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In Proofs Without Words II, Roger B. Nelson collects a number of mathematical
results with visual proofs that do not need any verbal explanations, including the fol-
lowing beautiful illustration of the formula

∫ A

0

1

(1 + x2)
dx = arctan(A)

due to Aage Bondesen [4, p. 63].

Figure 1 The fan curve of 1
2(1+x2)

.
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Example 1 (The arctan function). We consider the Riemann integral under the graph
of the function

f (x) = 1

2(1 + x2)

as a limit of a sequence of rectangles. One of them is CDBF in Figure 1. Here, the
distance between C and D on the x-axis is just �. We connect the corners C and D

with the point R = (0, −1) and see that triangle RCD has area �/2. We now reduce
triangle RCD to triangle KJR, where K lies on a unit circle that is translated one unit
in the negative y-direction. For the reduction factor from triangle CDR to KJR, we
have

KR

CR
= 1√

1 + x2
.

Now we can calculate the area of the reduced triangle by squaring the reduction factor
KR/CR. We get �/(2(1 + x2)) for the area of triangle KJR. This matches exactly
the area of the Riemann rectangle below the graph of the function f . The factor 1/2
was inserted in f to get this equivalence. Summing over the interval [0, A], we get∫ A

0
1

2(1+x2)
dx on the one hand and the area of the sector of the circle corresponding

to angle ∠QRM on the other. This angle equals arctan(A). Thus, the area of sector
QRM equals 1

2 arctan(A), and the proof is complete. The Riemann rectangles above
are transferred to a fan-like figure consisting of Riemann triangles below. In this case,
the fan curve approaches a sector of a circle whose area we know. This gives us the
value of the integral above.

How could we know that we had to use a circle below the x-axis? Since triangles
RMC and RLK are similar, we must have

t

x
= 1√

1 + x2
.

This gives us t2 = x2

1+x2 = 1 − 1
1+x2 or 1

1+x2 = 1 − t2, which again gives us

x = t√
1 − t2

.

For the fan curve g, we then have

g(t) + 1 = t

x
= t

t/
√

1 − t2
=

√
1 − t2,

which shows that g is the unit circle translated one unit in the negative y-direction.

In this article, we try to generalize this idea. We want to establish a connection
between two integrals, where one is the area under a function above the x-axis, and
one is related to the fan curve below the x-axis. In Example 1, the limit of the fan curve
was easy to compute. In some of our other examples, we will instead be able to express
the limit of the fan curve in terms of other integrals. In all of our cases, converting
Riemann rectangles to Riemann triangles will give us interesting relationships. We
call this “the fan method.”
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Simple examples

We will start by presenting some simple examples, covered in some detail. In the next
section, we introduce some more sophisticated examples, presented with less detail,
and we assume more knowledge about integration.

Figure 2 The fan curve of
1
2

x.

Example 2 (The linear function). In our next example, we choose a linear function
y = x/2 above the x-axis, see Figure 2. We now ask for the corresponding function
g below the x-axis, where the Riemann rectangles have been replaced by Riemann
triangles, as in Example 1. Since the triangles CMR and PQR are similar, we must
have

x

1
= t

QR
= t

g(t) + 1
. (1)

Since the Riemann rectangles and the Riemann triangles have the same area, and
the reduction factor is t/x, we can determine g by comparing the areas. The area of
CBDF is � · x/2, and the area of CDR is �/2, so we must have

�
x

2
= �

2

(
t

x

)2

.

Therefore, x3 = t2, which gives g(t) + 1 = t/x = t1/3. From equation (1) we have

A = T/(g(T ) + 1). (2)
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Summing over the interval [0, A], we see that the integral under the function f cor-
responds to the area Z of the curved figure between the graph of the third root function
translated one unit in the negative y-direction and the line RS, which resembles a
section through the wing of an airplane. Even though g is a complicated function, its
inverse is the simple power function x3. We can therefore relate Z to the area to the
left of g, which is the integral of the inverse function translated one unit downward.
This technique is also crucial in our further examples, and it is similar to the argument
leading up to Young’s inequality [2, Section 4.8]. Hence, for 0 < A < 1, we get

∫ A

0

x

2
dx = Z = T

3
√

T

2
−

∫ 3√
T

0
x3 dx.

By equation (2), we have

A = T

g(T ) + 1
= T/

3
√

T = T
2
3 .

Therefore, the area of triangle RLS is

T
3
√

T

2
= A

3
2
√

A

2
= A2

2
.

The integral above is the area of a triangle, and we get
∫ A

0 x/2 dx = A2/4. Altogether,
we have

A2

4
= A2

2
−

∫ √
A

0
x3 dx,

that is,

∫ √
A

0
x3 dx = A2

4
, or

∫ V

0
x3 dx = V 4

4
.

This confirms a known result from integral calculus.

Remark. This argument works for A < 1. If A > 1, the fan curve will cross the x-
axis, but if we instead consider the function g(x) = 3

√
x − c, where c > A, we can

ensure that the graph of the fan curve, g, lies below the x-axis in order to keep the
figures separated. This is not essential for our method, but is simply meant to make it
easier to visualize. We can also use this extension of the domain for A in Examples 3
and 4 since in those cases f is increasing, which makes g also increase and eventually
cross the x-axis.

We now generalize our observations from the above examples. If f is the function
above the x-axis and g is the corresponding fan curve below the x-axis, where the
Riemann rectangles are replaced by Riemann triangles, then we have the following
two equations:

x

1
= t

g(t) + 1
,

representing the similarity of triangles RCD and RPI , which we discussed above as
equation (1), and

� · f (x) = �

2

(
t

x

)2

, (3)
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representing the equality of the areas of the Riemann rectangles and triangles. Alto-
gether, this gives us the following theorem:

Theorem 1. Given a function f , the corresponding fan curve can be described by

f

(
t

g(t) + 1

)
= (g(t) + 1)2

2
. (4)

Remark. This formula will be crucial in the following examples, and it settles the
problem of finding the fan curve g below the x-axis, as soon as f is given. Since g

is given implicitly by equation (4), we will not always be able to solve for g as a
function, and we will instead just get a curve. We will see a number of examples of
this phenomenon in Examples 6–10.

Figure 3 The fan curve of 1
2x2.

Example 3 (The quadratic function). In our next example, we choose a quadratic
function f (x) = x2/2 above the x-axis and look for the corresponding fan curve g

below the x-axis, see Figure 3. According to equation (4), we have

f

(
t

g(t) + 1

)
= (g(t) + 1)2

2
,

which gives us

g(t) + 1 = t

x
= √

t .
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Summing over the interval [0, A], we see that the integral under the function f cor-
responds to the area Z of the curved figure between the graph of the root function
(translated one unit in the negative y-direction) and the line RS, which again resem-
bles a section through the wing of an airplane. Now we apply the same technique as
above. We observe that Z can be expressed as the difference between the area of the
triangle RSL and the area to the left of the graph of g, but that is the integral of the
inverse of g translated one unit downward, in other words, x2. Geometrically speaking,
both f and g represent parabolas. It is easy to see that RL = g(T ) + 1 = √

T , and by
equation (2) we get

A = T

g(T ) + 1
= T√

T
,

and thus A = RL = √
T . This gives us

∫ A

0

x

2

2
dx = Z = T

√
T

2
−

∫ A

0
x2 dx.

It follows that the area of triangle RLS is T
√

T /2 = A3/2, and therefore

3

2

∫ A

0

x

2

2
dx = T

√
T

2
= A3

2
, i.e.,

∫ A

0
x2 dx = A3

3
.

Again, we have been able to confirm a result from integral calculus, and we have
been able to integrate the parabola.

Now we look at the rectangle MAPW surrounding the graph of the function f over
the interval [0, A], see Figure 4. The area is F = Af (A). Now, consider triangle RSL

surrounding the corresponding fan shape. Here, the area is

G = T (g(T ) + 1)/2.

Using equations (2) and (4), for x = A and t = T we have

F = Af (A) = T

g(T ) + 1
f

(
T

g(T ) + 1

)

= T (g(T ) + 1)2

2(g(T ) + 1)
= T (g(T ) + 1)

2
= G,

meaning that the areas of the rectangle and the triangle are the same. Thus, we know
not only that the integral of f and the fan shape are equal in area, but also that the
remaining gray areas in the rectangle and the triangle, respectively, are equal. These
areas belong to the integrals of the inverse functions of f and g, respectively. This
gives us new opportunities for finding further connections and formulae.

Example 4 (The power function). We can now apply our new findings. If we consider
f (x) = (1/2)xk, then we get

f

(
t

g(t) + 1

)
= (g(t) + 1)2

2

by equation (4), and therefore,

t k = (g(t) + 1)k+2 or g(t) + 1 = t k/(k+2).
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Figure 4 Surrounding regions.

For k = 1, 2 the exponent in the fan curve becomes a unit fraction whose inverse
becomes a power function. For k ≥ 3, we do not get unit fractions, but we can write the
exponent as k/(k + 2) = 1/(1 + 2/k), and if we set n = 1/k, we get 1/(1 + 2/k) =
1/(2n + 1), which is again a unit fraction. In the sequel, we therefore choose f (x) =
1
2x

1/n. Then equation (4) gives us

f

(
t

g(t) + 1

)
= (g(t) + 1)2/2.

Therefore,

t = (g(t) + 1)2n+1 or g(t) = 2n+1
√

t − 1.

The equality of the remaining areas corresponding to the integrals of the inverse func-
tions then implies that

∫ f (A)

0
(2x)n dx =

∫ g(T )+1

0
t2n+1 dt.

Now, since

f (A) = f (
T

g(T ) + 1
) = 1

2
(g(T ) + 1)2,



8 MATHEMATICS MAGAZINE

we can rewrite the last equation as

∫ (g(T )+1)2

2

0
(2x)n dx =

∫ g(T )+1

0
t2n+1 dt or 2n

∫ V 2
2

0
xn dx =

∫ V

0
x2n+1 dx,

and we have established a result giving us many “new” integration formulae. Knowing
a formula for

∫
x dx gives us a formula for

∫
x3 dx. Knowing a formula for

∫
x2 dx

gives us a formula for
∫

x5 dx. Knowing a formula for
∫

x3 dx gives us a formula for∫
x7 dx, and so on.

To this point, we have assumed that the exponents n are positive numbers. But now
we are tempted to look at negative exponents as well. As soon as n ≤ 0, we have to
be prepared for the fact that the integrals starting at zero might be improper, and for
n ≤ −1 even infinite. This problem can be circumvented by translating the left border
for the integration from zero to one.

Figure 5 The fan curve of
1

2x
.

Example 5 (The hyperbola). The case n = −1 is especially interesting since the inte-
gral here is not trivial, and since the values of the exponents n and 2n + 1 in the last
formula coincide. This corresponds to f (x) = 1/(2x) and g(t) + 1 = 1/t in the begin-
ning of Example 4. Since the coefficients on both sides are different, we can actually
hope for a result on the integral of the hyperbola. We therefore study the integral of
the function f (x) = 1/(2x), see Figure 5. By the same arguments as above, we obtain
that the area under the hyperbola f (x) = 1/(2x) over the interval [1, A] is equal to
the area of the curved “triangle” RQW . Now, triangle REW has area 1/2. The area
of triangle RSQ is the same since 1

2T
1
T

= 1
2 , implying that triangle RUW and the

trapezoid ESQU have the same area. Hence,

∫ A

1

dx

2x
=

∫ T

1

dx

x
,
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and since

A = T

g(T ) + 1
= T

1/T
= T 2,

this gives us
∫ T 2

1

dx

x
= 2

∫ T

1

dx

x
.

So, if we define L(t) = ∫ t

1 (1/x) dx, we get L(T 2) = 2L(T ), which is the logarith-
mic property of the integral of the hyperbola.

Figure 6 The fan curve of 1/2x2.

Example 6 (The function f (x) = 1/2x2). We now consider the integral of 1/2x2, see
Figure 6. From equation (4) we have

f

(
t

g(t) + 1

)
= 1

2
(g(t) + 1)2,

leading to

(g(t) + 1)2

2t2
= (g(t) + 1)2

2

or t2 = 1, which gives us t = ±1. We choose t = 1 and consider triangles RAM and
RFQ. Similarity then gives us A/1 = 1/K . Therefore, the area of triangle RFB is

1 − K

2
= 1

2
− 1

2A
.

Thus, we have ∫ A

1

dx

2x2
= 1

2
− 1

2A
.

Because of the vertical line, the situation here is especially simple. Notice that the fan
curve g is here given by t = 1, which is no longer the graph of a function.
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Advanced examples

Figure 7 The nose curve for n = 3.

Example 7 (The nose curve). Our next example is the class of functions

f (x) = 1

2(1 + x)n
.

Equation (4) gives us

f

(
t

g(t) + 1

)
= 1

2
(g(t) + 1)2.

In our case, this reads

1

2(1 + t

1+g
)n

= 1

2
(g(t) + 1)2,

giving us (1 + g)n−2 = (1 + g + t)n.
We call this a “nose curve.” Observe that for n = 3, it is simply a cubic curve that

has been rotated. Figure 7 shows the nose curve for n = 3. Here, the improper integral∫ ∞
0 1/2(1 + x)3 dx = 1/4, and thus the area of the “nose” is 1/4. This is another

example of the case where the fan curve g is no longer a function.

Remark. The case n = 2 is especially simple since we get g(t) = −t , see Figure 8.
For linear functions, we know the integral by geometric arguments, so this case can be
used to prove

∫ A

0

dx

(1 + x)2
= 1 − 1

1 + A
.
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Figure 8 The fan curve of
1

2(1 + x)2 .

Thus, we have shown the corresponding result from calculus by simple geometrical
means. We also see directly that the integral

∫ ∞
0 dx/2(1 + x)2 has to be finite because

the intersection point Z never moves below the line y = −1. Therefore, the integral is
always less than or equal to 1/2. A similar argument could be used in Example 1 to
show that

∫ ∞
0 dx/2(1 + x2) = π/4.

Remark. The case n = 1 also gives us some interesting insight. Choosing f (x) =
1/2(1 + x), equation (4) gives us

1

2
(

t

g+1 + 1
) = 1

2
(g + 1)2,

which is equivalent to

g + 1 = −t ± √
4 + t2

2
.

Thus
∫

dx/2(1 + x), which we know is a logarithmic function, can now be cou-
pled to

∫
(−t ± √

4 + t2)/2 dt , which helps explain why the integral
∫ √

a2 + t2 dt

will involve a logarithmic function. The details are somewhat complicated and are
omitted.
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Figure 9 The fan curve of
1

2(1 + x2)2 .

Example 8 (The bell-shaped functions). The following example is due to Stephan
Berendonk at the University of Cologne (private communication). We consider an
alteration of the initial example by Aage Bondesen, where we replace the function
above the x-axis with f (x) = 1/2(1 + x2)2, see Figure 9. By equation (4) we get

1(
1 +

(
t

g(t)+1

)2
)2 = (g(t) + 1)2 or g(t) + 1 = (g(t) + 1)2 + t2,

representing a circle with center(0, −1/2) and radius 1/2, another example in which
the fan curve g is no longer a function. Strictly speaking, the equation above gives us
a pair of circles, but we ignore the circle that lies below y = −1. Since the area of the
semicircle is (1/2)π(1/2)2 = π/8, we can see that

∫ ∞

0

dx

2(1 + x2)2
= π

8
, or

∫ ∞

0

dx

(1 + x2)2
= π

4
,

a result you can find in many integration tables.

Remark. In fact, the whole class of bell-shaped functions

f (x) = 1

2(1 + x2)n
,
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containing both Bondesen’s quarter of a circle (n = 1) and Berendonk’s semicircle
(n = 2), can be treated by our method. For higher values of n, we use equation (4) to
get

1

(1 + ( t

g+1 )
2)n

= (g + 1)2 or (g + 1)2(n−1) = ((g + 1)2 + t2)n,

which represents a pair of ovals. Notice that, as in the above example, we have terms
of the form (g + 1)2 on both sides. For n = 1, we get a constant on the left-hand side
in the equation above, and therefore a single circle. For n > 1, we have to take a square
root and therefore get pairs of ovals for the curve g, see Figure 10 for the case n = 3.
However, for our purposes, only the upper branch above y = −1 is of interest.

Figure 10 The fan curve of
1

2(1 + x2)3 .

Since we know the integral of f from zero to infinity, we can find the area of the
ovals, too. We set

In =
∫ ∞

0

dx

(1 + x2)n
,

and for n > 1, we have

In =
∫ ∞

0

1 + x2 − x2

(1 + x2)n
dx = In−1 −

∫ ∞

0

x2 dx

(1 + x2)n
= In−1 −

∫ ∞

0
uv′ dx,

where we have chosen u = x and

v = −1

2(n − 1)

1

(1 + x2)n−1
.

Integrating by parts, we get
∫ ∞

0
uv′ dx = uv

∣∣∞
0

−
∫ ∞

0
u′v dx = 0 −

( −1

2(n − 1)

)∫ ∞

0

dx

(1 + x2)n−1
.
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Altogether, this leads to

In = In−1 −
(

1

2(n − 1)

)
In−1 =

(
2n − 3

2n − 2

)
In−1,

giving us

In =
(

2n − 3

2n − 2

)(
2n − 5

2n − 4

)
· · · 3

4

1

2

π

2
,

since I1 = π

2 by Aage Bondesen’s result. Multiplying by 2 gives us the area of the
ovals.

Remark. In the following examples, we no longer use the factor 2 in the denominator
to be canceled in equation (3). The effect is that g(0) might be greater than 0, as we
can see in Figures 11–14. However, this is no problem since we only kept the graph of
g below the x-axis to make it easier to visualize the method.

Figure 11 The fan curve of f (x) = 1 − x2.

Example 9 (Upside-down parabola). What about the parabola f (x) = 1 − x2? Here,
equation (4) gives us 1 − (t/(g + 1))2 = 1

2 (g + 1)2 or

2(g + 1)2 − 2t2 = (g + 1)4.

This is the equation of the lemniscate of Gerono [3, p. 124], [1, p. 117]. Since we know
that the area under the parabola in the first quadrant is

∫ 1
0 (1 − x2) dx = 2/3, we also

know that the area of the lemniscate is 4 2
3 = 8/3, see Figure 11.

Remark. This lemniscate of Gerono is defined as a midpoint curve [1]. Start with
two parabolas with the same vertical symmetry line, one opening upwards, the other
opening downwards. Now we intersect the parabolas with varying horizontal lines
and ask for the midpoints between the intersection points. In this way, we obtain the
lemniscate of Gerono.
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Remark. Face-down parabolas with zeros apart from the origin always give us lemnis-
cates as fan curves. Face-up parabolas give other curves, the root function of Example 3
being a special case.

Remark. The whole class of functions f (x) = 1 − x2n could be treated in the same
way. Here new lemniscate-like shapes arise. Since

∫ 1
0 (1 − x2n) dx = 2n/(2n + 1), the

area of the corresponding lemniscate-like curve is 8n/(2n + 1) .

Figure 12 The fan curve of the circle f (x) = √
1 − x2.

Example 10 (The circle). We choose a circle f (x) = √
1 − x2. Then by equation (4)

we have

4((g + 1)2 − t2) = (g + 1)6,

which also corresponds to a lemniscate-like curve. Since this curve comes from a
quarter circle, the area contained in the whole lemniscate-like curve is 4π

4 = π , see
Figure 12.

Up to now we have only considered graphs of functions f , but we can generalize
our results to parametric curves, which actually will simplify our formulae. In fact the
transition equation (4) from f to g becomes much simpler when we use parametric
representations for curves instead of functions.

Given a curve above the x-axis with parametric representation x = x(s), y = y(s),
we now look for the corresponding fan curve x = t (s), y = g(s). The area of the
Riemann rectangle is A = y(s)�, while the corresponding triangle has area

B = �

2

(
t (s)

x(s)

)2

.

Since we want them to be equal, we have

y(s) = 1

2

(
t (s)

x(s)

)2

, i.e., t (s) = x(s)
√

2y(s).
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In addition, we have the similarity equation

x(s)

1
= t (s)

g(s) + 1
or g(s) + 1 = t (s)

x(s)
= x(s)

√
2y(s)

x(s)
= √

2y(s).

Thus, we have found a very simple connection between the parametric representation
of the curve above the x-axis and the parametric representation of the corresponding
fan curve. We formulate this result as a theorem.

Theorem 2. Given a parametric curve x = x(s), y = y(s), the corresponding fan
curve can be described by

x = t (s) = x(s)
√

2y(s) and y + 1 = g(s) + 1 = √
2y(s).

Remark. By the same formulae, it is also possible to calculate the original curve
(x(s), y(s)) given the fan curve (t (s), g(s)). We get

y(s) = (1 + g(s))2

2
and x(s) = t (s)

g(s) + 1
,

but note that we do not necessarily get an expression for y as a function of x.

Remark. If the curve above the x-axis is a function, we have x = x and y = f (x),
and we find g + 1 = √

2f (x), giving us

(g + 1)2

2
= f (x) = f (

t

g + 1
).

Thus, we have proven Theorem 1 again.

Remark. If we use a parametric representation x = cos(s) and y = sin(s) for the
circle from Example 10, then we get

x = t (s) = cos(s)
√

2 sin(s)

and

y + 1 = g(s) + 1 = √
2 sin(s).

This gives us the same lemniscate-like curve

4x2 = 4(y + 1)2 − (y + 1)6

that we already found in Example 10, see Figure 12.

Remark. If the original curve above the x-axis is a function, then we are now able to
distinguish between the cases where the fan curve is a function or a curve. If x = t (s)

is increasing, then the fan curve is a function itself. Thus, if t ′(s) > 0, then we can be
sure that the fan curve is a function. Now, we have t (x) = x

√
2f (x), and our condition

reads

t ′(x) = √
2

(√
f (x) + x

2
√

f (x)
f ′(x)

)
> 0

or 2f (x) + xf ′(x) > 0. Since we only consider x ≥ 0 and f (x) ≥ 0, the condition
is automatically satisfied if f ′ is positive. For decreasing f , this is equivalent to
|f (x)/f ′(x)| > x/2. Now, the expression |f (x)/f ′(x)| = τ is the so-called subtan-
gent, the length of the tangent’s “shadow” between the tangent’s intersection with the
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x-axis and the point on the function graph. Thus, our condition reads 2τ > x, mean-
ing that the original function must not decrease “too quickly.” Alternatively, we can
divide by f to get 2 + x(f ′/f ) > 0, which gives us f ′/f > −(2/x). It follows that
for 0 < a < x, we get

∫ x

a

f ′(t)
f (t)

dt >

∫ x

a

−2dt

t
,

which gives us

log f (x) − log(a) > −2 log x + 2 log(a) orf (x) > f (a)
a2

x2
.

This explains why the nose curves gave us functions for n ≤ 2, and the bell-shaped
curves gave us functions for n = 1.

Figure 13 The fan curve of the cycloid.

Example 11 (The cycloid). Let us now apply Theorem 2. For the cycloid we have
x(s) = s − sin(s) and y(s) = 1 − cos(s). Thus,

t (s) = (s − sin(s))
√

2(1 − cos(s)

and

g(s) + 1 = √
2(1 − cos(s)) = sin(s/2).

So, the fan curve corresponding to a cycloid looks like the wing of a dragonfly. Since
the area under a single arc of a cycloid is 3π , we can conclude that the pair of wings
of the dragonfly covers an area of 6π , see Figure 13.

Example 12 (Surfaces in space). In this final example, we try to mimic Aage Bonde-
sen’s idea in three dimensions. We start with the surface function

f (x, y) = 1

3
√

1 + x2 + y2
3 .

The graph is shown in Figure 14.
Here we consider a Riemann column at the position (x, y) in the xy-plane, the

base of the column being �2, see Figure 15. On the same base we construct a pyra-
mid having its vertex at R = (0, 0, −1). This pyramid has volume �2/3 since its
height is 1. Now, we reduce this pyramid until the reduced base reaches a unit sphere
which is translated one unit in the negative z-direction, the reduction factor being

1/
√

1 + x2 + y2. The volume of the reduced wedge is �2/
(
(3

√
1 + x2 + y2)3

)
since

we have to use the cube of the reduction factor in order to find the volume of the
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Figure 14 The surface 1

3
√

1+x2+y2
3 .

Figure 15 Riemann columns.

wedge. Thus, the reduced wedge has the same volume as the corresponding Riemann
column �2f (x, y). Summing over the whole plane we get

∫∫

over the whole
xy − plane

dxdy

3
√

1 + x2 + y2
3 = 2π

3
,

which is the volume of the hemisphere.
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Remark. For a general surface function f (x, y), we must have

�2f (x, y) = �2

3
(
t

x
)3,

where t/x = s/y is the reduction factor. Similarity gives us x/1 = t/(g(t, s) + 1) and
also y/1 = s/(g(t, s) + 1). Thus, we can find g by the following formula correspond-
ing to equation (4):

f

(
t

g(t, s) + 1
,

s

g(t, s) + 1

)
= (g(t, s) + 1)3

3
.
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Summary. In this article we present a method of integration inspired by an example from Proofs Without
Words II by Nelsen. Riemann rectangles under a curve are transformed into triangles. The limit of the collection
of triangles gives us a new shape. The area under the original curve and the area of the new shape are the same.
In this way, interesting connections between areas under different curves are established and integration formulae
are obtained. Only elementary concepts like similarity and Riemann rectangles are used. A variety of examples is
worked out to show the strength of the method. The method may be used for first year calculus students to deepen
their understanding of the Riemann integral.
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