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Abstract

Objective. Organ deformation models have the potential to improve delivery and reduce toxicity of
radiotherapy, but existing data-driven motion models are based on either patient-specific or
population data. We propose to combine population and patient-specific data using a Bayesian
framework. Our goal is to accurately predict individual motion patterns while using fewer scans than
previous models. Approach. We have derived and evaluated two Bayesian deformation models. The
models were applied retrospectively to the rectal wall from a cohort of prostate cancer patients. These
patients had repeat CT scans evenly acquired throughout radiotherapy. Each model was used to create
coverage probability matrices (CPMs). The spatial correlations between these estimated CPMs and the
ground truth, derived from independent scans of the same patient, were calculated. Main results.
Spatial correlation with ground truth were significantly higher for the Bayesian deformation models
than both patient-specific and population-derived models with 1, 2 or 3 patient-specific scans as
input. Statistical motion simulations indicate that this result will also hold for more than 3 scans.
Significance. The improvement over previous models means that fewer scans per patient are needed to
achieve accurate deformation predictions. The models have applications in robust radiotherapy
planning and evaluation, among others.

1. Introduction

In radiotherapy (RT), the dose is carefully shaped to the patient anatomy as seen in the CT acquired before start
of treatment (plan CT), to achieve a good compromise between disease control and risk of inducing
complications. Since the variability of the organ positions and deformations is unknown before start of
treatment, different measures have been adopted to safeguard against motion uncertainties through planning
margins (Stroom et al 1999, van Herk et al 2000), robust optimization (Unkelbach efal 2018) and/or treatment
plan adaptation (Yan et al 1997).

A statistical model for the deformation of organs of individual patients using principal component analysis
(PCA) of the organ’s surface shape vectors was first proposed by S6hn et al (2005). The main drawback of the
patient-specific model is that the number of data samples (in the form of organ contours derived from 3D
images) per patient is often low, which limits the robustness of the motion estimates (Thérnqvist et al 2013b).
Budiarto et al (2011) proposed a population based statistical model, under the assumption that, although the
size, shape and position of organs differ greatly between patients, the patterns of deformation are generally the
same. The advantage is that an estimate of a patient’s deformation patterns exists even when only a single
observation is available. When applied to prostate target deformation, they showed that about 50% of the
variation could be explained by 15 population deformation modes (i.e. principal components). Subsequent uses
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Figure 1. A rectum shape represented by a set of organ surface points.

of the population model include Bondar et al (2014), who used it to create margins for rectal cancer patients,
Rios et al (2017), who modeled bladder deformation for prostate cancer RT, Szeto et al (2017) who modeled daily
variations in the thorax, and Magallon-Baro et al (2019), who modeled deformation in the stomach, duodenum
and bowel for pancreatic cancer RT. A weakness of the population model is its inability to model patient-specific
deformation patterns, even when multiple scans are available for the patient in question. The aim of the current
work is to combine the strengths of the population and patient-specific models by introducing Bayesian models
that take in to account both the population deformation patterns (in terms of a prior distribution) and patient-
specific measurements, forming an individualized posterior distribution. Bayesian models have previously been
applied to the problem rigid shifts of the patient, termed setup errors (Lam et al 2005, Herschtal et al 2012).

In this paper, we introduce two Bayesian models, which differ in their choice of priors. The choice of model
to use will be a trade-off between accuracy and simplicity. We derive necessary algorithms to efficiently calculate
the approximate posterior distributions in high dimensions. We apply the introduced models to a realistic
example with complex motion, in terms of the rectal wall of prostate cancer patients. We use the models to
estimate coverage probability matrices (CPMs), i.e. 3D-arrays of voxels where the value in each voxel is the
probability that the voxel will be covered by the rectal wall at any given time. We compare the accuracy of CPMs
estimated using the two Bayesian methods, the patient-specific model by S6hn ef al (2005) and the population
model by Budiarto et al (2011). In addition to the presentation of new models, this is to our knowledge the first
comparison between these two previous models, as well as the first time such an organ deformation model has
been applied to the rectum.

2. Methods

In the class of deformation models that we study, an organ shape is represented by a set of points on the organ
surface, as illustrated in figure 1. These representations are derived from organ contours segmented from 3D
images. The x, y and z coordinates of all P points are gathered into a shape vector s:

s = [X1 ¥ 21> %5 V> Z2se-sXps Vps 2011 (1)

With this representation, we can use standard multivariate statistical distributions.

To compare organs across scans, we need corresponding points between all shapes in the data set. This
correspondence is found using deformable and rigid contour registration both within and between patients.
Details are beyond the scope of the current work, but can be found in Rertveit et al (2021).
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Due to the random character of the organ shape, a set of shape vectorss,, ..., s;derived from J scans of a
patient is described as J realizations of the random variable s. For all the following methods, the shape
coordinates for a specific patient are assumed to follow a multivariate Gaussian distribution:

s ~ NMu, R). 2

The mean shape vector i represents the patient’s mean organ shape, and the covariance matrix R describes the
variance of the coordinates as well as the covariance between each pair of coordinates. When £ and R are given,
we can use the distribution to draw new random organ shapes for the patient. The difference between the
previous patient-specific and population models and the Bayesian models introduced in section 2.3 is how p and
Rare estimated. In the Bayesian methods, 1+ and R are considered random samples from specific prior
distributions, whose parameters are calculated from the training data. Point estimates of (4 and R are derived
from the posterior distributions. Due to the high dimensions of the shape vectors, all covariance matrices are
parametrized using principal component analysis (PCA), see e.g. Fujikoshi et al (2010, chapter 10). Under PCA, a
covariance matrix is represented by a few eigenvectors and corresponding eigenvalues. These are usually found
through singular value decomposition (SVD) of a data matrix D, whose columns are normalized mean-
subtracted samples, such that R = DD T

In the following sections, we show how 1t and R are estimated in the previous and the new models.

2.1. Patient-specific model
In the patient-specific model introduced by S6hn ef al (2005), only data from the patient under consideration is
used. The mean shape 1 is thus set to the average of the J available shapes sy, 55, . ..,s; for that patient;

1
p=35==>_s ()
I3
while R is set to the patient-specific sample covariance matrix ﬁps:
. - . o
Ry = ——2(5 — s — . @
] - 1]‘:1

2.2. Population model

The population model introduced by Budiarto et al (2011) rests on the assumption that the covariance matrix is
the same for all patients, and only the mean differs. The mean is calculated as the mean shape vector for the
individual patient as in (3). The covariance matrix is the average of the sample covariance matrices R; for each
patient i in the training set. Given M patients, where patient i has J;shapes denoted s; ; ... s;, the estimated
population covariance matrix is

Rpop = 3" R = =3 ——3 (51 = 551 — 507 5)
pop i i, [JACIS| i
Mo Mo )i =155

2.3.Bayesian models
In Bayesian inference, new data is combined with prior knowledge (such as population statistics) in the form of a
prior distribution, which describes how we would expect a quantity to behave before any specific evidence is
taken into account. The result of the combination of the prior and data is a posterior distribution.

In the following, the mean and covariance matrix for a given patient are considered random parameters
that vary across the population according to a prior distribution defined by the probability density function (pdf)
f(16, R). When data for a new patient is available, we can compute the posterior pdf of 1+ and R given s, where
s = {s1,52...,5}, denoted f (1, R|s), through Bayes theorem:

fGslp BOf (s R).

f(u, Rls) = o

(6)

Bayes theorem gives us a distribution of the possible values of 1t and R, as opposed to single values. Nevertheless,
due to the complexity of the posterior distributions in our subject matter, we shall resort to looking at point
estimates of pt and R, such as the expected value or mode of the posterior.

The Bayesian models we present differ in the selection of the prior distribution. We resort to priors that
result in computationally feasible posterior distributions, since Markov Chain-Monte Carlo methods are
computationally expensive in high dimensions. In the following sections, we present two priors which each
represent a Bayesian model.
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2.3.1. Normal-inverse-wishart prior

2.3.1.1. Background
We present a short background to aid the intuitive understanding of the normal-inverse-wishart (NIW)
distribution. More details can be found in e.g. Bishop (2006).

A combined population and patient-specific covariance matrix R can be calculated by a simple weighted
average,

R\ = Aﬁpop +a - )‘)ﬁpw (7)

for some weight A between 0 and 1. The weight should be proportional to the number J of scans used to compute
the estimates. By setting A\ = ﬁ for some parameter v, we obtain

1
v+ ]

We can achieve the same result by assuming an inverse Wishart (IW) prior for R and using a specific point
estimate for the posterior, as shown below.

IW is a matrix distribution, and a conjugate prior to the multivariate Gaussian likelihood with known mean
and unknown covariance matrix. This means that the posterior distribution for R is also IW, and the parameters
are obtained from equations involving the prior parameters and the data. The parameters of the IW are the scale
matrix ¥ and the degrees of freedom v. Formally, if 1 is given, and the prior for Ris IW,

R=

(VR pop + TRps)- ®)

R ~ IW, v), ©)
and the likelihood is Gaussian,
sIR ~ My, R), (10)
then the posterior R|s, wheres = {5}, 5,, ..., 57} isalso IW,
R|s ~ W', V'), (11)
with posterior parameters
]
V=0 + ) (55— ws— " (12)
j=1
vi=v+]. (13)

In order to obtain (8) as a point estimate for R, we define ¥ = Vﬁpop and set the posterior point estimate to
R = 5\11’ . Inserting both these expressions into (12), we get

J
R= ! (Viépop + Z(Sj - N)(Sj - ,U)T . (14)
v+] j=1

The parameter v determines the weight between the population covariance matrix and the sample covariance
matrix of the new patient, and can be selected either by tuning or by optimization. One can think of as encoding
the strength of our belief that IQPOP can represent our new patient’s covariance matrix.

In reality, p¢ is not given. One could replace p by i from (3), but this will lead to bias in the covariance matrix
estimate when Jis small (to see this, consider equation (14) when J = 1 and therefore /i = s)). Instead, we
consider both ;2 and R random, and look for a joint prior distribution.

2.3.1.2. Normal-Inverse-Wishart distribution

The conjugate prior for the multivariate Gaussian likelihood with both unknown mean and covariance is the
Normal-Inverse-Wishart (NIW) distribution. In the NIW, R is IW-distributed as in (9) , but ;+ and R are not
independent. The conditional distribution of 1 given R is Gaussian:

IR ~ Mljag —B. (15)

Here, 119 is the population mean, and the scalar x represents the ratio of the variance between scans of the same
patient (intra-patient) to the variance between patients (inter-patient). Thus, the NITW has the parameters p, &,
W and v, and we write

w, R ~ NDWV (g, 5, O, v). (16)
Since this is a conjugate prior, the posterior is also NIW, and we can write
tt> Rls ~ NDA(pq, K, W', v') (17)
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with
1 _
Ho = — 7 Ctte £ J5) (18)
kK'=Kk+] (19)
vi=v+] (20)

U =T+ Z(s] — (s — )T +

T 5~ 1) G — o) 1)
j=1 J

Note the similarity between (18) and (14): Both are weighted averages between population and patient-specific
estimates, with the weight of the patient-specific estimate proportional to the number of patient-specific samples
J. Hence, both vand k are parameters which determine the weight between the population and patient-specific
estimates.

The final term of (21) can be considered a correction for the uncertainty of the sample mean, which makes
the equation different from (12), where the mean was assumed to be known.

The maximum a-posteriori (MAP) estimate of 1 is the expected value of the posterior, /16, sowelet

f= ; (kg + J5). (22)

When only a single observation for the new patient is available, i. e. ] = 1, (22) becomes identical to the shrinkage

estimation from Rertveit et al (2021).
As for the IW-case, welet U = 1/Rp0p and R = —\I/’ Inserting this into (21) yields

( pop Z(S] —5)(s5— 9T

+ (5 - ,uo) G- ,Uo)T) (23)
In practice, we never construct the full covariance matrix R.Instead, itis represented by a data matrix which is
augmented with extra columns, such that D’D'T = R. Given the population data matrix D, where DDT = R,
and the patient-specific data matrix S whose columns are s; — 5 forj = 1...J, the augmented data matrix is

L1
D_W[WD k+ — 5 — ) s]. (24)

2.3.2. Variational bayes model
The covariance matrix of i describes how the individual mean varies from patient to patient, and we shall refer
to it as the inter-patient covariance matrix. In the NIW-model, this matrix is %R, accordingto (15). But the
assumption that the intra-patient covariance R is proportional to the inter-patient covariance may in practice
not be fulfilled. A more flexible approach is to separate the two, which motivates the following model.

Assume that the mean 1 is Gaussian distributed according to

1~ Mg, A). (25)

Here, 119 is the population mean, and A is the inter-patient covariance matrix. Assume further that Ris ITW
distributed according to (15), and 1 and R are independent (unlike in the NIW model); i.e.

f(u, Ry = Nus pg, A) - DV(R; 0, v). (26)

Unfortunately, this prior is not conjugate to the Gaussian likelihood (2), and there is no simple expression for the
posterior. However, both s and R follow tractable posterior distributions when conditioned on the other, namely

PR, s = Npg, N) (27)
and
Rlu, s = IWW, v'). (28)

Prior distributions with this property are said to be conditionally conjugate to the likelihood. The conditional
posterior parameters i/, N, W' and v’ are

= (A 4 JRY)IA Yy + JRTIS) (29)
N=(AN'+JRH! (30)
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]
W=+ (s;— W — w’ 3D
=1
V=v+]. (32)

The derivation of (27)—(32) is given in appendix A.

Since both p and R are unknown, the left hand sides of (29)—(31) cannot be computed directly from the right
hand sides. An alternative is to use an approximative method, known as Mean Field Variational Bayes (MFVB)
(Gelman et al 1995). This method is applicable for conditionally conjugate priors, and is a technique used to
approximate a complicated posterior distribution by a simpler distribution. The joint posterior distribution of
the dependent parameters are approximated by two marginal posterior distributions by assuming
independence. In our case, we are looking for densities g,,() and gr() such that

4, (g (R) = f (1, RIS). (33)

In appendix B, we show that q,,() is a multivariate Gaussian pdf, and g() is an inverse Wishart pdf,

f(us Rls) = N (5 g, K - DV(R; UF, v¥), (34)
where the parameters are

A* — (Afl + ]V*\Ij*fl)fl (35)
py = NN g + Jr*T*S) (36)

J
WF =W+ 3 (sj — p)(s; — pg)” + JAF (37)

=1
v¥=v+]. (38)

Equations (35)—(37) must be solved for U*, A" and 11", but solving them analytically is not possible. We use
instead a common iterative technique, where, starting at an initial guess for the parameters, the equations are
iterated until convergence. If U*(“ is the initial guess for U, we get the following algorithm:

fori = 1... (until convergence) do

A*(i) — (A—] + ]V*\Ij*(i—])—])—l

H;(i) = MO, +]V*\I!*(’:’”"5') .

i) — + Zj _ 1(5j _ ﬂ?;(t))(sj _ M:(:))T + ]A*(x)
end for

The iteration is guaranteed to converge to a local optimum, but not necessarily to the global optimum. Whether
we find the global optimum or not depends on the starting point. In our case, the prior and the approximate
posterior have the same parameters, so the obvious choice of starting point is the corresponding parameter of
the prior, i.e T — g,

Finally, we extract point estimates of yrand R. Welet ji = /[g. For the point estimate of R, see section 2.4.4.
Although we are not directly interested in A*, it is needed in order to calculate the other parameters. A
represents the uncertainty about the mean 4, and as such still contains information that may be valuable
depending on application. Equation (35) contains the inversion of 3 matrices, all of which are of dimension
P x P.Thisisnot practical; e.g. in our validation data, Pis over 50000, so such an inversion would require on the
order of 10" floating point operations. However, these matrices are highly redundant, as they are estimated
from limited data. In practice, we have found that all three update equations (35), (36) and (37) can be computed
efficiently without ever constructing any P x P matrices, and with inversion of much smaller matrices only. The
details of the efficient computation are given in appendix C.

2.3.3. Workflow
When new data for a patient becomes available in the form of organ contours derived from 3D-scans, the first
step is to obtain point-to-point correspondence between this patient’s shapes and the shapes in the training data
by deformable registration to the global reference shape. Next, the resulting shape vectors sy, ..., syare used as
input to one of the algorithms in this section to produce patient-specific estimates of the posterior mean and
covariance matrix. How to use these further depends on the specific application.

However, the algorithms require additional parameters, specifically the hyper-parameters 11y, ¥ and v as well
as k or A depending on the model. In this section, these parameters have been assumed given. In the next
section, we show how we can obtain (1, ¥ and A from training data.
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2.4. Estimating model parameters from training data

Bayesian algorithms require specification of the hyperparameters of the prior. For the present models, these are
o> K, A, ¥ and v, with & specific to the NIW-model and A specific to the variational Bayes model. The vector and
matrix valued parameters (i, A and W are estimated from training data. Assume that data in the form of shape
vectors s; ; from M patients are available, where i is the patient number and j is the scan number, and patient i has
J;scans.

2.4.1. Population mean

The prior mean i is the population mean shape, which is simply calculated as the average of all the individual
mean shapes in the training data:

T Mz
||

Ji
Z Sij- (39)

1
M;

2.4.2. Population covariance matrix
The population covariance matrix R;,op, defined in (5), is in practice represented by its principal components and
their variances. PCA of such a matrix has been dubbed ‘simultaneous component analysis’ (SCA) (Timmerman
and Kiers 2003), since all patients are assumed to share the same principal components. The data matrix which is

input to SCA contains all the columns from the patient-specific data matrices in the training data:

Dpop = ﬁ[p1 D, ... Dyl (40)
where D; is
D; = ;[s,»,1 -5 Six— 8 ... sip—3l (41)
Ji—1
The covariance matrix ﬁpop = DpOprop is used for both the classical population model and the NTW-model.

In the variational Bayes model, the scale matrix W needs to be invertible. We will use a regularization
approach for this model, where we add a constant 6y times the identity matrix, I, to the scaled sample
covariance matrix:

U = vRpop + 6wl = vDpopDyy, + Sul. (42)

This structure, together with the similar structure of the inter-patient covariance matrix, makes it possible to
compute the update equations(35)—(37) efficiently through the procedure detailed in appendix C.

2.4.3. Inter-patient covariance matrix
In the variational Bayes model, we also need to estimate the covariance matrix A of 1, the inter-patient
covariance matrix. This matrix describes the uncertainty of y. By definition,

A =El(p — po)(p — pe)'l, (43)

where E[] is the expected value operator. We do not have direct observations of 1, but we have estimates, §;. A
natural extension of the sample covariance matrix suggests an estimator of the form

Gi — fig)Gi — 1) (44)
M 1 ; i Ho)\Si = Mo

This estimate of A is biased, since the sample mean §3; is not equal to the true mean p.. We show in appendix D
that the expected value of Ay is

E[Ay] = A + cE[R], (45)

where ¢ = ﬁzf\i ) % The bias is therefore inversely proportional to the number of scans per patient. Since Ry,
is an unbiased estimate of E[R], we can get an unbiased estimate of A as

A = Ay — Rpop. (46)

However, since both A and }ipop are low rank, and they range over different subspaces, the resulting matrix is not
positive semidefinite. This makes PCA a bit more complicated, but it is still possible. Details are given in
appendix E. As for the intra-patient covariance matrix, the inter-patient covariance matrix must also be
invertible, therefore we add a regularization factor 6, 1. Additionally, since A expresses our uncertainly about the
mean estimate, we want to have the possibility of increasing its overall size, so we introduce a constant multiplier
o, which finally leads to
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Table 1. Parameter values for all models. K-intra is the number of principal
components used to compute the intra-patient covariance matrix, K-inter
is the same for the inter-patient covariance matrix, v and « are scalar
hyperparameters of the IW/NIW distributions, 6 and 6y are
regularization parameters for the matrices used in the variational Bayes
iteration, and v is the weight of the inter-patient covariance matrix.

K-intra K-inter v K by N «
12 20 6 0.25 240 000 80 000 4
A =ah + 1. (47)

2.4.4. Probabilistic PCA

In the NIW-model, we used the point estimate I}—/\If’ for R, where U is the posterior scale matrix, and v/ is the
posterior degrees of freedom. In the variational Bayes model, this is less straightforward. The posterior U* can be
expressedas D*D*T + §¥1 for some D* and some &%, The posterior &3 is approximately proportional to the
prior Oy, and with a large 6y, the estimate %\I/* = %D*D*T + %(5 ?f,I places an unreasonable amount of
variance on the shape coordinates. For this reason, we introduce a new parameter 0y, and set the point estimate
of Rto

L
l/*

R = —D*D*T 4 %@QI. (48)

For the prior distribution, the point estimate for R is found by replacing the posterior parameters values in (48)
by the equivalent prior parameters. This yields

Ry = DyopDjyp + 1. (49)

When D,,,, is found through PCA, this structure fits the description of probabilistic PCA (PPCA) introduced by
Tipping and Bishop (1999). Their method provides a maximum likelihood estimate for 6x given by

br = — Z Ak (50)

where )\ is the kth largest eigenvalue of the population covariance matrix in (5) (i.e. the variance of the kth
principal component), and K is the number of eigenpairs not discarded in PCA. In other words, d is the average
variance of the discarded dimensions.

3. Evaluation

3.1. Material

For evaluation, we used data from 37 patients with locally advanced prostate cancer. Each patienthad 9-11 CT
scans taken during treatment (typically 2 per week), including the plan CT used for RT dose planning. No
laxatives were administered to the patients before or during treatment. The rectum was defined with content
from the recto-sigmoid flexure to the anal verge. One single expert physicist contoured rectum on all CT scans
for all patients, and all contours were reviewed and corrected by another expert physicist. This yielded a total of
373 rectum shapes, which were used in leave-one-out cross-evaluation. Details about the patients and treatment
can be found in Hysing et al (2018). All shapes from the CT scans were converted to mesh representations with
corresponding vertices, using deformable registration. Since toxicity is related to dose to the rectal wall and not
its content, we evaluated the methods on the rectal wall. Since the inner wall is not seen on CT scans, we assumed
3 mm wall thickness, as in Sanguineti et al (2020).

3.2. Parameter values
The values of the scalar parameters were tuned manually. The values we used are shown in table 1. For the
parameters K-intra and v, which are applicable to multiple algorithms, we used the same value for all models.

3.3. Coverage probability matrices

To calculate predicted CPMs, pi; and R; was first estimated for each patient i using the patient-specific,
population, and two Bayesian methods. For each method, 500 random rectal wall shapes per patient were then
generated based on the distributions NV(y;, R;). For each generated shape, we found which voxels (ona

1 x 1 x 1 mm grid) were covered by the rectal wall using an in-house developed ray-tracing algorithm. The

8
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coverage probability of each voxel was defined as the fraction of generated rectal walls covering that voxel. This
procedure was repeated using one, two and three input scans for each method.

We used the remaining independent J; — 3 scans for each patient to compute reference CPMs. Since
relatively few scans (6—8) were then available, we used the bootstrapping procedure detailed in section 3.4 with
this data to generate smooth CPMs. The reference CPM for each patient was computed by drawing 500
bootstrapped rectal wall shapes, and setting the coverage probability of each voxel equal to the proportion of
these shapes that covered the voxel.

The predicted CPMs and reference CPMs (the ground truth) were compared in terms of their normalized
cross-correlation:

. ZVG Vppredict (V)ptrue (V)
Z plfredict (V)ZVE thzrue ™)
veV

c

(51

where Vis the set of all voxels, and ppredic(v) and pye(v) are the predicted and true coverage probabilities at voxel
v, respectively.

3.4. Convergence behaviour

To analyse convergence of the four methods without re-using structures for both training and testing, we created
avirtual data set for each patient in the original data set by using a PCA-based bootstrapping procedure: For each
patient, we first calculated the principal components using all the patient’s available shapes. We then calculated
the PCA-scores for each shape: c; j r, where i is the patient number, j is the scan number and k is the component
number. To generate a new random scan for patient i, a new PCA-score ¢;* was drawn for each component
number k, and a new shape s;* was synthesized according to

Ji
sE =54 D0 g (52)
k=1

where w;  is the kth principal component vector for patient i. The ;" values were drawn randomly from the
existing values ¢; j forj = 1... J;, i.e. by bootstrapping. Since the principal component scores are uncorrelated,
such mixing of the scores should create realistic new shapes. The bootstrapping procedure means that no specific
distribution has been assumed.

For each patient, we generated 10 shapes using this procedure. These shapes were used as input to the models
to estimate CPMs. The estimated CPM for each patient was compared to the reference CPM for that patient,
which was generated using all individual scans.

3.5.Impact of the uncertainty parameter dg

For the variational Bayes model, the parameter oy naturally occured from the equations and the requirement
that the covariance matrix must be non-singular. The PPCA method that we used to find 8y can also be used for
the other methods. We therefore tested the effect of 0 on the the population model, the NTW model and the
variational Bayes model, and compared the result to non-probabilistic PCA, i. e. g = 0. PPCA is not practical for
the patient-specific model with as few as 3 input scans, since it requires that some principal components are not
used. For the population model, 0 was set constant, while for the NIW and variational method, it was updated
according to the update equations for ¥, which leads to

n

Or(n) =
n+

6r(0), (53)
v
where 7 is the number of scans.

The motivation for this additional evaluation was to avoid a bias in favour of the variational Bayes model.

4, Results

Visual comparison of the four first population intra-patient modes fits with anatomical expectations (figure 2).
The first mode is mainly bending of the anorectal flexure; in the bent state, the rectum is less filled than in the
straight state. The second mode shows stretching and compressing of the rectum in the caudal—cranial direction.
The third mode shows mainly stretching of the top of the rectum in the left-right direction, while the fourth
mode shows bending left-right of the top of the rectum. A general finding is that the most caudal third of the
rectum, up to slightly above the anorectal flexure, moves very little. This is corroborated by figure 3, which shows
coverage probabilities of the rectum wall for two example patients, a ‘small mover’ and a ‘large mover’.

The Bayesian models take advantage of population data also when estimating the patient-specific mean
rectum /i . Figure 4 shows how the mean estimates may differ with the Bayesian models for an example patient,
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Figure 2. The four greatest population intra-patient deformation modes. The green and blue shapes represent 4-2 and —2 standard
deviations of the deformation mode from the population mean rectum shape. A video with animation of the deformation modes is
available in the supplementary material.
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Table 2. Difference in CPM correlation between the population, NIW and variational models using one, two and
three scans. Here, Ay is the difference in average value of the CPM correlations, and %-+- is the percentage of patients
that saw improvement with the first method over the second.

Variational versus pop.
NIW versus pop. model model Variational versus NIW
Ap p-value %+ Ap p-value %+ Ap p-value %+
1scan 0.026 6.2e-5 78 0.058 1.2e-8 95 0.032 2.2e-6 81
2 scans 0.014 1.8e-4 81 0.027 2.5e-6 86 0.013 1.2e-3 70
3 scans 0.015 2-2e-6 89 0.023 8.0e-7 89 0.008 0.01 62

given a single input scan. For this patient, the mean shape from variational Bayes model had the greatest
similarity with the true mean shape.

The average correlation between the estimated CPMs and the references is shown in figure 5(A), while
figure 5(B) shows the spread of the results among the individual patients. The two Bayesian methods outperform
both the existing models, with the variational Bayes model showing superior results to the NIW-model. The
results are summarized in table 2, where the patient-specific model has been left out since it performs poorly
with as few as three scans. The differences between the population, NIW and variational Bayes model were
consistently significant (p < 0.05). In comparison to the best existing model (the population model), the
variation Bayes model improved correlation with the reference CPM in 35 out of 37 patients when using a single
input scan (figure 6).

4.1. Convergence behaviour

The two Bayesian methods both outperform the patient-specific model with up to 6 scans, and outperforms the
population model for any number of scans (figure 7). As the number of input scans increases, the patient-specific
model and the two Bayesian models appear to converge toward the true CPM, while the population model
improves only moderately. This is to be expected, since, in the population model, the covariance matrix
representing the random error is never updated. All improvement seen in the population model is therefore
from reduction of error in the mean estimate, often referred to as systematic error. The performance of the
patient-specific model is comparable to that of the population model when both are given 4 scans. For more than
4 scans, the patient-specific model outperforms the population model. The variational Bayes model consistently
performs slightly better than the NIW-model.

4.2. Impact of the uncertainty parameter dp
For all the models, PPCA through the addition of the 6, parameter increases correlation as compared to
ordinary PCA, as shown in figure 8. The difference between the models with and without the uncertainty
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Figure 7. Average correlation between the estimated CPMs and the reference CPMs for the different methods using 1-10 scans, based
on bootstrapped data.

parameter is greatest when using a single scan. Although the differences between the models decreased, both
Bayesian methods with ordinary PCA still perform the same as, or better than the population model with PPCA.

5. Discussion

Both the new models outperform the existing population model significantly. Conceptually, the NIW model is
only slightly more complex than the population model, so there is little rationale for rather using the population
model. Additionally, figure 6 shows that the Bayesian models are robust, as evidenced by the fact that 35 out of 37
patients had improved result with the variational Bayes model over the population model (29/37 for the NIW-
model without PPCA). There is therefore very little risk involved in moving to a Bayesian model.

It is to be expected that the new algorithms will perform worse for some patients due to the random nature of
the data. Nevertheless, we examined the data for the two patients who performed worse with the variational
Bayes than the population model using one scan to see if there were notable patterns. While no conclusion can be

12



10P Publishing

Phys. Med. Biol. 68 (2023) 055009 @ L Rortveit et al
0.85 T T
_-m
<
()
k3]
o 081 1
o
o
c
il
©
o
S
o
)
20751 - - b
5 —#— Population model, ordinary PCA
3: * — Population model, PPCA
NIW model, ordinary PCA
NIW model, PPCA
—®— Variational model, ordinary PCA
— ® — Variational model, PPCA
0.7 : L |

1 2 3
Number of scans

Figure 8. Comparison of ordinary and probabilistic PCA for different models. Each symbol represents the average correlation between
the estimated CPMs and the references.

reached, it seems that, for these patients, the rectal shape in the pCT is coincidentally similar to the mean shape
over all CTs.

The choice between the two Bayesian methods is a tradeoff between model accuracy and complexity. The
main concern with the variational Bayes model is the conceptual rather than the computational complexity—it
is more challenging to implement and requires more parameters than the NIW model. When using PPCA, the
NIW models performance gets close to that of the variational Bayes model.

As expected, the patient-specific model cannot compete with the other models when few scans are available.
This model still has an advantage in that no training data from the population is required. Additionally,
deformable registration is more readily available between contours of the same patient than between contours of
different patients. There are therefore applications where the patient-specific model is the only available option.
However, in these cases, care should be taken that sufficient scans are available, as shown in figures 5 and 7.

The convergence analysis in figure 7 shows that we have achieved the goal of combining the advantages of
both models; requiring few scans to achieve good accuracy while also improving accuracy with more scans. At
around eight scans, the patient-specific model catches up with the Bayesian models. This is to be expected -at
that point, the Bayesian models put very little weight on the population data since there is sufficient patient-
specific data for an accurate model.

We have evaluated the model for the rectum, a highly flexible and deformable organ. The ability of the
method to model other organs will depend on the amount of individual variation and the ability of the training
data to replicate the variations that appear in the population. The fact that the models combine patient-specific
data with the training data suggests that they should out-perform purely population based methods when there
is great variability in the individual deformation. It is also possible to model multiple organs simultaneously, as
done with the individual model in S6hn et al (2005). This may be advantageous, as correlations between the
deformations of the different organs and their relative positions are taken into account.

As far as our experience goes, the variational Bayes iteration is not sensitive to the selected starting guess of
the scale matrix U™, it appears to converge to the same solution regardless of starting point. The iteration takes
less than a second to run for a single patient. Generating a CPM with a resoluton of 1 mm (about 3 million
points) from 500 generated shapes took about 5 seconds on a standard PC. In practice, the main computational
effort will be spent on deformable registration, which takes about 2 minutes for a single registration in our setup”

5.1. Applications

The calculation of CPMs play a key role in many applications of organ deformation models (Price and

Moore 2007). The CPMs can be used for robust RT planning (Baum et al 2006), or to calculate margins based on
the formula of Stroom et al (1999), as in Hysing et al (2011), Thornqvist et al (2013a), Magallon-Baro et al (2019).
In Ramlov et al (2017), Lindegaard et al (2017), CPMs were used clinically to reduce toxicity in nodal boosting of
cervical cancer RT. Applications besides CPMs include robust evaluation through treatment course simulation
(Sohn etal 2012, Hysing et al 2018), generation of plan libraries for RT personalized to motion (Rigaud et al 2019)

5 Matterhorn software from Erasmus MC (Rotterdam), running on an Intel i7-4600U 2.1 GHz CPU.
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and motion-robust optimization (Sobotta et al 2010, Unkelbach et al 2018). Recently, Owens et al (2022) used a
pure inter-patient model to reconstruct colorectal dose in childhood cancer survivors who had received RT with
no CT simulation. Thus, applications also extends to improving evaluation of complications from RT.

The Bayesian approach offers additional advantages because it quantifies the model uncertainty. Consider
for example the robust evaluation in S6hn et al (2012), Hysing et al (2018): predicting dose-volume histograms
(DVHs) with uncertainties (such as 5th and 95th percentiles). When using a non-Bayesian deformation model,
the correctness of the predicted values rely on the correctness of the model’s parameters. With a Bayesian model,
the uncertainty of the parameters will translate to additional uncertainty regarding the dose-volume histogram,
thus increasing the difference between the expected value and the 5/95 percentiles.

Interfractional geometrical errors in RT are often divided into systematic and random errors. The random
error is the motion around the mean shape and position at each fraction, while the systematic error is the
difference between the actual mean and the estimated mean, usually the shape and position at the plan CT. In
terms of the deformation models, the systematic error is the difference between the estimated and the true
patient mean, i — p. The presented Bayesian models reduces the systematic error as compared to the previous
methods by utilizing population data when estimating /i (see figure 4). In addition, the new models provide a
personalized distribution for the systematic error in terms of the posterior inter-patient distribution. The widely
applied margin recipe by van Herk et al (2000) uses the formula 2.5% + 0.70, where ¥ and o are the standard
deviations of the systematic and random errors, respectively. Because the distribution of both the systematic and
random errors are modeled under the Bayesian framework, it is in principle possible to use similar recipes for
margins due to deformation.

5.2. Choice of evaluation metric

The cross-correlation metric puts proportionally higher weight on voxels that have a high coverage probability.
Since alarge portion of the organ tends to overlap in most or all shapes for one patient, all methods will tend to
produce relatively high correlation values. Therefore, the differences between the methods may seem small. We
still choose to use this metric because of its simplicity and ease of reproduction.

5.3. Gaussian likelihood
Both the Bayesian models and the models we compare to make the assumption that the data for a given patient is
multivariate Gaussian distributed. This has been a standard assumption in applications of deformation models
(e.g.Sohneral2012, Rios et al 2017). In the high dimensions that we operate in, it would require unrealistically
many individual scans to disprove Gaussianness. Nevertheless, this assumption is a possible source of error,
which showcases the need to evaluate the model against real data.

It should be possible to adapt the patient-specific and population models to use a nonparametric
distribution of the PCA-scores as in Fontenla et al (2001), but this has not yet been demonstrated. In a Bayesian
model, a non-Gaussian likelihood would make calculating the posterior mathematically intractable.

5.4. Parameter values

The values of the scalar parameters in table 1 were hand tuned with the objective to maximize the CPM
correlations. Since it is not possible to evaluate the accuracy of the estimated distribution for a new patient
without having many individual scans, one must in practice trust that parameter values that worked well for the
training data also works well for new patients. If new data source is in some way different from the training data
(e.g. adifferent image modality or IGRT routine, a different diagnosis or otherwise different type of patient), the
parameters should at least be evaluated for this kind of data. However, in such cases Bayesian inference should
perform better than a pure population approach, as it tailors the distribution to the data at hand.

The parameter  for the NIW-model was set to 0.25. Using equation (18), we find that, given one input scan,
this represents an shrinkage factor of 0.2; i.e the estimated mean is ‘shrunk’ by a factor 0.2 towards the population
mean (Rertveit et al 2021). The parameter v, the number of degrees of freedom of the Wishart distribution, was
set to 6 for both the NIW and the variational model. Normally, v represents the number of samples from which
W was computed. However, this is under the assumption that these samples were all drawn from the same
multivariate Gaussian distribution. In our case, the samples were drawn from M different Gaussian distributions
with covariance matrices R;, none of which match a future patient’s covariance matrix. Therefore, we are much
less certain about R, and we need to choose a value for v that is much smaller than the total number of
observations in the training data.

When tuning the values of 8y and 6, we found that these needed to be set surprisingly large to achieve
satisfactory results. Possibly, some assumptions or parts of the model do not actually fit the data well, and
increasing the regularization values then compensates for the poor fit. This underscores the importance of
evaluating the models with realistic data, and tailoring the parameters to the case at hand.
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5.5. Degenerate inverse Wishart distribution

The inverse Wishart distribution is usually defined in terms of the (forward) Wishart distribution: If a random
#n X nmatrix G is Wishart distributed with G ~ W(F, v), then its inverse G is inverse Wishart distributed
with G=! ~ 2W(¥~L, v). However, when v < n, the Wishart distribution is degenerate, as any matrix G with a
non-zero probability density has rank v and is therefore singular. Then this definition of the IW distribution
does not work. A singular inverse Wishart distribution is defined through the pseudo-inverse of W (Cook and
Forzani 2011, Bodnar et al 2016). Unfortunately, this distribution is not well behaved, and does not have a finite
expected value. Since we do not explicitly use the distribution, but rather a point estimate, this does not make a
difference when using the models as described in this paper. However, care must be taken if using the full
Bayesian model as described in section 5.6, as individual realizations of G can have very large eigenvalues.

5.6. Extensions

We have applied the models to the rectum alone, however, for use in e.g. robust optimization, it would be
advantageous to model several structures simultaneously so that the correlation between structures are taken
into account.

In the evaluation of the algorithms, we used point estimates for 4 and R as opposed to a full distribution. We
have thus ignored the uncertainty in the model itself, and therefore sinned against the Bayesian philosophy. We
chose to do this for the sake of computational complexity. However, it is possible to account for the additional
uncertainty: When performing Monte-Carlo sampling, one would first sample  and R from the posterior
distribution every time before sampling s from A(u, R). The resulting distribution of s is called the posterior
predictive distribution. Particularly the sampling of R is computationally intensive. An alternative approach
might therefore be to use a point estimate for R while sampling 1, as systematic errors are often of greater
importance than random errors.

The presented models have been applied to deformably registered organ surfaces. A more common form of
deformable registration is the deformation of 3D-images with image intensities. Since both types of registration
produce deformation vector fields, it is possible, with some adaptions, to apply these models to deformed images
as well.

6. Conclusions

We have implemented and evaluated two Bayesian methods for modelling organ deformation occuring during
RT treatment. The NIW and the variational Bayes models both outperformed previous organ deformation
models when applied to the rectal wall of prostate cancer patients.
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Appendix A. Derivation of the conditional posteriors

The pdf for the multivariate Gaussian distribution for a vector x of dimension p is

NG p, R) = eXp(—%(x — 'R (x — u))- (A.D)

1
J@2m)PIR|

The pdf of the inverse Wishart distribution of ap x p matrix Qis
[y

s U, V) = ————
BT e

QI+ /2 exp(fétr(m*)). (A2)
The joint pdf of 44, R and the samples S = {sy, 5,...,s,,}, based on our prior and our likelihood is

f (s R, S) = Nps g NIVR; W, ) [ [ Msis s B). (A.3)

i=1
Writing this out using (A.1) and (A.2), and leaving out any constant factors (factors that do not contain y, R or S),
we find

IRI*(I/‘FPJrl)/Z

f(u, R, 8) x T

1
eXP(_E(M = p) A (i — pag)

- %tr(\I/R*I) - %Zn:(s,» — TR (s; — u). (A4)
i=1

Using the property of the trace tr(ABC) = tr(CAB) and the fact that a scalar is its own trace, the sum within the
exponential can be written as

D o(si— WR (i — p) = tf([Z(Si — (i — M)T]Rl)- (A.5)
i=1

i=1

Furthermore, since tr(A) + tr(B) = tr(A + B), we can write

TR + (55 — W R s — o)

i=1
n
=tr((U + Y (s; — p)(si — wTIR™Y (A.6)
i=1
To condition (A.4) on pand S, we can leave out any factors not containing R - that is, the first term in the
exponenial. Using (A.6), we find

fRlp, S)

O(|R|*(u+p+l+n)/2 exp(_%tr([\lj 4 Zn:(Si — 1) (si — ,LL)T]Rl))

i=1

o<IW(R; V', V"), (A.7)
with
W =W+ (si — p)si — )b (A.8)
i=1
and
vVi=v+n, (A9)

which concludes the derivation of the conditional posterior for R.
Next, we condition (A.4) on R and S to find

f IR, S)
1 1<
ocexp (— S = 1) A (e — pg) — EZ (si— TR (sj — p) ) (A.10)
i=1
Looking actively for a Gaussian distribution, we want to find that the terms inside the exponential are equal to

1
- p) NN — pg) + ¢ (A.11)
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for some A and y/, with any constant term c. Grouping the terms that are quadratic in 1, we find

IS R = =L+ R Y,
253 2

L7
L TN, —
SH A
therefore, if this is a Gaussian distribution, we must have
N1=A'+nR P N=(AN!'+nRHL
Grouping the linear terms, we find
— A g — > R = — pl (K g + nR'S).
i=1
Setting this equal to the linear terms in (A.11), we have
p N g = (K 4 nRS),
which is true for any p ifand only if

pg = N(A 'y + nR7').

The constant terms can be ignored, as they will be absorbed by the normalization. Finally, this gives us

f(ulR, 8) eXP(—%(N — )TN — ug))

o N pgy N)s
with u(/) asin(A.16)and A asin (A.13).

Appendix B. Variational approximation
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(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

To find the functions g,, and g, we follow the procedure presented in Gelman et al (1995). The minimizing

functions are given by
logq, (1) = Epllogf (uIR, S)] 4 const
and
log g, (R) = E,[logf (Rlu, S)] + const,
where Ep and E,, indicate an average over R only or 1. only, respectively.
Inserting (A.10) into (B.1), we get
logq,, (1) = Eg [ *%(u — 1) Al = py)

- %Z(Si — wWIR™Y(s; — ) | + const
i=1

1
= =5 (= ) AT = prg)
- %i(si — wTE[R™"I(s; — p) + const.
iz

Following the lines of the derivation in appendix A, we find
q, (1) = N g, K9,
with
s = (A1 + nE[R™) YA 1y + nE[R7]3).
and
N = (A" + nE[R]DL

Similarly, we insert (A.7) into (B.2) to find

logq,(R) = E, [log(|R|-pF1+m/2)

- %tr([‘lf + Zn:(Si — w)(si — IR | + const
i=1

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)
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— log(lle(quprlen)/Z)

— (¥ + YD ELGs = 6 — IR + const (B.9)
i=1

The term within the expectation operator is

> ElGsi — ) (si — )]
i=1

=Y (sis} + E[pp'] — Elpls — siE[ul") (B.10)
i=1
=Y (si — E[uD)(si — E[uD" + n(E[pp”] — E[p1E[p]") (B.11)
i=1
=> (si — E[u])(si — E[uD" + n - cov(p). (B.12)
i=1
Thisleads to
qr(R) = IW(R; T*, v*), (B.13)
with
v¥=v+n (B.14)
and
U* =0+ > (s; — E[u])(si — E[uD)T + n - cov(p). (B.15)

i=1
Finally, we replace the moments in (B.6), (B.7) and (B.15) by the moments from the approximate distributions
q,.and gg. Since R, according to (B.13), is inverse-Wishart distributed with scale matrix U" and v* = v+ n
degrees of freedom, its inverse R~ ' is Wishart-distributed with scale matrix * ' and v + n degrees of freedom.
Its expectation is E[R '] = v*U* !, Therefore we find

e =N+ nw + n) WY U A g + n(v + n) Tl (B.16)
and
N ="+ n@ + n)TFH~ L (B.17)

By (B.5), the mean and covariace of 11 is u?; and A*, therefore (B.15) becomes

U=+ (si — p)(si — p)T + nA, (B.18)

i=1

Appendix C. Efficient computation of the update iteration

The key to finding the estimated mean and covariance matrix for a patient is iteration over the update equations,
repeated here for convenience:

N =N+ n(v + n)T*-Hl (C.1)

,L[g = NNy + n(v + n)T*~k) (C.2)

W* =T+ 3 (sj — p)(s; — )T + nik (C.3)
=1

v¥=v-+n (C.4)

Only v* can be calculated directly. The other parameters rely on each other, and therefore require an iteration to
converge to the correct values.
Putting the iteration number i in a superscript (replacing -*), we can write the iteration as

AD = (K" + n(v + n)Pi-D-h-1 (C.5)
uff) = A (X 'y + n(v + n)Pi-D-l) (C.6)
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n
TO =T+ 3 (s; — pi)(s; — piHT + nAD (C7)
j=1
We can see that we need to supply a starting guess for the first value U?’.” A natural starting guess is ¥© = ¥.

In theory, the iteration represented by equations (C.5)—(C.7) can be implemented directly in any numerically
oriented programming language. However, this would require storing and inverting very large P x P matrices,
which is not attainable in practice. However, due to the structure of U and A (when estimated as in sections 2.4.2
and 2.4.3), memory and computation requirements can be drastically reduced.

Both matrices A and W can be represented as an outer product of a data matrix with itself plus a scalar
multiple of the identity matrix:

A = D\D} + 8,1 (C.8)
U = DyDy + 6yl (C.9)

Here, Dy and Dy are P x Ny and P x Ny matrices, with N, Ny < P. Multiplying a vector a by such a matrix is
much faster than the general O(P?) figure, since e. g.
Aa = (D\DI + 6xI)a = Dy(Df a) + 6pa, (C.10)

which is easily computed in O(N, P) time. Furthermore, it is also fast to solve an equation such as Ax = b.
Throughout this derivation we shall make heavy use of the following special case of the Woodbury matrix
identity, which holds for any matrices A and B and scalar 6 as long as the involved inversions are possible:

(6T + ABATY ! = 6711 — §71A(6B™1 + ATA) AT, (C.11)

This means that the inverses of A and ¥ can also be written in the form DCD T + 8I for some D, Cand 6.

C.1. Computing A?

We shall show later that U” can be written for any i as

T = pOGODOT 4§D, (C.12)
for some 6 g,) and G'”, and where
DY =[Dy, D (C.13)
for some D&f) of dimension P x (Ny + #). Inserting (C.8) and (C.12) into (C.5), we get
AD = [(D\D} + &\I)' + n(v + n)(DE-DGE-DDE-DT 4 §G-Dry-1-1, (C.14)

Using the matrix inversion lemma (C.11) on both the inner inverses of (C.14), we get
AD =631 — 63" Dr(6A + DEDy)'DE + n(v + m)6S D'
— n( + m) & VI PE-D (§4-DGU=D-1 4 PG=DTPG-Dy-1pi-DT}-1 (C.15)
In order to group the terms, note that
—63'Dy(6u] + DIDy)'DF = DGE-DHQDE-DT, (C.16)
where Q is ablock-diagonal matrix

_ |63 + DiDY!

Q . (C.17)
ONy+nx Ny+n
Wealso define
L = =916 GO -1 4 pOTPOy-1 (C.18)
and
FO = Q+ n(v + n)Li—D (C.19)
Now, we can write
AD = (53" + n(v + )6 VI + DEDFOPE-DT)-1, (C.20)
Applying the matrix inversion lemma again, we find
D = §OT — §ODE-DHODE=DT, (C.21)

Given that the iteration starts with the equation for A", If we had started with one of the other equations, a starting guess for at least one
other parameter would need to be provided.
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where
H® = [DE-DTPG-1 4 §O-1p0)-1]-1 (C.22)
and
8D = (53" + n(v + m&§ VL (C.23)
equation (C.21) gives us an expression for A using only lower dimensional matrices and scalars. In practice, we

never construct A”—it is represented implicitly by D”, H” and §* through (C.21).

()
0
Through the derivation of A®”, we have already come along way towards computing /Lg). We can write (C.6) as

ug) — A0 (C.24)

C.2. Computing

with
rD = Alpy + n(v + n)wi-b-ls, (C.25)

The first term of (C.25) is constant, and can be computed once. Using the matrix inversion lemma on (C.8), we
find

Ny = 63 1ty — 65" Da(8I + DY Dy)"(Dapsy) (C.26)
The last term needs to be computed for each iteration. We find it by using the matrix inversion lemma on (C.12):
YOl = (6971 — 697 'DD (6P GO~ + DOTDDY~IDOT)5 (C27)
—50-15 + DOLODOTs) (C.28)

Finally, inserting (C.21) into (C.24), we find
pl = 500 — §ODG-DHO(DI-DTrH). (C.29)

C.3. Computing &
The update equation for U is

TO =T+ 3 (55 — pi)(sj — T + nAD
=1

n
=DyDy + 6ol + > (sj — (s — p)T + nAD, (C.30)
j=1

We can augment the data matrix Dy by inserting new columns which are the mean-subtracted data vectors;

DY =MDy si—pud s—pnd . si—pudl, (€31
and we find
0O = DODOT 4 541 4 nAW, (C.32)
Inserting (C.21), we get
T — D\(I:')DS)T + 8¢l + n(dO1 — §OpPE-HHOPI-DT) (C.33)

We want to group the terms of this equation, but run into a slight problem: One term contains D", while
another term contains D'~ (which contains D ™). In practice, this can easily be resolved by replacing D'~
by D'?; this is in line with the algorithm philosophy of always using the most recent guess of each parameter, and
also guarantees that the equations (C.1)—(C.3) hold at convergence (at convergence, we have D = pUi=by,
Now, to group the terms, first note that

Dg)Dg)T = DOKDOT, (C.34)
where
K= [ONAXM ] (C.35)
INg+n
Thus, we can write
VD = DK — n§OHD)DOT 4 (5 + n&D)I. (C.36)
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We now see that we must have

GO = K — n§OHO (C.37)
and
89 = 8y + n6® (C.38)
in order for U” to be written as
PO = pOGHDOT 4 §O]. (C.39)

C.4. Initial values
Initially, we want to get W@ = W,i.e. DOGODOT 4§01 = Dy D + 631 which achieve by setting

80 = 6y (C.40)
DY = [Dy Opxnl (CA1)
GO =K. (C.42)

However, G is not invertible, which makes it impossible to compute L@ asin (C.18). Instead, L must be
initialized to

(C.43)

10— Onyx N
- 7571(5 I+D(1’)TD(1'))71 :
\'s v )\ )4

C.5. Algorithm summary

Input: 119, D, Dy, Og, 05 S-S V
Output: /1,3, DY G, 8%, 6" H*
K — Oy )
IN\p+n
o | 83'@ + DDy ]
0Nq:+n><Nq;+n
q — 85" g — 65" Da(8I + D{Dy) (D pg) /" qis A pao ™/
DY’ = [Dy  Opxsl
DO [Dy D&,O)]
50 5,
W
[0 Onyx Ny
— 83 (g + D&,O)TD&,O))I]
i—0
repeat
ie—i+1
8D (53" + n(v + m)6§ V!
P“)HQ + n(v + n)L( =D
H® — (DE-DTDG-1 4 §O-1pG)-1y-1
rD g + n@+ n)@$ V" + DU-DLG-DpU-DT)g
pd — 500 — §ODU=DHODU-DTH)
DY — Dy si—p) £ —pud o sl
D® «— [Dy, DY
8D — 8y + ns®
GOk — s OH
L0 — 76%)*1(5$)G(i)71 + D(i)TD(i))fl
until || — p8V| < €
g — p®, D" DO, G G, 6% — 69,6" — 6, H" «— H?
/* Implicit, not computed: A* = §' — §D*H'D* 7"/
/*Implicit, not computed: U* = D*G*D*T + §%1*/
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Appendix D. Bias of the inter-patient covariance matrix estimate

We estimate the inter-patient covariance matrix as

A o
A= m;(si — o) Gi — MO)T- D.1)

This is the sample covariance matrix of §;, as opposed to  which we are interested in. But §; are notidentically
distributed if J; varies. We can show that
R 1M
E[A] = =) cov(5). (D.2)
M3

To avoid clutter, the proof of this result is given at the end of the appendix.
The covariance matrix of a sample mean based on 7 i.i.d. samples is always given by 1 /1 times the covariance
matrix of one sample. In other words,

cov(Si|u, R) = %R. (D.3)
Now we can use the law of total covariance, which states, for two scalar random variables a and b,
cov(a, b) = E[cov(a, b|c)] + cov(E[alc], E[b|c]). (D.4)
In our case, we get
cov(5;) = E[cov(§i|u, R)] + cov(E[5|u, R]) (D.5)
:E[%R] + cov(w) (D.6)
1
:TE[R] + A (D.7)
since, by definition, cov(y) = A. Inserting (D.7) into (D.2) yields
A 1 M4 1
E[A] = —Z(A + —E[R]) = A + cE[R], (D.8)
M3 Ji
where
18
c=—> —. (D.9)
M; Ji
O
Proofof (D.2):
We start by manipulating (D.1):
N 1 M
A= 5 — D) Gi — fig)T D.10
a1 )G ) (D.10)
1 M M M M
= (Z S5 D Rolly — Do Sify — > ﬂo§iT) (D.11)
M —1\i5 i=1 i=1 i=1
1 et &y VAT o~ g
= DUES DY ok, — O, — ReQJ 5D (D.12)
M- 1\Z Pt pat i-1
1 M
= (Z 55+ Mifyy — Mgty — MAO,[ALOT) (D.13)
M —1\i3
_ ! M?s‘»T—MAAT (D.14)
M—1 P 1 0:“0 > N

where we used fi, = iZf\i 1 5i- Taking the expectation, and using the general formula
E[xxT] = cov(x) + E[x]E[x]", wefind

- i=1

X 1 M
E[A] = ﬁ(z E[5:5] — ME[,}O,:LOT]) (D.15)
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| M
=—> (cov(5) + E[S]E[5T)

M — 15
— ———(cov(jig) + Eljigl ELjp ") (D.16)
1 M
:M — 1(1_21 cov(s;) — Mcov(,&o)), (D.17)
since E[5;] = E[E[5i|pl]l = E[p] = py = Elfiy]. Looking at cov(fi,), we find
| M
cov(fty) = cov(—z s'i) (D.18)
M
Ly
=—Y cov(3), (D.19)
M*—
since §; are independent (though not identically distributed). Inserting (D.19) into (D.17) yields
A 1 (X MY
E = — cov(s;)) — — > cov(5; D.20
(A1 = S covd = 73 covts) (D.20)
- ! (1 - L)% cov(3;) (D.21)
M—1 M)= ’ '
Ly
=—Y cov(). (D.22)
M
O

Appendix E. PCA for the bias-corrected inter-patient covariance matrix

The bias-corrected inter-patient covariance matrix estimate is given by

A=A — Ryop; (E.1)
where ¢ = %2 M % This matrix is not positive semidefinite, and cannot be expressed with a real-valued data

matrix Das A = DDT. It can, however, be expressed as
A = ABT, (E.2)

where A = [Dy  /cDpopland B = [Dy  — /cDpopl".

As usual A is too big to practically perform eigenvalue decompostion on. However, there is a relation
between the eigenvalue decomposition of AB " and that of B™* . The latter is a small matrix, and its eigenvalue
decomposition can easily computed using any numerical software package. Given the kth eigenvalue )\ and the
kth eigenvector v, of B™, the kth eigenvalue of A is A, and the kth eigenvector is

wr = Avy. (E.3)
A proof of this result is given at the end of the appendix. The scale of wy is arbitrary, so we want to normalize it as

wl= 2k, (E.4)
[[well

As usual in PCA, we discard the eigenpairs corresponding to the smallest eigenvalues. In this case, since the
matrix is not positive semidefinite, several of the eigenvalues will be negative. We need to discard all eigenpairs
corresponding to negative eigenvalues, since we cannot have negative variance for any of the modes (which
would lead to a complex data matrix). The PCA-reduced covariance matrix can now be represented by a data
matrix Dpcy as

% ~ T
Apca = DpcaDpeys (E.5)

with

Dpca = WA Vhawy o ekl (E.6)
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Proof of (E.3):
Let w; be an eigenvector of AB”, and )\ be the corresponding eigenvalue, i. e.

ABTWk = )\ka. (E7)
We can transform AB " into B™ by what we may call a pseudo-similarity transformation:
AH(ABT)A = (ATA)'ATABTA = BTA, (E.8)

where A™ denotes the pseudo-inverse of A. Also note that AA™ is a projection matrix onto the subspace spanned
by A. Since wy, as an eigenvector of AB T is already in this subspace, we have

AA W = wy (E.9)
Using the three previous equations, we can now write
BTA(Atwy) = ATABTAATw, = AYABTwi = M\ AT wy. (E.10)

This shows that A is an eigenvalue of B™, with corresponding eigenvector v = A "wy.. However, we want to find
wy given vx. Using (E.9) again, we find

Vi = Atwy (E.11)
—Ave = AATwr = wr. (E.12)
O
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