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Studies of resilience of light-resonant nanoantennas in vacuum are extended to
consider the case of polymer embedding. This modifies the nanoantenna’s
lifetime and resonant laser pulse energy absorption. The effective resonance
wavelength is shortened, the peak momentum of resonantly oscillating electrons
in the nanorod is reduced by one-third, while the available lifespan of the
resonance condition remains the same. This response is expected to
strengthen the laser pulse induced nuclear fusion processes. Related
numerical simulations were performed using particle-in-cell method in a
simulation box of the size 0.223 μm3, treating the conduction electrons as
strongly coupled plasma. In the modeling the polymer background was added
with the experimentally measured refractive index of 1.53.
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1 Introduction

Recently laser induced fusion with simultaneous volume ignition, a spin-off from relativistic
heavy ion collisions, was proposed, where implanted nanoantennas regulated and amplified the
light absorption in the fusion target. NAnoPlasmonic Laser Inertial Fusion Experiments
(NAPLIFE) [1] is an improved way to achieve laser driven fusion in a non-thermal,
collider configuration to avoid instabilities during ignition [2–4]. Targets structured at the
nano-scale such as the clusters gas, the nanowire, and the nanohole are also used in laser
induced fusionmethods as targets [5–8]. It is based on simultaneous (or “time-like”) ignition [9,
10], with enhanced energy absorption with the help of nanoantennas implanted into the target
material [11]. This should prevent the development of the mechanical Rayleigh-Taylor
instability. Furthermore, the nuclear burning should not propagate from a central hot spot
to the outside edge as the ignition is simultaneous in the whole volume.
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Non-equilibrium and linear colliding configuration have been
introduced already [12, 13]. Here we study the idea of layered flat
target fuel with embedded nanorod antennas, that regulate laser light
absorption to enforce simultaneous ignition.We plan a seven-layer flat
target with layer-dependent nanorod densities [14–16]. In order to
prepare such a layered target, the ignition fuel (e.g., deuterium, D,
tritium, T, or other nuclei for fusion) are embedded into a hard thin
polymer material of seven, 3 μm thick layers. These polymers are
Urethane Dimethacrylate (UDMA) and Triethylene glycol
dimethacrylate (TEGDMA) in (3:1) mass ratio [17, 18]. The
UDMA-TEGDMA copolymer molecule contains 470 nuclei, 38 of
them are Hydrogen. One can also use deuterized UDMA, where some
of the Hydrogens are replaced by Deuterium atoms.

In the present theoretical model analysis we use the EPOCH
kinetic model with Particle in Cell (PIC) method and the COMSOL
Multiphysics model using the Finite Element Method (FEM), to solve
the coupled Maxwell and Hydrodynamic equations.

2 Dynamics of the light-resonance in the
nanorod

When a resonating nanoparticle of a size related to the effective
wavelength of light is illuminated, a localised surface plasmon (LSP) is
created. When the coherently oscillating electric field irradiates the
metallic nanoparticle it causes the conduction electrons to oscillate
also. The Coulomb attraction between electrons and nuclei produces a
restoring force when the electron cloud is moved from its initial
location. The electron cloud oscillates due to this force. The effective
electron mass, the size and form of the charge distribution, and the
electron density all contribute to the oscillation frequency. The LSP
has two key effects: it dramatically increases electric fields near the
nanoparticle’s surface and it increases optical absorption at the
plasmon resonance frequency. The geometry of the nanoparticle
can also be used to adjust surface plasmon resonance [19, 20].

A recent kinetic theoretical study analyzed the resilience of
nanorod antennas under a short laser pulse irradiation in vacuum
[21]. Now we extend these studies to nanorod antennas embedded
into the UDMA-TEGDMA copolymer. Here we consider the
refractive index of UDMA-TEGDMA (n = 1.53) [18], which
slows down the propagation of light. The short laser pulse is
chosen to have a length needed to propagate across the target of 7 ·
3 μm = 21 μm thickness. The nanorods are orthogonal to the
direction of laser irradiation in this model study. The
conduction electrons show behavior of strongly coupled plasma
[22]. The gold antennas are smaller than the half wavelength of the
irradiated light. At optical frequencies the classical ideal half-
wavelength dipole antenna scaling of rod with length L = λ/2
breaks down.

Here instead an effective wavelength needs to be considered [22].
When the nanorods are embedded into a surrounding medium
different from vacuum the effective wavelength scales as follows:
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where ε∞ = 11 is the dielectric function in the infinite frequency limit [23]
and λp = 138 nm is the plasma wavelength for gold. The propagation
velocity of light inside themedium is reduced to cs � c/
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This is a good motivation for using PIC methods for studying this
behavior. We used similar principles as described in [21], using the
EPOCH computing package [24–26]. We considered nanorod antennas
with partly ionised gold atoms with three conducting electrons per atom
due to the extreme external field strength.

Initially electrons in the λeff/2 = 85 nm [15] nanorod antenna follow
the phase of the laser irradiation with t = 2.65 fs period. With time
electrons diffuse out of the nanorod, mainly at its two ends (Figure 1). The
potential wall to UDMA keeping the electrons in the nanorod is
apparently smaller than in the case of surrounding vacuum [21].

Simulation studies using the COMSOL Multi-physics Finite
Element Method (FEM) package with many parameters found

FIGURE 1
(color online) Cross section of the 25 nm (diameter) × 85 nm
nanorod showing number density of electrons at the tips, leaving the
nanorod at different times t, half of the light wave time period apart. The
number of electron marker-particles inside the simulation box will
decrease with a significant amount by the end of simulation at 120 fs.
Light travels from left to right in the x direction, the polarization of light is
aligned with the nanorod’s orientation in y direction.

FIGURE 2
(color online)Weconsider a laser pulseof intensity I=4·1015 W/cm2 and
duration of 106 fs. Here we show the time dependence of the total polarity
directed momentum of the conducting electrons in the nanorod. The
nanorod is in surrounding UDMA-TEGDMA copolymer (black line) and
in vacuum (blue line). The UDMA-TEGDMA copolymer decreases the
momentum of the emitted (as well as the number of electrons “spilled” out
during the process shown by the right axes of the figure) considerably
compared to the emission to vacuum. Right axis on the figure shows the
number of marker particles still present in the simulation box.
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absorption coefficient between 256 cm−1 and 1,142 cm−1 for nanorod
antennas [14]. By varying the density distribution of implanted
nanoantennas one could achieve almost uniform integrated energy

absorption at a given overlapping time of 240 fs for two counter-
propagating 120 fs laser pulses [14, 27].

The beam intensity utilized was I = 4 · 1015W/cm2 so that the
plasmonic nanoantennas are not destroyed before the laser pulse
passes. This damage threshold also depends on the geometry and
size of the nanoantennas.

We compared the time dependence of momentum of escaping
electrons in vacuum and in UDMA. The magnitude and the dynamics
of electron emission is quite different, as shown in Figure 2.

Conduction band electrons follow the oscillating field, which results
in nearfield enhancement [14], however in the process of repeated
excitation the gold nanoparticles get ionized [28]. This leads to
electron spill out effects [29]. The simulations shows faster electron
spill-outs than the decrease of the plasmonic effect (see Figure 2).

For the emission of a single electron from gold plasmonic
nanoantennas four 795 nm photons are needed. On the other hand
the incoming pulse generates a surface plasmon, which may later emit
electrons. This indirect process is more frequent than the direct
emission by four photons [30–32].

Similarly to the analysis in Ref. [21] we now study the energy
transfer dynamics from the laser irradiation to the target, with and
without nanorods.

Consider now an intense laser beam (laser wave length λ = 795 nm
in vacuum and 795/1.53 in UDMA), with intensity I = 4 · 1015W/cm2,
irradiating a calculation box (CB) of cross section SCB = 530 ·
530 nm2 = 2.81 · 10–9 cm2 and of length LCB = λ = 795 nm, with a
step-function time profile of pulse length TP = 106 fs (~ 40λ/c). The
laser pulse energy fraction falling into this box is EP = 1.19 μJ. In the
geometrical middle we insert a single nanorod antenna of length
85 nm and diameter 25 nm. As the calculation box size (λ) is 1.53·1/
40th of the irradiation pulse length (40λ), the initial and final
transients are negligible. See Figure 3.

We used two different marker particle species, 42,500 positively
charged gold ions (+3) and three (127,500) conducting electrons for
each, being careful to the neutral charge of the nanoantenna. We define
the size of the nanorod, indicating the limits where the particle number
density becomes zero. The borders of which can be seen in Figure 1.

FIGURE 3
(color online) Optical response of the gold nanorod with different numerical methods and lengths, L = λeff/2, λeff/3 and 2λeff/3, (A) PIC, (B) FEM and (C)
FEMwith normalized values to unit antenna length. The tendencies of the time-evolution of the nanorod energy determined by PIC and FEM are in very good
agreement. The energy in the calculation box increases rapidly till about 20 fs, then it becomes constant (without nanoantenna) until the laser pulse lasts, at
this moment the energy in the box drops to zero. With the nanoantenna in the box, the resonant antenna absorbs a good part of the laser energy, (green
line), while much less with the non-resonant length antennas. There is a quantitative difference between the rates of energy increase, namely the slope is
significantly smaller for PIC computations, accordingly the value achieved at 106 fs is also smaller. The smaller slope is caused by the tunneling of the electrons
out of the antenna that is included into the PIC computations but not in FEM. The (C) figure shows that the difference between the two non-resonant antennas
is caused by the antenna lengths, when this is removed by the length normalization the difference vanishes.

FIGURE 4
(color online) The behaviour of electrons leaving the nanorod. Flat
plateau laser light reaches the nanorod with maximum intensity at
around 20 fs and leaves the calculation box at 106 fs. Figure (A) indicates
the maximummomentum in time reached by a spilled out electron
in the y direction (direction of polarization of light in line with the
nanorod’s orientation in our simulations). Figure (B) shows the
distribution of electrons at different momentum values: below 150 keV/
c (blue line), above 150 keV/c (orange line) and above 165 kev/c (green
line).
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We consider three situations, the box contains (i) vacuum, (ii)
UDMA-TEGDMA copolymer and (iii) UDMA-TEGDMA copolymer
with gold nanorod antenna in the middle of the box.

We consider the following processes for direct absorption to the
UDMA-TEGDMA. As the copolymer is transparent the light absorption
is minimal, while the refractive index is n = 1.53. The absorption
coefficient of the bare polymer matrix at this wavelength would be
≈0.3 cm−1 while doped with gold nanorods it would reach 18 cm−1 [18].

In the EPOCH PIC kinetic plasma simulations model one is
usually interested in charged particles, where the surrounding
medium is vacuum. However, here we simulate metal nanoantenna
with conducting electrons approached as plasma and the
UDMA-TEGDMA copolymer is taken into account with a relative
electric permittivity different from vacuum. The wavelength inside the
simulation box containing UDMA-TEGDMA is also shrunk
according to the refractive index.

3 Conclusion and outlook

The result of this simulation shows that the resilience of the
nanoantenna in the UDMA-TEGDMA copolymer is similar to the
vacuum case. In case of vacuum at 19 fs, when the maximum intensity
of the laser reaches the nanorod, most electrons, Ne = 103, have
0.015 MeV/c momentum in the direction of polarization. However at
the time when the irradiation finishes at 106 fs, around Ne = 2 × 102

electrons remain at this momentum [21]. Other electrons escape at the
tip of the nanorod. At 43 fs the number of leaving electrons reach the
maximum while also achieving the maximum momentum in the
direction of polarization (Figure 4). Potential difference becomes
Ey = +/− 2.9 × 1012 V/m = +/− 2.9 × 103 V/nm. Maximum
momentum of leaving electrons in the direction of polarization
reaches 0.3025 MeV/c in vacuum, in UDMA-TEGDMA at the
same time the maximum is lower at 0.1799 MeV/c. The total
momentum amplitude at this time is also lower in 4.5 GeV/c in
UDMA-TEGDMA compared to 7.5 GeV/c in vacuum.

The decay time of the nanoantenna is longer in UDMA-
TEGDMA, but it absorbs less energy due to its smaller resonant
size (85 nm) compared to (130 nm) in Vacuum. The life-time of the
plasmonic effect is starting shortly after the electron spill-out effects,
around 25–30 fs later, however, short ignition is planned [1] and this
time is enough in the UDMA-TEGDMA copolymer for the light to
travel the required 6 μm.

Similar to [21] we also studied the time dependence of the
momentum fluctuation of the electrons. Now the proton fluctuations
were also studied. Initially the proton distribution slightly lags behind
the electrons indicating that the electrons are pulling the protons. At
later time as the laser drive is over the two distributions become aligned
in phase. This phenomena will need further investigation.

The time dependence of the energy absorption by a nanorod in
UDMA-TEGDMA copolymer was also studied in the COMSOL
Multiphysics model. The results are similar, the main difference
between the two models is arising from the different treatment of
the conducting electrons. In the PIC model the conduction band
electrons move freely and can escape leaving the gold ions behind,
in the Maxwell-Hydrodynamic FEM approach the electrons’
collective motion is taken into account indirectly through

damping constants and they cannot leave from the surface of
the nanorod.

Recent experimental tests on 150 μm thick nanorod filled
polymer targets show a significantly increased crater volume
accompnied by Deuterium outflow following laser irradiation
pulses up to 25 mJ [33–36]. Therefore first continuation of this
work, already in the making, is increasing the simulation box size
and allowing more light-resonant nanord antennas and bringing
the initial conditions closer in line with the crater formation
experiments.
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