
568 | Nature | Vol 621 | 21 September 2023

Article

Causes and consequences of child growth 
faltering in low-resource settings

Andrew Mertens1 ✉, Jade Benjamin-Chung1,2,3, John M. Colford Jr1, Jeremy Coyle1, 
Mark J. van der Laan1, Alan E. Hubbard1, Sonali Rosete1, Ivana Malenica1, Nima Hejazi1, 
Oleg Sofrygin1, Wilson Cai1, Haodong Li1, Anna Nguyen1, Nolan N. Pokpongkiat1, 
Stephanie Djajadi1, Anmol Seth1, Esther Jung1, Esther O. Chung1, Wendy Jilek1, 
Vishak Subramoney4, Ryan Hafen5, Jonas Häggström6, Thea Norman7, Kenneth H. Brown8, 
Parul Christian9, Benjamin F. Arnold10,11 ✉ & The Ki Child Growth Consortium*

Growth faltering in children (low length for age or low weight for length) during the 
first 1,000 days of life (from conception to 2 years of age) influences short-term and 
long-term health and survival1,2. Interventions such as nutritional supplementation 
during pregnancy and the postnatal period could help prevent growth faltering, but 
programmatic action has been insufficient to eliminate the high burden of stunting 
and wasting in low- and middle-income countries. Identification of age windows and 
population subgroups on which to focus will benefit future preventive efforts. Here  
we use a population intervention effects analysis of 33 longitudinal cohorts (83,671 
children, 662,763 measurements) and 30 separate exposures to show that improving 
maternal anthropometry and child condition at birth accounted for population 
increases in length-for-age z-scores of up to 0.40 and weight-for-length z-scores of  
up to 0.15 by 24 months of age. Boys had consistently higher risk of all forms of  
growth faltering than girls. Early postnatal growth faltering predisposed children to 
subsequent and persistent growth faltering. Children with multiple growth deficits 
exhibited higher mortality rates from birth to 2 years of age than children without 
growth deficits (hazard ratios 1.9 to 8.7). The importance of prenatal causes and severe 
consequences for children who experienced early growth faltering support a focus on 
pre-conception and pregnancy as a key opportunity for new preventive interventions.

Growth faltering in children in the form of stunting, a marker of chronic 
malnutrition, and wasting, a marker of acute malnutrition, is common 
among young children in low-resource settings, and may contribute 
to child mortality and adult morbidity1,2. Worldwide, 22% of children 
under 5 years of age exhibit stunting and 7% exhibit wasting, with most 
of the burden occurring in low- and middle-income counties3 (LMICs). 
Current estimates attribute more than 250,000 deaths annually to 
stunting and more than 1 million deaths annually to wasting2. People 
who exhibit stunting or wasting in childhood also experience worse 
cognitive development4–6 and worse economic outcomes as adults7.

Despite widespread recognition of the importance of growth falter-
ing to global public health, preventive interventions in LMICs have 
had limited success8. A range of nutritional interventions targeting 
various life stages during the fetal and childhood periods, including 
nutrition education, food and micronutrient supplementation dur-
ing pregnancy, promotion of exclusive breastfeeding for 6 months 
and continued breastfeeding for 2 years, and food and micronutri-
ent supplementation during complementary feeding, have shown 

beneficial effects on child growth9–11. However, postnatal breastfeed-
ing interventions and nutritional interventions delivered to children 
who have begun complementary feeding have had only small effects  
on population-level stunting and wasting burdens, and implementation 
remains a substantial challenge9,12,13. Additionally, water, sanitation and 
hygiene interventions, which aim to reduce childhood infections that 
may increase the risk of wasting and stunting, have had no effect on 
child growth in several large randomized control trials14–16.

Modest effects of interventions to prevent stunting and wasting may 
reflect an incomplete understanding of the optimal manner and timing 
of interventions17. In recent decades, this knowledge gap has spurred 
renewed interest in combining rich data sources with advances in statis-
tical methodology18 to more deeply understand the key causes of growth 
faltering19. Understanding the relationship between the causes and tim-
ing of growth faltering is also crucial because children who falter early 
could be at higher risk of more severe growth faltering subsequently. In 
the accompanying Articles, we present data showing that the highest 
rates of incident stunting and wasting occur by 3 months of age20,21.
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Pooled longitudinal analyses
Here we report a pooled analysis of 33 longitudinal cohorts in 15 LMICs 
in south Asia, sub-Saharan Africa, Latin America and eastern Europe, 
in which data collection was initiated between 1987 and 2014. Our 
objective was to estimate relationships between child, parental and 
household characteristics and measures of child anthropometry, 
including length-for-age z-score (LAZ), weight-for-length z-score (WLZ), 
weight-for-age z-score (WAZ), stunting, wasting, underweight and 
length and weight velocities from birth to 24 months of age. The esti-
mation of growth faltering outcomes is detailed in the accompanying 
Articles20,21. We also estimated associations between early growth falter-
ing and more severe growth faltering or mortality by 24 months of age.

Cohorts were assembled as part of the Bill & Melinda Gates Founda-
tion’s Knowledge Integration (ki) initiative, which included studies of 
growth and development during the first 1,000 days of life, beginning at 
conception. We selected longitudinal cohorts from the database that met 
5 inclusion criteria: (1) they were conducted in LMICs; (2) they enroled 
children between birth and 24 months of age and measured their length 
and weight repeatedly over time; (3) they did not restrict enrolment to 

acutely ill children; (4) they enroled children with a median birth year 
after 1990; and (5) they collected anthropometric status measurements 
at least quarterly. These inclusion criteria ensured that we could rigor-
ously evaluate the timing and onset of growth faltering among children 
who were broadly representative of populations in LMICs. Thirty-three 
cohorts from 15 countries met the inclusion criteria, and 83,671 children 
and 592,030 total measurements were included in the analysis (Fig. 1). 
Child mortality was rare and was not reported in many of the ki data-
sets, so we relaxed inclusion criteria for studies used in the mortality 
analysis to include studies that measured children at least twice a year. 
Four additional cohorts met these inclusion criterion, and 14,317 chil-
dren and 70,733 additional measurements were included in mortality 
analyses (97,988 total children, 662,763 total observations; Extended 
Data Table 1). The cohorts were distributed throughout south Asia, 
Africa and Latin America, with a single European cohort from Belarus.

Population intervention effects
In a series of analyses, we estimated population intervention effects 
(PIEs) on growth faltering, the estimated change in population mean 
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Fig. 1 | Cohort sample sizes and measured exposures. a, The total number of 
children with each measured exposure, sorted from left to right by the number 
of cohorts measuring the exposure. b, The presence of 30 exposure variables  
in the ki data by within each included cohort. Cohorts are sorted by geographic 
region and sample size. Details of the cohorts are provided in Extended Data 

Table 1. CMC, Christian Medical College; Crypto, Cryptosporidium; dyn., 
dynamics; EE, Environmental Enteropathy; Excl., exclusively; HH, household; 
NIH, National Institute of Health; mo., months; pred., predominantly; RCT, 
randomized controlled trial. c, The number of child anthropometry 
observations contributed by each cohort.
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z-score if all individuals in the population had their exposure shifted 
from observed levels to the lowest-risk reference level22. The PIE is a 
policy-relevant parameter; it estimates the improvement in outcome 
that could be achievable through intervention for modifiable expo-
sures, as it is a function of the degree of difference between the unex-
posed and the exposed in children’s anthropometry z-scores, as well 
as the observed distribution of exposure within the population. We 
selected exposures that were measured in multiple cohorts, could be 
harmonized across cohorts for pooled analyses, and had been identi-
fied as important predictors of stunting or wasting in prior literature 
(Fig. 1 and Extended Data Tables 2 and 3). Exposure measurement var-
ied by cohort, but all estimates were adjusted for all other measured 
exposures that we assumed were not on the causal pathway between 
the exposure of interest and the outcome. For example, the associa-
tion between maternal height and stunting was not adjusted for child 
birth weight, because low maternal height could increase stunting 
risk through lower child birth weight5. Parameters were estimated 
using targeted maximum-likelihood estimation, a doubly robust, 
semi-parametric method that enables valid inference while adjust-
ing for potential confounders using ensemble machine learning18,23  
(Methods). We estimated cohort-specific parameters, adjusting for 
measured covariates within each cohort, and then pooled estimates 
across cohorts using random-effects models24 (Extended Data Fig. 1). 
As the reference exposure for PIEs, we used the lowest risk level across 
cohorts. We also estimated the effects of optimal dynamic interven-
tions, where each child’s individual low-risk level of exposure was esti-
mated from potential confounders (Methods). The timing of exposures 
varied from parental and household characteristics present before 
birth, to fetal, at-birth or postnatal exposures. We estimated associa-
tions with growth faltering that occurred after exposure measurements 
to ensure temporal ordering of exposures and outcomes.

Population-level improvements in maternal height and child birth 
size would be expected to improve child LAZ and WLZ at 24 months of 
age substantially, owing to the high prevalence of suboptimal anthro-
pometry in the populations and their strong association with attained 
growth at 24 months of age (Figs. 2 and  3). Beyond anthropometry, 
key predictors of higher z-scores included markers of better house-
hold socioeconomic status (for example, the number of rooms in 
the home, parental education, clean cooking fuel use and house-
hold wealth index). The pooled, cross-validated R2 for models that 
included the top-10 determinants for each z-score plus child sex was 
0.25 for LAZ (n = 20 cohorts, 25,647 children) and 0.07 for WLZ (n = 18 
cohorts, 17,853 children). The population-level effect of season on 
WLZ was large, with higher WLZ in drier periods (Fig. 3), consistent 
with seasonal differences21. Exclusive or predominant breastfeed-
ing before 6 months of age was associated with higher WLZ but not 
LAZ at 6 months of age and was not a major predictor of z-scores at 
24 months of age25 (Extended Data Figs. 2–4). Girls had consistently 
higher LAZ and WLZ than boys, potentially resulting from sex-specific 
differences in immunology, nutritional demands, care practices and 
intrauterine growth26.

These findings underscore the importance of prenatal exposures 
for child growth outcomes, and it may remain difficult to reduce the 
incidence growth faltering at the population level without broad 
improvements in living standards7,27. Maternal anthropometric sta-
tus can influence child z-scores by affecting fetal growth and birth 
weight28,29. Maternal height and body mass index (BMI) could directly 
affect postnatal growth through breastmilk quality or could reflect 
family poverty, genetics, undernutrition, food insecurity or family 
lifestyle and diet30,31. In a secondary analysis, we estimated the associa-
tions between parental anthropometry and child z-scores, controlling 
for birth characteristics, and found that the associations were only 
partially mediated by birth size, order, hospital delivery and gestational 
age at birth, with adjusted z-score differences attenuated by a median 
of 30% (Extended Data Fig. 5).

The strongest predictors of stunting and wasting estimated through 
population-attributable fractions closely matched those identified 
for child LAZ and WLZ at 24 months of age (Extended Data Figs. 6  
and 7), suggesting that information embedded in continuous and 
binary measures of child growth provide similar inferences with respect 
to identifying causes relevant to public health. Potential improvements 
through population interventions were relatively modest. For exam-
ple, if all children were born to mothers with higher BMI (20 or more) 
compared with the observed distribution of maternal BMI—one of the 
largest predictors of wasting—we estimate that the incidence of wast-
ing by 24 months of age would be reduced by 8.2% (95% confidence 
interval: 4.4, 12.0; Extended Data Fig. 7). Patterns in associations across 
growth outcomes were broadly consistent except for preterm birth, 
which had a stronger association with stunting outcomes than wasting 
outcomes, and rainy season, which showed a strong association with 
wasting but not with stunting (Extended Data Fig. 2). The direction of 
associations did not vary across regions; however, we observed vari-
ation in the magnitude of associations across regions—notably, male 
sex showed a weaker association with low LAZ in south Asia (Extended 
Data Figs. 8 and 9).

Age-varying effects on growth faltering
We estimated trajectories of mean LAZ and WLZ stratified by maternal 
height and BMI. We found that maternal height strongly influenced 
at-birth LAZ, and that LAZ progressed along similar trajectories up to 
24 months of age regardless of maternal height (Fig. 4a), with similar 
but slightly less pronounced differences when stratified by maternal 
BMI (Fig. 4b). By contrast, children born to taller mothers had similar 
WLZ at birth and similar WLZ trajectories up to 3 to 4 months of age, 
when they diverged substantially (Fig. 4a). WLZ trajectory differences 
were even more pronounced when stratified by maternal BMI (Fig. 4b). 
These findings illustrate how maternal status strongly influences the 
point at which child growth trajectories begin, and how growth trajec-
tories subsequently evolve in parallel, appearing to respond similarly 
to postnatal insults independently of their starting point.

We hypothesized that causes of growth faltering could differ accord-
ing to the age of growth faltering onset—for example, we expected 
children who were born preterm would have a higher risk of incident 
growth faltering immediately after birth, whereas food insecurity 
might increase the risk in older children, after weaning. For expo-
sures studied in the PIE analyses, we conducted analyses stratified 
by age of onset and in many cases found age-varying effects (Fig. 4c). 
For example, most measures of socioeconomic status were associ-
ated with incident wasting or stunting only after 6 months of age, and 
higher birth order reduced risk for growth faltering below 6 months of 
age, but increased the risk thereafter. First-born babies are born with 
lower WLZ and catch up rapidly postnatally (Extended Data Fig. 10). 
This is probably because first-born babies suffer uterine constraint 
caused by a less developed uterine–placental–vascular supply32,33, 
resulting in birth weights being lower by 100–200 g in most of the 
studied cohorts; weight is generally more compromised than height34. 
The switch from a constrained uterine–placental nutrient supply line 
to oral nutrition permits the postnatal catch up. Stronger relation-
ships between key socio-demographic characteristics and wasting 
and stunting as children age probably reflect cumulative factors that 
result from household conditions, particularly as complementary 
feeding is initiated and children begin to explore their environment and 
potentially face higher levels of food insecurity, especially in homes 
with multiple children35. When viewed across multiple definitions 
of growth faltering, most exposures had stronger associations with 
severe stunting, severe wasting or persistent wasting (more than 50% 
of measurements showing WLZ below –2)—rarer but more serious 
outcomes—than with incidence of any wasting or stunting (Fig. 4d). 
Additionally, the characteristics that showed strong association with 
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lower wasting recovery by 90 days of age (birth size, small maternal 
stature, lower maternal education, later birth order and male sex) 
increased the risk of wasting prevalence and cumulative incidence 
(Extended Data Fig. 2).

Consequences of early growth faltering
In the accompanying Articles, we document high incidence rates 
of wasting and stunting from birth to six months of age20,21. On the 
basis of previous studies, we hypothesized that early wasting could 
contribute to subsequent linear growth restriction, and early growth 
faltering could be consequential for persistent growth faltering 
and mortality during the first 24 months of life36–38. Among cohorts 
with monthly measurements, we examined age-stratified linear 
growth velocity by quartiles of WLZ at previous ages. We found a 

consistent exposure–response relationship between higher mean 
WLZ and faster linear growth velocity in the following 3 months 
(Fig. 5a). Persistent wasting from birth to 6 months of age (defined 
as less than 50% of measurements wasted) was the wasting exposure 
that showed the strongest association with incident stunting in older  
children (Fig. 5b).

We next examined the relationship between measures of growth 
faltering during the first 6 months and serious growth-related out-
comes: persistent wasting from 6–24 months and concurrent wasting 
and stunting at 18 months of age, both of which put children at high 
risk of mortality1,36. We measured concurrent wasting and stunting at 
18 months because stunting prevalence peaked at this age, and because 
the largest number of measurements across cohorts was for children 
at 18 months of age20. All measures of early growth faltering were  
significantly associated with later, more serious growth faltering, with 
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Fig. 2 | Population intervention effects and mean differences for child, 
parental, and household exposures on LAZ at 24 months of age. Adjusted 
mean differences in average treatment effects (ATEs) (blue) between the 
labelled higher-risk level of exposures and the reference level (grey dot on the 
vertical line), and population intervention effects (PIEs) (black), the estimated 
difference in LAZ after shifting exposure levels for all children to the reference 
level. The number of children that contributed to each analysis is listed for each 

exposure. Labels on the y axis indicate the level of exposure used to estimate 
the ATE (blue) or the percentage of the population shifted to the lowest-risk 
level to estimate the PIE (black). Cohort-specific estimates were adjusted for  
all measured confounders using ensemble machine learning and targeted 
maximum-likelihood estimation (TMLE) and then pooled using random effects 
(Methods). Estimates are shown only for exposures measured in at least four 
cohorts. Max. maximum; Q, quartile; SGA, small for gestational age.
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measures of ponderal growth faltering being among the strongest 
predictors (Fig. 5c).

Finally, we estimated hazard ratios of all-cause mortality by 2 years 
of age associated with measures of growth faltering in 8 cohorts 
that reported ages of death, which included 1,689 child deaths by 
24 months of age (2.4% of children in the 8 cohorts). The included 
cohorts were highly monitored, and in most cohorts mortality rates 
were lower than in the general population (Extended Data Table 4). 
Additionally, the data included only deaths that occurred after 
anthropometry measurements, so many neonatal deaths may have 
been excluded, and lacked data on cause-specific mortality, so some 
deaths may have occurred from causes unrelated to growth falter-
ing. Despite these caveats, growth faltering increased the hazard of 
death before 24 months for all measures except stunting alone, with 
the strongest associations observed for severe wasting and stunting 
(hazard ratio = 8.7, 95% confidence interval: 4.7 to 16.4) and severe 
underweight alone (hazard ratio = 4.2, 95% confidence interval: 2.0 
to 8.6) (Fig. 5d).

Discussion
This synthesis of cohorts during the first 1,000 days of life from LMICs 
has provided new insights into the principal causes and near-term con-
sequences of growth faltering. Our use of a semi-parametric method to 
adjust for potential confounding provided a harmonized approach to 
estimate PIEs that spanned child-, parent- and household-level expo-
sures with unprecedented breadth (30 exposures) and scale (662,763 
anthropometric measurements from 33 cohorts). Our focus on the 
effects of shifting population-level exposures on continuous measures 
of growth faltering reflects a growing appreciation that growth faltering 
is a continuous process39. The results show that children in LMICs stand 
to benefit from interventions to support optimal growth during the 
first 1,000 days of life. Combining information from high-resolution, 
longitudinal cohorts enabled us to study critically important  
outcomes—such as persistent wasting and mortality—that it would  
not be not possible to study in smaller studies or in cross-sectional 
data, as well as to examine risk factors by age.
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Fig. 3 | PIEs and mean differences for child, parental and household 
exposures on WLZ at 24 months of age. Adjusted mean differences in ATEs 
(blue) between the labelled higher-risk level of exposures and the reference 
level (grey dot on vertical line), and PIEs (black), the estimated difference in 
WLZ after shifting exposure levels for all children to the reference level. The 
number of children that contributed to each analysis is listed for each exposure. 

Labels on the y axis indicate the level of exposure used to estimate the ATE (blue) 
or the percentage of the population shifted to the lowest-risk level to estimate 
the PIE (black). Cohort-specific estimates were adjusted for all measured 
confounders using ensemble machine learning and targeted maximum- 
likelihood estimation (TMLE) and then pooled using random effects (Methods). 
Estimates are shown only for exposures measured in at least four cohorts.
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Maternal, prenatal and at-birth characteristics were the strongest 
predictors of growth faltering across regions in LMICs. Our results 
underscore prenatal exposures as key determinants of child growth fal-
tering40. The limited effect of exclusive or predominant breastfeeding 
during the first 6 months of life (+0.01 LAZ) aligns with a meta-analysis 
of breastfeeding promotion25, but our finding of a limited effect of 
reducing diarrhea during the first 24 months (+0.05 LAZ) contrasts 
with some observational studies41,42. Many predictors such as child sex, 

birth order and season are not modifiable but could guide interventions 
that mitigate their effects, such as seasonally targeted supplementation 
or enhanced monitoring among boys. Strong associations between 
maternal anthropometry and early growth faltering highlight the role 
of intergenerational transfer of growth deficits between mothers and 
their children30. Shifting several key population exposures (maternal 
height or BMI, education and birth length) to their observed low-risk 
level would improve LAZ by up to 0.40z and WLZ by up to 0.15z in target 

Strati�ed by maternal height

–2.4

–2.2

–2.0

–1.8

–1.6

–1.4

–1.2

–1.0

–0.8

–0.6

–2.4

–2.2

–2.0

–1.8

–1.6

–1.4

–1.2

–1.0

–0.8

–0.6

0 4 8 12 16 20 24

Child age (months)

M
ea

n 
LA

Z

Maternal
height

≥155 cm
(150–155) cm
<150 cm –1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

0 4 8 12 16 20 24

Child age (months)

Stunting incidence Wasting incidence

0 4 8 12 16 20 24

Child age (months)

0 4 8 12 16 20 24

Child age (months)
M

ea
n 

W
LZ

Maternal
height

≥155 cm
(150–155) cm
<150 cm

a Strati�ed by maternal BMI

M
ea

n 
LA

Z

Maternal
BMI

≥24 kg m–2

(20–24) kg m–2

<20 kg m–2

M
ea

n 
W

LZ

Maternal
BMI

≥24 kg m–2

(20–24) kg m–2

<20 kg m–2

b

0−6 months 6−24 months 0−6 months 6−24 months

B
irt

h 
or

d
er

G
es

ta
tio

na
l

ag
e 

at
 b

irt
h

H
H

 fo
od

se
cu

rit
y

H
H

 w
ea

lth
M

ot
he

r’s
he

ig
ht

M
ot

he
r’s

ed
uc

at
io

n

0.5 0.8 1.0 1.2 1.5 2.0 0.5 0.8 1.0 1.2 1.5 2.0 0.5 0.8 1.0 1.2 1.5 2.0 0.5 0.8 1.0 1.2 1.5 2.0

3+

2

1

Preterm

Early term

Full or
late term

Food
insecure

Mildly food
insecure

Food
secure

Q1

Q2

Q3

Q4

Low

Medium

High

<150 cm

≥150 cm

Adjusted cumulative incidence ratio

E
xp

os
ur

e 
le

ve
l

c

HH wealth: Q1 vs Q4 Mother’s education: low vs high Sex: boys vs girls

0.8 1.0 1.5 2.0 3.0 0.8 1.0 1.5 2.0 3.0 0.8 1.0 1.5 2.0 3.0

Stunted

Severely stunted

Wasted

Severely wasted

Persistently wasted

Adjusted cumulative incidence ratio comparing highest to lowest risk strata

C
um

ul
at

iv
e 

fr
om

b
irt

h 
to

 2
4 

m
on

th
s

d

Fig. 4 | Effect of key exposures on the trajectories, timing and severity  
of child growth faltering. a, Child LAZ and WLZ trajectories stratified by 
maternal height (n = 413,921 measurements, 65,061 children, 20 studies).  
b, Child LAZ and WLZ stratified by maternal BMI (n = 373,382 measurements, 
61,933 children, 17 studies). Growth trajectories stratified by all other 
examined risk factors are available in Supplementary Note 5. c, Associations 

between key exposures and cumulative wasting incidence, stratified by  
age of the child during wasting incidence. Grey dots indicate cohort-specific 
estimates. d, Associations between key exposures and growth faltering of 
different severities. Cumulative incidence ratios compare the highest and 
lowest-risk categories of each exposure, as indicated above each graph. Grey 
dots indicate cohort-specific estimates.
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populations and could be expected to prevent 8% to 32% of incident 
stunting and wasting (Figs. 2 and 3 and Extended Data Figs. 6 and 7). 
Maternal anthropometric status was highly influential on child birth 
size, but the parallel drop in postnatal z-scores among children born 
to different maternal phenotypes was much larger than differences at 
birth, indicating that growth trajectories were not fully ‘programmed’ 
at birth (Fig. 4a,b). This is in accordance with the transition from a 
placental to oral nutrient supply at birth.

There are caveats to these analyses. The PIEs were based on expo-
sure distributions in the 33 cohorts, which were not necessarily 
representative of the general population in each setting. The use 
of external exposure distributions from population-based surveys 
would be difficult because many key exposures that we considered, 
such as at-birth characteristics or longitudinal diarrhea prevalence, 
are not measured in such surveys. In some cases, detailed exposure 
measurements such as longitudinal breastfeeding or diarrhea his-
tory were coarsened to simpler measures to harmonize definitions 
across cohorts, potentially attenuating their association with growth 
faltering. Other key exposures such as dietary diversity, nutrient  
consumption, micronutrient status, maternal and child morbidity 
indicators, pathogen-specific infections and sub-clinical inflamma-
tion and intestinal dysfunction were measured in only a few cohorts, 
and were therefore not included43,44. The absence of these exposures 
in the analysis, some of which have been found to be important within 
individual contributed cohorts44,45, means that our results emphasize 
exposures that were more commonly collected, but probably exclude 
some additional causes of growth faltering. A final caveat is that  
we studied consequences up to 24 months of age—the primary age 
range of contributed ki cohort studies—and thus did not consider 
effects on longer-term outcomes. Several studies have suggested that 

puberty could be another potential window for intervention to enhance 
catch-up growth46. Improving girls’ stature at any point up to the end 
of puberty could help to reduce intergenerational transfer of growth 
faltering by increasing maternal height47, which could in turn improve 
outcomes among their children (Figs. 2, 3 and 4a,b).

The countries that have shown the greatest reductions in stunting 
have undergone improvements in maternal education, nutrition and 
maternal and newborn healthcare and reductions in the number of 
pregnancies48, reinforcing the importance of interventions from con-
ception to 1 year of age, when fetal and infant growth velocity is high 
and energy expenditure for growth and development is about 50% 
above adult values49 (adjusted for fat-free mass). A stronger focus on 
prenatal interventions should not distract from renewed efforts on 
postnatal prevention. The prenatal and postnatal growth faltering 
that we observed reinforce the need for sustained support of moth-
ers and children throughout the first 1,000 days of life. Efficacy trials 
that deliver prenatal nutrition supplements to pregnant women50–53, 
therapies to reduce infection and inflammation in pregnant women54–58 
and nutritional supplements to children aged 6–24 months11,12 have 
reduced child growth faltering but have fallen short of completely 
preventing it. Our results suggest that the next generation of preven-
tive interventions should focus on the early period of a child’s first 
1,000 days—throughout the period from pre-conception to 24 months 
of age—because maternal status and at-birth characteristics are key 
determinants of growth faltering during the first 24 months of life. 
Halting the cycle of growth faltering early should reduce the risk of 
severe consequences, including mortality, during this formative win-
dow of child development. Long-term investments and patience may 
be required, as it will take decades to eliminate the intergenerational 
factors that limit maternal height.
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Fig. 5 | Growth faltering in early life increases risk of more severe growth 
faltering and mortality. a, Adjusted differences in linear growth velocity 
across three-month age bands by quartile of WLZ in the preceding three 
months. The reference group (horizontal line) comprises children in the first 
quartile of WLZ in each age stratum. Far right, pooled estimates unstratified  
by child age. Velocity was calculated from the closest measurements within 
14 days of the start and end of the age period. b, Relative risk of stunting onset 
between 6 and 24 months of age among children who experienced measures  
of early wasting before 6 months of age compared with children who did not.  
Grey dots indicate cohort-specific estimates. c, Association between 
cumulative incidence of mutually exclusive definitions of growth faltering 

before 6 months of age and persistent wasting from 6 to 24 months of age  
(33 cohorts, 6,046 cases and 68,645 children) or concurrent wasting and 
stunting at 18 months of age (31 cohorts, 1,447 cases, and 22,565 children).  
The reference group (vertical dashed line) comprises children with no measure 
of growth failure. Growth faltering definitions are sorted by estimates in d.  
d, Hazard ratios between mutually exclusive definitions of growth faltering and 
mortality before 24 months of age (8 cohorts, 1,689 deaths with known age of 
death, and 63,812 children). The reference group (vertical dashed line) comprises 
children with no measure of growth failure. Grey dots indicate cohort-specific 
estimates. Mod, moderately; sev, severely.
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Methods

Study designs and inclusion criteria
We included all longitudinal observational studies and randomized tri-
als available through the ki project on 1 April 2018 that met 5 inclusion 
criteria: (1) they were conducted in LMICs; (2) they enroled children 
between birth and 24 months of age and measured their length and 
weight repeatedly over time; (3) they did not restrict enrolment to 
acutely ill children; (4) they enroled children with a median birth year 
after 1990; and (5) they collected anthropometric status measure-
ments at least quarterly. We included all children under 24 months of 
age, assuming months were 30.4167 days, and we considered a child’s 
first measure recorded by 7 days after birth as their anthropometry at 
birth. Four additional studies with high-quality mortality information 
that measured children at least every 6 months were included in the 
mortality analyses (The Burkina Faso Zinc trial, The Vitamin-A trial in 
India, and the iLiNS-DOSE and iLiNS-DYAD-M trials in Malawi).

Statistical analysis
Analyses were conducted in R version 4.0.5.

Outcome definitions
We calculated LAZ, WAZ and WLZ using World Health Organization 
(WHO) 2006 growth standards59. We used the medians of triplicate 
measurements of heights and weights of children from pre-2006 
cohorts to re-calculate z-scores to the 2006 standard. We dropped 1,190 
(0.2%) unrealistic measurements of LAZ (>+6 or <–6z), 1,330 (0.2%) 
measurements of WAZ (>5 or <–6z), and 1,670 (0.3%) measurements of 
WLZ (>+5 or <–5z), consistent with WHO recommendations60. Further 
details on cohort inclusion and assessment of anthropometry meas-
urement quality are provided in the accompanying Article20. We also 
calculated the difference in linear and ponderal growth velocities over 
three-month periods. We calculated the change in LAZ, WAZ, length 
in cm and weight in kg within three-month age intervals, including 
measurements within a two-week window around each age in months 
to account for variation in the age at each length measurement.

We defined stunting as LAZ <–2, severe stunting as LAZ <–3, under-
weight as WAZ <–2, severe underweight as WAZ <–3, wasting as  
WLZ <–2, severe wasting as WLZ <–3, and concurrent stunting and wast-
ing as LAZ <–2 and WLZ <–2. Children with ≥50% of WLZ measurements 
<–2 and at least 4 measurements over a defined age range were classified 
as persistently wasted (for example, birth to 24 months, median interval 
between measurements: 80 days, interquartile range: 62–93). Children 
were assumed to never recover from stunting episodes, but children 
were classified as recovered from wasting episodes (and at risk for a new 
episode of wasting) if their measured WLZ was at or above –2 for at least 
60 days (details in the accompanying Article21). Stunting reversal was 
defined as children stunted under 3 months whose final 2 measurements 
before 24 months were non-stunted. Child mortality was all-cause and 
was restricted to children who died after birth and before age 24 months. 
For child morbidity outcomes (Fig. 4c), concurrent wasting and stunt-
ing prevalences at 18 months of age were estimated using the anthro-
pometry measurement taken closest to 18 months of age, and within 
17–19 months of age, while persistent wasting was estimated from child 
measurements between 6 and 24 months of age. We chose 18 months 
to calculate concurrent wasting and stunting because it maximized the 
number of child observations at later ages when concurrent wasting and 
stunting was most prevalent, and used ages of 6–24 months to define 
persistent wasting to maximize the number of anthropometry measure-
ments taken after the early growth faltering exposure measurements21.

Estimating relationships between child, parental and household 
exposures and measures of growth faltering
Exposure definitions. We selected the exposures of interest based on 
variables present in multiple cohorts that met our inclusion criteria, 

were found to be important predictors of stunting and wasting in prior 
literature and could be harmonized across cohorts for pooled analyses. 
Extended Data Tables 2 and 3 list all exposures included in the analysis, 
as well as exposure categories used across cohorts, and the total num-
ber of children in each category. For parental education and asset-based 
household wealth, we categorized to levels relative to the distribution 
within each cohort. Continuous biological characteristics (gestational 
age, birth weight, birth height, parental weight, parental height and 
parental age) were classified based on a common distribution, pooling 
data across cohorts. Our rationale was that the meaning of socioeco-
nomic variables is culturally context-dependent, whereas biological 
variables should have a more universal meaning.

Risk set definition. For exposures that occur or exist before birth, we 
considered the child at risk of incident outcomes at birth. Therefore, 
we classified children who were born stunted (or wasted) as incident 
episodes of stunting (or wasting) when estimating the relationship 
between household characteristics, paternal characteristics, and 
child characteristics such as gestational age, sex, birth order and birth 
location.

For postnatal exposures (for example, breastfeeding practices, water, 
sanitation and hygiene characteristics and birth weight), we excluded 
episodes of stunting or wasting that occurred at birth. Children who 
were born wasted could enter the risk set for postnatal exposures if 
they recovered from wasting during the study period21. This restric-
tion ensured that for postnatal exposures, the analysis only included 
postnatal, incident episodes. Children born or enroled wasted were 
included in the risk set for the outcome of recovery from wasting within 
90 days for all exposures (prenatal and postnatal).

Estimating differences in outcomes across categories of expo-
sures. We estimated measures of association between exposures and 
growth faltering outcomes by comparing outcomes across categories 
of exposures in four ways:

Mean difference of the comparison levels of the exposure on LAZ, 
WLZ at birth, 6 months, and 24 months. The z-scores used were the 
measures taken closest to the age of interest and within 1 month of the 
age of interest, except for z-scores at birth which only included a child’s 
first measure recorded by 7 days after birth. We also calculated mean 
differences in LAZ, WAZ, weight and length velocities.

Prevalence ratios between comparison levels of the exposure, com-
pared to the reference level at birth, 6 months, and 24 months. Preva-
lence was estimated using anthropometry measurements closest to 
the age of interest and within one month of the age of interest, except 
for prevalence at birth which only included measures taken on the 
day of birth.

Cumulative incidence ratios (CIRs) between comparison levels of 
the exposure, compared to the reference level, for the incident onset 
of outcomes between birth and 24 months, 6 and 24 months, and birth 
and 6 months.

Mean z-scores by continuous age, stratified by levels of exposures 
from birth to 24 months were fit within individual cohorts using cubic 
splines with the bandwidth chosen to minimize the median Akaike 
information criterion across cohorts61. We estimated splines sepa-
rately for each exposure category. We pooled spline curves across 
cohorts into a single prediction, offset by mean z-scores at one year, 
using random-effects models62.

Estimating population-attributable parameters. We estimated three 
measures of the population-level effect of exposures on growth falter-
ing outcomes:
(1) Population intervention effect (PIE), a generalization of 

population-attributable risk, was defined as the change in popula-
tion mean z-score if the entire population’s exposure was set to an 
ideal reference level. For each exposure, we chose reference levels 
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based on prior literature or as the category with the highest mean 
LAZ or WLZ across cohorts.

(2) Population-attributable fraction (PAF) was defined as the propor-
tional reduction in cumulative incidence if the entire population’s 
exposure was set to an ideal low-risk reference level. We estimated 
the PAF for the prevalence of stunting and wasting at birth, 6, and 
24 months and cumulative incidence of stunting and wasting from 
birth to 24 months, 6 to 24 months, and from birth to 6 months. For 
each exposure, we chose the reference level as the category with the 
lowest risk of stunting or wasting.

(3) Optimal individualized intervention impact. We used a variable 
importance measure methodology to estimate the impact of an 
optimal individualized intervention on an exposure63. The optimal 
intervention on an exposure was determined through estimating 
individualized treatment regimes, which give an individual-specific 
rule for the lowest-risk level of exposure based on individuals’ 
measured covariates. The covariates used to estimate the low-risk 
level are the same as those used for the adjustment documented 
in section 6 below. The impact of the optimal individualized inter-
vention is derived from the variable importance measure, which 
is the predicted change in the population mean outcome from 
the observed outcome if every child’s exposure was shifted to the  
optimal level. This differs from the PIE and PAF parameters in that 
we did not specify the reference level; moreover, the reference level 
could vary across participants.

PIE and PAF parameters assume a causal relationship between expo-
sure and outcome. For some exposures, we considered attributable 
effects to have a pragmatic interpretation — they represent a summary 
estimate of relative importance that combines the exposure’s strength 
of association and its prevalence in the population64. Comparisons 
between optimal intervention estimates and PIE estimates are shown 
in Extended Data Fig. 11.

Estimation approach
Estimation of cohort-specific effects. For each exposure, we used the 
directed acyclic graph framework to identify potential confounders 
from the broader set of exposures used in the analysis65. We did not 
adjust for characteristics that were assumed to be intermediate on the 
causal path between any exposure and the outcome, because while 
controlling for mediators may help adjust for unmeasured confound-
ers in some conditions, it can also lead to collider bias66,67. Detailed lists 
of adjustment covariates used for each analysis are available in Sup-
plementary Note 1. Confounders were not measured in every cohort, 
so there could be residual confounding in cohort-specific estimates.

Analyses used a complete-case approach that only included children 
with non-missing exposure and outcome measurements. For additional 
covariates in adjusted analyses, we used the following approach to 
impute missing covariate values68. Within each cohort, if there was 
<50% missingness in a covariate, we imputed missing measurements 
as the median (continuous variables) or mode (categorical variables) 
among all children, and analyses included an indicator variable for 
missingness in the adjustment set. Covariates with >50% missingness 
were excluded from the potential adjustment set. When calculating the 
median for imputation, we used children as independent units rather 
than measurements so that children with more frequent measurements 
were not over-represented.

Unadjusted prevalence ratios and CIRs between the reference level 
of each exposure and comparison levels were estimated using logistic 
regressions69. Unadjusted mean differences for continuous outcomes 
were estimated using linear regressions.

To flexibly adjust for potential confounders and reduce the risk of 
model misspecification, we estimated adjusted prevalence ratios, CIRs, 
and mean differences using TMLE, a two-stage estimation strategy 
that incorporates state-of-the-art machine learning algorithms (super 

learner) while still providing valid statistical inference23,70. The effects of 
covariate adjustment on estimates compared to unadjusted estimates 
is shown in Extended Data Fig. 12, and E-values, summary measures 
of the strength of unmeasured confounding needed to explain away 
observed significant associations71, are plotted in Extended Data Fig. 13. 
The super learner is an ensemble machine learning method that uses 
cross-validation to select a weighted combination of predictions from 
a library of algorithms72. We included in the library simple means, gen-
eralized linear models, LASSO penalized regressions73, generalized 
additive models74, and gradient boosting machines75. The super learner 
was fit to maximize the tenfold cross-validated area under the receiver 
operator curve (AUC) for binomial outcomes, and minimize the tenfold 
cross-validated mean-squared error (MSE) for continuous outcomes. 
That is, the super learner was fit using nine-tenths of the data, while 
the AUC/MSE was calculated on the remaining one-tenth of the data. 
Each fold of the data was held out in turn and the cross-validated per-
formance measure was calculated as the average of the performance 
measures across the ten folds. This approach is practically appealing 
and robust in finite samples, since this cross-validation procedure 
uses unseen sample data to measure the estimator’s performance. 
Also, the super learner is asymptotically optimal in the sense that it is 
guaranteed to outperform the best possible algorithm included in the 
library as sample size grows. The initial estimator obtained via super 
learner is subsequently updated to yield an efficient double-robust 
semi-parametric substitution estimator of the parameter of interest23. 
To estimate the R2 of models including multiple exposures, we fit super 
learner models, without the targeted learning step, and within each 
cohort measuring the exposures. We then pooled cohort-specific R2 
estimates using fixed-effects models.

We estimated influence curve-based, clustered standard errors to 
account for repeated measures in the analyses of recovery from wast-
ing or progression to severe wasting. We assumed that the children 
were the independent units of analysis unless the original study had a 
clustered design, in which case the unit of independence in the original 
study were used as the unit of clustering. We used clusters as the unit 
of independence for the iLiNS-Zinc, Jivita-3, Jivita-4, Probit, and SAS 
Complementary Feeding trials. We estimated 95% confidence intervals 
for incidence using the normal approximation.

Mortality analyses estimated hazard ratios using Cox proportional 
hazards models with a child’s age in days as the timescale, adjust-
ing for potential confounders, with the growth faltering exposure  
status updated at each follow-up that preceded death or censoring 
by 24 months of age. Growth faltering exposures included moderate 
(between –2z and –3z) wasting, stunting, and underweight, severe 
(below –3z) wasting, stunting, and underweight, and combinations 
of concurrent wasting, stunting, and underweight. Growth faltering 
categories were mutually exclusive within moderate or severe clas-
sifications, so children were classified as only wasted, only stunted, 
or only underweight, or some combination of these categories. We 
estimated the hazard ratio associated with different anthropometric 
measures of child growth failure in separate analyses, considering each 
as an exposure in turn with the reference group defined as children 
without the deficit. For children who did not die, we defined their cen-
soring date as the administrative end of follow-up in their cohort, or age 
24 months (730 days), whichever occurred first. Because mortality was 
a rare outcome, estimates are adjusted only for child sex and trial treat-
ment arm. To avoid reverse causality, we did not include child growth 
measures occurring within 7 days of death. Extended Data Table 4 lists 
the cohorts used in the mortality analysis, the number of deaths in 
each cohort, and a comparison to country-level infant mortality rates.

Data sparsity. We did not estimate relative risks between a higher 
level of exposure and the reference group if there were 5 or fewer 
cases in either stratum. In such cases, we still estimated relative 
risks between other exposure strata and the reference strata if those 



strata were not sparse. For rare outcomes, we only included one 
covariate for every 10 observations in the sparsest combination of 
the exposure and outcome, choosing covariates based on ranked  
deviance ratios.

Pooling parameters
We pooled adjusted estimates from individual cohorts using 
random-effects models, fit using restricted maximum-likelihood 
estimation. The pooling methods are detailed in the accompanying 
Article20. All parameters were pooled directly using the cohort-specific 
estimates of the same parameter, except for population-attributable 
fractions. Pooled PAFs were calculated from random-effects pooled 
population intervention effects (PIEs), and pooled outcome prevalence 
in the population using the following formulas76:

PAF =
PIE

Outcome prevalence
× 100 (1)

(2)PAF 95% confidence interval =
PIE 95% confidence interval

Outcome prevalence
× 100

For PAFs of exposures on the cumulative incidence of wasting and 
stunting, the pooled cumulative incidence was substituted for the out-
come prevalence in the above equations. We used this method instead 
of direct pooling of PAFs because unlike PAFs, PIEs are unbounded with 
symmetrical confidence intervals.

For Fig. 4a,b, mean trajectories estimated using cubic splines in indi-
vidual studies and then curves were pooled using random effects62. 
Curves estimated from all anthropometry measurements of children 
taken from birth to 24 months of age within studies that measured the 
measure of maternal anthropometry.

Sensitivity analyses
We examined covariate missingness by study and assessed the effect 
of covariate missingness by comparing results with median/mode 
missingness imputation to a complete-case analysis (Supplementary 
Note 2). We compared estimates pooled using random-effects models, 
which are more conservative in the presence of heterogeneity across 
studies, with estimates pooled using fixed effects (Supplementary 
Note 3), and we compared adjusted estimates with estimates unad-
justed for potential confounders (Supplementary Note 4). We also 
plotted splines of child growth trajectories, stratified by exposure 
levels, for all exposures in Supplementary Note 5. We re-estimated the 
attributable differences of exposures on WLZ and LAZ at 24 months, 
dropping the PROBIT trial, the only European study (Supplementary 
Note 6). Point estimates and confidence intervals from all age, exposure 
and growth outcome combinations (as presented in Extended Data 
Fig. 2) are plotted in Supplementary Note 7.

Inclusion and ethics
This study analysed data that was collected in 15 LMICs that were 
assembled by the Bill & Melinda Gates Foundation Ki initiative. 
The datasets are owned by the original investigators that collected  
the data. Members of the Ki Child Growth Consortium were nominated 
by each study’s leadership team to be representative of the country and 
study teams that originally collected the data. Consortium members 
reviewed their cohort’s data within the i database to ensure external and 
internal consistency of cohort-level estimates. Consortium members 
provided significant input on the statistical analysis plan, interpreta-
tion of results and manuscript writing. Per the request of consortium 
members, the manuscript includes cohort-level and regional results 
to maximize the utility of the study findings for local investigators 
and public health agencies. Analysis code has been published with the 
manuscript to promote transparency and extensions of our research 
by local and global investigators.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data that support the findings of this analysis are a combination of 
data from multiple principal investigators and institutions. The data 
are available, upon reasonable request, to the requestor by contacting 
the individual principal investigators. The individuals and the contact 
information to help the requestor obtain access to the data are listed 
at https://www.synapse.org/#!Synapse:syn51570682/wiki/. The analy-
sis dataset is at https://www.synapse.org/#!Synapse:syn51570682/ 
datasets/. This dataset is access controlled and not available publicly 
for privacy reasons.

Code availability
Code used in the study has been deposited at Zenodo: https://zenodo.
org/record/793781177.
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Extended Data Fig. 1 | Example forest plot of cohort-specific and pooled 
parameter estimates. Cohort-specific estimates of the cumulative incidence 
ratio of stunting are plotted on each row, comparing the risk of any stunting 
from birth to 24 months among boys compared to a reference level of girls. Below 
the solid horizontal line are region-specific pooled measures of association, 

pooled using random-effects models. Below the dashed line are overall pooled 
measures of association, comparing pooling using random or fixed effects 
models. The primary results reported throughout the manuscript are overall 
(not region stratified) estimates pooled using random effects models.



Extended Data Fig. 2 | Heatmap of significance and direction across 
exposure-outcome combinations. The heatmap shows the significance  
and direction of estimates through the cell colors, separated across primary 
outcomes by child age. Red and orange cells are exposures where the outcome 
is estimated have an increased probability of occurring compared to the 
reference level (harmful exposures except for recovery outcomes), while blue 
and green cells are exposures associated with a decreased probability of the 
outcome (protective exposures except for recovery outcomes). The outcomes 

are labeled at the top of the columns, with each set of three columns the set of 
three ages analyzed for that outcome. Each row is a level of an exposure variable, 
with reference levels excluded. Rows are sorted top to bottom by increasing 
average p-value. Grey cells denote comparisons that were not estimated or 
could not be estimated because of data sparsity in the exposure-outcome 
combination. All point estimates and confidence intervals for exposure- 
outcome pairs with P-values plotted in this figure are viewable online in 
Supplimentary Note 7.
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Extended Data Fig. 3 | Age-stratified population intervention effects in 
length-for-age Z-scores. Exposures, rank ordered by population intervention 
effect on child LAZ, stratified by the age of the child at the time of anthropometry 
measurement. The population intervention effect is the expected difference in 
mean Z-score if all children had the reference level of the exposure rather than 

the observed exposure distribution. Reference levels are printed in the 
exposure label. Cohort-specific estimates were adjusted for all measured 
confounders using ensemble machine learning and TMLE, and then pooled 
using random effects (Methods). Estimates are shown only for exposures 
measured in at least 4 cohorts.



Extended Data Fig. 4 | Age-stratified population intervention effects  
in weight-for-length Z-scores. Exposures, rank ordered by population 
intervention effects on child WLZ, stratified by the age of the child at the time 
of anthropometry measurement. The population intervention effect is the 
expected difference in population mean Z-score if all children had the reference 

level of the exposure rather than the observed distribution. For all plots, 
reference levels are printed next to the name of the exposure. Cohort-specific 
estimates were adjusted for all measured confounders using ensemble 
machine learning and TMLE, and then pooled using random effects (Methods). 
Estimates are shown only for exposures measured in at least 4 cohorts.
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Extended Data Fig. 5 | Mediation of parental anthropometry effects by 
birth size on child Z-scores at 24 months. Mediating effect of adjusting for 
birth anthropometry and at-birth characteristics on the estimated Z-score 
differences between levels of parental anthropometry. Primary estimates were 
adjusted for all other measured exposures not on the causal pathway, while the 
mediation analysis estimates were additionally adjusted for birthweight, birth 
length, gestational age at birth, birth order, small-for-gestational age status, 
and home vs. hospital delivery. Only estimates from cohorts measuring at least 

3 of the 6 at-birth characteristics were used to estimate the pooled Z-score 
differences (n = 6 cohorts, 17,124 observations). Mediation estimates were 
slightly attenuated toward the null, and only in the case of maternal height and 
child WLZ were they statistically different from the primary analysis. These 
results imply that the causal pathway between parental anthropometry and 
growth faltering operates through its effect on birth size, but most of the effect 
is through other pathways.



Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Rank-ordered associations between child, parental, 
and household characteristics and adjusted relative risks or population 
attributable fractions of stunting by age 24 months. Blue points in the left 
panel show adjusted cumulative incidence ratios (CIRs) between higher-risk 
exposure levels and reference levels, and black points in the right panel show 
population attributable fractions (PAFs), the estimated proportion of the risk 
in the whole population that would be removed if the exposure were set to its 
indicated reference level. The number of children that contributed to each 
analysis is listed by exposure. The colored Y-axis label is either the level of 

exposure contrasted against the reference level to estimate the CIR, or the 
percent of the population shifted to the lowest-risk level to estimate the PAF. 
For at-birth exposures, at-birth stunting and wasting were excluded to focus on 
incidence of new (postnatal) cases, and for postnatal exposures (breastfeeding 
practice and diarrheal disease), the cumulative incidence of stunting from 6–24 
months was used. Cohort-specific estimates were adjusted for all measured 
confounders using ensemble machine learning and TMLE, and then pooled 
using random effects (Methods). Estimates are shown only for exposures 
measured in at least 4 studies.



Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Rank-ordered associations between child, parental, 
and household characteristics and adjusted relative risks or population 
attributable fractions of wasting by age 24 months. Blue points in the left 
panel show adjusted cumulative incidence ratios (CIRs) between higher-risk 
exposure levels and reference levels, and black points in the right panel show 
population attributable fractions (PAFs), the estimated proportion of the risk 
in the whole population that would be removed if the exposure were set to its 
indicated reference level. The number of children that contributed to each 
analysis is listed by exposure. The colored Y-axis label is either the level of 
exposure contrasted against the reference level to estimate the CIR, or the 

percent of the population shifted to the lowest-risk level to estimate the PAF. 
For at-birth exposures, at-birth stunting and wasting were excluded, and for 
postnatal exposures (breastfeeding practice and diarrheal disease), the 
cumulative incidence of wasting from 6-24 months was used. Cohort-specific 
estimates were adjusted for all measured confounders using ensemble machine 
learning and TMLE, and then pooled using random effects (Methods). Estimates 
are shown only for exposures measured in at least 4 studies. The PAF for diarrhea 
under 6 months was not calculable or plotted due to the unexpected CIR <1 for 
estimated higher diarrheal disease burden.



Extended Data Fig. 8 | Regionally-stratified population intervention effects 
for length-for-age Z-scores at age 24 months. Exposures, rank ordered by 
population intervention effect on child length-for-age z-score (LAZ) at age 
24 months, stratified by region. The population intervention effect is the 
expected difference in population mean Z-score if all children had the reference 

level of the exposure rather than the observed distribution. For all plots, 
reference levels are printed next to the name of the exposure. Cohort-specific 
estimates were adjusted for all measured confounders using ensemble machine 
learning and TMLE, and then pooled using random effects (Methods). Estimates 
are shown only for exposures measured in at least 4 cohorts.
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Extended Data Fig. 9 | Regionally-stratified population intervention 
effects for weight-for-length Z-scores at age 24 months. Exposures, rank 
ordered by population attributable difference on child weight-for-length 
z-score (WLZ) at age 24 months, stratified by region. The population 
intervention effect is the expected difference in population mean Z-score  
if all children had the reference level of the exposure rather than the observed 

distribution. For all plots, reference levels are printed next to the name of  
the exposure. Cohort-specific estimates were adjusted for all measured 
confounders using ensemble machine learning and TMLE, and then pooled 
using random effects (Methods). Estimates are shown only for exposures 
measured in at least 4 cohorts.



Extended Data Fig. 10 | Child growth trajectories stratified by birth order. 
(a) Child weight-for-length Z-score (WLZ) trajectories, stratified by categories 
of child birth order. (b) Child length-for-age Z-score (LAZ) trajectories, stratified 

by categories of child birth order. Details on the estimation of growth trajectories 
are in the Methods. Child growth trajectories stratified by categories of all risk 
factors are available in Supplimentary Note 5.
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Extended Data Fig. 11 | Comparing fixed-reference and optimal 
intervention estimates of the population intervention effect. Pooled 
population intervention effects on child LAZ and WHZ at 24 months, with the 
X-axis showing attributable differences using a fixed, and the Y-axis showing 
the optimal intervention attributable difference, where the level the exposure 
is shifted to can vary by child. Points are labeled with the specific risk factor. 

Estimates farther from the diagonal line have larger differences between  
the static and optimal intervention estimates. The optimal intervention 
attributable differences, which are not estimated with an a-priori specified 
low-risk reference level, were generally close to the static attributable 
differences, indicating that the chosen reference levels were the lowest-risk 
strata in most or all children.



Extended Data Fig. 12 | Difference between adjusted and unadjusted 
Z-score effects by number of selected adjustment variables. Points mark  
the difference in estimates unadjusted and adjusted estimates of the difference 
in average Z-scores between exposed and unexposed children across 33 
cohorts, 30 exposures and length-for-age and weight-for-length Z-score 
outcomes included in the analysis. Different cohorts measured different sets 
of exposures, and a different number of adjustment covariates were chosen for 

each cohort-specific estimate based on outcome sparsity, so cohort-specific 
estimates adjust for different covariates and numbers of covariates. The plot 
shows no systematic bias between unadjusted and adjusted estimates based  
on number of covariates chosen. The blue line shows the average difference 
between adjusted estimates from unadjusted estimates, fitted using a cubic 
spline.
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Extended Data Fig. 13 | Assessing sensitivity of estimates to unmeasured 
confounding using E-values. An E-value is the minimum strength of 
association in terms of relative risk that an unmeasured confounder would 
need to have with both the exposure and the outcome to explain away an 
estimated exposure–outcome association71. Orange points mark the E-values 
for the pooled estimates of relative risk for each exposure. Grey points are 

cohort-specific E-values for each exposure-outcome relationship. Non- 
significant pooled estimates have points plotted at 1.0. Orange points are 
median E-values among statistically significant estimates for each exposure.  
As an example, an unmeasured confounder would on average need to almost 
double the risk of both the exposure and the outcome to explain away observed 
significant associations for the birth length exposure.



Extended Data Table 1 | Summary of ki cohorts

Data are from refs. 78–113.
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Extended Data Table 2 | Exposure variable summaries and prior published evidence – part 1

All exposures included in the analysis, as well as the categories the exposures were classified into across all cohorts, categorization rules, the total number of children, the percentage of 
children in each category, select evidence from prior literature, and comparisons to our results. We selected the exposures of interest based on variables present in multiple cohorts that met 
our inclusion criteria, were found to be important determinants of stunting and wasting in prior literature, and could be harmonized across cohorts for pooled analyses. Where possible, we cite 
findings from recent randomized controlled trials and systematic reviews. All results from this manuscript referenced in this table are available in Supplimentary Note 7. *Bracketed codes at the 
end of each cell in the “Comparison to results in this analysis” indicate limitations to comparisons with previous evidence due to differences in: P = population, CA = child age, AV = adjustment 
variables used in the analysis, MOA = measure of association, SD = study design, EC = exposure classification. Data are from refs. 40,114–131.



Extended Data Table 3 | Exposure variable summaries and prior published evidence – part 2

All exposures included in the analysis, as well as the categories the exposures were classified into across all cohorts, categorization rules, the total number of children, the percentage of 
children in each category, select evidence from prior literature, and comparisons to our results. We selected the exposures of interest based on variables present in multiple cohorts that met 
our inclusion criteria, were found to be important determinants of stunting and wasting in prior literature, and could be harmonized across cohorts for pooled analyses. Where possible, we cite 
findings from recent randomized controlled trials and systematic reviews. All results from this manuscript referenced in this table are available in Supplimentary Note 7. *Bracketed codes at the 
end of each cell in the “Comparison to results in this analysis” indicate limitations to comparisons with previous evidence due to differences in: P = population, CA = child age, AV = adjustment 
variables used in the analysis, MOA = measure of association, SD = study design, EC = exposure classification. Data are from refs. 11,14,15,101,132–150.



Article
Extended Data Table 4 | ki cohort and country-level mortality rates

Study 0BCountry Number of 
deaths under 2

1BUnder 2 mortality 
rate in cohort (%)

2BInfant (Under 1)  mortality rate in 
cohort (%)

Infant (Under 1) mortality 
country rate (%, UNICEF)

Burkina 
Faso Zn

Burkina 
Faso

39 0.54 0.42 5.4

iLiNS-
DOSE

Malawi 53 2.74 1.92 3.1

iLiNS-
DYAD-M

Malawi 54 4.37 3.48 3.1

JiVitA-3 Bangladesh 934 3.41 2.85 2.6
JiVitA-4 Bangladesh 49 0.9 0.39 2.6
Keneba The 

Gambia
65 2.22 1.52 3.6

VITAMIN-
A

India 108 2.70 2.7 2.8

ZVITAMBO Zimbabwe 1113 7.89 6.57 3.8

Under 1-year country-specific mortality rate is from UNICEF (https://data.unicef.org/country), and is higher than the cohort-specific under 2-year mortality rate for all cohorts used in the  
mortality analysis.

https://data.unicef.org/country
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