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Introduction

Geothermal energy extraction requires detailed characterization of geological, physical, and geochemi-
cal properties of the reservoir and fluid properties of the geothermal fluids. For a proper understanding
of the involved reservoir processes, robust and efficient numerical thermal simulation tools are essential
(Zhu and Okuno, 2014, 2016; Connolly et al., 2021). Simulations of mass and heat transfer in porous
media traditionally include temperature as an independent variable and the set of natural variables. This,
however, requires variable substitution procedures to handle phase transitions, which add complexity to
the implementation (Voskov and Tchelepi, 2012). In contrast, the overall composition formulation, has
the advantage of well-defined equations and variables at each cell, so it does not require variable substi-
tution procedures, (Voskov and Tchelepi, 2012). In this formulation, the coupled mass and heat transfer
problem is solved at each time step by using pressure, enthalpy, and composition, requiring an isobaric
and isenthalpic formulation to solve the local phase equilibrium problem. This study approaches the
isenthalpic phase equilibrium problem from a unified perspective and ties it to equations of energy and
mass conservation.

An isenthalpic formulation

The constitutive model is based on a cubic equation of state (EoS) and a unified formulation for com-
puting isenthalpic phase behavior. As in the work of Gupta et al. (1990) and (Zhu and Okuno, 2016),
the adopted approach is essentially meant to solve the stability and the isenthalpic flash. Our solution
approach is based on recasting the equations as a minimization problem with complementary condi-
tions or unilateral conditions (Lauser et al., 2011; Gharbia et al., 2021). The compositional multiphase
equilibrium problem can be presented in an abstract form:

Λ(Y) = 0 ∈ Rl−m,

min(G(Y) ,H (Y)) = 0 ∈ Rm,
(1)

where Y ∈ Rl is the unknown, the set of l−m functions Λ(Y) are algebraic equations representing the
equilibrium of the compositional multiphase mixture (material balance and isofugacity constrains) and
the last m functions G(Y) and H (Y) are complementary conditions representing the stability analysis
in a similar way to the work by Gupta et al. (1990) and Zhu and Okuno (2016). Our research is an ex-
tension of the isobaric-isothermal analysis performed by Gharbia et al. (2021) to an isobaric-isenthalpic
equilibrium problem. Such extension is performed by appending to Λ(Y) an additional constraint, such
that the equilibrium problem is composed of material balance, isofugacity, and enthalpy constraints. As
an example of the unified formulation, we present the set of equations for the isenthalpic equilibrium
problem for a two-phase (Gas, Liquid) two-component (H2O, Co2) mixture. Components are identified
with roman numbers, I for water, and II for CO2.
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are defined using the Peng-Robinson cubic
equation of state for a mixture of any number of components (Peng and Robinson, 1976). To assure that
while solving the Peng-Robison equation of state the compressibility factors are correctly identified, we
incorporate the labeling procedure by Vu et al. (2021). Finally the full expression of the total enthalpy
Ht := V hG (xG,T )+ (1−V )hL (xL,T ) and phase enthalpies are presented by Zhu and Okuno (2014).
The equilibrium problem amounts to solving eq. 1 while {P,H,z} are given.

Numerical solution of the equilibrium problem

For the numerical solution of the equilibrium problem, we adopt the nonparametric interior point algo-
rithm presented by Vu et al. (2021). For completeness, we introduce some details about the numerical
solution. Let’s expand the solution vector Y =

{
V,ξ I

G,ξ
II
G ,ξ I

L,ξ
II
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}
with additional

unknowns {vG,vL,wG,wL}, so-called slack variables, and ν , the interior parameter. With this modifica-
tion the equilibrium problem is:

Given {P,H,z} find Y such that

F(Y) = 0, with F(Y) =
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where v = {vG,vL}, w = {wG,wL} and � denotes the Hadamard’s component-wise product. The func-
tion f (Y,ν) is defined as
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Remark: The variable ν is 0 at the minima of eq. 3, wich gives the same solution of the original
problem, eq. 1.

The solution procedure relies on an iterative quasi-Newton method with an Armijo line search (Vu et al.,
2021).

Example of constitutive modelling

As an example, we set up a narrow-boiling situation similar to the one described by Zhu and Okuno
(2014, 2016), in order to demonstrate the effectiveness of the numerical method presented in the preced-
ing section.

The majority of geothermal fluids contain non-condensable gases (NCG). Typically, carbon dioxide
(CO2) accounts for more than 95 percent of the total NCG content (Bonafin and Bonzanini, 2021).
Therefore, it is natural to use a binary mixture with composition z = {0.99,0.01} (99.0 % water (H2O)
and 1.0% carbon-dioxide (CO2)) as an example. The pure substance properties can be found in (Zhu and
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Okuno, 2014, 2016). Figure 1 shows the phase envelope in P-H space, for an example of validation, we
computed the isotherms with an thermodynamic package (https://github.com/CalebBell/thermo) rather
than using an isothermal unified formulation. The red circle represents the critical point of water (22.064
MPa and 647 K). Path A (black line) represents a narrow boiling condition, while path B (red line)
represents a condition far from the critical point. Both paths are computed using the isenthalpic unified
formulation, and no convergence failure was found. Figure 2 shows that path B has fewer iterations than
path A. Since path A was deliberately traced near the critical point, narrow-boiling conditions results in
more iterations.

Figure 1 PH-diagram for binary mixture with composition z = {0.99,0.01} (99.0 % water (H2O) and
1.0% carbon-dioxide (CO2)). Path A (black line) represents a narrow boiling condition, while path B
(red line) represents a condition far from the critical point.

Figure 2 Iteration number vs enthalpy for path A and B.

Another important characteristic of narrow boiling is that the equations are near degenerate towards one
degree of freedom (edges of compositional space) (Zhu and Okuno, 2014, 2016). Using path A, we
decrease CO2 composition until it reaches machine precision zII ∈

{
0.01,10−5,10−15

}
and demonstrate

the capabilities of the proposed approach in simulating one degree of freedom fluids. Figure 3 shows
that V and the enthalpy H are sensitive with respect to temperature in the two-phase region and both
vary rapidly in the range of 629.38 K to 642.45 K for z = {0.99,0.01} and 639.57 K to 642.45 K for
z =

{
1.0−10−15,10−15

}
. The phase disappearing and reappearing at the critical points occurs within a

few Kelvin degrees. Therefore, those conditions must be checked to obtain a robust numerical solution.

Connection with geothermal modeling

To connect the unified formulation with equations for mass and energy conservation for a geothermal
system, we employ the overall molar composition formulation with the X = {p,H,z} and the fully
discrete scheme is a combination of Euler time-stepping and a multi-point finite volume discretiza-
tion. Simulations using this new approach are currently in the development phase. With some abuse
of notation ·̃ denotes the discrete unknowns and (tn)0≤n≤N is the discrete time nodes with t0 := 0 and
tN := t f . The discrete set of PDEs compiles mass and energy balance, initial and boundary conditions.
We close the discrete set of PDEs D̃

(
X̃(tn) , Ỹ(tn)

)
with the set of local isenthalpic equilibrium prob-

lems F̃
(
X̃(tn) , Ỹ(tn)

)
. The global discrete problem is to find

{
p̃(tn) , H̃ (tn) , z̃(tn)

}
∀ n∈ {1, . . .N} such
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Figure 3 Vapor fraction and the total enthalpy vs temperature. The properties used for the components
are given in Table 1. Two phases are present from 629.38 K to 642.45 K for z = {0.99,0.01}. Overall
compositions for each case z ∈

{
{0.99,0.01} ,

{
1.0−10−5,10−5

}
,
{

1.0−10−15,10−15
}}

.

that [
D
(
X̃(tn) , Ỹ(tn)

)
F
(
X̃(tn) , Ỹ(tn)

) ]= [ 0
0

]
. (5)

At a particular time node tn, the Jacobian matrix J
(
X̃(tn) , Ỹ(tn)

)
takes the algebraic and reduced alge-

braic form

J =

[
Ã B̃
C̃ Ẽ

]
, Jr = Ã− B̃Ẽ−1C̃. (6)

If we adopt the formulation of an overall composition with enthalpy as the variable, the structure of Ẽ
is block diagonal. In this case, the Schur complement technique is applied to reduce the global problem
only in terms of X̃(tn). Furthermore, the evaluation of F

(
X̃(tn) ,Ỹ (tn)

)
can be trivially parallelized.

Conclusions

The equilibrium problem of compositional multiphase mixtures has been presented using an isenthalpic
unified formulation. It is robust to narrow boiling conditions, capable of addressing phase change phe-
nomena naturally, and can be used for thermal simulations with the overall composition formulation.
An interior point method with line search is employed to solve the problem numerically, which avoids
solving complementary conditions in their natural form. Using the unified formulation, we model the
constitutive behavior of a binary mixture of water and carbon dioxide and tie the unified formulation to
equations for mass and energy conservation in a geothermal system. Currently, simulations of mass and
heat transfer in a geothermal reservoir are being conducted as part of this research.
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