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Abstract
Objective.Organ deformationmodels have the potential to improve delivery and reduce toxicity of
radiotherapy, but existing data-drivenmotionmodels are based on either patient-specific or
population data.We propose to combine population and patient-specific data using a Bayesian
framework. Our goal is to accurately predict individualmotion patterns while using fewer scans than
previousmodels.Approach.Wehave derived and evaluated twoBayesian deformationmodels. The
models were applied retrospectively to the rectal wall from a cohort of prostate cancer patients. These
patients had repeat CT scans evenly acquired throughout radiotherapy. Eachmodel was used to create
coverage probabilitymatrices (CPMs). The spatial correlations between these estimatedCPMs and the
ground truth, derived from independent scans of the same patient, were calculated.Main results.
Spatial correlationwith ground truthwere significantly higher for the Bayesian deformationmodels
than both patient-specific and population-derivedmodels with 1, 2 or 3 patient-specific scans as
input. Statisticalmotion simulations indicate that this result will also hold formore than 3 scans.
Significance.The improvement over previousmodelsmeans that fewer scans per patient are needed to
achieve accurate deformation predictions. Themodels have applications in robust radiotherapy
planning and evaluation, among others.

1. Introduction

In radiotherapy (RT), the dose is carefully shaped to the patient anatomy as seen in theCT acquired before start
of treatment (planCT), to achieve a good compromise between disease control and risk of inducing
complications. Since the variability of the organ positions and deformations is unknown before start of
treatment, differentmeasures have been adopted to safeguard againstmotion uncertainties through planning
margins (Stroom et al 1999, vanHerk et al 2000), robust optimization (Unkelbach et al 2018) and/or treatment
plan adaptation (Yan et al 1997).

A statisticalmodel for the deformation of organs of individual patients using principal component analysis
(PCA) of the organ’s surface shape vectors wasfirst proposed by Söhn et al (2005). Themain drawback of the
patient-specificmodel is that the number of data samples (in the formof organ contours derived from3D
images) per patient is often low, which limits the robustness of themotion estimates (Thörnqvist et al2013b).
Budiarto et al (2011) proposed a population based statisticalmodel, under the assumption that, although the
size, shape and position of organs differ greatly between patients, the patterns of deformation are generally the
same. The advantage is that an estimate of a patient’s deformation patterns exists evenwhen only a single
observation is available.When applied to prostate target deformation, they showed that about 50%of the
variation could be explained by 15 population deformationmodes (i.e. principal components). Subsequent uses
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of the populationmodel include Bondar et al (2014), who used it to createmargins for rectal cancer patients,
Rios et al (2017), whomodeled bladder deformation for prostate cancer RT, Szeto et al (2017)whomodeled daily
variations in the thorax, andMagallon-Baro et al (2019), whomodeled deformation in the stomach, duodenum
and bowel for pancreatic cancer RT. Aweakness of the populationmodel is its inability tomodel patient-specific
deformation patterns, evenwhenmultiple scans are available for the patient in question. The aimof the current
work is to combine the strengths of the population and patient-specificmodels by introducing Bayesianmodels
that take in to account both the population deformation patterns (in terms of a prior distribution) and patient-
specificmeasurements, forming an individualized posterior distribution. Bayesianmodels have previously been
applied to the problem rigid shifts of the patient, termed setup errors (Lam et al 2005,Herschtal et al 2012).

In this paper, we introduce twoBayesianmodels, which differ in their choice of priors. The choice ofmodel
to usewill be a trade-off between accuracy and simplicity.We derive necessary algorithms to efficiently calculate
the approximate posterior distributions in high dimensions.We apply the introducedmodels to a realistic
example with complexmotion, in terms of the rectal wall of prostate cancer patients.We use themodels to
estimate coverage probabilitymatrices (CPMs), i.e. 3D-arrays of voxels where the value in each voxel is the
probability that the voxel will be covered by the rectal wall at any given time.We compare the accuracy of CPMs
estimated using the twoBayesianmethods, the patient-specificmodel by Söhn et al (2005) and the population
model by Budiarto et al (2011). In addition to the presentation of newmodels, this is to our knowledge the first
comparison between these two previousmodels, as well as the first time such an organ deformationmodel has
been applied to the rectum.

2.Methods

In the class of deformationmodels that we study, an organ shape is represented by a set of points on the organ
surface, as illustrated infigure 1. These representations are derived fromorgan contours segmented from3D
images. The x, y and z coordinates of allP points are gathered into a shape vector s:

[ ] ( )= ¼s x y z x y z x y z, , , , , , , , , . 1P P P
T

1 1 1 2 2 2

With this representation, we can use standardmultivariate statistical distributions.
To compare organs across scans, we need corresponding points between all shapes in the data set. This

correspondence is found using deformable and rigid contour registration bothwithin and between patients.
Details are beyond the scope of the current work, but can be found inRørtveit et al (2021).

Figure 1.A rectum shape represented by a set of organ surface points.
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Due to the random character of the organ shape, a set of shape vectors s1,K, sJ derived from J scans of a
patient is described as J realizations of the randomvariable s. For all the followingmethods, the shape
coordinates for a specific patient are assumed to follow amultivariate Gaussian distribution:

( ) ( )m~ s R, . 2

Themean shape vectorμ represents the patient’smean organ shape, and the covariancematrixR describes the
variance of the coordinates aswell as the covariance between each pair of coordinates.Whenμ andR are given,
we can use the distribution to drawnew randomorgan shapes for the patient. The difference between the
previous patient-specific and populationmodels and the Bayesianmodels introduced in section 2.3 is howμ and
R are estimated. In the Bayesianmethods,μ andR are considered random samples from specific prior
distributions, whose parameters are calculated from the training data. Point estimates ofμ andR are derived
from the posterior distributions. Due to the high dimensions of the shape vectors, all covariancematrices are
parametrized using principal component analysis (PCA), see e.g. Fujikoshi et al (2010, chapter 10). Under PCA, a
covariancematrix is represented by a few eigenvectors and corresponding eigenvalues. These are usually found
through singular value decomposition (SVD) of a datamatrixD, whose columns are normalizedmean-
subtracted samples, such thatR=DDT.

In the following sections, we showhowμ andR are estimated in the previous and the newmodels.

2.1. Patient-specificmodel
In the patient-specificmodel introduced by Söhn et al (2005), only data from the patient under consideration is
used. Themean shapeμ is thus set to the average of the J available shapes s1, s2,K,sJ for that patient;

¯ ( )åm = =
=

s
J

s
1

, 3
j

J

j
1

whileR is set to the patient-specific sample covariancematrix R̂ps:

ˆ ( ˆ )( ˆ ) ( )å m m=
-

- -
=

R
J

s s
1

1
. 4

j

J

j j
T

ps
1

2.2. Populationmodel
The populationmodel introduced by Budiarto et al (2011) rests on the assumption that the covariancematrix is
the same for all patients, and only themean differs. Themean is calculated as themean shape vector for the
individual patient as in (3). The covariancematrix is the average of the sample covariancematrices R̂i for each
patient iin the training set. GivenM patients, where patient ihas Ji shapes denoted ¼s si i J,1 , i

, the estimated
population covariancematrix is

ˆ ˆ ( ¯ )( ¯ ) ( )å å å= =
-

- -
= = =

R
M

R
M J

s s s s
1 1 1

1
. 5

i

M

i
i

M

i j

J

i j i i j i
T

pop
1 1 1

, ,

i

2.3. Bayesianmodels
In Bayesian inference, new data is combinedwith prior knowledge (such as population statistics) in the formof a
prior distribution, which describes howwewould expect a quantity to behave before any specific evidence is
taken into account. The result of the combination of the prior and data is a posterior distribution.

In the following, themean and covariancematrix for a given patient are considered randomparameters
that vary across the population according to a prior distribution defined by the probability density function (pdf)
f (μ,R).When data for a newpatient is available, we can compute the posterior pdf ofμ andR given s, where
s= {s1, s2,K,sJ}, denoted f (μ,R|s), through Bayes theorem:

( ∣ ) ( ∣ ) ( )
( )

( )m
m m

=s
s

s
f R

f R f R

f
,

, ,
. 6

Bayes theorem gives us a distribution of the possible values ofμ andR, as opposed to single values. Nevertheless,
due to the complexity of the posterior distributions in our subjectmatter, we shall resort to looking at point
estimates ofμ andR, such as the expected value ormode of the posterior.

The Bayesianmodels we present differ in the selection of the prior distribution.We resort to priors that
result in computationally feasible posterior distributions, sinceMarkovChain-MonteCarlomethods are
computationally expensive in high dimensions. In the following sections, we present two priors which each
represent a Bayesianmodel.

3

Phys.Med. Biol. 68 (2023) 055009 ØLRørtveit et al



2.3.1. Normal-inverse-wishart prior

2.3.1.1. Background
Wepresent a short background to aid the intuitive understanding of the normal-inverse-wishart (NIW)
distribution.More details can be found in e.g. Bishop (2006).

A combined population and patient-specific covariancematrix R̂ can be calculated by a simple weighted
average,

ˆ ˆ ( ) ˆ ( )l l= + -R R R1 , 7spop p

for someweightλ between 0 and 1. Theweight should be proportional to the number J of scans used to compute
the estimates. By setting l = n

n+ J
for some parameter ν, we obtain

ˆ ( ˆ ˆ ) ( )
n

n=
+

+R
J

R JR
1

. 8spop p

Wecan achieve the same result by assuming an inverseWishart (IW) prior forR and using a specific point
estimate for the posterior, as shown below.

IW is amatrix distribution, and a conjugate prior to themultivariate Gaussian likelihoodwith knownmean
and unknown covariancematrix. Thismeans that the posterior distribution forR is also IW, and the parameters
are obtained from equations involving the prior parameters and the data. The parameters of the IW are the scale
matrixΨ and the degrees of freedom ν. Formally, ifμ is given, and the prior forR is IW,

( ) ( )n~ YR , , 9

and the likelihood is Gaussian,

∣ ( ) ( )m~ s R R, , 10

then the posteriorR|s, where s= {s1, s2,K, sJ} is also IW,

∣ ( ) ( )n~ Y¢ ¢sR , , 11

with posterior parameters

( )( ) ( )å m mY¢ = Y + - -
=

s s 12
j

J

j j
T

1

( )n n¢ = + J. 13

In order to obtain (8) as a point estimate forR, we define ˆnY = Rpop and set the posterior point estimate to
ˆ = Y¢

n ¢
R 1 . Inserting both these expressions into (12), we get

⎛

⎝
⎜

⎞

⎠
⎟

ˆ ˆ ( )( ) ( )ån
n m m=

+
+ - -

=

R
J

R s s
1

. 14
j

J

j j
T

pop
1

The parameter ν determines theweight between the population covariancematrix and the sample covariance
matrix of the newpatient, and can be selected either by tuning or by optimization.One can think of ν as encoding
the strength of our belief that R̂pop can represent our new patient’s covariancematrix.

In reality,μ is not given. One could replaceμ by m̂ from (3), but this will lead to bias in the covariancematrix
estimatewhen J is small (to see this, consider equation (14)when J= 1 and therefore m̂ = s1). Instead, we
consider bothμ andR random, and look for a joint prior distribution.

2.3.1.2. Normal-Inverse-Wishart distribution
The conjugate prior for themultivariate Gaussian likelihoodwith both unknownmean and covariance is the
Normal-Inverse-Wishart (NIW) distribution. In theNIW,R is IW-distributed as in (9) , butμ andR are not
independent. The conditional distribution ofμ givenR is Gaussian:

∣ ( ) ( )m m
k

~ R R,
1

. 150

Here,μ0 is the populationmean, and the scalarκ represents the ratio of the variance between scans of the same
patient (intra-patient) to the variance between patients (inter-patient). Thus, theNIWhas the parametersμ0,κ,
Ψ and ν, andwewrite

( ) ( )m m k n~ YR, , , , . 160

Since this is a conjugate prior, the posterior is alsoNIW, andwe canwrite

∣ ( ) ( )m m k n~ ¢ ¢ Y¢ ¢sR, , , , 170
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with

( ¯) ( )m
k

km¢ =
+

+
J

Js
1

180 0

( )k k¢ = + J 19

( )n n¢ = + J 20

( ¯)( ¯) (¯ )(¯ ) ( )å k
k

m mY¢ = Y + - - +
+

- -
=

s s s s
J

J
s s . 21

j

J

j j
T T

1
0 0

Note the similarity between (18) and (14): Both are weighted averages between population and patient-specific
estimates, with theweight of the patient-specific estimate proportional to the number of patient-specific samples
J. Hence, both ν andκ are parameters which determine theweight between the population and patient-specific
estimates.

Thefinal termof (21) can be considered a correction for the uncertainty of the samplemean, whichmakes
the equation different from (12), where themeanwas assumed to be known.

Themaximuma-posteriori (MAP) estimate ofμ is the expected value of the posterior, m¢0, sowe let

ˆ ( ¯) ( )m
k

km=
+

+
J

Js
1

. 220

Whenonly a single observation for the newpatient is available, i. e. J= 1, (22) becomes identical to the shrinkage
estimation fromRørtveit et al (2021).

As for the IW-case, we let ˆnY = Rpop and ˆ = Y¢
n ¢

R .1 Inserting this into (21) yields

⎟

⎛

⎝
⎜

⎞
⎠

ˆ ˆ ( ¯)( ¯)

(¯ )(¯ ) ( )

ån
n

k
k

m m

=
+

+ - -

+
+

- -

=

R
J

R s s s s

J

J
s s

1

. 23

j

J

j j
T

T

pop
1

0 0

In practice, we never construct the full covariancematrix R̂. Instead, it is represented by a datamatrix which is
augmentedwith extra columns, such that ˆ¢ ¢ =D D RT . Given the population datamatrixD, where ˆ=DD RT

pop,
and the patient-specific datamatrix Swhose columns are ¯-s sj for j= 1KJ, the augmented datamatrix is

⎡
⎣⎢

⎤
⎦⎥

(¯ ) ( )
n

n m¢ =
+ +

-D
J

D
kJ

k J
s S

1
. 240

2.3.2. Variational bayesmodel
The covariancematrix ofμ describes how the individualmean varies frompatient to patient, andwe shall refer
to it as the inter-patient covariancematrix. In theNIW-model, thismatrix is

k
R1 , according to (15). But the

assumption that the intra-patient covarianceR is proportional to the inter-patient covariancemay in practice
not be fulfilled. Amore flexible approach is to separate the two, whichmotivates the followingmodel.

Assume that themeanμ is Gaussian distributed according to

( ) ( )m m~ L , . 250

Here,μ0 is the populationmean, andΛ is the inter-patient covariancematrix. Assume further thatR is IW
distributed according to (15), andμ andR are independent (unlike in theNIWmodel); i.e.

( ) ( ) · ( ) ( )m m m n= L Y f R R, ; , ; , . 260

Unfortunately, this prior is not conjugate to theGaussian likelihood (2), and there is no simple expression for the
posterior. However, bothμ andR follow tractable posterior distributionswhen conditioned on the other, namely

∣ ( ) ( )m m= ¢ L¢sR, , 270

and

∣ ( ) ( )m n= Y¢ ¢sR , , . 28

Prior distributions with this property are said to be conditionally conjugate to the likelihood. The conditional
posterior parameters m¢, L¢, Y¢ and n¢ are

( ) ( ¯) ( )m m¢ = L + L +- - - - -JR JR s 290
1 1 1 1

0
1

( ) ( )L¢ = L +- - -JR 301 1 1
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( )( ) ( )å m mY¢ = Y + - -
=

s s 31
j

J

j j
T

1

( )n n¢ = + J. 32

The derivation of (27)–(32) is given in appendix A.
Since bothμ andR are unknown, the left hand sides of (29)–(31) cannot be computed directly from the right

hand sides. An alternative is to use an approximativemethod, known asMean FieldVariational Bayes (MFVB)
(Gelman et al 1995). Thismethod is applicable for conditionally conjugate priors, and is a technique used to
approximate a complicated posterior distribution by a simpler distribution. The joint posterior distribution of
the dependent parameters are approximated by twomarginal posterior distributions by assuming
independence. In our case, we are looking for densities qμ() and qR() such that

( ) ( ) ( ∣ ) ( )m m»mq q R f R S, . 33R

In appendix B, we show that qμ() is amultivariateGaussian pdf, and qR() is an inverseWishart pdf,

( ∣ ) ( ) · ( ) ( )* * * *m m m n» L Ysf R N R, ; , ; , , 340

where the parameters are

( ) ( )* * *nL = L + Y- - -J 351 1 1

( ¯) ( )* * * *m m n= L L + Y- -J s 360
1

0
1

( )( ) ( )* * * *å m mY = Y + - - + L
=

s s J 37
j

J

j j
T

1
0 0

( )*n n= + J. 38

Equations (35)–(37)must be solved forΨ*,Λ* andμ*, but solving them analytically is not possible.We use
instead a common iterative technique, where, starting at an initial guess for the parameters, the equations are
iterated until convergence. IfΨ*(0) is the initial guess forΨ*, we get the following algorithm:

for i = 1K (until convergence)do
( )( ) ( )* * *nL = L + Y- - - -Ji i1 1 1 1

( ¯)( ) ( ) ( )* * * *m m n= L L + Y- - -J si i i
0

1
0

1 1

( )( )( ) ( ) ( ) ( )* * * *m mY = Y + å - - + L= s s Ji
j
J

j
i

j
i T i

1 0 0

end for

The iteration is guaranteed to converge to a local optimum, but not necessarily to the global optimum.Whether
wefind the global optimumor not depends on the starting point. In our case, the prior and the approximate
posterior have the same parameters, so the obvious choice of starting point is the corresponding parameter of
the prior, i.eΨ*(0) = Ψ.

Finally, we extract point estimates ofμ andR.We let ˆ *m m= 0 . For the point estimate of R̂, see section 2.4.4.
Althoughwe are not directly interested inΛ*, it is needed in order to calculate the other parameters.Λ*

represents the uncertainty about themean *m0 , and as such still contains information thatmay be valuable
depending on application. Equation (35) contains the inversion of 3matrices, all of which are of dimension
P× P. This is not practical; e.g. in our validation data,P is over 50000, so such an inversionwould require on the
order of 1014floating point operations. However, thesematrices are highly redundant, as they are estimated
from limited data. In practice, we have found that all three update equations (35), (36) and (37) can be computed
efficiently without ever constructing anyP× Pmatrices, andwith inversion ofmuch smallermatrices only. The
details of the efficient computation are given in appendix C.

2.3.3.Workflow
Whennewdata for a patient becomes available in the formof organ contours derived from3D-scans, the first
step is to obtain point-to-point correspondence between this patient’s shapes and the shapes in the training data
by deformable registration to the global reference shape. Next, the resulting shape vectors s1,K, sJ are used as
input to one of the algorithms in this section to produce patient-specific estimates of the posteriormean and
covariancematrix. How to use these further depends on the specific application.

However, the algorithms require additional parameters, specifically the hyper-parametersμ0,Ψ and ν as well
asκ orΛ depending on themodel. In this section, these parameters have been assumed given. In the next
section, we showhowwe can obtainμ0,Ψ andΛ from training data.
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2.4. Estimatingmodel parameters from training data
Bayesian algorithms require specification of the hyperparameters of the prior. For the presentmodels, these are
μ0,κ,Λ,Ψ and ν, withκ specific to theNIW-model andΛ specific to the variational Bayesmodel.The vector and
matrix valued parametersμ0,Λ andΨ are estimated from training data. Assume that data in the formof shape
vectors si,j fromM patients are available, where i is the patient number and j is the scan number, and patient i has
Ji scans.

2.4.1. Populationmean
The priormeanμ0 is the populationmean shape, which is simply calculated as the average of all the individual
mean shapes in the training data:

¯ ( )å å åm = =
= = =M

s
M J

s
1 1 1

. 39
i

M

i
i

M

i j

J

i j0
1 1 1

,

i

2.4.2. Population covariancematrix
The population covariancematrixRpop, defined in (5), is in practice represented by its principal components and
their variances. PCAof such amatrix has been dubbed ‘simultaneous component analysis’ (SCA) (Timmerman
andKiers 2003), since all patients are assumed to share the same principal components. The datamatrix which is
input to SCA contains all the columns from the patient-specific datamatrices in the training data:

[ ] ( )= ¼D
M

D D D
1

, 40Mpop 1 2

whereDi is

[ ¯ ¯ ¯] ( )=
-

- - ¼ -D
J

s s s s s s
1

1
. 41i

i
i i i i i J,1 ,2 , i

The covariancematrix ˆ =R D DT
pop pop pop is used for both the classical populationmodel and theNIW-model.

In the variational Bayesmodel, the scalematrixΨneeds to be invertible.Wewill use a regularization
approach for thismodel, wherewe add a constant δΨ times the identitymatrix, I ,to the scaled sample
covariancematrix:

ˆ ( )n d n dY = + = +Y YR I D D I. 42T
pop pop pop

This structure, together with the similar structure of the inter-patient covariancematrix,makes it possible to
compute the update equations(35)–(37) efficiently through the procedure detailed in appendix C.

2.4.3. Inter-patient covariancematrix
In the variational Bayesmodel, we also need to estimate the covariancematrixΛ ofμ, the inter-patient
covariancematrix. Thismatrix describes the uncertainty ofμ. By definition,

[( )( ) ] ( )m m m mL = - -E , 43T
0 0

where E[] is the expected value operator.We do not have direct observations ofμ, but we have estimates, s̄i. A
natural extension of the sample covariancematrix suggests an estimator of the form

ˆ (¯ ˆ )(¯ ˆ ) ( )å m mL =
-

- -
=M

s s
1

1
. 44

i

M

i i
T

b
1

0 0

This estimate ofΛ is biased, since the samplemean s̄i is not equal to the truemeanμ.We show in appendixD
that the expected value of L̂b is

[ ˆ ] [ ] ( )L = L +E cE R , 45b

where = å =c
M i

M
J

1
1

1

i
. The bias is therefore inversely proportional to the number of scans per patient. SinceRpop

is an unbiased estimate ofE[R], we can get an unbiased estimate ofΛ as

ˆ ˆ ( )L = L - cR . 46b pop

However, since both L̂ and R̂pop are low rank, and they range over different subspaces, the resultingmatrix is not
positive semidefinite. Thismakes PCA a bitmore complicated, but it is still possible. Details are given in
appendix E. As for the intra-patient covariancematrix, the inter-patient covariancematrixmust also be
invertible, therefore we add a regularization factor δΛI. Additionally, sinceΛ expresses our uncertainly about the
mean estimate, wewant to have the possibility of increasing its overall size, sowe introduce a constantmultiplier
α, whichfinally leads to
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ˆ ( )a dL = L + LI. 47

2.4.4. Probabilistic PCA
In theNIW-model, we used the point estimate Y¢

n ¢
1 forR, where Y¢ is the posterior scalematrix, and n¢ is the

posterior degrees of freedom. In the variational Bayesmodel, this is less straightforward. The posteriorΨ* can be
expressed as * * *d+ YD D IT for someD* and some *dY. The posterior *dY is approximately proportional to the

prior δΨ, andwith a large δΨ, the estimate * * * *
* * *

dY = +
n n n YD D IT1 1 1 places an unreasonable amount of

variance on the shape coordinates. For this reason, we introduce a newparameter δR, and set the point estimate
ofR to

ˆ ( )
*
* *

*n
n
n

d= +R D D I
1

. 48T
R

For the prior distribution, the point estimate forR is found by replacing the posterior parameters values in (48)
by the equivalent prior parameters. This yields

ˆ ( )d= +R D D I. 49T
R0 pop pop

WhenDpop is found through PCA, this structure fits the description of probabilistic PCA (PPCA) introduced by
Tipping andBishop (1999). Theirmethod provides amaximum likelihood estimate for δR given by

( )åd l=
- = +P K

1
, 50R

k K

P

k
1

whereλk is the kth largest eigenvalue of the population covariancematrix in (5) (i.e. the variance of the kth
principal component), andK is the number of eigenpairs not discarded in PCA. In other words, δR is the average
variance of the discarded dimensions.

3. Evaluation

3.1.Material
For evaluation, we used data from37 patients with locally advanced prostate cancer. Each patient had 9-11CT
scans taken during treatment (typically 2 per week), including the planCTused for RT dose planning. No
laxatives were administered to the patients before or during treatment. The rectumwas definedwith content
from the recto-sigmoid flexure to the anal verge. One single expert physicist contoured rectumon all CT scans
for all patients, and all contours were reviewed and corrected by another expert physicist. This yielded a total of
373 rectum shapes, whichwere used in leave-one-out cross-evaluation. Details about the patients and treatment
can be found inHysing et al (2018). All shapes from theCT scanswere converted tomesh representations with
corresponding vertices, using deformable registration. Since toxicity is related to dose to the rectal wall and not
its content, we evaluated themethods on the rectal wall. Since the inner wall is not seen onCT scans, we assumed
3mmwall thickness, as in Sanguineti et al (2020).

3.2. Parameter values
The values of the scalar parameters were tunedmanually. The values we used are shown in table 1. For the
parametersK-intra and ν, which are applicable tomultiple algorithms, we used the same value for allmodels.

3.3. Coverage probabilitymatrices
To calculate predictedCPMs,μi andRiwasfirst estimated for each patient i using the patient-specific,
population, and twoBayesianmethods. For eachmethod, 500 random rectal wall shapes per patient were then
generated based on the distributions ( )m R,i i . For each generated shape, we foundwhich voxels (on a
1× 1× 1 mmgrid)were covered by the rectal wall using an in-house developed ray-tracing algorithm. The

Table 1.Parameter values for allmodels. K-intra is the number of principal
components used to compute the intra-patient covariancematrix,K-inter
is the same for the inter-patient covariancematrix, ν andκ are scalar
hyperparameters of the IW/NIWdistributions, δΛ and δΨ are
regularization parameters for thematrices used in the variational Bayes
iteration, andα is theweight of the inter-patient covariancematrix.

K-intra K-inter ν κ δΨ δΛ α

12 20 6 0.25 240 000 80 000 4
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coverage probability of each voxel was defined as the fraction of generated rectal walls covering that voxel. This
procedure was repeated using one, two and three input scans for eachmethod.

We used the remaining independent Ji− 3 scans for each patient to compute reference CPMs. Since
relatively few scans (6–8)were then available, we used the bootstrapping procedure detailed in section 3.4with
this data to generate smoothCPMs. The reference CPM for each patient was computed by drawing 500
bootstrapped rectal wall shapes, and setting the coverage probability of each voxel equal to the proportion of
these shapes that covered the voxel.

The predictedCPMs and referenceCPMs (the ground truth)were compared in terms of their normalized
cross-correlation:

( ) ( )

( ) ( )
( )

å
=

å

å

Î

Î
Î

c
p v p v

p v p v
, 51

v V

v V
v V

predict true

predict
2

true
2

whereV is the set of all voxels, and ppredict(v) and ptrue(v) are the predicted and true coverage probabilities at voxel
v, respectively.

3.4. Convergence behaviour
To analyse convergence of the fourmethodswithout re-using structures for both training and testing, we created
a virtual data set for each patient in the original data set by using a PCA-based bootstrapping procedure: For each
patient, wefirst calculated the principal components using all the patient’s available shapes.We then calculated
the PCA-scores for each shape: ci,j,k, where i is the patient number, j is the scan number and k is the component
number. To generate a new random scan for patient i, a newPCA-score *ck was drawn for each component
number k, and a new shape *si was synthesized according to

¯ ( )* *å= +
=

s s c w , 52i i
k

J

k i k
1

,

i

wherewi,k is the kth principal component vector for patient i. The *ck values were drawn randomly from the
existing values ci,j,k for j= 1K Ji, i.e. by bootstrapping. Since the principal component scores are uncorrelated,
suchmixing of the scores should create realistic new shapes. The bootstrapping proceduremeans that no specific
distribution has been assumed.

For each patient, we generated 10 shapes using this procedure. These shapes were used as input to themodels
to estimate CPMs. The estimatedCPM for each patient was compared to the reference CPM for that patient,
whichwas generated using all individual scans.

3.5. Impact of the uncertainty parameter δR
For the variational Bayesmodel, the parameter δRnaturally occured from the equations and the requirement
that the covariancematrixmust be non-singular. The PPCAmethod that we used tofind δR can also be used for
the othermethods.We therefore tested the effect of δR on the the populationmodel, theNIWmodel and the
variational Bayesmodel, and compared the result to non-probabilistic PCA, i. e. δR= 0. PPCA is not practical for
the patient-specificmodel with as few as 3 input scans, since it requires that some principal components are not
used. For the populationmodel, δRwas set constant, while for theNIWand variationalmethod, it was updated
according to the update equations forΨ, which leads to

( ) ( ) ( )d
n
d=

+
n

n

n
0 , 53R R

where n is the number of scans.
Themotivation for this additional evaluationwas to avoid a bias in favour of the variational Bayesmodel.

4. Results

Visual comparison of the four first population intra-patientmodesfits with anatomical expectations (figure 2).
Thefirstmode ismainly bending of the anorectal flexure; in the bent state, the rectum is less filled than in the
straight state. The secondmode shows stretching and compressing of the rectum in the caudal–cranial direction.
The thirdmode showsmainly stretching of the top of the rectum in the left-right direction, while the fourth
mode shows bending left-right of the top of the rectum.A general finding is that themost caudal third of the
rectum, up to slightly above the anorectalflexure,moves very little. This is corroborated byfigure 3, which shows
coverage probabilities of the rectumwall for two example patients, a ‘smallmover’ and a ‘largemover’.

The Bayesianmodels take advantage of population data alsowhen estimating the patient-specificmean
rectum m̂ . Figure 4 shows how themean estimatesmay differ with the Bayesianmodels for an example patient,
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Figure 2.The four greatest population intra-patient deformationmodes. The green and blue shapes represent+2 and−2 standard
deviations of the deformationmode from the populationmean rectum shape. A videowith animation of the deformationmodes is
available in the supplementarymaterial.

Figure 3.Coverage probabilitymatrices for the rectal wall on a sagittal slice of theCT scan for two example patients—a ‘smallmover’
(A) and a ‘largemover’ (B). The red area is the high dose volume to the prostate, that receivesmore than 67 Gy EQD2.

Figure 4.Estimatedmeans and actualmean rectum shape for an example patient. A: PlanCT rectum shape, input to estimation
algorithms. B:Mean rectum shape estimated byNIWmodel. C:Mean rectum shape estimated by variational Bayesmodel. D: Actual
mean rectum shape over 9 scans.
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given a single input scan. For this patient, themean shape from variational Bayesmodel had the greatest
similarity with the truemean shape.

The average correlation between the estimatedCPMs and the references is shown infigure 5(A), while
figure 5(B) shows the spread of the results among the individual patients. The twoBayesianmethods outperform
both the existingmodels, with the variational Bayesmodel showing superior results to theNIW-model. The
results are summarized in table 2, where the patient-specificmodel has been left out since it performs poorly
with as few as three scans. The differences between the population,NIWand variational Bayesmodel were
consistently significant (p< 0.05). In comparison to the best existingmodel (the populationmodel), the
variation Bayesmodel improved correlationwith the reference CPM in 35 out of 37 patients when using a single
input scan (figure 6).

4.1. Convergence behaviour
The twoBayesianmethods both outperform the patient-specificmodel with up to 6 scans, and outperforms the
populationmodel for any number of scans (figure 7). As the number of input scans increases, the patient-specific
model and the twoBayesianmodels appear to converge toward the trueCPM,while the populationmodel
improves onlymoderately. This is to be expected, since, in the populationmodel, the covariancematrix
representing the random error is never updated. All improvement seen in the populationmodel is therefore
from reduction of error in themean estimate, often referred to as systematic error. The performance of the
patient-specificmodel is comparable to that of the populationmodel when both are given 4 scans. Formore than
4 scans, the patient-specificmodel outperforms the populationmodel. The variational Bayesmodel consistently
performs slightly better than theNIW-model.

4.2. Impact of the uncertainty parameter δR
For all themodels, PPCA through the addition of the δRparameter increases correlation as compared to
ordinary PCA, as shown infigure 8. The difference between themodels with andwithout the uncertainty

Figure 5.Correlation between the estimatedCPMs and the references for the differentmethods using 1–3 input scans. A: Average
correlation. B: Box plots showingmedian, 25th and 75th percentile andminimumandmaximumvalues (whiskers). All individual
values are also shown as circles over the box plot.

Table 2.Difference in CPMcorrelation between the population, NIWand variationalmodels using one, two and
three scans.Here,Δμ is the difference in average value of theCPMcorrelations, and%+ is the percentage of patients
that saw improvement with the firstmethod over the second.

NIWversus pop.model

Variational versus pop.

model Variational versusNIW

Δμ p-value %+ Δμ p-value %+ Δμ p-value %+

1 scan 0.026 6.2e-5 78 0.058 1.2e-8 95 0.032 2.2e-6 81

2 scans 0.014 1.8e-4 81 0.027 2.5e-6 86 0.013 1.2e-3 70

3 scans 0.015 2-2e-6 89 0.023 8.0e-7 89 0.008 0.01 62
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parameter is greatest when using a single scan. Although the differences between themodels decreased, both
Bayesianmethodswith ordinary PCA still perform the same as, or better than the populationmodel with PPCA.

5.Discussion

Both the newmodels outperform the existing populationmodel significantly. Conceptually, theNIWmodel is
only slightlymore complex than the populationmodel, so there is little rationale for rather using the population
model. Additionally, figure 6 shows that the Bayesianmodels are robust, as evidenced by the fact that 35 out of 37
patients had improved result with the variational Bayesmodel over the populationmodel (29/37 for theNIW-
model without PPCA). There is therefore very little risk involved inmoving to a Bayesianmodel.

It is to be expected that the new algorithmswill performworse for some patients due to the randomnature of
the data.Nevertheless, we examined the data for the two patients who performedworsewith the variational
Bayes than the populationmodel using one scan to see if therewere notable patterns.While no conclusion can be

Figure 6.Correlation between the estimatedCPMs and the references; comparison between the traditional populationmodel and the
proposed variational Bayesmodel. All points above the ‘x = y’ line represent patients forwhich the variational Bayesmethod
produced a better CPMestimate than the populationmodel.

Figure 7.Average correlation between the estimatedCPMs and the reference CPMs for the differentmethods using 1–10 scans, based
on bootstrapped data.

12

Phys.Med. Biol. 68 (2023) 055009 ØLRørtveit et al



reached, it seems that, for these patients, the rectal shape in the pCT is coincidentally similar to themean shape
over all CTs.

The choice between the twoBayesianmethods is a tradeoff betweenmodel accuracy and complexity. The
main concernwith the variational Bayesmodel is the conceptual rather than the computational complexity—it
ismore challenging to implement and requiresmore parameters than theNIWmodel.When using PPCA, the
NIWmodels performance gets close to that of the variational Bayesmodel.

As expected, the patient-specificmodel cannot compete with the othermodels when few scans are available.
Thismodel still has an advantage in that no training data from the population is required. Additionally,
deformable registration ismore readily available between contours of the same patient than between contours of
different patients. There are therefore applications where the patient-specificmodel is the only available option.
However, in these cases, care should be taken that sufficient scans are available, as shown infigures 5 and 7.

The convergence analysis infigure 7 shows that we have achieved the goal of combining the advantages of
bothmodels; requiring few scans to achieve good accuracywhile also improving accuracywithmore scans. At
around eight scans, the patient-specificmodel catches upwith the Bayesianmodels. This is to be expected -at
that point, the Bayesianmodels put very little weight on the population data since there is sufficient patient-
specific data for an accuratemodel.

We have evaluated themodel for the rectum, a highlyflexible and deformable organ. The ability of the
method tomodel other organswill depend on the amount of individual variation and the ability of the training
data to replicate the variations that appear in the population. The fact that themodels combine patient-specific
data with the training data suggests that they should out-performpurely population basedmethodswhen there
is great variability in the individual deformation. It is also possible tomodelmultiple organs simultaneously, as
donewith the individualmodel in Söhn et al (2005). Thismay be advantageous, as correlations between the
deformations of the different organs and their relative positions are taken into account.

As far as our experience goes, the variational Bayes iteration is not sensitive to the selected starting guess of
the scalematrixΨ*, it appears to converge to the same solution regardless of starting point. The iteration takes
less than a second to run for a single patient. Generating aCPMwith a resoluton of 1 mm (about 3million
points) from500 generated shapes took about 5 seconds on a standard PC. In practice, themain computational
effort will be spent on deformable registration, which takes about 2minutes for a single registration in our setup5

5.1. Applications
The calculation ofCPMsplay a key role inmany applications of organdeformationmodels (Price and
Moore 2007). TheCPMs can be used for robust RTplanning (Baum et al 2006), or to calculatemargins based on
the formula of Stroom et al (1999), as inHysing et al (2011), Thörnqvist et al (2013a),Magallon-Baro et al (2019).
In Ramlov et al (2017), Lindegaard et al (2017), CPMswere used clinically to reduce toxicity in nodal boosting of
cervical cancer RT.Applications besidesCPMs include robust evaluation through treatment course simulation
(Söhn et al 2012,Hysing et al 2018), generation of plan libraries for RTpersonalized tomotion (Rigaud et al 2019)

Figure 8.Comparison of ordinary and probabilistic PCA for differentmodels. Each symbol represents the average correlation between
the estimatedCPMs and the references.

5
Matterhorn software fromErasmusMC (Rotterdam), running on an Intel i7-4600U2.1 GHzCPU.
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andmotion-robust optimization (Sobotta et al 2010,Unkelbach et al 2018). Recently,Owens et al (2022)used a
pure inter-patientmodel to reconstruct colorectal dose in childhood cancer survivorswhohad receivedRTwith
noCT simulation. Thus, applications also extends to improving evaluation of complications fromRT.

The Bayesian approach offers additional advantages because it quantifies themodel uncertainty. Consider
for example the robust evaluation in Söhn et al (2012), Hysing et al (2018): predicting dose-volume histograms
(DVHs)with uncertainties (such as 5th and 95th percentiles).When using a non-Bayesian deformationmodel,
the correctness of the predicted values rely on the correctness of themodel’s parameters.With a Bayesianmodel,
the uncertainty of the parameters will translate to additional uncertainty regarding the dose-volume histogram,
thus increasing the difference between the expected value and the 5/95 percentiles.

Interfractional geometrical errors in RT are often divided into systematic and randomerrors. The random
error is themotion around themean shape and position at each fraction, while the systematic error is the
difference between the actualmean and the estimatedmean, usually the shape and position at the planCT. In
terms of the deformationmodels, the systematic error is the difference between the estimated and the true
patientmean, m̂ m- . The presented Bayesianmodels reduces the systematic error as compared to the previous
methods by utilizing population datawhen estimating m̂ (see figure 4). In addition, the newmodels provide a
personalized distribution for the systematic error in terms of the posterior inter-patient distribution. Thewidely
appliedmargin recipe by vanHerk et al (2000) uses the formula 2.5Σ+ 0.7σ, whereΣ andσ are the standard
deviations of the systematic and random errors, respectively. Because the distribution of both the systematic and
randomerrors aremodeled under the Bayesian framework, it is in principle possible to use similar recipes for
margins due to deformation.

5.2. Choice of evaluationmetric
The cross-correlationmetric puts proportionally higherweight on voxels that have a high coverage probability.
Since a large portion of the organ tends to overlap inmost or all shapes for one patient, allmethodswill tend to
produce relatively high correlation values. Therefore, the differences between themethodsmay seem small.We
still choose to use thismetric because of its simplicity and ease of reproduction.

5.3. Gaussian likelihood
Both the Bayesianmodels and themodels we compare tomake the assumption that the data for a given patient is
multivariate Gaussian distributed. This has been a standard assumption in applications of deformationmodels
(e.g. Söhn et al 2012, Rios et al 2017). In the high dimensions that we operate in, it would require unrealistically
many individual scans to disproveGaussianness. Nevertheless, this assumption is a possible source of error,
which showcases the need to evaluate themodel against real data.

It should be possible to adapt the patient-specific and populationmodels to use a nonparametric
distribution of the PCA-scores as in Fontenla et al (2001), but this has not yet been demonstrated. In a Bayesian
model, a non-Gaussian likelihoodwouldmake calculating the posteriormathematically intractable.

5.4. Parameter values
The values of the scalar parameters in table 1were hand tunedwith the objective tomaximize theCPM
correlations. Since it is not possible to evaluate the accuracy of the estimated distribution for a newpatient
without havingmany individual scans, onemust in practice trust that parameter values that workedwell for the
training data also workswell for newpatients. If newdata source is in someway different from the training data
(e.g. a different imagemodality or IGRT routine, a different diagnosis or otherwise different type of patient), the
parameters should at least be evaluated for this kind of data. However, in such cases Bayesian inference should
performbetter than a pure population approach, as it tailors the distribution to the data at hand.

The parameterκ for theNIW-model was set to 0.25. Using equation (18), wefind that, given one input scan,
this represents an shrinkage factor of 0.2; i.e the estimatedmean is ‘shrunk’ by a factor 0.2 towards the population
mean (Rørtveit et al 2021). The parameter ν, the number of degrees of freedomof theWishart distribution, was
set to 6 for both theNIWand the variationalmodel. Normally, ν represents the number of samples fromwhich
Ψwas computed. However, this is under the assumption that these samples were all drawn from the same
multivariate Gaussian distribution. In our case, the samples were drawn fromM differentGaussian distributions
with covariancematricesRi, none of whichmatch a future patient’s covariancematrix. Therefore, we aremuch
less certain aboutR, andwe need to choose a value for ν that ismuch smaller than the total number of
observations in the training data.

When tuning the values of δΨ and δΛ, we found that these needed to be set surprisingly large to achieve
satisfactory results. Possibly, some assumptions or parts of themodel do not actuallyfit the datawell, and
increasing the regularization values then compensates for the poorfit. This underscores the importance of
evaluating themodels with realistic data, and tailoring the parameters to the case at hand.
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5.5.Degenerate inverseWishart distribution
The inverseWishart distribution is usually defined in terms of the (forward)Wishart distribution: If a random
n× nmatrixG isWishart distributedwith ( )n~ YG , , then its inverseG−1 is inverseWishart distributed
with ( )n~ Y- -G ,1 1 . However, when ν< n, theWishart distribution is degenerate, as anymatrixGwith a
non-zero probability density has rank ν and is therefore singular. Then this definition of the IWdistribution
does notwork. A singular inverseWishart distribution is defined through the pseudo-inverse ofW (Cook and
Forzani 2011, Bodnar et al 2016). Unfortunately, this distribution is not well behaved, and does not have afinite
expected value. Sincewe do not explicitly use the distribution, but rather a point estimate, this does notmake a
difference when using themodels as described in this paper.However, caremust be taken if using the full
Bayesianmodel as described in section 5.6, as individual realizations ofG can have very large eigenvalues.

5.6. Extensions
Wehave applied themodels to the rectum alone, however, for use in e.g. robust optimization, it would be
advantageous tomodel several structures simultaneously so that the correlation between structures are taken
into account.

In the evaluation of the algorithms, we used point estimates forμ andR as opposed to a full distribution.We
have thus ignored the uncertainty in themodel itself, and therefore sinned against the Bayesian philosophy.We
chose to do this for the sake of computational complexity. However, it is possible to account for the additional
uncertainty:When performingMonte-Carlo sampling, onewould first sampleμ andR from the posterior
distribution every time before sampling s from ( )m R, . The resulting distribution of s is called the posterior
predictive distribution. Particularly the sampling ofR is computationally intensive. An alternative approach
might therefore be to use a point estimate forRwhile samplingμ, as systematic errors are often of greater
importance than random errors.

The presentedmodels have been applied to deformably registered organ surfaces. Amore common formof
deformable registration is the deformation of 3D-images with image intensities. Since both types of registration
produce deformation vector fields, it is possible, with some adaptions, to apply thesemodels to deformed images
aswell.

6. Conclusions

Wehave implemented and evaluated twoBayesianmethods formodelling organ deformation occuring during
RT treatment. TheNIWand the variational Bayesmodels both outperformed previous organ deformation
models when applied to the rectal wall of prostate cancer patients.
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AppendixA.Derivation of the conditional posteriors

The pdf for themultivariate Gaussian distribution for a vector x of dimension p is
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The joint pdf ofμ,R and the samples S= {s1, s2,K,sn}, based on our prior and our likelihood is
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Writing this out using (A.1) and (A.2), and leaving out any constant factors (factors that do not containμ,R or S),
wefind
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Using the property of the trace ( ) ( )=ABC CABtr tr and the fact that a scalar is its own trace, the sumwithin the
exponential can bewritten as
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To condition (A.4) onμ and S, we can leave out any factors not containingR - that is, the first term in the
exponenial. Using (A.6), wefind
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which concludes the derivation of the conditional posterior forR.
Next, we condition (A.4) onR and S tofind
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Looking actively for aGaussian distribution, wewant tofind that the terms inside the exponential are equal to
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for some L¢ and m¢, with any constant term c. Grouping the terms that are quadratic inμ, we find
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1 1 1

therefore, if this is aGaussian distribution, wemust have

( ) ( )L¢ = L +  L¢ = L +- - - - - -nR nR . A.131 1 1 1 1 1

Grouping the linear terms, we find

( ¯) ( )åm m m m m- L - = - L +-

=

- - -R s nR s . A.14T

i

n
T

i
T1

0
1

1 1
0

1

Setting this equal to the linear terms in (A.11), we have

( ¯) ( )m m m mL¢ ¢ = L +- - -nR s , A.15T T1
0

1
0

1

which is true for anyμ if and only if

( ¯) ( )m m¢ = L¢ L +- -nR s . A.160
1

0
1

The constant terms can be ignored, as theywill be absorbed by the normalization. Finally, this gives us

⎛
⎝

⎞
⎠

( ∣ ) ( ) ( ) ( )m m m m mµ - - ¢ L¢ - ¢-f R S, exp
1

2
A.17T

0
1

0

( ) ( )m mµ ¢ L¢ ; , , A.180

with m¢0 as in (A.16) and L¢ as in (A.13). ,

Appendix B. Variational approximation

Tofind the functions qμ and qR, we follow the procedure presented inGelman et al (1995). Theminimizing
functions are given by

( ) [ ( ∣ )] ( )m m= +mq E f R Slog log , const B.1R

and

( ) [ ( ∣ )] ( )m= +mq R E f R Slog log , const, B.2R

where ER andEμ indicate an average overR only orμ only, respectively.
Inserting (A.10) into (B.1), we get

⎡
⎣

⎤
⎦⎥

( ) ( ) ( )

( ) ( ) ( )å

m m m m m

m m

= - - L -

- - - +

m
-

=

-

q E

s R s

log
1

2

1

2
const B.3

R
T

i

n

i
T

i

0
1

0

1

1

( ) ( )

( ) [ ]( ) ( )å

m m m m

m m

=- - L -

- - - +

-

=

-s E R s

1

2
1

2
const. B.4

T

i

n

i
T

i

0
1

0

1

1

Following the lines of the derivation in appendix A, wefind

( ) ( ) ( )* *m m m= Lm q ; , , B.50

with

( [ ]) ( [ ] ¯) ( )*m m= L + L +- - - - -nE R nE R s . B.60
1 1 1 1

0
1

and

( [ ]) ( )*L = L +- - -nE R . B.71 1 1

Similarly, we insert (A.7) into (B.2) tofind

⎤
⎦⎥

( ) [ (∣ ∣ )

([ ( )( ) ] ) ( )

( )

å m m

=

- Y + - - +

m
n- + + +

=

-

q R E R

s s R

log log

1

2
tr const B.8

R
p n

i

n

i i
T

1 2

1

1

17

Phys.Med. Biol. 68 (2023) 055009 ØLRørtveit et al



(∣ ∣ )

([ [( )( ) ]] ) ( )

( )

å m m

=

- Y + - - +

n- + + +

=

-

R

E s s R

log

1

2
tr const B.9

p n

i

n

i i
T

1 2

1

1

The termwithin the expectation operator is

[( )( ) ]

( [ ] [ ] [ ] ) ( )

å

å

m m

mm m m

- -

= + - -

=

=

E s s

s s E E s s E B.10

i

n

i i
T

i

n

i i
T T

i
T

i
T

1

1

( [ ])( [ ]) ( [ ] [ ] [ ] ) ( )å m m mm m m= - - + -
=

s E s E n E E E B.11
i

n

i i
T T T

1

( [ ])( [ ]) · ( ) ( )å m m m= - - +
=

s E s E n cov . B.12
i

n

i i
T

1

This leads to

( ) ( ) ( )* *n= Yq R R; , , B.13R

with

( )*n n= + n B.14

and

( [ ])( [ ]) · ( ) ( )* å m m mY = Y + - - +
=

s E s E n cov . B.15
i

n

i i
T

1

Finally, we replace themoments in (B.6), (B.7) and (B.15) by themoments from the approximate distributions
qμ and qR. SinceR, according to (B.13), is inverse-Wishart distributedwith scalematrixΨ* and ν* = ν+ n
degrees of freedom, its inverseR−1 isWishart-distributedwith scalematrixΨ*−1 and ν+ n degrees of freedom.
Its expectation isE[R−1]= ν*Ψ*−1. Thereforewefind

( ( ) ) ( ( ) ¯) ( )* * *m n m n= L + + Y L + + Y- - - - -n n n n s B.160
1 1 1 1

0
1

and

( ( ) ) ( )* *nL = L + + Y- - -n n . B.171 1 1

By (B.5), themean and covariace ofμ is *m0 andΛ
*, therefore (B.15) becomes

( )( ) ( )* * * *å m mY = Y + - - + L
=

s s n . B.18
i

n

i i
T

1
0 0

AppendixC. Efficient computation of the update iteration

The key tofinding the estimatedmean and covariancematrix for a patient is iteration over the update equations,
repeated here for convenience:

( ( ) ) ( )* *nL = L + + Y- - -n n C.11 1 1

( ( ) ¯) ( )* * *m m n= L L + + Y- -n n s C.20
1

0
1

( )( ) ( )* * * *å m mY = Y + - - + L
=

s s n C.3
j

n

j j
T

1
0 0

( )*n n= + n C.4

Only ν* can be calculated directly. The other parameters rely on each other, and therefore require an iteration to
converge to the correct values.

Putting the iteration number i in a superscript (replacing ·*), we canwrite the iteration as

( ( ) ) ( )( ) ( )nL = L + + Y- - - -n n C.5i i1 1 1 1

( ( ) ¯) ( )( ) ( ) ( )m m n= L L + + Y- - -n n s C.6i i i
0

1
0

1 1
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( )( ) ( )( ) ( ) ( ) ( )å m mY = Y + - - + L
=

s s n C.7i

j

n

j
i

j
i T i

1
0 0

Wecan see that we need to supply a starting guess for the first valueΨ(0).5 A natural starting guess isΨ(0) = Ψ.
In theory, the iteration represented by equations (C.5)–(C.7) can be implemented directly in any numerically

oriented programming language.However, this would require storing and inverting very largeP× Pmatrices,
which is not attainable in practice. However, due to the structure ofΨ andΛ (when estimated as in sections 2.4.2
and 2.4.3), memory and computation requirements can be drastically reduced.

BothmatricesΛ andΨ can be represented as an outer product of a datamatrix with itself plus a scalar
multiple of the identitymatrix:

( )dL = +L L LD D I C.8T

( )dY = +Y Y YD D I. C.9T

Here,DΨ andDΛ areP×NΨ andP×NΛmatrices, withNΛ,NΨ= P.Multiplying a vector a by such amatrix is
much faster than the generalO(P2)figure, since e. g.

( ) ( ) ( )d dL = + = +L L L L L La D D I a D D a a, C.10T T

which is easily computed inO(NΛP) time. Furthermore, it is also fast to solve an equation such asΛx= b.
Throughout this derivationwe shallmake heavy use of the following special case of theWoodburymatrix

identity, which holds for anymatricesA andB and scalar δ as long as the involved inversions are possible:

( ) ( ) ( )d d d d+ = - +- - - - -I ABA I A B A A A . C.11T T T1 1 1 1 1

Thismeans that the inverses ofΛ andΨ can also bewritten in the formDCDT+ δI for someD,C and δ.

C.1. ComputingΛ(i)

We shall show later thatΨ(i) can bewritten for any i as

( )( ) ( ) ( ) ( ) ( )dY = + YD G D I, C.12i i i i T i

for some ( )dY
i andG( i), andwhere

[ ] ( )( ) ( )= L YD D D C.13i i

for some ( )
YD i of dimension P× (NΨ+ n). Inserting (C.8) and (C.12) into (C.5), we get

[( ) ( )( ) ] ( )( ) ( ) ( ) ( ) ( )d n dL = + + + +L L L
- - - -

Y
- - -D D I n n D G D I . C.14i T i i i T i1 1 1 1 1 1 1

Using thematrix inversion lemma (C.11) on both the inner inverses of (C.14), we get

[ ( ) ( )
( ) ( ) ] ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

d d d n d

n d d

L = - + + +

- + +
L
-

L
-

L L L L
-

L Y
- -

Y
- - -

Y
- - - - - - - -

I D I D D D n n I

n n D G D D D C.15

i T T i

i i i i i T i i T

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

In order to group the terms, note that

( ) ( )( ) ( )d d- + =L
-

L L L L
-

L
- -D I D D D D QD , C.16T T i i T1 1 1 1

whereQ is a block-diagonalmatrix

⎡
⎣⎢

⎤
⎦⎥

( ) ( )d d= - +L
-

L L L
-

+ ´ +Y Y

Q
I D D

0
. C.17

T

N n N n

1 1

Wealso define

( ) ( )( ) ( ) ( ) ( ) ( ) ( )d d= - +Y
-

Y
- -L G D D C.18i i i i i T i1 1 1

and

( ) ( )( ) ( )n= + + -F Q n n L C.19i i 1

Now,we canwrite

( ( ) ) ) ( )( ) ( ) ( ) ( ) ( )d n dL = + + +L
-

Y
- - - - -n n I D F D , C.20i i i i i T1 1 1 1 1 1

Applying thematrix inversion lemma again, we find

( )( ) ( ) ( ) ( ) ( ) ( )d dL = - - -I D H D , C.21i i i i i i T1 1

5
Given that the iteration starts with the equation forΛ(1). If we had startedwith one of the other equations, a starting guess for at least one

other parameter would need to be provided.
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where

[ ] ( )( ) ( ) ( ) ( ) ( )d= +- - - - -H D D F C.22i i T i i i1 1 1 1 1

and

( ( ) ) ( )( ) ( )d d n d= + +L
-

Y
- - -n n . C.23i i1 1 1 1

equation (C.21) gives us an expression forΛ(i)using only lower dimensionalmatrices and scalars. In practice, we
never constructΛ(i)

—it is represented implicitly byD( i),H( i) and δ( i) through (C.21).

C.2. Computing ( )m i
0

Through the derivation ofΛ(i), we have already come a longway towards computing ( )m i
0 .We canwrite (C.6) as

( )( ) ( ) ( )m = L r , C.24i i i
0

with

( ) ¯ ( )( ) ( )m n= L + + Y- - -r n n s . C.25i i1
0

1 1

Thefirst termof (C.25) is constant, and can be computed once. Using thematrix inversion lemma on (C.8), we
find

( ) ( ) ( )m d m d d mL = - +-
L
-

L
-

L L L L
-

LD I D D D C.26T1
0

1
0

1 1
0

The last termneeds to be computed for each iteration.Wefind it by using thematrix inversion lemma on (C.12):

¯ ( ( ) ) ¯ ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )d d dY = - +-
Y

-
Y

-
Y

- -s I D G D D D s C.27i i i i i i i T i i T1 1 1 1 1

¯ ( ¯) ( )( ) ( ) ( ) ( )d= +Y
- s D L D s C.28i i i i T1

Finally, inserting (C.21) into (C.24), wefind

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )m d d= - - -r D H D r . C.29i i i i i i i T i
0

1 1

C.3. ComputingΨ(i)

The update equation forΨ is

( )( )

( )( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

å

å

m m

d m m

Y = Y + - - + L

= + + - - + L

=

Y Y Y
=

s s n

D D I s s n . C.30

i

j

n

j
i

j
i T i

T

j

n

j
i

j
i T i

1
0 0

1
0 0

Wecan augment the datamatrixDΨ by inserting new columnswhich are themean-subtracted data vectors;

[ ] ( )( ) ( ) ( ) ( )m m m= - - ¼ -Y YD D s s s , C.31i i i
n

i
1 0 2 0 0

andwefind

( )( ) ( ) ( ) ( )dY = + + LY Y YD D I n . C.32i i i T i

Inserting (C.21), we get

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )d d dY = + + -Y Y Y
- -D D I n I D H D C.33i i i T i i i i i T1 1

Wewant to group the terms of this equation, but run into a slight problem:One term contains ( )
YD i , while

another term containsD( i−1) (which contains )( )
Y
-D i 1 . In practice, this can easily be resolved by replacingD( i−1)

byD( i); this is in linewith the algorithmphilosophy of always using themost recent guess of each parameter, and
also guarantees that the equations (C.1)–(C.3) hold at convergence (at convergence, we haveD( i) = D( i−1)).
Now, to group the terms,first note that

( )( ) ( ) ( ) ( )=Y YD D D KD , C.34i i T i i T

where

⎡
⎣⎢

⎤
⎦⎥

( )= ´

+

L L

Y

K
I

0
. C.35

N N

N n

Thus, we canwrite

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )d d dY = - + +YD K n H D n I. C.36i i i i i T i
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Wenow see thatwemust have

( )( ) ( ) ( )d= -G K n H C.37i i i

and

( )( ) ( )d d d= +Y Y n C.38i i

in order forΨ(i) to bewritten as

( )( ) ( ) ( ) ( ) ( )dY = + YD G D I. C.39i i i i T i

C.4. Initial values
Initially, wewant to getΨ(0) = Ψ, i. e. ( ) ( ) ( ) ( )d d+ = +Y Y Y YD G D I D D IT T0 0 0 0 which achieve by setting

( )( )d d=Y Y C.400

[ ] ( )( ) =Y Y ´D D 0 C.41P n
0

( )( ) =G K . C.420

However,G(0) is not invertible, whichmakes it impossible to compute L(0) as in (C.18). Instead, L(0)must be
initialized to

⎡

⎣
⎢

⎤

⎦
⎥( )

( )( )
( ) ( )d d

=
- +

´

Y
-

Y Y Y
-

L L
L

I D D

0
. C.43

N N

i T i
0

1 1

C.5. Algorithm summary

Input:μ0,DΛ,DΨ, δΨ, δΛ, s1Ksn, ν

Output: *m0 ,D
*,G*, *dY , δ

*,H*

⎡
⎣⎢

⎤
⎦⎥

= ´

+

L L

Y
K

I

0
.

N N

N n

⎡
⎣⎢

⎤
⎦⎥

( )d d= - +L
-

L L L
-

+ ´ +Y Y

Q
I D D

0

T

N n N n

1 1

( ) ( )d m d d m¬ - +L
-

L
-

L L L L
-

Lq D I D D DT T1
0

1 1
0 /*q isΛ−1μ0

*/

[ ]( ) =Y Y ´D D 0P n
0

[ ]( ) ( )¬ L YD D D0 0

( )d d¬Y Y
0

( )m m¬0
0

0

⎡

⎣
⎢

⎤

⎦
⎥( )

( )
( ) ( )d d

¬
- +

´

Y
-

Y Y Y
-

L L
L

I D D

0N N

T
0

1 0 0 1

i← 0

repeat

i ← i + 1

( ( ) )( ) ( )d d n d¬ + +L
-

Y
- - -n ni i1 1 1 1

F( i)←Q + n(ν + n)L( i−1)

( )( ) ( ) ( ) ( ) ( )d¬ +- - - - -H D D Fi i T i i i1 1 1 1 1

( )( ) ¯( ) ( ) ( ) ( ) ( )n d¬ + + +Y
- - - - -r q n n I D L D si i i i i T1 1 1 1 1

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )m d d¬ - - -r D H D ri i i i i i i T i
0

1 1

[ ]( ) ( ) ( ) ( )m m m¬ - - ¼ -Y YD D s s si i i
n

i
1 0 2 0 0

[ ]( ) ( )¬ L YD D Di i

( ) ( )d d d¬ +Y Y ni i

G( i)←K − nδ( i)H( i)

( )( ) ( ) ( ) ( ) ( ) ( )d d¬ - +Y
-

Y
- -L G D Di i i i i T i1 1 1

until ( ) ( ) m m- <- i i
0 0

1

( )*m m¬ i
0 ,D* ← D( i),G* ← G( i), ( )*d d¬Y Y

i , δ* ← δ( i),H* ← H( i)

/* Implicit, not computed:Λ* = δ*I − δ*D*H*D*T */

/*Implicit, not computed: * * * * *dY = + YD G D IT */
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AppendixD. Bias of the inter-patient covariancematrix estimate

Weestimate the inter-patient covariancematrix as

ˆ (¯ ˆ )(¯ ˆ ) ( )å m mL =
-

- -
=M

s s
1

1
. D.1

i

M

i i
T

1
0 0

This is the sample covariancematrix of s̄i, as opposed toμwhichwe are interested in. But s̄i are not identically
distributed if Ji varies.We can show that

[ ˆ ] (¯ ) ( )åL =
=

E
M

s
1

cov . D.2
i

M

i
1

To avoid clutter, the proof of this result is given at the end of the appendix.
The covariancematrix of a samplemean based on n i.i.d. samples is always given by 1/n times the covariance

matrix of one sample. In otherwords,

(¯ ∣ ) ( )m =s R
J

Rcov ,
1

. D.3i
i

Nowwe can use the law of total covariance, which states, for two scalar randomvariables a and b,

( ) [ ( ∣ )] ( [ ∣ ] [ ∣ ]) ( )= +a b E a b c E a c E b ccov , cov , cov , . D.4

In our case, we get

(¯ ) [ (¯ ∣ )] ( [¯ ∣ ]) ( )m m= +s E s R E s Rcov cov , cov , D.5i i i

⎡
⎣⎢

⎤
⎦⎥

( ) ( )m= +E
J

R
1

cov D.6
i

[ ] ( )= + L
J

E R
1

D.7
i

since, by definition, cov(μ)=Λ. Inserting (D.7) into (D.2) yields

⎜ ⎟
⎛
⎝

⎞
⎠

[ ˆ ] [ ] [ ] ( )åL = L + = L +
=

E
M J

E R cE R
1 1

, D.8
i

M

i1

where

( )å=
=

c
M J

1 1
. D.9

i

M

i1

,
Proof of (D.2):
We start bymanipulating (D.1):

ˆ (¯ ˆ )(¯ ˆ ) ( )å m mL =
-

- -
=M

s s
1

1
D.10

i

M

i i
T

1
0 0

⎜ ⎟
⎛
⎝

⎞
⎠

¯ ¯ ˆ ˆ ¯ ˆ ˆ ¯ ( )å å å åm m m m=
-

+ - -
= = = =M

s s s s
1

1
D.11

i

M

i i
T

i

M
T

i

M

i
T

i

M

i
T

1 1
0 0

1
0

1
0

⎜ ⎟
⎛
⎝

⎞
⎠

¯ ¯ ˆ ˆ ( ¯ ) ˆ ˆ ( ¯ ) ( )å å å åm m m m=
-

+ - -
= = = =M

s s s s
1

1
D.12

i

M

i i
T

i

M
T

i

M

i
T

i

M

i
T

1 1
0 0

1
0 0

1

⎜ ⎟
⎛
⎝

⎞
⎠

¯ ¯ ˆ ˆ ˆ ˆ ˆ ˆ ( )å m m m m m m=
-

+ - -
=M

s s M M M
1

1
D.13

i

M

i i
T T T T

1
0 0 0 0 0 0

⎜ ⎟
⎛
⎝

⎞
⎠

¯ ¯ ˆ ˆ ( )å m m=
-

-
=M

s s M
1

1
, D.14

i

M

i i
T T

1
0 0

wherewe used ˆ ¯m = å = s
M i

M
i0

1
1 . Taking the expectation, and using the general formula

[ ] ( ) [ ] [ ]= +E xx x E x E xcovT T , wefind

⎜ ⎟
⎛
⎝

⎞
⎠

[ ˆ ] [¯ ¯ ] [ ˆ ˆ ] ( )å m mL =
-

-
=

E
M

E s s ME
1

1
D.15

i

M

i i
T T

1
0 0
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( (¯ ) [¯ ] [¯ ] )

( ( ˆ ) [ ˆ ] [ ˆ ] ) ( )

å

m m m

=
-

+

-
-

+

=M
s E s E s

M

M
E E

1

1
cov

1
cov D.16

i

M

i i i
T

T

1

0 0 0

⎜ ⎟
⎛
⎝

⎞
⎠

(¯ ) ( ˆ ) ( )å m=
-

-
=M

s M
1

1
cov cov , D.17

i

M

i
1

0

since [¯ ] [ [¯ ∣ ]] [ ] [ ˆ ]m m m m= = = =E s E E s E Ei i 0 0 . Looking at ( ˆ )mcov 0 , wefind

⎜ ⎟
⎛
⎝

⎞
⎠

( ˆ ) ¯ ( )åm =
=M

scov cov
1

D.18
i

M

i0
1

(¯ ) ( )å=
=M

s
1

cov , D.19
i

M

i2
1

since s̄i are independent (though not identically distributed). Inserting (D.19) into (D.17) yields

⎜ ⎟
⎛
⎝

⎞
⎠

[ ˆ ] (¯ ) (¯ ) ( )å åL =
-

-
= =

E
M

s
M

M
s

1

1
cov cov D.20

i

M

i
i

M

i
1

2
1

⎛
⎝

⎞
⎠

(¯ ) ( )å=
-

-
=M M

s
1

1
1

1
cov D.21

i

M

i
1

(¯ ) ( )å=
=M

s
1

cov . D.22
i

M

i
1

,

Appendix E. PCA for the bias-corrected inter-patient covariancematrix

The bias-corrected inter-patient covariancematrix estimate is given by

˜ ˆ ˆ ( )L = L - cR , E.1pop

where = å =c
M i

M
J

1
1

1

i
. Thismatrix is not positive semidefinite, and cannot be expressedwith a real-valued data

matrixD as L̃ = DDT . It can, however, be expressed as

˜ ( )L = AB , E.2T

where [ ]= LA D c Dpop and [ ]= -LB D c D T
pop .

As usual L̃ is too big to practically perform eigenvalue decompostion on.However, there is a relation
between the eigenvalue decomposition ofABT and that ofBTA . The latter is a smallmatrix, and its eigenvalue
decomposition can easily computed using any numerical software package. Given the kth eigenvalueλk and the
kth eigenvector vk ofB

TA, the kth eigenvalue of L̃ isλk, and the kth eigenvector is

( )=w Av . E.3k k

Aproof of this result is given at the end of the appendix. The scale ofwk is arbitrary, sowewant to normalize it as

( )
 

¢ =w
w

w
. E.4k

k

k

As usual in PCA,we discard the eigenpairs corresponding to the smallest eigenvalues. In this case, since the
matrix is not positive semidefinite, several of the eigenvalues will be negative.We need to discard all eigenpairs
corresponding to negative eigenvalues, sincewe cannot have negative variance for any of themodes (which
would lead to a complex datamatrix). The PCA-reduced covariancematrix can nowbe represented by a data
matrix D̃ CAP as

˜ ˜ ˜ ( )L = D D , E.5CA CA CA
T

P P P

with

˜ [ ] ( )l l l= ¢ ¢ ¼ ¢D w w w . E.6CA K KP 1 1 2 2
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Proof of (E.3):
Letwk be an eigenvector ofAB

T, andλk be the corresponding eigenvalue, i. e.

( )l=AB w w . E.7T
k k k

Wecan transformABT intoBTA bywhat wemay call a pseudo-similarity transformation:

( ) ( ) ( )= =+ -A AB A A A A AB A B A, E.8T T T T T1

whereA+ denotes the pseudo-inverse ofA. Also note that AA+ is a projectionmatrix onto the subspace spanned
byA. Sincewk, as an eigenvector ofAB

T, is already in this subspace, we have

( )=+AA w w . E.9k k

Using the three previous equations, we can nowwrite

( ) ( )l= = =+ + + + +B A A w A AB AA w A AB w A w . E.10T
k

T
k

T
k k k

This shows thatλk is an eigenvalue ofB
TA, with corresponding eigenvector vk= A+wk. However, wewant tofind

wk given vk. Using (E.9) again, we find

( )= +v A w E.11k k

( ) = =+Av AA w w . E.12k k k

,
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