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Abstract

Infertility is a heterogeneous phenotype, and for many couples, the causes of

fertility problems remain unknown. One understudied hypothesis is that allelic

interactions between the genotypes of the two parents may influence the risk of

infertility. Our aim was, therefore, to investigate how allelic interactions can be

modeled using parental genotype data linked to 15,789 pregnancies selected from

the Norwegian Mother, Father, and Child Cohort Study. The newborns in 1304 of

these pregnancies were conceived using assisted reproductive technologies (ART),

and the remainder were conceived naturally. Treating the use of ART as a proxy for

infertility, different parameterizations were implemented in a genome‐wide screen
for interaction effects between maternal and paternal alleles at the same locus.

Some of the models were more similar in the way they were parameterized, and

some produced similar results when implemented on a genome‐wide scale. The

results showed near‐significant interaction effects in genes relevant to the

phenotype under study, such as Dynein axonemal heavy chain 17 (DNAH17)

with a recognized role in male infertility. More generally, the interaction models

presented here are readily adaptable to the study of other phenotypes in which

maternal and paternal allelic interactions are likely to be involved.
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1 | INTRODUCTION

An estimated 10% of couples are affected by infertility
worldwide (Boivin et al., 2007). Infertility is often defined
as the inability to conceive after having tried for at least a
year (Zegers‐Hochschild et al., 2017). The use of assisted
reproductive technologies (ARTs) as fertility treatment has
increased steadily in many parts of the world over the last
couple of decades (Chambers et al., 2021;Wyns et al., 2022).
This may be related to a growing number of couples
choosing to postpone childbearing to a later age, which has
been reported to negatively impact reproductive success
(Balasch & Gratacós, 2012; Leridon & Slama, 2008).
Although the ability to conceive decreases with parental
age, a proportion of the couples who choose to postpone
childbearing may have underlying causes of infertility that
could undermine their ability to conceive naturally when
they later try to become pregnant.

There are several recognized causes of infertility, such
as sperm dysfunction and endometriosis. Additionally,
environmental and lifestyle factors may also contribute to
an increased risk of infertility through various pathways.
Featuring prominently among these are cigarette smoking
(National Center for Chronic Disease Prevention and
Health Promotion (US) Office on Smoking and
Health, 2014; Rockhill et al., 2019; Waylen et al., 2008),
maternal alcohol consumption (Klonoff‐Cohen et al., 2003;
Nicolau et al., 2014; Rossi et al., 2011), and stress (Prasad
et al., 2016). A handful of studies have also been published
on genetic factors associated with male and female fertility.
For example, a large meta‐analysis utilizing different
surrogates for fertility in women and men (age at first
birth and number of children ever born) identified 12 loci
strongly associated with fertility (Barban et al., 2016). In
addition, Aston et al. (Aston, 2014) provided a comprehen-
sive review of genome‐wide studies focusing on the genetic
causes of male infertility, including those underlying
severe spermatogenic impairments, while other studies
have investigated genetic factors related to sperm function
specifically (Kosova et al., 2012; Kyrgiafini et al., 2020; Sato
et al., 2018). Regarding female reproductive aging, several
genes were found to be associated with age at menarche
(Ong et al., 2009; Perry et al., 2009; Sulem et al., 2009) and
menopause (van Asselt et al., 2004; Stolk et al., 2009).
Laisk‐Podar et al. (2015) reported on several single‐
nucleotide polymorphisms (SNPs) that were associated
with ovarian function and outcomes of ovarian stimula-
tion, while Mandon‐Pépin et al. (2008) investigated the role
of four meiotic genes in premature ovarian failure.

In around 30% of infertile couples, the cause of
infertility is unclear and cannot be explained by
commonly used diagnostic tests (Smith et al., 2003).
When known individual causes cannot be identified,

infertility can be regarded as a phenotype affecting the
couple as a unit. One hypothesis is that susceptibility
alleles in both parents might jointly influence the risk of
infertility in the couple; that is, the effect of the maternal
genotype on infertility depends on the paternal genotype,
and vice versa. This can be regarded as a type of
gene–gene interaction effect which, in general, can be
defined as a departure from the additive effects of the
maternal and paternal genotypes. Although this type of
gene–gene interaction is largely understudied, other
types of gene–gene interactions have been more thor-
oughly investigated. For example, Cordell suggested
methods for the analysis of epistasis (Cordell, 2002, 2009).
Sinsheimer et al. (2003) investigated combinations of
alleles at the same locus in mother–child dyads and
developed a maternal–fetal genotype incompatibility test
using a log‐linear modeling approach to case–parent
triads. Methods for investigating maternal–fetal genetic
interaction effects have also been described by Ainsworth
et al. (2011).

With a broader perspective on disease models that
involve two loci, Li and Reich systematically described all
two‐locus penetrance models assuming two possible alleles
at each locus (Li & Reich, 2000). Given two diallelic loci
(nine possible genotypes), the parameterization of a binary
phenotype yields 2 = 5129 different models. Some of these
models are zero‐locus or single‐locus models, while others
are redundant under certain permutations. Among the
remaining nonredundant two‐locus models, some have a
more intuitive biological interpretation than others.
Moreover, some of these models can readily be parameter-
ized according to the definition of gene–gene interaction,
whereas others are more conveniently parameterized using
variables that code for specific combinations of the
mother's and father's genotypes. Li and Reich (2000)
classified all the nonredundant two‐locus models by
grouping them according to similar properties when
feasible, and also provided examples of types of studies
where the different models could be relevant. We here aim
to investigate which of these models is more reasonable to
consider in a search for allelic interactions between
mother–father pairs specifically. We conducted genome‐
wide scans for such interaction effects using different
parameterization schemes inspired by the models pre-
sented by Li and Reich (2000), in addition to exploring the
classic dose–response model. We used a case–control study
design, treating the parental couple as the analytic unit
under study, and present a detailed account of how these
models can be implemented precisely and efficiently as
mixed‐effects models using logistic regression. Finally, we
also provide interpretations of the models and compare
them to each other, both with regard to implementation
and results.
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2 | STATISTICAL MODELS FOR
SINGLE ‐VARIANT ANALYSIS

We studied mother–father pairs linked via their common
pregnancies, and classified them as cases or controls
depending on whether or not they used ART to conceive
(see Figure 1). Further, we modeled interactions between
maternal and paternal alleles at the same locus across
the genome. Consider a diallelic SNP with major allele A
and minor allele a. The role of “reference” or “effect”
allele can be assigned to either A and a. The number of
effect alleles at a specific locus defines the dosage of the
SNP, that is, the maternal/paternal dose at a given locus
is either 0, 1 (single‐dose), or 2 (double‐dose). An
interaction effect would be apparent if the effect of the
maternal dose on the couple's infertility depends on

the paternal dose (and vice versa). Table 1a shows the
complete parameterization of the maternal/paternal
SNP‐wise interaction model with no constraints imposed
on the parameters. Here, xm and xf represent the
maternal and paternal genotype, respectively, α is the
baseline effect of the mother and father carrying no effect
alleles (0–0 parental dose combination), M F M F, , ,1 1 2 2 are
the effect parameters of the mother/father carrying 1 or 2
effect alleles, and γij is the effect of the interaction
between the mother and the father carrying i and j effect
alleles, respectively.

2.1 | The multiplicative dose–response
model

Table 1a displays nine distinct parameters to be estimated.
Assuming a multiplicative dose–response (mdr) effect,
where a double‐dose effect is equal to the square of the
single‐dose effect, the number of parameters can be
reduced as shown in Table 1b. With ART use as a
dichotomous outcome (yes/no), we can apply a logistic
regression model for the probability p of ART use. A two‐
locus mdr logistic model with an interaction term is given
by







p

p
β β x β x β x xlog

1 −
= + + + ,m m f f mf m f0 (1)

FIGURE 1 The case–control study design to assess parental
allelic interaction effects. Here, a “case” is defined as a couple
(mother–father, mf) who used ART to conceive (black shapes), and a
“control” is defined as a couple who conceived naturally (white
shapes). The mother is represented by a circle; the father by a square.
The genotype of the couple's child is not included in the current
genetic analyses, but the child's conception status is used to
categorize the couple as belonging to a case or control group.

TABLE 1 Parameterization of (a) the full interaction model
and (b) the multiplicative dose‐response (mdr) model.

(a)

xf

0 1 2

0 α αF1 αF2

xm 1 αM1 αM F γ1 1 11 αM F γ1 2 12

2 αM2 αM F γ2 1 21 αM F γ2 2 22

(b)

xf

0 1 2

0 α αF αF 2

xm 1 αM αMFγ αMF γ2 2

2 αM2 αM Fγ2 2 αM F γ2 2 4

where the log odds is modeled as a linear function
with intercept β0 and regression coefficients β β,m f ,
and βmf .

Using the above parameterization, the definition of
which allele is the reference or effect allele is arbitrary
when estimating the interaction effect. If we switch
between reference and effect allele, we can re‐
parameterize the model using x x˜ = 2 −m m and
x x˜ = 2 −f f , and the model in (1) can be expressed as







p

p
β β x β x β

x x

β β β β

β β x β β x

β x x

β β x β x β x x

log
1 −

= + (2 − ˜ ) + (2 − ˜ ) +

(2 − ˜ )(2 − ˜ )

= ( + 2 + 2 + 4 )

− ( + 2 ) ˜ − ( + 2 ) ˜

+ ˜ ˜

= ˜ + ˜ ˜ + ˜ ˜ + ˜ ˜ ˜ ,

m m f f mf

m f

m f mf

m mf m f mf f

mf m f

m m f f mf m f

0

0

0

with β β β β β β β β β˜ = + 2 + 2 + 4 , ˜ = − − 2 , ˜ =m f mf m m mf f0 0

β β− − 2f mf , and β β˜ =mf mf . Thus, for the mdr model,
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defining A or a as the reference allele does not change
the effect size of the interaction.

2.2 | The jointly dominant‐dominant
model and the jointly recessive‐recessive
model

The jointly dominant‐dominant (jdd) model describes
the situation where the risk of expressing the pheno-
type changes if there is at least one copy of the effect
allele in both parents. We assume that there is no
difference in effect between a single and double dose of
the effect allele (which contrasts with the mdr model).
Analogously, in the jointly recessive‐recessive (jrr)
model, we assume that the presence of two copies of
the effect allele in both parents influences the risk of
the phenotype being expressed; here, we do not expect
a difference in effect between a null and a single
dose of the effect allele. Table 2a and 2b show the
parameterizations of these two models. For the jdd and
jrr models, the maternal and paternal genotypes (xm
and xf , respectively) are expressed as binary variables
(Table 3).

Although the choice of reference allele is not
arbitrary in the jdd and jrr models, the two models
with opposite choices of reference and effect alleles
produce equivalent interaction effect estimates. Let x m1

and x m2 be dummy variables for the first and second
allele of the mother, that is, x = 0m1 or 1 if the first
allele is A or a, respectively, and likewise for x m2 . As
already mentioned, the order of the alleles is arbitrary.
Let x f1 and x f2 be defined similarly for the alleles of the
father. Note that

x x x x x
x x x x x
= + − ,
= + − ,

m m m m m

f f f f f

1 2 1 2

1 2 1 2

that is, xm is 0 for the maternal genotype AA and 1
otherwise, and similarly for xf . Thus, a dominant model
can be considered as having a fixed negative interaction
between the two alleles. Let x x i˜ = 1 − , = 1, 2im im , and
similarly for x̃if , be the dummy variables with opposite
reference, that is, with a as reference allele and A as effect
allele. Defining x x˜ = 1 −m m results in x x x˜ = ˜ ˜m m m1 2 , which
is still an interaction between the two alleles, but this time
positive and corresponding to a recessive model with a as
reference allele. In simpler terms, xm codes AA Aa aa, , as
0, 1, 1, whereas x̃m codes AA Aa aa, , as 1, 0, 0.

The jdd model can be written equivalently to the mdr
model in (1), where βmf measures the interaction effect,

that is, how much the risk of ART use deviates from what
would be expected from a (logit‐)additive combination of
dominant main effects in the mother and the father. If we
switch between the reference and effect allele in both
parents in (1), we obtain

TABLE 2 Parameterization of models as described by Li and
Reich (2000).

(a) Jointly dominant‐dominant model

xf

0 1 2

0 0 0 0

xm 1 0 1 1

2 0 1 1

(b) Jointly recessive‐recessive model

xf

0 1 2

0 0 0 0

xm 1 0 0 0

2 0 0 1

(c) Threshold model with k= 2

xf

0 1 2

0 0 0 1

xm 1 0 1 1

2 1 1 1

(d) Threshold model with k= 3

xf

0 1 2

0 0 0 0

xm 1 0 0 1

2 0 1 1

(e) Complementary model

xf

0 1 2

0 0 0 1

xm 1 0 0 0

2 1 0 0
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TABLE 3 The most significant SNPs as identified in at least one of the models.

Modela SNP Gene Chr A1b MAF OR (95% CI) p Valuec

mdr rs12749926 1 t 0.290 0.68 (0.58, 0.80) 1.85e−06

mdr rs35116709 1 a 0.147 1.74 (1.38, 2.20) 3.70e−06

mdr rs12068519 1 g 0.290 0.69 (0.59, 0.81) 3.84e−06

jdd (mdr) rs7595213 SLC8A1 2 t 0.169 0.43 (0.31, 0.58) 6.62e−08

jdd (mdr) rs9458273 PRKN 6 g 0.225 1.91 (1.47, 2.48) 1.14e−06

jdd rs1511189 CTNNA2 2 g 0.458 0.45 (0.32, 0.62) 1.24e−06

jdd rs5769008 GRAMD4 22 g 0.357 0.53 (0.40, 0.68) 1.36e−06

jdd rs28709384 4 g 0.306 1.85 (1.43, 2.38) 2.02e−06

jdd rs6048699 20 t 0.292 1.84 (1.43, 2.37) 2.07e−06

jdd rs7590554 SLC8A1 2 g 0.176 0.49 (0.36, 0.66) 2.97e−06

jdd rs61741523 DNAH17 17 c 0.166 1.98 (1.48, 2.65) 3.61e−06

jdd rs10830104 10 a 0.230 1.85 (1.43, 2.41) 3.64e−06

jdd rs1030056 12 c 0.475 0.45 (0.32, 0.63) 3.79e−06

th2 (jdd) rs117676661 WDR11‐AS1 10 g 0.056 3.92 (2.32, 6.62) 3.07e−07

th2 (jdd) rs71563087 LOC105377865 6 a 0.135 2.34 (1.68, 3.26) 5.58e−07

th2 (jdd) rs77350860 LINC01250 2 a 0.017 26.84 (7.27, 99.04) 7.87e−07

th2 (jdd) rs9448278 LOC105377865 6 a 0.136 2.31 (1.66, 3.22) 8.09e−07

th2 rs10165666 LINC01818 2 c 0.055 3.89 (2.21, 6.84) 2.45e−06

th2 rs77163843 15 g 0.047 4.45 (2.38, 8.35) 3.16e−06

th2 rs6775526 3 c 0.145 2.16 (1.56, 2.98) 3.17e−06

th2 (jdd) rs140258428 LINC01250 2 t 0.018 18.52 (5.42, 63.28) 3.23e−06

th2 rs72659743 1 a 0.177 1.98 (1.48, 2.65) 4.46e−06

th2 rs7738036 5 c 0.103 2.35 (1.63, 3.39) 4.99e−06

jrr rs2490678 LOC105376387 10 a 0.463 2.46 (1.74, 3.47) 3.20e−07

jrr rs7979964 12 t 0.491 2.19 (1.59, 3.03) 1.67e−06

jrr rs62126784 SLC27A1 19 a 0.162 22.88 (6.19, 84.6) 2.71e−06

jrr rs62126782 SLC27A1 19 c 0.172 19.66 (5.53, 69.9) 4.15e−06

th3 rs2434981 KIRREL3 11 a 0.137 6.49 (3.17, 13.3) 3.29e−07

th3 rs4595560 KIRREL3 11 c 0.128 6.31 (2.92, 13.6) 2.72e−06

th3 rs2974279 CNBD1 8 t 0.334 0.50 (0.37, 0.67) 3.93e−06

comp rs72643197 GPC6 13 g 0.033 13.08 (5.08, 33.67) 9.96e−08

comp rs72679697 8 a 0.106 2.43 (1.70, 3.46) 1.09e−06

comp rs7995652 GPC6 13 a 0.034 9.94 (3.92, 25.22) 1.34e−06

comp rs72777466 LOC107985854 2 c 0.045 4.81 (2.53, 9.16) 1.74e−06

comp rs12947814 17 c 0.036 7.52 (3.28, 17.25) 1.93e−06

comp rs56386425 GPC6 13 t 0.034 11.13 (4.12, 30.08) 2.03e−06

comp rs6603815 PRKCZ 1 t 0.100 2.49 (1.71, 3.63) 2.17e−06

comp rs113222322 6 g 0.061 4.16 (2.30, 7.56) 2.69e−06

(Continues)
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p

p
β β x β x

β x x

β β β β β β

x β β x

β x x

β β x β x β x x

log
1 −

= + (1 − ˜ ) + (1 − ˜ )

+ (1 − ˜ )(1 − ˜ )

= ( + + + ) − ( + )

˜ − ( + ) ˜

+ ˜ ˜

= ˜ + ˜ ˜ + ˜ ˜ + ˜ ˜ ˜ ,

m m f f

mf m f

m f mf m mf

m f mf f

mf m f

m m f f mf m f

0

0

0

where β β β β β β β β β˜ = + + + , ˜ = −( + ), ˜ =m f mf m m mf f0 0

β β−( + )f mf , and β β˜ =mf mf . That is, βmf also measures

the interaction in a jrr model with the opposite reference
alleles.

2.3 | The threshold model

The premise of the threshold model is an assumed
change in the risk of the phenotype being expressed if
the sum of the maternal and paternal dose is equal to or
exceeds a defined threshold, k. Presented in Table 2c
and 2d are the parameterizations of the threshold
model with k = 2 (th2 model) and k = 3 (th3 model).
Based on the choice of k, we define a binary threshold
variable xthr k, corresponding to whether the sum of the
parental doses satisfies the threshold. This threshold
variable can be expressed in the following way: We
define a set of dummy variables for the maternal and
paternal genotypes. Let x = 1mat0 for the maternal
genotype AA and 0 otherwise, x = 1mat1 for the

maternal genotype Aa and 0 otherwise, and x = 1mat2

for the maternal genotype aa and 0 otherwise. The
dummy variables x x,pat pat0 1 and xpat2 are defined
similarly for the father. The threshold variable xthr,2
can then be written as

x x x x x x x

x x x x x x

= + +

+ + + .
thr mat pat mat pat mat pat

mat pat mat pat mat pat

,2 0 2 1 2 2 0

2 1 1 1 2 2

Similarly, xthr,3 can be written as

x x x x x x x= + + .thr mat pat mat pat mat pat,3 1 2 2 1 2 2

To better identify the effect of the threshold variable,
we also included the main maternal and paternal effects
in the model:







p

p
β β x β x x β x

β x x β x

log
1 −

= + + +

+ + .

m m m m m f f

f f f thr k thr k

0 12 1 2

12 1 2 , ,

(2)

Here, x x x, ,m m f1 2 1 , and x f2 represent each of the
maternal and paternal alleles, respectively, and the
interactions x xm m1 2 and x xf f1 2 are included to allow for
a potential non‐multiplicative effect of the maternal and
paternal dose.

Assuming k = 2 in the model given in (2), we can define
an alternative model with k = 3 and a as the reference
allele. We then have x x x x x˜ = 2 − , ˜ = 1 − , ˜ = 1 −m m m m m1 1 2

x x x x x x x, ˜ = 2 − , ˜ = 1 − , ˜ = 1 −m f f f f f f2 1 1 2 2 , and x̃ =thr,3

x1 − thr,2, and the model in (2) can be written as

TABLE 3 (Continued)

Modela SNP Gene Chr A1b MAF OR (95% CI) p Valuec

comp rs12500393 4 a 0.221 1.72 (1.37, 2.15) 3.12e−06

comp rs72643104 GPC6 13 c 0.034 10.22 (3.84, 27.19) 3.22e−06

comp rs6683011 PRKCZ 1 g 0.101 2.45 (1.68, 3.56) 3.24e−06

comp rs8065586 17 a 0.038 6.53 (2.96, 14.40) 3.28e−06

comp rs7960561 LOC105369611 12 g 0.046 4.94 (2.50, 9.76) 4.09e−06

comp rs116917650 22 c 0.038 6.58 (2.95, 14.68) 4.30e−06

comp rs77698947 8 a 0.055 3.94 (2.20, 7.08) 4.32e−06

comp rs10497270 2 c 0.101 2.48 (1.68, 3.66) 4.53e−06

Abbreviations: CI, confidence interval; comp, complementary model; jdd, jointly dominant‐dominant model; jrr, jointly recessive‐recessive model; MAF, minor
allele frequency; mdr, multiplicative dose‐response model; OR, odds ratio; SNP, single‐nucleotide polymorphism; th2, threshold model with k= 2; th3,
threshold model with k= 3.
aThe model with the lowest p value (and any additional models that returned a p value less than 5 × 10−6).
bThe minor allele.
cThe lowest p value from the six models.
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Hence, switching from k = 2 to k = 3 while also
switching reference and effect alleles results in a
negation of the threshold coefficient, as β β˜ = −thr thr,3 ,2.

2.4 | The complementary model

The ‘complementary’ (comp) model is obtained by
assuming a change in the risk of ART use if both parents
are homozygous for opposite alleles. This model is
referred to as the interference model in Li and Reich
(2000), and its parameterization is presented in Table 2e.
Under this parameterization, we coded a binary variable
xcomp to identify the 0–2 and 2–0 parental dose
combinations and implemented a modified version of
the model in (1):







p

p
α β xlog

1 −
= + .comp comp (3)

As the model in (3) consists of only one main effect,
it cannot be categorized as an interaction model based
on the characteristics described previously. It never-
theless fits into the overall purpose of investigating
specific combinations of maternal and paternal geno-
types that may influence fertility. A feature that
distinguishes the comp model from the other models
presented above is that it pinpoints the parental dose‐
combinations at a given locus that would, at concep-
tion, always produce an offspring that is heterozygous
at the same locus, and, thus, genetically different from
both parents at that locus. In the comp model, the
choice of reference allele is completely arbitrary;

switching the choice of reference and effect allele
produces the same parameterization.

3 | DATA

We used data from the Norwegian Mother, Father, and
Child Cohort Study (MoBa) in which pregnant women
were recruited from all over Norway from 1999 through
2008 (Magnus et al., 2016). Of the women invited, 41%
consented to participation. Fathers were invited from
2001, and the cohort now includes approximately 114,500
children, 95,200 mothers, and 75,200 fathers. Blood
samples were drawn from the parents at around 18
weeks of gestation, and from the mother and the
umbilical cord after delivery (Paltiel et al., 2014). The
study participants have been followed up at regular
intervals via self‐administered questionnaires. The estab-
lishment of MoBa and initial data collection were based
on a license from the Norwegian Data Protection Agency
and approval from The Regional Committees for Medical
and Health Research Ethics. The MoBa cohort is
currently regulated by the Norwegian Health Regis-
try Act.

The genetic data currently available consist of
genotypes from more than 200,000 individuals, including
approximately 79,000 children, 76,000 mothers, and
52,000 fathers. Genotyping was performed in several
waves using different genome‐wide genotyping arrays.
The post‐imputation quality control (QC) was conducted
by Corfield et al. (2022), and included a thorough
mapping of genetic relatedness within the cohort using
a combination of known pedigree information, geneti-
cally estimated kinship coefficients, and the estimated
proportion of the genome shared identical‐by‐descent.
Principal component (PC) analysis was also done as a
part of the QC.

For this study specifically, we identified mother‐
father dyads via their common pregnancies in MoBa. We
treated ART use as a proxy for infertility and categorized
parental dyads as cases (ART) or controls (non‐ART), as
illustrated in Figure 1. Information on whether a
pregnancy involved ART use was retrieved from the
Medical Birth Registry of Norway (MBRN), a national
health registry containing information about all births in
Norway (Irgens, 2000). We identified 1304 ART and
52,153 non‐ART pregnancies with genotype data availa-
ble from both parents. We randomly sampled non‐ART
pregnancies as controls in a case‐control ratio of
approximately 1:10, resulting in 14,485 control pregnan-
cies for the current analyses. The data selection is
illustrated in Figure 2. Among the selected cases and
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controls, 716 couples were registered with more than one
pregnancy, 31 of whom contributed to both ART and
non‐ART pregnancies. We also used information on age,
parity, body mass index (BMI), and smoking habits as
covariates in some analyses. These variables were
retrieved from either MBRN or the MoBa questionnaires
administered to both parents around week 15 of
gestation.

4 | IMPLEMENTATION

The data were processed and analyzed using PLINK v1.90
(Purcell et al., 2007) and R v4.0.4 (R Core Team, 2022). We
implemented the parameterization schemes described in
Sections 2.1–2.4 in a generalized linear mixed‐effects model
using the logit link function in the R‐package lme4
(Bates et al., 2015). All figures were created using the R
packages qqman (Turner, 2018), Haplin (Gjessing &
Lie, 2006), and ggplot2 (Wickham, 2016).

Familial relationships between participants were
determined in the initial QC conducted by Corfield
et al. (2022). To roughly account for close relatedness, we
constructed a family group identity variable, u, which
was included as a random intercept term in the model.
For instance, couples where mothers were sisters would
have the same random intercept. Similarly, we accounted
for repeated measurements by adding a random intercept
at the “couple” level for those couples who contributed
more than one pregnancy to the cohort. Thus, for a

couple v belonging to family group u, the probability of
ART use is







p

p
M u vlog

1 −
= + + , (4)

where M represents the right‐hand side of Equations
(1)–(3). There were five individuals who had pregnancies
with two different partners. These were coded with the
same value of u, but different values of v.

We also included the covariates maternal age and
parity in the genome‐wide analyses using the parameter-
izations described above. Maternal age and parity are not
confounders per se, but both are considered strong
determinants of ART use. Since different genetic
subpopulations of our sample might have different age
and family size structures, adjusting for age and parity
may be prudent. As we do not necessarily assume a
linear relationship between age and infertility, maternal
age was included as a categorical variable with the
following intervals: <25, 25–30, 30–35, and >35 years.
Parity was included as a numeric variable with values
between 0 and 4, with 4 representing “4 or more”
children. We also adjusted for the first three genetic PCs
for both parents to account for possible confounding due
to population stratification.

Furthermore, we performed multiple analyses on a
subset of SNPs, adjusting for different combinations of
the additional covariates: maternal BMI, maternal
smoking, and imputation batch. The maternal BMI
was included as a categorical variable (<18.5, 18.5–25,
25–30, 30–35, and >35 kg/m2) to avoid assuming a
linear relationship between maternal BMI and
infertility. Maternal smoking was categorized according
to whether the mother had ever smoked or smoked in
the last couple of years before giving birth. As
genotyping the entire MoBa cohort took several years
and was performed through multiple different research
projects, the imputation of unobserved genotypes was
also performed in different batches (Corfield et al., 2022).
To account for possible imputation batch effects, we
included a variable for this as a random intercept term
in the model.

4.1 | Allele frequencies

Handling SNPs with low minor allele frequencies
(MAFs) is particularly challenging in genetic association
studies due to sample size issues, especially when
studying multi‐loci interactions. Assuming Hardy‐
Weinberg equilibrium and independence of the parental
genotypes, the expected proportion of couples where

FIGURE 2 Overview of the sampling scheme. Note that some
couples had multiple pregnancies, and a few of the parents were
linked to multiple partners.
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both parents carry at least one copy of the minor allele is
only 0.04% for a SNP with a MAF of 1%. When preparing
the data in PLINK, we initially set a MAF threshold of 1%
before performing the genome‐wide analyses. SNPs with
exceedingly low MAFs resulted in very low numbers of
ART pregnancies with the relevant parental dose‐
combinations (depending on the choice of model) and
the model estimates were therefore unreliable. These
SNPs were easily identifiable due to a heavy inflation of
the standard errors (SEs) of the interaction term.
Consequently, we excluded SNPs based on this evident
inflation of standard errors.

4.2 | SNPs at different loci

Although we mainly applied the models presented in
Section 2 to SNPs at the same locus, it can be argued that
it would be more favorable to use a more agnostic
approach where one would search through all possible
pairwise combinations of SNPs over the whole genome
(Evans et al., 2006). Such a strategy would, however, be
underpowered due to small sample sizes. Moreover, it
may incur a large computational burden. Due to these
limitations, we searched for significant interaction effects
between all pairwise SNP combinations only for a small
subset of SNPs.

5 | RESULTS

After preparing the genetic data in PLINK, we had
approximately 2,400,000 SNPs available for analyses. We
first applied the mdr parameterization given in (1)
together with the model specified in (4) and performed
a genome‐wide scan. Initially, we included both the
couple variable v and the family variable u in the
analyses. Although there is a degree of relatedness within
the total MoBa cohort that needs to be considered in
analyses, we found that there was less relatedness within
our sampled data. As a result, v and u were highly
correlated, causing the model to not converge. Conse-
quently, we omitted u from the final model. As covariates
in the model, we added maternal age, parity, the three
first PCs for mothers, and the three first PCs for fathers:







p

p
β β x β x β x x v

age parity PCs

log
1 −

= + + + +

+ + + ,

m m f f mf m f0

where age parity, , and PCs represent appropriately coded
regression terms for the respective variables.

For some SNPs with MAF close to 1%, there was only
a small number of cases in the dose‐combinations
relevant for this model, and, therefore, the model did
not converge. Furthermore, we excluded SNPs with a
heavily inflated standard error for the interaction
estimate, as described in Section 4.1. These SNPs were
easily identifiable because there was a clear divide
between the normal‐range standard errors and the
inflated standard errors (see Supporting Information:
Figure S1). Inspecting the estimated MAFs for the
excluded SNPs, we found that the maximum MAF was
just above 5%. In other words, setting an initial MAF
threshold of 5% instead of 1% would have also led to the
exclusion of the majority of these SNPs from the
analyses. For more details on the number of SNPs
excluded and their MAFs, see Supporting Information:
Table S1.

The Manhattan and quantile‐quantile (QQ) plots of
the results from the mdr model are presented in
Figure 3a,b, respectively. We performed follow‐up
analyses on a subset of the index SNPs, that is, the SNPs
with the most significantly associated interaction term,
and applied additional adjustments for maternal BMI,
maternal smoking, and imputation batch. Including
different combinations of these covariates had only a
minor effect on the p values for the interaction term, and
the changes in effect estimates were negligible.

We repeated the genome‐wide scans by applying the
jdd, jrr, th2, th3, and compmodels. Again, for some SNPs,
the models did not converge, and SNPs with a heavy
inflation of the interaction standard error were easily
identified and subsequently excluded (see Supporting
Information: Table S1). For the jdd and th2 models, the
maximum estimated MAF for the excluded SNPs was just
above 5%, similar to the mdr model. For the jrr, th3 and
comp models, the ranges of estimated MAFs for the
excluded SNPs were wider, with a maximum MAF of
29.1%, 13.1%, and 6.7%, respectively. The Manhattan and
QQ plots in Figure 3c–f present the results of the jdd and
th2models. Similar plots for the jrr, th3 and compmodels
are presented in Supporting Information: Figure S2.

We estimated the odds ratios (ORs) for the maternal,
paternal, and interaction effects. The OR can be
interpreted as an approximation of the relative risk,
given that the prevalence of ART use in the population is
relatively low (i.e., applying the rare disease assumption).
Figures 4 and 5 show the estimated ORs for a subset of
the index SNPs from each model. The results of the mdr,
jdd, and th2 models showed some overlap in index SNPs,
as shown in Figure 4. For the majority of these SNPs, the
estimated marginal effects were opposite of the estimated
interaction effect. That is, when the marginal maternal
and paternal effects showed an estimated decrease in the
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risk of ART use, the estimated interaction effect
indicated an increased risk, and vice versa. Comparing
individual OR estimates from the mdr, jdd, and th2
models, we found that they indicated similar maternal,
paternal, and interaction effects for the same SNPs. The
confidence intervals were generally wider for the

estimates from the jdd and th2 models compared with
those from the mdr model.

Overall, the jrr and th3 models identified fewer index
SNPs than the other models. Further, there was no
overlap in index SNPs from these two models. The comp
model also identified index SNPs that were distinct from

FIGURE 3 Manhattan and quantile‐quantile (QQ) plots of the −log10‐transformed p values of the interaction term for the multiplicative
dose‐response model (a) and (b), the jointly dominant‐dominant model (c) and (d), and the threshold model with k = 2 (e) and (f). The red
and blue horizontal lines in each Manhattan plot indicate the significance thresholds 5 × 10−8 and 5 × 10−6, respectively. The shaded area in
the QQ‐plots represents the 95% confidence interval.
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those found by the other models, but, overall, the comp
model identified the largest number of SNPs with a p
value below 5 × 10−6. Note that the compmodel included
only one main effect, that is, only one OR estimate per
SNP, as shown in Figure 5. All of the index SNPs
identified in the comp model were associated with an
increased risk of ART use. Some of the OR estimates
were unrealistically large. This was especially the case for
the interaction OR estimate for the SNP rs62126784 in
the jrr model, and several SNPs in the comp model.

A synopsis of the main gene findings is provided in
Supporting Information: Table S2. Several of the identi-
fied loci were noncoding RNAs. The gene with the
strongest link to infertility is Dynein axonemal heavy
chain 17 (DNAH17), which has a recognized role in male
fertility. Two other genes, Cyclic nucleotide binding
domain containing 1 (CNBD1) and Parkin RBR E3
ubiquitin protein ligase (PRKN), are both relevant
candidates for infertility based on the tissue in which
they are involved and/or are expressed. For instance,
CNBD1 is expressed exclusively in the testis.

As a proof‐of‐principle, we performed an additional
interaction analysis for all pairwise combinations of a
subset of the index SNPs from our main analyses. We
selected a representative subset of 151 SNPs from the 22
autosomal chromosomes, which resulted in a total of

22,650 possible combinations of SNPs at different loci.
This included looking at both combinations of “SNP and
parent” pairs, that is, SNP1 in the mother and SNP2 in
the father, as well as SNP2 in the mother and SNP1 in the
father. The results showed that the only borderline
significant interactions were for those SNPs that were
near each other (Figure 6). In other words, this limited
analysis did not provide additional insights compared to
the previously described genome‐wide analysis per-
formed on SNPs at the same locus.

6 | DISCUSSION

Of the six models presented here, the mdr, jdd and th2
models had many index SNPs in common. In addition,
most of the estimates from these models were relatively
similar in magnitude. This finding is as expected, because
a true underlying mdr effect would most likely also be
identifiable in a jdd and th2 setting, and vice versa. The
confidence intervals were generally wider for the index
SNPs identified by the jdd and th2 models than the mdr
model. The majority of the index SNPs in our analyses
were identified by the comp, jdd, and th2 models. As
different SNPs may not necessarily belong to the same
underlying effect model, we cannot conclude that one

FIGURE 4 Estimates of the maternal, paternal, and interaction odds ratios (ORs) for the same single‐nucleotide polymorphisms from
the multiplicative dose–response model, the jointly dominant‐dominant model, and the threshold model with k= 2. The maternal and
paternal ORs are derived from the βm‐ and βf ‐estimates, respectively. CI, confidence interval.
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FIGURE 5 Odds ratio (OR) estimates for
a subset of the index single‐nucleotide
polymorphisms identified by the jointly
recessive‐recessive model, the threshold
model with k= 3, and the complementary
model. The maternal and paternal ORs are
derived from the βm‐ and βf ‐estimates,
respectively. CI, confidence interval.

FIGURE 6 Pairwise interaction analyses
of a selection of single‐nucleotide
polymorphisms (SNPs) from all autosomal
chromosomes. Shown here are only SNP
pairs from the same chromosome. The
negative log10 of the p values are plotted
against the difference in base‐pair position.
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particular model fits better overall. The OR estimates
were unreasonably high for several SNPs, which may be
due to the “winner's curse”—a concept based on auction
theory (Lohmueller et al., 2003; Xiao & Boehnke, 2009)
often used in genetic studies to explain an upward bias in
effect estimates. However, although some ORs may be
overestimated, they may still represent true positive
associations between the SNPs and ART use.

Certain pairs of the models are in a sense “symmet-
ric” with regard to the interaction effect when switching
the choice of reference and effect allele. When only
considering the interaction term, we showed that the
results from the jrr model are equivalent to those from
the jddmodel with the opposite choice of reference/effect
allele. We also observed a fixed relationship between the
interaction estimates from the th2 and th3 models for the
opposite choice of reference/effect allele. These propert-
ies are interesting in terms of their biological implica-
tions. For instance, if a common “risk” allele in the jdd
model is associated with an increased risk of infertility, it
would likely be subject to a large population selection
pressure. This is because the jdd model assumes
increased risk for four different combinations of the
parental genotypes and thus a large total risk of
infertility. The jrr model, on the other hand, imparts an
increased risk only in the extreme situation where both
parents are homozygous for the risk allele, thus imposing
a lower selection pressure.

In this study, the mdr, jdd, and jrr models were
implemented with both parental main effects and the
interaction effect included. The th2 and th3 models
could have been defined using only one threshold
variable, coding the specific parental dose‐
combinations that satisfy the given threshold, but that
would mean ignoring possible correlations between the
main maternal and paternal effects and the threshold
effect, rendering the threshold effect more difficult to
interpret. We, therefore, chose to include the main
effects in the threshold models to better distinguish the
threshold effect. In contrast to the other models, our
comp model is the only model that does not include
separate parental main effect components. The comp
model is based on parents who are homozygous for the
opposite allele, which can be interpreted in several
ways. First, if the interaction term indicates an
increased risk of ART use, the comp model can be
regarded as an antagonistic model in which there is an
incompatibility between the two alleles of the mother
and those of the father, leading to an increased
infertility. On the other hand, if the interaction term
indicates a decreased risk of ART use, the alleles of the
mother and father may complement each other and
enhance fertility.

The comp model brings up another issue: if both
parental genotypes are homozygous for opposite alleles,
any successful conception will produce a fetus that is
heterozygous at that locus. If heterozygosity means
reduced embryonic or fetal viability, the mother may
experience an early pregnancy loss. If this occurs very
early in embryogenesis, the mother may not even be
aware of her pregnancy. It is impossible to accurately
determine the number of clinically undetected early
pregnancy losses, but studies suggest estimates ranging
from 13% to 22% of all pregnancies (Wilcox et al., 1988;
Zinaman et al., 1996). Such early losses may be
erroneously interpreted as infertility, regardless of
whether they are known or not, and thus increase the
chances of ART use. Under this scenario, any SNP
associated with an increased risk of ART in the comp
model may alternatively be considered one of which fetal
heterozygosity increases the risk of early pregnancy loss.
Similarly, in most interaction models, both parental main
effects and interaction terms will likely correlate with the
genotype of the fetus—once conception has occurred.
Therefore, we cannot rule out the possibility that
SNPs identified in the interaction models may imply
reduced fetal viability rather than parental genotype
incompatibility. This is further exacerbated by our study
being based on successfully established ART pregnanc-
ies, not only attempted pregnancies. In a planned follow‐
up study, we will include genotypes of the children and
investigate models that incorporate both parental inter-
actions and effects of alleles transferred to the child. This
can potentially help clarify which combinations of alleles
influence early fetal viability.

In the analyses presented here, we included a random
intercept in a generalized linear mixed effects model to
account for multiple pregnancies by the same couple. An
alternative strategy is to include only one, randomly
sampled pregnancy per couple, and analyze the data
using a generalized linear model with logistic regression.
When applying the multiplicative dose–response param-
eterization in a generalized linear model, and including
the same covariates as in the mdr model, we identified a
set of index SNPs, that is, SNPs with a p‐value below
5 × 10−6, that included all those identified in the mdr
model. The run‐time was approximately one fourth of the
run‐time for the mdr model. The distribution of p values
was, however, heavily inflated (see Supporting Information:
Figure S3a). This is due to some SNPs having low
frequencies of ART‐pregnancies for some of the parental
dose combinations. We experimented with excluding SNPs
that had a low frequency of ART‐pregnancies for the 1–1,
1–2, 2–1 and 2–2 parental dose‐combinations, and found
that setting a cutoff of minimum 50 resulted in a QQ plot
that indicated a more well‐calibrated model (see Supporting
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Information: Figure S3b). As described previously, the
mixed effects model fails to converge when analyzing SNPs
with low ART frequencies, leading to heavily inflated
standard errors which make these SNPs easy to identify
without having to choose a specific cutoff. An advantage
with the mixed effects model is that we can utilize all of the
available case data (1304 ART pregnancies, vs. 1218 when
we sample one pregnancy per couple).

We also implemented a generalized linear mixed
effects model with all parameters from Table 1a
estimated, including four parameters for the interac-
tion, applying the same covariates as in the previous
models. Using a likelihood ratio test, we tested for
significance of the interaction effect by comparing this
model to a reduced model without interaction terms (a
4‐df interaction test). After removing SNPs with heavily
inflated interaction term standard errors, the remaining
index SNPs overlapped to a large degree with those
identified in the mdr, jdd, jrr, th2 or th3 models (see in
the Supporting Information: Table S3). This is as
expected, because this approach detects interaction
effects in some of (or all) the same parental dose‐
combinations as these five models. The comp model, on
the other hand, is based on the 0–2 and 2–0 parental
dose‐combinations, and the results from the likelihood
ratio test do not align with those from the comp model
(results not shown).

Considering the 512 parameterizations presented by
Li and Reich (2000), there are still many possible models
that could be investigated. As mentioned previously,
some of these models may be biologically more relevant
than others. One example is the “exclusive–OR” model
where the parental doses 0–2, 1–2, 2–0 and 2–1 are
assumed to have an effect on the probability of ART use.
This model has previously been useful when analyzing
the genetics of handedness (Levy & Nagylaki, 1972).
Another possible extension of our analyses would be to
consider all possible pairwise interactions between
different SNPs from the mother and father. Exhaustive
pairwise interaction testing, as well as approaches to
reduce the computational burden, have frequently been
considered in the context of within‐person epistatic
effects (Evans et al., 2006). We performed a truncated
search for such pairwise interaction effects by restricting
our analyses to only a subset of the index SNPs identified
in our main analyses. Despite this simplification, there
were still 22,650 pairwise combinations in total. These
analyses did not reveal any new significant results other
than what might be expected from index SNPs being in
linkage disequilibrium with one another. However,
future work may involve a more comprehensive
approach where all SNP pairs across the genome are
considered agnostically.

Our logistic regression models compare ART preg-
nancies with non‐ART pregnancies. However, under
certain assumptions, it might be sufficient to only
look at ART pregnancies. It is well known from
gene–environment interaction analyses that, by assum-
ing independence between genes and environment in the
background population, case–only analyses can be
performed to detect gene–environment interactions
(Umbach & Weinberg, 2000). If a statistical dependence
between genes and environment is observed among
cases, this would point to an interaction effect
(Mukherjee et al., 2008). Similarly, in our design, we
might assume that maternal and paternal genotypes are
independent of each other in the background population.
Observing a statistical dependence between maternal and
paternal genotypes in ART pregnancies would then
suggest an interaction between the two parental geno-
types, because ART use must be more (or less) likely
given specific combinations of maternal and paternal
alleles. To detect an interaction, one might thus compare
the combined genotype distribution of mothers and
fathers with what would be expected from independence.
However, population genetic effects such as inbreeding,
assortative mating, and population stratification may give
rise to correlations between parental alleles in the
general population. Although inbreeding may affect
several loci simultaneously, assortative mating would
normally only affect selected loci, such as those driving
body height. Correlations in the background population
may be detected by checking non‐ART parents, though
this would again require the use of non‐ART pregnanc-
ies. Interesting ways to combine the use of controls and
the assumption of independence have been explored in
the gene–environment interaction setting (Mukherjee
et al., 2008). Although such ideas can be implemented in
our model setup, we have restricted our current models
to a standard interaction setup.

Regarding the genes and loci showing the most
significant allelic interaction effects in our analyses, two
genes in particular are worth mentioning here because of
their association with tissues that are relevant for
infertility. Firstly, age‐related increased expression of
the gene for Parkin RBR E3 ubiquitin protein ligase
(PRKN) contributes to defects in meiosis and the
accumulation of damaged mitochondria in germinal
vesicle oocytes (Jin et al., 2022). The second gene, cyclic
nucleotide binding domain containing 1 (CNBD1), is
expressed almost exclusively in testis. Despite an
extensive literature search, however, we were unable to
find any previous reports linking infertility with these
genes, nor with any of the other genes/loci listed in in the
Supporting Information: Table S2. One exception is
Dynein axonemal heavy chain 17 (DNAH17). This gene
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has an established role in male fertility, specifically
through asthenozoospermia (Whitfield et al., 2019). Fur-
thermore, exome sequencing identified DNAH17 as one
of several genes associated with male infertility
(Sudhakar et al., 2023). Experiments in rats showed that
DNAH17 is essential for spermatogenesis and fertility
(Chen et al., 2021). Finally, differentially methylated
CpGs in DNAH17 and many other genes were reported to
be associated with male infertility (Sarkar et al., 2019).

In summary, we found that several models are
relevant for analyzing parental allelic interactions.
Although we investigated infertility as our main pheno-
type, using ART as a proxy, other fertility‐related
measures can also be applied. Our results showed that
the mdr, jdd and th2 models were more robust to low
ART frequencies. The most significant SNPs were
identified by at least one of these three models or by
the comp model. One particularly relevant finding was in
a gene that has an established role in male fertility.
Furthermore, we identified several issues that should be
addressed when implementing these models, for exam-
ple, if and how parental main effects should be included
and how the results should be interpreted in light of the
choice of model. Our models can all be analyzed using
standard statistical software such as R.
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