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Abstract
Weprove that on Xn , the plane blown-up at n very general points, there areUlrich line bundles
with respect to a line bundle corresponding to curves of degreem passing simply through the
n blown-up points, with m ≤ 2

√
n and such that the line bundle in question is very ample on

Xn . We prove that the number of these Ulrich line bundles tends to infinity with n. We also
prove the existence of slope-stable rank-r Ulrich vector bundles on Xn , for n ≥ 2 and any
r ≥ 1 and we compute the dimensions of their moduli spaces. These computations imply
that Xn is Ulrich wild.

Keywords Ulrich vector bundles · Stability · Moduli spaces
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1 Introduction

Let X be a smooth irreducible projective variety and let H be a very ample divisor on X . A
vector bundle E on X is said to be an Ulrich vector bundle with respect to the polarization
H if hi (E(−pH)) = 0 for all i ≥ 0 and all 1 ≤ p ≤ dim(X).

Ulrich bundles first appeared in commutative algebra in the 1980s, where they have been
considered because they enjoy some extremal cohomological properties. After that the atten-
tion of the algebraic geometers on these bundles has been carried by the beautiful paper [15],
where, among other things, the authors compute the Chow form of a projective variety X
using Ulrich bundles on X , if they exist.
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In recent years there has been a good amount of work on Ulrich bundles (for surveys see,
for instance, [4, 11, 13]), mainly investigating the following problems: given any polarization
H on a variety X , does there exist an Ulrich vector bundle with respect to H? Or, even more
generally, given a variety X , does there exist a very ample line bundle H on X and an Ulrich
vector bundle on X with respect to H?What is the smallest possible rank for an Ulrich bundle
on a given variety X? If Ulrich bundles exist, are they stable, and what are their moduli?

Although a lot is known about these problems for some specific classes of varieties (curves,
Segre, Veronese, Grassmann varieties, rational scrolls, complete intersections, some classes
of surfaces like Del Pezzo, abelian, K3 surfaces, some surfaces of general type, etc.) the
above questions are still open in their full generality even for surfaces. In particular, the
question for which pairs (X , H) there are Ulrich line bundles on X with respect to H is open,
though this occurrence seems to be rather rare. Moreover, in the few known cases in which
they have been proved to exist, except the case of curves, they are finitely many and of a low
number.

In the present paper we investigate the existence of Ulrich bundles on the blow-up Xn

of the complex projective plane at n very general points with respect to line bundles ξn,m

corresponding to curves of degree m passing simply through the n blown-up points, with
m ≤ 2

√
n and such that the line bundle in question is very ample. Surprisingly enough, our

results show that such a surface carries several Ulrich line bundles, and actually their number
increases and tends to infinity with n, see Theorem 3.1 and Corollary 3.2. In Theorem 4.2
we classify all these line bundles for 7 ≤ n ≤ 10 and m = 4 (the cases n ≤ 6 and m = 3
corresponding to the Del Pezzo case being well known already, see [12, 19]). Then, making
iterated extensions and deforming,we prove the existence of slope-stable rank-r Ulrich vector
bundles on Xn for n ≥ 2 and any r ≥ 1 (see Theorem 5.8), we compute the dimension of the
moduli spaces of the bundles in question and prove that they are reduced. These computations
show that Xn , with n ≥ 2, is Ulrich wild.

Recall that a variety X is said to be Ulrich wild if it possesses families of dimension p
of pairwise non-isomorphic, indecomposable, Ulrich bundles for arbitrarily large p (for the
introduction of the notion of Ulrich, or more generally, of Cohen–Macaulaywildness, see, for
instance, [14, 16]). Note that in the literature there are only very few cases of varieties known
to carry stable Ulrich bundles of infinitely many ranks, and even fewer of any rank (namely,
curves and Del Pezzo surfaces). Note that it is known that not all varieties can support Ulrich
vector bundles of every rank (see e.g. [10, Cor. 2.], [1, Cor. 3.2], [4, §4] and [8, Cor. 3.7 and
3.9]). In [2, Cor. 3.8] the existence of rank 2 Ulrich vector bundles is proved on the blown-up
planes with respect to an ample line bundle of the form ξn,m , without investigating stability
or moduli. The description of Ulrich vector bundles on some surfaces of type Xn which are
not Del Pezzo surfaces and the related Ulrich wildness can be found in [18]. The fact that
Xn supports slope stable rank-two Ulrich bundles and is Ulrich wild for each n ≥ 2 is a
particular case of the results in [6].

It is an interesting problem to study the presence of Ulrich (line) bundles on blow-ups at
very general points of other surfaces than the projective plane. The ideas in this paper might
be useful to attack this problem.

Ciro Ciliberto and Flaminio Flamini are members of GNSAGA of the Istituto Nazionale
di AltaMatematica “F. Severi” and acknowledge support from theMIUR Excellence Depart-
ment Project awarded to the Department of Mathematics, University of Rome Tor Vergata,
CUP E83C18000100006. Andreas Leopold Knutsen acknowledges support from the Trond
Mohn Foundation Project “Pure Mathematics in Norway”, grant 261756 of the Research
Council of Norway and the Meltzer Foundation.
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Ulrich bundles on a general blow-up of the plane

2 Preliminaries

2.1 In this paper we will denote by π : Xn → P
2 the blow-up of the complex projective

plane at n ≥ 1 very general points p1, . . . , pn . (The n points are supposed to be very general
because one has to take off the a priori countably many closed subsets of n-tuples of points
for which the very ampleness of the line bundles ξm,n considered below or the property of
imposing independent conditions to suitable linear systems are not satisfied.) We will denote
by E1, . . . , En the exceptional divisors contracted by π to p1, . . . , pn , respectively, and by
L the pull-back via π of a general line of P

2. For integers d,m1, . . . ,mn , consider the linear
system

∣
∣
∣
∣
∣
dL −

n
∑

i=1

mi Ei

∣
∣
∣
∣
∣

(1)

on Xn . If d,m1, . . . ,mn are non-negative, this is the strict transform on Xn of the linear
system of curves of degree d in P

2 with multiplicities at least m1, . . . ,mn at p1, . . . , pn ,
respectively. If one of the integers m1, . . . ,mn is negative; for example, m1 is negative, then
this means thatm1E1 is in the fixed part of the linear system (1), if this system is non-empty.
Wewill denote the linear system (1), or the corresponding line bundleOXn (dL−∑n

i=1 mi Ei ),
by

(d;m1, . . . ,mn)

and we will use exponential notation for repeated multiplicities.
In the sequel wewill consider various linear systems of the form (d;m1, . . . ,mn) as above

(cf. e.g. Lemma 2.2, Proposition 2.3, Theorems 3.1, 4.2 and Sect. 5). We will consider the
linear systems

ξn,m := (m; 1n),
i.e. in the notation (d;m1, . . . ,mn), we have d = m and mi = 1 for all i = 1, . . . , n.

The line bundle ξn,m is ample as soon as n ≥ 3 and ξ2n,m = m2 − n > 0 (see [17, Cor.p.
154]) and it is very ample if m ≥ 5 and

m ≥ 2
√
n + 4 − 3

(see [20, Thm. 1]). This result is not optimal and a natural conjecture is that ξn,m is very
ample as soon as

m(m + 3)

2
− n ≥ 5

(see again [20, Conj. p. 2521]). Moreover, it is classically known that ξ10,4 is very ample,
the image of X10 via the map determined by ξ10,4 is the famous smooth Bordiga surface of
degree 6 in P

4. Accordingly ξn,4 is very ample if n ≤ 10. In any event, if mn is the minimum
m such that ξn,m is very ample, we have

mn ≤
⌈

2
√
n + 4 − 3

⌉

(2)

if n ≥ 3, whereas m1 = 2 and m2 = 3.
We will need the following:

Lemma 2.1 If n ≥ 3, there is an m < 2
√
n such that ξn,m is very ample.
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Proof To prove the assertion one has to prove that 2
√
n > mn . By (2), this is implied by

2
√
n >

⌈

2
√
n + 4 − 3

⌉

, which holds if 2
√
n ≥ 2

√
n + 4− 2. This is true as soon as n ≥ 3.

��
2.2 Given a linear system L = (d;m1, . . . ,mn), its virtual dimension is

dimv(L) = d(d + 3)

2
−

n
∑

i=1

mi (mi + 1)

2
.

We have dim(L) ≥ dimv(L), and if equality holds we will say that the system L is regular.
One computes

dimv(L) = χ(L) − 1

hence, by the Riemann–Roch theorem, one has

dim(L) = dimv(L) + h1(L) − h2(L).

Since h2(L) = h0(Kn ⊗ L∨), where Kn = (−3;−1n) denotes the canonical bundle of Xn ,
and

Kn ⊗ L∨ = (−3 − d;−m1 − 1, . . . ,−mn − 1)

one has h2(L) = 0 as soon as d > −3. In this case one has

dim(L) = dimv(L) + h1(L) (3)

and L is regular if and only if h1(L) = 0.

Lemma 2.2 Let L be a linear system on Xn of the form

(d; 1h, 0k, (−1)n−h−k)

where d ≥ 0. If dimv(L) ≥ −1, then L is regular.

Proof Set E = Eh+k+1 + · · · + En . For each curve Ei 
 P
1, for h + k + 1 ≤ i ≤ n one has

L · Ei = −1, hence E is in the fixed part of L, if this is non-empty. So we have dim(L) =
dim(L(−E)). The linear system L(−E) is (d; 1h, 0k). One has dimv(L) = dimv(L(−E)).
By dimv(L(−E)) ≥ −1 and by the very generality of the imposed simple base points
p1, . . . , ph , it follows that L(−E) is regular. Hence, we have

dim(L) = dim(L(−E)) = dimv(L(−E)) = dimv(L)

as wanted. ��
2.3 We will use the following result:

Proposition 2.3 Consider a linear system of the form

Ld,n,δ,k = (d; 2δ, 1k, 0n−δ−k)

(and permuted multiplicities), with k ≥ 1. If

dimv(Ld,n,δ,k) = d(d + 3)

2
− 3δ − k ≥ 0

then Ld,n,δ,k is regular, i.e.

h1(Xn,Ld,n,δ,k) = 0

and the general curve in Ld,n,δ,k on Xn is smooth and irreducible.
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Ulrich bundles on a general blow-up of the plane

Proof This is a straightforward application of [9, Thm. 2.3] (see also [3, Cor. 4.6] and [7,
Thms. 1.1, 1.3 and 1.4]). ��
2.4 Let S be a smooth irreducible projective surface and let H be a very ample divisor on S.
It is well known and easily seen that OS is Ulrich with respect to H if and only if S = P

2

and H is a line.
We will need the following proposition (cf. also [6, Prop. (2.1)]):

Proposition 2.4 Let S be a smooth irreducible projective surface and let H be a very ample
divisor on S.

A line bundle L � OS is Ulrich if and only if it is of the form L = OS(C), where C is an
effective divisor on S satisfying

(i) C · H = 1
2H · (3H + KS);

(ii) 1
2 (C

2 − C · KS) + χ(OS) − H2 = 0;
(iii) h1(OC (KS + H)) = 0;
(iv) the restriction map r : H0(OS(KS + 2H)) → H0(OC (KS + 2H)) is injective or

surjective.

Moreover, the divisor C can be taken to be a smooth curve.

We will say that L as above is determined by C .

Proof It is well known that an Ulrich bundle is globally generated, whence it is of the form
L = OS(C) for C an effective nonzero divisor, which can even be taken to be a smooth
curve. Hence, L is Ulrich if and only if hi (OS(C − j H)) = 0 for i = 0, 1, 2, j = 1, 2.
From the short exact sequence

0 −→ OS(− j H) −→ OS(C − j H) −→ ωC (−KS − j H) −→ 0 (4)

we see that L is Ulrich if and only if

h0(ωC (−KS − j H)) = 0, j = 1, 2, (5)

the coboundary maps H1(ωC (−KS − j H)) → H2(OS(− j H))

are isomorphisms, j = 1, 2. (6)

Clearly the vanishing for j = 2 in (5) is implied by the one for j = 1. Thus, by Serre duality
(5)–(6) are equivalent to

h1(OC (KS + H)) = 0, (7)

the restriction maps r j : H0(OS(KS + j H)) → H0(OC (KS + j H))

are isomorphisms, j = 1, 2. (8)

By (7) and the fact that h1(OS(KS + j H)) = h2(OS(KS + j H)) = 0, the domain and target
of r j have dimensions χ(OS(KS + j H)) and χ(OC (KS + j H)), respectively. Moreover, it
is easy to see that r1 is injective as soon as r2 is. Hence, given (7), condition (8) is equivalent
to

χ(OS(KS + j H)) = χ(OC (KS + j H)), j = 1, 2, (9)

the restriction map r2 : H0(OS(KS + 2H)) → H0(OC (KS + 2H)) is injective.

(10)
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Thus,OS(C) is Ulrich if and only if (7), (9) and (10) are satisfied. Condition (7) is condition
(iii) in the statement of the proposition, whereas (9) is equivalent to (i)–(ii) by Riemann–
Roch. Finally, (10) is equivalent to (iv), as the domain and target have the same dimensions,
again by (9). ��

3 Ulrich line bundles on Xn

In this section we will prove the existence of Ulrich line bundles on Xn . We will assume
m ≥ 4, since the Del Pezzo case (n ≤ 6 and m = 3 in the notation below) has already been
worked out in [12, Prop. 2.19] and [19, Thm. 1.1]. This is our result:

Theorem 3.1 Let n ≥ 3 be an integer and let m ≥ 4 be an integer such that ξn,m is very
ample on Xn and m ≤ 2

√
n. Let d be a positive integer such that

2m − 3 − √
8n + 1

2
≤ d ≤ 2m − 3 + √

8n + 1

2
(11)

and

3(m − 1) − √
4n − m2 + 1

2
< d <

3(m − 1) + √
4n − m2 + 1

2
. (12)

Set

δ = m2

2
− m

2
(2d + 3) + d2 + 3d + 2

2
= (d − m)(d − m + 3)

2
+ 1

and

k = n + 3m(d + 1) − m(5m − 3)

2
− (d2 + 3d + 2).

Then δ and k are integers such that

0 ≤ δ ≤ n, (13)

1 ≤ k ≤ n, (14)

and

δ + k ≤ n. (15)

Moreover,

Ld,n,k,δ = (d; 2δ, 1k, 0n−δ−k)

(and permuted multiplicities) is an Ulrich line bundle on Xn with respect to ξn,m.

Proof Take for granted (13), (14) and (15) for the time being. A direct computation of
dimv(Ld,n,k,δ) as in Proposition 2.3 shows that

dimv(Ld,n,k,δ) = m2 − n − 1 ≥ 0

because

m2 − n = ξ2n,m > 0.

By Proposition 2.3, the system Ld,n,k,δ is non-empty and the general curve C in Ld,n,k,δ

is smooth since k ≥ 1 by (14). Now we apply Proposition 2.4 to S = Xn , H = ξn,m and
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C as above. To prove the theorem we have to check conditions (i)–(iv) in the statement of
Proposition 2.4.

As for (i), with an easy computation we have

C · ξn,m = dm − 2δ − k = 3m(m − 1)

2
− n = 1

2
ξn,m · (3ξn,m + Kn)

as wanted.
As for (ii), note that χ(OXn ) = 1, so

1

2
(C2 − C · Kn) + χ(OS) − ξ2n,m = 1

2
(d2 + 3d − 6δ − 2k) − m2 + n + 1

which is easily computed to be 0, as desired.
As for (iii), suppose, by contradiction, that h1(OC (Kn + ξn,m)) > 0. So the divisors

cut out by the system Kn + ξn,m on C are special, i.e. they are contained in divisors of the
canonical series, cut out on C by the system Kn + Ld,n,k,δ . Note that

Kn + ξn,m = (m − 3; 0n) and Kn + Ld,n,k,δ = (d − 3; 1δ, 0k, (−1)n−δ−k).

Let D be a general curve in the system Kn + ξn,m (i.e. a general curve of degree m − 3) that
cuts on C a divisor consisting of d(m − 3) distinct points. This divisor has to be contained in
a curve D′ of the system Kn + Ld,n,k,δ . Since D has degree m − 3 and D′ has degree d − 3
and d(m − 3) > (d − 3)(m − 3) (because m ≥ 4), by Bézout’s theorem D is contained in
D′. This implies that the system Kn +Ld,n,k,δ − (Kn + ξn,m) = Ld,n,k,δ − ξn,m is effective.
We have

Ld,n,k,δ − ξn,m = (d − m; 1δ, 0k, (−1)n−δ−k)

whose virtual dimension is

(d − m)(d − m + 3)

2
− δ = −1.

Then, by Lemma 2.2, Ld,n,k,δ − ξn,m is empty, a contradiction.
Finally, as for (iv) we want to prove that the map

r : H0(Kn + 2ξn,m) → H0((Kn + 2ξn,m)|C )

is injective. We have

ker(r) = H0(Kn + 2ξn,m − Ld,n,k,δ)

and

Kn + 2ξn,m − Ld,n,k,δ = (2m − 3 − d; (−1)δ, 0k, 1n−δ−k).

If 2m − 3 < d it is clear that r is injective because of course h0(Kn + 2ξn,m −Ld,n,k,δ) = 0.
Assume that 2m − 3 ≥ d . Note that the virtual dimension of Kn + 2ξn,m − Ld,n,k,δ is

(2m − 3 − d)(2m − d)

2
− n + k + δ = −1.

Then by Lemma 2.2 we again have that h0(Kn + 2ξn,m −Ld,n,k,δ) = 0 and r is injective, as
wanted.

To finish the proof, we are left to prove (13), (14) and (15). This is a mere computation.
For instance, δ ≥ 0 is equivalent to

d2 − (2m − 3)d + m2 − 3m + 2 ≥ 0.
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The discriminant of this quadratic in d is

(2m − 3)2 − 4(m2 − 3m + 2) = 1,

hence we need

either d ≥ 2m − 3 + 1

2
= m − 1, or d ≤ 2m − 3 − 1

2
= m − 2

which is always true.
The inequality δ ≤ n is equivalent to

d2 − (2m − 3)d + m2 − 3m + 2 − 2n ≤ 0. (16)

The discriminant in d is computed to be 8n + 1. Since (11) holds, (16) also holds.
The inequality k > 0 is equivalent to

2d2 − 6d(m − 1) + 5m2 − 9m + 4 − 2n < 0. (17)

The discriminant in d is computed to be 4n −m2 + 1 which is non-negative by assumption.
Since (12) holds, then (17) holds as well.

The inequality k ≤ n is equivalent to

2d2 − 6d(m − 1) + 5m2 − 9m + 4 ≥ 0.

The discriminant is computed to be 4(1 − m2) < 0 (because m ≥ 4), hence k ≤ n holds.
Finally δ + k ≤ n is equivalent to

d2 − (4m − 3)d + 4m2 − 6m + 2 ≥ 0

whose discriminant is 1, so that δ + k ≤ n if

either d ≥ 4m − 3 + 1

2
= 2m − 1, or d ≤ 4m − 3 − 1

2
= 2m − 2

which is always true. ��
As an immediate consequence we have:

Corollary 3.2 There is a sequence {hn}n∈N such that limn→+∞ hn = +∞ and such that for
for all n ≥ 3 there are hn pairwise non-isomorphic Ulrich line bundles on Xn with respect
to ξn,m.

Proof The hn line bundles in question are the ones obtained by permutation of the multiplic-
ities from the line bundles Ld,n,k,δ as in Theorem 3.1. ��

As a warning, we explicitly stress that Corollary 3.2 above does not imply that each Xn

supports at most a finite number hn of Ulrich line bundles which grows as n tends to infinity.

Remark 3.3 The hypotheses of Theorem 3.1 could be a bit relaxed. The strict inequalities in
(12) are required in order that k ≥ 1, and this is used to imply that the general curve C in
Ld,n,δ,k is smooth. However k ≥ 1 is not necessary for the general curve C in Ld,n,δ,k to
be smooth. For example, for n = 2 and m = 3, the general curve in L3,2,1,0 = (3; 2, 0) is
smooth and this line bundle is Ulrich (see also [12, Prop. 2.19] and [19, Thm. 1.1]). We will
use this later.
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4 Classification of Ulrich line bundles on Xn with 7 ≤ n ≤ 10

Theorem 3.1 proves the existence of several Ulrich line bundles on Xn but does not give a
full classification of such line bundles. However, in principle, it is possible to pursue such a
classification. We want to show how this works for Ulrich line bundles with respect to ξn,4,
in the case in which m = 4 is the minimum such that ξn,m is very ample. This corresponds
to 7 ≤ n ≤ 10. As we said already, the Del Pezzo case m = 3 is well known, and hence we
do not dwell on it here.

As we know from Proposition 2.4, an Ulrich line bundle on Xn is of the form OXn (C)

where C is a smooth curve on Xn verifying properties (i)–(iv). Let us restate properties (i)–
(iv) in our setting, with 7 ≤ n ≤ 10, in which m = 4. We have H = ξn,4 and C belongs to a
system (d;m1, . . . ,mn), and it is easy to check that properties (i)–(iv) read now as follows:

(i) ξn,4 · C = 18 − n;
(ii) pa(C) = d − 2;
(iii) h1(OC (L)) = 0 (recall that L is the pull-back to Xn of a general line of P

2);
(iv) the restriction map r : H0(OS(Kn + 2ξn,4)) → H0(OC (Kn + 2ξn,4)) is either injective

or surjective, where Kn + 2ξn,4 = (5; 1n).
We need a preliminary lemma:

Lemma 4.1 In the above setting, the curve C is irreducible.

Proof First, we notice that the case d = 1 cannot happen. In this case in fact, since OXn (C)

is globally generated,C would be clearly irreducible while from (ii) we would have pa(C) =
−1 a contradiction. So we have d ≥ 2 and therefore pa(C) = d − 2 ≥ 0.

If C were reducible, since OXn (C) is globally generated, this means that |C | would be
composed with a base point free pencil |F |, i.e. C ∼ aF with a ≥ 2. Then pa(C) =
apa(F) − a + 1 ≥ 0 hence pa(F) ≥ 1. Consider the exact sequence

0 −→ OXn ((a − 1)F) −→ OXn (aF) = OXn (C) −→ OF (C) = OF −→ 0

and the cohomology sequence

H1(OXn (C)) −→ H1(OF ) −→ H2(OXn ((a − 1)F)).

Wewould have h1(OF ) = pa(F) ≥ 1 and h2(OXn ((a−1)F)) = 0, hence h1(OXn (C)) > 0.
This gives a contradiction since h1(OXn (C)) = 0 because Ulrich bundles have vanishing
intermediate cohomology (see, for instance, [4, (3.1)]). ��
Theorem 4.2 The Ulrich line bundles on Xn with 7 ≤ n ≤ 10 with respect to ξn,4 are:

(a) (6; 26, 1n−6);
(b) (5; 23, 1n−4, 0);
(c) (4; 2, 1n−4, 03);
(d) (3; 1n−6, 06);
(e) (2; 010) only for n = 10;
(f) (7; 210) only for n = 10,

with permutations of the multiplicities.

Proof LetOXn (C) be anUlrich line bundle on Xn , withC smooth and irreducible, by Lemma
4.1. We suppose OXn (C) is of the form (d;m1, . . . ,mn) on Xn .
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Consider the embedding φξn,4 : Xn → S ⊂ P
14−n , where S is the image of Xn , and

denote still by C the image of C on S. If C is degenerate, then clearly d ≤ 4. Otherwise
C is a non-degenerate smooth irreducible curve of degree 18 − n in P

14−n (see property (i)
above). By Castelnuovo’s bound, we have pa(C) ≤ 4 if 7 ≤ n ≤ 9 and g(C) ≤ 5 if n = 10.
In addition, if n = 10 and g(C) = 5, then C ⊂ P

4 is a canonical curve, i.e. ξ10,4 cuts out on
C the canonical series, hence we are in case (f). By property (ii), we have d ≤ 6 if 7 ≤ n ≤ 9
and d ≤ 7 if n = 10. On the other hand we have d ≥ 2 (see the proof of Lemma 4.1).

Suppose d = 6, hence pa(C) = 4. Then we have

10 −
n

∑

i=1

mi (mi − 1)

2
= 4

24 −
n

∑

i=1

mi = 18 − n,

i.e.

6 −
n

∑

i=1

mi (mi − 1)

2
= 0

6 −
n

∑

i=1

(mi − 1) = 0

whence

n
∑

i=1

mi (mi − 1)

2
=

n
∑

i=1

(mi − 1),

i.e.

n
∑

i=1

(mi − 1)(mi − 2)

2
= 0

which yieldsmi ≤ 2 for 1 ≤ i ≤ n. This implies thatwe are in case (a). A similar computation
shows that in case d = 5 the only possible cases are the one in (b) and (5; 3, 1n−1). This
line bundle however is not Ulrich because property (iv) is not verified, since the kernel of the
map r is H0(L) with L = Kn + 2ξn,m −C = (0; (−2), 0n−1), that is nonzero. If 2 ≤ d ≤ 4
it is easily seen that the remaining possible cases are the ones in (c)–(e).

Finally one has to check that in all cases (a)–(f) we do have Ulrich line bundles. To
see this, by Proposition 2.4 we have only to prove that properties (iii) and (iv) above are
verified. Property (iii) is verified in cases (b)–(e) because deg(OC (L)) > 2pa(C) − 2.
In case (a) it is verified because otherwise the system (2; 16, 0n−6) would be non-empty,
contradicting the very generality of the blown-up points. Indeed, if C is a general curve of
the system (6; 26, 1n−6), then h1(OC (L)) > 0 implies, by Serre duality, that h0(OC (KC −
L)) > 0 and, by adjunction, the linear series |KC − L| is cut out on C by the linear system
(2; 16, 0n−6). In case (f) it is verified because otherwise the system (3; 110) would be non-
empty, a contradiction again. As for property (iv), note that the map r is clearly injective in
cases (a) and (f), because ker(r) consists in these cases of sections of line bundles of negative
degrees. As for the other cases one looks at the kernel of the map r , which is the H0 of the
following line bundles:
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• (0; (−1)3, 0n−4, 1) in case (b);
• (1;−1, 0n−4, 13) in case (c);
• (2; 0n−6, 16) in case (d);
• (3; 110) in case (e),

and in all these cases this H0 is zero by the very generality of the blown-up points, so r is
injective. ��

5 Higher rank Ulrich vector bundles on Xn

In this section we will construct higher rank slope-stable Ulrich vector bundles on Xn and
we will compute the dimensions of the moduli spaces of the constructed bundles.

In the whole section n ≥ 2 will be an integer and m will be an integer such that ξn,m is
very ample with m = 3 if n = 2 and m < 2

√
n if n ≥ 3 (cf. Lemma 2.1).

We start by defining

L1 =

⎧

⎪⎪⎨

⎪⎪⎩

(

3(m−1)
2 ; 2 m2−1

8 , 1n−m2−1
4 , 0

m2−1
8

)

, if m is odd,
(

3
2m − 1; 2 m(m+2)

8 , 1n−m2
4 , 0

m(m−2)
8

)

, if m is even,

L0 =

⎧

⎪⎪⎨

⎪⎪⎩

(

3(m−1)
2 ; 0 m2−1

8 , 1n−m2−1
4 , 2

m2−1
8

)

, if m is odd,
(

3
2m − 1; 0 m(m−2)

8 , 1n−m2
4 , 2

m(m+2)
8

)

, if m is even.

Lemma 5.1 The line bundles L0 and L1 are Ulrich with respect to ξn,m and satisfy

hi (L0 − L1) = hi (L1 − L0) = 0, for i = 0, 2, (18)

and

h1(L0 − L1) = h1(L1 − L0) =
{

m2−3
2 , if m is odd

m2−m−2
2 , if m is even.

(19)

Note that L0 and L1 are Ulrich dual in the sense of [6, Prop. 2.1(1)-(2)].

Proof of Lemma 5.1 Let δ be as in Theorem 3.1. Note that

n − δ − k = δ + 3m(m − 1)

2
− md. (20)

We first treat the case where m is odd.
Take d = 3(m−1)

2 and assume first n ≥ 3. Such a value of d is clearly compatible with
(12). It is also compatible with (11). Indeed

3(m − 1) − (2m − 3) + √
8n + 1 = m + √

8n + 1 > 0

and

2m − 3 + √
8n + 1 − 3(m − 1) = √

8n + 1 − m > 0

because m < 2
√
n. For such a value of d , we get δ = n − δ − k from (20). More precisely,

an easy computation shows that for such a d one has

δ = m2 − 1

8
, hence k = n − m2 − 1

4
.
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Hence, we get Ulrich line bundles on Xn of the form

L 3(m−1)
2 ,n,m

2−1
8 ,n−m2−1

4
=

(
3(m − 1)

2
, 2

m2−1
8 , 1n−m2−1

4 , 0
m2−1

8

)

and permutations of the multiplicities. In particular, we see that L0 and L1 defined above are
Ulrich.

Up to permutations of multiplicities, one has

L1 − L0 = L0 − L1 =
(

0; 2 m2−1
8 , 0n−m2−1

4 , (−2)
m2−1

8

)

.

Hence, we see that h0(L1 − L0) = h0(L0 − L1) = 0 and, by Serre duality, h2(L1 − L0) =
h0(Kn + L0 − L1) = 0. By Riemann–Roch and an easy computation,

h1(L1 − L0) = −χ(L1 − L0) = m2 − 3

2
.

The cohomology of L0 − L1 is computed in the same way.
In the case n = 2, m = 3, the line bundles L0 and L1 are Ulrich (see Remark 3.3) and

(18) and (19) are verified as before.
We next treat the case where m is even.
Take d = 3

2m − 1. As in the odd case, such a value of d is easily seen to be compatible
with (11) and with (12) (for verifying (12) one needs m < 2

√
n). For this value of d one

easily computes

δ = m(m + 2)

8
, k = n − m2

4
and n − δ − k = m(m − 2)

8
.

Hence, we get Ulrich line bundles of the form

L 3
2m−1,n,

m(m+2)
8 ,n−m2

4
=

(
3

2
m − 1, 2

m(m+2)
8 , 1n−m2

4 , 0
m(m−2)

8

)

and permutations of the multiplicities. In particular, L0 and L1 defined above are Ulrich.
One has

L1 − L0 =
(

0; 2 m(m−2)
8 , 1

m
2 , 0n−m(m+2)

4 , (−1)
m
2 , (−2)

m(m−2)
8

)

.

Again we see that h0(L1 − L0) = h2(L1 − L0) = 0. The computation of h1(L1 − L0) then
again follows by Riemann–Roch. The cohomology of L0 − L1 is computed in the same way.
��

For simplicity we will set

h := h1(L0 − L1) = h1(L1 − L0) =
{

m2−3
2 if m is odd

m2−m−2
2 , if m is even.

As n ≥ 2 then m ≥ 3, whence h ≥ 3.
To construct higher rank Ulrich bundles on Xn we proceed as follows.
Since Ext1(L0, L1) 
 H1(L1 − L0) 
 C

h , we have a non-split extension

0 E1 := L1 E2 L0 0, (21)
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where E2 is a rank-two vector bundle, necessarily Ulrich, as L0 and L1 are. We proceed
taking extensions

0 E2 E3 L1 0,

0 E3 E4 L0 0,

and so on; that is, defining

εr =
{

0, if r is even,

1, if r is odd,
(22)

we take successive extensions [Er+1] ∈ Ext1(Lεr+1 , Er ) for all r ≥ 1:

0 Er Er+1 Lεr+1 0. (23)

A priori we do not know that we can always take non-split such extensions; this we will prove
in a moment. In any case, all Er are Ulrich vector bundles of rank r , as extensions of Ulrich
bundles are again Ulrich.

Lemma 5.2 Let L be L0 or L1. Then, for all r ≥ 1 we have

(i) h2(Er ⊗ L∗) = 0,
(ii) h2(E∗

r ⊗ L) = 0,
(iii) h1(Er ⊗ L∗

εr+1
) ≥ h ≥ 3.

Proof We prove (i)–(ii) by induction on r . Assertion (i) follows from Lemma 5.1 because
E1 = L1. Assuming it holds for r , we have, by tensoring (23) by L∗, that

h2(Er+1 ⊗ L∗) ≤ h2(Er ⊗ L∗) + h2(Lεr+1 ⊗ L∗) = 0,

by the induction hypothesis and Lemma 5.1, since Lεr+1 ⊗ L∗ equals one of OX , L0 − L1

or L1 − L0.
A similar reasoning, tensoring the dual of (23) by L , proves (ii).
To prove (iii), first note that it holds for r = 1, as h1(E1 ⊗ L∗

ε2
) = h1(L1 − L0) = h by

Lemma 5.1. Then, for any r ≥ 1, tensor (23) by L∗
εr+2

. Using that h2(Er ⊗ L∗
εr+2

) = 0 by (i),

we see that h1(Er+1 ⊗ L∗
εr+2

) ≥ h1(Lεr+1 ⊗ L∗
εr+2

) = h ≥ 3, by Lemma 5.1. ��

By (iii) of the last lemma, we have that dim(Ext1(Lεr+1 , Er )) = h1(Er ⊗ L∗
εr+1

) > 0 for
all r ≥ 1, which means that we can always pick non-split extensions of the form (23). We
will henceforth do so.

Lemma 5.3 For all r ≥ 1 we have

(i) h1(Er+1 ⊗ L∗
εr+1

) = h1(Er ⊗ L∗
εr+1

) − 1,

(ii) h1(Er ⊗ L∗
εr+1

) = � r+1
2 �(h − 1) + 1,

(iii) h2(Er ⊗ E∗
r ) = 0,

(iv) χ(Er ⊗ L∗
εr+1

) = − ⌊ r+1
2

⌋

(h − 1) − εr ,

(v) χ(Lεr ⊗ E∗
r ) = − ⌊ r+1

2

⌋

(h − 1) + εr h,
(vi) χ(Er ⊗ E∗

r ) = − 1
2

(

r2 − εr
)

(h − 1) + εr .
(vii) the slope of Er is μ(Er ) = L0 · ξm,n = L1 · ξm,n.
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Proof (i) Since Ext1(Lεr+1 , Er ) 
 H1(Er ⊗ L∗
εr+1

) and the sequence (23) is constructed by

taking a nonzero element therein, the coboundary map H0(OX ) → H1(Er ⊗ L∗
εr+1

) of (23)
tensored by L∗

εr+1
, i.e.

0 Er ⊗ L∗
εr+1

Er+1 ⊗ L∗
εr+1

OXn 0, (24)

is nonzero. Thus, (i) follows from the cohomology of (24).
(ii) We use induction on r . For r = 1, the right-hand side of the formula yields h, whereas

the left-hand side equals h1(E1 ⊗ L∗
0) = h1(L1 − L0); thus the formula is correct by Lemma

5.1.
Assume now that the formula holds for r . Tensoring (23) by L∗

εr+2
, we obtain

0 Er ⊗ L∗
εr+2

Er+1 ⊗ L∗
εr+2

Lεr+1 ⊗ L∗
εr+2

0. (25)

We have h0(Lεr+1 ⊗ L∗
εr+2

) = 0 and h1(Lεr+1 ⊗ L∗
εr+2

) = h by Lemma 5.1, and h2(Er ⊗
L∗

εr+2
) = 0 by Lemma 5.2. Thus,

h1(Er+1 ⊗ L∗
εr+2

) = h + h1(Er ⊗ L∗
εr+2

) = h + h1(Er ⊗ L∗
εr

)

Using (i) and the induction hypothesis, this equals

h + (

h1(Er−1 ⊗ L∗
εr

) − 1
) = h +

(⌊
(r − 1) + 1

2

⌋

(h − 1) + 1

)

− 1

=
⌊

(r + 1) + 1

2

⌋

(h − 1) + 1,

showing that the formula holds for r + 1.
(iii) We again use induction on r . For r = 1 (iii) says that h2(L1 − L1) = h2(OXn ) = 0,

which is true. Assume now that (iii) holds for r . The cohomology of (23) tensored by E∗
r+1

and Lemma 5.2(ii) yield

h2(Er+1 ⊗ E∗
r+1) ≤ h2(Er ⊗ E∗

r+1) + h2(Lεr+1 ⊗ E∗
r+1) = h2(Er ⊗ E∗

r+1). (26)

The cohomology of the dual of (23) tensored by Er and Lemma 5.2(i) yields

h2(Er ⊗ E∗
r+1) ≤ h2(Er ⊗ L∗

εr+1
) + h2(Er ⊗ E∗

r ) = h2(Er ⊗ E∗
r ). (27)

Now (26)–(27) and the induction hypothesis yield h2(Er+1 ⊗ E∗
r+1) = 0, as desired.

(iv) For r = 1 (iv) reads χ(L1 − L0) = −h, which is true by Lemma 5.1. For r = 2 (iv)
reads χ(E2 ⊗ L∗

1) = −h + 1; using sequence (25) with r = 1, one computes χ(E2 ⊗ L∗
1) =

χ(OXn ) + χ(L0 − L1) = 1 − h, by Lemma 5.1, so again the formula is correct.
Assume now that the formula holds up to a certain r ≥ 2. From (25) and Lemma 5.1 we

find

χ(Er+1 ⊗ L∗
εr+2

) = χ(Er ⊗ L∗
εr+2

) + χ(Lεr+1 ⊗ L∗
εr+2

) = χ(Er ⊗ L∗
εr

) − h. (28)

Then (24) (with r replaced by r − 1) yields

χ(Er ⊗ L∗
εr

) = χ(Er−1 ⊗ L∗
εr

) + χ(OXn ) = χ(Er−1 ⊗ L∗
εr

) + 1. (29)
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Inserting into (28) and using the induction hypothesis, we get

χ(Er+1 ⊗ L∗
εr+2

) = χ(Er−1 ⊗ L∗
εr

) + 1 − h

= −(h − 1)

⌊
(r − 1) + 1

2

⌋

− εr−1 + 1 − h

= −(h − 1)
(⌊ r

2

⌋

+ 1
)

− εr−1

= −(h − 1)

⌊
(r + 1) + 1

2

⌋

− εr+1,

proving that the formula holds also for r + 1.
(v) For r = 1 (v) reads χ(L1 − L1) = 1, which is true. For r = 2 (v) reads χ(L0 ⊗E∗

2 ) =
−h + 1; from the dual of sequence (21) tensored by L0, one computes χ(L0 ⊗ E∗

2 ) =
χ(OXn ) + χ(L0 − L1) = 1 − h, by Lemma 5.1, so again the formula is correct.

Assume now that the formula holds up to a certain r ≥ 2. From the dual of sequence (23)
tensored by Lεr+1 we find

χ(Lεr+1 ⊗ E∗
r+1) = χ(Lεr+1 ⊗ L∗

εr+1
) + χ(Lεr+1 ⊗ E∗

r )

= χ(OXn ) + χ(Lεr+1 ⊗ E∗
r ) = 1 + χ(Lεr+1 ⊗ E∗

r ). (30)

The dual of sequence (23) with r replaced by r − 1 tensored by Lεr+1 , together with Lemma
5.1, yields

χ(Lεr+1 ⊗ E∗
r ) = χ(Lεr+1 ⊗ L∗

εr
) + χ(Lεr+1 ⊗ E∗

r−1) = −h + χ(Lεr−1 ⊗ E∗
r−1). (31)

Inserting into (30) and using the induction hypothesis, we get

χ(Lεr+1 ⊗ E∗
r+1) = 1 − h + χ(Lεr−1 ⊗ E∗

r−1)

= 1 − h − (h − 1)

⌊
(r − 1) + 1

2

⌋

+ εr−1h

= −(h − 1)
(⌊ r

2

⌋

+ 1
)

+ εr−1h

= −(h − 1)

⌊
(r + 1) + 1

2

⌋

+ εr+1h,

proving that the formula holds also for r + 1.
(vi) We check the given formula for r = 1, 2.
We have χ(E1 ⊗ E∗

1 ) = χ(L1 − L1) = χ(OX ) = 1, which fits with the given formula for
r = 1.

From (21) tensored by E∗
2 we get

χ(E2 ⊗ E∗
2 ) = χ(L1 ⊗ E∗

2 ) + χ(L0 ⊗ E∗
2 )

(v)= χ(L1 ⊗ E∗
2 ) − (h − 1). (32)

From the dual of (21) tensored by L1 and Lemma 5.1 we get

χ(L1 ⊗ E∗
2 ) = χ(L1 − L1) + χ(L1 − L0) = χ(OXn ) − h = 1 − h. (33)

Combining (32) and (33), we get χ(E2 ⊗ E∗
2 ) = −2(h − 1), which again fits with the given

formula for r = 2.
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Assume now that the given formula is valid up to a certain r ≥ 2. From (23) tensored by
E∗
r+1 and successively the dual of (23) tensored by Er we get

χ(Er+1 ⊗ E∗
r+1) = χ(Er ⊗ E∗

r+1) + χ(Lεr+1 ⊗ E∗
r+1)

= χ(Er ⊗ E∗
r ) + χ(Er ⊗ L∗

εr+1
) + χ(Lεr+1 ⊗ E∗

r+1).

Using the induction hypothesis, together with (iv) and (v) (with r substituted by r + 1), the
right-hand side can be written as
[

−1

2

(

r2−εr
)

(h−1) + εr

]

+
[

−(h − 1)

⌊
r + 1

2

⌋

− εr

]

+
[

−(h−1)

⌊
r+2

2

⌋

+ εr+1h

]

An easy computation shows that this equals

−1

2

(

(r + 1)2 − εr+1
)

(h − 1) + εr+1,

finishing the inductive step.
(vii) This can either easily be checked by induction again or follows from the fact that the

slope of an Ulrich bundle only depends on the ambient polarized variety, cf. e.g. [6, Prop.
2.1(3)], and must therefore equal the slope of L0 and L1 for all ranks. ��

We now define, for each r ≥ 1, the scheme U(r) to be the modular family of the vec-
tor bundles Er defined above. For r ≥ 2, the scheme U(r) contains a subscheme U(r)ext

parametrizing bundles Fr that are non-split extensions of the form

0 Fr−1 Fr Lεr 0, (34)

with [Fr−1] ∈ U(r − 1).

Lemma 5.4 Let Fr be a general member of U(r). Then Fr is Ulrich of rank r with slope
μ := L0 · ξm,n = L1 · ξm,n.

Moreover,

(i) χ(Fr ⊗ F∗
r ) = − 1

2

(

r2 − εr
)

(h − 1) + εr ,
(ii) h2(Fr ⊗ F∗

r ) = 0,
(iii) h1(Fr ⊗ L∗

εr+1
) ≤ � r+1

2 �(h − 1) + 1.

Proof Ulrichness is an open property in the family, and the rank and slope are constant, so
the general member of U(r) is Ulrich of rank r and slope μ as each Er constructed above is
(cf. Lemma 4.3(vii)) or use the fact that the slope of an Ulrich bundle only depends on the
ambient polarized variety, cf. e.g. [6, Prop. 2.1(3)]).

Properties (ii) and (iii) follows by specializing Fr to an Er constructed above, and using
semicontinuity and Lemma 5.3(iii) and (ii), respectively. Property (i) follows by Lemma
5.3(vi), since the given χ depends only on the Chern classes of the two factors and of Xn ,
which are constant in the family U(r). ��

We wish to prove that the general member of U(r) is slope-stable. To this end we will
need a couple of auxiliary results.

Lemma 5.5 Let r ≥ 2 and assume that [Fr ] ∈ U(r)ext sits in a non-split sequence like (34)
with [Fr−1] ∈ U(r − 1) being slope-stable. Then

(i) Fr is simple (that is, h0(Fr ⊗ F∗
r ) = 1);
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(ii) ifG is a destabilizing subsheaf ofFr , thenG∗ 
 F∗
r−1 and (Fr/G)∗ 
 L∗

εr
; if, furthermore,

Fr/G is torsion-free, then G 
 Fr−1 and Fr/G 
 Lεr .

Proof We first prove (ii).
Assume that G is a destabilizing subsheaf of Fr , that is 0 < rk(G) < rk(Fr ) = r and

μ(G) ≥ μ := μ(Fr ). Define

Q := im{G ⊂ Fr → Lεr } and K := ker{G → Q}.

Then we may put (34) into a commutative diagram with exact rows and columns:

0 0 0

0 K G Q 0

0 Fr−1 Fr Lεr 0

0 K′ Fr/G Q′ 0

0 0 0

defining K′ and Q′. We have rk(Q) ≤ 1.
Assume that rk(Q) = 0. Then Q = 0, whence K 
 G and Q′ 
 Lεr . Since μ(K) =

μ(G) ≥ μ = μ(Fr−1) and Fr−1 is slope-stable, we must have rk(K) = rk(Fr−1) = r − 1.
It follows that rk(K′) = 0. Since

c1(K) = c1(Fr−1) − c1(K′) = c1(Fr−1) − D′,

where D′ is an effective divisor supported on the codimension one locus of the support of
K′, we have

μ ≤ μ(K) =
(

c1(Fr−1) − D′) · ξm,n

r − 1
= c1(Fr−1) · ξm,n

r − 1
− D′ · ξm,n

r − 1
= μ − D′ · ξm,n

r − 1
.

Hence D′ = 0, which means that K′ is supported in codimension at least two. Thus,
Exti (K′,OX ) = 0 for i ≤ 1, and it follows thatG∗ 
 K∗ 
 F∗

r−1 and (Fr/G)∗ 
 Q′∗ 
 L∗
εr
,

as desired. If, furthermore,Fr/G is torsion-free, thenwemust haveK′ = 0,whenceG 
 Fr−1

and Fr/G 
 Lεr .
Next we prove that rk(Q) = 1 cannot happen. Indeed, if rk(Q) = 1, then rk(K) =

rk(G) − 1 ≤ r − 2 < r − 1 = rk(Fr−1) and rk(Q′) = 0; in particular, Q′ is a torsion sheaf.
Since

c1(K) = c1(G) − c1(Q) = c1(G) − c1(Lεr ) + c1(Q′) = c1(G) − c1(Lεr ) + D,
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where D is an effective divisor supported on the codimension one locus of the support ofQ′,
we have

μ(K) =
(

c1(G) − c1(Lεr ) + D
)

· ξm,n

rk(K)
≥

(

c1(G) − c1(Lεr )
)

· ξm,n

rk(K)

= μ(G) rk(G) − c1(Lεr ) · ξm,n

rk(K)
= μ(G) rk(G) − μ

rk(G) − 1
≥ μ rk(G) − μ

rk(G) − 1
= μ

This contradicts slope-stability of Fr−1.
To prove (i), assume that Fr is non-simple, that is, it admits a nontrivial endomorphism.

Then there exists a nonzero endomorphism ϕ : Fr → Fr dropping rank everywhere. Indeed,
take any endomorphism α that is not a constant times the identity, pick an eigenvalue λ of
α(x) for some x ∈ Xn and set ϕ = α − λ id; then det(ϕ) ∈ H0(det(F∗

r ) ⊗ det(Fr )) =
H0(OXn ) 
 C vanishes at x , whence it is identically zero. Both ker(ϕ) and im(ϕ), being
subsheaves of Fr , are torsion-free, and the equality

rk(Fr )μ(Fr ) = rk(ker(ϕ))μ(ker(ϕ)) + rk(im(ϕ))μ(im(ϕ))

easily yields that one of them is destabilizing. By part (ii), it follows that either ker(ϕ) 
 Fr−1

(and im(ϕ) 
 Lεr ) or im(ϕ)∗ 
 F∗
r−1. In the first case, if ϕ2 = 0, then Lεr ⊂ Fr+1,

contradicting the slope-stability of Fr+1, and if ϕ2 �= 0, then ϕ maps Lεr isomorphically to
Lεr , implying that (34) splits, a contradiction. In the second case, if ϕ2 = 0, then r = 2,
Fr−1 = L1 = im(ϕ) ⊂ ker(ϕ) = L0, yielding the contradiction h0(L0 − L1) > 0, whereas
if ϕ2 �= 0, then, since Fr+1 is slope-stable, ϕ maps Fr+1 isomorphically to Fr+1, implying
again that (34) splits, a contradiction. ��

Lemma 5.6 Let r ≥ 2 and assume that the general member of U(r − 1) is slope-stable. Then
U(r) is generically smooth of dimension 1

2 (r
2 − εr )(h − 1) + εr+1 and properly contains

U(r)ext .

Proof The general member Fr of U(r) satisfies h0(Fr ⊗ F∗
r ) = 1 by Lemma 5.5(i) and

h2(Fr ⊗ F∗
r ) = 0 by Lemma 5.4(ii). Hence, one has (see e.g. [5, Prop. 2.10]) that U(r) is

generically smooth of dimension

h1(Fr ⊗ F∗
r ) = −χ(Fr ⊗ F∗

r ) + h0(Fr ⊗ F∗
r ) + h2(Fr ⊗ F∗

r ) = −χ(Fr ⊗ F∗
r ) + 1

= 1

2

(

r2 − εr
)

(h − 1) − εr + 1 = 1

2

(

r2 − εr
)

(h − 1) + εr+1,

where we have used Lemma 5.4(i), as claimed.
Similarly, being slope-stable, also the generalmemberFr−1 ofU(r−1) satisfies h0(Fr−1⊗

F∗
r−1) = 1, so the same reasoning shows that

dim(U(r − 1)) = 1

2

(

(r − 1)2 − εr−1
)

(h − 1) + εr . (35)

Moreover,

dim(Ext1(Lεr ,Fr−1)) = h1(Fr−1 ⊗ L∗
εr

) ≤
⌊ r

2

⌋

(h − 1) + 1. (36)
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by Lemma 5.4(iii). Hence,

dim(U(r)ext) ≤ dim(U(r − 1)) + dim P(Ext1(Lεr ,Fr−1))

≤ 1

2

(

(r − 1)2 − εr−1
)

(h − 1) + εr +
⌊ r

2

⌋

(h − 1)

= 1

2

(

r2 − εr
)

(h − 1) + εr+1 −
(⌊

r + 1

2

⌋

− εr

)

(h − 1) + εr − εr+1

= dim(U(r)) −
(⌊

r + 1

2

⌋

− εr

)

(h − 1) + εr − εr+1,

and one easily sees that this is strictly less than dim(U(r)), since r ≥ 2 and h ≥ 3. Thus,
U(r)ext is properly contained in U(r), as claimed. ��

We can now prove slope-stability of the general member of U(r).

Proposition 5.7 Let r ≥ 1. The general member of U(r) is slope-stable.

Proof We use induction on r , the result being trivially true for r = 1. Assume r ≥ 2 and that
the general member of U(r) is not slope-stable, whereas the general member of U(r − 1) is.
Consider a one-parameter flat familyF → D of bundles over the discD such that the generic
member F (t) of this family is also a generic member of U(r) and the fiber F (0) of F → D

over 0 ∈ D lies in U(r)ext. Since we are assuming that that the generic member of U(r) is not
slope-stable, we have that F (t) is not stable so that there is a destabilizing sequence

0 G(t) F (t) Q(t) 0 (37)

which we can take to be saturated, that is, such that Q(t) is torsion free, whence so that G(t)

and Q(t) are (Ulrich) vector bundles (see [5, Thm. 2.9] or [4, (3.2)]). We may also assume
that, up to base change, the sequence (37) is defined over the field of meromorphic functions
over D, so that there are two flat families G → D and Q → D of bundles over the disc D

such that the generic members of G → D and Q → D are G(t) and Q(t), respectively.
The limit of P(Q(t)) ⊂ P(F (t)) defines a subvariety of P(F (0)) of the same dimension

as P(Q(t)), whence a coherent sheaf Q(0) of rank rk(Q(t)) with a surjection F (0) → Q(0).
Denoting byG(0) its kernel, we have rk(G(0)) = rk(G(t)) and c1(G(0)) = c1(G(t)). Hence, (37)
specializes to a destabilizing sequence for t = 0. Lemma 5.5 yields that G(0)∗ (respectively,
Q(0)∗) is the dual of a member of U(r −1) (resp., the dual of Lεr ). It follows that G(t)∗ (resp.,
Q(t)∗) is a deformation of the dual of a member of U(r − 1) (resp., a deformation of L∗

εr
),

whence that G(t) is a deformation of a member of U(r − 1), as both are locally free, and
Q(t) 
 Lεr , for the same reason.

In other words, the general member ofU(r) is an extension of Lεr by amember ofU(r−1).
Hence, U(r) = U(r)ext, contradicting Lemma 5.6. ��

By combining Proposition 5.7 and Lemma 5.4 we deduce:

Theorem 5.8 For any r ≥ 1, the blown-up plane Xn, with n ≥ 2, carries slope-stable rank-r
Ulrich bundles, and their moduli space contains a reduced and irreducible component of
dimension 1

2 (r
2 − εr )(h − 1) + εr+1.

Funding Open access funding provided byUniversità degli Studi di RomaTorVergatawithin theCRUI-CARE
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