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A B S T R A C T

Multiphysics processes in fractured porous media is a research field of importance for several
subsurface applications and has received considerable attention over the last decade. The dy-
namics are characterized by strong couplings between processes as well as interaction between
the processes and the structure of the fractured medium itself. The rich range of behaviour
calls for explorative mathematical modelling, such as experimentation with constitutive laws
and novel coupling concepts between physical processes. Moreover, efficient simulations of
the strong couplings between multiphysics processes and geological structures require the
development of tailored numerical methods.

We present a modelling framework and its implementation in the open-source simulation
toolbox PorePy, which is designed for rapid prototyping of multiphysics processes in fractured
porous media. PorePy uses a mixed-dimensional representation of the fracture geometry
and generally applies fully implicit couplings between processes. The code design follows the
paradigms of modularity and differentiable programming, which together allow for extreme
flexibility in experimentation with governing equations with minimal changes to the code base.
The code integrity is supported by a multilevel testing framework ensuring the reliability of the
code.

We present our modelling framework within a context of thermo-poroelasticity in de-
formable fractured porous media, illustrating the close relation between the governing equations
and the source code. We furthermore discuss the design of the testing framework and present
simulations showcasing the extendibility of PorePy, as well as the type of results that can be
produced by mixed-dimensional simulation tools.

. Introduction

The context for this work is the modelling and simulation of multiphysics processes in fractured porous media, with applications
ncluding extraction of geothermal energy and hydrocarbons, wastewater disposal, CO2 storage and storage of chemical and thermal
nergy. Noting that several aspects of the discussion apply to other settings as well, the primary focus in this paper is on thermo-
ydro-mechanical processes. Not only do these processes involve complex and coupled dynamics, monitoring them is inherently
ifficult due to their subsurface situation in heterogeneous and fractured rock formations. This motivates the use of mathematical and
umerical modelling, thus creating demand for simulation toolboxes for the above-mentioned class of problems. Due to tight coupling
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between different processes and severe structural impact of fractures, standard simulators have limitations in their applicability,
leading to active development of research codes.

A research simulation tool for this context may serve at least two purposes. First, it can facilitate simulation technology
esearch into tailored numerical methods. Second, it can accommodate modelling studies enhancing our understanding of the
rocesses at play. Furthermore, we single out two important properties which characterize a toolbox which is fit for those two
urposes. First, rigorous adherence to the mathematical model is required to ensure that the governing physical and constitutive
aws are fulfilled up to discretization error. This should be understood broadly and includes solving the full system of governing
quations without erroneous decoupling simplifications, employing sound discretization schemes and thorough and structured code
esting. Second, a workable tool must be flexible to accommodate relevant adaptation and extension. This naturally includes
he reasonable requirement for any simulation tool of convenient problem specification through geometry, material parameters,
oundary conditions and the like. Crucially, for modelling research it extends to modifications of governing equations. Similarly,
esearch into the simulation technology itself requires choosing and experimenting with meshing, discretization schemes, solvers for
on-linear and linear equation systems, etc. Ideally, all this flexibility should be accommodated while minimizing code complexity
nd maintaining user-friendliness.

A number of simulation toolboxes exist for thermo-poromechanical porous media processes, some of which include fracture
epresentation. An inexhaustive list includes CSMP [1], MRST [2], TOUGH3 [3], GEOS [4], FALCON [5], GOLEM [6], DuMux [7],
penGeoSys [8], DARTS [9], CODE_BRIGHT [10] and Flow123d [11]. Benchmark studies by White et al. [12] and Mindel
t al. [13] provide demonstration of capabilities and relative strengths and weaknesses of several of these toolboxes.

In this paper, we discuss code design consequences of the flexibility and rigour requirements and how they translate into a
uitable tool for the two purposes identified above. We illustrate how this design is implemented in the PorePy toolbox2. PorePy
s an open-source research code, written in Python and tailored to the specific needs of simulating multiphysics in fractured porous
edia, with a general presentation given in [14]. Herein, we focus on its rigorous adherence to the mathematical model and how

t accommodates flexibility in modelling and solution strategy, both of which have seen recent improvements.
The main design principles are presented in Section 2, while the example mathematical model and its implementation is

resented in Section 3. Numerical solution strategies are presented in Section 4. We present a selected suite of tests verifying the
ode’s adherence to a mixed-dimensional mathematical model for compressible flow in Section 5, before presenting an example of
umerical verification and demonstrating code versatility in application to coupled processes in Section 6. Finally, in Section 7, we
resent our concluding remarks.

. Design principles

This section discusses the high-level code design in PorePy. The main focus herein is on the changes relative to the framework as
escribed in [14]. These developments facilitate the requirements of rigour and flexibility identified in the introduction, specifically
ariable and equation definition, construction of simulation models and the testing framework. We commence with an overview of
he code’s core structure and important components, some of which are expounded on with examples and illustrated using snippets
n subsequent sections.

Since fractures have very high aspect ratios, it is natural to represent them as objects one dimension lower than the host domain.
orrespondingly, the simulation domain is decomposed into subdomains of successively decreasing dimension representing the
ock matrix, individual fractures and fracture intersections. Additionally, each pair of geometrically neighbouring subdomains one
imension apart is connected through an interface. The grids for individual subdomains and interfaces are collected in a graph
epresenting the mixed-dimensional grid.

As discussed in [14], the implementation relates closely to previously presented models for fractured porous media [15–17] and
ixed-dimensional theory based on exterior calculus [18,19]. This constitutes a rigorous foundation for the formulation of discrete
ixed-dimensional models with a close relationship to theoretical results. As such, the implementation is well suited for testing and

erification, as demonstrated by Varela et al. [20], who tested different local mass-conservative schemes using mixed-dimensional
posteriori error estimates.

We define variables, discretizations and arrays representing material parameters and the like on sets of subdomain or interface
rids. All of these elements are compatible with PorePy’s automatic differentiation (AD) framework, which allows the construction
f higher-order elements such as equations by arithmetic operations following a differentiable programming paradigm. On the
ighest level, the equations are derived from fundamental conservation principles and kinematic constraints and may be combined to
ompose a multiphysics system. These include conservation equations for mass, momentum and energy and kinematic constraints for
racture contact. The fundamental principles are supplemented by constitutive equations prescribing relationships between primary
nd secondary variables.

Modelling flexibility is achieved through a modular design, allowing all terms of the governing equations to be defined and
eplaced independently. Thus, modelling choices can be made by selecting from the options in PorePy’s library of constitutive
aws. The decomposition into subdomains also facilitates using different laws for different subdomain sets, even within the same
imension. Analogously, individual steps of the solution strategy can be tailored for experimentation with simulation technology.
xtension of the code base is similarly achieved by defining the new relationship and combining it with existing code. Python being

2 https://github.com/pmgbergen/porepy
2
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Table 1
PorePy contains Models for the following combinations of conservation laws, with the specific physical model
arising from the default choices of constitutive laws specified to the right.

Conservation equation(s) Default physical model

Single-physics Fluid mass Compressible single-phase flow
Momentum Elasticity with contact mechanics

Multi-physics
Fluid mass and energy Compressible single-phase flow
Fluid mass and momentum Poroelasticity with contact mechanics
Fluid mass, energy and momentum Thermo-poroelasticity with contact mechanics

Fig. 1. Illustration of a mixed-dimensional geometry. To the left, we show the full geometry with a matrix subdomain 𝛺ℎ and a single circular fracture 𝛺𝑙 . The
translucent sphere indicates the area shown in the close-up in the central figure. The close-up illustrates the fracture (green), interfaces on either side (blue) and
boundaries (orange), all geometrically coinciding and separated for visualization purposes only. To the right, we show the projection operators corresponding to
the bottom-half coupling between 𝛺ℎ and 𝛺𝑙 through 𝛤𝑗 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

a high-level language, such extensions are also straightforward and do not require expert knowledge of PorePy, as illustrated in
Section 6.2.

Setting up a complete mixed-dimensional multiphysics model is a nontrivial task. PorePy therefore provides a suite of ready-
to-run setups which we refer to as Models, see Table 1 for a list of the currently covered cases. As will be discussed in the sequel,
the Models provide a base for setting up simulations that are convenient in facilitating flexible code reuse and extension and also
are thoroughly tested.

3. Mathematical model

We now specify the mathematical model used to illustrate implementation of the design principles. We first present the
representation of the mixed-dimensional geometry followed by the equations representing conservation laws and kinematic
constraints. Finally, we close the model by specifying constitutive laws together with initial and boundary conditions. We illustrate
concepts discussed in the previous section using snippets for selected parts of the model. Very similar models have been presented
previously, see for instance [21,22].

3.1. Mixed-dimensional geometry

Reflecting the mixed-dimensional theory for fractured porous media [15,18], we describe the medium as a collection of
subdomains 𝛺𝑖 of different dimension 𝑑𝑖, with 𝑑𝑖 ∈ {0,… , 𝑁} and 𝑁 ∈ {2, 3}. Focusing on the case 𝑁 = 3, we represent the
porous medium by a 3D subdomain, fractures by 2D subdomains, fracture intersections by 1D subdomains and intersections of
fracture intersections by 0D subdomains. The width of a dimensionally reduced fracture 𝛺𝑖 is characterized by its aperture 𝑎𝑖. To
account for the reduced dimensions of the various subdomains in the full mixed-dimensional setting, we define a specific volume
𝑖 having dimensions m𝑁−𝑑𝑖 [16]. The relation between 𝑎𝑖 and 𝑖 will be detailed below.

An interface 𝛤𝑗 facilitates coupling between each pair of subdomains one dimension apart. Where relevant, we identify the
higher-dimensional and lower-dimensional neighbour subdomains of an interface by subscripts ℎ and 𝑙, respectively, see Fig. 1. We
write 𝜕𝛺𝑖 for the boundary of 𝛺𝑖 and the internal part geometrically coinciding with the interface 𝛤𝑗 is 𝜕𝑗𝛺𝑖 ⊆ 𝜕𝛺𝑖. We denote the
projection of relevant quantities from subdomain 𝛺𝑖 to interface 𝛤𝑗 by 𝛱 𝑖

𝑗 and the reverse operation by 𝛯 𝑖𝑗 , see the right panel of
Fig. 1.

We use subscripts to identify which subdomains or interfaces a quantity is defined on and superscripts 𝑓 and 𝑠 to denote
respectively fluid and solid quantities. However, when context allows, we will suppress subscripts and superscripts in the interest
of readability.
3
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Snippet 1: The mass balance equation (1) is assembled by passing all terms to a generic balance equation method. Here, pp refers
to the PorePy library and the meaning of the term pp.ad.Operator will be explained in Section 4.

3.2. Conservation laws

In the following, we present conservation laws for mass, energy and momentum for the relevant subdomains.
The fluid mass conservation equation for a subdomain 𝛺𝑖 of dimension 𝑑𝑖 ∈ {0,… , 𝑁} reads

𝜕
(

𝑖𝜌
𝑓
𝑖 𝜙𝑖

)

𝜕𝑡
+ ∇ ⋅

(

𝑖𝜌
𝑓
𝑖 𝒗𝑖

)

−
∑

𝑗∈�̂�𝑖

𝛯 𝑖𝑗
(

𝑗𝜌
𝑓
𝑗 𝑣𝑗

)

= 𝜓𝑖, (1)

where 𝜌𝑓𝑖 and 𝜌𝑓𝑗 are the fluid density in a subdomain and on an interface, respectively, 𝜙𝑖 is the porosity, 𝒗𝑖 and 𝑣𝑗 are subdomain
and interface volumetric fluid fluxes and 𝜓𝑖 is a source or sink of fluid mass. 𝑗 ∶= 𝛱ℎ

𝑗 ℎ is the interface specific volume, while
the set �̂�𝑖 contains all interfaces to higher-dimensional neighbours of 𝛺𝑖. Fluxes to lower-dimensional neighbours are handled as
internal boundary conditions as specified in Section 3.5. The second term is void for 𝑑𝑖 = 0 (since there are no mass fluxes associated
with intersection points), whereas the third term is void for 𝑑𝑖 = 𝑁 (as 𝑁-dimensional subdomains do not have higher-dimensional
neighbours). The PorePy mass balance equation method is shown in Snippet 1. Notice how each term is specified in a separate
method, thus facilitating tailoring of any one term with minimal changes to the code.

Still considering 𝑑𝑖 ∈ {0,… , 𝑁} and assuming local thermal equilibrium between solid and fluid, energy conservation takes the
form

𝜕𝑖{𝜌𝑖𝑢𝑖}
𝜕𝑡

+ ∇ ⋅
[

𝑖
(

𝒘𝑖 + 𝒒𝑖
)]

−
∑

𝑗∈�̂�𝑖

𝛯 𝑖𝑗𝑗
(

𝑤𝑗 + 𝑞𝑗
)

= 𝜒𝑖. (2)

Here, 𝑢 denotes internal energy and curly brackets indicate the porosity-weighted sum of a scalar quantity 𝜁 arising from the
thermal equilibrium assumption:

{𝜁 } = 𝜙𝜁𝑓 + (1 − 𝜙)𝜁 𝑠. (3)

Furthermore, 𝒘𝑖 and 𝒒𝑖 are enthalpy and heat fluxes within 𝛺𝑖, respectively, and 𝑤𝑗 and 𝑞𝑗 are their interface counterparts,
while 𝜒𝑖 is a source or sink of energy.

Ignoring inertial terms, the momentum conservation equation in the matrix subdomain (𝑑𝑖 = 𝑁) is

− ∇ ⋅ 𝜎𝑖 = 𝑭 𝑖, (4)

with 𝜎𝑖 being the total stress tensor and 𝑭 𝑖 body forces.

3.3. Contact kinematics

In this subsection, we consider a matrix-fracture pair 𝛺ℎ and 𝛺𝑙 of dimensions 𝑑ℎ = 𝑁 and 𝑑𝑙 = 𝑁 − 1 and denote the two
interfaces on either side of 𝛺𝑙 as 𝛤𝑗 and 𝛤𝑘, see middle panel of Fig. 1. We define the fracture normal vector 𝒏𝑙 to coincide with 𝒏ℎ
on the 𝑗-side and introduce the fracture contact traction, 𝝀𝑙, defined according to the direction of 𝒏𝑙. Denoting a generic 3D vector
by 𝜾, its normal ⟂ and tangential ∥ components on 𝛺𝑙 are

𝜄⟂ = 𝜾 ⋅ 𝒏𝑙 , 𝜾∥ = 𝜾 − 𝜄⟂𝒏𝑙 . (5)

We also introduce the jump in interface displacements across 𝛺𝑙:

[[𝒖]] = 𝛯 𝑙𝒖 − 𝛯 𝑙𝒖 . (6)
4
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We achieve balance between the traction on the two fracture surfaces by enforcing each of them to equal the total fracture
raction:

𝛱ℎ
𝑗 𝜎ℎ ⋅ 𝒏ℎ = 𝛱 𝑙

𝑗
(

𝝀𝑙 − 𝑝𝑙𝐈 ⋅ 𝒏𝑙
)

, (7)

−𝛱ℎ
𝑘 𝜎ℎ ⋅ 𝒏ℎ = 𝛱 𝑙

𝑘
(

𝝀𝑙 − 𝑝𝑙𝐈 ⋅ 𝒏𝑙
)

, (8)

where 𝐈 denotes the identity matrix.
Proceeding to the relations governing the fracture contact kinematics and suppressing the 𝑙 subscript for readability, non-

penetration for the fracture surfaces reads

[[𝒖]]⟂ − 𝑔 ≥ 0,
𝜆⟂ ≤ 0,

𝜆⟂
(

[[𝒖]]⟂ − 𝑔
)

= 0,
(9)

where 𝑔 is the gap between the fracture surfaces when in mechanical contact. The second inequality reflects that compressive normal
contact traction corresponds to negative 𝜆⟂ by the definition of 𝝀. Denoting the friction bound by 𝑏 and the increment in tangential
displacement by [[�̇� ]]∥, the friction model is

‖𝝀∥‖ ≤ 𝑏,

‖𝝀∥‖ < 𝑏 → [[�̇� ]]∥ = 0,

‖𝝀∥‖ = 𝑏 → ∃ 𝜁 ∈ R+ ∶ [[�̇� ]]∥ = 𝜁𝝀∥.

(10)

The three relations state that: (i) tangential stresses are bounded, (ii) tangential deformation occurs only if the bound is reached
nd (iii) tangential stresses and deformation increments are parallel.

.4. Constitutive relations

To complement the equations presented in the previous subsections, we select constitutive laws based on Coussy [23]. Similar
odels for thermo-poromechanics are found in e.g. [21,24].

The volumetric fluid flux is modelled using Darcy’s law,

𝒗 = −

𝜂

(

∇𝑝 − 𝜌𝑓𝒈
)

, (11)

where  is the permeability tensor, 𝜂 is fluid viscosity and 𝒈 the gravitational acceleration vector. While included in this section for
ompleteness, gravity effects are neglected (equivalent to 𝒈 = 0) in the simulation examples shown in Sections 5 and 6. We assume

to be constant in the matrix, whereas the fracture permeability is given by the cubic law:

𝑖 =
𝑎2𝑖
12
, 𝑑𝑖 = 𝑁 − 1. (12)

Note that 𝑎 changes depending on [[𝒖]] as detailed in Eq. (29). Intersection permeability is computed as the average of the
permeability in the intersecting fractures.

Solid density is assumed constant, whereas fluid density is given by

𝜌𝑓 = 𝜌0 exp
(

𝛾
(

𝑝 − 𝑝0
)

− 𝛽𝑓
(

𝑇 − 𝑇 0)) , (13)

with 𝛾 denoting compressibility, 𝛽𝑓 fluid thermal expansion coefficient and the superscript 0 a reference state. We shall use both a
onstant viscosity model and a temperature-dependent one, given by

𝜂 = 𝜂𝐴 exp

(

𝜂𝐵

𝑇 − 𝜂𝐶

)

, (14)

where 𝜂𝐴, 𝜂𝐵 and 𝜂𝐶 are fluid constants [25].
Denoting specific heat capacity by 𝑐 and assuming a simple fluid description, fluid enthalpy is given by

ℎ𝑓 = 𝑐𝑓
(

𝑇 − 𝑇 0) , (15)

and specific internal energies are computed as

𝑢𝑓 = ℎ𝑓 −
𝑝
𝜌𝑓
, (16)

𝑢𝑠 = 𝑐𝑠
(

𝑇 − 𝑇 0) . (17)

Using the effective thermal conductivity {𝜅}, Fourier’s law for the diffusive heat flux through fluid and solid phase reads

𝒒 = −{𝜅}∇𝑇 , (18)
5
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while the advective heat flux is given by

𝒘 = ℎ𝑓 𝜌𝑓𝒗. (19)

The volumetric interface flux is proportional to the pressure jump across 𝛤𝑗 via a Darcy-type law [15]:

𝑣𝑗 = −
𝑗

𝜂𝑗

[

2
𝛱 𝑙
𝑗𝑎𝑙

(

𝛱 𝑙
𝑗𝑝𝑙 −𝛱

ℎ
𝑗 𝑝ℎ

)

− 𝒈𝜌𝑗

]

, (20)

where 𝑗 is the interface permeability. The factor 2∕𝛱 𝑙
𝑗𝑎𝑙 represents half the normal distance across the fracture. Similarly, the

diffusive interface heat flux is

𝑞𝑗 = −𝜅𝑗
2

𝛱 𝑙
𝑗𝑎𝑙

(

𝛱 𝑙
𝑗𝑇𝑙 −𝛱

ℎ
𝑗 𝑇ℎ

)

, (21)

while its advective counterpart is

𝑤𝑗 = ℎ𝑓𝑗 𝜌
𝑓
𝑗 𝑣𝑗 . (22)

The values for 𝑗 and 𝜅𝑗 are both inherited from the lower-dimensional neighbour subdomain. For an advected quantity 𝜁𝑗
representing 𝜌𝑗 , 𝜂𝑗 and ℎ𝑗 , we use an inter-dimensional upwinding based on 𝑣𝑗 :

𝜁𝑗 =

{

𝛱ℎ
𝑗 𝜁ℎ if 𝑣𝑗 > 0

𝛱 𝑙
𝑗𝜁𝑙 if 𝑣𝑗 ≤ 0.

(23)

The total thermo-poromechanical stress tensor is given by an extended Hooke’s law that also accounts for fluid pressure and
thermal contributions

𝜎 = 𝜎0 + 𝐺(∇𝒖 + ∇𝒖𝑇 ) + (𝐾 − 2𝐺
3

)tr(∇𝒖)𝐈 − 𝛽𝑠𝐾
(

𝑇 − 𝑇 0) 𝐈 − 𝛼
(

𝑝 − 𝑝0
)

𝐈. (24)

Here, 𝐺 is the shear modulus, 𝐾 is the matrix bulk modulus, 𝛼 is the Biot coefficient, 𝛽𝑠 is the drained thermal expansion
coefficient (which equals the solid thermal expansion coefficient) and tr(⋅) denotes the trace of a matrix. The assembly is illustrated
in Snippet 2. Gravitational forces are included in the momentum balance by setting

𝑭 = {𝜌𝑖}𝒈. (25)

Matrix porosity depends on pressure, displacement and temperature according to

𝜙 = 𝜙0 + 𝛼∇ ⋅ 𝒖 +

(

𝛼 − 𝜙0) (1 − 𝛼)
𝐾

(

𝑝 − 𝑝0
)

− 𝛽𝜙
(

𝑇 − 𝑇 0) , (26)

ith 𝛽𝜙 ∶= (𝛼 − 𝜙0)𝛽𝑠 denoting the porosity-related thermal expansion coefficient. We assume unitary fracture and intersection
orosity.

Turning now to fracture deformation, we assume the friction bound to relate to normal traction through a Coulomb type friction
aw with a constant friction coefficient 𝐹 :

𝑏 = −𝐹𝜆⟂. (27)

racture roughness effects are incorporated through the gap function:

𝑔 = 𝑔0 + tan 𝜃‖[[𝒖]]∥‖ +
𝛥𝑢𝑚𝑎𝑥𝜆⟂

𝛥𝑢𝑚𝑎𝑥𝐾𝑛 − 𝜆⟂
. (28)

Here, the first term is the residual gap corresponding to an unstressed and undeformed fracture. The second term represents shear
dilation, with 𝜃 denoting the dilation angle. The third term accounts for elastic normal deformation according to [26], where 𝐾𝑛 is
the normal stiffness per area and 𝛥𝑢𝑚𝑎𝑥 is the maximum elastic normal closure of the fracture. These changes to 𝑔 impact normal
deformation according to Eqs. (9), which in turn translate into aperture changes by setting

𝑎 = 𝑎0 + [[𝒖]]⟂ (29)

in the fractures. Here, 𝑎0 denotes a residual hydraulic aperture. In intersection subdomains (i.e., 𝑑𝑖 < 𝑁 − 1), we compute the
aperture as the mean among apertures of neighbouring higher-dimensional subdomains, 𝑎ℎ,

𝑎𝑖 =
1

|�̂�𝑖|

∑

𝑗∈�̂�𝑖

𝛯 𝑖𝑗𝛱
ℎ
𝑗 𝑎ℎ. (30)

Finally, by interpreting aperture as the side length of the reduced dimensions, we obtain the specific volume as

𝑖 = 𝑎𝑁−𝑑𝑖
𝑖 , (31)

which reduces to unity in the matrix subdomain.
6
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Snippet 2: The thermo-poromechanical stress is assembled by collecting three terms. This allows for seamless code reuse, since the
stress method is used with the same signature in the purely mechanical model and the poromechanical to collect the first one
and two terms, respectively. Below, we show the definition of the pressure term, which employs the BiotAd class for discretization
of poromechanical terms, as discussed in Section 4.

3.5. Initial and boundary conditions

To close the system of equations, we provide initial values for all primary variables and boundary conditions. For primary
variables, we use 𝑝𝑖, 𝑇𝑖, 𝒖𝑖 and 𝝀𝑖 in the subdomains and 𝑣𝑗 , 𝑤𝑗 , 𝑞𝑗 and 𝒖𝑗 on interfaces. The variables 𝒖𝑖, 𝝀𝑖 and 𝒖𝑗 are only defined
for 𝑑𝑖 = 𝑁 , 𝑑𝑖 = 𝑁 − 1 and 𝑑𝑗 = 𝑁 − 1, respectively.

Boundary conditions are set both on internal and external boundaries of each subdomain. On internal boundaries 𝜕𝑗𝛺𝑖, we require
continuity of normal mass fluxes, normal energy fluxes and displacement (for 𝑑𝑖 = 𝑁):

𝑖𝜌
𝑓
𝑖 𝒗𝑖 ⋅ 𝒏𝑖 = 𝛯 𝑖𝑗𝑗𝜌

𝑓
𝑗 𝑣𝑗 , (32)

𝑖
(

𝒘𝑖 + 𝒒𝑖
)

⋅ 𝒏𝑖 = 𝛯 𝑖𝑗𝑗
(

𝑤𝑗 + 𝑞𝑗
)

, (33)

𝒖𝑖 = 𝛯 𝑖𝑗𝒖𝑗 . (34)

Here, 𝒏𝑖 is the normal vector on 𝜕𝑗𝛺𝑖 pointing from the higher-dimensional to the lower-dimensional subdomain. On immersed
fracture tips, we require both mass and energy fluxes to equate to zero.

On external boundaries, we allow for two types of boundary conditions, namely Neumann and Dirichlet. For boundary conditions
of the Neumann type, we prescribe values for mass flux 𝑖𝜌

𝑓
𝑖 𝒗𝑖 ⋅ 𝒏𝑖, energy flux 𝑖

(

𝒒𝑖 +𝒘𝑖
)

⋅ 𝒏𝑖 and total traction 𝜎𝑖 ⋅ 𝒏𝑖 (𝑑𝑖 = 𝑁).
Note that 𝒏𝑖 here denotes the outward pointing normal on the exterior boundary. Finally, for boundary conditions of the Dirichlet
type, we prescribe values for pressure 𝑝𝑖, temperature 𝑇𝑖 and displacement 𝒖𝑖 (𝑑𝑖 = 𝑁).

4. Numerical solution approach

The simulation framework PorePy aims to support and reflect the mathematical modelling framework described in Section 3.
Since PorePy version 1.7, practical usage is mainly based on the Models introduced in Section 2, which are composed of classes
defining model equations, geometry, variables, solution strategy etc. This modularization facilitates a high degree of flexibility
and code reuse. Moreover, inspired by the single responsibility principle, each method of these classes performs a limited action.
Combined, this allows for adjustments on multiple levels with minimal effort and intrusiveness. Below, we detail some numerical
aspects of PorePy, including available discretization schemes and treatment of non-linearities by automatic differentiation.

The computational grids are constructed to conform to immersed lower-dimensional geometric objects (fractures and inter-
sections) in the sense that each lower-dimensional subdomain coincides geometrically with a set of faces on the surrounding
higher-dimensional grid. Both logically Cartesian and simplex grids are supported, with the latter generated by Gmsh [27]. The
data structure for the mixed-dimensional grid contains separate grids for individual subdomains 𝛺𝑖, mortar grids on the interfaces
𝛤𝑗 and discrete versions of the projection operators between subdomains and interfaces. This structure is also exploited when results
are exported for visualization, for which we use ParaView (version 5.11.0 herein).
7
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The choice of discretization methods is motivated by the modelling principles followed in Section 3: Local conservation is
nforced for mass, energy and momentum by applying finite volume methods, specifically, we consider lowest order cell-centred
ethods. In addition to finite volume methods, the scalar elliptic equation on individual grids can also be discretized with mixed

inite elements (RT0-P0) and lowest order mixed virtual elements. The discretization of constitutive laws follows their mathematical
tructure. Advective terms are discretized by standard upwinding [28]. For diffusive terms, such as those related to Darcy’s law in
he mass conservation equation and Fourier’s law in the energy conservation equation, we use either the standard two-point flux
pproximation or its more accurate multi-point extension [29]. For the stress, we rely solely on the multi-point approximation, which
lso provides a discretization of the thermo-poromechanical coupling terms, see [30,31]. The equations on different subdomains are
iscretized separately, following [14,17], and neighbouring subdomains are coupled via discrete interface variables. This approach
o coupling allows for reuse of discretization schemes, and their implementation, originally developed for non-fractured domains.

While most of the non-linearities in the governing equations are common for standard reservoir simulation, the contact mechanics
roblem needs special treatment. Here we follow techniques from computational contact mechanics: The inequalities (9) and (10)
an be reformulated into equivalent equalities as detailed in e.g. [22,32]. The reformulation allows us to discretize these equations
sing AD, resulting in a semi-smooth Newton method [33,34].

Practical usage of PorePy entails experimentation with modelling choices and approaches to simulations for complex and non-
inear models in mixed-dimensional geometries. Accordingly, the code is designed to support rapid prototyping and flexibility in
odelling approaches, as was indicated by the snippets in Section 3 and further demonstrated in Section 6.2. This is reflected in

he data structures underlying the representation and linearization of governing equations: Provided dimensional compatibility,
ariables, discretizations and constitutive relations can be defined on arbitrary sets of subdomains and interfaces, thereby enabling
ailored governing equations for specific subdomains. Governing equations are considered non-linear by default, with evaluation
f residual and Jacobian implemented using automatic differentiation. This is implemented in two steps. First, equations are
epresented as what we term AD operators. These are symbolic representations of mathematical expressions, which are stored as
omputational graphs, borrowing popular techniques in e.g. machine learning libraries [35,36]. AD operators can be combined
y arithmetic operations to form compound AD operators and thereby allow for gradually composing complex expressions. Second,
ranslation of the graph into numerical values for the residual and the Jacobian matrix is implemented using forward-mode automatic
ifferentiation [37].

For differentiation in time, we use the backward Euler scheme. Most of the state-dependent parameters that enter constitutive
aws are discretized fully implicitly, that is, their derivatives are included in the Jacobian matrix. The exceptions are permeability,
hermal conductivity and the upwind directions, which enter discretization schemes (multi-point approximations and upwinding) as
xpressions that are not readily differentiated. These dependencies are lagged one Newton iteration. The high degree of implicitness
s made possible by the AD framework which removes the need for manual differentiation of complex expressions. PorePy currently

does not provide tailored linear solvers, users must either provide these by themselves or rely on direct solvers.
The following two sections present PorePy examples of testing and multiphysics simulation. The complete collection of source

code, run scripts and simulation results are available as a Docker image [38]. For a general PorePy installation we recommend
ccessing the ready-to-run images at DockerHub3. Local installation from source files, basic code usage and how to contribute to
he code are all documented at PorePy’s GitHub page.

. Testing

Testing must constitute a fundamental part of the development process of scientific software [39]. A solid testing framework: (1)
educes the chances of errors by finding problems at an early stage, (2) enhances the quality and reliability of the software and (3)
ives the developers a solid ground to incorporate new functionality. Crucially, the test suite should be run with a high frequency.
his both supports the quality of the new code and avoids introduction of bugs and inconsistencies with existing code and external
ode dependencies. Continuous testing has also been shown to substantially increase development efficiency [40].

The large number of components present in a multiphysics software demands a systematic and well-structured testing strategy.
ccording to [41], tests can be classified into four levels: (1) unit tests, (2) integration tests, (3) system tests and (4) acceptance

ests. These levels usually form a bottom-up hierarchical structure, with unit tests at the bottom and acceptance tests at the top.
Unit tests check individual components of the software, ideally in isolation. Integration tests check if groups of components

nteract as expected. System tests are designed to test if the software as a whole works properly. Finally, acceptance tests are meant
o check whether the software meets the requirements set by an end user. Since acceptance tests are mostly relevant for commercial
oftware, we will not consider this type of test.

Using the compressible single-phase flow model in fractured porous media,4, we will devote the rest of this section to providing
oncrete examples of unit, integration and system tests. A schematic representation of a testing subset is shown in Fig. 2. For
emonstrative purposes, we have chosen three tests from the modules connected by the orange curves.

Most programming languages have libraries that offer testing-specific functionality. PorePy employs the testing library
ytest [42], which offers the particularly attractive feature of test parameterization. The reader will hopefully appreciate that

his feature can be used to test a large number of cases in a succinct and effective manner.

3 https://hub.docker.com/u/porepy
4 Recall that this model is given by the conservation law (1) the constitutive relationships (11) to (13), the internal boundary condition (32) and external

oundary conditions and initial conditions.
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Fig. 2. Tests for the compressible single-phase flow model in fractured porous media. There exists a hierarchical structure divided into three levels, i.e., system,
integration and unit tests. Note that a small subset of all tests are included in the diagram. Snippets for the tests connected by the orange curves are shown in
Sections 5.1–5.3.

The following subsections illustrate the concepts discussed above using examples from the PorePy test suite, which has been
ignificantly restructured and extended since the publication of [14], including: (1) better overall test coverage, (2) introduction of
ystem tests, (3) better structuring of unit and integration tests, which now mirrors the structure of the core to simplify maintenance
nd contribution of code (4) clearer guidelines for test style (e.g., we rely exclusively on pytest) with substantial reduction in
aintenance costs.

.1. Unit test

Thorough testing of the natively implemented framework for defining equations is paramount to ensure that the framework is
orrectly implemented and that it stays compatible with updates to upstream dependencies such as numpy [43] and scipy [44].
n this test, we check that AD operators are correctly combined via arithmetic operations (see Snippet 3). The test is parameterized
n four dimensions: The first and second dimensions are the left and right operands of the arithmetic operation, respectively. The
ested operands are scalars, dense and sparse arrays (i.e., vectors and sparse matrices) and an AD expression with a non-trivial
esidual and Jacobian matrix. The third dimension contains the binary operations, namely: sum, subtraction, multiplication, division,
xponentiation and array multiplication. The last dimension establishes whether the quantities are represented in forward-mode AD
r as a computational graph, as discussed in Section 4.

For any combination of operands and operation, the test evaluates the resulting expression and compares the results to hard-
oded known values. Thus, the test validates the implementation of forward-mode AD and, when the expression is represented as a
omputational graph, the parsing of this graph into numerical values. Not all combinations of operands and operations are permitted.
s an example, scipy currently does not support adding scalars to sparse matrices, thus attempts at evaluation will raise errors.
or these cases, the test checks that the expected errors are raised. This ensures that changes in upstream dependencies, including
ew functionality, will be flagged.

The full test consists of 192 individual tests that provide a robust foundation for all valid low-level combinations of arithmetic
perations. Most importantly, the inclusion of a non-trivial AD object among the operands means that, by induction, the test gives
onfidence to the evaluation of complex expressions used in the definition of multiphysics problems.

.2. Integration test

The modular nature of the PorePy equation definition requires testing not only individual components, but also that the
nteraction between such components produces expected results. The integration test shown in Snippet 4 compares the numerical
alues obtained from methods returning AD operators against known hard-coded values. The aim of such tests is two-fold: (1) to
heck that individual methods are correctly implemented and (2) to check that compound expressions obtained from the combination
f individual AD operators result in expected values. Since the process of obtaining a numerical value necessarily requires the
esolution of the computational graph and, in some cases, the discretization of relevant quantities, the test is particularly useful to
dentify parts of the code that are not working.

To minimize the development effort needed to achieve test coverage for new methods, the test requires minimal input related to
ndividual methods: the name of the method, the numerical value expected from evaluation and possible restrictions on which spatial
imensions the method is meaningful. To cover subdomains and interfaces of different dimensions with a reasonable computational
ost, the test is set up on a 2 × 2 Cartesian grid with two intersecting fractures, which results in subdomains of dimension 0 to 2

and interfaces of dimension 0 and 1.
The complete test includes 27 methods. However, for the sake of compactness, we include only the fluid viscosity and the fluid

density as given by Eq. (13). The implementation of constant viscosity exemplifies a standalone method, whereas the implementation
of the fluid density, which depends on the reference pressure, reference density, compressibility and current pressure state, represents
a case where various methods are required to integrate correctly.
9
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Snippet 3: Example of a unit test for combination of fundamental AD operators using standard arithmetic operations. In this and
subsequent snippets, we use ellipses ‘‘…’’ to indicate non-crucial code that has been omitted for the sake of concision.

5.3. System test

Ultimately, we would like to know if a model produces the correct results. Thus, unsurprisingly, system tests are considered the
most important type of test in a testing framework [45]. In this context, one of the most robust tests for numerical code verification
is the method of manufactured solutions [46,47]. If available, synthetic solutions represent an invaluable asset for a computational
model, as they give confidence that essential parts of the code work as expected.

In a testing context, synthetic solutions are particularly useful when combined with a convergence analysis. This gives not only
a qualitative certainty but also a quantitative validation that errors decrease with increasing spatial and temporal resolution, thus
also verifying implementation of discretization schemes and the like. More importantly, convergence rates in the asymptotic range
are generally invariant to rounding errors and even to minor changes in meshes. The latter is important for PorePy, since simplex
meshes generated with Gmsh may change slightly as this external dependency is updated.

In Snippet 5, we show a test that compares known and actual observed order of converge (OOC) values for the compressible
single-phase flow model. The manufactured solution was obtained generalizing the one proposed in [20] from the incompressible to
the compressible case. The model includes a single fully embedded vertical fracture and gravity effects are neglected. An in-depth
explanation of the derivation of the solution is given in Section 6.1. Due to the inherent complexity associated with setting up
the different cases, performing the convergence analysis and computing the OOC, the test relies on the pytest fixture functions
desired_ooc and actual_ooc to collect the known and actual order of convergence rates.

The test is parameterized in three dimensions, namely: variable, grid type and dimension. This variability is what makes this test
truly a system test. We check the OOC for primary and secondary variables (matrix pressure, matrix flux, fracture pressure, fracture
flux and interface flux) on two types of grids (Cartesian and simplicial) and for two dimensions (2 and 3).

It should be mentioned that spatio-temporal convergence tests are generally resource-intensive, especially in 3D, and we have
therefore created independent workflows to run these tests less frequently, i.e., once or twice per week. We reiterate the importance
10
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Snippet 4: Example of an integration test that tests the evaluation of AD methods for the compressible single-phase flow model.

of the test: It covers all parts of a simulation model, including meshing, discretizing conservation and constitutive laws and boundary
and initial conditions, and thereby gives confidence that all these parts are correctly and consistently implemented.

Snippet 5: Example of a system test that tests observed order of convergence (for primary and secondary variables) for the
compressible flow model with a single vertical fracture. These values were used to produce the plot from the right panel of Fig. 3.
11
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Fig. 3. Analytical solution (left) and convergence analysis (right) for the compressible flow in fractured porous media using a Cartesian grid. The pressure
solution is symmetric about the plane 𝑥 = 0.5, where the matrix grid is cut to expose the top half of the fracture. Rates for the interface fluxes are shown
together, since PorePy treats two-sided interfaces as one single object.

6. Numerical verification and applications

In this section, we focus on the numerical verification of the code as well as its applications to solving coupled multiphysics
problems. The former aims at showcasing the robustness of the implementation while the latter illustrates the versatility of PorePy
in terms of physical modelling capability.

6.1. Numerical verification

Benchmarking of numerical methods and their implementation is an integral part of the development of PorePy, with previous
results presented in [14,17,34,48–50]. Here, we give an example where the method of manufactured solutions is used to check
whether a numerical approximation converges to a known solution as one increases spatial and temporal resolution. Specifically,
we check if the numerical implementation for solving the compressible single-phase flow in fractured porous media is compliant
with the mass conservation (see Eq. (1) and Snippet 1) via a spatio-temporal convergence analysis.

Below, we provide the steps for deriving the manufactured solution of the system test presented in Section 5.3. The solution
follows closely the one presented in Appendix D.2 of [20], and can be seen as its generalization to the compressible case. The aim
is to obtain time-dependent source terms for the matrix 𝜓ℎ(𝒙, 𝑡) and fracture 𝜓𝑙(𝒙, 𝑡) which can then be used in the numerical code
to obtain the approximations to the exact (known) solutions.

Compared to the stationary case presented in [20], here, the final expressions are considerably more involved and for that reason
we do not include them explicitly. The interested reader can access all the expressions through the ManuCompExactSolution3d
class located in the PorePy module porepy/tests/functional/setups/manu_flow_comp_3d_frac.py.

As in [20], we consider a mixed-dimensional domain 𝑌 = 𝛺𝑙 ⊔ 𝛺ℎ = (0, 1)3 composed of a single vertical fracture

𝛺𝑙 = {𝒙 ∈ 𝑌 ∶ 𝑥 = 0.5, 0.25 ≤ 𝑦 ≤ 0.75, 0.25 ≤ 𝑧 ≤ 0.75},

and a matrix 𝛺ℎ = 𝑌 ⧵𝛺𝑙, which is divided into nine subregions, namely

𝛺ℎ =
9
⋃

𝛼=1
𝛺𝛼
ℎ,

where

𝛺1
ℎ =

{

𝒙 ∈ 𝛺ℎ ∶ 0.00 < 𝑦 < 0.25, 0.00 < 𝑧 < 0.25
}

,

𝛺2
ℎ =

{

𝒙 ∈ 𝛺ℎ ∶ 0.00 < 𝑦 < 0.25, 0.25 ≤ 𝑧 < 0.75
}

,

𝛺3
ℎ =

{

𝒙 ∈ 𝛺ℎ ∶ 0.00 < 𝑦 < 0.25, 0.75 ≤ 𝑧 < 1.00
}

,

𝛺4
ℎ =

{

𝒙 ∈ 𝛺ℎ ∶ 0.25 ≤ 𝑦 < 0.75, 0.00 < 𝑧 < 0.25
}

,

𝛺5
ℎ =

{

𝒙 ∈ 𝛺ℎ ∶ 0.25 ≤ 𝑦 < 0.75, 0.25 ≤ 𝑧 < 0.75
}

,

𝛺6
ℎ =

{

𝒙 ∈ 𝛺ℎ ∶ 0.25 ≤ 𝑦 < 0.75, 0.75 ≤ 𝑧 < 1.00
}

,

𝛺7
ℎ =

{

𝒙 ∈ 𝛺ℎ ∶ 0.75 ≤ 𝑦 < 1.00, 0.00 < 𝑧 < 0.25
}

,

𝛺8
ℎ =

{

𝒙 ∈ 𝛺ℎ ∶ 0.75 ≤ 𝑦 < 1.00, 0.25 ≤ 𝑧 < 0.75
}

,

𝛺9
ℎ =

{

𝒙 ∈ 𝛺ℎ ∶ 0.75 ≤ 𝑦 < 1.00, 0.75 ≤ 𝑧 < 1.00
}

.
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Moreover, we set the time interval of interest as (0,  ) = (0, 1).
The exact solutions are constructed using the distance function 𝛿(𝒙), defined as the shortest length from any point in the matrix

ℎ to the fracture 𝛺𝑙, and given by

𝛿(𝒙) ∶=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

√

(𝑥 − 0.5)2 + (𝑦 − 0.25)2 + (𝑧 − 0.25)2, 𝛺1
ℎ,

√

(𝑥 − 0.5)2 + (𝑦 − 0.25)2, 𝛺2
ℎ,

√

(𝑥 − 0.5)2 + (𝑦 − 0.25)2 + (𝑧 − 0.75)2, 𝛺3
ℎ,

√

(𝑥 − 0.5)2 + (𝑧 − 0.25)2, 𝛺4
ℎ,

√

(𝑥 − 0.5)2, 𝛺5
ℎ,

√

(𝑥 − 0.5)2 + (𝑧 − 0.75)2, 𝛺6
ℎ,

√

(𝑥 − 0.5)2 + (𝑦 − 0.75)2 + (𝑧 − 0.25)2, 𝛺7
ℎ,

√

(𝑥 − 0.5)2 + (𝑦 − 0.75)2, 𝛺8
ℎ,

√

(𝑥 − 0.5)2 + (𝑦 − 0.75)2 + (𝑧 − 0.75)2, 𝛺9
ℎ.

We will also need the bubble function 𝜔(𝒙) ∈ 𝛺5
ℎ:

𝜔(𝒙) ∶= 100(𝑦 − 0.25)2(𝑦 − 0.75)2(𝑧 − 0.25)2(𝑧 − 0.75)2.

The manufactured solution is based on defining 𝑝ℎ(𝒙, 𝑡) as a modified, smoother version of the distance function

𝑝ℎ(𝒙, 𝑡) ∶= 𝑡

⎧

⎪

⎨

⎪

⎩

𝛿𝜉+1,
(

𝛺ℎ ⧵𝛺5
ℎ
)

× (0,  )

𝛿𝜉+1 + 𝜔𝛿, 𝛺5
ℎ × (0,  ),

(35)

where 𝜉 ∈ R>0 is a parameter that controls the regularity of the solution. Following [20], we employ 𝜉 = 1.5, which offers sufficient
moothness while preserving non-trivial matrix-fracture coupling conditions. The exact pressure distribution is shown in the left
anel of Fig. 3.

The density 𝜌𝑓ℎ (𝒙, 𝑡) can now be obtained via Eq. (13). For this particular test, we employ 𝛾𝑓ℎ = 0.2, 𝑝0ℎ = 0 and 𝜌𝑓0 = 1.0. By setting

ℎ∕𝜂
𝑓
ℎ = 1, the Darcy flux 𝒗ℎ(𝒙, 𝑡) can be obtained with the help of Eq. (11). After setting 𝜙ℎ = 0.1, we have all the ingredients to

ompute the piece-wise time-dependent source term 𝜓ℎ(𝒙, 𝑡) in the matrix via Eq. (1).
Due to continuity of normal mass fluxes in Eq. (32) and noting that ℎ = 𝑗 = 𝑘 = 1, there holds:

𝜌𝑓ℎ𝒗ℎ ⋅ 𝒏ℎ = 𝛯ℎ𝑗 𝜌
𝑓
𝑗 𝑣𝑗 = 𝑡𝜔, 𝛤𝑗 × (0,  ),

𝜌𝑓ℎ𝒗ℎ ⋅ 𝒏ℎ = 𝛯ℎ𝑘 𝜌
𝑓
𝑘 𝑣𝑘 = 𝑡𝜔, 𝛤𝑘 × (0,  ),

here 𝛤𝑗 and 𝛤𝑘 denote the interfaces coupling 𝛺ℎ and 𝛺𝑙. Note that since we are in a continuous setting, the projection operators
atisfy 𝛯ℎ𝑗 = 𝛯ℎ𝑘 = 𝐈.

It is straightforward to check that 𝑝ℎ = 0 on 𝜕𝑗𝛺ℎ and 𝜕𝑘𝛺ℎ. Thus, setting 2𝑗∕𝜂
𝑓
𝑗 𝑎𝑙 = 2𝑘∕𝜂

𝑓
𝑘 𝑎𝑙 = 1 in Eq. (20), the fracture

ressure is fixed and evaluates to the negative of the interface fluxes, i.e., 𝑝𝑙(𝒙, 𝑡) = −𝑡𝜔. With this, it is possible to obtain the fluid
density in the fracture 𝜌𝑓𝑙 (𝒙, 𝑡) via Eq. (13). As in the matrix, we set 𝛾𝑓𝑙 = 0.2, 𝜌0𝑙 = 1 and 𝑝0𝑙 = 0. Assuming unit mobility 𝑙∕𝜂

𝑓
𝑙 = 1,

we can compute the tangential Darcy flux in the fracture 𝒗𝑙(𝒙, 𝑡) via Eq. (11). By setting 𝜙𝑙 = 0.1 and 𝑙 = 1, the time-dependent
source term in the fracture 𝜓𝑙(𝒙, 𝑡) can now be obtained via Eq. (1). To close the system of equations, we use zero initial conditions
for all primary variables, impose Dirichlet boundary conditions satisfying Eq. (35) on the boundaries of 𝛺ℎ and no-flux at the tips
of 𝛺𝑙. Note that on the external boundaries of 𝛺ℎ, both pressure and density will change in every time step and must therefore be
updated accordingly.

Since we employ MPFA to discretize the set of equations in space and backward Euler in time, we expect the 𝐿2-error to decrease
quadratically in space and linearly in time. Thus, to obtain second order rates in space–time, we decrease the spatial step size by a
factor 2 and the temporal step size by a factor 4. The results for three levels of space–time refinement can be seen in the right panel
of Fig. 3 and confirm that the errors for both primary (𝑝ℎ, 𝑝𝑙, 𝑣𝑗 and 𝑣𝑘) and secondary (𝒗ℎ and 𝒗𝑙) variables decrease quadratically
with computational effort.

6.2. Application examples

The two simulations shown in this section illustrate the versatility of PorePy in terms of physical modelling capability. We
stress that the simulations are intended to serve as illustration of PorePy as a modelling tool rather than being interpreted for their
physical implications. For examples of how PorePy is used to study multiphysics processes and develop simulation technology, see
e.g. [22,49,51–53]. These publications also cover other aspects of the PorePy’s flexibility and capability, including more complex
13
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6.2.1. Problem definition
In the first example (Example 1), we solve a mixed-dimensional poromechanical problem with contact mechanics at the fractures.

This corresponds to Eqs. (1), (4)–(10), (32) and (34) complemented by the relevant constitutive equations defined in Section 3.4
(ignoring temperature terms in Eqs. (24) and (26)). For the second example (Example 2), we extend the model by adding the energy
Eqs. (2) and (33) and the rest of the constitutive laws. The examples are set up to trigger mutual interactions between deformation
of rock and fractures, permeability alterations caused by fracture deformation and non-isothermal transport in fractures and host
rock. They thus show how PorePy enables setting up simulations of such highly coupled non-linear processes with limited effort
from the modeller’s side.

The domain is a 3D box of dimensions 100m × 50m × 50m containing two horizontal fractures as shown in Fig. 4. The fractures
are offset in the vertical direction and partly overlap in the horizontal direction. Fracture 1 extends to the left domain boundary
(𝑥 = 0m) and Fracture 2 extends to the right boundary (𝑥 = 100m), resulting in a geometry which is symmetric about the plane
𝑦 = 25m.

We set zero initial displacement and contact traction values and impose Dirichlet displacement boundary conditions on the
bottom boundary of the domain and Neumann conditions elsewhere. On the top, the traction values are −1 × 106 Pa and −2 × 106 Pa
in the 𝑥 and 𝑧 direction, respectively. Combined with zero traction values on the remaining boundaries, these values result in
compression and shear displacement. On the two fracture boundaries, we impose Dirichlet conditions for pressure and temperature.
Initially, the values are 𝑝 = 1 × 105 Pa and 𝑇 = 400K on both fracture boundaries, thus matching the initial and reference values. After
an equilibration phase of 1.0 yr, we change the values on the leftmost (inlet) boundary, increasing to 𝑝 = 5 × 105 Pa and reducing to
𝑇 = 390K. On the external boundaries of the 3D domain, we impose homogeneous Neumann conditions for all fluid and energy flux
variables. This produces a flow field from the leftmost fracture, through the central part of the matrix and entering the rightmost
fracture before reaching the outlet boundary.

6.2.2. Simulation setup
As mentioned above, both poromechanics and thermo-poromechanics are among PorePy’s suite of ready-to-run model classes,

which contain balance equations, constitutive laws and discretization schemes, default values for material parameters, etc. Snippet 6
shows how we combine these with run-script classes implementing the problem specifications described in the previous paragraph.
We illustrate one such class in Snippet 7, which shows how we define the mixed-dimensional geometry. The difference between the
two setups indicated in Snippet 6 illustrate how to adjust both conservation equations and constitutive laws. The few lines of code
needed to override PorePy’s constant viscosity model to the temperature-dependent Eq. (14) is shown in Snippet 8. All material
parameter values are listed in Table 2.

Snippet 6: Definition of a tailored thermo-poromechanical model. Each of the collected classes contains implementation of
functionality corresponding to its name. Differences to poromechanical model are highlighted. The class PostProcessing
provides functionality for collecting data used to produce the figures in Section 6.2.3 and is not part of the model setup as such.

6.2.3. Results
Fig. 4 shows spatial distribution of the pressure and temperature in both fractures and matrix. The figure underlines the

importance of employing separate representations of fractures and matrix to accurately model thermo-poromechanics in fracture
media: The figure shows the fractures to be the main conduit for the pressure pulse and the cooling front. Moreover, capturing
matrix-fracture interaction is also important, as can be seen for both the pressure perturbation and the temperature front.

Next, consider the temporal evolution of the aperture profiles along the middle of the fractures, shown in Fig. 5. The figure
contains results of two simulations in two different subdomains along both a spatial and temporal axis, allowing for comparison
across four different dimensions.

For the first simulation, the aperture of Fracture 1 can be seen to be largest close to the inlet and decay along the fracture. This
can be attributed to the fluid pressure being highest, thus the effective contact traction smallest, in the vicinity of the inlet. The
effect abates somewhat with time as the pressure signal diffuses and thus illustrates the value of spatiotemporal resolution. For the
aperture in Fracture 2, the most prominent characteristic is the increase at the point where the overlap between Fractures 1 and 2
ends (𝑥 = 75m), illustrating the mechanical coupling between deformation of non-intersecting fractures.
14
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Table 2
Material parameters for Section 6.2.

Parameter Value

Biot coefficient, 𝛼 8.00 × 10−1

Matrix permeability,  2.00 × 10−15 m2

Shear modulus, 𝐺 1.67 × 1010 Pa
Bulk modulus, 𝐾 2.22 × 1010 Pa
Solid specific heat capacity, 𝑐𝑠 7.90 × 102 J kg−1 K−1

Solid thermal conductivity, 𝜅𝑠 2.50Wm−1 K−1

Solid thermal expansion, 𝛽𝑠 1.00 × 10−4 K−1

Fluid specific heat capacity, 𝑐𝑓 4.18 × 103 J kg−1 K−1

Fluid thermal conductivity, 𝜅𝑓 6.00 × 10−1 Wm−1 K−1

Fluid thermal expansion, 𝛽𝑓 2.10 × 10−4 K−1

Fluid compressibility, 𝛾 4 × 10−10 Pa−1

Fluid viscosity (1st simulation), 𝜂 1 × 10−3 Pa s
Viscosity parameter, 𝜂𝐴 2.94 × 10−5 Pa s
Viscosity parameter, 𝜂𝐵 5.08 × 102 K
Viscosity parameter, 𝜂𝐶 1.49 × 102 K
Residual aperture, 𝑎0 5.00 × 10−4 m
Solid density, 𝜌𝑠 2.70 × 103 kgm−3

Reference fluid density, 𝜌0 1.00 × 103 kgm−3

Maximum fracture closure, 𝛥𝑢𝑚𝑎𝑥 5.00 × 10−4 m
Fracture normal stiffness, 𝐾𝑛 1.00 × 109 Pam−1

Residual fracture gap, 𝑔0 5.00 × 10−4 m
Friction coefficient, 𝐹 1.00
Dilation angle, 𝜃 5.00 × 10−2 rad
Reference temperature, 𝑇 0 4.00 × 102 K
Reference pressure, 𝑝0 1.01 × 105 Pa
Reference porosity, 𝜙0 5 × 10−2

Fig. 4. Solutions for the two examples of Section 6.2. Final pressure distribution for Example 1 (left) and final temperature distribution for Example 2 (right).
The plots shown in Fig. 5.are taken along lines in the 𝑥 direction in the middle of each fracture.

For the second, thermo-poromechanical, simulation, the aperture increase is significantly larger than in the pure poromechanical
simulation. The effect increases with time and is most pronounced close to the inlet (Fracture 1). It can also be seen in Fracture 2,
albeit at a smaller magnitude. We attribute the difference between the two simulations to thermal contraction due to matrix cooling.

Taken together, Fig. 5 plots illustrate the type of investigations PorePy facilitates with spatial and temporal analysis of various
thermo-poromechanical effects in subdomains of varying dimensions.

7. Concluding remarks

This paper discusses the design of a multiphysics simulation framework, presented in the context of thermo-poromechanics in
fractured porous media. Research exploring various coupled processes and constitutive models and related simulation technology
requires flexible software which can be tailored to the governing mathematical model. The simulation toolbox PorePy is structured
to closely adhere to the mixed-dimensional governing equations. The toolbox provides automatic mesh generation and fully coupled
15
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Fig. 5. Apertures along central line of the two fractures throughout the first simulation (top) and the second simulation (bottom). Note that the time scale for
Example 1 and Example 2 are different and they are non-linear of a quasi-logarithmic type.

discretizations, with spatial derivatives handled by finite volume methods. PorePy contains a number of application-relevant
multiphysics problems represented by ready-to-run Models. Thanks to a modular code architecture and automatic differentiation,
the Models can be extended for easy exploration of e.g. constitutive relations and solution strategies with minimal programming.
The reliability of PorePy is ensured by a test suite which monitors the code integrity on a unit, integration and system level.
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Snippet 7: Implementation of domain specification, fracture geometry and meshing parameters. The adjustments shown herein
suffice to produce the geometry shown in Fig. 4. The call to convert_units ensures consistency if the simulation is run with
scaled units to aid numerical performance.

Snippet 8: Implementation of a viscosity model in PorePy.
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