the 473,731 CpGs
available in this dataset.

To compare the CellDMC results from MoBa1 with those from START, we
applied the r value approach suggested by ref. 31, which allows a rigorous
assessment of the replication of findings. In short, we tested each CpG for

association with GA in both datasets (MoBa1 and START) and computed an r
value (the lowest FDR level at which the finding was replicated). We chose the r
value approach over other approaches, such as those used in a standard meta-
analysis or a two-step replication study, for the following reasons. First, a meta-
analysis tests whether there is any signal across the two studies; however, it does
not test whether the two studies show appropriate significance. Second, assessing
replicability in a two-step replication study is not straightforward, as this requires
adequate control of the type I error in both studies. This may involve a different
number of tests, especially as we use two types of DNAm arrays (EPIC and 450k).
Thus, the approach of ref. 31 provides a simpler solution for assessing replicability
and for controlling the type I error.

Location of CpGs. Information on CpG location and regulatory regions was
extracted from the respective Illumina Manifest Files (Infinium MethylationEPIC
v1.0 B4 for START and HumanMethylation450 v1.2 for MoBa1). One-tailed
hypergeometric tests were conducted to assess the relative enrichment of CpGs in
specific regions of interest.

Gene annotation and enrichment analysis. CpGs were annotated using the
online Genomic Regions Enrichment of Annotations Tool (GREAT32) using the
human genome build hg19 (GRCh37). GREAT was selected amongst other com-
peting methods because it considers both proximal (5.0 kb upstream and 1.0 kb
downstream) and distal (up to 1000 kb) regulatory regions. This is an advantage
over other methods that only take proximal regions into account, because taking
distal regulatory regions into account enables an assessment of the extra infor-
mation gained from detecting DNAm on distal regulatory CpGs on the EPIC array.
For gene enrichment analysis, GREAT performed a foreground/background
hypergeometric test over genomic regions using the total number of CpGs sur-
viving quality control as background (770,586 CpGs for the EPIC analyses and
473,731 CpGs for the 450k analyses). Finally, GREAT extracts information from
Gene Ontology (GO) and other ontologies covering human and mouse
phenotypes32.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Access to the START and MoBa1 DNAm datasets can be obtained by applying to the
Norwegian Institute of Public Health (NIPH). Restrictions apply regarding the
availability of these data, which were originally used under specific approvals for the
current study and are therefore not publicly available. Access can only be given after
approval by the Norwegian Regional Committees for Medical and Health Research
Ethics (REK) under the provision that the applications are consistent with the consent
provided. An application form can be found on the NIPH website at https://www.fhi.no/
en/studies/moba/. Specific questions regarding access to data in this study can also be
directed to Dr. Siri E. Håberg (Siri.Haberg@fhi.no). The data generated in this study are
provided as Supplementary Data.

Code availability
All statistical analyses were performed using R version 4.1.287. R scripts are available
from the authors upon request.
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