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Towards Neural Charged Particle Tracking in Digital
Tracking Calorimeters With Reinforcement Learning

Tobias Kortus , Ralf Keidel , and Nicolas R. Gauger ,
Bergen pCT Collaboration

Abstract—We propose a novel technique for reconstructing
charged particles in digital tracking calorimeters using reinforce-
ment learning aiming to benefit from the rapid progress and suc-
cess of neural network architectures without the dependency on
simulated or manually-labeled data. Here we optimize by trial-
and-error a behavior policy acting as an approximation to the
full combinatorial optimization problem, maximizing the physical
plausibility of sampled trajectories. In modern processing pipelines
used in high energy physics and related applications, tracking
plays an essential role allowing to identify and follow charged
particle trajectories traversing particle detectors. Due to the high
multiplicity of charged particles and their physical interactions,
randomly deflecting the particles, the reconstruction is a challeng-
ing undertaking, requiring fast, accurate and robust algorithms.
Our approach works on graph-structured data, capturing track hy-
potheses through edge connections between particles in the detector
layers. We demonstrate in a comprehensive study on simulated
data for a particle detector used for proton computed tomography,
the high potential as well as the competitiveness of our approach
compared to a heuristic search algorithm and a model trained on
ground truth. Finally, we point out limitations of our approach,
guiding towards a robust foundation for further development of
reinforcement learning based tracking.

Index Terms—Charged particle tracking, combinatorial
optimization, proton imaging, reinforcement learning, track
reconstruction.

I. INTRODUCTION

THE rather recent introduction of deep neural network ar-
chitectures, particularly graph neural networks, for the re-

construction of particle trajectories from discrete measurements
in silicon detectors led to major progress in tracking perfor-
mances, reducing problems associated with the combinatorial
explosion arising from increased density of particle readouts [1],
[2]. However, in contrast to many earlier approaches, suffering
from the aforementioned phenomena [3], [4], [5], deep learning

Manuscript received 30 December 2022; revised 2 August 2023; accepted 10
August 2023. Date of publication 15 August 2023; date of current version 3
November 2023. This work was supported in part by German Federal State
Rhineland-Palatinate (Forschungskolleg SIVERT), in part by the Research
Council of Norway (Norges forskningsråd), and in part by the University
of Bergen under Grant 250858. Recommended for acceptance by M. White.
(Corresponding author: Tobias Kortus.)

Tobias Kortus and Ralf Keidel are with the Center for Technology and Transfer
(ZTT), University of Applied Sciences Worms, 67549 Worms, Germany (e-mail:
kortus@hs-worms.de; keidel@hs-worms.de).

Nicolas R. Gauger is with the Chair for Scientific Computing, TU Kaiser-
slautern, 67663 Kaiserslautern, Germany (e-mail: nicolas.gauger@scicomp.
uni-kl.de).

Digital Object Identifier 10.1109/TPAMI.2023.3305027

based methods require computationally costly simulated data
containing ground-truth information. In this work we propose
a novel track reconstruction scheme based on model-free rein-
forcement learning, inspired by applications in combinatorial
optimization [6], [7], [8], [9], where we aim to find a policy,
parametrized by a deep neural network, that functions as a
heuristic approximation to the full combinatorial optimization
problem. Therewith, our solution aims to provide a unified
solution between iterative and deep reconstruction algorithms to
reduce the additional complexity arising from the combinatorial
explosion of the possible solution space, while being able to
train on partial information without ground-truth labels. Our
work aims primarily at applications in high energy physics such
as high energy physics research, where the reconstruction of
discrete detector readouts generated by particle trajectories in
collision events is a central task in the data processing, pro-
viding indispensable information for further analysis, such as
vertex finding [10], [11], [12], particle reconstruction [13], [14],
[15] or jet flavor tagging [16], [17], [18]. Likewise, with the
recent development of high granularity scanner prototypes [19]
in medical physics applications such as proton computed to-
mography (pCT) or proton radiography (pRad), where residual
energy and path of high energetic particles measured in particle
detectors are used for imaging, track reconstruction becomes
a key processing step, providing estimates of track parameters
for image reconstruction [20], [21]. Both applications require
sophisticated algorithms, capable of reconstructing the traversal
path of particles with high purity and efficiency to maximize
spatial resolution, while in medical applications also minimizing
the radiological dose [21]. Using physical interaction models
together with discrete action spaces, our work provides an alter-
native view on reinforcement learning based particle tracking as
compared to the approach concurrently developed by Våge [22].
Further, in contrast to the model in [22], our approach can be used
as a standalone module, providing competitive reconstruction
performance. All source code together with training details,
hyperparameters, data, and models are publicly available on
GitHub1 and Zenodo.2 Our key contributions and conclusions
in this paper summarize as follows:
� We propose a novel reconstruction scheme using model-

free deep reinforcement learning building upon concepts
from neural combinatorial optimization, allowing for the

1https://github.com/SIVERT-pCT/rl-tracking
2https://doi.org/10.5281/zenodo.7426388

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-0987-8544
https://orcid.org/0000-0002-1474-6191
https://orcid.org/0000-0002-5863-7384
mailto:kortus@hs-worms.de
mailto:keidel@hs-worms.de
mailto:nicolas.gauger@scicomp.uni-kl.de
mailto:nicolas.gauger@scicomp.uni-kl.de
https://github.com/SIVERT-pCT/rl-tracking
https://doi.org/10.5281/zenodo.7426388


KORTUS et al.: TOWARDS NEURAL CHARGED PARTICLE TRACKING IN DIGITAL TRACKING CALORIMETERS 15821

ground-truth free optimization of a Pointer-Network [23]
based architecture for particle tracking.

� We optimize the architecture with custom positional en-
coding for improved spatial inductive bias, allowing for
a trainable selection of an area of interest, without any
restrictions on the graph connectivity, requiring manual
tuned priors.

� We demonstrate the efficiency of modeling the underlying
effects of elastic nuclear interactions as an effective, yet
easy to estimate quantity for a dense reward function per-
forming approximately on par with supervised optimiza-
tion.

� We exemplify the out-of-the-box generalization abilities
of our approach to unseen particle densities, phantom ge-
ometries, track topologies and beam spot positions without
requiring additional optimization.

� Finally, we demonstrate the competitiveness of the learned
policy to a manual tuned heuristic search algorithm [5],
[24].

II. RELATED WORK AND MOTIVATION

Given the high demand for tracking algorithms in particle
physics, various algorithms have been introduced in the last
decades. In the following, we briefly point out key developments
together with the motivation to deviate from existing approaches
by combining the advantages of iterative reconstruction algo-
rithms and deep learning in a unified reinforcement learning
based approach. For a more comprehensive review of existing
literature, we refer the reader to [25] and [1], [2].

Classical/iterative reconstruction methods: In the early de-
velopment of reconstruction algorithms, classical and iterative
algorithms, relying on rule based reconstruction or on phys-
ical models of particle interactions, dominated the landscape
of research. Most prominent were approaches based on local
track finding techniques such as Kalman filters [26] or cellular
automata [3] together with global [27], [28] and combinatorial
approaches [4], [5], [24]. However, with the increasing compu-
tational demands in modern high energy physics introduced by
the combinatorial explosion caused by higher particle counts,
these approaches are progressively replaced due to their scarce
parallelization ability together with the often required manually
tuned heuristics or costly evaluation of physical models during
reconstruction.

Deep learning reconstruction methods: With the availability
of modern deep learning architectures together with dedicated
computing hardware, deep learning demonstrated impressive
performance in particle tracking due to the ability to learn from
raw data with no or minimal assumptions about the underlying
system. Early approaches heavily utilized LSTM [29], [30], [31]
and CNN [30], [31] architectures, and were later on superseded
by graph neural networks [1], [2], sparsely capturing relations
between particle hits. Here, most approaches rely on an edge
classification scheme together with a final planning module
extracting feasible track candidates leveraging predicted edge
scores [29], [32], [33], [34].

With the usage of deep learning architectures, particle track-
ing becomes highly dependent on large amounts of computa-
tionally intensive Monte Carlo simulations, possibly introducing
additional simulation-to-reality gaps (e.g., cluster sizes [35]),
which might affect inference performance. Training fixed recon-
struction policies on partial information using a reward signal,
physical models used in iterative reconstruction can guide the
training process of generalizable network architectures, while
being able to reconstruct tracks independently of simulated data
and costly evaluation of physical processes during inference.

III. PARTICLE INTERACTIONS IN MATTER

In this section, we provide the reader a short lineup of pre-
dominant physical interaction mechanisms that can be observed
and influence the path of charged particles traversing matter at
energies relevant for pCT. For brevity, we intentionally leave
out further interactions. For a full and in depth review of inter-
action mechanisms in high energy physics, the mindful reader
is referred to Groom and Klein [36].

A. Ionizing Energy Loss

Charged particles passing through material of thickness dx
lose a fraction of their initial energy, caused by repeated inelastic
Coulomb interactions with atomic electrons. This relationship
in terms of the mean energy loss per unit length −dE/dx, also
referred to as linear stopping power (S), was first captured in
a non-relativistic form by Bohr [37] and later for relativistic
velocities by Bethe and Bloch [38]. Note that the linear stopping
power is approximately inversely proportional to the particle
velocity and thus residual energy, resulting in relatively low en-
ergy losses at high velocities and a maximum energy deposition
right before the particle stops. This characteristic point in the
energy loss curve is often referred to as Bragg-peak, providing
the beneficial characteristics of precise energy deposition used
in proton or ion therapy.

B. Multiple Coulomb Scattering

While interacting with atomic electrons, protons or heavier
ions remain on their original path due to the relatively high
mass opposed to the atomic electrons. However, in the case of
Coulomb interactions with atomic nuclei, also referred to as
multiple Coulomb scattering, heavy charged particles observe a
repelling force causing a deflection of the particle from its orig-
inal path [39]. The amount and direction of deflection is mostly
random, following approximately a Gaussian distribution [40],
[41], while being influenced by the radiation length X0 of the
material traversed and the particle momentum.

C. Inelastic Nuclear Interactions

Occasionally, high energetic charged particles directly pierce
the Coulomb barrier of an atomic nucleus and collides with
it. During this collision, the primary particle is absorbed, and
secondary particles are created. Due to the chaotic nature of
this interaction, obscuring information of the initial residual
particle energy, particle tracks with inelastic interactions are
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Fig. 1. Schematic diagram of the material composition of the detector geometry consisting of, from left to right, the first two tracking layers and the first
detector-absorber sandwich layer used for simulating proton tracks in GATE. Adapted from [19].

not relevant for pCT and thus are not further considered during
reconstruction.

IV. THE DIGITAL TRACKING CALORIMETER

In this paper, we focus on reconstructing particle trajectories
of protons measured during pCT and pRad, captured in a high
granularity digital tracking calorimeter (DTC) proposed by the
Bergen pCT collaboration. The Bergen pCT collaboration [19],
established at the University of Bergen (Norway), focuses on the
design of a novel prototype scanner for pCT using a multilayer
structured high granularity DTC. The sensitive area of the pro-
posed scanner is built of high resolution 1-bit ALPIDE silicon
sensors [42], developed for the upgrade of the Inner Tracking
System (ITS) of the ALICE experiment at CERN [43]. The
shared structure of high granularity silicon sensors with other
high energy experiments [44] makes this detector well suited for
initial development of our algorithm, while reducing the overall
complexity of the system. The pCT scanner, described in Alme
et al. [19], consists in total of two downstream trackers in the
frontal section of the detector, followed by a stack of 41 detec-
tor/absorber sandwich layers, each composed of a sensitive layer
of silicon detectors followed by an 3.5 mm aluminum absorber
plate. A detailed description of the material composition of the
scanner is depicted in Fig. 1.

V. TRACKING AS A MARKOV DECISION PROCESS

For the representation of the particle reconstruction task, we
consider a framework similar to existing approaches in com-
binatorial optimization [6], [7], [8], [9], [45], where we aim
to approximately solve an optimization problem by finding a
policy π(at|st) capable of determining adequate sets of trajec-
tories maximizing the physical plausibility of the undertaken
transition. We therefore model the sequential task of following
particles in subsequent high granularity silicon pixel layers as
a Markov Decision Process (MDP) [46] on a graph defined by
the tuple M = 〈S,A,R, P, μ0〉. Here S is the set of possible

Fig. 2. Schematic representation of the proposed, fully connected, detector
graph with multiple particle track hypotheses over two tracking layers and the
first four detector-absorber sandwich layers.

states defining partial particle tracks, A is the set of possible
actions defining all possible transitions between hit centroids in
the graph, where At ⊂ A is the set of feasible actions at time t
defined by the neighborhood N , and R is a scalar reward signal
S ×A → R defined by the underlying physics of particle inter-
actions in matter. Further, let P be the (unknown) underlying
state transition kernel and μ0 the initial state distribution of the
MDP. In our use case, we operate in an episodic setting where
each episode starts with a randomly sampled state s0 ∼ μ0 in
the detector and ends after T ≤ Tmax time steps in a terminal
state, upper bounded by a full traversal of all sensitive layers
contained in the DTC, where a full particle track candidate is
defined by a trajectory τ = (s0, a0, . . . , sT , aT ).

A. Detector Graph

Following the initial problem definition in Section V, we
now consider the definition of the graph-structure built upon
the detector readouts. Let G = (V, E) be a directed acyclic
graph over the layered point cloud of detector readouts, where
V = {vi}i=1:Nv

denotes a set of graph vertices defined by proton
hit centroids and E = {ek}k=1:Ne

be the graph’s edges, connect-
ing existing neighboring readouts over subsequent layers, in a
direction opposite to the particle traversal path (ref. Fig. 2).
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Fig. 3. Shared network architecture for policy and state-value estimates based on N stacked Transformer encoder, leveraging positional encoding with adaptive
receptive field, together with individual network branches for V π

θ and πθ using additive attention.

In our case, each edge eij represents a possible hypothesis
for a track segment between readouts vi and vj that need to
be considered as a possible action for reconstruction. Here, we
intentionally perform no prior filtering of hypotheses to avoid
any assumptions, requiring detector dependent information. Fur-
ther, we use inverted edge directions compared to the particle
traversal direction to allow for a backward tracking scheme,
starting in the distal section of the detector. This allows us to
take advantage of the decreased particle density in this part of
the detector. We parameterize each vertex vi by a set of fea-
tures �vi = (ΔEC

i , xi, yi, 1z(zi)), where ΔEC
i is the measured

energy deposition of the particle in terms of discrete cluster
sizes, estimated according to [19], and xi, yi is the pixel position
in the detector plane. Further, 1z(zi) is a one-hot indicator
function encoding the index of the detector plane in the DTC
as a 43-dimensional vector. Each edge is then parameterized
as �eij = (rij , θij , φij), where rij , θij and φij are spherical
coordinates describing the connection of a transition hypoth-
esis. Finally, we normalize all features, where we additionally
center the hit positions in the detector w.r.t the position of the
pencil beam (modified during scanning), to provide translation
invariant representations.

B. State Definition

To define a sufficient state representation in the detector graph
which satisfies the Markov property w.r.t. a single track, we
consider various components of the graph describing a sufficient
statistic over the reconstructed track candidate. Given the inde-
pendence of individual scattering events, we formulate a state
in the MDP as a combination of a one-step history describing
the last reconstructed track segment as well as all possible next
segments, defined as

st = {vt, et−1,t} ∪
N (vt)⋃
i=0

{
v
(i)
t+1, e

(i)
t,t+1, ψ

(
v
(i)
t+1

)}
. (1)

Here, {vt, et−1,t} and {v(i)t+1, e
(i)
t,t+1} describe the last recon-

structed segment and the i-th possible next segment, defined
by vertices and edges between two particle hits in subsequent

sensitive layers, respectively. Further, ψ(v(i)t+1) is an additional
representation, summarizing a statistic of an n-hop neighbor-
hood in the graph. In Section VIII-K, Table V we demonstrate the
equivalence of the MDP with the described state representation
over a partial observable MDP (POMDP), where we assume
partial observability of the system, introduced by essential in-
formation being lost in the unobserved history of the track
candidate. We therefore consider an updated state representation
st = {vt, et−1,t,Γ(vt)} ∪

⋃N (vt)
i=0 {·} with an additional belief

state Γ(vt), captured recursively over the preceding track seg-
ments by a LSTM.

VI. PREPROCESSING AND MODEL ARCHITECTURE

Working upon the state representation in Section V-B,
we parametrize both policy πθ(at|st) and state-value func-
tion V π

θ (st) using a Pointer-Network style architecture
(ref. Fig. 3) with encoder-decoder scheme [23], commonly
utilized in neural combinatorial optimization [6], [7], [23]. To
reduce the size of the policy and value network and allow
parameter-sharing, we rely on a shared network trunk, contain-
ing the computationally demanding encoding task, combined
with a novel adaptive positional encoding mechanism, while
only separating the final decoders used for estimating πθ and
V π
θ . According to the state definition in Section V-B, we provide

the proposed network architecture two distinct set of features,
in the following referred to as action- and observation-features
with

�hobs = [�vt‖�et−1,t] and (2)

�hact,i =
[
�v
(i)
t+1‖�e(i)t,t+1‖�ψGNN

(
v
(i)
t+1

)]
, (3)

Here, �v and �e are vertex and edge features with the concate-
nation operator ‖, and �ψ(v(i)t+1) is a context vector generated for

v
(i)
t+1 by a graph neural network (GNN). Further, we generate

equally sized embeddings �hemb
obs and �hemb

act,i by transforming each
set of features by a distinct multi-layer perceptron (MLP). In
the following, we describe the individual components of the
network.
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Fig. 4. Area of focus of adaptive receptive field defined by clip{·, 0, 1}with fixed rescaling factors ofΦ(�hemb
obs ,�hemb

act ) ∈ {0.5, 0.4, 0.3} together with previously
reconstructed track segment with projected straight track and possible next hits in the subsequent detector layer.

A. Node Embedding

To capture structural information in the graph to find long-
term dependencies over multiple detector layers, we add a
statically calculated context representation �ψGNN (v

(i)
t+1) of the

multi-hop neighborhood of vertex v(i)t+1 to the feature vector. We
realize this with a graph neural network with inverted message
flow (target-to-source), composed of multiple stacked graph
attention (GAT) layers [47], [48] with added self-loops. This
allows to efficiently capture relations in the graph geometry
by calculating in each network layer l > 0 an updated node

representation �ψ
(l)

i,GNN as:

�ψ
(l)

i,GNN = σ

⎧⎨
⎩Wk

�h
(l−1)
i +

N (i)∑
j=0

αijWk
�h
(l−1)
j

⎫⎬
⎭ , (4)

Here �ψ
(l)

i,GNN ∈ RdE is the dE dimensional vector embed-
ding, generated by the previous layer of the GNN, Wk ∈
RdE×dE is a dE × dE dimensional parameter matrix and σ is a
nonlinear activation function. Further, aij is an attention weight
generated for each node in the neighborhood N (i) using

α
(l)
ik =

exp
{
�vT LReLU

(
W

[
�h
(l−1)
i

∥∥∥�h(l−1)
j

])}
∑N (i)

k exp
{
�vT LReLU

(
W

[
�h
(l−1)
i

∥∥∥�h(l−1)
k

])} , (5)

where W ∈ RdE×dE and �v ∈ RdE×1 are, again, network pa-
rameters and LReLU is the Leaky Rectified Linear Unit activa-
tion function.

B. Action Candidate Encoding

Aiming to transform the action-features (�hemb
act ) to find ex-

isting relations between action candidates in At, we use a
multi-head attention (MHA) [49] based encoding mechanism
similar to [8], [50]. We select this mechanism over the proposed
LSTM layer in the original Pointer-Network architecture [23]
to overcome shortcomings introduced by the lack of meaningful
ordering of the input sequence. The encoding module is built
according to (6) and 7 by stacking three encoder sub-layers,
each composed by a multi-head attention block, with four heads
with a dimensionality of dH = 32 for each attention head, com-
bined with a residual connection [51] and layer normalization

(LN) [52]:

�h
(l)
act,i = LN

(
�h
(l−1)
act,i + MHAi

(
�h
(l−1)
act,i , . . . ,

�h
(l−1)
act,N

))
(6)

�h
(l)
act,i = LN

(
�h
(l)
act,i + MLP

(
�h
(l)
act,i

))
(7)

Here, �h(l)
act,i and �h

(l−1)
act,i are input and output features of

network layer l, with �h(0)
act,i =

�hemb
act,i. The final output of each

sub-layer is then generated by transforming the output feature of
the first step using a multilayer perceptron, once again combined
with a residual connection and layer normalization. For a clear
distinction of the transformed features, we denote the final output
of the encoding layers in the following as �hattn

act,i.

C. Positional Encoding With Adaptive Receptive Field

To capture supplementary spatial information, we propose a
modified form of positional encoding (PE-ARF) similar to [49],
using cosine-similarities of track hypotheses as positional infor-
mation augmented by an adaptive rescaling mechanism based
on additive attention [53]. This allows us to re-allocate attention,
as depicted in Fig. 4, to improve spatial resolution for each
reconstruction step independently:

N
(i)
ARF = α · clip

⎧⎨
⎩

0.5 ·
(
1− sim

(
et−1,t, e

(i)
t,t+1

))

Φ(�hemb
obs ,

�hemb
act,0:N )

, 0, 1

⎫⎬
⎭

(8)
Here 0.5 · (1− sim(et−1,t, e

(i)
t,t+1)) is the cosine-similarity

of the edges of a partial track hypothesis defined by the ver-
tices vt−1 → vt → vt+1, rescaled to a range of [0, 1], where 0
corresponds to straight edge connections. Further, clip(·, 0, 1)
denotes a clipping function restricting the range of the rescaled
similarity values to [0, 1] removing unique encoding information
from connections outside the normalization range, defined by the
function mapping Φ(�hemb

obs ,
�hemb
act,0:N ) with RdM → R:

Φ(·) = Φ

⎧⎨
⎩WΦ

1
�hemb
obs +

N (i)∑
j=0

αj

(
WΦ

2
�hemb
act,j

)⎫⎬
⎭ (9)

Here, WΦ
1 and WΦ

2 are linear projections with WΦ
1 ,W

Φ
1 ∈

RdM×dM and αi is a learnable attention weight defined by the
additive attention mechanism [53] with WΦ

1 ,W
Φ
1 ∈ RdM×dM
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and �vT ∈ RdM×1:

αi = �vT tanh(Wα
1
�hemb
act,i +Wα

2
�hemb
act,j) (10)

We demonstrate the positive effect of positional encoding with
adaptive receptive field over regular positional encoding and em-
bedding without encoding in Section VIII-K, Tables VI and VII.

D. Policy and State-Value Decoding

To obtain the final output describing the policy πθ(at|st)
and state-value estimate for a given input, we correlate the
transformed action-features with the observation-features using
the attention based decoder proposed in Vinyals et al. [23].
Here, we use separate branches for both state-value and policy
estimate, calculating for each possible action a

(i)
t ∈ At, two

scalar weights απ
i and αV

i according to

αi = �vT tanh(W1
�hattn
act,i +W2

�hemb
obs + �b12) + �b�v. (11)

We then leverage the information contained in each attention
weight to calculate πθ as

πθ

(
a
(i)
t |st, θ

)
=

exp (απ
i )∑N (i)

j=0 exp
(
απ
j

) , (12)

where πθ(a
(i)
t |st, θ) represent the agent’s policy in terms of

softmax in action perferences, calculated for each possible action
a
(i)
t ∈ At using the corresponding attention weight απ

i . Simi-
larly, the state-value function is estimated as the average over
all attention weights aVi :

V θ
π (st) =

1

|N (vt)|
N (vt)∑
i=0

αV
i (13)

VII. REWARD DESIGN AND NETWORK OPTIMIZATION

During the traversal of the detector-absorber sandwich layers,
the proton trajectory is mainly influenced by the effects of
multiple Coulomb scattering, where the magnitude of scattering
observed in a thin slab follows approximately a Gaussian dis-
tribution [41]. Therefore, the joint probability for an observed
trajectory τ , crossing multiple sensitive detector layers, factor-
izes according to

P (τ) =

T−1∏
t=1

p (Δθ(st : st+1)|X0(st : st+1), R0(τ)) , (14)

where p(Δθ(st : st+1)|·) defines the probability of observing
the angular deflection Δθ given the state transition st → st+1

and the full trajectory τ under multiple Coulomb scattering.
Here, X0(st : st+1) denotes the radiation length of the detector
section enclosed by st : st+1 and R0(τ) denotes the estimated
range of the track candidate τ . Intuitively, we aim to find a
policy πθ from the family of parametrized policies Πθ, that
maximizes the expected factorized probability P (τ):

π∗
θ = argmax

πθ∈Πθ

Es0∼μ0,at∼πθ
[P (τ)] . (15)

We aim to indirectly optimize the described quantity of
the factorized probability P (τ) by maximizing the return Gt

obtained by repeated interactions in randomly sampled envi-
ronments. We therefore define the immediate reward rt for an
action at as

rt = log p (Δθ(st : st+1)|X0(st : st+1), R0( τ)), (16)

where the undiscounted returnGγ=0
t directly corresponds to the

factorized log-probability logP (τt:T ) of the partial track τt:T .

A. Sampling of Track Candidates During Training

During training, we sample multiple track hypotheses τ (i) =
(s0, a0, . . . , sT , aT ), from randomly selected environments,
each capturing individual readout frames of the scanner. As we
do not know the actual stopping point of tracks in the graph
without stepwise solving all tracks starting from the last detector
layer, we manually establish an initial state distribution μ0,
by sampling random starting positions from the pool of all
vertices in the last five layers using a uniform distribution. By
choosing a margin of five detector layers, we aim to account
for varying track lengths in the detector, while still providing
enough energy information for estimating the track’s energy
characteristic. Further, to be able to parametrize our initial state
representation s0, we combine our initial graph vertex v0 with
track seeding [54] for an estimation of initial track properties.
For simplicity, we rely here on ground-truth track seeding to
avoid measuring negative impacts of particular track seeding
techniques on the RL approach. Doing so, we can obtain a
possible upper bound on the performance in the later sections.

B. Reward Estimation Using MCS

For estimating the algebraically complicated theory for mul-
tiple Coulomb scattering described by Molière [39], we use
a Gaussian approximation by Highland [41], [55], where the
2σθ0 angle for each scattering transition in the sampled track
hypothesis can be roughly estimated by

2σθ0 =
14.1MeV

pv

√
z

X0

[
1 +

1

9
log10

(
z

X0

)]
. (17)

Here X0 is the radiation length and z is the thickness of the
target slab traversed. To avoid the additional complexity of com-
posite materials, we only consider the predominant influence
of aluminum absorbers and air gaps. We further calculate the
kinetic energy (pv) of the particle respectively as [55]

pv =
τ + 2

τ + 1
E where τ ≡ E

mc2
, (18)

where E is the residual energy of the proton, m is the proton’s
mass and c is the speed of light. We estimate the residual energy
E(z) of the proton at each sensitive layer, given the range, based
on the approximate mean energy loss curve defined by the Bragg-
Kleeman rule [56] as

E(z) = α−1/p(R0 − z)1/p. (19)

We find the range of the particle by performing a nonlinear
least square fit on the energy depositions of a sampled trajectory
τ using the differentiated Bragg-Kleeman equation−dE/dz [56],
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defined respectively as

−dE
dz

= p−1α−1/p(R0 − z)1/p−1. (20)

Hereα = 0.0262MeV/mm−1 and p = 1.736 are both param-
eters obtained from model fits to range-energy data performed
for this particular detector by Pettersen et al. [57].

C. Data Correction Mechanisms

To counteract the significant imbalance in sampled experience
and reward introduced by the unbalanced frequency of state tran-
sitions observed for tracker and calorimeter layers, we introduce
two correction mechanisms:
� Reward Normalization: We observed degraded perfor-

mance of the model due to different orders of magni-
tude in reward estimates of layers with different material
budget (Section VIII-K, Table VIII). To counteract this
phenomenon, we employ an adapted version of reward
normalization as proposed by Van Hasselt et al. [58], where
we normalize rewards to zero mean and unit variance
depending on the traversed material budget.

� Data resampling: To stabilize training, we further balance
the amount of sampled state transitions 〈st, at, st+1〉, by,
resampling the gathered experience from tracking and
calorimeter transitions during each optimization step to a
1:1 ratio.

D. Policy and State-Value Updates

For the optimization of the proposed agent architecture, we
rely on proximal policy optimization (PPO-CLIP) [59], an
actor-critic algorithm providing state-of-the art results in many
application domains by allowing larger policy updates while
avoiding costly operations of KL-constrained objectives [59].
We specifically rely on an actor-critic method in order to apply
bootstrapping for decreased gradient variance while still being
able to use on-policy optimization. We prefer on-policy over
off-policy experience due to the substantial dependence of the
chosen reward function on the particular sampled trajectory,
conditioned by the required range fitting in Section VII-B. For
each update step, we calculate the policy loss according to
Schulman et al. as

LP = Et

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât

)]
,

(21)
where rt is the probability ratio between old and new policy,
denoted by rt = πθ(at|st)/πθold(at|st). Further, Ât is an es-
timate of the advantage function, estimated using generalized
advantage estimation [60]:

ÂGAE
t =

∞∑
l=0

(γλ)lδVt+l, (22)

Here, both γ and λ are tunable hyperparameters controlling
discount and bias-variance-tradeoff for the advantage estimate,
and δVt denotes the temporal difference (TD) residual

δVt = rt + γV (st+1)− V (st). (23)

Similar to the policy loss, we calculate the value-loss as a
clipped mean squared error objective, as defined in Engstrom
et al. [61]. For the combined update of the shared network
architecture for state-value and policy function, we determined
the combined loss function according to Schulman et al. [59]
as

L(θ) = Ê
[LP

t (θ) + c1LV
t (θ) + c2S [πθ] (st)

]
, (24)

where LP and LV are policy- and value-loss, S[πθ] is an
additional entropy regularization term and c1, c2 are weighting
factors for LP

t and S[πθ] respectively. We use orthogonal ini-
tialization for all network layers, with varying scaling for each
layer [61], [62].

VIII. EXPERIMENTAL RESULTS

In this section, we demonstrate and analyze the performance
of the proposed sequential reconstruction approach from dif-
ferent aspects, including various phantom geometries, phantom
material composites and particle densities. We particularly focus
on the reconstruction and generalization performance of particle
trajectories recovered from particle spots, measured for a radio-
graph of an inhomogeneous head phantom with various particle
configurations. We then extend the analysis of reconstruction
performance to individually analyze the impact of phantom
thickness, particle density as well as beam spot positioning to
decompose existing sources of error. We finally compare the
results with a supervised trained model and heuristic search
algorithm [5], [24], demonstrating the competitive performance
of the reinforcement learning based approach.

A. Generation of Track Candidates During Inference

Unlike trajectory generation during training, during inference
we aim to extract all valid tracks from a given readout frame,
while following the full length of a track. We therefore deviate
from the candidate generation described in Section VII-A. Dur-
ing inference, we add, starting from the last layers, all vertices
not covered by track candidates to the reconstruction queue and
reconstruct all candidates, following the learned policy greedily,
until all candidates reach their respective terminal state in the
first tracking layer (ref. Fig. 5).

B. Track Filtering

Due to the occurring physical interactions, a fraction of par-
ticles undergoes unrecoverable inelastic nuclear interactions,
either observable as large angle scattering or abrupt stops. Fur-
ther, some reconstructed particles do not match the required
physical properties. To remove those particle trajectories from
evaluation, we apply a cut based filtering, limiting the scattering
angle in calorimeter and tracking layers to Δθmax = 271 mrad,
corresponding to a 2σ upper bound for particles in the last
layer before stopping using extrapolated values from the PSTAR
database [63]. Further, all tracks are required to show the
characteristic high energy deposition of a Bragg peak, which
we identify by an energy filter in the last layer of ΔEmin =
2.5 keV/μm [5], [64].
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Fig. 5. Reconstructed particle trajectories from randomly sampled environments of the 100 mm water phantom dataset, described in Section VIII-D with, from
left to right, 50, 100, 150, and 200 p+/F . Green: correctly reconstructed track segment, red: incorrect reconstructed track segment, orange: correct reconstruction
following the wrong primary particle.

C. Performance Scores

To evaluate and quantify the performance of the proposed
tracking scheme, we calculate purity (p) and efficiency (ε)
of reconstructed particle tracks based on the ground truth of
particle tracks. We calculate the purity of reconstructed tracks,
according to (25) as the fraction of correctly reconstructed tracks
after filtering and the total number of reconstructed tracks after
filtering:

p =
Nfilt

rec,+

Nfilt
rec,+/−

, ε =
Nfilt

rec,+

Nprim
total

, (25)

Here we rely on the strict tight-match definition of a correctly
reconstructed track, where all reconstructed vertices have to cor-
respond, in addition to matching the criteria in Section VIII-B, to
the same primary particle. Similarly, we calculate the efficiency
(ε) of reconstructed particle tracks as the number of correctly
reconstructed tracks after filtering divided by the number of total
primary tracks present in the readout frame.

D. Simulations and Data Generation

As the there is currently no working prototype of the proposed
scanner setup described in Alme et al. [19], we rely on Monte
Carlo (MC) simulated data [65] using the Gate 9.2 simulation
toolkit [66] built upon Geant4 [67]. We therefore use a model of
the detector geometry, following the material budgets, described
in Fig. 1. We simulate the proton source, used in pCT and
pRad for pencil beam scanning, as a mono-energetic 230 MeV
proton beam with σxy = 2 mm. In order to study the quality of
reconstructed particle tracks in detail, we consider the following
two phantom types, placed in between the particle beam and
detector:
� Pediatric head phantom: To provide realistic reconstruc-

tion results for inhomogeneous material composites, we
rely on spot scanning data with 7 mm spot spacing, gener-
ated for a pediatric head phantom described in Giacometti
et al. [68]. To reduce the overall runtime of the evaluation,
we only consider beam spots contained inside the patient
with 2,000 primaries per frame each. We therefore remove

all frames from the simulation, where the proton beam
center misses the head phantom.

� Water phantoms: We additionally provide simulated data
with proton beams degraded in homogeneous water phan-
toms with 100, 150 and 200 mm thickness, to specifically
investigate the effect of particle densities and phantom
thickness on the reconstruction performance.

E. Model Training

In all following experiments, we use simulated training data
of a particle beam (10,000 primaries), directly penetrating the
detector without any degrading phantom material placed in
between beam and detector. This allows us to remove any de-
pendence on phantom geometry during training phase, avoiding
any kind of overfitting to particular test configurations. We
then optimize fifteen independent models (to reduce the overall
runtime, we only use the first five models for evaluating the spot
scanning performances) on randomly sampled environments
for 1,000 iterations, to provide a stable estimate of the model
performance together with inter-run uncertainties (±1σ; ±1
standard error of the mean (SEM) for model comparisons). We
further provide statistical confidences in terms of p-values for all
model comparisons using a two-sided Welch’s t-test [69], [70].
Each environment is generated using particle tracks from the
training dataset, each constructing a graph geometry with 100
primaries each frame (p+/F ).

F. Reconstruction Performance: Head Phantom

To validate the overall reconstruction performance of the
proposed approach, we analyze the purity (p) and efficiency (ε)
of reconstructed particle trajectories for the spot scanning dataset
generated for a pediatric head phantom, as described in Sec-
tion VIII-D. Here, we focus particularly on reconstruction re-
sults for particle densities of 50, 100 and 150 p+/F , which
corresponds closest to the particle densities to be expected in
the Bergen pCT detector, given the readout capabilities of the
system. In Fig. 6, Fig. 7 and Table I we visualize and compare
the individual reconstruction performance for all beam spot
positions directly penetrating the head phantom geometry. As
depicted in Table I, we report average median purities in the
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Fig. 6. Reconstruction performance, including purity p (bottom) and efficiency ε (top) on pediatric head phantom with 5 mm spot spacing and σxy = 2 mm, used
for reconstruction of coronal pRad. Left to right:50p+/F ,100p+/F , and150p+/F . Marked in red is the projected sensitive detector area with270 mm × 164 mm.

Fig. 7. Distribution of reconstruction performance including purity p and efficiency ε on pediatric head phantom with 7 mm spot spacing and σxy = 2 mm used
for reconstruction of coronal pRad, left to right: 50p+/F , 100p+/F , and 150p+/F . Marked in red are the median values.

TABLE I
MEDIAN x̃ AND AVERAGE x PURITY (p) AND EFFICIENCY (ε) OF

RECONSTRUCTED TRACKS FOR HEAD PHANTOM WITH DENSITIES IN BETWEEN

10 AND 100 p+/F

range of 80.8±0.3% up to 92.8±0.1% with efficiencies between
70.8±0.5% and 80.7±0.2%. Further, we find decreased average
values, compared to the median, due to the long tail of outliers,
as depicted in Fig. 7, present in the beam spot positions in the
upper head and lower neck sections. We further analyze this
effect in Section VIII-H.

Otherwise, the overall reconstruction performance for all
beam spots is fairly consistent. Most of the beam spots contained
in the center of the detector yield similar results, with some
Gaussian noise around the median reconstruction performance.

G. Phantom Thickness and Particle Density

To decompose the impact of phantom thickness and particle
density on both purity and efficiency, we further analyze the
reconstruction performance on homogeneous water phantoms
of various thickness, as described in Section VIII-D. We choose
phantom thicknesses of 100, 150 and 200 mm as realistic
equivalences for human tissue and evaluate the results on a
wide variety of particle densities (p+/F ) in the range of 10
to 200 primaries per frame. As depicted in Table II, we achieve
average purities in the range of 75.3±0.6% up to 98.8±0.1%
and efficiencies in between 66.6±0.6% and 88.4±1.6% for
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Fig. 8. Reconstruction performance including purity p (top) and efficiency ε (bottom) for various beam spot positions on a homogeneous 150 mm water
phantom with 7 mm spot spacing and σxy = 2 mm, left to right: 50p+/F , 100p+/F , and 150p+/F . Marked in red is the projected sensitive detector area with
270 mm × 164 mm.

TABLE II
PURITY (p) AND EFFICIENCY (ε) OF RECONSTRUCTED TRACKS FOR 100, 150,

AND 200 MM WATER PHANTOMS WITH DENSITIES IN

BETWEEN 10 AND 100 p+/F

all particle densities and phantom geometries. Further, we can
observe better performances for higher phantom thicknesses,
which can be explained by the decreased number of layers to
be reconstructed, due to the lower residual energy. Similarly,
we achieve higher performances for lower particle densities and
observe increasing deterioration in both p and ε with higher
particle densities.

H. Beam Spot Positioning and Detector Boundaries

We further analyze the impact of particular beam spot po-
sitions on homogeneous phantom geometries to identify sys-
tematic biases in the reconstruction performance. We therefore
compare both purity (p) and efficiency (ε) for various beam spot
positions contained in an area of 196 mm × 154 mm, with a
spacing between beam spots of 7 mm in x and y direction.
We further add homogeneous water phantoms of 100, 150 and
200 mm thickness in between particle beam and detector. Fig. 8
shows the obtained results for the 150 mm water phantom with

50, 100 and 150 p+/F. For brevity, we omit the detailed results
for the remaining water phantoms, as the overall results are
directly comparable. Fig. 8 depicts the performance result of re-
constructed particle trajectories for different beam spot positions
throughout the area of detector aperture (marked by a wireframe
cube in red). Here, the overall reconstruction performance inside
the center area of the detector remains stable (with expected
random Gaussian noise around the average reconstruction per-
formance) for all particle densities, demonstrating the translation
invariance introduced by the beam spot dependent normalization
of features. However, we observe a drastic drop in reconstruction
efficiency in the outer sections, increasing exponentially with
respect to the distance to the detector boundary. In contrast,
the purity of reconstructions remains significantly more stable,
while the overall tendency of decreased performance is still
observable. We argue, based on the direct correlation of recon-
struction performance and distance to the detector boundary, that
the drop in efficiency can be fully explained by particles leaving
the detector which, thus, cannot be fully reconstructed. This
claim is further confirmed by the fact that the efficiency degrades
with much faster speed than the purity, due to the strict filtering
of particle trajectories without a Bragg peak (Section VIII-B).
The same effect of decreased reconstruction performance for
particles leaving the detector can be found in Section VIII-F
Fig. 6, generating multiple outliers which can be observed in
Fig. 7.

I. Performance Gap on Heuristic Search

To ensure the competitiveness of our approach, we com-
pare performance of our learned policy with a manually tuned
heuristic search algorithm, that has been developed for this
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TABLE III
PERFORMANCE GAP Δp AND Δε ON HEURISTIC SEARCH FOR 100, 150, AND

200 MM WATER PHANTOMS WITH DENSITIES BETWEEN 10 AND 200 p+/F

particular detector by Pettersen et al. [5], based on a previous
approach described in Amrouche et al. [24]. Here, the pos-
sible solution space is restricted by Sn < Smax, where Sn =
(
∑N

i=1 Δθ
2
i )

1/2 is the square root of the sum of squared angular
deflection terms and Smax = 278 mrad defines a manually op-
timized upper limit using ground truth based on MC simulated
data [5]. Following an initial seed pair, feasible candidates are
identified recursively based on the aforementioned metric. To
further limit the search cone, new candidates are only added
to the queue if the respective Sn values are within 15% of
each other. Finally, candidates with Δθ < 50 mrad are always
added independently of the aforementioned restrictions. After
all feasible solutions are explored, the optimal track candidate
is selected based on the lowest Sn score [5]. To make the results
comparable, we also replace the process of finding suitable seed
pairs with a ground truth seeding, restricting the search tree only
to solutions including the correct seed. As depicted in Table III,
our method is able to achieve comparable results to the algorithm
in Pettersen et al. [5] with better or mostly on par performances.
Particularly for densities up to 100 p+/F , the learned policy
outperforms the manually tuned heuristic, with improvements
in purity up to 6.0±0.1 percentage points (pp). However, we
can observe rare cases of decreased performance, especially for
high particle densities, demonstrating the limits of the learned
heuristic.

For particle densities of 150 and 200 p+/F the results vary
between phantom thicknesses. In most cases, we still are able to
obtain marginally improved purities while observing different
amounts of decrease in the reconstruction efficiencies. In spite
of that, all efficiencies remain in a range of approximately
two percentage points (-2.0±0.6 pp) compared to our proposed
approach.

J. Performance Gap of Partial Information

Finally, we analyze the performance gap of our approach,
as opposed to an equivalent model trained in a supervised
manner. We therefore compare the baseline model described in
the preceding Sections VIII-F, VIII-G, and VIII-H with a second
model, sharing the same model architecture, by minimizing the
negative log likelihood of random undertaken track transitions
(x) of primary particle tracks given the ground truth (y) provided

TABLE IV
PERFORMANCE GAP PURITY (Δp) AND EFFICIENCY (Δε) OF PARTIAL

INFORMATION FOR 100, 150, AND 200 MM WATER PHANTOMS WITH DENSITIES

BETWEEN 10 AND 200 p+/F

by MC simulations (D) according to:

θ∗ = argmax
θ∈Θ

Ex,y∼D [P (y|x)] . (26)

Here, the parametrization of x follows the feature description
provided in Section VI. To limit the scope of this work, we
intentionally do not compare the approach to state-of-the-art
graph neural network architectures used for particle tracking, as
we only intend to identify the limitations introduced by learning
in a partial information setting using the proposed reward signal.
As shown in Table IV, we report comparable results with a
non-significant worst case performance gap of −0.2± 0.1pp
purity and −0.7± 0.4pp efficiency. In all cases, the proposed
algorithm stays in less than a percentage point range compared to
the comparable supervised algorithm, demonstrating the strong
performance of the proposed algorithm and the suitability of
the chosen reward function, given the proposed state represen-
tation. Further, based on the comparable performance of all
three algorithms (Sections VIII-G and VIII-I) we argue that
the parametrization of only a single particle trajectory, while
providing a good amount of information, limits the possible
reconstruction performance of the approach especially in com-
plex scenarios in high density sections of the particle detector
with multiple comparable track hypotheses. This lack of infor-
mation, might be adequately resolved by also considering the
preferences of track hypotheses of similar tracks in the direct
neighborhood.

K. Ablation Studies

To better understand and verify the effectiveness of the contri-
butions to the proposed architecture, we ablate key components
that represent substantial changes to existing architectures and
approaches in traditional neural combinatorial optimization. In
the following tables, we present the results in terms of perfor-
mance gaps. In Table V we demonstrate the sufficiency of the
proposed state representation in Section V considering only a
history of the particle track over a single layer as opposed to
the more complicated representation capturing the full particle
history in a hidden representation learned using a LSTM network
layer.
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TABLE V
PERFORMANCE GAP OF PURITY (Δp) AND EFFICIENCY (Δε) FOR MODELS

WITH MDP AND POMDP STATE DEFINITION

TABLE VI
PERFORMANCE GAP Δp AND Δε FOR BASELINE MODEL AND MODEL

WITHOUT DEFAULT POSITIONAL ENCODING MECHANISM

We further present the ablation results comparing the de-
fault attention mechanism without positional encoding with the
proposed adaptive positional encoding mechanism described
in Section VI-C and the non-modified version proposed for
Transformer Architectures in [49].

We observe a big improvement in both purity and efficiency
introduced by positional encoding (up to 58.0±0.9 pp in p
and 52.4±0.8 pp in ε; ref. Table VI) in combination with a
significant improvement in inter-run convergence quality. By in-
troducing an adaptive rescaling mechanism, allowing to reduce
the receptive area of the encoding mechanism, we can further
improve the reconstruction results, particularly in high density
particle configurations. Finally, we demonstrate the improve-
ment in reconstruction quality by introducing reward normal-
ization, independently handling gained rewards of tracking and
calorimeter layer in order to handle the different order of scales
in reward signals. We particularly observe improved purities and
efficiencies for high particle densities (ref. Table VIII).

IX. CONCLUSION

In this paper, we introduce a novel reconstruction scheme
for particle tracking in high energy physics applications using
model-free reinforcement learning on graph structured data,
maximizing the physical plausibility of undertaken state tran-
sitions. With this approach, we take a step towards a unified
solution combining the advantages of ground-truth-free itera-
tive reconstruction algorithms with the power of deep neural

TABLE VII
PERFORMANCE GAP Δp AND Δε FOR BASELINE MODEL AND MODEL WITH

POSITIONAL ENCODING WITHOUT ADAPTIVE RECEPTIVE FIELD

TABLE VIII
PERFORMANCE GAP Δp AND Δε FOR BASELINE MODEL TRAINED WITH AND

WITHOUT REWARD NORMALIZATION

network architectures. Our approach generalizes well to various,
previously unseen, phantom geometries, particle densities and
beam spot positions. We demonstrate on simulated data that
our approach is able to consistently learn good policies, able to
reconstruct trajectories better, or on par with the performance of
a comparable heuristic search algorithm. We further show that
we are able to achieve similar results to an equivalent super-
vised trained model minimizing the negative log likelihood of
undertaken transitions, given the correct label. We argue, based
on the strong performance compared to the heuristic search
algorithm and the equivalent supervised trained model, that the
current state definition, which only satisfies the Markov property
w.r.t. a single track, is unlikely sufficient to resolve complicated
track reconstruction errors due to confusion of particles in the
dense Gaussian core of the particle beam or large angle scat-
tering, limiting the possible reconstruction performance of the
approach. Instead, a richer representation of the whole system
considering a full parametrization of surrounding tracks might
be essential to resolve this kind of reconstruction conflicts.
Finally, further work is still required to locate the performance
of the proposed optimization scheme in the existing literature,
using both simulated and real detector data, when available.
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