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Abstract

With the continuous increase in computational power, sequential Monte Carlo
methods have emerged as an efficient technique for estimating unknown data in
a world consisting of nonlinearity and non-Gaussianity. In this thesis, we are
building a theoretical foundation by the help of Bayesian statistics, that can be
applied to numerous real-world problems. We are interested in solving the prob-
lem of estimating an unknown signal process given certain observations, where
both processes are modelled as Markovian, nonlinear, non-Gaussian state-space
models. In particular, we will try to estimate the unobserved volatility dynamics
for the S&P 500 index using observed returns and a slight modification of Hes-
ton’s stochastic volatility model. This will be done by the sequential importance
resampling filter, which we will also combine with Markov chain Monte Carlo
for parameter estimation. Our overall goal is to propose another alternative
to Heston’s model, by investigating how well the model responds to measuring
volatility when including data from the financial crisis of 2007-2008.

Keywords: Bayesian inference; sequential Monte Carlo; volatility filtering; fi-
nancial econometrics; particle Markov chain Monte Carlo
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Notation and Terminology

Rd − the d-dimensional Euclidean space.

B(Rd) − the σ-algebra of Borel subsets of Rd.

B(Rd) − the set of bounded B(Rd)-measurable functions defined on Rd.

Cb(Rd) − the set of bounded continuous functions defined on Rd.

Ck(Rd) − the set of compactly supported continuous functions defined on Rd.

MF (Rd) − the set of finite measures over B(Rd).

P(Rd) − the set of probability measures over B(Rd).

Markov Chains and Transition Kernels

Let (Ω,F , P ) be a probability space and X = {Xt}t∈N be a stochastic process
defined on said probability space, with values in Rnx . Let FX

t be the σ-algebra
generated by the process, i.e., FX

t ≜ σ(Xs, s ∈ [0, t]). Then X is a Markov chain
if, for all t ∈ N and A ∈ B(Rnx)

P (Xt+1 ∈ A|FX
t ) = P (Xt+1 ∈ A|Xt). (1)

The transition kernel of the Markov chain is the function Kt(·, ·) defined on
Rnx × B(Rnx) such that, for all t ∈ N and x ∈ Rnx

Kt(x,A) = P (Xt+1 ∈ A|Xt = x), (2)

where Kt has the following properties:

• Kt(x, ·) is a probability measure on Rnx ,∀t ∈ N and x ∈ Rnx .

• Kt(·, A) ∈ B(Rnx),∀t ∈ N and A ∈ B(Rnx).

X has a distribution determined uniquely by its initial distribution and transi-
tion kernel, and we then denote qt as the distribution of the random variable
Xt, with,

qt(A) ≜ P (Xt ∈ A). (3)

From (2) we can then show that qt satisfies the recurrence formula qt+1 = qtKt,
where qtKt is the measure defined as

(qtKt)(A) ≜
∫
Rnx

Kt(x,A)qt(dx). (4)

We say that the transition kernel Kt satisfies the Feller property if, for all t > 0,
the function Ktf : Rnx → R defined as

Ktf(x) ≜
∫
Rnx

f(y)Kt(x, dy) (5)

is continuous for every f ∈ Cb(Rd). If Kt has the Feller property, then we have
Ktf ∈ Cb(Rd) for all f ∈ Cb(Rd).
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1 Introduction

Since all the way back in the 1940’s, when Polish-American physicist Stanis law
Ulam was working on nuclear weapon projects at the Los Alamos National
Laboratory, Monte Carlo (MC) methods have been broadly used to estimate
uncertainty that could not be explained or analytically evaluated by determin-
istic mathematical models. The use of MC methods have since then been highly
useful, especially within optimization, numerical integration and sampling from
probability distributions. These types of methods rely on repeated random sam-
pling to obtain numerical results, in cases where an analytical solution might
not be possible. In more recent time, there has been a rise of sequential Monte
Carlo (SMC) methods, also commonly referred to as particle filters, along with
Bayesian inference. SMC methods allow for sequential updating of the probabil-
ities as more data become available. When these ideas were first introduced in
the 1950’s, they were largely overlooked and ignored, as the computational re-
sources at the time were quite modest. These algorithms also had shortcomings,
as particles would degenerate over time leading to poor particle diversity. Since
Gordon et al. published their work introducing an SMC resampling algorithm
in 1993, SMC methods have seen a dramatic increase in research activity. The
bootstrap filter allowed for sequential updating of the probabilities followed by
a resampling step, solving the degeneracy problem[1]. With computers contin-
uously becoming faster and faster, SMC methods have experienced more and
more real-life applications.

This thesis is meant to have an intuitive approach, by having a form that
allows the reader to continuously immerse him or herself in the material. This
is done by the use of the following structure. In Chapter 2 the problem at hand
is introduced and formulated, and the model it is based on is specified. We also
present some optimal solutions. In Chapter 3 we proceed by introducing the
methods and the theoretical framework that can be applied for estimating the
given problem. They are introduced in a manner that addresses the limitations
of the preceding one. Several simple examples are provided along the way to
assist the reader to better understand the theoretical concepts. In Chapter 4 we
conduct a benchmark experiment, where we apply the main particle filter in this
thesis to generated data by using a basic model. Moving on from here, we apply
the method to real-life financial data, where the filtered values are unobserved.
We also perform parameter estimation here, by combining two of our introduced
methods. Finally, we discuss our results in Chapter 6 and conclude in Chapter
7. The main objective for this thesis, is to establish a well-specified volatility
dynamic for further use in financial econometrics.

1.1 Introduction to Bayesian Filtering

When performing real-life data analysis, estimating unknown quantities given
some observations is key. In these situations, we usually have some prior knowl-
edge about what we are modelling. From this prior knowledge we can formulate
Bayesian models. This means formulating a prior distribution for the unknown
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quantities and likelihood functions which relates these to our observations. The
essence of it, is that we want to use randomness to better explain and analyze
hidden states and underlying processes, using some relation between the obser-
vations and the underlying process. All inference performed on the unknown
quantities stems from the well-known Bayes’ theorem, given by

P (A|B) =
P (B|A)P (A)

P (B)
. (6)

As we have already mentioned SMC methods, we will see how these can be
useful in updating the posterior distribution as we get more data available,
and thus we can perform inference on-line, sequentially. We will see how we
iteratively update our estimates, based on both new observations and the prior
knowledge. Common examples of this in real-life, are tracking an aircraft using
radar measurements or estimating the volatility of financial instruments using
stock market data. If we have data modelled by a linear Gaussian state-space
model, we can apply the well-known Kalman filter, which allows us to derive an
exact analytical solution. If data is modelled as a partially observed, finite state-
space Markov chain, we can obtain an analytical solution by the hidden Markov
model (HMM) filter. Unfortunately, our problems can often be too complex
to use these methods, making them inefficient. Common problems with real
data involve non-Gaussianity, high dimensionality and nonlinearity. Therefore,
we can use SMC methods, which are very flexible, easy to implement and in
general more applicable. Due to this, SMC methods are broadly used today, as
we are not dependent on linearity or normal assumptions required by e.g., the
Kalman filter. We are focusing here on how SMC can be applied in finance,
more specifically how they can be used to estimate financial data that cannot
be directly observed, by using observable data. The goal however remains the
same, as we wish to estimate and predict uncertainty as precise as possible.
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2 Problem and Panel Model

Our theoretical framework in this chapter and the next is build on the work
by Doucet et al. (2001)[2] as well as Ristic et al. (2004)[3]. We are following
the notation used in [2]. We begin by looking at two processes, where we have
[{xt}, {yt}]t∈N with xt ∈ X and yt ∈ Y. Here xt is our unobserved signal at
time t with initial distribution p(x0) and transition equation p(xt|xt−1), mod-
elled as a Markov process. Our observed data is yt, with yt being assumed
conditionally independent given our unobserved process, giving it the marginal
distribution p(yt|xt). For simplicity, we restrict ourselves here to signals mod-
elled as Markovian, nonlinear, non-Gaussian state-space models. Even though
SMC can be applied to more general settings, this thesis will focus on the afore-
mentioned case. Here p(·) denotes the probability function, with p(xt) denoting
discrete distributions and p(dxt) continuous distributions. We can summarize
our model in the following way

p(x0) ≜ p(x0|y0), (7)

p(xt|xt−1), for t ≥ 1, (8)

p(yt|xt), for t ≥ 1. (9)

We then denote x0:t ≜ {x0, ...,xt} and y1:t ≜ {y1, ...,yt} respectively as the
signal and the observations up to time t. Moreover, we wish to recursively
estimate the posterior distribution p(x0:t|y1:t) and its associated features in
time, including the marginal distribution p(xt|y1:t) and the expectations

I(ft) = Ep(x0:t|y1:t)
[ft(x0:t)] ≜

∫
ft(x0:t)p(x0:t|y1:t)dx0:t. (10)

The posterior density is then given by Bayes’ theorem as in (6), at any time
point t as

p(x0:t|y1:t) =
p(y1:t|x0:t)p(x0:t)∫

p(y1:t|x0:t)p(x0:t)dx0:t
, (11)

which we can use to obtain a recursive formula for the joint distribution by

p(x0:t+1|y1:t+1) = p(x0:t|y1:t)
p(yt+1|xt+1)p(xt+1|xt)

p(yt+1|y1:t)
. (12)

The marginal distribution p(xt|y1:t) also satisfies the following recursion.

Prediction: p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1, (13)

Updating: p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)∫
p(yt|xt)p(xt|y1:t−1)dxt

. (14)

These equations may be problematic due to the calculation of complex, high-
dimensional integrals, making them inefficient. Therefore, the recursive prop-
agation of the posterior given in (13) and (14) is only a conceptual solution.
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Implementing this would require the storage of the entire (non-Gaussian) den-
sity, which generally would be equivalent to an infinite dimensional vector. In
some cases, as mentioned earlier, it is possible to obtain optimal algorithms for
recursive Bayesian state estimation, as described in the next section.

2.1 Optimal Algorithms

For our panel model above, we can formulate optimal, finite-dimensional algo-
rithms for estimating the states by recursive Bayesian estimation in the following
cases:

1. In a linear-Gaussian case, the functional recursion of (13) and (14) be-
comes the Kalman filter.

2. If we have a discrete-valued state space, with a finite number of states, we
can apply grid-based methods.

3. It is also possible to apply exact analytic solutions for certain subclasses
of nonlinear problems, as discovered by Beneš[4] and Daum[5; 6].

We now give a brief explanation of two of these algorithms. For more on Beneš
and Daum filters see [3].

2.1.1 The Kalman Filter

The Kalman filter is a robust tool employed for estimating and predicting sys-
tem states amid uncertainties, playing a pivotal role in various applications,
including target tracking, navigation, and control. When applying the Kalman
filter, we assume that the posterior density is Gaussian at every time step, and
therefore exactly and completely described by its mean and covariance. We
have that if p(xt−1|y1:t−1) is Gaussian, it can be proven that p(xt|y1:t) is also
Gaussian, given the following assumptions:

• vt−1 and wt are drawn from Gaussian densities of known parameters

• ft−1(xt−1,vt−1) is a known linear function of xt−1 and vt−1

• ht(xt,wt) is a known linear function of xt and wt.

A typical model satisfying these assumptions is

xt = Ft−1xt−1 + vt−1, (15)

yt = Htxt + wt, (16)

where Ft−1 and Ht are known matrices defining the linear functions. The
random Gaussian and mutually independent sequences vt−1 and wt have co-
variances Qt−1 and Rt respectively.
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The Kalman filter algorithm is then derived as a generalized least squares (GLS)
method on the previous data with help from (13) and (14), and can be viewed
as the following recursive relationship:

p(xt−1|y1:t−1) = N(xt−1; x̂t−1|t−1,Pt−1|t−1) (17)

p(xt|y1:t−1) = N(xt; x̂t|t−1,Pt|t−1) (18)

p(xt|y1:t) = N(xt; x̂t|t,Pt|t) (19)

where N(x;µ,P) is a Gaussian density with argument x, mean µ and covariance
P, meaning

N(x;µ,P) ≜
1√

2πP
exp

{
− 1

2
(x− µ)TP−1(x− µ)

}
. (20)

With MT denoting the transpose of matrix M, the means and covariances of
the Kalman filter are computed as follows:

x̂t|t−1 = Ft−1x̂t−1|t−1 (21)

Pt|t−1 = Qt−1 + Ft−1Pt−1|t−1F
T
t−1 (22)

x̂t|t = x̂t|t−1 + Kt(yt −Htx̂t|t−1) (23)

Pt|t = Pt|t−1 −KtStK
T
t (24)

with
St = HtPt|t−1H

T
t + Rt (25)

being the covariance of the innovation term νt = yt −Htx̂t|t−1 and

Kt = Pt|t−1H
T
t S

−1
t (26)

being the Kalman gain.
The Kalman filter thus recursively computes the mean and covariance of the
posterior p(xt|y1:t). Given that the aforementioned assumptions hold, the op-
timal solution to the tracking problem is provided, and the implication is then
that no other algorithm should be able to perform better in this linear Gaussian
environment by the GLS method.
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2.1.2 Grid-Based Methods

If we have a state space that is discrete and finite, grid-based methods provide
the optimal recursion of the filtered density p(xt|y1:t). If we suppose that the

state space at time t − 1 consists of the discrete states
{
x
(i)
t−1

}N
i=1

then for

each state x
(i)
t−1, we can let the conditional probability of that state be denoted

w
(i)
t−1|t−1 given that we have the measurements up to time t−1. In other words,

we have that P{xt−1 = x
(i)
t−1|y1:t−1} ≜ w

(i)
t−1|t−1. This yields the posterior

density at t− 1 as

p(xt−1|y1:t−1) =

N∑
i=1

w
(i)
t−1|t−1δ(xt−1 − x

(i)
t−1). (27)

Here δ(·) is the Dirac delta measure, defined as δ(x − a) = 0 for x ̸= a, and
also

∫∞
−∞ δ(x−a)dx = 1. We can now substitute (27) into (13) and (14), which

yields the prediction and update equations:

p(xt|y1:t−1) =

N∑
i=1

w
(i)
t|t−1δ(xt − x

(i)
t ) (28)

p(xt|y1:t) =

N∑
i=1

w
(i)
t|t δ(xt − x

(i)
t ) (29)

where

w
(i)
t|t−1 ≜

N∑
j=1

w
(j)
t−1|t−1p(x

(i)
t |x(j)

t−1), (30)

w
(i)
t|t ≜

w
(i)
t|t−1p(yt|x

(i)
t )∑N

j=1 w
(j)
t|t−1p(yt|x

(j)
t )

. (31)

Here it is assumed that the transitional densities p(x
(i)
t |x(j)

t−1) and the likelihood

functions p(yt|x
(i)
t ) are known, and again, the assumptions must hold true for

this to be an optimal solution.
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3 Monte Carlo Methods and Particle Filtering

To investigate the problems defined in Chapter 2, MC methods have been in-
creasingly used, and then particularly MC integration methods. The advantage
here, is that these methods are not subject to any linearity or Gaussianity con-
straints on the model. We will first show how one can approximate integrals
given one has a sufficient number of samples from the required posterior distri-
butions, and then explain the challenges regarding these methods. Moreover,
we will explain how this has led to further development of other, more advanced
methods, such as importance sampling (IS) and sequential importance sampling
(SIS), as well as the sequential importance resampling filter (SIR). With the
increase of computational power, these methods have been increasingly used in
recent years.

3.1 Perfect Monte Carlo Sampling

Assuming we are able to simulate N independent and identically distributed

(i.i.d.) random samples, or particles, {x(i)
0:t}Ni=1, we can obtain an empirical

estimate of the distribution according to (11) by

PN (dx0:t|y1:t) =
1

N

N∑
i=1

δ
x
(i)
0:t

(dx0:t), (32)

where here δ
x
(i)
0:t

(dx0:t) denotes the delta-Dirac mass located in x
(i)
0:t. Perfect MC

sampling thus refers to generating random samples from a probability distribu-
tion exactly, without any approximation. We can now obtain the estimate of
I(ft) by

IN (ft) =

∫
ft(x0:t)PN (dx0:t|y1:t) =

1

N

N∑
i=1

ft(x
(i)
0:t). (33)

This provides an unbiased estimate, and from the strong law of large numbers
we see that

IN (ft)
a.s.−−−−→

N−→∞
I(ft), (34)

with
a.s.−−→ denoting almost sure convergence. Furthermore, if σ2

ft
< ∞ then the

central limit theorem (CLT) holds as

√
N [IN (ft) − I(ft)]

d−−−−→
N−→∞

N(0, σ2
ft), (35)

where
d−→ denotes convergence in distribution. The obvious benefit here is that

we may easily estimate any quantity I(ft) from the set of particles, but the
challenge is that in practice this is usually impossible to implement, as we
cannot sample efficiently from the posterior. This is due to the fact that in the
real world the posterior is likely multivariate and non-standard.
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Example 1
We now illustrate a simple example of perfect MC sampling by the inverse
transform method. Let X be a random variable that can be described by its CDF
FX . We now want to generate values of X so that it is distributed according to
the distribution of the CDF.
In this example we use the CDF of the exponential distribution with λ = 1:

F (x) = 1 − e−x. (36)

We now want to solve F (F−1(u)) = u to perform an inversion, which yields

F−1(u) = −(log(1 − u)). (37)

Now we generate a random number u from the standard uniform distribution,
i.e., u ∼ U(0, 1), and we can estimate our distribution.

Figure 1: Simulating the exponential distribution with N = 105 values for u
that we plug into F−1(u).

Our histogram here shows our estimation while the blue line is the true density,
and we see how well it fits, as we get near perfect estimates. The difficulty as
mentioned, is that in real life the inverse CDF is often impossible to calculate.

3.2 Importance Sampling

An alternative solution to the problem in the previous chapter is the importance
sampling method[7]. In order to evaluate I(ft), importance sampling takes
advantage of the identity

I(ft) =

∫
ft(x0:t)w(x0:t)π(x0:t|y1:t)dx0:t∫

w(x0:t)π(x0:t|y1:t)dx0:t
, (38)

9



where π(x0:t|y1:t) is the importance sampling distribution, or proposal distribu-
tion, and w(x0:t) is known as the importance weight,

w(x0:t) =
p(x0:t|y1:t)

π(x0:t|y1:t)
. (39)

This can be written as

Ep[ft] = Eπ

[
ft(wt)

wt

]
. (40)

It’s necessary that the support of π(·) includes the support of p(·). If one now can

simulate N i.i.d. particles {x(i)
0:t}Ni=1 according to π(x0:t|y1:t), the MC estimate

of I(ft) becomes

ÎN (ft) =
1
N

∑N
i=1 ft(x

(i)
0:t)w(x

(i)
0:t)

1
N

∑N
j=1 w(x

(j)
0:t )

=

N∑
i=1

ft(x
(i)
0:t)w̃

(i)
t , (41)

where the normalized importance weights w̃
(i)
t are given by

w̃
(i)
t =

w(x
(i)
0:t)∑N

j=1 w(x
(j)
0:t )

. (42)

The notation w̃
(i)
t represents here the normalized weights, but in the literature

these are sometimes referred to interchangeably. It is important to specify that
when introducing resampling later, we always resample from the normalized
weights.

Example 2
We illustrate IS by a simple one-dimensional example, without the use of par-
ticles. Say we want to estimate the following integral

θ = f(x) =

∫ ∞

0

x2

√
2π

e−x2/2dx, (43)

with our importance function being

π(x) =
2√
2π

e−x2/2, x > 0. (44)

We see this is the positive standard normal distribution, thus we can easily
sample from it. Let X ∼ N(0, 1) then Y = |X| follows the positive normal
distribution, and we can perform importance sampling by

θ̂ =
1

N

N∑
i=1

f(yi)

π(yi)
. (45)

10



We see below how we get good estimates for the integral θ by performing im-
portance sampling.

Figure 2: IS with N = 106 samples from the positive standard normal distri-
bution.

Importance sampling is a general MC integration method, but not appropriate
for recursive estimation. This is because one must get all the data y1:t before es-
timating p(x0:t|y1:t). Therefore, one must in general recompute the importance
weights over the entire sequence each time new data yt+1 becomes available.
This leads to high computational complexity, and we therefore present a solu-
tion for dealing with this by introducing sequential importance sampling.

3.3 Sequential Importance Sampling

We modify our IS-method so that the importance function π(x0:t|y1:t) at time t
admits as marginal distribution at time t−1 the importance function π(x0:t−1|y1:t−1),
this gives

π(x0:t|y1:t) = π(x0:t−1|y1:t−1)π(xt|x0:t−1,y1:t), (46)

which by iteration yields

π(x0:t|y1:t) = π(x0)

t∏
k=1

π(xk|x0:k−1,y1:k). (47)

From this importance function we can recursively evaluate the importance weights
from (42) in time, and we get

w
(i)
t ∝ w

(i)
t−1

p
(
yt|x

(i)
t

)
p
(
x
(i)
t |x(i)

t−1

)
π
(
x
(i)
t |x(i)

0:t−1,y1:t

) . (48)

We get an important particular case of this by adopting the prior distribution
as importance distribution

π(x0:t|y1:t) = p(x0:t) = p(x0)

t∏
k=1

p(xk|xk−1). (49)

Here, the importance weights satisfy w
(i)
t ∝ w

(i)
t−1p(yt|x

(i)
t ). We will see when

introducing the sequential importance resampling filter, that we restrict our-
selves to the use of the prior distribution as importance sampling distribution.
The degeneracy problem has revealed issues with the SIS method[8]. As the
variance of the importance weights can only increase over time, this leads to a
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common problem with the SIS filter; degeneracy of particles. Simply explained,
this means that after a certain number of recursive steps, only one particle will
have a significant weight. SIS is nothing but a constrained version of importance
sampling, and it is well known that importance sampling is usually inefficient
in higher dimensions[9].

3.4 Selection of Importance Density

3.4.1 The Optimal Choice

It is critical to choose an importance density π(xt|x(i)
t−1,yt) that minimizes the

variance of the importance weights when designing a particle filter. The optimal
choice doing just this, has been shown by Doucet et al. (2000)[8] as

π(xt|x(i)
t−1,yt)opt = p(xt|x(i)

t−1,yt) (50)

=
p(yt|xt,x

(i)
t−1)p(xt|x(i)

t−1)

p(yt|x
(i)
t−1)

. (51)

We can here substitute (50) into (48) yielding

w
(i)
t ∝ w

(i)
t−1p(yt|x

(i)
t−1), (52)

meaning that the importance weights at time t can be computed before the
particles are propagated to time t. To use the optimal importance function one

must first sample from p(xt|x(i)
t−1,yt) which generally is not straightforward, and

second, evaluate

p(yt|x
(i)
t−1) =

∫
p(yt|xt)p(xt|x(i)

t−1)dxt (53)

up to a normalizing constant, which may be difficult. In some cases, it might
be possible to use the optimal importance density, e.g., when xt is a member of

a finite set, or when p(xt|x(i)
t−1,yt) is Gaussian [8].

Gaussian Optimal Importance Function

If we are considering a case where the state dynamics are nonlinear, the measure-
ment equation linear, while all the random elements in the model are additive
Gaussian, we get a system given by

xt = ft−1(xt−1) + vt−1, (54)

yt = Htxt + wt, (55)

where we have the same definitions as in Chapter 2.1.1. For this particular
case, we can show that both the optimal importance density and p(yt|xt−1) are

12



Gaussian, meaning:

p(xt|xt−1,yt) = N(xt;at,Σt) (56)

p(yt|xt−1) = N(yt;bt,St) (57)

where

at = ft−1(xt−1) + ΣtH
T
t R

−1
t (yt − bt) (58)

Σt = Qt−1 −Qt−1H
T
t S

−1
t HtQt−1 (59)

St = HtQt−1H
T
t + Rt (60)

bt = Htft−1(xt−1). (61)

For proof see [3]. The described analytic evaluation of p(xt|xt−1,yt) and p(yt|xt−1)
is for most other cases difficult. In the next section, we will describe methods
for approximating the optimal importance density, despite not all assumptions
holding true.

3.4.2 Suboptimal Choices

The most common suboptimal choice is the transitional prior

π(xt|x(i)
t−1,yt) = p(xt|x(i)

t−1). (62)

If we have the same additive, zero-mean Gaussian process as in (54), this tran-
sitional prior is given by

p(xt|x(i)
t−1) = N(xt; ft−1(x

(i)
t−1),Qt−1). (63)

We now substitute (62) into (48) yielding

w
(i)
t ∝ w

(i)
t−1p(yt|x

(i)
t ). (64)

As we stated when using the optimal importance function, the importance
weights in (52) can be computed before the particles are propagated to time
t. Equation (64) however, states that this is not possible with the transitional
prior. If we are using p(xt|xt−1) as the importance density, and it is a much
broader distribution than the likelihood p(yt|xt), then this means only a few
particles will be given a high weight. Moreover, this causes the particles to
degenerate rapidly making the filter rather useless. Methods for coping with
this exist, like in the auxiliary particle filter in Chapter 3.6 [10], or by parti-
tioned sampling [11]. Partitioned sampling is useful if the likelihood is very
peaked, but cannot be factorized into a number of broader distributions, usu-
ally because each of the partitioned distributions are functions of some and not
all of the states. Other examples where it is possible to construct suboptimal
approximations to the optimal importance density are based on variations of
the Kalman filter [8]. These methods use local linearization techniques with a
Gaussian approximated importance density to p(xt|xt−1,yt).
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3.5 The Sequential Importance Resampling Filter

A challenge with SIS is that as t grows large, the distribution of the importance

weights w
(i)
t becomes more and more skewed, thus making it less suitable to

represent the posterior distributions sufficiently. The assumptions required to
use the SIR filter are very weak, as we must only know the state dynamics and
measurement functions, as they are defined in Chapter 2.1.1. We must also be
able to sample realizations from the process noise distribution and the prior, as
well as the likelihood p(yt|xt) needs to be available for point wise evaluation.
We have the well-known technique of bootstrapping, sampling with replacement.
The key idea of the bootstrap filter, or SIR filter in our terminology, is that we

wish to focus on particles with higher importance weights w
(i)
t , by replacing the

weighted empirical distribution P̂N (dx0:t|y1:t) =
∑N

i=1 w̃
(i)
t δ

x
(i)
0:t

(dx0:t) by the

unweighted measure

PN (dx0:t|y1:t) =
1

N

N∑
i=1

N
(i)
t δ

x
(i)
0:t

(dx0:t). (65)

Here N
(i)
t is the number of offspring associated to particle x

(i)
0:t and chosen such

that PN (dx0:t|y1:t) is close to P̂N (dx0:t|y1:t) in the sense that, for any function
ft, ∫

ft(x0:t)PN (dx0:t|y1:t) ≈
∫

ft(x0:t)P̂N (dx0:t|y1:t). (66)

Resampling can be done in many ways, but in this thesis we will utilize the
simple multinomial resampling scheme. What is important to note regarding the

SIR filter, is as the resampling is done at every time index, we get w
(i)
t−1 = 1/N

for all i = 1, ..., N . This means two things; first, there is no need to pass on
the importance weights between each time step; second, the relationship in (64)
simplifies to:

w
(i)
t ∝ p(yt|x

(i)
t ). (67)

We explain the SIR filter step-by-step on the next page.
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Algorithm 1: SIR Filter Algorithm

Initialization, t = 0.
for i = 1, ..., N do

Sample x
(i)
0 ∼ p(x0) and set t = 1.

end
Importance Sampling Step

for t = 1, ..., T do
for i = 1, ..., N do

Sample x̃
(i)
t ∼ p(xt|x(i)

t−1) and set x̃
(i)
0:t = (x

(i)
0:t, x̃

(i)
t ).

Evaluate the importance weights

w
(i)
t = p(yt|x̃

(i)
t ). (68)

end
Normalize the importance weights

w̃
(i)
t =

w
(i)
t∑N

j=i w
(j)
t

. (69)

Selection Step

Resample with replacement N particles {x(i)
0:t}Ni=1 from the set

{x̃(i)
0:t}Ni=1 according to the normalized importance weights.

end
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Figure 3: Visualization of the SIR filter with N = 10 particles. We see how
we start with an unweighted measure at t−1, and how the weights are updated
yielding the weighted measure.

Example 3
We now show a simple way to implement the SIR filter in practice. We apply
the algorithm to the following nonlinear, non-Gaussian model. This is a clas-
sic illustration model, taken from Gordon et al. (1993)[1]. We have the two
processes

xt =
1

2
xt−1 + 25

xt−1

1 + x2
t−1

+ 8cos(1.2t) + vt (70)

yt =
x2
t

20
+ wt, (71)

where x1 ∼ N(0, σ2
1), vt and wt are mutually independent, normally distributed

white noises, where vt ∼ N(0, σ2
v) and wt ∼ N(0, σ2

w) with σ2
1 = σ2

v = 10 and
σ2
w = 1.
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Figure 4: Estimated filtered densities at time points t = {10, 20, 30, ..., 100}
with N = 1000 particles. The red dots represent the true value of xt at each
time step.

When applying the SIR filter, the importance sampling density is independent of
the measurement yt. Thus, the state space is explored without any knowledge of
the observations. This can make the filter inefficient as it is sensitive to outliers.
Diversity of particles is also a possible issue, as we resample at every iteration.
However, the SIR filter has the advantage that the importance weights are easily
evaluated and the importance density can be easily sampled.

3.6 Auxiliary SIR Filter

The auxiliary SIR (ASIR) filter was first introduced by Pitt and Shephard in
1999, as a variant of the SIR filter[11]. The basic idea was to perform the resam-
pling step at time t − 1 before the particles were propagated to time t. Hence,
the ASIR filter tries to copy the sequence of steps carried out when we have
the optimal importance density available. We can derive the ASIR filter by in-

troducing the importance density π(xt, i|y1:t), sampling the pair {x(j)
t , i(j)}Nj=1,

where i(j) refers to the index of the particle at t − 1. We can apply Bayes’
theorem to derive the following for the posterior

p(xt, i|y1:t) ∝ p(yt|xt)p(xt, i|y1:t−1) (72)

= p(yt|xt)p(xt|i,y1:t−1)p(i|y1:t−1) (73)

= p(yt|xt)p(xt|x(i)
t−1)w

(i)
t−1. (74)

The filter then obtains a sample from the joint density p(xt, i|y1:t), and then

omits the indices i in the pair (xt, i) to produce a sample {x(j)
t }Nj=1 from the

marginalized density p(xt|y1:t).
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We then define the importance density used to draw the sample {x(j)
t , i(j)}Nj=1

so that it satisfies

π(xt, i|y1:t) ∝ p(yt|µ
(i)
t )p(xt|x(i)

t−1)w
(i)
t−1 (75)

where µ
(i)
t is some characterization of xt given x

(i)
t−1. This could be the mean

or a sample, where we would have µ
(i)
t = E[xt|x(i)

t−1] or µ
(i)
t ∼ p(xt|x(i)

t−1),
respectively. We can write

π(xt, i|y1:t) = π(i|y1:t)π(xt|i,y1:t) (76)

and define

π(xt, |i,y1:t) ≜ p(xt|x(i)
t−1) (77)

so that it follows from (75) that

π(i|y1:t) ∝ p(yt|µ
(i)
t )w

(i)
t−1. (78)

Then we have according to (48), the sample {x(j)
t , i(j)}Nj=1 is assigned a weight

proportional to the ratio of the right-hand side of (74) and (75) yielding

w
(j)
t ∝ w

(ij)
t−1

p(yt|x
(j)
t )p(x

(j)
t |x(ij)

t−1)

π(x
(j)
t , i(j)|y1:t)

=
p(yt|x

(j)
t )

p(yt|µ
(ij)
t )

. (79)

Compared to the SIR filter, the ASIR filter presents an advantage in that it
naturally generates points from the sample at t− 1 which are most likely to be
in the region of high likelihood when we condition on the current measurement.

If we have small process noise such that p(xt|x(i)
t−1) is well characterized by µ

(i)
t

the ASIR filter is often less sensitive to outliers than the SIR filter, and we

get more even weights w
(i)
t . If however we have large process noise, the ASIR

filter will often work poorly. This is due to the fact that p(xt|x(i)
t−1) is not

characterized by a single point in the state space, and the filter resamples based
on poor approximation. This may even lead to the ASIR filter degrading the
performance. We explain the algorithm on the next page.
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Algorithm 2: Auxiliary SIR Filter Algorithm

Initialization t = 0.
for i = 1, ..., N do

Sample x
(i)
0 ∼ p(x0).

end
for t = 1, ..., T do

for i = 1, ..., N do

- Calculate µ
(i)
t .

- Calculate the importance weights

w
(i)
t = π(i|y1:t) ∝ p(yt|µ

(i)
t )w

(i)
t−1. (80)

end

Normalize the importance weights w̃
(i)
t =

w
(i)
t∑N

j=1 w
(j)
t

.

Resample with replacement N integers {i(j)}Ni=1 using
probabilities from (80).
for j = 1, ..., N do

Sample x
(j)
t ∼ π(xt|i(j),y1:t) = p(xt|x(ij)

t−1).

Calculate w
(j)
t =

p(yt|x
(j)
t )

p(yt|µ
(ij)
t )

as in (79).

end

Normalize the weights w̃
(j)
t =

w
(j)
t∑N

i=1 w
(i)
t

.

end

We have now introduced the basis for SMC and particle filtering, and ex-
plained how these are used in different settings. As mentioned, the great chal-
lenge is often dealing with high dimensionality in statistical models. Markov
chain Monte Carlo (MCMC) is a great tool for sampling from a probability
distribution. It differs from SMC as it does not record a collection of multiple
samples approximately distributed according to the posterior, but rather iter-
atively creates a single sample which is then added to a Markov chain. Thus,
MCMC methods are not sequential, as they do not account for new data. This
creates different areas of usage for the methods. SMC are great at estimating
probability distributions on-line, while MCMC works great for parameter esti-
mation. Parameters are fixed and do not change in time, which is why MCMC
works well for this. By applying MCMC when estimating parameters, the possi-
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ble problem of particle degeneration is avoided. However, an area where MCMC
often performs worse, is when the distribution to be estimated is multimodal.
This is because it can easily get stuck within one of the modes. We will therefore
present a combination of the two methods in the next section, called particle
Markov chain Monte Carlo (PMCMC).

3.7 Particle Markov Chain Monte Carlo

Combining the two methods SMC and MCMC has been done previously, like
using MCMC kernels to build proposal densities for SMC algorithms[12]. With
PMCMC we look to have a different approach, as the aim is to use SMC to
design efficient high dimensional proposal distributions for MCMC algorithms.
MCMC uses MC sampling to create a Markov chain, and thus one can estimate
the target distribution by recording states from the chain. We will here first in-
troduce the Metropolis-Hastings algorithm (MH), which is a well-known MCMC
algorithm, that can also be applied to PMCMC. Then we demonstrate how MH
can be combined with SMC methods. The following theoretical framework is
largely based on the paper by Andrieu et al. (2010) [13].

3.7.1 The Metropolis-Hastings Algorithm

We begin by first introducing a basic and well-known MCMC algorithm. This
algorithm is a random walk algorithm, designed to approximate a stationary dis-
tribution p(X). The algorithm generates proposed states X∗ from the proposal
distribution π(X∗|X), where each state is evaluated according to the acceptance
ratio α. We describe the algorithm step-by-step in algorithm 3. We can see how
we either move to a new point, or stay at the same based on the relationship
between our current point and the proposed point. The two essential ideas, are
first, that if the new point is in a higher density region, we move with probabil-
ity 1. Second, if the new point is in a lower density region, we still move with
a non-zero probability. This makes us likely to stay in higher density regions,
but also makes it clear how the algorithm is vulnerable to multimodal models.
If we are trapped in a high density mode, one will usually need a very large
step size to jump out of this. The burn-in period fixes some of these issues, but
usually just if we start in a lower density region. However, this MC algorithm
is still a very powerful and preferred method when it comes to sampling from a
distribution with high dimensionality.

20



Algorithm 3: Metropolis-Hastings Algorithm

Initialization, t = 0.
Initialize the Markov chain with X0.
for t = 1, ..., T + TB do

Generate a proposal X∗ from the proposal distribution
X∗ ∼ π(X∗|X) where X = Xt.

Compute acceptance ratio:

α = min

{
1,

p(X∗)π(X|X∗)

p(X)π(X∗|X)

}
. (81)

Accept or reject
If α = 1 we accept X∗ and add it to our Markov chain such
that Xt+1 = X∗, otherwise we accept with probability α. If
rejected then we add the previous sample to the current
position such that Xt+1 = Xt.

end

TB denotes the first burn-in samples, which we discard to avoid
bias. When we have α < 1, we compare this with a value
u ∼ U(0, 1) to determine if we will accept or reject the sample.

3.7.2 Particle Marginal Metropolis-Hastings Sampler

We now move towards PMCMC methods. These types of methods rely on a
non-trivial and non-standard combination of MCMC and SMC methods, taking
advantage of the strength of both its components. What we will do further,
is using SMC to design efficient high dimensional proposal distributions for
MCMC algorithms. We then apply this to state space models for inference, i.e.,
parameter estimation. In this thesis we will restrict ourselves to the particle
marginal Metropolis-Hastings sampler, which has been described in [13].

Say we have a parameter θ ∈ Θ, where Θ is our parameter space, which may
be multidimensional. If we now consider the scenario where we wish to sample
from p(θ,x1:T |y1:T ) which is proportional to pθ(x1:T ,y1:T )p(θ), where p(θ) is
the prior for θ. The goal here is to jointly update θ and x1:T . Assuming we
can sample from the conditional density and that we can do p(θ,x1:T |y1:T ) =
p(θ|y1:T )pθ(x1:T |y1:T ), we can suggest the following proposal density for an MH
update:

π(θ∗,x∗
1:T |θ,x1:T ) = π(θ∗|θ)pθ∗(x∗

1:T |y1:T ). (82)

Here the proposed x∗
1:T is perfectly ’adapted’ to the proposed θ∗. What this

really means, is that for every iteration of the PMCMC algorithm, we run the
SMC algorithm one time with sampled parameters for that iteration to calculate
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the new likelihood. We get the acceptance probability to be

α = min

{
1,

p(θ∗,x∗
1:T |y1:T )

p(θ,x1:T |y1:T )

π(θ,x1:T |θ∗,x∗
1:T )

π(θ∗,x∗
1:T |θ,x1:T )

=
pθ∗(y1:T )p(θ∗)/π(θ∗|θ)

pθ(y1:T )p(θ)/π(θ|θ∗)

}
.

(83)
Thus we can see how we are targeting the marginal density p(θ|y1:T ) ∝ pθ(y1:T )p(θ),
and how we reduce the difficult problem of sampling from p(θ,x1:T |y1:T ) to sam-
pling from p(θ|y1:T ). We describe the algorithm below.

Algorithm 4: Particle Marginal MH Algorithm

Initialization, j = 0.
- Set θ(0) arbitrarily.
- Run SMC algorithm targeting pθ(0)(x1:T |y1:T ), sample
X1:T (0) ∼ p̂θ(0)(·|y1:T ) and let p̂θ(0)(y1:T ) denote the marginal
likelihood estimate.

Filtering and updating

for j = 1, ..., N do
- Sample θ∗ ∼ π(·|θ(j − 1).
- Run SMC algorithm targeting pθ∗(x1:T |y1:T ), sample
X∗

1:T ∼ p̂θ∗(·|y1:T ) and let p̂θ∗(y1:T ) denote the marginal
likelihood estimate.

- Compute acceptance probability

α = min

{
1,

p̂θ∗(y1:T )p(θ∗)/πj(θ
∗|θ(j − 1))

p̂θ(j−1)(y1:T )p(θ(j − 1))/πj(θ(j − 1)|θ∗)

}
.

(84)
With probability α set θ(j) = θ∗,X1:T (j) = X∗

1:T and
p̂θ(j)(y1:T ) = p̂θ∗(y1:T ); otherwise set
θ(j) = θ(j − 1),X1:T (j) = X1:T (j − 1) and
p̂θ(j)(y1:T ) = p̂θ(j−1)(y1:T ).

end

The notation (j), (j−1) is here used for stronger clarification of the index j. The
important part, is to see how we are proposing a new θ before the SMC algorithm
runs and a new p̂(y1:T ) after every iteration j, and how the proposed parameter
is used in the SMC algorithm. It’s crucial to distinguish how the PMCMC
algorithm runs for j = 1, ...,K iterations, and every j’th iteration the SMC
algorithm runs t = 1, ..., T times while creating i = 1, ..., N particles for every t.
A possible drawback of the PMCMC method is therefore that it requires TxN
iterations for creating a single sample. This gives a heavy computational load,
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as the MCMC method requires some time to enter its stationary distribution.
A possible burn-in sample is 105 iterations, making it typical to run an MCMC
algorithm for 106 iterations, meaning that the SIR filter would also run for 106

iterations. We also see here how we describe the algorithm for any parameter
θ ∈ Θ. When applying the method later, we will show how it can be done using
the whole parameter space Θ.
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4 A Benchmark Experiment with the SIR Filter

We will now do a demonstration with our SIR algorithm from Chapter 3.5, using
an autoregressive (AR) model. The AR model is a representation of a type of
random process, which can be used to describe a time series data sequence, e.g.,
in nature or economics, in which each value is linearly dependent on its previous
values. The AR(p) model is defined as follows

Xt =

p∑
i=1

φiXt−i + εt, (85)

where φ1, ..., φp are the parameters of the model up to lag p and εt being white
noise.

4.1 The Model

We will now look at an AR(1) model, which is a linear state space form model,
where the likelihood can be evaluated by the Kalman filter. The model in play
is

yt = xt + εt, εt ∼ N(0, σ2
ε) (86)

xt+1 = µ + φ(xt − µ) + ηt, ηt ∼ N(0, σ2
η), (87)

with Θ = (σ2
ε , σ

2
η, φ, µ) being our parameter space. For this example, we set

σ2
ε = 2, σ2

η = 0.02, φ = 0.975 and µ = 0.5, as these values are typical for
the stochastic volatility (SV) model [14]. Here φ represents the persistence
in variance, whilst σ2

ε is selected based on the curvature of the measurement
density in the SV model. Thus, we generate our processes xt and yt, filter out
the noise εt by using the relationship between yt and xt and the SIR filter, which
allows for comparison as we know the true values of xt. We can do likelihood
evaluation of our weights by computing the log-likelihood

logL̂N (Θ) =

T∑
t=1

log

(
1

N

N∑
i=1

w
(i)
t

)
. (88)

The log-likelihood is found by exploiting the relationship in the integral

p(yt|Θ;Ft−1) =

∫
p(yt|xt; Θ)p(xt|Ft−1; Θ)dxt, (89)

while we can obtain samples from the transition density p(xt|xt−1; Θ) as we
have samples from p(xt−1|Ft−1; Θ) by our particle filter, hence we are able to
estimate (89). We can calculate the likelihood by the Kalman filter, so we
compare our results from this with our results from the SIR algorithm. On the
next page we illustrate the error estimates for log p(yt|Ft−1), where Ft−1 is the
information up to time t− 1, meaning {y1, ...,yt−1}.
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4.2 Results

Figure 5: Error plot for N = 300 particles displaying the difference l̂t− lt with
a horizontal line displaying the mean error.

Figure 6: Error plot for N = 3500 particles displaying the difference l̂t − lt
with a horizontal line displaying the mean error.

We have here generated a time series where T = 5000. The implementation
of the SIR filter is fairly straightforward here, as we just need a few lines of
code after initializing the filter. In figures 5 and 6 we look at the log-predictive
density lt = log p(yt|Ft−1), and the corresponding estimate l̂t from the SIR
filter. We see when comparing with results from the Kalman filter, we get
estimates with little error, and the error decreases as N increases. We also see
that the mean is centered around zero and the variance homoscedastic, with
each step uncorrelated. We then proceed by plotting the observations against
the true values of our model, and our filtered values.
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Figure 7: N = 300 particles.

Figure 8: N = 300 particles, zoomed in for t = 0, ..., 100.

In figures 7 and 8 we plot the filtered values x̃t against the true values xt and
the observations yt.
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Figure 9: N = 3500 particles.

Figure 10: N = 3500 particles, zoomed in for t = 0, ..., 100.

We see as we increase to N = 3500 particles how our SIR filter performs better,
and we can barely see any error when we look at T = 5000 time steps. We can
then compare this with the results from the Kalman filter.
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Figure 11: Values estimated by the Kalman filter, the SIR filter and the true
values with N = 3500 particles, zoomed in for t = 0, ..., 100.

We see here how well the Kalman filter works for estimating a linear, Gaussian
model. We now perform maximum likelihood estimation (MLE) for the param-
eter µ. We use (88) to find the MLE, by running the particle filter for a set of
values for µ, to find the value with the highest likelihood. We see how we get
good estimates close to the true value of µ = 0.5 in figures 12 and 13.

Figure 12: Kalman filter log-likelihood slice for µ together with its estimate.
N = 300 particles used.
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Figure 13: Kalman filter log-likelihood slice for µ together with its estimate.
N = 300 particles used, zoomed out.

We see how we can verify how well the SIR filter works, when applying it to
our own generated data. For achieving even better results, one can increase
the number of particles, but at the expense of more computational complexity.
The advantage we have in this experiment, is that we know the true values at
each time step. In real-life, this is of course unrealistic. In the next chapter,
we will conduct an experiment applying the SIR filter to observed returns from
financial data. Our aim is to filter out the volatility, which cannot be directly
observed.
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5 Particle Filtering Using S&P 500 Returns

We now wish to produce some results using real-life data from the S&P 500
stock index. Our goal is still to estimate some latent states, using only observa-
tions, by running these through our particle filter. In our case, this will be the
unobserved spot volatility, while our observed data are the return data. In the
academic literature on stochastic volatility, this has been done many times for
different purposes. Whether it is searching for volatility specifications to find
which model can best describe the conditional returns distribution, or looking
at intraday returns to construct daily realized volatility results that can help
explain and predict the volatility distribution. Stochastic volatility models have
also been used for fitting option prices across strike prices, maturities and time.
As mentioned, our aim is to estimate the unobserved volatility by only looking
at the observed returns. By taking the stochastic volatility and multiple other
volatility factors into account, we wish to explain the filtered data in greater
detail. Then we proceed by estimating our parameters using particle Markov
chain Monte Carlo. The work presented in this chapter is largely based on
Christoffersen et al. (2010)[15]. By using a different data set which includes
the financial crisis of 2007-2008, we are trying to investigate whether the model
we choose works well when taking extreme volatility spikes into account. It is
crucial for a volatility model to be able to estimate volatility changes well during
uncertain periods for managing risk. Thus, we focus in this thesis on establish-
ing a well-specified volatility model. Also in contrast to [15], we are using the
aforementioned PMCMC method to estimate our parameters, as opposed to the
maximum likelihood importance sampling (MLIS) method.

5.1 The Model

Our model is based on the benchmark Heston (1993) affine square root (SQR)
model[16], where we assume that the underlying spot price S and the instanta-
neous change in variance V have the following dynamics

dS = µSdt +
√
V Sdz, (90)

SQR : dV = κ(θ − V )dt + σ
√
V dw, (91)

where the parameters denote the following:

• κ is the speed of mean reversion, θ the unconditional variance and σ the
variance of variance.

• µ is the instantaneous rate of return.

• dz and dw are Brownian motions with corr(dz, dw = ρ).

If the parameters satisfy 2κθ > σ2, known as the Feller condition, the volatil-
ity process is strictly positive[17]. The SQR model accounts for time-varying
volatility and a leverage effect, while implying that the instantaneous change
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in volatility should be Gaussian and homoscedastic. This is a fairly strong im-
plication, and we can easily evaluate this when investigating our data. We will
use the SQR model as a building block to introduce some alternative models.
It is relatively straightforward to use more heavily parameterized models, that
will outperform the SQR model. In general, a model with more parameters
will always outperform a model with less. For convenience, we only introduce
models with the same number of parameters as Heston’s SQR model. For a
more heavily parameterized model, see e.g., Dufays et al. (2022)[18]. We can
generalize and extend the SQR model to

dV = κV a(θ − V )dt + σV bdw, (92)

where a = {0, 1} and b = {1/2, 1, 3/2}.
This framework yields a total of six different models for the given values, which
we denote:

a b Name
0 1/2 SQR
1 1/2 SQRN
0 1 ONE
1 1 ONEN
0 3/2 3/2
1 3/2 3/2N

We see that the ONE model becomes the continuous-time Generalized Autore-
gressive Conditional Heteroscedasticity (GARCH) model with p = q = 1, where
the randomness of the diffusion term varies with the variance instead of the
square root of the variance[19]. In this thesis, we will estimate one of these
models, but due to time constraints, we will not estimate several for compari-
son. Instead, we will compare our results with those by [15].

5.2 Return Data

We use S&P 500 returns from January 1st 1995 to December 31st 2010, accu-
mulating to 4027 trading days. Index returns are obtained from Yahoo Finance,
which we transform to log returns.
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Figure 14: Log returns for the S&P 500 index.

Figure 15: Squared log returns for the S&P 500 index.
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Figure 16: Distribution for log returns for the S&P 500 index.

Figure 17: Realized volatility for a 20-day window, displaying the changes
against the corresponding levels.

From our data we see that the returns appear to be normally distributed. We
also see the biggest spikes happen around the time of the financial crisis, as well
as some smaller ones around the dot-com bubble. We get the annualized value
of the return drift parameter µ to be 0.063. We also see from Figure 17 that
the volatility does not show any indication of being normally distributed.

5.3 Discretization and Estimation

We time-discretize the continuous-time model, and we do this by applying the
well known Itô’s lemma:
Assuming a process X has a stochastic differential by

dX(t) = µ(t)dt + σ(t)dW (t), (93)

we can define a process Z by Z(t) = f(t,X(t)) which has a stochastic differential
given by
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df =
∂f

∂t
dt +

∂f

∂x
dX +

1

2

∂2f

∂x2
(dX)2, (94)

where we have the following multiplication table
(dt)2 = 0,

dt · dW = 0,

(dW )2 = dt.

As we now proceed with log returns, we write the generic SV process as

d ln(S) =

(
µ− 1

2
V

)
dt +

√
V dz (95)

dV = κV a(θ − V )dt + σV bdw. (96)

The equations (95) and (96) specifies here the relationship between the unob-
served state of the volatility and the observed stock prices. We discretize these
by the Euler scheme and applying Itô’s[20]

ln(St+1) = ln(St) +

(
µ− 1

2
Vt

)
+
√
Vtzt+1 (97)

Vt+1 = Vt + κV a
t (θ − Vt) + σV b

t wt+1 (98)

with (zt+1, wt+1) ∼ N(0, 1). Going forward we will denote ln(St+1) − ln(St) as
Rt+1.

5.4 Volatility filtering

We continue by applying our SIR filter as previously, as our aim is to approxi-
mate Vt+1 by a set of N particles, that are updated iteratively by the help of (97)

and (98). We use particles
{
V

(i)
t+1

}N

i=1
from the empirical distribution of Vt+1,

that are conditioned on particles
{
V

(i)
t

}N

i=1
from the empirical distribution of

Vt.

5.4.1 Step 1: Sampling

We simulate the state forward with N particles
{
Ṽ

(i)
t+1

}N

i=1
by (98). For the

first period we fix all our particles as V
(i)
1 = θ. We can then get the correlated
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shocks by

z
(i)
t+1 =

(
Rt+1 −

(
µ− 1

2
V

(i)
t

))/√
V

(i)
t (99)

w
(i)
t+1 = ρz

(i)
t+1 +

√
1 − ρ2ε

(i)
t+1, ε ∼ N(0, 1) (100)

thus yielding corr(z
(i)
t+1, ε

(i)
t+1) = 0 and corr(z

(i)
t+1, w

(i)
t+1) = ρ. µ is as mentioned

the instantaneous rate of return, so we set this fixed to the mean of our observed
returns. We now substitute (99) into (98) which gives

Ṽ
(i)
t+1 = V

(i)
t + κ(V

(i)
t )a(θ − V

(i)
t ) + σ(V

(i)
t )bw

(i)
t+1. (101)

We have now simulated N raw particles which provide a set of possible values
of Vt+1.

5.4.2 Step 2: Computing and Normalizing the Weights

We now have a vector of N possible values of Vt+1, and from (97) we know given
the other available information this is sufficient to generate ln(St+2). Thus we
use (97) to evaluate the likelihood that observation ln(St+2) has been gener-
ated by Vt+1. We can now compute the weight given to each particle, i.e., the
likelihood that the particle has generated ln(St+2) by:

w
(i)
t+1 =

1√
2πṼ

(i)
t+1

exp

{
− 1

2

[
Rt+2 − (µ− 1

2 Ṽ
(i)
t+1)

]2
Ṽ

(i)
t+1

}
(102)

for i = 1, ..., N , and we then normalize the weights as usual by

w̃
(i)
t+1 =

w
(i)
t+1∑N

j=1 w
(j)
t+1

. (103)

5.4.3 Step 3: Resampling

As we now have our set w̃
(i)
t+1, we can view this as a discrete probability dis-

tribution of Ṽt+1, hence we can resample from it. Let the ordered particles be

defined as Ṽ
(i)
t+1, then the corresponding cumulated sum of the ordered weights

w̃
(i)
t+1 yields the discrete, step-function CDF corresponding to the empirical dis-

tribution belonging to Vt+1. We can use a basic multinomial resampling scheme

to sample from w̃
(i)
t+1. After this, the filtering for period t+ 1 is done, and we go

back to step 1 for period t + 2 and simulate based on our resampling at t + 1.

5.5 Parameter Estimation

We now proceed by performing PMCMC to estimate our model parameters,
which is based on the theory we presented in Chapter 3.7. Our parameter
vector consists here of Θ = (κ, θ, σ, ρ). We need to calculate the probability
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α = min

{
1,

f(y1:T |Θ∗
j )p(Θ∗

j )/πj(Θ
∗
j |Θj−1)

f(y1:T |Θj−1)p(Θj−1)/πj(Θj−1|Θ∗
j )

}
(104)

= min

{
1,

f(y1:T |Θ∗
j )

f(y1:T |Θj−1)

}
, (105)

which is the probability for accepting a new parameter vector Θ∗
j from the pro-

posal distribution πj(Θ
∗
j |Θj−1) at iteration j. p(Θ) is our prior for Θ, which

we choose to be Gaussian, which we also choose for the proposal. The symmet-
ric property of the Gaussian distribution allow for the simplification in (105),
making the α computation much more straightforward. Here f is the total
likelihood, with the latent states integrated out, meaning we are just using the
product of the unnormalized weights, yielding

f(y1:T |Θ) =

T∏
t=1

{
1

N

N∑
i=1

w
(i)
t+1

}
. (106)

As we also don’t care about X1:T here, it allows for some slightly simpler no-
tation, but it should be clear that we are still doing the same as in Algorithm
4. In our case, we are running a slightly modified version of MCMC, as we are
using stochastic differential equations to form our proposal distribution. This
is known as the pCN method, and can be studied in greater detail in [21]. This
method differs only slightly, as the proposal becomes of AR(1) type instead of
a random walk. We compute log-likelihoods and take the sum, meaning we get
the same expression as in (88), making the α computation out to be

α = min

{
1, exp

[
l(y1:T |Θ∗

j ) − l(y1:T |Θj−1)
]}

, (107)

where l(·) denotes the sum of the log-likelihood function, i.e., the total log-
likelihood.

5.5.1 Step 1: Initialization

We start off with setting initial values for our parameters. We have a Gaussian
prior with the following means: κ0 = 100, θ0 = 0.04, σ0 = 2, ρ0 = −0.5, and
then we define Θ as a matrix of size KxP , where K is number of iterations
for our MH-algorithm, while P is number of parameters. Recall we still keep
µ fixed as the observed mean of returns. We run the SMC filter one time with
Θ0 = (κ0, θ0, ρ0, σ0), and compute l(y1:T |Θ0).

5.5.2 Step 2: Sampling and Updating

For j = 1, ...,K we run our SMC algorithm for N = 200 particles and t =
1, ..., T , where T = 4027. The choice of number of particles has been justified
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in [13] as a selection between computational complexity and a Markov chain
that mixes well. By applying the pCN method, we are here sampling Θ∗

j ∼
N(
√

1 − β2Θj−1, β
2Σ), where Σ is the covariance matrix for the parameters.

We adjust Σ with β to obtain an acceptance rate within the ideal interval
[23.4%, 44%] for exploring and exploiting the posterior distribution[22]. An
acceptance rate too high might lead to poor exploration of the posterior, while if
too low, it might not lead to enough samples from the important regions. When
sampling Θ∗

j we also introduce certain restrictions for the proposed parameters.
As θ and σ are variances, we make sure these do not get negative values, while ρ
is kept in the interval [−1, 1]. After the T ′th iteration we calculate (106) given
Θ∗

j , compute α and compare it with our random uniform value u ∼ U(0, 1), and
if u < α we set Θj = Θ∗

j , else Θj = Θj−1. If we accept we also update our
likelihood such that l(y1:T |Θj) = l(y1:T |Θ∗

j ), else l(y1:T |Θj) = l(y1:T |Θj−1).

5.5.3 Step 3: Parameter Inference

As the MH-algorithm has ran K = 105 times, we can now compute our estimated
parameters. We discard the first 104 samples as burn-in, and having j rows we
estimate

Θ̂ = (κ̂, θ̂, ρ̂, σ̂) =
1

K

K∑
j=1

Θj . (108)

5.6 Results

Proceeding with the algorithm described in 5.4, we set our initial parameters
according to the values found by Christoffersen et al.[15], and convert to daily
values. After running the particle filter we convert back to annualized values,
and all parameters will be expressed as such. We choose the ONEN model for
this experiment, meaning a = b = 1 in (92). The reason for choosing this model,
is because it appears to be good for picking up on volatility spikes. As the SQR
model, the ONE model and the 3/2 model are all famous volatility models, the
thought is to try out a lesser applied model. As seen in [15], the SQR and SQRN
models seem to be less sensitive, while the 3/2 and 3/2N models more sensitive.
We first look at the spot volatility, which we have filtered on a daily basis. We

are plotting the annualized daily filtered spot volatility path
√

Ṽt in Figure 18.
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Figure 18: Daily filtered spot volatility
√
Ṽt from 1995 through 2011 for the

ONEN model with N = 200 particles.

We see from Figure 18 that the volatility during the financial crisis is clearly
apparent. The spike here is where the highest value is reached, with about
88% volatility in annual terms. The filtered volatility also appears to be clearly
heteroscedastic, which goes against the assumptions made by Heston for the
SQR model. We also see that our filter has picked up on the volatility around
the turn of the millennium, so our filtered spot volatility corresponds well with
our data in Figure 14. We also see from Table 1 the first four moments for
the filtered spot volatility and the likelihood. What is noticeable here is a high
kurtosis, which is understandable as we have included the financial crisis in our
data.

In Figure 20 we plot the distributional properties of the filtered spot volatil-
ities (left column) and the natural logarithms of the filtered variances (right
column). The top row shows the QQ plots, daily changes against the volatility
(or log variance) in the middle row, and finally in the bottom row we display
the daily absolute changes against the volatility (or log variance). We pick up
several interesting observations here. We see on the QQ plots that data is non-

Gaussian for both
√
Ṽt and ln(Ṽt), but the latter is slightly more normalized

apart from the highest values. From the bottom row, we see that the volatility

is heteroscedastic for
√
Ṽt, but it appears more homoscedastic for ln(Ṽt). Based

on the plots here, it seems like the ONEN model does not work as well as we
would like, when modelling volatility in data including the financial crisis. In all
plots, it appears as the data is normally distributed for ln(Ṽt), except for those
values appearing around the time of the financial crisis.

Moving on, we look at the results from performing parameter estimation.
We first plot histograms of the parameters in Figure 21, where we are saving
every 10’th value after burning the first 104. The acceptance rate received
here is about 40,8%, which is a little bit higher than desired, but still within
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Filtered volatility 1995-2010
Mean Std. dev. Kurtosis Skewness Likelihood
0.20 0.12 12.21 2.48 12697.67

Table 1: First four moments of the filtered annualized volatility
√
Ṽt and the

likelihood with N = 200 particles.

the interval specified in 5.5.2. For reference, the estimated parameters for the
ONEN model in [15] are κ = 133.9347, θ = 0.0560, σ = 2.4188 and ρ = −0.7559.
Clearly, only κ comes anywhere close to any of their reference values. What is
worth noting, is that for all models where a = 1, meaning that an extra variance
factor is included in the drift term, the value for κ is remarkably larger than for
the other models in [15]. This might indicate that including this extra variance
in the drift term is not optimal when estimating parameters in SV models.
We then plot the path of the estimated parameters in Figure 22. The only
parameter we can see some clear convergence for is θ. There might possibly be
some convergence for κ and σ, while ρ is just linearly increasing. In Table 2 we
are displaying the means and standard deviations for all estimated parameters
in annualized units.

Parameter estimates 1995-2010
κ̂ θ̂ σ̂ ρ̂

Mean 103.479 0.132 0.233 -0.123
Std. dev. 14.756 0.005 0.092 0.148

Table 2: Parameter estimates for Θ̂ by PMCMC with N = 200 particles and
K = 105 iterations.

Figure 19: Log returns plotted against the filtered volatility
√
Ṽt as in Figure

18.
√
Ṽt is scaled down for comparison.
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Figure 20: Using the filtered
√
Ṽt (left column) and ln(Ṽt) (right column), the

top row shows the quantiles of the daily changes. The middle row shows the
daily changes against the daily levels of volatility. The bottom row shows the
absolute daily changes against the daily levels, with a regression line.
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Figure 21: Histogram of estimated parameters by PMCMC with N = 200
particles and K = 105 iterations, for Θ̂ = (κ̂, θ̂, σ̂, ρ̂) respectively. All parameters
are annualized, and reference value highlighted for κ.
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Figure 22: Path of estimated parameters by PMCMC with N = 200 particles
and K = 105 iterations, for Θ̂ = (κ̂, θ̂, σ̂, ρ̂) respectively. All parameters are
annualized, and reference value highlighted for κ.
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6 Discussion and Future Work

As mentioned, there is strong evidence that our filtered values are not dis-
tributed Gaussian with homoscedastic variance when applying the ONEN model,
which were the implications for the SQR model. As seen in Figure 20, the large
jumps in volatility from the financial crisis appears to skew our filtered log val-
ues, as we only get close to normal log variance, and close to homoscedastic log
variance changes. Our parameter estimates also clearly differ from our refer-
ence values found in [15]. The likely reason for this, is that we are including
the financial crisis in our data set, while Christoffersen et al. (2010)[15] are only
observing returns for the period 1996-2004. This should naturally increase the
values for θ and σ. However, the results only showcase this for the former, while
the latter decreases. Also, as we are using a Gaussian prior, this might explain
some of the different outcomes. The inclusion of the financial crisis might as
well make the PMCMC method dependent on more iterations to obtain conver-
gence, e.g., 106 might be necessary. This would be desirable, but computational
aspects makes this many iterations very time consuming. Thus, it was unfor-
tunately not feasible for this thesis. When displaying the filtered volatility in
Figure 18, we see how the SIR filter works well, as it displays similar volatility
levels up to 2004 as found in [15], but also picks up the higher levels around
2007-2008.

In this thesis, we have implemented a basic layer for one stochastic volatility
model, but as we have shown, we could have also implemented the standard SQR
model, the ONE model and the 3/2 model for comparison, to see if any of these
would have fared better. Implementing the standard SQR model has been done
several times in the literature, but especially the ONE model would have been
interesting to apply to our data set, as this gave the best results on the data set
applied in [15]. As seen in [18], they apply a more heavily parameterized model
with a data set more similar to ours. When applying it to the SQR model, they
also conclude that several of their parameters significantly differ from much
of the existing literature. Extending our model with more parameters would
also have been a possibility with more time on hand. Adding jumps to the
SQR model is also done in both [15] and [18]. This is achieved by adding a
Poisson jump counter N to the model, with jump size J distributed normally.
We can add jumps to both returns and variance, which would be particularly
interesting as we have data including the financial crisis, as jumps in return
and variance is a way of coping with volatility spikes. Another natural next
step when including jumps, would be to evaluate option prices by the use of
the filtered volatility, which has been done in both the mentioned articles. This
is interesting, as we would attempt to price options by taking the stochastic
dynamic of the volatility into account, as opposed to the well-known Black-
Scholes model, where the volatility is fixed constant.

Finally, we could have went with a different discretization method. Another
possible approach, would be to discretize as done by Chan and Joshi (2010)[23].
The idea then, is to discretize more efficiently by applying either a GammaQE
scheme or a Double Gamma scheme for simulating the volatility.
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7 Conclusion

We have in this thesis introduced some of the theoretical framework that makes
up sequential Monte Carlo methods and then showed how it can be applied
to solving real-life problems. We began by formulating the problem we are
facing, before proposing both analytical and probabilistic solutions. We have
described importance sampling, and the shortcomings of this method, leading
to sequential importance sampling. Then we have described how the SIR filter
combines this with bootstrapping to make a robust and efficient particle filter
that can be applied to numerous problems for estimating unobservable states.
Furthermore, we also show how particle filters can be combined with Markov
chain Monte Carlo to design efficient models for parameter estimations in high
dimensions.

We first showcase a benchmark experiment with the SIR filter, where the
goal is to estimate unknown states generated by an AR(1) model. We saw
how we got accurate estimates when comparing our results with those from the
Kalman filter, and especially we saw how the increase in particles helped in
creating even more precise estimates. Moreover, we performed MLE for one
parameter with good results. This experiment displayed in a simple manner
how well the SIR filter works when we have a model that connects our observed
states to our hidden states, as well as the key differences between the Kalman
filter and particle filters. Despite the Kalman filter not always being applicable,
it is the right choice when the constraints are met. There is no need to over
complicate if we can apply the Kalman filter to our model.

Then we conducted the main experiment for this thesis. We introduce Hes-
ton’s stochastic volatility model, which has a direct link between the spot price
and the underlying volatility for a financial asset. We proceed with a slightly
modified version of this on observed return data from the S&P 500 index, to
gain a different perspective on volatility modelling. By applying a model that
considers an extra variance factor in the drift term, we compare this with more
well used models as the SQR model and the ONE model. Our results are quite
interesting. First, when we only run one iteration of the SIR filter, we see that
we estimate the spot volatility quite well. The most volatile periods are clearly
apparent. Second, when we move to parameter estimation, our results demand
more interpretation. The speed of mean reversion parameter, κ, seems to be
slightly lower than our reference value. This is reasonable, as we use a data
set with more volatility, it is natural that it might take more time to return
to the long term mean value. The unconditional variance θ gives a good es-
timate also, as it is naturally a bit higher than for a data set for the period
1996-2004. The two final parameters differ more from the reference values, and
are harder to explain. We therefore make two conclusions; either the model has
multiple possible solutions, or the inclusion of the extra variance factor yields
poor results when accounting for extreme volatility. The results in Figure 20
support the latter. It’s also hard to argue that the underlying spot price and
the instantaneous change in variance would have such a weak relationship as
described by ρ.
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The aforementioned limitations and future research possibilities for this the-
sis are several, as mentioned in the previous chapter. We could extend our
model with more parameters to account for more variables in the market. More
computational power would allow us to run PMCMC for more iterations to
obtain stronger convergence, and option pricing could also be implemented.

To make final conclusions, we confirm that the use of SMC methods belong
in financial econometrics and more specifically volatility modelling. To explore
more alternatives to the standard Heston model is key for building more robust
volatility forecasting models as well as option pricing models, and remains left
for future research. Even the most skilled market analyst have a hard time
forecasting volatility, and we have seen how crucial this is in stabilizing both
the domestic and global economy.
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