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1  |  INTRODUC TION

Numerous moribund wild Atlantic salmon (Salmo salar L., 1758) 
displaying haemorrhagic, ulcerative and necrotic abdominal skin 
lesions were caught in Enningdal river in the southeast of Norway 
during the summer of 2019. Fish displaying similar clinical signs of 
disease were reported shortly after from multiple rivers in Norway 

and have since been re-occurring the following years. Atlantic 
salmon suffering from severe abdominal skin lesions have pre-
viously been reported from rivers of several northern European 
countries, predominantly surrounding the Baltic Sea (ICES, 2018; 
Weichert et al., 2021).

The rapid increase in reports of diseased salmon in Norwegian 
rivers culminated in a proposal of a novel disease termed ‘red skin 
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Abstract
Since 2014, Atlantic salmon (Salmo salar L.) displaying clinical signs of red skin dis-
ease (RSD), including haemorrhagic and ulcerative skin lesions, have been repeatedly 
observed in Swedish rivers. Although the disease has since been reported in other 
countries, including Norway, Denmark, Ireland and the UK, no pathogen has so far 
been conclusively associated with RSD. In this study, the presence of 17 fish path-
ogens was investigated through qPCR in 18 returning Atlantic salmon with clinical 
signs of the disease in rivers in Sweden and Norway between 2019 and 2021. Several 
potential pathogens were repeatedly detected, including a protozoan (Ichthyobodo 
spp.), an oomycete (Saprolegnia spp.) and several bacteria (Yersinia ruckeri, Candidatus 
Branchiomonas cysticola, Aeromonas spp.). Cultivation on different media from ul-
cers and internal organs revealed high concentrations of rod-shaped bacteria typical 
of Aeromonadaceae. Multilocus phylogenetic analysis of different clones and single 
gene phylogenies of sequences obtained from the fish revealed concurrent isolation 
of several bacterial strains belonging to the species A. bestiarum, A. piscicola and A. so-
bria. While these bacterial infections may be secondary, these findings are significant 
for future studies on RSD and should guide the investigation of future outbreaks. 
However, the involvement of Aeromonas spp. as putative primary etiological agents of 
the disease cannot be ruled out and needs to be assessed by challenge experiments.
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disease’ (RSD) during a workshop hosted by the Norwegian Insti-
tute for Nature Research (NINA) in November 2019 (ICES,  2020). 
No primary etiological agent has thus far been established despite 
the wide array of diagnostic measures (histopathology, virology, 
bacteriology, molecular analyses) taken. The diagnostic criteria for 
RSD are, therefore, solely based on the characteristic haemorrhagic 
and ulcerative lesions on the abdomen of salmon returning to the 
affected rivers.

Recent microbiological and molecular analyses from diseased 
fish from Norwegian and Swedish rivers suggest, however, one or 
more bacterial agents possibly involved in the development of RSD. 
The present study reports the findings of several species of Aero-
monas isolated from salmon displaying clinical and pathological signs 
of RSD caught in Norwegian and Swedish rivers in the period 2019–
2021. The phylogenetic relationship between Aeromonas spp. iso-
lated from the affected fish and previously characterized Aeromonas 
species associated with fish disease, was reconstructed through 
Multilocus phylogenetic analysis (MLPA).

2  |  MATERIAL S AND METHODS

2.1  |  Fish sampling

Eighteen moribund adult Atlantic salmon showing clinical signs of 
‘red skin disease’ (e.g. haemorrhages along the underside and the 
flanks of the fish, ulcerative skin) were caught by fishermen in riv-
ers in Norway and Sweden, in the spring of 2019 and 2020, and in 
October 2021. Three fish caught in Norway in May 2019, May 2020 
and in October 2021 and displaying massive ulceration of the skin 
with openings in the abdominal cavity were sent fresh to the Fish 
Diseases Research Group (FDRG) laboratory at the University of 
Bergen (UiB) and aseptically sampled by certified fish-health biolo-
gists. Organs were kept on ice during the sampling and subsequently 
stored at −80°C. Fifteen Atlantic salmon were sampled on site by 
fish-health biologists who accompanied fishermen and organs were 
fixed in 70% ethanol. Details of the sampling and pictures of the fish 
are given in Table 1 and Figure 1, respectively.

2.2  |  Bacterial isolation and identification through 
16S rRNA sequencing

Bacteria were cultured from ulcers, gills and kidneys from fresh fish 
on Marine Agar (MA) (Difco 2216) and on Tryptic Soya Agar (Sigma-
Aldrich) supplemented with and without 5% defibrinated sheep 
blood (Thermo Scientific). Bacteria were cultured for a minimum of 
3 days at 16°C. The haemolytic activity of the colonies was read-
ily observed by looking at the blood-supplemented plates through 
a light source. A selection of dominant and minority bacterial colo-
nies were further sub-cultured, and clones stored in 50:50 Biofreeze 
freezing medium (Biochrom™) and Marine broth (Difco 2216) or 
Tryptic Soy broth in liquid nitrogen. Bacterial DNA was extracted 

with DNeasy® Blood & Tissue Kit (Qiagen) according to the manu-
facturer's instructions. All DNA was subsequently stored at −20°C.

PCR and sequencing of the 16S rRNA gene were performed 
using the primers 27F and 1518R (Giovannoni et  al.,  1996) as de-
scribed in Frisch et al.  (2018). PCR products (1491 bp) were run on 
a 1% agarose electrophoresis gel stained with GelRed™ (Biotium, 
USA). Positive PCR products were subsequently purified using Exo-
CleanUp FAST (VWR) in a Veriti thermal cycler (Applied Biosystems) 
at 37°C for 5 min and 80°C for 10 min before being sequenced at 
the Sequencing Facility at the University of Bergen (http://​www.​uib.​
no/​seqlab) using the BigDye Terminator v3.1 Cycle Sequencing Kit 
(Applied Biosystems). Sanger DNA sequencing was performed on a 
capillary-based Applied Biosystem 3730XL Analyser. Consensus se-
quences were obtained using VectorNTI 9.0.0 software (Invitrogen) 
and a BLAST search (Altschul et al., 1990) was performed for prelim-
inary bacterial identification.

2.3  |  RNA extraction and qPCR

Organs were dissected aseptically on ice in the laboratory. Approxi-
mately 1 mm3 of tissue was resuspended in 1 mL of Trizol (Gibco BRL) 
and homogenized in a TissueLyser (QIAGEN) for 3 min at 30 Hz using 
3 mm tungsten beads. RNA was extracted as described by Gunnars-
son et  al.  (2017). We evaluated the quality of RNA extraction by 
using a qPCR assay that targets the Atlantic salmon elongation fac-
tor 1α (Olsvik et al., 2005). The presence of a range of relevant fish 
pathogens was tested by using 17 qPCR assays already published 
or developed in our laboratory (see details in Table 2). Efficiency of 
each assay was calculated from the slope of calibration curve ac-
cording to the equation E = 10[−1/slope]−1 as described by (Bustin 
et  al., 2009). All qPCRs were run using the AgPath-ID™ One-Step 
Reverse-Transcriptase qPCR kit (Applied Biosystems) in a total of 
12.5 μL with primers (10 μM) and probe (10 μM) on a QuantStudio 3 
qPCR System Cycler (Applied Biosystems). Cycling conditions were 
45°C for 10 min and 95°C for 10 min (reverse-transcriptase step), fol-
lowed by 45 cycles of 95°C for 15 s and 60°C for 45 s. RNA extrac-
tion controls (lacking sample) and qPCR negative samples (with no 
template) were included in each qPCR.

2.4  |  Multilocus phylogenetic analysis

As observed in other bacterial genera, 16S rRNA sequences 
of Aeromonas are highly conserved. As a result, it can be chal-
lenging to distinguish between closely related species, such as 
A. bestiarum/A. piscicola/A. salmonicida (Martinez-Murcia et al., 1992; 
Martínez-Murcia et al., 1999, 2005). Since a multilocus phylogenetic 
analysis (MLPA) based on housekeeping gene sequences would pro-
vide a more accurate delineation, all isolated clones of Aeromonas 
spp. were included in a previously developed MLPA (Martinez-
Murcia et  al.,  2011), using primers targeting the six housekeeping 
genes atpD (501 bp), dnaJ (809 bp), gyrA (709 bp), gyrB (563 bp), recA 
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(526 bp) and rpoD (667 bp). The gene dnaX was not included, due to 
poor sequencing results. As the MLPA results from a concatenation 
of the six housekeeping genes, only pure cloned strains could be 
included.

The analysis included 16 clones isolated from fresh tissue 
(clones 1, 2 (ulcer) and 3 (gill) from fish 19N_1; clones 1, 2, 3 (kid-
ney), 7 (gill), 8, 9, 10, 11 and 12 (ulcer) from fish 20N_11, clones 1, 2, 
20 and 24 (gill) from fish 21N_1), and 42 sequences obtained from 
GenBank: 22 type strains in the genus Aeromonas (A. allosaccha-
rophilaT, A. aquariorumT, A. bestiarumT, A. bivalviumT, A. cavernicolaT, 
A. caviaeT, A. diversaT, A. encheleiaT, A. enteropelogenesT, A. eucreno-
philaT, A. hydrophilaT, A. jandaeiT, A. mediaT, A. molluscorumT, A. pisci-
colaT, A. popoffiiT, A. salmonicidaT, A. schubertiiT, A. simiaeT, A. sobriaT, 
A. tectaT, A. veroniiT) and 20 strains belonging to five Aeromonas spe-
cies closely related to the strains isolated in this study: A. bestiarum 
(n = 4), A. piscicola (n = 4), A. popoffii (n = 4), A. salmonicida (n = 5) and 
A. sobria (n = 3).

Sequence alignments were constructed for all six loci, separately, 
using AlignX in the VectorNTI 9.0.0 software package (Invitrogen). 
The sequences were trimmed and adjusted to correct reading frames 
in GeneDoc (Nicholas & Nicholas, 1997). Concatenation of the six 
housekeeping genes was performed using Kakusan4 (Tanabe, 2011). 
The substitution rate, codon position and best fit substitution model 
for the individual loci were calculated with Kakusan4. The Bayes-
ian phylogenetic analysis was performed in MrBayes 3.2 (Ronquist 
& Huelsenbeck, 2003) with a Markov Chain Monte Carlo (MCMC) 
analysis. The run included 20,000,000 generations and trees were 
sampled every 1000 generations. The initial 10,000 trees were dis-
carded as a conservative ‘burn-in’ in TreeAnnotator and the final tree 
was visualized and rooted to midpoint in FigTree v1.4.3 (http://​tree.​
bio.​ed.​ac.​uk/​). GenBank accession numbers of the sequences from 
this study are provided in Table S1.

2.5  |  Single gene phylogenetic analyses

Single locus phylogenetic analyses were conducted to include the 
Aeromonas sequences obtained from samples that could not be cul-
tivated and were, therefore, not included in the MLPA (sequences 
obtained from tissues and organs kept in EtOH). Organ of origin for 
each sequence included in these single locus phylogenetic analyses 
are provided in Table 1.

Approximately 1 mm3 of each tissue was finely chopped on ice 
and resuspended in 180 μL of ATL lysis buffer (Qiagen) and 20 μL of 
proteinase K at 56°C overnight. DNA was subsequently extracted 
with DNeasy® Blood & Tissue Kit (Qiagen) according to the manu-
facturer's instructions.

As we obtained the highest number of sequences with atpD and 
gyrB, we conducted phylogenetic analyses using these two genes. 
PCR was performed as described in (Martinez-Murcia et al., 2011) 
using VWR Taq DNA Polymerase (VWR). PCR products were ligated 
into the vector pCR®4-TOPO® Vector (Invitrogen, USA) using TOPO 
TA Cloning® Kit for Sequencing (Invitrogen). Ligated DNAs were 
transformed into chemically competent cells (One Shot®TOP10; In-
vitrogen), and colonies that grew on selection plates were screened 
by PCR to verify the size of the inserts using M13F and M13R prim-
ers following the manufacturer's recommendations. PCR products 
were subsequently purified and sequenced at the Sequencing Facil-
ity at the University of Bergen as previously described. Both single 
locus phylogenetic analyses included the 42 strains obtained from 
GenBank (22 type strains within Aeromonas genus and 20 strains 
belonging to A. bestiarum, A. piscicola, A. popoffii, A. salmonicida and 
A. sobria) and 61 atpD sequences (atpD analysis), and 73 gyrB se-
quences (gyrB analysis) obtained during this study. Phylogenetic 
analyses were conducted independently for both genes in MEGA X 
(Kumar et  al.,  2018) using the Maximum Likelihood method and a 

F I G U R E  1  Details on symptoms. 
Haemorrhage and ulcer and details from 
19N_1, 19N15-35 and 20N_11. Image 
credits: Photo by Heidrun Plarre (19N_1), 
Ragnar Itland (20N_11), and Trygve Poppe 
and Tor Alte Mor (19N15-35).
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TA B L E  2  Details of 18 qPCR assays used in this study.

Target (assay name) Primer Sequence (5′–3′)
PCR 
efficiencya Reference

Elongation factor 1α (EF1AA) Forward CCCCT​CCA​GGA​CGT​TTA​CAAA E = 1.09 Olsvik et al. (2005)

Probe FAM-ATCGG​TGG​TAT​TGG​AAC-MGB

Reverse CACAC​GGC​CCA​CAG​GTACA

Piscine orthoreovirus (PRV) Forward CAATC​GCA​AGG​TCT​GATGCA E = 0.95 Repstad (2011)

Probe FAM-CTGGCTCAACTCTC-MGB

Reverse GGGTT​CTG​TGC​TGG​AGA​TGAG

Salmonid alphavirus (SAV) Forward CCGGC​CCT​GAA​CCA​GTT E = 0.972 Hodneland and 
Endresen (2006)Probe FAM-CTGGC​CAC​CAC​TTCGA-MGB

Reverse GTAGC​CAA​GTG​GGA​GAA​AGCT

Infectious salmon anaemia virus (ISAV) Forward TGGGA​TCA​TGT​GTT​TCC​TGCTA E = 0.946 Plarre et al. (2005)

Probe FAM-CACAT​GAC​CCC​TCGTC-MGB

Reverse GAAAA​TCC​ATG​TTC​TCA​GATGCAA

Infectious pancreatic necrosis virus (IPNV) Forward ACCCC​AGG​GTC​TCC​AGTC E = 0.96 Watanabe et al. (2006)

Probe FAM-TCTTG​GCC​CCG​TTC​ATT-MGB

Reverse GGATG​GGA​GGT​CGA​TCT​CGTA

Salmon gill poxvirus (SGPV) Forward CAGAG​GTT​TTT​CAT​ACG​CCAGAA E = 0.968 This study

Probe FAM-TTATA​CAC​CAT​CAC​ATT​
TGTG-MGB

Reverse GAGGT​CAC​GGT​GAT​GAC​AGAAC

Piscine myocarditis virus (PMCV) Forward AGGGA​ACA​GGA​GGA​AGC​AGAA E = 1.096 Repstad (2011)

Probe FAM-TGGTGGAGCGTTCAA-MGB

Reverse CGTAA​TCC​GAC​ATC​ATT​TTGTGA

Paranucleospora theridion (NUC) Forward CGGAC​AGG​GAG​CAT​GGT​ATAG E = 1.068 Nylund et al. (2010)

Probe FAM-TTGGC​GAA​GAA​TGAAA-MGB

Reverse GGTCC​AGG​TTG​GGT​CTTGAG

Ichthyobodo spp. (Costia) Forward ACGAA​CTT​ATG​CGA​AGGCA E = 0.997 Isaksen et al. (2012)

Probe FAM-TCCAC​GAC​TGC​AAA​CGA​
TGACG-MGB

Reverse TGAGT​ATT​CAC​TYC​CGA​TCCAT

Parvicapsula pseudobranchicola (Parvi) Forward TCGTA​GTC​GGA​TGA​CAA​GAACGT E = 0.972 Nylund et al. (2011)

Probe FAM-CCGTA​TTG​CTG​TCT​TTGA-MGB

Reverse AAACA​CCC​CGC​ACT​GCAT

Tetracapsula bryosalmonae (PKX) Forward CAAGA​TCG​CGC​CCT​ATCAAT E = 0.93 This study

Probe FAM-TGTTG​TTA​GGA​TAT​TTTCC-MGB

Reverse CGTCA​CCC​GTT​ACA​ACC​TTGT

Paramoeba perurans (Pperu) Forward GATAA​CCG​TGG​TAA​ATC​TAG​
AGCTAAT

FAM-CTGGT​TCT​TTC​GRG​AGC-MGB
TGGCA​TTG​GCT​TTT​GAATCT

E = 0.97 Nylund et al. (2018)

Probe

Reverse

Ca. Branchiomonas cysticola (Epit) Forward GAGTA​ATA​CAT​CGG​AAC​GTG​
TCTAGTG

FAM-ACTTA​GCG​AAA​GTT​AAGC-MGB
CTTTC​CTC​TCC​CAA​GCT​TATGC

E = 0.982 Repstad (2011)

Probe

Reverse

Piscichlamydia salmonis (Pch) Forward TCACC​CCC​AGG​CTG​CTT E = 1.001 Nylund et al. (2008)

Probe FAM-CAAAA​CTG​CTA​GAC​
TAGAGT-MGB

Reverse GAATT​CCA​TTT​CCC​CCTC TTG

(Continues)
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6  |    LAGADEC et al.

Tamura 3-parameter + G + I model (Tamura,  1992) and 1000 boot-
straps replicates. The final trees were visualized in FigTree v1.4.3 
(http://​tree.​bio.​ed.​ac.​uk/​). GenBank accession numbers of the se-
quences from this study are provided in Table S1.

3  |  RESULTS

3.1  |  Colony morphology and 16S rRNA 
sequencing

Plates showed mixed bacterial cultures dominated by grey circular 
convex colonies. Among these similar dominant colonies, some dis-
played strong β-haemolytic activity on agar supplemented with 5% 
defibrinated sheep blood, while others did not. Some of these bacte-
ria turned slightly greenish after a day of incubation. Dominant colo-
nies were preferably selected to 16S rRNA sequencing. We included 
also some non-haemolytic grey-green minority colonies.

In total, 48 colonies were subjected to DNA extraction and 
subsequent 16S rRNA sequencing. Based on this locus, among the 
dominant bacterial colonies, we identified 28 strains as Aeromonas 
salmonicida (displaying β-haemolytic activity) and 12 as Aeromonas 
sobria (without any β-haemolytic activity). The minority colonies 
were identified as Serratia quinivorans (n = 4) and Pseudomonas sp. 
(n = 4).

3.2  |  qPCR results

We tested the presence of five bacteria using qPCR (see Table S2). 
No fish tested positive for Renibacterium salmoninarum. Candidatus 
Piscichlamydia salmonis and Candidatus Branchiomonas cysticola 
are two bacteria associated with epitheliocystis in Atlantic salmon 
in Norway. Ca. P. salmonis was present in six fish: one from Sweden 

(19SO_1), four caught in Enningdal river in 2020 (20N_16, 17, 19 
and 25) and 21N_1 from Arna river. Ca. B. cysticola was detected 
in 13 of the included fish. Two fish from Sweden tested positive: 
19SE_1 (ulcer, Ct-value 33.9) and 19SO_1 (heart, Ct-value 32.6 and 
gill, Ct-value 21.6). qPCR analysis was positive for every organ of 
19N_1, with the lowest Ct-value being found in the gill (18.2). All 
fish from Enningdal river in 2020 tested positive (Ct-values ranged 
from 14.0 to 36.1). Gill sample from 21N_1, originated from Arna 
river tested positive, with a Ct-value of 18.6. The bacterium Ye-
rsinia ruckeri was detected in 15 fish. qPCR run on ulcer samples 
from Swedish fish produced positive results in three fish: 19SE_3 
and 19SE_4 from Enningdal river system and 19SO_3 from Örekil 
river. All organs from the fresh fish sampled in 2019 (19N_1) and 
2020 (20N_11) tested positive, with an average Ct-value of 28.5 
and 18.1, respectively. All fish caught in Enningdal river in 2020 
in Norway were also positive, with an average Ct-value of 32.3. 
Finally, Yersinia ruckeri was also detected in Arna river (21N_1 gill). 
All fish tested positive for Aeromonas spp. The six fish caught in 
Sweden in 2019 proved to be positive, with an average Ct-value 
of 22.2. Likewise, all organ and tissue samples from the fresh fish 
caught in Norway in 2019, 2020 and 2021 tested positive, with 
a mean Ct-value of 19.4. Finally, Aeromonas spp. was detected in 
the nine fish caught in 2020 in Enningdal river in Norway (mean 
Ct-value 28.6).

Samples were tested for six fish viruses. All tested negative 
for Salmonid alphavirus and Infectious salmon anaemia virus. 
Only one fish from Sweden (19SO_3) was positive for Infectious 
pancreatic necrosis virus, with a Ct-value of 35.8 (ulcer). Piscine 
orthoreovirus was detected from a gill of a fish caught in Swe-
den (19SO_1), with a similar Ct-value (35.7). Six fish tested positive 
for Piscine myocarditis virus19S_1 caught in Sweden, and five fish 
caught in Norway in 2020 from Enningdal river (20NE_16, 19, 25, 
27 and 34). Salmon gill poxvirus was detected in 11 fish (Ct-values 
ranged from 23.7 to 38.7).

Target (assay name) Primer Sequence (5′–3′)
PCR 
efficiencya Reference

Renibacterium salmoninarum (BKD) Forward CAAGG​CTT​GAC​ATG​GAT​TAGAAAA E = 0.94 This study

Probe FAM-TGCAG​AAA​TGT​ACT​CCC-MGB

Reverse CACCT​GTG​AAC​CAA​CCC​AAAA

Yersinia ruckeri (YR) Forward GCGAG​GAG​GAA​GGG​TTA​AGTG E = 0.988 This study

Probe FAM-TAATA​GCA​CTG​AAC​
ATTGAC-MGB

Reverse CGGTG​CTT​CTT​CTG​CGA​GTAA

Saprolegnia spp. (SP) Forward TCCGG​TCG​AGT​TTA​TCT​CTGTACT E = 0.96 This study

Probe FAM-ATGGC​CCA​ARC​ATCCA-MGB

Reverse AGCGC​CCC​CTC​ACA​AAA

Aeromonas spp. (AERO) Forward GGCGG​ACG​GGT​GAG​TAATG E = 0.94 This study

Probe FAM-ATCTG​CCC​AGT​CGAGG-MGB

Reverse GCAGT​CGT​TTC​CAA​CTG​TTATCC

aPCR efficiency E = 10[−1/slope]−1.

TA B L E  2  (Continued)
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We tested the fish for the presence of six eukaryotic parasites. 
Every fish caught in Enningdal river in 2020 was positive for Par-
amoeba perurans, the causative agent of amoebic gill disease. The 
myxozoan parasite Tetracapsuloides bryosalmonae was detected 
in seven fish: a salmon caught in Sweden (19SO_1), five fish from 
Enningdal river (20NE_17, 18, 19, 27 and 35) and 21N_1 from Arna 
river. Among those, kidney was the organ that provided the lowest 
Ct-values (except 20N_19, for which only the heart tested positive). 
The myxosporean parasite Parvicapsula pseudobranchicola com-
monly infects farmed Atlantic salmon in northern Norway. Seven 
fish tested positive: 19N_1, 20NE_15, 17, 19, 27 and 35. Two fish 
from Sweden (19SE_1 and 19SO_1) tested positive for the microspo-
ridian Paranucleospora theridion. It was also detected in the heart and 
muscle (Ct-values 33.1 and 36.6) from the Norwegian salmon 19N_1. 
All the nine fish caught in Enningdal river in 2020, and 21N_1 tested 
positive. Lastly, two parasites were massively detected. All the fish 
included in this study tested positive for the ectoparasitic flagellate 
Ichthyobodo sp. (Ct-values 6.6–32.2) and for the oomycete Saproleg-
nia sp. (Ct-values 8.6–32.7).

3.3  |  Multilocus phylogenetic analysis

The Bayesian-inferred phylogenetic tree based on the concatenated 
nucleotide sequences of 16 clones isolated in this study and 42 
strains from GenBank, is presented in Figure 2. The analysis grouped 
the 16 clones in three supported clades including strains belonging 
to three different Aeromonas species: A. bestiarum, A. piscicola and 
A. sobria. Two fish were co-infected by at least two Aeromonas spe-
cies; 19N_1 caught in Norway in 2019 was infected by A. sobria and 
A. piscicola and 20N_11 caught in Norway in 2020 was infected by 
A. sobria, A. piscicola and A. bestiarum. We isolated several strains of 
Aeromonas piscicola from 21N_1, caught in Norway in 2021.

3.4  |  Single gene phylogenetic analysis

Figure  3 presents two phylogenetic trees reconstructed by Maxi-
mum likelihood analysis of 103 (A: atpD locus) and 115 (B: gyrB 
locus) Aeromonas sequences. The arrangement of sequences within 
the trees is relatively consistent with that proposed by the Bayesian 
analysis. The main difference is the merging of two different clades in 
both trees: Aeromonas salmonicida and A. bestiarum strains clustered 
together in the atpD tree; Aeromonas salmonicida and A. piscicola in 
the gyrB tree. The sequences of the 16 clones included in the Bayes-
ian analysis are situated in the same relative position, considering 
the abovementioned merging. Thus, indicating a strong congruence 
between the two analyses. The most salient result is the clustering 
of almost all sequences into the same three groups. Indeed, of the 
61 sequences obtained in this analysis and included in the atpD phy-
logeny, only three are not found in one of these three clades. These 
three strains isolated from the gills of two Norwegian salmon caught 
in 2020 (20N_19 and 20N_34) cluster with A. hydrophila strains. 

Similarly, only six of the 73 strains included in the gyrB phylogeny 
are not related to A. salmonicida/piscicola, A. bestiarum or A. sobria 
strains. Four clones isolated from a gill of a salmon caught in 2020 in 
Norway (20N_34) and one clone isolated from an ulcer of a Swed-
ish fish (19SO_1) group in a clade with A. hydrophila and A. aquarium 
type strains. An additional strain, isolated from the same Swedish 
fish (19SO_1), is closely related to A. allosaccharophila.

Eight fish non included in the MLSA provided sequences in-
cluded in these single locus phylogenies (four from Norway, four 
from Sweden). Sequences from at least two Aeromonas species, in-
cluding A. sobria, were detected in seven fish. Aeromonas sobria was 
the only bacterial species detected from 20N-25, caught in Norway 
in June 2020. However, it is worth noting that the other three fish 
caught during the same outbreak, also included in this phylogeny, 
provided sequences identified as A. piscicola (20N-17, 19 and -34) 
and A. salmonicida/bestiarum clade (20N-19 and -34).

4  |  DISCUSSION

Salmon presenting RSD signs/syndrome have been repeatedly ob-
served in Swedish river systems, with cases occurring annually since 
2014. The disease has since been reported from several other coun-
tries, including Norway, Ireland, Denmark and the UK (Brockmark 
& Carlstrand, 2017; ICES, 2020; Weichert et al., 2021). Despite the 
apparent establishment of the disease in new countries, no etiologi-
cal agent has so far been linked to RSD. In this study, we investigated 
the presence of potential fish pathogens that could be associated 
with the disease and characterized several strains of Aeromonas spe-
cies that have been repeatedly detected and isolated from fish dis-
playing RSD clinical signs caught in rivers in Norway and Sweden in 
the period 2019–2021. A notable finding is that most of the salmon 
included in this study were co-infected with at least two distinct 
species of Aeromonas (A. piscicola and A. sobria).

Two major lines of evidence suggest a strong correlation be-
tween bacteria belonging to the genus Aeromonas and RSD. Firstly, 
all samples were positive for Aeromonas spp. by qPCR detection 
(AERO assay, see Table 2). Moreover, detection of these bacteria in 
organs such as kidney, heart and spleen could suggest a systemic in-
fection. Several other fish pathogens were also repeatedly detected 
by qPCR: a protozoan (Ichthyobodo sp.), an oomycete (Saprolegnia 
sp.) and two bacteria (Yersinia ruckeri and Candidatus Branchiomonas 
cysticola).

Ichthyobodo is a genus of parasitic flagellates that infect fish in 
both freshwater and seawater environments, causing severe dis-
ease outbreaks and significant losses for the aquaculture industry 
(Callahan et  al.,  2005; Lom & Dyková, 1992). In Norway, I. necator 
and I. salmonis have been associated with gill and skin diseases and 
mortalities of both farmed and wild salmon in freshwater (Isaksen 
et al., 2011). Signs include the appearance of grey patches on the 
skin and increased mucus production. However, it's worth noting 
that Ichthyobodo spp. are opportunistic parasites that tends to thrive 
in hosts that have weakened immune systems due to stressors or 
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8  |    LAGADEC et al.

other infections such as SAV or Aeromonas sobria (Repstad,  2011; 
Yardimci & Turgay, 2021). Saprolegnia spp. are ubiquitous freshwa-
ter borne oomycetes that can have a significant impact on salmonid 
aquaculture (Hussein et al., 2001; Kitancharoen et al., 1997; Thoen 
et al., 2011). During a severe infection, the parasite can destroy the 
epithelial integrity, leading to cellular necrosis and tissue destruc-
tion. Saprolegnia spp. have already been isolated in association with 
A. sobria during an outbreak in rainbow trout fry (Oncorhynchus my-
kiss) (Yardimci & Turgay, 2021). However, the recurring presence of 

Ichthyobodo spp. and Saprolegnia spp. in freshwater, their distinct 
symptomatology, and the fact that they are typically considered 
secondary pathogens, suggest that their contribution to RSD is in-
significant. We can nonetheless rule out their potential role in fish 
infection during the progress of the disease.

Yersinia ruckeri is a gram-negative bacterium that is responsible 
for causing enteric redmouth disease (ERM), a significant disease 
affecting various fish species in freshwater, particularly salmo-
nids (Barnes, 2011; Kumar et al., 2015; Ross et al., 1966; Tobback 

F I G U R E  2  Bayesian analysis. Mid-rooted phylogenetic tree of 58 Aeromonas strains based on concatenated sequences of six genes (atpd, 
dnaj, gyra, gyrb, reca and rpod, total size: 3775 bp). Data set includes 42 Aeromonas strains from GenBank and 16 Aeromonas strains isolated 
during this study from three different fish caught in 2019 (in blue), 2020 (in green) and 2021 (in red). Posterior probabilities are indicated at 
each node. Aeromonas bestiarum, Aeromonas piscicola and Aeromonas sobria clades are highlighted in yellow, blue and orange, respectively. ID 
of each sequence indicates [Year (19: 2019; 20: 2020; 21: 2021); Origin (N: Norway; SE: Sweden Enningdal; SO:Sweden Örekilsälven)_Fish 
number_Strain number].
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    |  9LAGADEC et al.

et  al.,  2007). The bacterium primarily infects the fish via their di-
gestive tract or gills, leading to inflammation of the mouth, eye and 
gills, as well as haemorrhages in internal organs and terminal septi-
caemia. In Norway, the disease is associated almost exclusively with 

Atlantic salmon with outbreaks occurring principally in western/cen-
tral Norway and a few in the north (Sommerset et al., 2022). If the 
role of Yersinia ruckeri as a causative agent for RSD is not supported 
by the findings (e.g. distinct symptomatology observed, absence of 

F I G U R E  3  Mid-rooted Maximum likelihood phylogenetic trees. Phylogenetic relationship between 61 (a: atpD locus) and 74 (b: gyrB locus) 
sequences isolated during this study and 42 Aeromonas sequences from GenBank. Bootstrap values are indicated at each node. Font colours 
indicate the 16 clones isolated from the three Norwegian fish caught in 2019 (in blue), 2020 (in green) and 2021 (in red) and previously 
included in the Bayesian analysis. Highlight colours indicate sequences obtained from the Norwegian (orange) and Swedish (blue) fish organs 
fixed in 70% ethanol. Posterior probabilities are indicated at each node. Aeromonas bestiarum, Aeromonas piscicola and Aeromonas sobria 
clades are highlighted in yellow, blue and orange, respectively. ID of each sequence indicates [Year (19: 2019; 20: 2020; 21: 2021)_Origin (N: 
Norway; SE: Sweden Enningdal; SO:Sweden Örekilsälven)_Fish number_Organ source_Clone number].
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bacterial isolation in cultures, relatively low level of detection by 
qPCR analysis), the implication of the bacterium in the progression 
of the disease cannot be completely dismissed either. Indeed, Y. ruck-
eri was detected in 15 fish included in this study. The presence of 
Y. ruckeri in the cultures may have been hidden by the rapid growth 
of various Aeromonas strains. Candidatus Branchiomonas cysticola 
is an intracellular gram-negative bacterium causing epitheliocystis 
in Atlantic salmon (Gjessing et al., 2021; Mitchell et al., 2013; Ny-
lund et al., 1998; Toenshoff et al., 2012). The bacterium infects gill 
epithelial cells, forming cysts that can lead to respiratory failure in 
affected fish. Since the bacterium is commonly detected in salmon 
and displays a distinct tissue tropism, it cannot be stated that it is 
associated with the development of RSD.

Secondly and more importantly, preliminary identification of 
the colonies morphology and subsequent 16S rRNA sequencing 
identified the dominant bacteria as Aeromonaceae. Phylogenetic 
reconstruction proved that most of the strains are closely related 
to Aeromonas species already known to be fish pathogens, namely 
A. sobria, A. piscicola and A. bestiarum. Aeromonas sobria is a signifi-
cant fish pathogen that has been isolated from multiple fish species 
such as tilapia (Oreochromis niloticus), perch (Perca fluviatilis), gizzard 
shad (Dorosoma cepedianum) and from salmonids such as rainbow 
trout (Oncorhynchus mykiss) or Mexican golden trout (Oncorhyn-
chus chrysogaster) (Austin et al., 1989; Fuentes-Valencia et al., 2022; 
Gauthier et  al.,  2017; Li & Cai,  2011; Toranzo et  al.,  1989; Wahli 
et al., 2005; Yardimci & Turgay, 2021).

Aeromonas bestiarum and A. piscicola both belong to the for-
merly known A. hydrophila complex that encompassed several 
other species such as A. hydrophila, A. salmonicida and A. popoffii (Ali 
et al., 1996; Joseph & Carnahan, 1994; Martínez-Murcia et al., 2005; 
Popoff et al., 1981). Aeromonas bestiarum is one of the causal agents 
of motile aeromonad septicaemia in fish. The bacterium has been 
isolated in commercial carp (Cyprinus carpio), tilapia (Oreochromis 
niloticus) and rainbow trout (Oncorhynchus mykiss) (Castro-Escar-
pulli et al., 2003; Kozinska & Guz, 2004; Pieters et al., 2008; Zepe-
da-Velázquez et  al.,  2017). Aeromonas piscicola was isolated and 
described in 2009 from moribund Atlantic salmon and rainbow trout 
in Spain (Beaz-Hidalgo et al., 2009).

Despite recent investigations (histopathology, pathogen screen-
ing) undertaken by fish-health authorities on several Atlantic salmon 
specimens displaying RSD, no infectious agent could be associated 
with the disease (ICES, 2018, 2020; Sommerset et al., 2021). As a 
result, a team decided to focus on biomarkers as well as biochemical 
and haematological parameters potentially associated with the dis-
ease (Weichert et al., 2021). Based on a large sampling of 87 return-
ing Atlantic salmon caught in five different locations in Sweden in 
2018, their results showed that RSD is associated with a significant 
osmotic haemodilution, an alteration of the carbohydrate metabo-
lism and alteration of the immune system. Whole blood-associated 
parameters were particularly interesting. Indeed, neutrophil count-
ing showed an initial neutrophilia and a possible end-stage neutrope-
nia. Both suggest an immunological disease response, and possibly, a 
massive bacteraemia supported by this final decrease of neutrophils.

Nevertheless, several important points must be considered be-
fore associating Aeromonas spp. with RSD. Indeed, several results of 
this study tend to reassess the role of aeromonads as a precursor 
to the disease and instead lean towards a secondary infection. The 
high degree of genetic diversity observed within the analysed Aero-
monas sequences could suggest opportunistic colonization directly 
from the natural aquatic environment. Aeromonas species are com-
monly found in freshwater ecosystems and have previously been 
acknowledged as secondary pathogens (Austin et  al.,  2007; Cipri-
ano, 1984; Monfort & Baleux, 1990). As previously shown by We-
ichert et al. (2021), RSD impairs the host's immune system, thereby 
facilitating the establishment of secondary invaders. Furthermore, 
the lack of histological data does not allow for a definitive conclu-
sion regarding the role of these bacteria in the development of this 
disease. If the detection of Aeromonas spp. in internal organs could 
suggest a systemic infection, the absence of distinct internal clinical 
indicators precludes a definitive conclusion of a systemic bacterial 
infection. Moreover, the fresh fish displayed massive ulceration of 
the skin with openings of the abdominal cavity, which may have led 
to passive contamination of internal organs. Similarly, the other fish 
having been sampled in the field, contamination of internal organs 
cannot be ruled out. A possible contamination of internal organs is, 
for instance, supported by the detection of Ichthyobodo spp. within 
the internal organs. Despite the limited number of studies on RSD, 
it is also surprising that the association between Aeromonas spp. and 
RSD has not been conclusively established.

To assess the role of Aeromonas in RSD, a thorough study needs 
to be undertaken, with a focus on Aeromonas strains in association 
with Atlantic salmon presenting RSD signs. Subsequently, conduct-
ing challenge experiments on Atlantic salmon infected with single or 
multiple species of Aeromonas isolated from this study will allow for 
a more accurate assessment of the definitive contribution of these 
bacteria in the development of RSD.
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