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Acetylation of protein N-termini is one of themost common proteinmodifications
in the eukaryotic cell and is catalyzed by the N-terminal acetyltransferase family of
enzymes. The N-terminal acetyltransferase NAA80 is expressed in the animal
kingdomandwas recently found to specifically N-terminally acetylate actin, which
is the main component of the microfilament system. This unique animal cell actin
processing is essential for the maintenance of cell integrity and motility. Actin is
the only known substrate of NAA80, thus potent inhibitors of NAA80 could prove
as important tool compounds to study the crucial roles of actin and how
NAA80 regulates this by N-terminal acetylation. Herein we describe a
systematic study toward optimizing the peptide part of a bisubstrate-based
NAA80 inhibitor comprising of coenzyme A conjugated onto the N-terminus
of a tetrapeptide amide via an acetyl linker. By testing various combinations of Asp
and Glu which are found at the N-termini of β- and γ-actin, respectively, CoA-Ac-
EDDI-NH2 was identified as the best inhibitor with an IC50 value of 120 nM.
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1 Introduction

N-terminal (Nt) acetylation is a highly abundant protein modification, occurring on
approximately 80% of the human proteome (Arnesen et al., 2009; Aksnes et al., 2015). The
process is catalyzed by Nt acetyltransferases (NATs), transferring an acetyl group from
Acetyl CoA to the amino group of the first amino acid in the protein sequence. To date seven
NATs have been found in human cells, NatA-NatF, and NatH, having distinctive features in
terms of subunit composition, subcellular localization and substrate specificity (Aksnes et al.,
2019). Some NATs, NatA, NatB and NatC, have broad substrate pools and act co-
translationally. Other NATs have a very specific substrate pool, such as NatD co-
translationally acetylating histones H2A and H4 (Songkyu et al., 2003; Hole et al., 2011),
NatF post-translationally acetylating transmembrane proteins (Van Damme et al., 2011;
Aksnes et al., 2015), or NatH/NAA80 post-translationally acetylating actins (Drazic et al.,
2018).

The first catalytic mechanism of a human NAT (Evjenth et al., 2012), as well as the first
structures of a NAT and NAT-complex bound to its peptide substrate, have been presented
(Liszczak et al., 2011; Liszczak et al., 2013; Støve et al., 2016). Taking advantage of this
information, we and others have developed peptidic NAT inhibitors that are based on
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covalently linking mimics of the two substrates of the biochemical
reaction, i.e., coenzyme A (CoA) and a short peptide carrying an
N-terminal bromoacetyl group (Figure 1) giving a thioether-linked
acetyl moiety (Foyn et al., 2013; Støve et al., 2016; Goris et al., 2018;
Deng et al., 2021). In these studies it has been found that it is
sufficient to use the four amino acids from the N-terminus of the
protein substrates to obtain potent bisubstrate inhibitors.

Such bisubstrate inhibitors demonstrate specificity and
significant inhibitory potential with IC50 and Ki in the low μM/
nM range. For NatD, increasing the length of the acetyl linker to
propionyl has proven beneficial for the design of highly potent
inhibitors (Deng et al., 2021). Further, for most NATs, access to
bisubstrate inhibitors has led to significant advances in the field by
enabling the determination of protein crystal structures (Liszczak
et al., 2013; Støve et al., 2016; Hong et al., 2017; Goris et al., 2018;
Deng et al., 2020; Deng et al., 2023).

Actin is a major component of the cytoskeleton and cytoskeletal
dynamics are important for several cellular activities such as cell motility,
division, and intracellular trafficking (Pollard and Cooper, 2009). The
cellular activity of actin is connected to its dynamic transition between
monomeric (G-actin) and filamentous (F-actin) forms. This is regulated
in cells by actin-binding proteins as well as by post-translational
modifications. It was established 4 decades ago that animal actins
undergo a unique Nt-maturation process (Redman and Rubenstein,
1981; Rubenstein andMartin, 1983). Nowwe know that this involves the
following steps (Arnesen and Aksnes, 2023): a) a general Nt-processing
step for all eukaryotic proteins of co-translational N-terminal acetylation
(Aksnes et al., 2019) (preceded bymethionine excision formuscle actins),
b) a unique animal actin-specific post-translational cleavage of the Nt-
acetylated residue by ACTMAP (Haahr et al., 2022) and finally c) an
animal actin-specific post-translational Nt-acetylation by NAA80/NatH
to generate acidic actin Nt-termini (Drazic et al., 2018; Goris et al., 2018;
Wiame et al., 2018). NAA80 binding to profilin, specifically PFN2,
primes the interactionwith actinmonomers and the acetylation of actin’s

N-terminus which sticks out from the folded actin monomer (Rebowski
et al., 2020; Ree et al., 2020). In human cells lacking NAA80, actin is not
Nt-acetylated (near 0% Nt-acetylation) while in the presence of NAA80,
actin is acetylated to a near 100% stoichiometry (Drazic et al., 2018;
Drazic et al., 2022). This suggests that actin Nt-acetylation is essential for
optimal actin functionality in humans. Indeed, human NAA80-KO cells
where actin is unacetylated display fragmentation of the Golgi apparatus,
altered cytoskeletal organization including decreased G-actin/F-actin
ratio, increased F-actin, increased cell size, increased filopodia and
lamellopodia and increased cell migration (Aksnes et al., 2018; Drazic
et al., 2018; Beigl et al., 2020). The physiological impact of actin Nt-
acetylation is not fully understood due to the lack of NAA80 KO animal
models. However, two brothers carrying a homozygous NAA80 variant
resulting in a partial reduction in cellular actin Nt-acetylation were
recently presented (Muffels et al., 2021). These individuals showed
hearing loss, mild muscle weakness and developmental delay.

Bisubstrate inhibitors of NAT enzymes could potentially be used
as tools to study the effects of inhibiting Nt-acetylation to shed more
light on the roles of Nt-acetylation in the cell. NAA80 inhibitors
could specifically be applied to manipulate cytoskeletal dynamics
and to increase cell migration. Herein we describe the optimization
of a bisubstrate inhibitor for NAA80.

2 Material and methods

2.1 Synthesis of bisubstrate inhibitors

Bisubstrate inhibitors were synthesised manually or on an
Initiator + Alstra (Biotage) automated microwave peptide
synthesizer using Fmoc-based solid phase peptide synthesis
and ChemMatrix Rink Amide resin (0.44 mmol/g loading) on
a 0.25 mmol scale. 2-(6-Chloro-1H-benzotriazole-1-yl)-1,1,3,3-
tetramethylaminium hexafluorophosphate (HCTU) and

FIGURE 1
Structure of bisubstrate inhibitors. The bisubstrate inhibitors are constructed as conjugates of Coenzyme A coupled via an acetamide linker to a
tetrapeptide amide. The amino acids in the peptide sequence were exchanged systematically to identify improved NAA80 inhibition.
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N,N-diisopropylethylamine (DIPEA) were used to couple each amino
acid (3–5 equivalents) in dimethylformamide (DMF). When the
automated microwave peptide synthesizer was used, the coupling
process took place with microwave heating at 75 C for 5 min, while
manual coupling was performed at room temperature for 30 min. The
peptidyl-resin was treated with 20% piperidine in DMF for removal of
the Fmoc-protecting group at room temperature for 3 + 10min. After
Fmoc-deprotection of the N-terminal amino acid, the peptidyl-resin was

treated with bromoacetic acid (8 eq.) and N,N′-diisopropylcarbodiimide
(DIC) in DMF for 1 h. The resin was then treated with a mixture of
trifluoroacetic acid, triisopropylsilane andwater (95:2.5:2.5, v/v/v) for 2 h.
The suspension was filtered, and the filtrate was concentrated under
reduced pressure until ~5 mL of the solution remained. The crude
product was precipitated by adding cold diethyl ether and after
removal of the ether layer, the precipitate was triturated with fresh
diethyl ether twice. The crude bromoacetyl peptide was dried under

TABLE 1 Analytical data for bisubstrate inhibitors.

Inhibitors Purity (%)a MS obs. [M−2H]2− MS calcd. [M−2H]2− MS obs. [M−H]− MS calcd. [M−H]−

CoA-Ac-DDEI-NH2 98.4 647.3 647.2 1,295.4 1,295.3

CoA-Ac-DEEL-NH2 97.9 654.3 654.2 1,309.3 1,309.3

CoA-Ac-DEEI-NH2 95.5 654.3 654.2 1,309.4 1,309.3

CoA-Ac-EEEL-NH2 94.1 661.3 661.2 1,323.4 1,323.3

CoA-Ac-EDEI-NH2 95.2 654.3 654.2 1,309.3 1,309.3

CoA-Ac-EDEL-NH2 94.7 654.3 654.2 1,309.4 1,309.3

CoA-Ac-EEDI-NH2 95.1 654.3 654.2 1,309.4 1,309.3

CoA-Ac-EEDL-NH2 97.0 654.3 654.2 1,309.4 1,309.3

CoA-Ac-EDDI-NH2 93.5 647.3 647.2 1,295.3 1,295.3

CoA-Ac-ESEL-NH2 96.8 640.4 640.2 1,281.6 1,281.3

CoA-Ac-EDQL-NH2 100 653.8 653.7 1,308.3 1,308.3

CoA-Ac-PDEL-NH2 97.3 638.3 638.2 1,277.3 1,277.3

aBased on RP-HPLC analysis with monitoring at 220 nm

TABLE 2 Inhibitory activity.

Inhibitor IC50 (μM)a

CoA-DDDI-NH2
b 0.38 ± 0.10

CoA-EEEI-NH2
b 1.16 ± 0.11

CoA-MDEL-NH2
b 1.26 ± 0.10

CoA-DEEI-NH2 1.22 ± 0.33

CoA-EDEI-NH2 0.76 ± 0.18

CoA-EEDI-NH2 0.17 ± 0.04

CoA-DEEL-NH2 4.73 ± 1.43

CoA-EDEL-NH2 0.15 ± 0.02

CoA-EDQL-NH2 0.85 ± 0.05

CoA-ESEL-NH2 11.5 ± 3.23

CoA-PDEL-NH2 13.4 ± 2.24

CoA-EEDL-NH2 1.76 ± 0.52

CoA-EEEL-NH2 1.16 ± 0.12

CoA-DDEI-NH2 2.67 ± 0.67

CoA-EDDI-NH2 0.12 ± 0.05

aAll measurements were performed in triplicates. IC50 values are given with standard deviation.
bData taken from Goris et al. (Goris et al., 2018)
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vacuum, purified by semi-preparative RP-HPLCand lyophilised. Purified
bromoacetyl peptides and coenzyme A trilithium salt (2 eq.) were
dissolved in triethylammonium bicarbonate buffer (1M, pH 8.5) and
left at room temperature overnight. Purification by RP-HPLC and
lyophilisation gave the desired CoA-Ac peptides as colorless powders.

2.2 Recombinant protein expression and
purification of HsNAA80

HsNAA80/nNat6 (NCBI gene ID:24,142) was subcloned as
described by Drazic et al. (Drazic et al., 2018) into
pETM41 vector. HsNAA80 fused to the maltose binding protein
(MBP), was expressed in Escherichia coli BL21 star cells at 20°C
overnight and lysed with sonication in lysis buffer (300 mM NaCl,
50 mM TrisHCl (pH 8.5), 1 mM DTT, 1x EDTA-free protease
mixture). The recombinantly expressed MBP-hsNAA80 was
further purified as described by Goris et al. (Goris et al., 2018)

2.3 In vitro acetyltransferase activity assay

The enzymatic activity ofMBP-hNAA80wasmeasured using a 5,5′-
dithiobis-(2-nitrobenzoic acid, DTNB) assay as described previously by
Foyn et al. (Foyn et al., 2017) andDrazic et al. (Drazic et al., 2018) Briefly,
the thiol group exposed in the enzymatic product CoA cleaves DTNB
and produces 2-nitro-5-thiobenzonate (TNB−) which ionize to TNB2- in
neutral or alkaline pH and is readily quantified by measuring the
absorbance at 412 nm.

2.3.1 Nt-acetyltransferase inhibitor assays
An in vitroDTNB assay with enzyme (10–600 nM), 300 μMAc-

CoA, 300 μM substrate peptide, acetylation buffer (Tris, pH 8.5),

and at least nine different inhibitor concentrations ranging from 0 to
500 μM was used to calculate the IC50 value for each bisubstrate
inhibitor applied in the assay. The reaction was carried out as
previously described (Drazic et al., 2018; Goris et al., 2018), and
within a timeframe of 15–50 min. All measurements were
performed in triplicates.

IC50 values were determined using GraFit 7 software and the
results are summarized in Table 2.

3 Results and discussion

The NATs constitute an important class of enzymes and potent
inhibitors can prove to be useful as tool compounds to study their roles
both in vitro and in vivo. To identify such a tool compound for NAA80,
we have in this work optimized the earlier identified bisubstrate inhibitor
CoA-Ac-DDDI-NH2 (see Figure 1 for general structure). In our earlier
work we tested the in vitro activity of NAA80 toward a broad library of
potential substrates such as amino acids, nucleosides, coenzymes, various
amines (e.g., serotonin and spermidine), vitamins and a number of 24-
mer peptides representing the N-terminal part of proteins (Goris et al.,
2018). In these substartes, the four N-terminal amino acids were varied
while the remaining peptide sequence was kept constant.We found that
for all of these potential substrates, NAA80 only acetylated three
peptides, MDEL24, DDDI24 and EEEI24. DDDI24 and EEEI24
correspond to the N-terminal part of β- and γ-actin in their
cytosolic processed forms, respectively, while MDEL24 represents the
unprocessed N-terminal part of the protein p65. The level of product
formation for actylation of MDEL24, DDDI24 and EEEI24 was
determined to be 119 ± 5.61 μM, 50.5 ± 1.0 μM, and 42.4 ±
0.95 μM, respectively (Goris et al., 2018). In our inhibitor design, we
decided to continue using a tetrapeptide for the protein-mimicking part
as previous studies have shown that these are the most important

SCHEME 1
Synthesis of bisubstrate inhibitors. The peptide sequence was assembled using solid-phase Fmoc-based peptide synthesis with a bromoacetyl
group at the N-terminal. Cleavage from the solid support and conjugation with Coenzyme A followed by purification gave the bisubstrate inhibitors.
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residues for inhibitory activity (Liszczak et al., 2011; Foyn et al., 2013;
Liszczak et al., 2013; Støve et al., 2016; Hong et al., 2017; Goris et al.,
2018; Deng et al., 2020; Deng et al., 2021; Deng et al., 2023). Co-crystal
structures of NAT-bisubstrate inhibitor complexes typically show that
these four amino acids aremost important for protein-inhibitor binding
interactions. All inhibitors were prepared with the C-terminal
carboxylic acid capped as amides to avoid the negative charge of a
C-terminal carboxylic acid and better mimic a protein N-terminal.

The peptide part of all inhibitors was prepared using Fmoc-based
solid phase peptide synthesis where the C-terminal amino acid was
loaded onto a Rink amide resin (Scheme 1). After removal of the Fmoc-
group of the N-terminal amino acid, coupling with bromoacetic acid
introduced the acetyl-linker. The bromoacetyl peptide was then
deprotected and cleaved from the resin and purified by RP-HPLC.
Next, triethylammonium bicarbonate buffer (pH 8.5) was used to
facilitate the conjugation of CoA to the bromoacetyl peptide. The
final bisubstrate inhibitors were purified by RP-HPLC and
characterized by MS and NMR to confirm their structures (see
Table 1; Supplementary Table S1).

We have already reported that bisubstrate inhibitors based on the
N-terminus of processed β- and γ-actin (DDDI and EEEI) display IC50

values of 0.38 and 1.16 μM, respectively (Table 2). The difference in
inhibitory potency was somewhat higher than was expected based on the
small difference in how well NAA80 acetylated the 24-mer peptides
DDDI24 and EEEI24 as their four N-terminal amino acids. Surprisingly,
while theMDEL24 peptide showed a higher degree of acetylation than the
DDDI24 and EEEI24 peptides when we screened for potential substrates,
we found that the inhibitor based on theMDEL sequence was less potent
and displayed an IC50 value of 1.26 μM.

To elucidate inhibitor binding we have previously solved the crystal
structure of DmNAA80 bound to a DDDI bisubstrate inhibitor (Goris
et al., 2018). This structure revealed that mainly the α1-α2 region of
NAA80 contributed to peptide binding in the inhibitor, while the β6-β7
loop which is important for peptide binding in many of the other NATs,
is slightly shifted away from the peptide without contributing to inhibitor
binding (Figure 2A). More specifically, D1 of the inhibitor was stabilised
by a hydrogen bond from the backbone oxygen of D1 to the backbone
nitrogen in S88, while the D1 side chain was stabilized by hydrogen

FIGURE 2
Structure of the binary Drosophila melanogaster (DM)NAA80/CoA-Ac-DDDI-NH4 complex and similarities between Drosophila and human
NAA80 protein sequences. (A) The structure of DmNaa80 is represented with transparent grey surface and pink secondary structures. Side chains
involved in binding of the peptide is indicated with sticks, while the bisubstrate inhibitor is highlighted as colored sticks. Key regions (α1- α2, β6-β7) and
amino acids (W36, R38, R43, and I126) involved in the peptide binding of the inhibitor are labelled. (B) Sequence alignment of DmNAA80 andHomo
sapiens (Hs) NAA80. The blue boxes represent sequence conservation while highly conserved residues are shown in red. Strickly conserved residues are
white on a red background. Important residues directly involved in peptide inhibitor binding are marked in bold black and with black boxes. Secondary
structures and sequence numbering are shown above for the DmNAA80 iso2 sequence. The alignment wasmade using Clustal T-Coffee and ESPript 3.0.
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bonds to the side chain of S124, and through a water-mediated hydrogen
bond to T125 and I126. D2 of the inhibitor formed a hydrogen bondwith
W36 and a salt bridge with R43. Further, D3 made a water-mediated
contact with R43 and hydrogen bonds with S46 and S48 and finally, the
backbone oxygen of I4 formed a hydrogen bonds with R38. As can be
seen from themultiple sequence alignments of DmNAA80 and hNAA80
(Figure 2B), most of the key contributing residues to binding in the
DmNAA80-DDDI structure and hNAA80-profilin-actin ternary
complex (W36, R43, R38 in DmNAA80 iso2 (Goris et al., 2018)
corresponding to W105, R107 and R112 in hNAA80 iso 2 (Rebowski
et al., 2020) is conserved.However, a key difference between the two is the
extended region around the β6-β7 loop in hNAA80, a region that has
shown importance for substrate binding in other NATs (Liszczak et al.,
2011; Liszczak et al., 2013; Støve et al., 2016; Hong et al., 2017; Goris et al.,
2018), and likely further contributes to optimimal binding of the peptide
part of the bisubstrate analogue and increased potency of these inhibitors.

Since the DDDI-inhibitor was found to be significantly more
potent that the EEEI-inhibitor, we decided to investigate whether the
introduction of Asp into the EEEI sequence would increase
inhibitory activity. It turned out that the introduction of Asp in
position three was the most beneficial and the inhibitor based on the
EEDI sequence showed almost ten-fold higher inhibitor activity
compared to EEEI (Table 2). The EEDI sequence also proved to
outperform DDDI and was found to inhibit NAA80 with an IC50 of
0.17 μM. Inhibitors based on the DEEI and EDEI sequences gave
comparable or slightly improved IC50 values respectively compared
to the EEEI inhibitor.

We also tested replacing the Ile residue with a Leu and found that the
EEEI and EEEL sequences gave inhibitors with equal potency. On the
other hand, theDEEL and EEDL sequences gave however a loss of activity
compared toDEEI andEEDIwhile the inhibitor based onEDEL showed a
four-to five-fold increase in potency compared to EDEI. Replacing Glu in
position three of the EDEL sequence with a Gln residue led to an increase
in IC50 from 0.15 μM to 0.85 μM and the replacement of the Asp residue
with Ser led to a dramatic loss of potency. Interestingly, a PDEL sequence
proved to give only slightly lower inhibitory potency compared to the
ESEL sequence.

The introduction of two Asp residues into the EEEI sequence gave
inhibitors with a large difference in inhibitory potency as the DDEI
sequence gave an IC50 of 2.67μM,whereCoA-Ac-EDDI-NH2 turned out
to be the most potent inhibitor with an IC50 of 0.12 μM.

The NAA80/NatH is a particular case among the NAT enzymes in
having actin as its sole substrate. The various cytoplasmic and muscle
actin substrates all have different combinations of Asp and Glu in the
first N-terminal positions (Aksnes et al., 2019). Here, we show that
using specific combinations of Asp and Glu in the peptide sequence
makes us able to identify a highly potent NAA80 inhibitor. In
conclusion, we have found that for NAA80, the choice of acidic
residue at different positions of the peptide part of bisubstrate
inhibitors is important and varying these has led to an optimized
inhibitor with up to 3 fold higher inhibitory activity compared to those
previously described. The CoA-Ac-EDDI-NH2 was the most potent
NAA80 bisubstrate inhibitor with an IC50 of 0.12 μM. This inhibitor
should be useful in further in vivo studies by micro injection in Danio
rerio and for cell-based studies by micro injection into human cells to
elucidate NAA80 function and the effects upon Nt-acetylation of actin.
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