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Abstract

Mitochondria in plant cells usually contain less than a full copy of the mitochondrial DNA
(mtDNA) genome. Here, we asked whether mitochondrial dynamics may allow individual
mitochondria to ‘collect’ a full set of mtDNA-encoded gene products over time, by facilitating
exchange between individuals akin to trade on a social network. We characterise the collective
dynamics of mitochondria in Arabidopsis hypocotyl cells using a recent approach combining
single-cell time-lapse microscopy, video analysis and network science. We use a quantitative
model to predict the capacity for sharing genetic information and gene products through the
networks of encounters between mitochondria. We find that biological encounter networks
support the emergence of gene product sets over time more readily than a range of other possible
network structures. Using results from combinatorics, we identify the network statistics that
determine this propensity, and discuss how features of mitochondrial dynamics observed in
biology facilitate the collection of mtDNA-encoded gene products.

1 Introduction

Mitochondria are vital bioenergetic organelles, present in the vast majority of eukaryotic cells.
Across and within eukaryotic organisms, mitochondria display a diverse variety of forms
and dynamics. In plant cells, mitochondria largely exist as discrete, independent organelles.
Unlike metazoan and fungal mitochondria, they rarely form large physical networks (with
some exceptions; Segui-Simarro & Staehelin, 2009). Individual plant mitochondria are highly
dynamic, moving rapidly through the cell both along the cytoskeleton and diffusively (Logan,
2006; Logan & Leaver, 2000).

This physical population has a coupled genetic structure. Plant mitochondria do not typically
contain full copies of the mitochondrial DNA (mtDNA) genome (Johnston, 2019; Preuten et al.,
2010; Takanashi et al., 2006). Instead, many mitochondria either contain mtDNA ‘subgenomic’
molecules—encoding a reduced subset of mtDNA genes—or no mtDNA at all. The question
arises: how do plant mitochondria maintain their protein complements, without a complete local
genome from which to express new proteins?

One possibility (Arimura, 2018; Arimura et al., 2004; Logan, 2006; Takanashi et al,
2006) is that exchanges of subsets of mtDNA, mRNA and proteins between individuals
can, over time, lead to the emergence of complete sets of mtDNA products in individual
mitochondria over time. By mtDNA products, we refer to those protein products, tRNAs
and rRNAs that are encoded by the complete mitochondrial genome. Protein products are
expressed via mRNA transcripts; other gene products are expressed more directly from
the mtDNA. As an example of this exchange, picture a mitochondrial genome which
can be partitioned into two regions, A and B. One mitochondrion initially possesses a
subgenomic molecule containing only Region A of the genome. Another initially possesses
only Region B. Each expresses the genes contained in its subgenomic region. Then the
two mitochondria physically meet and exchange their subgenomic molecules. The first
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mitochondrion can now express genes from B, and vice versa. In
parallel, RNA and protein populations of the two mitochondria can
mix upon fusion events, so that even in the absence of mtDNA
exchange, each organelle expands its complement of bioenergetic
machinery. Within the dynamic cellular population of mitochon-
dria, transient colocalisations indeed occur, resembling ‘kiss-and-
run’ events in bacterial populations (Chustecki et al., 2021b; El
Zawily et al,, 2014; Liu et al., 2009; Logan, 2010). Some of these
colocalisations result in transient fusion between two mitochon-
dria. When fusion occurs, mitochondria can exchange genetic and
protein material: indeed, mixing occurs through the entire cellular
population on a timescale of hours (Arimura et al., 2004).

Recent work has characterised the ‘encounter networks’
between mitochondria in plant cells, describing which mito-
chondria encounter which others over time (Chustecki, 2021a;
2021b). Here, mitochondria are nodes, with two nodes linked by
an edge if the corresponding mitochondria have been recorded
within a threshold distance. Chustecki et al. showed that these
encounter networks have structures which have the potential
to facilitate efficient exchange of content, while also allowing
mitochondria to spread evenly through the cell (Chustecki 2021b),
and to adapt in the face of challenges (Chustecki 2021a). Hence,
mitochondrial dynamics have the potential to resolve a tension
between competing cell priorities: even spacing of mitochondria
(with metabolic and energetic advantages) and colocalisation of
mitochondria (for beneficial exchange of contents). This behaviour
is one example of the many types of inter-organelle interactions in
the cell (Cohen et al., 2018; Picard & Sandi, 2021; Valm et al., 2017).

Such functional encounters are an example of emergence, where
the behaviour of a collective of individuals is different from the
sum of individual behaviours. There are two coupled instances of
emergent behaviour in our system—physical and genetic. First, the
encounter network of mitochondria emerges from their underlying
physical dynamics in the cell (Williams & George, 2019). Second,
through exchanges of mtDNA, RNA and/or proteins within this
encounter network, a complete set of mtDNA products for each
mitochondrion may emerge. That is, over time, each mitochon-
drion will be exposed to a set of information greater than its
own mtDNA complement, allowing the accumulation of the full
set of mtDNA-encoded gene products. We hypothesised that the
exchange efficiency of encounter networks could allow a mecha-
nism for plant mitochondria to address their maintenance problem.
Specifically, if mitochondria can efficiently exchange genetic infor-
mation, transcripts and/or proteins, then the ‘effective genome’ to
which each mitochondrion is exposed over time can eventually
grow to include the full set of mtDNA-encoded gene products. To
investigate this hypothesis, we proceed by using network science
and quantitative modelling of exchange processes to investigate the
genetic behaviours that these encounter networks could potentially
support.

2 Results

2.1 The emergence of full sets of mtDNA products on Arabidopsis
encounter networks as a network science problem

We first sought to understand the process by which full sets of
mtDNA-encoded gene products could potentially emerge from
dynamic interchange of molecules in plant cells, using encounter
networks characterised from hypocotyl cells in 7-day Arabidopsis
seedlings (see Section 4). In previous work, we established an
experimental and computation pipeline to characterise the ‘social’
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encounter networks of mitochondria (Chustecki 2021b). Here,
nodes represent mitochondria, and an edge between two nodes
means that those two mitochondria have colocalised within a
physical threshold distance at least one time point during the
experiment (Figure 1). Example networks from mitochondrial
dynamics in Arabidopsis hypocotyl are shown in Figure 1. We
will use these, and other experimentally characterised encounter
networks, in the subsequent analysis. Results from independent
single cells were generally very similar (Supplementary Figure S1).

Our fundamental biological problem is: how can individual
mitochondria become exposed to the full set of mtDNA-encoded
gene products, given that each may only carry a reduced mtDNA
molecule? To address this, we consider how exchange of subge-
nomic mtDNA molecules and gene products between mitochon-
dria can accomplish this goal, informed by the set of physical
encounters characterised above. While a physical encounter does
not necessarily imply fusion and exchange of mitochondrial con-
tent, it is a requisite for this exchange. We therefore consider how
the sets of mtDNA products present in sets of individual mitochon-
dria change as a growing proportion of encounters are interpreted
as leading to exchanges. On the one hand, if no encounters lead to
exchanges and organelles begin without full product sets, mtDNA
product sets will never become complete. On the other hand, if
every encounter leads to an exchange, full product sets may emerge
readily.

We present the specific phrasing of this problem in the Sup-
plementary Material, illustrated in Figure 2. Qualitatively, we ask
how many gene products an individual mitochondrion is exposed
to over time, as a function of the proportion of encounters between
mitochondria that lead to exchange of mtDNA and/or transcripts
and proteins. Two situations are of interest for modelling this
question. First, if each mitochondrion begins with little or no
genetic information or gene products, how long does it take to
accumulate the full set? Second, if each mitochondrion begins with
a full complement of gene products but little genetic information,
what proportion of gene products are retained as they decay over
time? The model closest to reality for any given biological cell will
fall between these extremes. If the degradation rate of transcripts
and proteins is high compared to that of mitochondrial encounters,
so that most mitochondria do not have full transcript and product
complements, the first picture characterises the timescale upon
which an organelle will be exposed to every gene. If transcripts
and proteins are relatively long-lived compared to the timescale
of mitochondrial encounters, the second picture characterises how
individual mitochondria can retain full gene product sets in the face
of transcript and protein degradation.

Some further quantitative connection with biology is possible
here. A comprehensive recent survey of the Arabidopsis RNA decay
landscape (Sorenson et al., 2018) has shown that mt-encoded RNA
molecules have a wide range of half-lives. Some decay rapidly
on the timescale of 1-2 hr [comparable to subhour degradation
of some mtDNA transcripts in several other species (Gagliardi
et al,, 2001; Kuhn et al,, 2001) and nuclear-encoded transcripts
in Arabidopsis which degrade with a median half-life of 3.8 hr
(minimum 0.2 hr; Narsai et al., 2007)]. Others remain strikingly
stable over many hours. Electron transport chain proteins and
other mitochondrial machinery degrade with a half-life of several
days in Arabidopsis (Li et al., 2017). While longer-lived, many of
these molecules are embedded in the inner membrane, and so
are not as straightforward to exchange as RNAs which are mobile
within the matrix. In onion epidermis, content mixing through the
mitochondrial population (i.e., at least one fusion event for every
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Fig. 1. Characterising mitochondrial encounter networks. (a) Confocal microscopy with mitochondrial green fluorescent protein (mtGFP) Arabidopsis (Logan & Leaver, 2000)
creates videos of the motion of mitochondria (green) in hypocotyl cells. TrackMate (Tinevez et al., 2017) in Fiji (Schindelin et al., 2012) is used to characterise trajectories (white;
individual shown in the inset). Individual mitochondria, as illustrated in the inset, may only carry a reduced mtDNA molecule encoding a subset of the full genome, along with a
set of gene products. (b) Trajectory sets are interpreted as encounter networks by representing each mitochondrion as a node, and connecting two nodes with an edge if they are
ever colocalised within a given threshold distance (*). Encounters between mitochondria, if they lead to fusion and exchange, can expand the set of gene products in an
individual mitochondrion. (c) Example encounter networks constructed over a period of 231 s: n nodes and e edges. (d) Simple physical model used to simulate mitochondrial
motion. Model mitochondria may (i) move purely diffusively with constant D; (ii) attach to the cytoskeleton with probability k,, per timestep and then move ballistically and (iii)
detach from the cytoskeleton with probability k. per timestep and continue to diffuse. k,, ko5 are parameters of the model which can take different values to capture different

cytoskeletal influence (see Section 4).

mitochondrion) occurred on the timescale of 1-2 hr (Arimura
et al., 2004). It therefore seems plausible that the exchange of
molecules via mitochondrial encounters on the timescale of hours
can support the emergence and maintenance of full sets of mtDNA-
encoded products that degrade on a similar timescale.

Our network science questions share structural similarities with
a wide range of problems in epidemiology (Akdere et al., 2006;
Chakrabarti et al., 2008; Karp et al., 2000; Kempe et al., 2004;
Moore & Newman, 2000), probability theory (including variants
of the coupon collector problem; Flajolet et al., 1992; Newman,
1960), communication networks and algorithms (including the
requirement for every node in the network to acquire required
information about the existence of their neighbors; Vasudevan
et al., 2009; Ye et al., 2012), but have some key differences (see
Section 3). For brevity, we refer to these as bingo problems, by
analogy with the collection of a set of elements which is built up
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over time. A mitochondrion’s bingo score is the proportion of gene
products that it contains over a given threshold proportion € of their
maximum expression level. A bingo occurs when a mitochodrion
has a bingo score of one, meaning that it contains the full set
of mtDNA-encoded gene products at a level greater than e. An
informative summary of a given cell’s performance is the propor-
tion p of mitochondria that have scored bingos (the proportion of
mitochondria that contain such a full set).

To characterise this behaviour, we simulated emergence via the
‘bingo’ games in Figure 2. We considered initial states that were
either ‘empty’ (mitochondria begin only with one gene product,
corresponding to their contained genetic element) or ‘full’ (mito-
chondria begin with all gene products—so every mitochondrion
scores a bingo). In each case, we recorded the proportion p of
nodes that have scored a bingo (the proportion of mitochondria
that contain all gene products) as a function of the proportion g of
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Fig. 2. Modelling emergence of full mtDNA product sets through exchange and complementation. Outline of the model for molecular exchange on encounter networks. (a)
Effective gene expression model in this study. If a gene is present in an organelle, its product is produced with rate A. Gene products degrade with rate v. We assume A > v, so
that product levels equilibrate rapidly when a gene is present. (b) Prior to an encounter, mitochondria have DNA and gene product complements. If a gene is present in an
organelle, its product level is maximum 1, corresponding to active expression. In the absence of a gene, product levels may be nonzero due to an existing pool of transcripts or
proteins. ‘Bingo’ scores—the proportion of gene products present at a level over e (here e = 0.1)—are given under the stars. We consider two initial conditions (ICs): ‘empty’, where
each mitochondrion only has products corresponding to its gene set; and ‘full’, where each mitochondrion has a full level of every product. (c) At an encounter, DNA sets are
exchanged between organelles, and the levels of any products without a gene present are averaged. (d) Between encounters, product levels decrease unless the corresponding

gene is present in that organelle.

encounters that correspond to an exchange. We increase g following
the temporal ordering of encounters in the network, and allow
gene products to decay with a characteristic rate if their gene is not
present in an organelle (Figure 2).

Intuitively, the dynamics of mtDNA product set accumulation
depend strongly on L, the number of different genetic elements that
are required to make up a full set (Figure 3a and c). For low L =2,
product sets rapidly emerge from “empty” initial conditions with
low numbers of interactions, and in the g = 1 case where all edges
lead to exchange, a majority of mitochondria are able to collect,
or retain, a full set. For higher L, collection and retention become
increasingly challenging, with, for example, only around 10% of
mitochondria collecting a full set with g = 1 and L = 5, and fewer
for higher L.

2.2 Arabidopsis encounter networks support efficient emergence
compared to theoretical encounter networks

To assess the extent to which plant mitochondrial dynamics may
be optimised for exchange of contents, we next asked how these
biological networks compared to theoretical alternatives in their
capacity to support such emergence. To this end, we investigated
the bingo problem on a set of synthetic encounter networks.

For each experimentally characterised network, we built a range
of synthetic networks constrained to have the same numbers of
nodes and edges (Supplementary Figures S5 and S6). Our theo-
retical networks began with Erdés-Rényi (ER) random topologies
(Erdés & Rényi, 1960; edges placed between pairs of nodes ran-
domly chosen with uniform probability), scale-free (SF) topologies
(Barabasi & Albert, 1999; edges placed between pairs of nodes
randomly chosen with probability proportional to their degree) and
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Watts-Strogatz (WS) networks (Watts & Strogatz, 1998; Moore &
Newman, 2000; a ‘ring-like’ network with subsequent rewiring to
reduce network distances).

We further explored several other network types: geometric
random graphs (GRGs) (Penrose, 2003), star graphs and ‘cliquey’
graphs. The final class followed our hypothesis that ‘cliquiness” in
networks would more directly lead to efficient genome emergence,
as follows. Cliquey networks consist of cliques (sets of nodes that
are all mutually connected) with few or no connections outside
each clique. Nodes within cliques can then rapidly assimilate all
available genes without risk of losing’ them to a broader set of
partners. We constructed two classes of cliquey network: (a) dis-
connected cliques of size n and (b) cliques of size n connected by a
single link. In each of these synthetic cases, we specified a number
of nodes to match a biologically observed network and padded the
network with random edges if necessary to match that network’s
edge count.

We found that the bingo performance of different networks
depends strongly on L, with some networks scoring higher than
biological networks at L < 3 (ER, WS, geometric and small cliques)
and lower at L > 4, and some with the opposite pattern (larger
cliques; Figure 3b and d; Supplementary Figure S7).

This picture immediately suggests a tension in clique size.
Smaller cliques will share information more rapidly. But if a clique
is too small, it may not possess all the genes required to accumulate
the full set. We found that for L = 2, bingo performance was a
simple function of clique size, with smaller cliques (down to n. = 3)
performing best, and larger cliques (up to n. = 38) performing
worst. However, as L increased, this picture became more nuanced.
For L = 3, the performance of #n. = 3 networks was substantially
challenged, due to the probability of a clique not possessing a
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Fig. 3. Potential for mtDNA product set emergence on Arabidopsis encounter networks and on different theoretical network structures. (a,c) Empty initial conditions (ICs); (b-d)
full ICs with gene product decay rate and threshold level v = 0.02, e = 0.001 respectively (other parameterisations behave similarly; Supplementary Figures S2-S4). (a,b) The
‘bingo score’ (proportion p of mitochondria that have experienced a full mtDNA product set), as a function of the proportion g of encounter network edges (physical encounters)
that allow genetic exchanges. As q increases, genetic information spreads through the mitochondrial population, and more individuals collect (or retain) the full set of genetic
information, increasing p. This increase depends strongly on L, the number of different genetic elements that constitute the full product set: higher L means more elements must
be collected (or retained), which requires correspondingly more information exchange. Ten simulations were performed for each L value, using an experimentally characterised
Arabidopsis encounter network (see the text). (c,d) Final bingo score p*, the proportion of mitochondria that possess a full product set if all encounters allow genetic exchange, is
computed for all graph types. This plot shows this quantity normalised by the value for the biological network structure. For low L, some theoretical networks outperform biology
but cliquey networks perform poorly. For high L, the situation is reversed. Traces connecting different network results are drawn to reflect the profile of results for a given L and
do not reflect any relationship between different networks. Networks immediately to the right of ‘Bio’ are encounter networks from physical simulation; others from synthetic
construction. Labels: diff, diffusion; cyt, cytoskeletal motion; inactive, stochastic inactivation of mitochondria (modelling entering and leaving the domain); ER, Erd3s-Rényi; SF,
scale-free; WS, Watts-Strogatz; clique x-y, graph with cliques of size x, disconnected if y = 1 or connected by a single edge if y = 2. Different network classes appear on alternating

grey and white backgrounds.

copy of each genetic element. For L = 3, larger cliques (n. = 8)
performed better, with even larger clique sizes (1. between 10 and
25) performing best for higher values of L = 4 to L = 6. Larger
cliques n. > 30 performed poorly in most cases, only becoming
broadly competitive at high L values.
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However, the more striking result was that biological networks
and synthetically constructed SF networks were the most robust
performers. While never being the best performer for a given
L, these networks performed much more consistently across a
range of different L values (Figure 3b and d). This suggests that
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the mitochondrial dynamics generating biologically observed
encounter networks provide a more robust way of collecting
mtDNA products than a range of possible alternative dynamic and
synthetic mechanisms.

2.3 Heterogeneous diffusive and ballistic motion supports effi-
cient accumulation of mtDNA products

We next asked which properties of biological mitochondrial
motion were responsible for the formation of encounter networks
with strong bingo performance. To this end, we considered a simple
physical simulation following Chustecki et al. (2021b) (Figure 1d
and Section 4). Within the simulation, mitochondria move diffu-
sively, with some probability of attaching to a cytoskeletal strand,
whereupon they move ballistically until they detach with some
probability. The attachment-detachment probabilities, diffusion
constant and speed when attached to a strand are parameters of the
simulation.

Exploring a range of parameters in this model (see Section 4),
we found that no instance of the diffusive-ballistic model produced
encounter networks that could outperform biological networks at
bingo. While simulated performance was marginally higher for
L < 3, performance at higher L was substantially lower, only
approaching the biological case for unphysically high values of
the diffusion constant and ballistic speed (Figure 3b and d). The
degree distributions (where degree is the number of connections
between a node and its neighbours) of networks constructed
through simulation typically had more limited spread, with fewer
nodes of high degree (Supplementary Figure S6).

Pronounced inter-mitochondrial heterogeneity in dynamics has
been previously reported (Chustecki 2021b; Logan & Leaver, 2000).
Some mitochondria persist in a given cellular region for a long
time period, whereas others enter and leave the region, leading to
heterogeneity in the time windows for which a given mitochon-
drion is present. Those individuals present for longer have more
opportunity to encounter partners and become highly connected.
To model this, we introduced another process in our simulation
model, allowing mitochondria to enter and exit the region of obser-
vation randomly with given rates (see Section 4). As before, we used
simulations to produce encounter networks matching the node
and edge count of the biological original. We found that these
simulated networks, with high diffusion and cytoskeletal motion,
more resembled the biological bingo performance (Figure 3b and
d). Hence, a combination of diffusive and ballistic motion with
broader variability in individual behaviour builds a foundation for
efficient genome emergence.

To further explore this observation, we next artificially trun-
cated the length of tracked trajectories in the biological data. Unsur-
prisingly, this led to smaller encounter networks, but also amplified
the performance boost of SF and beneficially cliquey networks
(Supplementary Figure S8). This observation supports the picture
where a subset of individuals, remaining in the system for a com-
paratively long time period, accumulate more encounters and thus
help facilitate the beneficial exchange of contents.

2.4 Network properties linked to efficient accumulation of
mtDNA products

Given these observations, we next asked whether simple summary
statistics of network structure correlated with bingo performance,
and hence whether particular structural features might conceiv-
ably be selected in cellular control of mitochondrial encounter
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networks. It may be anticipated that a network’s performance at
bingo would be related to how rapidly information can be spread
through the network. This rapidity is captured by statistics like
the global network efficiency v = (n(n-1))™" YitjeG d(i,j)~", the
sum of the reciprocals of shortest path lengths d(i,j) between all
pairs of nodes i and j, normalised by the number of pairs n(n—-1).
Structural statistics like modularity (which we measure here using
the walktrap algorithm; Pons & Latapy, 2006) and the size and
structure of connected components may also be anticipated to
play a role (the mean degree, by construction, is equal across all
networks compared in an experiment).

However, when exploring bingo behaviour on our synthetic
networks, we found that networks with high efficiency often do not
perform well at bingo (Supplementary Figure S9). Other summary
statistics also failed to show a tight correlation to bingo perfor-
mance. While some correlated strongly for a given L (e.g., increas-
ing number of connected components decreases performance for
L = 2), these relationships were typically reversed for different L
(increasing number of connected components increases perfor-
mance for L = 5). One suggestive observation is that those networks
that perform most consistently—SF and biological networks—have
a high degree ‘range; here defined as the number of values k for
which atleast one node in the network has degree k (Supplementary
Figure S6). This quantity is at least somewhat related to the ‘SF’
nature of a network—degrees spanning a wide range of values—
perhaps suggesting the capacity to accumulate information over a
diverse ranges of ‘scales’ of L.

Given this observation, we next considered a more concrete
theoretical framework to understand the problem of accumulating
mtDNA products—specifically, the coupon collector’s problem or
CCP (Ferrante & Saltalamacchia, 2014). The informal phrasing of
the problem is: if each cereal box contains a random coupon, and
there are n different types of coupon, how many cereal boxes do I
need to buy to collect all n types? Intuitively, this maps to the ques-
tion of how many partners a mitochondrion needs to exchange with
in order to collect all L gene products in the system (Supplementary
Figure S10). Given two results from the theory surrounding this
problem, outlined and derived in the Supplementary Material, we
are able to characterize and ‘predict’ the behaviour of a graph struc-
ture in bingo, including mitochondrial encounter networks, based
on either individual node properties or more approximately using
a simple scalar property of the network. Figure 4 confirms that the
bingo game corresponds to the CCP solution described in equation
(1) in the Supplementary Material. We see that the expressions from
the CCP predict the game’s outcome for the majority of network
topologies and across different values of L using either detailed
information about individual mitochondria (Figure 4a) or a sim-
pler summary statistic of the encounter network: the proportion of
nodes with degree exceeding an L-dependent threshold derived in
the Supplementary Material (Figure 4b).

These insights support the intuitive observation that nodes with
degree less than L can never score a bingo, and thus have a purely
negative effect on the bingo performance of a network when mea-
sured by the proportion of bingo scores. Such nodes, including
‘singletons” with degree zero, do occur in our biological encounter
networks because of the limited time window of our observation
(see Section 3). To check how much our general results depend
on the presence of these low-degree nodes, we artificially removed
degree-zero nodes from our biological encounter networks, and
re-analysed these ‘pruned’ networks as above, constructing new
synthetic and simulated networks to match the new node and edge
counts. We confirmed that networks with ‘pruned’ and original
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Fig. 4. Analytic results predict bingo performance on biological and synthetic encounter networks. Predicted (horizontal axis) and observed (vertical axis) number of nodes
scoring bingo; each point corresponds to a different network. (a) expected results from equation (1) in the Supplementary Material; (b) estimated performance using the
threshold value derived from the expected number of encounters needed to fill a bingo. There are 20 repetitions of each bingo game with different L, each value of L is

represented with a different colour.

statistics showed very comparable behaviours, demonstrating that
the typically small proportion of singletons does not dramatically
influence overall network performance at bingo (Supplementary
Figure S8).

3 Discussion

The previous research presenting plant mitochondrial encounter
networks (Chustecki, 2021a; 2021b) hypothesised that the collec-
tive dynamics of plant mitochondria allow the cell to balance two
priorities. The first is an even physical distribution of mitochon-
dria, ensuring a uniform energy supply, potential for colocalisation
with other organelles throughout the cell, and avoiding hetero-
geneity in concentration of metabolites and signalling molecules.
The second ‘social’ priority is colocalisation of mitochondria to
facilitate exchange of genetic information and biomolecules. Here,
we build on this second priority to show that the topology of
encounter networks is capable of facilitating the efficient emergence
of a complete mtDNA product set, through complementation of
subgenomic mtDNA molecules and transcripts.

The main biological message of our model is that the observed
dynamics of plant mitochondria theoretically support the collec-
tion of mtDNA product sets more efficiently than a wide collection
of alternative, random and null models. A physical model captur-
ing heterogeneous diffusive and ballistic motion of mitochondria
mirrors the biological network behaviour, suggesting that this com-
bination of random and cytoskeletal motion is the physical mech-
anism responsible, and required, for supporting efficient collection
of mtDNA products through exchange. This in turn suggests several
hypotheses. First, this dynamic behaviour may have been optimised
by selection. Organisms with different mitochondrial dynamics
(e.g., different balances of diffusion and cytoskeletal motion, as in
the less efficient parameterisations of our physical model) would
have lower capacities to collect mtDNA products by exchange,
and thus may experience a selective disadvantage as mitochondrial
protein complements are depleted. If this is the case, then we would
expect to observe similar physical dynamics, giving encounter
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networks with heavy-tailed degree distributions, in other plants
too. Second, perturbations to this dynamic behaviour may com-
promise mitochondrial populations of mtDNA products. Here,
we would expect to observe reduced levels of mtDNA products
(even in bulk samples) of mutants compromising mitochondrial
exchange, as DNA and transcript exchange become less able to
compensate for product turnover. We would expect this effect to be
particularly pronounced for genes with short transcript lifetimes.
Testing of these hypotheses would be eminently possible through
imaging mitochondria in other tissues and species (Chustecki et al.,
2021b) and via proteomics in, for example, the FRIENDLY mutant
compromising mitochondrial distribution and fusion (where mito-
chondrial functionality is already known to be compromised; El
Zawily et al., 2014).

Our model makes quantitative predictions about the influence
of inter-mitochondrion exchange on mtDNA product levels, which
can be produced with a given set of biological parameters describ-
ing decay and exchange rates. For example, we may begin by
assuming that all mitochondria form at least one connection on the
timescale of 1 hr (Arimura etal., 2004). Consider two gene products
that both decay with a 1 hr half-life [following Sorenson et al.
(2018)]. These products are initially assumed to be present at a full
expression level in every mitochondrion; each mitochondrion also
contains a subgenomic molecule encoding one, but not both, of the
products. In the absence of any exchange between mitochondria,
after 2 hr, each mitochondrion will contain one product at its full
expression level and the other at a 25% (and decreasing) level. If
exchange is allowed, following our observed encounter networks,
mitochondria will on average have a full level of one product and
maintain a roughly 50% level of the other over time.

We have not considered mtDNA replication, degradation,
recombination or other genetic dynamics (Johnston, 2019) in this
model. Plant mtDNA readily recombines (unlike animal mtDNA),
allowing mixing and restructuring of the information shared
between mtDNA molecules (Broz et al., 2022; Woloszynska, 2009).
Here, we only consider the question of mitochondrial access to gene
products and genetic information, not the population dynamics
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and/or restructuring of the molecules containing this information.
This is a rich topic in itself, addressed by some classical (Albert
etal., 1996; Atlan & Couvet, 1993) and some recent (Edwards et al.,
2021) theories, and the influence of these physical dynamics of
mitochondria on the genetic dynamics of mtDNA is an ongoing
topic of research (Aryaman et al., 2019; Hoitzing et al., 2017;
Johnston, 2019; Mogensen, 1996; Mouli et al., 2009; Poovathingal
et al., 2009; Tam et al., 2013, 2015). We underline that the details
of rates and magnitudes of our proposed mechanism remain
hypothetical: although elegant experiments have demonstrated
contents exchange and mixing throughout the chondriome
(Arimura, 2018; Arimura et al., 2004), the physical and temporal
scales of inter-organelle mtDNA exchanges remain, to the best of
our knowledge, uncharacterised. Experimental characterisation of
these processes will allow parameterisation of our model, which
for now demonstrates the range of possible behaviours and general
principles without specifying given parameter values.

Like any approach based on imaging, our characterisation
of biological encounter networks is subject to some noise. The
requirements to image the cell with a fine time resolution (so
that mitochondria can be accurately tracked) and with limited
laser power (to avoid damaging the cell) limit the resolution of
individual frames, and the motion of mitochondria, while largely
confined to a 2D plane, can sometimes lead to individuals being
lost during the tracking process. This can affect the structure of
the subsequent encounter networks. However, the most common
issue—a mitochondrion being transiently ‘lost’ and hence, for
example, being represented as two mitochondria (before and after
the ‘loss’) early and late—will generally have the effect of reducing
the degree of nodes. This is because the set of encounters of such
a mitochondrion will be split between the two individuals. We
thus expect the ‘true’ encounter network to involve more higher-
degree nodes, thus supporting the distinction from the synthetic
cases with limited degree distributions. On a similar note, our
protocol involves imaging over a finite time window. Over time,
encounter networks will gain more edges, and it is conceivable
that over a long time the networks will come to resemble a
complete graph, with every mitochondrion having encountered
every other. However, there is another timescale in the system: the
timescale on which genetic information is ‘forgotten, as protein
products expressed from a historically encountered genome
molecule degrade. The system is thus expected to avoid steady-
state behaviour, and our approach informs about the dynamics that
shape the system in a sampled window of this out-of-equilibrium
behaviour. Furthermore, plant cells are dynamic systems capable
of responding to internal and external stimuli via sensing and
feedback control. As such, the topology of a cell's encounter
network is not fixed over the lifetime of the cell. Cells may adapt
mitochondrial dynamics to favour, for example, ‘cliquier’ or sparser
encounter networks as circumstances demand. The capacity of the
cell to control mitochondrial dynamics to optimise mitochondrial
exchange, and other priorities, is an exciting target for future work.

4 Methods
4.1 Plant growth

(Experimental protocols follow those in Chustecki et al. (2021b).)
Seeds of Arabidopsis thaliana with mitochondrial-targeted green
fluorescent protein (GFP) (kindly provided by Prof. David Logan;
Logan & Leaver, 2000) were surface sterilised in 50% (v/v) house-
hold bleach solution for 4 min with continual inversion, rinsed
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three times with sterile water and plated onto % Murashige and
Skoog agar. Plated seeds were stratified in the dark for 2 days at
4°C. Seedlings were grown in 16-hr light/8-hr dark at 21°C for 4-5
days before use.

4.2 Imaging

Prior to mounting, cell walls were stained with 10 uM propidium
iodide (PI) solution for 3 min. Following a protocol modified from
Whelan and Murcha (2015), full seedlings were mounted in water
on microscope slides, with cover slip. Imaging of dynamic systems
in living cells is a balance between spatial/temporal resolution
and maintaining physiological conditions. To avoid undesirable
perturbations to the system including physical and light stress and
hypoxia, all imaging was done maintaining low laser intensities
and within at most 10 min of mounting to minimise the effects of
physical stress and hypoxia (Prof. Markus Schwarzlédnder, personal
communication).

A Zeiss 710 laser scanning confocal microscope was used to
capture time lapse images. To test robustness of the imaging proto-
col, a Zeiss 900 with AiryScan 2 detector was also used for several
identically prepared samples, with no differences between sum-
mary statistics collected from these samples and those from the 710
beyond natural variability. For cellular characterisation, we used
an excitation wavelength of 543 nm and detection range of 578-
718 nm for both chlorophyll autofluorescence (peak emission of
679.5 nm) and for PI (peak emission of 648 nm). For mitochondrial
capture, we used an excitation wavelength of 488 nm and detection
range of 494-578 nm for GFP (peak emission of 535.5 nm). Videos
were 231 s long, with a frame interval of 1.94 s, and a resolution
(after scaling for standardisation) of 0.2 um per pixel.

4.3 Video analysis

Individual cells were cropped from the acquired video data using
the cell wall PI signal using Fiji (Image]) (Schindelin et al., 2012).
The size of each video was scaled to the universal length scale of 5.0
pixels/pum. We then extracted individual mitochondrial trajectories
from the acquired video data using TrackMate (Tinevez et al.,
2017). Typical settings used were application of the LoG Detector
filter with a blob diameter of 1 um and threshold of 2-7; filters
were set on spot quality if deemed necessary. The Simple LAP
Tracker was run with a linking max distance of 4 um, gap-closing
distance of 5 um and gap-closing max frame gap of 2 frames.
In each case, we visually confirmed that individual mitochondria
were appropriately highlighted and that tracks were well captured,
editing occasional tracks where necessary. XML output from Track-
Mate was converted to adjacency matrices using custom code (see
below).

4.4 Null model networks

We constructed several theoretical models for network structure,
each with n nodes and e edges. First, ER random networks (Erdds
& Rényi, 1960) were constructed by randomly choosing two non-
identical nodes a and b, each with probability 1/n, and creating an
edge between them, repeating until e edges were created.

Second, SF networks (Barabasi & Albert, 1999) were con-
structed by randomly choosing nodes with probability 1/deg(a;) +
1/%;1/deg(a;) + 1. This procedure was repeated e times, with
degree updated each time, for the basic network (i). Variations
of SF networks were created in two ways. For (ii), beginning
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with a linear network where an edge connects each a; and aj.1,
then proceeding as in (i), thus enforcing connectivity. For (iii), a
preferential attachment process was performed for each of the n
nodes, where a node is connected to a partner a with probability
1/deg(a;)+1/%;1/deg(a;)+ 1, where the sum j is over nodes added
so far to the network. Extra edges are then added as in (i).

Third, WS networks (Watts & Strogatz, 1998) were constructed
as follows. Compute the mean degree k = n/e. Label each of n
nodes with successive integers. For each node i, draw k; = [k] or | k|
randomly with relative probabilities [k] —k and k— | k. If k; is even,
connect i to the k;/2 nodes immediately before it and the k;/2 nodes
immediately after it in sequence. If k; is odd, connect to (ki +1)/2
‘before’ nodes and (k; — 1)/2 ‘after’ nodes with probability 1, or
vice versa with probability % For all edges linking i to a node with
label > i, change the target node with probability 3 to a different
node # i.

Fourth, ‘cliquey’ networks were constructed. Given a clique
size ¢ and constraints on #n and e, the number of cliques allowed
was computed as n. = min(|#n/c|,|e/(c(c+1)/2)]). The n nodes
were partitioned into . cliques with edges between each pair of
nodes within each clique. These cliques were then either (a) left
disconnected; (b) connected with a single edge linking two cliques;
(c) left disconnected but padded with randomly placed edges to
reach e total and (d) connected with a single edge linking two
cliques then padded.

Fifth, GRGs were constructed by placing n points—each repre-
senting a node—in the unit square, and progressively adding edges
between the two disconnected nodes with the shortest distance
between their corresponding points, until e edges existed. Finally,
the star graph with n nodes was constructed by connecting n — 1
nodes to a central node, then adding random edges until e edges
existed.

4.5 Model networks based on physical simulation

Synthetic encounter networks were constructed based on physical
simulation of model mitochondrial dynamics using custom code
in C (see below). As we are free to set length and time units in our
simulation, we use 1um as the unit of length and set one discrete
simulation timestep equivalent to 1 s. n agents were simulated in
a model cell, a 2D rectangular domain with reflecting boundary
conditions at x = 0, x = 100 um, y = 0, y = 30 um, to model the
geometry observed in our experimental observations of hypocotyl
cells (Chustecki et al., 2021b). Cytoskeleton strands are modelled
as crossing the cell at constant x (horizontal) and at constant y
(vertical). Each agent could, at any time point, be detached or
attached to the cytoskeleton. If detached, each timestep, agents
were moved according to a normal kernel with standard deviation
2D um?/s, so that Dum?/s is the diffusion constant. When first
attached, an agent is assigned a velocity vector: while attached, that
agent moves by that vector each timestep. The velocity vector is
randomly chosen on attachment and may be in the +x, —x, + y or
—y direction, and has magnitude V pum/s. Each timestep, detached
agents become attached with probability ko, and attached agents
become detached with probability kg, corresponding to rates of
konjof/s- When two agents were present within a distance 1.6 um
of each other, an edge corresponding to the pair was added to the
encounter network (if not already present). The physical simulation
proceeded until e edges were present.

Characteristic values observed experimentally are D~ 0.1 zm?/s
and V ~ 1 um/s (Chustecki et al., 2021b). In our simulations, we
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explored one order of magnitude either side of these values, using
D = (0.02,0.1,1) um?/s and V = (0.1,1,10) um/s. We explored
(kon, ko) pairs of (0,0)/s (no cytoskeletal motion), (0.1,0.1)/s and
(0.5,0.1)/s.

Entry and exit of individual organelles into the system was
modelled by switching individuals between ‘active’ and ‘inactive’
states. Active mitochondria behave as above and interact; inactive
mitochondria remain static and do not contribute to any encoun-
ters, remaining effectively invisible (thus having exited the sys-
tem). When this feature was used in simulations, activation and
inactivation of individuals were stochastic events with rates po, =
0.01/s and pog = 0.1/s, respectively, leading to a mean of 10% active
mitochondria at a given time.
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