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Abstract

Mitochondrial DNA heteroplasmy samples can shed light on vital developmental and genetic processes shaping mitochondrial DNA 
populations. The sample means and sample variance of a set of heteroplasmy observations are typically used both to estimate bottle-
neck sizes and to perform fits to the theoretical “Kimura” distribution in seeking evidence for mitochondrial DNA selection. However, 
each of these applications raises problems. Sample statistics do not generally provide optimal fits to the Kimura distribution and so 
can give misleading results in hypothesis testing, including false positive signals of selection. Using sample variance can give misleading 
results for bottleneck size estimates, particularly for small samples. These issues can and do lead to false positive results for mitochondrial 
DNA mechanisms—all published experimental datasets we re-analyzed, reported as displaying departures from the Kimura model, do 
not in fact give evidence for such departures. Here we outline a maximum likelihood approach that is simple to implement computation-
ally and addresses all of these issues. We advocate the use of maximum likelihood fits and explicit hypothesis tests, not fits and 
Kolmogorov–Smirnov tests via summary statistics, for ongoing work with mitochondrial DNA heteroplasmy.
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Introduction
Mitochondrial DNA (mtDNA) encodes vital energetic apparatus. 
Populations of tens to thousands of mtDNA molecules exist in eukary-
otic cells, and some of these molecules may carry mutations that 
cause disease. Because of the high ploidy of mtDNA, a cell may con-
tain a coexisting “heteroplasmic” mixture of mutant and wildtype 
mtDNA molecules. Cells may support a certain heteroplasmy—that 
is, a certain proportion of mutant mtDNA—before suffering any con-
sequences, but if that threshold is exceeded, pathologies result 
(Wallace and Chalkia 2013; Stewart and Chinnery 2015).

Because germ cells also contain highly polyploid populations of 
mtDNA, its inheritance differs from that of nuclear DNA. MtDNA 
is often exclusively maternally inherited. If a mother carries an 
mtDNA mutation, her oocytes will in general have a range of dif-
ferent heteroplasmies for that mutation. This variability is gener-
ated during development by a collection of random processes 
referred to as the genetic “bottleneck”, where a reduced effective 
population size increases cell-to-cell variability in the oocyte 
population (Stewart and Chinnery 2015; Johnston 2019). The vari-
ability generated by the bottleneck allows some offspring to in-
herit heteroplasmy levels lower than their mother, helping to 
ensure viable offspring can be generated. This segregation of mu-
tational damage across offspring is observed across eukaryotic 
kingdoms (Edwards et al. 2021).

The amount of heteroplasmy variance generated between oo-
cytes and offspring is of central importance both in mitochondrial 

biology and in clinical efforts to understand and plan for families 
carrying mtDNA mutations. The magnitude of heteroplasmy vari-
ance is often quantified by considering a “bottleneck size” nb—the 
sample size that would generate the same magnitude of heteroplas-
my variance if a single binomial sampling event was responsible for 
generating all variability. Inferring bottleneck size with samples of 
observed genetic data is of interest and importance from funda-
mental biology to clinical planning. It is common to estimate bottle-
neck size using the sample mean h− = (1/n)Σhi and sample variance 
s2 = (1/(n − 1))Σ(hi − h− )2 of a set of heteroplasmy measurements {hi}. 
Specifically, bottleneck size is typically estimated using

n̂b = p(1 − p)/V,

where p and V are sample statistics, calculated from observations in 
different ways in different projects. Most commonly, given a sample 
of heteroplasmy values, the sample mean h̵ is used to estimate p 
(thus assuming an absence of selection (Johnston 2019)), and the 
sample variance s2 for V. In other cases, an earlier or reference het-
eroplasmy measurement may be used for p; the population vari-
ance expression is sometimes used for V. All of these quantities 
are estimators, based on a sample, for the population relationship 
nb = p0 (1 – p0)/σ2, which in turn comes from a binomial model where 
the population variance is given in terms of the parameters σ2 = nb p0 

(1 – p0).
All the above assumes that no systematic pressures favor mu-

tant or wildtype mtDNA during development and inheritance. The 
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question of whether selective differences do act between mtDNA 
types in the germline is hotly debated in different systems, includ-
ing humans (Johnston 2019; Wei et al. 2019). One approach that 
has been used to explore mtDNA selection involves the compari-
son of heteroplasmy measurements to a theoretically predicted 
heteroplasmy distribution under neutral drift (Kimura 1955). 
This comparison has been used in several recent studies 
(Wonnapinij et al. 2008, 2010; Monnot et al. 2011; Freyer et al. 
2012; Jokinen et al. 2016; Otten et al. 2018; Zhang et al. 2021) and 
to model mtDNA inheritance (Samuels et al. 2013). Within the 
mtDNA field, this neutral-drift distribution is commonly referred 
to as the “Kimura” distribution, although Kimura actually derived 
several other distributions describing the role of selective differ-
ences and other features (Kimura 1954; see below). The Kimura 
distribution of interest here is the theoretical distribution of allele 
frequencies after neutral drift has acted on an initial population 
for some given time. The theory is built up under assumptions 
of discrete generations, no selection, migration, or mutation, 
and fixed population size. The application to heteroplasmy com-
bines the time and population size parameters into a single “drift” 
parameter so that the distribution is parameterized by an initial 
frequency (heteroplasmy) and an amount of drift, which is related 
to the similarly effective bottleneck size above. Depending on the 
parameterization, the Kimura distribution can take the form of a 
tight peak around an initial value or a wider normal-like bell 
curve, or (after more drift) can have substantial density at the 
point values h = 0 and h = 1, reflecting the fixation or extinction 
of an allele (some examples are shown in Fig. 1).

Fits of observed heteroplasmy data to the Kimura distribution, 
like bottleneck estimates, are also typically performed using the 
sample mean and sample variance for a set of measurements, 
in a method outlined by Wonnapinij et al. (2008; 2010) and referred 
to as the WCS-K approach after those authors and Kimura 
(Wallace and Chalkia 2013). The interpretation here is that if the 
Kimura distribution—which assumes no selective differences— 
does not fit the data well, there may be some support for selective 
differences in the system of interest. The Kimura distribution as 
used by the WCS-K approach takes two parameters p (initial het-
eroplasmy) and b (describing the extent of drift), both between 0 
and 1. A value of b close to 1 corresponds to little drift and vari-
ance; lower values correspond to more drift and higher variance 
(b is connected to bottleneck size nb via nb = 1/(1-b)). The popula-
tion mean and variance are

μ = p

σ2 = p(1 − p)(1 − b).

Typically, a fit to observed heteroplasmy samples is performed 
by calculating the sample mean and sample variance of the sam-
ple, asserting that these are equal to the population mean μ and 
population variance σ2 above, and using these relationships to 
provide estimates for the parameters p and b (Wonnapinij et al. 
2008; 2010). If the equality assertion is instead recognized as an es-
timation, this is the so-called “method-of-(central)-moments” for 
fitting a distribution. Having fitted this distribution, the WCS-K 
approach uses a Kolmogorov–Smirnov (KS) test to compare the 
empirical distribution of observed heteroplasmy values to a large 
set of samples drawn from the fitted distribution (although this 
workflow has statistical flaws, described below and by Crutcher 
(1975)). The KS test considers the cumulative distribution func-
tions (CDFs) of two sampled distributions and seeks the maximum 
absolute difference between these functions (illustrated in 

Fig. 1b). If this maximum distance exceeds a threshold, computed 
under the null hypothesis that both sample sets come from the 
same distribution, a significant difference is claimed between 
the fitted theory and observed samples. In the WCS-K approach, 
this is inferred to provide evidence for selection, as the theory is 
developed under assumptions of neutrality.

The problems with these fitting approaches can be illustrated 
with 3 related problems.

Problem 1. Misleading bottleneck size estimates. For our first ex-
ample, we consider a dataset on mtDNA heteroplasmy recently 
published in Broz et al. (2022). A mother plant with heteroplasmy 
h0 = 0.81 produced 24 offspring. 15 had h = 0, 3 had h = 1, and the 
remaining h values were (0.91, 0.91, 0.92, 0.94, 0.95, 0.98). As we 
have an initial “reference” heteroplasmy (the mother’s h0), we 
can estimate the bottleneck size with

n̂b = h0(1 − h0)/s2

= 0.81 × 0.19/0.225

= 0.684,

Leaving us with a bottleneck size of 0.68 segregating units. Such 
a value is nonsensical because we cannot segregate less than a 
single unit of information through a bottleneck (even a theoretic-
al, binomial one). This problem can readily be demonstrated with 
a simpler example of two heteroplasmy measurements (0, 1) (see 
Supplementary File 1), and is not a rare case: other mtDNA (and 
plastid DNA) measurements from plants also yield such bi- 
homoplasmic observations.

Problem 2. False positive signals of selection (or other processes) via 
Kimura fit. We next consider a dataset from Freyer et al. (2012), 
plotted in Fig. 1a. Using the WCS-K approach, we fit the Kimura 
distribution using summary statistics p = h̵ = 0.605 and b = 1 – s2/ 
(h̵(1 – h̵)) = 0.901. A Monte Carlo implementation of the KS test 
(Wonnapinij et al. 2008) gives a P-value of 0.028 (close to that re-
ported in the original publication), suggesting a significant depart-
ure from the theoretical model. Such a departure could be 
interpreted as a signature of selection.

But now consider a different Kimura distribution, with p = 0.628 
and b = 0.935 (the provenance of these parameters will be ex-
plained below). Now the KS test gives a P-value of 0.556. So there 
is no reason to reject the null hypothesis that these observations 
were drawn from a Kimura distribution—removing our reason 
to suggest that selection may be acting. Because we previously 
used an (inappropriate) fit based on summary statistics, we chose 
the wrong Kimura distribution with which to compare our data 
and obtained a false positive. This is before accounting for the 
more general fact that the application of the KS test in this situ-
ation—comparing data to samples from a distribution whose 
parameters are fitted using the same data—is statistically incor-
rect as described below (Crutcher 1975).

This issue can be illustrated more dramatically with a synthetic 
example, involving the dataset h = (0, 0, 0, 0, 0.9, 0.9, 0.9, 0.9) (plotted 
in Fig. 1b). Here, the distributions corresponding to different fit 
methods (see below) have more dramatically different structures 
and the different KS distances in each case can be more easily seen.

We have chosen a particular real and synthetic dataset to sim-
ply illustrate this point, and a synthetic example that makes the 
quantities involved clear. But the issue is systemic: upon re- 
analyzing a range of real datasets for which significant departures 
were reported (see below), we have not identified any cases that in 
fact departed significantly from the Kimura distribution at a 
threshold of P < 0.05.

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/article/13/6/jkad068/7084750 by U

niversitetsbiblioteket i Bergen user on 22 January 2024

http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkad068#supplementary-data


K. Giannakis et al. | 3

Problem 3. Hypothesis testing with bottleneck sizes. Sample var-
iances are not drawn from a normal distribution. Even when the 
population from which samples are taken is normal, the sample 
variance follows a chi-squared distribution; when the population 
distribution is not normal (as for heteroplasmy measurements), 
the sample variance distribution is in general not known. We can-
not then use tests that invoke a normality assumption (like the 
t-test) to compare sample variances or the bottleneck size esti-
mates that are derived from them. Must we use low-powered non-
parameteric approaches instead?

Materials and methods
Statistics and code
The statistical analyses we employ here are described in the text 
and were implemented in R within a new package heteroplasmy 
(https://github.com/kostasgian21/heteroplasmy). The existing 
R packages used are kimura (https://github.com/lbozhilova/ 

kimura), ggplot2 (Wickham 2016) for plotting, foreach (Weston 
and Microsoft Corporation 2020) (https://CRAN.R-project.org/ 
package=foreach), and optionally doParallel (Weston and 
Microsoft Corporation 2022) (https://CRAN.R-project.org/package 
=doParallel) for parallel execution of the code, and devtools 
(Wickham et al. 2020) (https://CRAN.R-project.org/package= 
devtools) to download and install the kimura and heteroplasmy 
packages. The code is freely available at https://github.com/ 
StochasticBiology/heteroplasmy-analysis.

Heteroplasmy data
The LE and HB mouse oocyte heteroplasmy data were taken from 
Burgstaller et al. (2018). In our paper, only indicative samples of 
the dataset in Burgstaller et al. (2018) were used. LE and HB corres-
pond to two genetically distinct heteroplasmic mouse lines; HB 
and LE stand for Hohenberg and Lehsten respectively, the regions 
from which the founders of the mouse models were 
isolated (Burgstaller et al. 2014). For the purposes of this work, 

Fig. 1. Different estimators for the Kimura distribution give dramatic differences in hypothesis testing. Fits via the (commonly implemented) 
method-of-moments, maximum likelihood, and minimum KS distance to example datasets. Each method’s KS distance (mKS) and p-value from the 
Monte Carlo test described in the text is given in the inset. a) Data from Freyer et al. (2012) (specifically, the concatenated set of observations for mother 
heteroplasmies ≤ 0.6); b) synthetic data as described in the text. (i) Probability distributions for each fit; (ii) comparison of CDFs from the data and for each 
fit; (iii) the KS distance between empirical observations and theoretical distribution with different choices of parameter p and b of the Kimura distribution 
(parameterizations from specific fits marked as points). The maximum distance between CDFs of the data and a fitted distribution gives the KS distance 
(illustrated by dotted lines in (b) (ii)); the method-of-moments (and maximum likelihood) give KS distances rather higher than the minimum KS distance 
approaches, with correspondingly low (and false positive) P-values in hypothesis testing. Even the subtle differences in parameterization for (a) give 
dramatically different P-values in the KS test.
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only samples from oocytes were used. Heteroplasmy measure-
ments were taken as found in Supplementary File 1.

Data from progenitor germ cells (PGCs), oocytes, and offspring 
were taken from Freyer et al. (2012). Grouping of individual mea-
surements was undertaken to match the grouping within the ori-
ginal publication, according to the ranges of the mother’s 
reference heteroplasmy for PGCs and offspring as classified in 
the paper (i.e. [0.0–0.6], [0.6–0.7], [0.7–1.0]). For the oocyte data, 
all 5 samples were individually tested (again, as in the original pa-
per). Because of ambiguity with the order of reporting of the asso-
ciated significance results in the original paper for the oocyte data, 
we mapped each of our results to the numerically closest ones 
from the original paper.

Human, fly (Drosophila mauritiana and D. simulans), and mouse 
heteroplasmy measurements from Wonnapinij et al. (2008) were 
also used. Originally, the human data came from Brown et al. 
(2001), fly data from de Stordeur et al. (1989), and mouse data 
from Jenuth et al. (1996). The raw data are not available in either 
publication, so we use the binned data, as depicted in relevant his-
tograms in Wonnapinij et al. (2008). To interpret the binned data as 
estimated individual measurements we tested several methods, 
including taking the mean of each bin, taking the mean and then 
adding small noise disturbances to cut the ties, and others. The 
method that most faithfully reproduced the original results was 
resampling the data within each bin by taking uniformly random 
values within the bin interval. As noted also by Wallace and 
Chalkia (2013), caution is needed when binned data are used to test 
for selection by fitting a Kimura distribution. Therefore, we reported 
here ranges of P-values when using the method-of-moments ap-
proach to replicate the results from (Wonnapinij et al. 2008), instead 
of single values (in Table 1).

Finally, organellar heteroplasmy data were taken from Broz 
et al. (2022), including between-generation measurements of 
mitochondrial heteroplasmy for the mt91017 and mt334038 SNPs 
from msh1 plants, and the mt334038 SNP from wildtype plants.

All data, if not presented as such, were normalized to propor-
tions (on the [0,1] interval) rather than percentages for analysis.

For the synthetic data, the normal samples were generated 
using the rnorm command in base R. For the data generated by a 
Kimura distribution, the rkimura function from the kimura R pack-
age (https://github.com/lbozhilova/kimura) was used.

Results
A parametric solution—maximum likelihood 
fitting
How can we estimate a meaningful bottleneck size and derive sens-
ible confidence intervals in the challenging cases above? Fitting het-
eroplasmy measurements to the Kimura distribution can actually 
answer all of these questions. However, the above examples 
make it clear that we cannot in general perform a simple matching 
of distribution parameters to summary statistics (choosing the 
parameters, p and b, that give a distribution with the same mean 
and variance as the sample). This method-of-moments will only 
find the parameters that are most compatible with the observations 
in the case of infinite sample size, where the sample mean and vari-
ance converge to the population mean and variance. For many pur-
poses, the method-of-moments estimates may be close enough to 
these most-compatible values to provide useful information. 
However, as we show here, the differences between them can 
have substantial misleading effects on hypothesis testing when 
studying heteroplasmy.

When individual heteroplasmy measurements are available 
(sometimes only summary statistics are reported), and there is 
reason to believe the Kimura model, a more appropriate approach 
is instead to identify the maximum likelihood parameters given 
the full set of measurements (as used previously in at least one 
study (Otten et al. 2018)). The maximum likelihood parameters 
for a statistical model are those that give the highest joint prob-
ability of observing our measurements under that model. 
Although these do correspond to the sample mean and sample 
variance in the case of a normal distribution model, for other dis-
tributions (including the Kimura distribution) this is not generally 
the case (as in the example above). Instead, we have to find the 
parameters with the highest associated likelihood. The Kimura 
distribution Kimura (h | p, b) gives the probability density for a gi-
ven heteroplasmy observation h. We write

L = Πi Kimura(hi|p, b),

and seek the p, b combination that maximizes L for a given h. If we 
wish to enforce a particular p—for example, if we have a reliable 
initial heteroplasmy measurement—we can instead perform the 
search only over b. Both p and b are confined in [0,1] here, respect-
ing the constraints of the system.

This maximum likelihood process will identify the b (and p, if 
required) that is most likely given the set of observations. We 
can also derive confidence intervals on this estimate using 
Fisher information or bootstrapping (see Supplementary File 1), 
obtaining, for example, an estimate for b and its 95% confidence 
intervals. These can then be interpreted as bottleneck size nb via 
nb = 1/(1 – b).

To reiterate, this process is not the same as fitting a Kimura dis-
tribution based on summary statistics, as is often used. In that 
case, we are losing information about the distribution of hetero-
plasmy samples and will not in general identify the maximum 
likelihood parameterization.

How does this approach perform on the example problem data-
sets above? First, consider the heteroplasmy measurements from 
Broz et al. (2022) which gave a bottleneck size estimate under 
1. Using a maximum likelihood fit gives an estimate for b of 
0.204 (95% c.i. 0.107–0.354), corresponding to an estimate for nb 

of 1.26 (95% c.i. 1.12–1.55), all readily interpretable parameters 
of the model. More generally, the maximum likelihood approach 
readily identifies the most likely model parameters given observa-
tions (Fig. 2). In all these cases the confidence intervals on n can 
readily be computed using likelihood derivatives, immediately 
giving an interpretable uncertainty on bottleneck size.

Testing fits to the Kimura distribution
Wonnapinij et al. (2008) propose using a Monte Carlo method based 
on the KS statistic between the empirical cumulative distribution 
function of a heteroplasmy sample and an ensemble of samples 
generated from a fitted Kimura distribution. However, this fitting 
is typically carried out using the method-of-moments, which is 
not guaranteed to give a distribution that will generate samples 
with the lowest KS distance from the data. The maximum likeli-
hood approach above does not solve this problem: the maximum 
likelihood parameterization of the Kimura distribution is also not 
guaranteed to minimize KS distance from the data. In general, fit-
ting by moments, likelihood, and goodness-of-fit (including KS dis-
tance) will give different estimators for finite samples (Figs. 1 and 2).

It is possible to find the parameterization of the Kimura distri-
bution that is guaranteed to give the minimum KS distance from a 
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given dataset, by minimizing the KS distance across parameter va-
lues (Fig. 1; see Supplementary File 1). This parameterization can 
yield much lower KS distances than the two other estimators. In 
all cases we studied, this means that the P-value computed 
from the Monte Carlo approach does not pass a significance 
threshold, even when the other parameterizations (less suited to 
minimizing KS distance) suggested a significant departure. Some 
examples are shown in Fig. 1; this is the approach used to identify 
the alternative parameterization in the motivating example prob-
lem above.

In other words, the fact that the Monte Carlo approach gives a 
low P-value when used with a distribution fitted via moments 
does not mean that the Kimura distribution is incompatible 
with observations. It is very possible that a different fit, minimiz-
ing KS distance instead of matching moments, will give a P-value 
that does not pass a significance threshold—so the hypothesis 
that a Kimura distribution (just not the moment-fitted one) gen-
erated the data cannot be discarded. We found this to be the 
case in every dataset we investigated, including several where a 
significant departure from the Kimura distribution was previous-
ly reported (Wonnapinij et al. 2008; Freyer et al. 2012) (Table 1). 
Other studies using the Kimura fit did not report significant de-
partures from the Kimura distribution (Monnot et al. 2011; 
Jokinen et al. 2016; Zhang et al. 2021); in these cases, the minimum 
KS distance fit will simply yield even higher P-values (as in Fig. 1
and Table 1).

There are some other important points to consider here. First, 
the KS test as applied in the WCS-K approach relies on sampling 
and, therefore, does not produce a single, fixed P-value as is typic-
ally reported. Instead, a range of P-values arises from the ap-
proach, and this range can be quite wide depending on the 
sampling method used, and whether observations are rounded 
before testing (Table 1). Second, the P-value range is very sensitive 
to even small perturbations in the specific heteroplasmy values 
analyzed. In Supplementary Fig. a in Supplementary File 1 we ar-
tificially add noise levels <1% to heteroplasmy observations and 
find consistent and, in some cases, dramatic increases in the 
range of P-values reported. Third, and more broadly, it is a well- 
known statistical result that the KS test cannot be used in the 
usual way to compare data with a distribution that has been fitted 
using that same data (Crutcher 1975). As in the WCS-K approach, 
when a parametric distribution is fitted using data and those data 
are then compared to it, the nonparametric KS test approach must 
be corrected.

The fact that judicious parameterizations of the Kimura distri-
bution can fit this wide range of heteroplasmy distributions under-
lines that the Kimura distribution is remarkably flexible and 
capable of capturing a wide range of heteroplasmy structures (in-
cluding all those observed to date, to our knowledge). Despite this 
flexibility, it is possible to construct a dataset that cannot be well 
fit (in the KS sense) by any parameterization of the Kimura distribu-
tion. An example is given by expanding the above (0, 0.9) example so 
that there are 50 observations of each value (P = 0.01 from Monte 
Carlo KS test using minimum KS distance fit, Supplementary Fig. b
in Supplementary File 1). This structure is challenging to fit because, 
on one hand, the many zeroes suggest either a low p or very high seg-
regation, and the many 0.9s suggest neither can be true. However, 
this and comparable examples are far removed from any real-world 
observations of which the authors are aware.

For clarity, it helps to specify the hypotheses that these various ap-
proaches test. The original approach tests the hypothesis that a spe-
cific Kimura distribution, parameterized by the method-of-moments, 
commonly generates samples with a higher KS distance from the 

distribution than the data’s KS distance. Because that particular par-
ameterization is not guaranteed to reflect the true distribution, this 
test is hard to interpret. The proposed approach tests the hypothesis 
that any Kimura distribution commonly generates samples with a 
higher KS distance from the distribution than the data’s KS distance. 
This test is more (but not fully) aligned with the scientific question of 
whether the data may be generated given the assumptions under-
lying the Kimura model.

The question of whether samples are unlikely to be drawn from a 
given family of distributions is complicated. While results like variants 
of the Anderson–Darling test exist for many distributions (Stephens 
2017), to our knowledge these results do not exist for the Kimura dis-
tribution. We suggest that such tests are not yet developed enough to 
provide scientific insight, and instead advocate the likelihood-based 
testing of alternative hypotheses as in Otten et al. (2018).

Nonparametric solutions I—h-statistics
In some cases, this maximum likelihood approach may be impos-
sible (if we do not have access to individual measurements) or un-
desirable (if we do not believe that the Kimura distribution, or any 
other parametric model, is a good description of the system). In 
such cases, we may be forced to use a nonparametric approach 
to estimate bottleneck size. Here, there is no way of avoiding 
some of the issues above, as without a model we cannot naturally 
enforce scientific constraints on the values involved. With this 
caveat, sample statistics can be used to provide an estimator of 
the uncertainty in sample variance (Wonnapinij et al. 2010). 
However, as shown in our introductory problems, several issues 
can arise with this approach and require careful interpretation; 
we also believe that the expressions in Wonnapinij et al. (2010)
need some adjustment to be generally applicable.

The variance of the sample variance s2 is

V(s2) = (1/n)(μ4 − (n − 3)/(n − 1)σ4),

which requires two population quantities, the variance σ2 and the 
4th central moment μ4, to be estimated from a sample of data.

Wonnapinij et al. (2010) quote a result for a quantity D4, which is 
proposed as an unbiased estimator of the 4th central moment of a 
distribution

D4 = ((n − 1)(n2 − 3n + 3)/n3) μ4 + (3(2n − 3)(n − 1)/n3) μ2
2.

However, we cannot find a justification for this estimator. In the 
cited source (Dodge and Rousson 1999), the left-hand side of this 
equation (Wonnapinij’s D4) is not presented as an estimator of μ4, 
but is the expected value of the sample moment m4. The refer-
ence states that the expected value of that sample moment is 
the expression on the right-hand side, not that this is an estima-
tor for the population μ4. Indeed, μ4 (the quantity to be estimated) 
itself appears on the right-hand side. In tandem, several other 
key expressions in the WCS-K approach, including for the normal 
and Kimura special cases, involve population quantities σ2, p, b, 
and even μ4 itself, which are not directly accessible from a 
sample.

Happily, all this is resolved by the existence of a unique un-
biased symmetric estimator for μ4 in terms of sample moments, 
which is the corresponding h-statistic (Dwyer 1937; Halmos 
1946; Rose and Smith 2002; the h label here and h for heteroplasmy 
are a coincidence):

h4 = (3(3 − 2n)n2 m2
2 + n2(n2 − 2n + 3)m4)/((n − 3)(n − 2)(n − 1)n),
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where

m2 = 1/n Σ(h − h− )2

m4 = 1/n Σ(h − h− )4

h− = 1/n Σ h 

(note that these expressions are all functions of the data sample 
alone, not population quantities as in the WCS-K expressions). 
Here we can immediately take our n measurements of h, compute 
the sample mean h̵ and sample moments m2 and m4, and obtain 
our h4 estimate of μ4 for further use.

The expression in Wonnapinij et al. (2010) for μ4 in the Kimura 
distribution is correct (the algebra required is in Supplementary 
File 1) but, as before, this is a population quantity and we cannot 
in general simply plug in a set of estimators and obtain an un-
biased μ4 estimate. Using the h-statistic immediately resolves 
this issue.

We, therefore, propose the following estimator for the variance 
of the sample variance, based directly on sample statistics from 
the data

V̂(s2) = (1/n)(h4 − (n − 3)/(n − 1)s4).

Once this variance estimate has been obtained, its interpretation 
as confidence intervals requires a parametric choice (for example, 

writing ±1.96 s.e. invokes a normal assumption). To avoid these is-
sues we can use a resampling approach.

Nonparametric solutions II—resampling to 
estimate variance uncertainty
An alternative approach is possible without relying on a paramet-
ric model, particular estimators, and without requiring a para-
metric choice at any point in the analysis. The bootstrap and 
jackknife are two algorithms from applied statistics that allow a 
very general estimation of uncertainty on any statistic of interest, 
computed by “resampling” the data set (Efron and Tibshirani 
1994). This process involves generating a set of new samples 
from the original sample, related but different, and computing 
the statistic of interest for each new sample. This set of computed 
values estimates the true distribution of the statistic of interest. In 
the bootstrap, B new samples of size n are constructed by sam-
pling with replacement from the original sample. In the jackknife, 
n new samples of size n – 1 are constructed by omitting each elem-
ent of the original sample in turn. We focus on the bootstrap here 
for simplicity.

Bootstrap estimates for heteroplasmy variance are then con-
structed by creating B new samples and working out the hetero-
plasmy variance for each, with the uncertainty in the overall 
estimate given by the spread of values across this resampled 
set. There is an important technical point here: resampling with 

Fig. 2. Likelihoods for different model fits. Likelihood surface for the synthetic dataset in Fig. 1b with different values of the Kimura distribution 
parameters p and b. The parameter estimates from different approaches (MoM, method-of-moments; Min KS, minimum KS distance; Max lik, maximum 
likelihood) are given as individual points. The maximum likelihood fit by construction identifies the parameterization with the highest likelihood; the 
method-of-moments and minimum KS distance fits identify parameterizations some distance from this peak.
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replacement leads to bias in summaries of dispersion (like vari-
ance) because the same observation will often be repeated in a re-
sampled set (Wiley 2001). Several methods have been proposed to 
correct this bias, described and benchmarked in Nguyen (2018). 
We adopt the simple approach in Wiley (2001) (generalized in 
Brennan (2007), and supported by the benchmarking across a 
wide range of cases)—using a correcting factor of n/(n-1) to com-
pensate for the expected bias. The estimate of the standard error 
of heteroplasmy is then

V̂(s2) = n/(n − 1)1/BΣiV(h(i)),

where the sum is over B bootstrap resamples, each giving a re-
sampled dataset h(i).

A roadmap for heteroplasmy analysis
Taken together, these approaches give us a set of options for the 
analysis of heteroplasmy data. These options are outlined in the 
form of a decision tree in Fig. 3.

In Fig. 4, the different approaches for estimating uncertainty in 
heteroplasmy variance are illustrated for a selection of the (highly 
segregated) samples in the plant organelle dataset from Broz et al. 
(2022). In Supplementary Fig. c in Supplementary File 1, these dif-
ferent approaches are illustrated for a wider range of synthetic 
and real datasets. Across examples, nonparametric (h-statistic 
and bootstrap) estimates are typically consistent, and parametric 
fits to the Kimura distribution give more conservative (larger) es-
timates for V(h) variance.

Bonus results I—comparing bottleneck sizes
Consider the problem of how to compare bottleneck sizes in differ-
ent systems. We cannot use a t-test—bottleneck size is the recip-
rocal of a sample variance and cannot possibly be normally 
distributed. Nonparametric approaches will lose statistical power. 
Can we use the above idea to perform well-powered testing of hy-
potheses about bottleneck size?

Yes, readily. Given the ability to perform maximum likelihood 
estimates for our parametric models, we can use a likelihood ratio 
test to compare two models: first, where a different bottleneck ap-
plies to different observations, and second, where the same 
bottleneck describes all observations—following Broz et al. 
(2022). Consider the case where we have two groups, each consist-
ing of several sets of heteroplasmy observations. We are 

interested in whether the bottleneck size is the same in the two 
groups. We consider two model structures. First, each set in 
each is assumed to be drawn from a Kimura distribution, where 
p is unique for each set and b is unique for each group. Second, 
each set is assumed to be drawn from a Kimura distribution, 
where p is unique for each set and the same b value applies to 
both groups. Hence

L1 = ΠjΠi Kimura(hi|pi, bj)

L2 = ΠjΠi Kimura(hi|pi, b).

We then maximize L1 and L2 over pi and bj (for model 1) or b 
(model 2). We can then use the likelihood ratio test to investigate 
support for model 1 (different bottleneck sizes in the 2 groups) 
against model 2 (the same bottleneck size in both groups):

Λ = −2(L2 − L1).

Comparing Λ to a χ2 distribution with 1 degree of freedom (cap-
turing the one parameter difference between the two models) will 
then give a P-value against the null hypothesis of no difference in 
bottleneck size between the groups.

For example, consider two groups: Group 1 with h11 = (0.2, 0.4), 
h12 = (0.6, 0.7) and Group 2 with h21 = (0.1, 0.7) and h22 = (0.3, 1). The 
maximum likelihood process above gives estimates for the bottle-
neck size of 34 (9.4–130) and 2.3 (1.3–5.8), respectively, and the 
likelihood ratio test gives a P-value of 0.005 against the null hy-
pothesis of equal bottlenecks.

This P-value may seem surprisingly small given the low sample 
size in our example. But this is the strength of an appropriately cho-
sen parametric approach. It is very unlikely that a single Kimura 
distribution capable of generating the high-variance pairs would 
also generate the low-variance ones and vice versa. To draw a par-
allel with the (perhaps more familiar) t-test, if we have two very dis-
tant pairs of internally close observations, it is very unlikely that the 
same normal distribution would generate them all, and we can ob-
tain an arbitrarily low P-value against this null hypothesis as the 
pair spacing increases (e.g. (0, 0.01) and (0.99, 1) gives P < 0.0001).

Bonus results II—the case of nonzero selection
Paralleling his work on allele distributions under neutral drift 
(Kimura 1955), Kimura also derived distributions for the case of 
selective pressure favoring one allele (and for the case where 

Fig. 3. Choosing approaches to analyze heteroplasmy measurements. A decision tree outlining our proposed use of different statistical approaches to 
analyze heteroplasmy. The “assumptions” involved are (i) a parametric way of interpreting standard errors as confidence intervals (for example, a normal 
model of ±1.96 s.e.) and (ii) a link between the estimated summary statistics of a dataset and the parameters of a generative model. s.e., standard error; 
c.i., confidence interval.
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this selection fluctuates) (Kimura 1954). Wright and Kerr (1954)
also made quantitative progress on this question; Kimura (1954)
links the two approaches. Interpreting these allele frequency dis-
tributions as heteroplasmy distributions, we have a probability 
density function for heteroplasmy measurements given an effect-
ive population size and selection coefficient. Once again, a max-
imum likelihood approach can be used to estimate these 
parameters and associated uncertainty. Further, a likelihood ratio 
test can be used to seek statistical support for the presence of se-
lection at the intracellular level. In Otten et al. (2018), a similar 
philosophy is used for the intercellular level, with a likelihood ra-
tio test against an alternative hypothesis of a “truncated Kimura” 
distribution—a Kimura distribution with probability mass 
removed at high heteroplasmies, to model an absence (due to 
removal or death) of cells with such high heteroplasmies. In 
both cases, a parametric model for the action of selection (within 
or between cells) is invoked to provide a well-posed statistical test.

Discussion
The work of Wonnapinij et al. (2008, 2010) was groundbreaking in 
applying statistical methods and stochastic models from 
population-genetic theory to modern mtDNA observations. The 
Kimura distribution is a convenient and powerful model for allele 
frequencies, though as critiqued in Wallace and Chalkia (2013), it 
is not without issues. Here we suggest that its use within a max-
imum likelihood setting, rather than using method-of-moments 
fitting, resolves several issues that have arisen in its application. 
In particular, we caution against the KS testing of the Kimura dis-
tribution fitted by moments. As we have shown, the moment fit 
does not generally give the parameters that are most compatible 

(in the KS sense) with the data, making it very likely that false 
positive errors occur.

This is fundamentally a statistical story about how different es-
timators can give different results, and how any results must be in-
terpreted with the estimator in mind. There is nothing intrinsically 
good or bad about the different estimators (method-of-moments, 
maximum likelihood, minimum KS distance) that we use here. 
However, approaches for testing hypotheses with parameters re-
quire those parameters to be inferred in a compatible way. When 
the hypothesis is, for example, any Kimura distribution has a large 
KS distance from the empirical data, the estimator (minimum KS 
distance) that minimizes this distance and therefore more strictly 
tests the hypothesis should be chosen. For estimates of uncertainty 
in sample variance in real datasets, the difference between differ-
ent estimators rarely provides a substantial effect. However, for fit-
ting and testing distribution structure, the appropriate estimator is 
a much more important issue.

Wallace and Chalkia (2013) previously outlined some shortcom-
ings of using this approach, noting that the Kimura model itself re-
lies on several assumptions which are not met in real mtDNA 
situations and that departures from these assumptions may chal-
lenge the model. They also discuss that the use of the KS test to 
compare the theoretical distribution with empirical data is not 
without several other issues—including the applicability of its 
underlying population-genetic assumptions, limited sensitivity, 
and ability to capture the non-Mendelian dynamics of mtDNA in-
heritance. Another pitfall with using the KS test arises when one 
tries to compare data with a distribution whose parameters were 
estimated by the same data (Crutcher 1975). The issue we highlight 
here is a different one and stands in parallel with these important 
points—even if the Kimura model and KS test approach are 

Fig. 4. Different ways to estimate the uncertainty of variance in heteroplasmy samples. The variance of a subset of organellar heteroplasmy samples 
from Broz et al. (2022). For comparison, error bars are set to twice the estimated standard error of variance. Nonparametric (h-statistic and bootstrap) 
approaches give generally consistent estimates; parametric fits to the Kimura distribution are more conservative. Method-of-moments and maximum 
likelihood fits of Kimura parameters can give different estimates of uncertainty, particularly pronounced in the final set. See Supplementary File 1 for 
examples from other experimental studies.
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accepted, the way that this model is typically fitted with experimen-
tal observations makes further testing uninterpretable.

How should we detect selection? In the case of a mechanism 
that fundamentally changes the family of distributions from 
which heteroplasmy is drawn, the likelihood ratio test approach 
of Otten et al. (2018) is well suited. Here, support is compared for 
a truncated Kimura distribution (modeling cell-level selection) 
and a Kimura distribution (modeling neutrality). The case of intra-
cellular selection is more challenging. Kimura (1954) shows that 
even in the presence of selection, distributions can closely resem-
ble those from a neutral model. The best approach here is to use 
longitudinal data (an early reference measurement or a time 
course) and to fit a model that allows for selection and generates 
all observations. It is important to note that any early reference 
measurement will itself be a sample and cannot be regarded as 
ground truth (i.e. as a population parameter).

The various nonlinearities involved in these expressions and 
distributions mean that even small differences in individual het-
eroplasmy measurements—and certainly in estimated para-
meters—can have dramatic differences in the P-values from the 
analysis (as in Fig. 1b, and several examples in Table 1). Because 
of this, rounding and binning heteroplasmy values before the 
WCS-K analysis can have strong effects on the consequent find-
ings (as in some examples in Table 1). The other approaches out-
lined here are more robust to such small deviations (which will 
always arise due to measurement noise).

More generally, mtDNA (and plastid DNA) heteroplasmy is a re-
markably awkward quantity. If we use the near-universal defin-
ition h = m/(w + m) where m is the mutant copy number and w 
wildtype copy number, h can strictly only take values where w 
and m are integers, and where w + m is the cellular copy number. 
So steps smaller than 0.01 are not permitted for a cell with 100 
mtDNAs: we can have h = 0.05 or h = 0.06 but not h = 0.054. As 
the ratio of two random variables, the variance (and mean) of h 
does not have a convenient closed-form representation, even if 
we have a perfect theory for how w and m change. The WCS-K 
model is one attempt to work with h by employing a particular 
set of simplifying assumptions (which have been critically dis-
cussed, for example, in Wallace and Chalkia (2013)). Other ap-
proaches include attempting to develop predictions for w and m 
and then using our approximating for a complicated sum over 
all possibilities (Johnston et al. 2015) or a Taylor expansion ap-
proximation for h (Johnston et al. 2015; Aryaman et al. 2019; 
Hoitzing et al. 2019; Edwards et al. 2021; Insalata et al. 2022). 
These approaches have merit (and shortcomings (Glastad and 
Johnston 2023)) when attempting to build a bottom-up theory 
from microscopic dynamics; the Kimura model is convenient for 
top-down, data-driven analysis. For this reason, it is a valuable ap-
proximation of use in heteroplasmy analysis—providing the esti-
mator used is appropriate for the statistical task at hand.

Data availability
This study did not generate new primary research data. All 
code is freely available at https://github.com/StochasticBiology/ 
heteroplasmy-analysis.
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