
1.  Introduction
El Niño-Southern Oscillation (ENSO) is the leading mode of interannual climate variability (see, e.g., X. Chen 
& Wallace, 2015; Rasmusson & Carpenter, 1982; Zhang et al., 1997, and references therein). ENSO is a true 
mode of the coupled atmosphere-ocean system in the tropical Pacific (see Zebiak and Cane (1987) and the review 
papers by Neelin et al. (1998) and Battisti et al. (2019) and references therein): without the Southern Oscillation 
variability, there would be no El Niño or La Niña events, and vice versa. Owing to the slow decay rate of the 
ENSO mode, the state of ENSO is predictable up to a year in advance.

ENSO causes seasonal temperature and precipitation anomalies on a global scale by way of oceanic and atmos-
pheric teleconnections associated with, respectively, changes in the wind stress acting on the ocean and changes 
in the location of precipitation in the tropical Pacific (X. Chen & Wallace, 2015; Davey et al., 2014; Trenberth 
et al., 1998). As such, ENSO has nearly global impacts on agriculture (e.g., Iizumi et al., 2014; Naylor et al., 2001; 
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Plain Language Summary  A heuristic definition to characterize the diversity of sea surface 
temperature spatial patterns or regimes, typical of the El Niño-Southern Oscillation (ENSO) and common 
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observations two warm (eastern and central El Niño), two cold (basin wide and central La Niña), and a neutral 
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Niño and central La Niña regimes are expected to be more frequent accompanied with a less frequent neutral 
regime. The central Pacific El Niño and La Niña regimes are projected to increase in amplitude and variability.
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Phillips et al., 1998), fisheries (e.g., Bertrand, 2020) and water resources (e.g., Hamlet & Lettenmaier, 1999; 
Nicholas & Battisti, 2008; Poveda et al., 2001). However, the impact of ENSO on the climate beyond the tropical 
Pacific depends greatly on subtle differences in patterns of sea surface temperature (SST) anomalies associated 
with each ENSO warm and cold event—the so-called different “flavors” of ENSO (K. Takahashi et al., 2011; 
Thomas et al., 2018; Vimont et al., 2022)—that are a result of the stochastic nature of the atmospheric forcing 
that provides the energy for ENSO (Vimont et al., 2003). ENSO also alters the global carbon cycle by dominating 
the year-to-year variability in global atmospheric carbon concentrations (P. J. Rayner et al., 1999). Roughly, land 
regions emit more CO2 during El Niño and less CO2 during La Niña (Betts et al., 2020). In the ocean, ENSO 
mostly affects the CO2 fluxes in the tropical Pacific, which is the largest carbon outgassing system to the atmos-
phere, but with an anomaly signal that is the opposite of the land (Feely et al., 2006; T. Takahashi et al., 2009; 
Vaittinada Ayar et al., 2022).

ENSO events are diverse in terms of the magnitude, duration, and location of SST anomalies (Capotondi 
et al., 2020). Among the well-known flavors of ENSO are warm (El Niño) events that tend to feature maximum 
warm anomalies in the far eastern equatorial Pacific and those that tend to have maximum amplitude in the central 
equatorial Pacific, and cold (La Niña) events that mostly have maximum amplitude in the central equatorial 
Pacific. That warm events can be more extreme than cold events stems from the non-linear relationship between 
thermocline displacements and SST anomalies in the eastern Pacific (Battisti et al., 2019).

In order to better consider ENSO diversity, K. Takahashi et al. (2011) introduced an approach that differentiates 
between central and eastern Pacific warm anomaly patterns in observations or models. It is based on the nonlinear 
relationship between the two leading empirical orthogonal functions (EOF) of tropical Pacific SST anomalies. K. 
Takahashi et al. (2011) rotated the first and the second principal component (PC1 and PC2) axes by 45° to intro-
duce two indices E and C defined as: 𝐴𝐴 𝐴𝐴 =

𝑃𝑃𝑃𝑃1−𝑃𝑃𝑃𝑃2
√

2

 and 𝐴𝐴 𝐴𝐴 =
𝑃𝑃𝑃𝑃1+𝑃𝑃𝑃𝑃2

√

2
 . They then showed that E and C represent, 

respectively, eastern and central Pacific warm events. E and C indices have been extensively used to study warm 
events in observations and in different generations of numerical climate models (see, Dommenget et al. (2013) 
and K. Takahashi et al. (2011) for the Coupled Model Intercomparison Project Phase 3, CMIP3, Cai et al. (2018) 
and Karamperidou et al. (2017) for CMIP5 and Fredriksen et al. (2020) for CMIP6). This approach allows a better 
characterization of warm event diversity (Dommenget et al., 2013) and distinguishes climate models according 
to their ability to simulate this PC1/PC2 non-linearity (Cai et al., 2018; Dommenget et al., 2013). However, the 
SST patterns associated with EOF1 and EOF2 (from which PC1 and PC2 are derived to calculate E and C indi-
ces) can differ greatly between observations and models and between models (Cai et al., 2018). Indeed, the two 
model-specific leading EOFs of any given model do not necessarily capture the same SST variability as in obser-
vations, making comparisons difficult. Therefore, in order to consistently evaluate the diversity and asymmetry 
of ENSO events representation across models and observations, a reference framework that provides a common 
definition of ENSO events based on spatial SST anomaly patterns has to be established.

One approach to characterize modes of variability (for different climate variables) is through regime analysis 
which picks out recurrent spatio-temporal structures or regimes (for instance, seasonal North Atlantic atmospheric 
circulation or rainfall patterns associated with the North Atlantic oscillation), in observations (Cassou, 2008; 
Hertig & Jacobeit, 2014; Vautard, 1990; Vrac & Yiou, 2010; Vrac et al., 2014; Yiou & Nogaj, 2004) and in 
climate models (Breton et al., 2022; Fabiano et al., 2021; Sanchez-Gomez et al., 2009). In this paper, a statistical 
regime analysis of SST anomalies over the tropical Pacific is performed to identify recurring spatial patterns 
(or regimes) typical of ENSO. To our knowledge, very few studies have used clustering approaches to analyze 
ENSO-associated SST anomaly patterns in observations and none are applied to the models. Based on observa-
tions, Johnson (2013) used self organized maps to define nine ENSO patterns from November to February aver-
aged SST anomaly and Su et al. (2018) defined 13 patterns using a K-means approach applied to zonally averaged 
SST anomalies. In Johnson (2013), the clustering was applied to a few dozen seasonally averaged maps which 
does not allow a description of the dynamics of ENSO. In Su et al. (2018), the number of regimes was increased 
until it was large enough to describe ENSO dynamics solely based on its spatial pattern. The objective of the pres-
ent study is to provide a common definition of ENSO flavors based on observations that enables us to robustly 
study the dynamics and the variability of these flavors in observations and in CMIP6 models by characterizing 
continuous monthly ENSO evolution rather than different types of warm (or cold) events. The novelty of this 
study is to provide such a definition based on clustering using a Gaussian mixture model (GMM) (Pearson, 1894) 
which is a more flexible generalization of k-means clustering that provides a data-driven method for identifying 

Supervision: Jerry Tjiputra
Validation: David S. Battisti, Camille 
Li, Martin King, Mathieu Vrac, Jerry 
Tjiputra
Visualization: Pradeebane Vaittinada 
Ayar
Writing – original draft: Pradeebane 
Vaittinada Ayar
Writing – review & editing: David 
S. Battisti, Camille Li, Martin King, 
Mathieu Vrac, Jerry Tjiputra

 23284277, 2023, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022E

F003460 by U
N

IV
E

R
SIT

Y
 O

F B
E

R
G

E
N

, W
iley O

nline L
ibrary on [13/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Earth’s Future

VAITTINADA AYAR ET AL.

10.1029/2022EF003460

3 of 20

the appropriate number of regimes. From such defined ENSO regimes, various properties of each regime are 
examined, such as their frequency of occurrence, persistence, seasonal distribution and their regime transitions 
in both observations and in CMIP6 models (Eyring et al., 2016) over the historical period (1920–2014). The 
changes in the regimes under high-warming scenario in terms of occurrence, intensity, and variability are also 
evaluated.

The paper is structured as follows. Section 2.1 details the data sets and pre-processing requirements for the anal-
ysis. Section 2.2 explains the methodology. The results regarding the reference observation-based ENSO regimes 
are presented in Section 3.1. Sections 3.2 and 3.3 respectively describe the ability of the models to reproduce 
reference regimes and their future changes. Some discussions and conclusions are provided in Sections 4 and 5.

2.  Data and Methods
2.1.  Data and Preprocessing

The analysis is conducted on monthly SST extracted from the Met Office Hadley Centre HadISST observation-based 
gridded analyses from 1870 to 2021 (N. A. Rayner et al., 2003) at 1° × 1° spatial horizontal resolution and from an 
ensemble of 16 Earth system model (ESM) simulations from the Coupled Model Intercomparison Project Phase 6 
(CMIP6, Eyring et al., 2016, see Table 1). In this study, HadISST is considered as the reference observational data-set 
used to define reference ENSO regimes for evaluating the simulations. All simulations are regridded onto a regular 
1° × 1° grid using bilinear interpolation provided by climate data operators. In this study, analyses are conducted over 
the HadISST reference period 1920–2014. The starting year is set to 1920 due to observational data (ship records) 
in the equatorial East Pacific being very sparse before the 1920s which can impact ENSO variance (i.e., Solomon & 
Newman, 2012). ENSO regimes simulated by the ESMs for the period 1850–2100 is examined, combining model 
output from the Historical simulations from 1850 to 2014 (which corresponds to the end of the reference period) 
with the high CO2 Shared Socio-economic Pathway scenario (SSP5-8.5), from 2015 to 2100 (O’Neill et al., 2016).

ENSO regimes are usually defined using SST anomalies over the tropical Pacific. Our study is conducted on the 
anomalies over the Pacific domain between 20°S and 20°N and from 140°E to the west coast of the Americas 
from the regridded data (see Panel 3 of Figure 2a for the exact study area).

CMIP6 model name
Horizontal ocean resolution 

(lon. by lat. in degree)
Variant 
label ESM reference Data

ACCESS-ESM1-5 1° × 1° r1i1p1f1 Law et al. (2017) Ziehn et al. (2019)

CanESM5 1° × 1° r1i1p2f1 Swart et al. (2019b) Swart et al. (2019a)

CESM2 1.125° × 0.53° r10i1p1f1 Danabasoglu et al. (2020) Danabasoglu (2019a)

CESM2-WACCM 1.125° × 0.53° r1i1p1f1 Liu et al. (2019) Danabasoglu (2019b)

CMCC-ESM2 1° × 1° r1i1p2f1 Lovato et al. (2022) Lovato et al. (2021)

CNRM-ESM2-1 0.3°–1° r1i1p1f2 Séférian et al. (2019) Seferian (2018)

GFDL-CM4 0.25° × 0.25° r1i1p1f1 Held et al. (2019) Guo et al. (2018)

GFDL-ESM4 0.5° × 0.5° r1i1p1f1 Dunne et al. (2020) Krasting et al. (2018)

IPSL-CM6A-LR 0.3°–1° r1i1p1f1 Boucher et al. (2020) Boucher et al. (2018)

MIROC-ES2L 1° × 1° r1i1p1f2 Hajima et al. (2020) Hajima et al. (2019)

MPI-ESM1-2-HR 0.4° × 0.4° r1i1p1f1 Müller et al. (2018) Jungclaus et al. (2019)

MPI-ESM1-2-LR 1.5° × 1.5° r1i1p1f1 Mauritsen et al. (2019) Wieners et al. (2019)

MRI-ESM2-0 1°×(0.3–0.5)° r1i2p1f1 Yukimoto et al. (2019a) Yukimoto et al. (2019b)

NorESM2-LM 1° × 1° r1i1p1f1 Tjiputra et al. (2020) Seland et al. (2019)

NorESM2-MM 1° × 1° r1i1p1f1 Seland et al. (2020) Bentsen et al. (2019)

UKESM1-0-LL 1° × 1° r1i1p1f2 Sellar et al. (2019) Tang et al. (2019)

Note. Note that most of the models have irregular grids and the resolution quoted in the table are approximate.

Table 1 
List of the 16 Coupled Model Intercomparison Project Phase 6 Models Used in This Study With the Horizontal Resolution 
of the Ocean Component, Variant Label, Model, and Data References
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Monthly SST anomalies at each grid-point are computed by separately removing the trend of each calendar month 
time-series using a cubic smoothing spline (implemented by the function smooth.spline in R software; R Core 
Team, 2020) over the period 1870–2021 for HadISST and 1850–2100 for the model simulations. For instance, 
the non-linear trend of Januaries at a given grid-point is removed from the respective time-series comprising all 
January values. The degrees of freedom of the spline is set to 5 for a good compromise between the smoothness 
(smoothing parameter above 0.8) and the number of parameters (knots) of the spline used to estimate the trend 
for all tropical Pacific grid-points (Chap.10, Hastie & Tibshirani, 1990).

The Niño 3.4 index is also computed for HadISST and for each model. It corresponds to the standardized 
area-weighted mean SST anomaly over the Niño 3.4 region: 5°S–5°N  ×  190°–240°E. These anomalies are 
computed relative to the 1981–2010 climatology. The SST values are first detrended over the 1870–2021 (for 
HadISST) and 1850–2100 (for the CMIP6 models) period using the same cubic smoothing spline (degrees of 
freedom set to 5). Then, the Niño 3.4 index for each model is computed relative to the respective 1981–2010 
climatology.

A principal component analysis (PCA) is applied to the reference SST anomalies from HadISST in order to 
reduce the dimension of the data while keeping most of the variability. SST anomalies are weighted by the 
square root of the cosine of the latitude to give equivalent weights to all grid-cells (Vrac et al., 2014). The first 
principal component (PC) accounts for more than 56% of the total SST anomaly variance while 14 are needed to 
retain 90%. In this study, the four leading PCs containing more than 78% of the total variance have been kept for 
clustering. This choice has been made based on the stability of the clustering performed on these four PCs, and 
further presented below.

This 4-dimensional (4-d) space defined from the four leading PCs of HadISST anomalies (sometimes referred 
to as the “phase space”) are used for defining ENSO events in both the observation-based analyses and the ESM 
simulations. Monthly anomalies from the simulations are projected onto the four spatial patterns (also known 
as EOFs) associated with the HadISST PCs to obtain the four leading “pseudo-PCs” for each ESM. The term 
pseudo-PC is used to differentiate them from the actual PCs obtained from a PCA computed for each ESM. Using 
the same HadISST-based phase space for all data sets allows for a consistent comparison of the regime patterns. 
Indeed, performing PCA separately for each model simulation would add a complicating factor to the analysis: 
for instance, the spatial pattern associated with the fourth PC in HadISST could be associated with the fifth PC 
of a model, a mismatch which would penalize the model in terms of performance.

2.2.  ENSO Regimes Definition

In this section, the methodology to define the regimes associated with ENSO is described. Our approach 
consists of clustering the 4-d time series of PCs, representing monthly HadISST SST anomalies to define the 
observation-based reference ENSO regimes that are used as benchmark regimes to evaluate the models. Our 
clustering approach is based on a GMM (Pearson, 1894; Peel & McLachlan, 2000). It relies on the fact that any 
probability density function (pdf) f can be approximated by a weighted sum of K Gaussian pdfs fk (k = 1, …, K):

𝑓𝑓 ( 𝑥𝑥 ) =

𝐾𝐾
∑

𝑘𝑘=1

𝜋𝜋𝑘𝑘 𝑓𝑓𝑘𝑘( 𝑥𝑥 ; 𝛼𝛼𝑘𝑘 ),� (1)

where αk corresponds to the parameters (mean μk and covariance matrix Ωk) of pdf fk and πk is the mixture ratio, 
also referred to as the prior probability. The parameters αk and πk are to be estimated. Then, each of the K esti-
mated Gaussian pdfs characterizes one cluster, in the sense that each cluster Ck is supposed to be generated from 
one specific density function fk. In this study, GMM is preferred to k-means due to a key limitation of k-means: 
all clusters are equal in size (or volume) and spherical (i.e., all clusters have the same diagonal covariance matrix 
Ω, so that the cluster assignment is made solely based on the distance to the cluster center, which can lead to 
statistically suboptimal splits. The GMM is more flexible because it accounts for both variances and covariances 
in the assignment process (Rust et al., 2010). The GMM result is thus able to accommodate clusters of variable 
size as well as intra-cluster correlations much better than k-means.

The estimation of the GMM parameters, μk, Ωk, and πk is performed iteratively using the Expectation Maxi-
mization (EM, Dempster et al., 1977) algorithm by maximizing the likelihood (Fraley & Raftery, 2002). The 
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parameters are initialized by the result of a model-based hierarchical agglomerative clustering. The result is 
a tree-like structure, which proceeds from n clusters containing 1 month each to one cluster containing all n 
month as object clusters are successively merged. This provides the basis for an educated initialization of the EM 
algorithm for any number of mixture components (i.e., Gaussian pdfs) and parametrizations of the component 
covariance matrices and helps to avoid a local maximum when optimizing the likelihood function. Scrucca and 
Raftery (2015) provide a thorough description of the initialization.

EM is based on the principle that the πk is calculated when knowing αk and vice-versa, thus optimizing succes-
sively and iteratively both. To be more specific, after the initialization (iteration 0) of the parameters 𝐴𝐴 𝐴𝐴

0

𝑘𝑘
 , 𝐴𝐴 𝐴𝐴

0

𝑘𝑘
 and 

𝐴𝐴 Ω
0

𝑘𝑘
 , each iteration i consists of the following two steps:

1.	 �Expectation-step (or E-step) estimates the posterior probability 𝐴𝐴 𝐴𝐴
𝑖𝑖

𝑘𝑘
 (update of 𝐴𝐴 𝐴𝐴

𝑖𝑖

𝑘𝑘
 ) that the 4-d data xm for month 

m belongs to cluster Ck:

𝜏𝜏
𝑖𝑖

𝑘𝑘
(𝑥𝑥𝑚𝑚) =

𝜋𝜋
𝑖𝑖

𝑘𝑘
𝑓𝑓𝑘𝑘

(

𝑥𝑥𝑚𝑚, 𝛼𝛼
𝑖𝑖

𝑘𝑘

)

𝐾𝐾
∑

𝑘𝑘=1

𝜋𝜋
𝑖𝑖

𝑘𝑘
𝑓𝑓𝑘𝑘

(

𝑥𝑥𝑚𝑚, 𝛼𝛼
𝑖𝑖

𝑘𝑘

)

.
� (2)

1.	 �The Maximization-step (or M-step) uses the posterior probabilities to improve the estimates of GMM param-
eters (iteration i + 1):

𝜋𝜋
𝑖𝑖+1

𝑘𝑘
=

1

𝑛𝑛

𝑛𝑛
∑

𝑚𝑚=1

𝜏𝜏
𝑖𝑖

𝑘𝑘
(𝑥𝑥𝑚𝑚),� (3)

𝜇𝜇
𝑖𝑖+1

𝑘𝑘
=

1

𝑛𝑛 𝑛𝑛
𝑖𝑖+1

𝑘𝑘

𝑛𝑛
∑

𝑚𝑚=1

𝑥𝑥𝑚𝑚 𝜏𝜏
𝑖𝑖

𝑘𝑘
(𝑥𝑥𝑚𝑚),� (4)

Ω
𝑖𝑖+1

𝑘𝑘
=

1

𝑛𝑛 𝑛𝑛
𝑖𝑖+1

𝑘𝑘

𝑛𝑛
∑

𝑚𝑚=1

𝜏𝜏
𝑖𝑖

𝑘𝑘
(𝑥𝑥𝑚𝑚)

(

𝑥𝑥𝑚𝑚 − 𝜇𝜇
𝑖𝑖+1

𝑘𝑘

)′ (

𝑥𝑥𝑚𝑚 − 𝜇𝜇
𝑖𝑖+1

𝑘𝑘

)

,� (5)

where n is the number of months.

To summarize, the EM algorithm iteratively repeats (a) E-step estimating the posterior probabilities that the xm 
belongs to cluster Ck from the updated parameters of the GMM and (b) M-step estimating the GMM parameters 
from the updated posterior probabilities.

Finally, each cluster Ck is defined, according to the principle of posterior maximum:

𝐶𝐶𝑘𝑘 = { 𝑥𝑥𝑚𝑚 ; 𝜋𝜋𝑘𝑘 𝑓𝑓𝑘𝑘 ( 𝑥𝑥𝑚𝑚 ; 𝛼𝛼𝑘𝑘 ) ≥ 𝜋𝜋𝑗𝑗 𝑓𝑓𝑗𝑗 ( 𝑥𝑥𝑚𝑚 ; 𝛼𝛼𝑗𝑗 ), ∀ 𝑗𝑗 = 1, . . . 𝐾𝐾}.� (6)

In other words, a cluster contains all monthly data whose probability of belonging to that cluster is maximized.

The freedom of EM in the definition of the regimes depends on the number K of clusters and on the constraints 
applied to the covariance matrices Ωk (Fraley & Raftery, 2002). EM is performed several times with different 
constraints of the GMM covariance structure (see, Fraley and Raftery (2002) and Dempster et al. (1977)) and 
several numbers K of clusters. Hence, in practice, several GMMs are fitted and it is needed to select the “best” 
one. This is typically a “model selection” problem. The Bayesian Information Criterion (BIC) is a traditional tool 
in statistics to perform such a task (Schwarz, 1978). The BIC is used for model selection and helps to prevent 
overfitting by introducing penalty terms for the complexity of the GMM (i.e., the number of parameters). Hence, 
minimizing the BIC achieves a good compromise between keeping the model simple and providing a good 
representation of the data. The BIC is given by:

𝐵𝐵𝐵𝐵𝐵𝐵 (𝐾𝐾 ) = 𝑝𝑝 log ( 𝑛𝑛 ) − 2 log (𝐿𝐿 ),� (7)

where K is the number of clusters, L the likelihood of the parametrized mixture model, p the number of param-
eters of the GMM to estimate, and n the size of the sample (i.e., total number of months from January 1920 to 
December 2014, which is 1140 months).
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The clustering described above is performed using the R package “Mclust” 
(Scrucca & Raftery, 2015).

A different approach is used to assign each month in the model data to a 
specific regime. The EM algorithm is not applied, but 4-d representation of 
monthly SST anomalies (pseudo-PCs from 1850 to 2100) of each model is 
associated with the most appropriate HadISST regime based on the princi-
ple of posterior maximum (see Equation 6). Thus, the regimes are consist-
ently defined for all simulations in the sense that, in the following, ENSO 
regimes in the models actually represent similar regime determined from 
HadISST SST anomalies. In addition, the variability in the clustering itself 
as a possible source of noise is ruled out. Such defined regimes are used to 
compare the regime patterns and their temporal properties across different 
model simulations within a common reference framework. In practice, the 
common reference is ensured by computing 𝐴𝐴 𝐴𝐴

𝑖𝑖

𝑘𝑘
 from Equation  2 using the 

GMM parameters estimated from HadISST (hence the common framework) 
but using pseudo-PCs from each model.

3.  Results
3.1.  Reference HadISST ENSO Regimes

The optimal number K of ENSO regimes that best describe SST anoma-
lies spanned by the four leading PCs was determined using the clustering 

approach described in Section 2.2. In order to get a robust number of regimes, a bootstrap-like procedure has been 
implemented. The EM algorithm used to define the clusters (regimes) has been applied 250 times to a sub-sample 
of the total set containing 75% of the data randomly selected (i.e., without replacement) and the BIC has been 
computed for each K from 2 to 10 for each sub-sample. BIC values are presented as violin plots in Figure 1. The 
fraction of total draws that results in K ∈ [2, …, 10] clusters is given in the insert; for example, 58% of the 250 
sub-samples show K = 5 is the optimal number of clusters.

The sensitivity of the clustering results to the number of PCs has been tested (not shown). Results for higher 
numbers of PCs from the bootstrap procedure yields unclear results in terms of optimal number of clusters 
(usually higher than five), with the additional clusters not describing to known ENSO phases. This explains our 
choice of four PCs for the clustering.

Figure 2a represents the average HadISST pattern of the five reference regimes determined with the EM algo-
rithm. Two La Niña regimes (basin-wide La Niña BW-LN, central La Niña C-LN), two El Niño regime (central 
El Niño C-EN, eastern El Niño E-EN) and one Neutral regime are obtained. BW-LN is the most frequent (13.3%) 
La Niña configuration showing strong negative SST anomalies covering a large portion of the tropical Pacific. 
C-LN shows negative anomalies more circumscribed to the equatorial area with positive anomalies in the south-
eastern part of the domain. Both La Niña regimes have similar ranges of intensity with similar average Niño 3.4 
indices (see Figure 2b). C-EN is the most frequent El Niño regime with strongest positive SST anomalies close 
to the equator. E-EN is the most intense regime with large positive anomalies in the eastern Pacific. Similar 
results are obtained from the clustering obtained over a shorter period (1950–2014) and from JRA-55 reanalysis 
over the 1958–2019 period (see Figure S1 in Supporting Information S1; Kobayashi et al. (2015) and Harada 
et al. (2016)).

The time series of the Niño 3.4 index and the cluster assigned to each month are shown in Figure 2b, which depicts 
that El Niño and La Niña events are well captured by the cluster index. For example, the cluster E-EN corre-
sponds to the strong El Niño events (e.g., 1972–1973, 1982–1983, and 1997–1998, Ren et al., 2018; K. Takahashi 
et al., 2011). Central Pacific El Niño events (1986–1987, 1991–1992, 1994–1995, 2002–2003, 2004–2005, and 
2009–2010) are consistent with cluster C-EN. Similarly, the BW-LN regime contains strong La Niña events (e.g., 
1954–1956, 1973–1974, 1975–1976, 1988–1989, 1998–2000, and 2007–2008, Ren et al., 2018, and references 
therein). C-LN rather corresponds to moderate La Niñas, a regime that is in transition from an extreme El Niño 
(in 1983 and 1998) to an extreme La Niña.

Figure 1.  Violin plots represent Bayesian Information Criterion (BIC) 
values as a function of K obtained by applying the Expectation Maximization 
algorithm 250 times to sub-samples of the total set containing 75% of the data 
randomly selected. Yellow boxes indicate BIC inter-quartile range and the 
median is indicated by white dots. The BIC is computed for each K from 2 to 
10 for each sub-sample. The ratio (in %) of how often a given value of K is 
selected as optimal is also given in the bottom.
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Figure 2.  (a) Maps of the five El Niño-Southern Oscillation regimes in observations defined by Expectation Maximization. Colors correspond to average sea surface 
temperature (SST) anomaly within a regime in °C. The frequency (in %) of occurrence of each regime is given in the bottom left corner of each panel. The blue contour 
in the Neutral panel indicates the area used to perform the clustering. (b) Monthly Niño 3.4 index time series (solid line with red or blue shading when Niño 3.4 is 
positive or negative). The colored dots show the assigned regime for each month with the vertical position indicating the average Niño 3.4 value of that cluster (given 
at the bottom, in °C). (c) Boxplots showing the distributions of the four standardized PCs within each regime. Boxes indicate inter-quartile range, whiskers indicate 1.5 
times the inter-quartile range from the box and the dots are the values beyond that range and the middle bar the median of the PCs over the 1920–2014 historical period. 
(d) Spatial patterns associated with the four leading obtained from HadISST SST anomaly over the 1920–2014 period. The fraction of total SST variance explained (in 
%) by each empirical orthogonal functions is indicated in the lower left corner of each panel.
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To identify which of the four leading PCs are the most important for each regime, boxplots of their PC distribu-
tions are shown in Figure 2c and the spatial patterns associated with those PCs are given in Figure 2d. The warm 
ENSO patterns are mainly determined by PC1 and PC2 with PC1 dominating for C-EN. This is quite straightfor-
ward since PC1 and PC2 are is associated with central Pacific positive pattern (EOF1) and to a West-East dipole 
(EOF2). Although cold patterns are partly explained by PC1 and PC2 (with almost the same contributions for 
both), PC3 and PC4 are indispensable for capturing them. In particular, these latter PCs are needed to differen-
tiate BW-LN from the C-LN regimes. C-LN regime has a strong positive contribution from PC3 (EOF3) and 
moderate a positive contribution from PC4. While BW-LN has a moderate negative contribution from PC3 and 
no contribution from PC4.

In the next section, consistency in the pseudo-PC weighting across nearly all the models and observations is 
shown, especially for the two La Niña patterns and the C-EN pattern (see Figure S2 in Supporting Informa-
tion S1). This indicates that models are able to simulate regime patterns that are similar to those in the obser-
vations, and that by projecting model data onto the observed EOFs, temporal information (about e.g., pattern 
frequencies and probabilities of transition) can be extracted from the models and compared to those in observa-
tions. This also advocates for our approach instead of using the data-set specific EOFs.

3.2.  Model Evaluation Over 1920–2014

ENSO regimes from CMIP6 models are evaluated relative to the reference regimes (HadISST) in terms of spatial 
patterns, frequency of occurrence of each ENSO regime, the average persistence within each regime (defined 
as average duration in months a model remains in each regime from the moment that model enters it), and the 
transition probability from one regime to another.

First, the ability of each model to reproduce the reference patterns is assessed by associating pseudo-PCs from 
the models with the most appropriate reference regime. Figure S3 in Supporting Information S1 shows spatial 
patterns of the ENSO regimes obtained for CMIP6 models and HadISST over the historical period. Interestingly, 
every model is able to reproduce patterns resembling the reference regimes in terms of spatial distribution and 
intensity of SST anomalies. In particular, the asymmetry and the diversity of ENSO event spatial patterns in 
the reference regimes are well reproduced in the CMIP6 models. However, there are some notable differences: 
the extrema in regimes are usually more intense and spatially broader (for BW-LN, C-EN, and E-EN) in the 
models than in the observations. The extrema of the E-EN regime in the models are not located as far east as in 
the E-EN regime in HadISST. SST anomalies patterns are also zonally more extended in the models compared 
to the patterns in the observations and extend too far west (all except the neutral regime). Figure 3 presents the 
Taylor diagram for the average SST anomalies of each ENSO regime in the 1920–2014 historical period. Taylor 
diagrams are used to evaluate the agreement between average simulated and reference regime patterns. They 
summarize three statistics comparing simulated grid point “centered” values (“centered” means that the spatial 
average is subtracted from each grid-point value) to a reference value (represented by the red diamonds and 
lines): (a) the Pearson correlation coefficient measuring the “similarity” between pairs of centered simulated and 
reference values is given by the azimuthal position; (b) the centered root mean square error between the mean 
centered values of the observations and the simulation is given by the green curves; and (c) the standard deviation 
of simulated and observed pattern values are proportional to the radial distance from the origin (for more details, 
see Taylor, 2001). Therefore the closer a simulation marker is to the reference one (red diamond), the better is 
the model.

For each regime, all models show similar spatial patterns as HadISST (spatial correlation typically between 0.8 
and 0.9) but with amplitudes that vary greatly across models. Note that the E-EN regime shows greater differ-
ences between models and observations, and accordingly, has a larger centered root mean square error. Models 
are then ranked based on their metric performance depicted in the Taylor diagrams. The models are first ranked 
according to each regime and all ranks are then added (the smaller the sum, the better the model) to obtain the 
rank reported in the first column of Table 2. GFDL-CM4, UKESM1-0-LL, GFDL-ESM4, MPI-ESM1-2-LR, and 
CNRM-ESM2-1 are the top five ESMs for the spatial representation of ENSO. The CMIP6 ensemble mean is 
ranked between models 1 and 2.

The frequency of occurrence of each ENSO pattern over the historical period is shown in Figure 4. This varies 
from one model to another but it roughly agree with the regime frequency in the observations. In particular, 
the models feature an E-EN regime that occurs less frequently than the C-EN regime, and a C-LN regime that 
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Figure 3.  Taylor diagrams for each of the regime patterns from each Coupled Model Intercomparison Project Phase 6 model and observations (HadISST) over the 
1920–2014 period. Each colored marker refers to one climate model. Red diamonds and red curves indicate the spatial standard deviation of the clusters obtained from 
the observations.

Spatial 
pattern

Average frequency absolute 
relative bias (%)

Average persistence 
absolute bias (month)

Transition 
probability

Overall 
rank (total)

ACCESS-ESM1-5 11 3 (30.3%) 15 (2.24) 11 9 (40)

CanESM5 12 9 (40.61%) 9 (1.97) 13 14 (43)

CESM2 7 2 (29.7%) 8 (1.96) 4 4 (21)

CESM2-WACCM 10 13 (53.1%) 1 (1.38) 3 5 (27)

CMCC-ESM2 15 10 (42%) 16 (2.79) 2 14 (43)

CNRM-ESM2-1 5 11 (43.2%) 14 (2.2) 12 12 (42)

GFDL-CM4 1 1 (25%) 4 (1.66) 9 1 (13)

GFDL-ESM4 3 12 (45.4%) 13 (2.17) 16 16 (44)

IPSL-CM6A-LR 6 8 (39.4%) 10 (1.97) 10 6 (34)

MIROC-ES2L 16 15 (76.9%) 2 (1.41) 5 8 (38)

MPI-ESM1-2-HR 9 7 (38.7%) 11 (2.02) 14 11 (41)

MPI-ESM1-2-LR 4 6 (37.8%) 12 (2.11) 15 7 (37)

MRI-ESM2-0 8 5 (37.4%) 3 (1.45) 1 2 (17)

NorESM2-LM 14 14 (74.6%) 7 (1.85) 7 12 (42)

NorESM2-MM 13 16 (81.5%) 5 (1.71) 6 9 (40)

UKESM1-0-LL 2 4 (33.8%) 6 (1.84) 8 3 (20)

CMIP6 mean 1–2 3-4 (31.7%) <1 (1.15) 7–8 2 (11–14)

Note. The top five models according to each metric are bolded. The overall rank is calculated by adding the rank according 
to each metric (given in parenthesis in column 5). The top five models according to the overall rank are highlighted in gray. 
The position of CMIP6 ensemble average is given in the last row.

Table 2 
Model Rank for Each of Four Metrics Based on Model Bias (Given in Parenthesis) or Taylor Diagram
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occurs less frequently than the BW-LN regime. However, a few models do not (CanESM5, and MPI models) 
or too rarely (CNRM-ESM2, UKESM, and GFDL models) simulate the E-EN pattern, or produce too evenly 
distributed regime frequencies (CESM2-WACCM and NorEMS2-MM). In order to rank the models, the absolute 
value of relative frequency bias (in %) is computed for each regime (see Figure S4 in Supporting Information S1 
for actual and absolute bias). Relative frequency biases are larger for C-LN and E-EN, which is expected given 
their lower occurrence frequency. The frequency bias for each pattern is then combined to produce the “aver-
age frequency bias” metric reported in column 2 of Table 2 alongside their corresponding ranks. GFDL-CM4, 
CESM2, ACCESS-ESM1-5, UKESM1-0-LL, and MRI-ESM2-0, and are the top five ESMs for the frequency 
representation of ENSO regimes. The CMIP6 mean is positioned between models 3 and 4.

ENSO events generally peak during boreal winter. Figure 5 depicts the monthly ratio (in %) of how each regime 
is distributed throughout the year. In the observations, the Neutral pattern occurs more often outside the winter 
months while C-EN ad C-LN show higher frequencies during the winter. In contrast, BW-LN and E-EN seem 
to be quite evenly distributed throughout the year. In the models, the seasonality is generally consistent with 
HadISST for the Neutral regime and the two La Niña regimes BW-LN and C-LN, but the models do not produce 
the marked seasonality in the (most frequent) El Niño regime, C-EN. This is consistent with previous studies 
showing the inability of CMIP6 (and also CMIP3 and CMIP5) models to correctly simulate ENSO peaking in 
winter (see, H.-C. Chen and Jin (2021), and references therein). The corresponding Taylor diagram is given in 
Figure S5 in Supporting Information S1. Correlations do not exceed 0.6 for any model meaning that the seasonal 
variation of pattern occurrences is not well represented in the models.

The average persistences of the observed ENSO regimes are 4.7, 3.2, 7, 4.2, and 8.3 months for, respectively the 
BW-LN, C-LN, Neutral, C-EN, and E-EN regimes. Figure S4 in Supporting Information S1 gives the persistence 
bias in the models. Models are either over- or under-estimating the persistence in the BW-LN (from −2 up to 
3 months), C-LN regimes (±2 months), and the Neutral regime (±2 months). Persistences of C-EN regime are 
rather over-estimated (up to 2 months). For E-EN regime, whose frequency is under-estimated by the models, the 
persistence is also widely under-estimated. Similar to the frequency, the absolute persistence bias is computed 
(see Figure S4 in Supporting Information  S1) for each model and the average is reported with their rank in 
column 3 of Table 2. The top five models are CESM2-WACCM, MIROC-ES2L, MRI-ESM2-0, GFDL-CM4, 
and NorESM2-MM. On average, the CMIP6 ensemble achieves better performance than any individual model.

Figure 4.  (bottom) Barplots of each El Niño-Southern Oscillation regime frequency for all the models and HadISST (observations) over the 1920–2014 period. (top) 
The boxplots above indicate the Niño 3.4 index distribution for each model and regime.
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Figure 6a shows the month-to-month transition diagram from one reference ENSO regime to another. The proba-
bility of remaining in any given regime ranges from 69% to 92%, which is higher than any transition. The second 
most favored transition for BW-LN, C-LN, and C-EN is toward the Neutral regime (resp. at 12%, 23%, and 22%). 
For the E-EN regime, the second transition is toward C-LN (8%) which interestingly happened after the very 
strong El Niño events of 1982–1983 and 1997–1998. There is no direct transition toward the Neutral regime. 
Direct transitions from either La Niña regime to C-EN and between La Niña regimes are rare.

Transition probability matrices for each model and for observations are given in Figure S6 in Supporting Informa-
tion S1. The Taylor diagram in Figure 6b built from those matrices compares the ability of the models to reproduce 
the transitions of the reference regimes. The poorest performing models tend to underestimate the persistence 

Figure 5.  Monthly occurrence ratio (%) for all regimes and all the models and HadISST over the 1920–2014 period.
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of E-EN and transition too frequently from E-EN to C-EN (lower right corner of the matrices in Figure S6 in 
Supporting Information S1), mostly due to the low frequency or the absence of occurrence of the E-EN regime. 
Models are ranked according to their transition behavior based on the Taylor diagram in column 4 of Table 2. The 
top five models are MRI-ESM2-0, CMCC-ESM2, CESM2-WACCM, CESM2, and MIROC-ES2L. CMIP6 mean 
is positioned between model 7 and 8.

3.3.  Future Changes

The changes in the regime frequencies under a high-warming future scenario are analyzed. As described in 
Section 2.2, the frequency of the model regimes is obtained by matching the pseudo-PC of each model to the 
most appropriate reference regime. Thus, changes in regime frequency in the models are not artifacts of potential 
changes in the spatial patterns of regimes with global warming. Figure 7 shows the ENSO regime frequency over 
the 1965–2014 historical and 2051–2100 future periods.

The most consistent result is the projected decrease in the BW-LN regime (16 out of 16 models). In contrast, the 
other La Niña regime (C-LN) is expected to occur more frequently in the future for 12 out of 16 models. Similarly, 
C-EN and E-EN frequency is also expected to increase in the future for the majority (13 and 11) of the models. 

Figure 6.  (a) Transition diagram from one regime to another obtained for HadISST; values are the transition probability (in %). The probability of remaining in a 
regime is noted by the circled values (in %). (b) The Taylor diagram evaluating the regime transition probabilities in the Coupled Model Intercomparison Project models 
Phase 6 compared to the regime transition probabilities in the observations.

Figure 7.  Regime frequencies over the 1965–2014 historical (blue) and the 2051–2100 future (yellow) periods. Gray shading designates the models with lower regime 
frequency in the future compared to historical period. The number of models with lower, equal, and higher occurrence in the future is given in blue, gray, and yellow, 
respectively, for each regime.
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For the Neutral regime, there is no clear consensus with half of the models projecting increased frequency in the 
future. The decrease in frequency of BW-LN cold events and increase in frequency of C-EN and E-EN warm 
events cannot be a consequence of the mean warming trend since the latter has been removed by detrending the 
model output.

Another way to investigate regime frequency days is through continuous long-term trends in both HadISST 
and CMIP6 model simulations (respectively over the 1920–2014 and 1850–2100 periods). The linear trends 
are estimated from the 30-year running mean of the regime frequency time series (see Figure S7 in Supporting 
Information S1). Figure 8 presents the sign of significant linear trends of ENSO regime frequencies. A trend is 
considered significant at the 95% confidence level (α = 0.05) based on a t-test on the null hypothesis that there 
is no trend (slope is equal to 0, estimated with lm function; R Core Team, 2020). This trend analysis shows that 
the frequencies of E-EN, C-EN, and C-LN regimes are projected to increase significantly in respectively 12, 12, 
and 13 models, by the end of the 21st century. This is consistent with their higher occurrences in the future period 
shown in Figure 7 and the historical trends of the reference regimes (Figure S7 in Supporting Information S1). 
The Neutral regime frequencies shows a significant decreasing trend in 14 models and in observations while 
BW-LN is projected to significantly decrease in 8 and increases in 5 of the models. The same trend results are 
obtained using a non-parametric trend test (e.g., the Theil-Sen test, not shown).

Figure 9 shows the median and the standard deviation of the Niño 3.4 index, within each cluster, for the reference 
and model regimes over the 1965–2014 historical and the 2051–2100 future periods. The C-LN and C-EN clus-
ters are associated with more intense SSTA in the future for respectively 14 and 11 models with a larger median 
Niño 3.4 index. For BW-LN and E-EN, the results are mixed with, respectively, 9 and 8 of the models projecting 
more intense patterns. In terms of variability, the BW-LN, C-LN, Neutral, and C-EN regimes are expected to 
show increased variability with, respectively, 11, 12, 14, and 11 with higher intra-regime Niño 3.4 standard devi-
ation in the future. Given the low frequency of the E-EN no consistent conclusion can be drawn for the change in 
Niño 3.4 variability for that regime.

4.  Discussion
4.1.  Evolution of ENSO in the Historical Period in Observations

Previous studies of ENSO in observations and in climate models make use of traditional metrics such as variance 
in a “Niño.x” index (Rasmusson & Carpenter, 1982), x being the region over which SST anomalies are averaged, 
or variance in the indices E and C based on the first two PCs of tropical Pacific SST anomalies (K. Takahashi 
et al., 2011). Such metrics presume all phases of ENSO-related variability are captured by one or two patterns 
of SST variability that are independent of the phase of ENSO; for example, regression of SST upon a Niño.x 
index yields a single representative pattern of variability for all phases of ENSO. Similarly, regression against 
E and C indices requires patterns of La Niña variability to be identical to patterns of El Niño variability. Unlike 
the traditional metrics of ENSO variability, the GMM clustering identifies five patterns of SST variability that 
capture the well-known differences in SST anomalies associated with the observed El Niño events and La Niña 

Figure 8.  El Niño-Southern Oscillation regime frequency trends over 1850–2100 for Coupled Model Intercomparison 
Project Phase 6 (CMIP6) models and 1920–2014 of the observations. Significant positive (negative) trends are given in red 
(blue) and non significant trends are given in gray. The CMIP6 ensemble mean trends are also given.
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events, including the different amplitudes and structures of eastern versus central Pacific El Niño events and the 
different La Niña events.

The inadequacy of the E and C indices in representing either type of La Niña event—or even central Pacific 
El Niño events—is already evident from the different locations of the SST extrema in La Niña event and El 
Niño events (c.f. the top two panels of Figure 2a to the bottom two panels) as well as from the weighting of 
the PCs that comprise these regimes/phases of ENSO (Figure 2c)). In terms of the observations, the bottom 
panels of Figures 2a and 2c show the rare far eastern Pacific warm events E-EN (i.e., eastern Pacific El Niños) 
are well characterized by a combination of PC1 and PC2. If we reverse the sign of the second PC in Figure 2d 
to conform with the convention adopted in K. Takahashi et al. (2011), where E = (PC1 − PC2)/𝐴𝐴

√

2 , a direct 
correspondence to the large positive values of the E index associated with these events is found. In the central 
Pacific, warm events are mostly captured by the first PC1 of tropical Pacific SST, while PC2 mainly contrib-
utes to cold central Pacific events (see top two panels of Figures 2a and 2c). The two combine to explain the 
skill of the C index C = (PC1 + PC2)/𝐴𝐴

√

2 in representing central Pacific SST variability. Our results also 
show that PC3 and PC4 contribute importantly to central Pacific SST variability, but are not accounted for 
in studies that characterize ENSO variability by the E and C indices (e.g., Geng et al., 2022; K. Takahashi 
et al., 2011).

An added value of our approach is that the use of four EOFs allows a more comprehensive characterization of 
ENSO-related SST variability, including that which contributes to variability in the traditional indices of ENSO 
variance (e.g., Niño3, Niño3.4, and Niño4). In particular, it allows one to characterize both warm and cold 
ENSO regimes and the transitions between them, suggesting that the PCs describe the continuous nuances in 
ENSO  monthly evolution rather than distinct types of warm (or cold) events.

4.2.  Comparison of ENSO Variability Over the Historical Period Simulated by the CMIP6 Models to 
That Observed

Applying the GMM clustering to the detrended output from each of 16 CMIP6 models for the Historical period 
(i.e., the models forced by the observed anthropogenic and natural forcing from 1920 to 2014) shows that the 

Figure 9.  (a) Median and (b) standard deviation of Niño 3.4 for each regime over the 1965–2014 historical (blue) and the 2051–2100 future (yellow) periods. Gray 
shading designates the models with smaller median and standard deviation in the future compared to the historical period. The number of models with smaller, equal, 
and larger Niño 3.4 statistics in the future are given in blue, gray, and yellow, respectively, for each regime. The Neutral panel is grayed out for the median because it is 
not meaningful and hence is not considered.
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models, in general, reproduce the observed ENSO-related SST variability. However, there are some discrepancies 
between the observed and simulated regimes, including:

•	 �models generally show broader and more intense ENSO patterns that extend too far west compared to those 
observed;

•	 �a few models do not (CanESM5, and MPI models) or too rarely (CNRM-ESM2, UKESM, and GFDL models) 
simulate the large amplitude eastern Pacific El Niño (E-EN) events, or produce too evenly distributed regime 
frequencies (e.g., CESM2-WACCM and NorEMS2-MM models);

•	 �models generally feature central Pacific El Niño (C-EN) and La Niña (C-LN) events that are too frequent and 
have too large amplitudes compared to those observed;

•	 �the strong seasonality of the central Pacific El Niño (C-EN) regime, which accounts for the overwhelming 
majority of El Niño events, is not captured in the models;

•	 �the persistence of the central Pacific El Niño (C-EN) regime is overestimated while the persistence of the 
eastern Pacific El Niño (E-EN) regime is underestimated in the models;

•	 �transitions between the regimes in the models are largely similar to those in observations except for the models 
having too rare or no eastern Pacific (E-EN) events.

When considering that models with ENSO properties in the historical period close to the observed ones are 
better in projecting potential future ENSO changes, our methods and metrics will help to identity the models that 
provide more reliable projections.

4.3.  ENSO Regime Changes in the Future

GMM clustering of the CMIP6 model output for the end of the 21st Century under a high emission scenario 
reveals the following changes in ENSO-related SST variability:

•	 �the higher amplitude La Niña (BW-LN) regime is in general projected to become less frequent but there is no 
consensus in terms of changes in magnitude;

•	 �there is a strong consensus among the models that the central Pacific, moderate La Niña (C-LN) regime will 
become more frequent (significantly) and more intense and variable;

•	 �the Neutral regime will become significantly less frequent and more variable in the future;
•	 �the moderate El Niño (C-EN) regime will be significantly more frequent and is projected to become more 

intense and variable in the majority of the models;
•	 �the strong El Niño (E-EN) regime is projected to become significantly more frequent but there is no consensus 

on how the magnitude changes.

Previous studies have reported that CMIP6 models project an increase in SST variance in the eastern tropical Pacific 
in the 21st Century compared to the 20th Century (e.g., the AR6 WG1 IPCC, 2021). Using traditional Niño.x indi-
ces, Cai et al. (2022) and Maher et al. (2023) find enhanced ENSO variability over the course of the 21st Century 
compared to the end of the 20th Century (although the increase in variance is much smaller than the bias in the vari-
ance in the typical CMIP6 model). Geng et al. (2022) find increased variance in the E index, representing a pattern 
of SST anomaly in the far eastern equatorial Pacific, by the first half of 21st Century relative to the 20th Century. To 
understand the mechanisms responsible for the increase in ENSO variance, Maher et al. (2023) focused on changes in 
the mean state SST gradient, while Geng et al. (2022) argued for the importance of nonlinearity in the Bjerknes feed-
back in the models, which is absent in observations (e.g., Battisti et al., 2019, Figures 8–15 and references therein).

Our results extend the findings of these studies to show that, compared to the 20th Century, there is a statistically 
significant increase in the frequency of occurrence of the common C-EN and rare E-EN patterns in most of the models 
in the 21st Century (Figure 8). There is also a statistically significant increase in occurrence of C-LN events in most of 
the models at the expense of a decrease in occurrence of BW-LN events. Since (unlike in observations) many models 
feature a stronger cold anomaly in the C-LN pattern compared to that in BW-LN, the changes in the frequencies of 
cold BW-LN and C-LN patterns and the warm C-EN pattern (Figure 7) act together to increase the total variance of 
SST in the eastern tropical Pacific projected in the 21st Century compared to the 20th Century. This effect is further 
amplified by the projected increase in the amplitude of the C-LN and C-EN patterns in the 21st Century, measured 
by the contributions of the patterns to Niño3.4 (Figure 9b). It remains unclear to us to what extent the large bias in the 
amplitude of the models' central Pacific El Niño and La Niña events in the Historical simulations (Figure 9b) jeopard-
izes the projections of increasing variance in the ENSO-related SST anomalies in the eastern Pacific.
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4.4.  Projected Changes in ENSO Variability in Relation to Projected Changes in the SST Mean State

Cai et al.  (2021) report that the amplitude of eastern Pacific El Niño events in CMIP5/6 models increases in 
the 21st Century compared to the 20th Century, which would lead to changes in atmospheric teleconnections 
(because eastern Pacific El Niño events cause a greater eastward displacement in the centroid of precipitation, 
which is climatologically centered over the maritime continent, than central Pacific El Niño events). By first 
removing the simulated forced trends in SST, however, we find no systematic future response in the amplitude 
of the simulated east Pacific El Niño events in the CMIP6 models (8 models show an increase, while 7 show a 
decrease). Hence, the increase in amplitude of eastern Pacific El Niño events reported in Cai et al. (2021) must be 
due to the change in the simulated mean state SST, which features more warming along the equator in the eastern 
equatorial Pacific than in the western equatorial Pacific that is, a decrease in the climatological east-west SST 
gradient in the region. However, the observed long-term (e.g., 50–70 years) trend in SST along the equator shows 
the opposite warming pattern compared to both historical simulations and future projections: more warming in 
the western equatorial Pacific and little, if any, warming in the eastern Pacific, resulting in an increase in the mean 
climatological zonal SST gradient. There is increasing evidence that the observed trend in the equatorial Pacific 
SST gradient is indeed the response to anthropogenic forcing (e.g., Dong et al., 2022; Seager et al., 2019; Wills 
et al., 2022) and the projected trend in the gradient (with more warming in the eastern than in the western equa-
torial Pacific) is a result of biases in the simulated mean state climate that are common to almost all the climate 
models (e.g., double ITCZs, too weakly stratified Southern Ocean). Should the observed trend in the zonal SST 
gradient indeed be the forced response, teleconnections of El Niños in the 21st Century will become more like 
those seen during central Pacific El Niños than during the eastern Pacific El Niños.

5.  Conclusions
In this study, we use a GMM for clustering tropical Pacific SST anomalies to document the evolution of 
ENSO-related variance in observations, to evaluate the fidelity of ENSOs simulated by climate models in the 
20th Century, and to assess how ENSO changes in future projections. The clustering is performed on the first four 
PCs of monthly tropical Pacific SST anomalies. Before performing the clustering, the observed and projected 
long-term trends in the mean state is removed so that we can identify changes in the character of ENSO variability 
on interannual and shorter time scales. Compared to the more common k-means clustering (which is a particular 
case of GMM clustering; see Fabiano et al. (2021), and the references therein), GMM clustering differs in that 
the identification of the number of clusters K is probabilistic (see, Equations 2 and 6), and there are fewer restric-
tions on the covariance matrices (see Equation 5). Our choice of this particular GMM approach over k-means is 
motivated by two factors:

1.	 �The number of clusters is fully data-driven without a priori knowledge about the clusters themselves.
2.	 �More flexibility in the covariance matrices allows for very different shapes and sizes of clusters, which is 

beneficial given the diversity of ENSO patterns.

The GMM-derived clusters defined here are better able to represent the diversity of ENSO, including extreme or 
rare events.

Clustering provides more ways to characterize the observed ENSO-related variability than do traditional metrics, 
which typically assume that all phases of ENSO are represented by just one or two set SST anomaly patterns. 
Such metrics include a host of Niño.x indices (Rasmusson & Carpenter,  1982) and indices of E and C (K. 
Takahashi et al., 2011) based on the variability of the first two PCs of tropical Pacific SST anomalies. The GMM 
clustering approach used here instead identifies five “regimes” of SST anomalies' variability that are able to 
recover the (well-known) patterns of SST anomalies associated with La Niña and El Niño events and allows for a 
quantitative analysis of the frequency of occurrence and typical duration of each regime, as well as the likelihood 
of transition from one regime to another. Together these regimes present a more nuanced and demanding yard-
stick than traditional metrics of ENSO variability for measuring the fidelity of ENSOs simulated by the models 
in the modern climate and how they change in simulations of future climates.

The diversity of observed ENSO events is well captured by our GMM-based clusters of observed SST anomalies 
in the HadISST data set (see Figure 2) and in the JRA-55 (see Figure S1 in Supporting Information S1). GMM 
clustering results in an assignment of each month's SST anomaly pattern to one of five possible regimes: includ-
ing two El Niño regimes (a strong Eastern Pacific one, E-EN) and a more frequent moderate central Pacific one, 

 23284277, 2023, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022E

F003460 by U
N

IV
E

R
SIT

Y
 O

F B
E

R
G

E
N

, W
iley O

nline L
ibrary on [13/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Earth’s Future

VAITTINADA AYAR ET AL.

10.1029/2022EF003460

17 of 20

C-EN); two La Niña regimes (a more frequent long lasting La Niña covering almost the whole Pacific domain, 
BW-LN, that includes the strongest La Niña events and a central La Niña, C-LN); and a Neutral pattern showing 
light to very tenuous SST anomalies.

The GMM clusters capture and quantify essential, well-known differences between El Niño and La Niña 
events, including differences in the magnitude and spatial patterns of SST anomalies, in the duration of cold 
and warm regimes, and in the seasonality of the regimes. The inadequacy of the traditional Niño.x indices and 
the E and C indices to distinguish either type of La Niña event from either type of El Niño event—and for the 
C index to represent central Pacific El NIño events—is evident from the well-known differences in the location 
of the SST extrema in La Niña event and El Niño events (c.f. the top two panels of Figure 2a to the bottom 
two panels) and by the weighting of the EOFs that are required to describe these regimes/phases of ENSO 
(Figure 2c).

Applying the GMM clustering to the detrended output from each of 16 CMIP6 models for the Historical period 
shows that the models, in general, reproduce the observed ENSO-related SST variability. Some notable discrep-
ancies between observed and model regime statistics that are common to the models include central Pacific El 
Niño (C-EN) events that last too long and eastern Pacific El Niño (E-EN) that are too short and have too weak 
amplitudes compared to those observed (for a more complete list, see Section 4.2).

By the end of the 21st Century, ENSO-related variability in the CMIP6 models under a high emission scenario 
features several notable changes (see Section 4.3) including an increase in the frequency and amplitude of central 
Pacific El Niño (C-EN) events in the majority of the models, and an increase in the frequency of eastern Pacific El 
Niño (E-EN) events (but with no consensus on whether the amplitude will change). As mentioned in Section 4.3, 
it remains unclear to us to what extent the large bias in the amplitude of the central Pacific El Niño and La Niña 
events in the Historical simulations jeopardizes the projections of increasing variance in the ENSO-related SST 
anomalies in the eastern Pacific over the 21st Century.

Although not pursued here, note that the ENSO phases, their probabilistic duration and the transition frequencies 
between phases can also be used to make operational forecasts of the state of ENSO. Specifically, the value of the 
pseudo-PCs up to the time of the forecast initialization can be computed from SST and Equation 2 can then be 
used to forecast the most probable ENSO regime that will develop (in particular, the type of El Niño or La Niña).

Understanding the effects of ENSO changes locally is important to anticipate future changes in weather condi-
tions and the consequences for nature and society. Future studies could further investigate local implications of 
the different ENSO regimes. One way to do that would be to define regimes accounting for local-scale meteor-
ological patterns (e.g., precipitation, wind speed) and large-scale patterns (e.g., SST, see Vrac and Yiou (2010)) 
at the same time.

Data Availability Statement
The HadISST analysis SST product used in this study is accessible from their Web site at https://www.metoffice.
gov.uk/hadobs/hadisst/data/HadISST_sst.nc.gz. The CMIP6 data used in the analysis were obtained from https://
esgf-node.llnl.gov/search/cmip6.
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