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Summary

� Organelle DNA (oDNA) in mitochondria and plastids is vital for plant (and eukaryotic) life.

Selection against damaged oDNA is mediated in part by segregation – sorting different oDNA

types into different cells in the germline. Plants segregate oDNA very rapidly, with oDNA

recombination protein MSH1 a key driver of this segregation, but we have limited knowledge

of the dynamics of this segregation within plants and between generations. Here, we reveal

how oDNA evolves through Arabidopsis thaliana development and reproduction.
� We combine stochastic modelling, Bayesian inference, and model selection with new and

existing tissue-specific oDNA measurements from heteroplasmic Arabidopsis plant lines

through development and between generations.
� Segregation proceeds gradually but continually during plant development, with a more rapid

increase between inflorescence formation and the next generation. When MSH1 is compro-

mised, the majority of observed segregation can be achieved through partitioning at cell divi-

sions. WhenMSH1 is functional, mtDNA segregation is far more rapid; we show that increased

oDNA gene conversion is a plausible mechanism quantitatively explaining this acceleration.
� These findings reveal the quantitative, time-dependent details of oDNA segregation in Ara-

bidopsis. We also discuss the support for different models of the plant germline provided by

these observations.

Introduction

Mitochondria and plastids are essential sites of energy transduc-
tion across eukaryotes. Originally independent organisms, they
retain their own genomes (organelle DNA or oDNA; mtDNA
and ptDNA respectively) encoding essential aspects of bioener-
getic machinery in plants (and other eukaryotes; Clegg et al.,
1994; Palmer et al., 2000; Allen & Martin, 2016; Mohanta
et al., 2020; Giannakis et al., 2022). Plant cells typically contain
populations that range from dozens to thousands of mtDNA and
ptDNA molecules (Preuten et al., 2010; Wang et al., 2010; Grei-
ner et al., 2020; Fernandes Gyorfy et al., 2021), contained within
their respective organelles (Barr et al., 2005; Woloszynska, 2010;
McCauley, 2013; Johnston, 2019a). Due to their centrality in
bioenergetic, metabolic, and other cellular processes, it is essential
to preserve the integrity of oDNA genes. This preservation neces-
sitates a way of dealing with oDNA mutations and ensuring
faithful inheritance of oDNA between generations.

Mutations in oDNA can give rise to heteroplasmy – a mixture
of several oDNA types within a cell (Wallace & Chalkia, 2013;
Stewart & Chinnery, 2015). Across eukaryotes, developmental
and genetic processes exist to limit the inheritance of hetero-
plasmy (Edwards et al., 2021). In several animals, mtDNA
inheritance is shaped by the so-called developmental bottleneck
(Burgstaller et al., 2018; Stewart & Chinnery, 2015; Zhang

et al., 2018; Johnston, 2019b). Here, cell-to-cell variance in het-
eroplasmy is increased in the female germline so that individual
gametes have a wide range of heteroplasmy levels. Through this
increase in variance – called segregation or ‘sorting out’ – it is
then possible for some gametes to inherit lower levels of dama-
ging mutations than the mother’s average. If gametes with high
levels of such mutations are removed by selection, the mutational
burden passed to the next generation is limited.

How plants limit the inheritance of these damaging mutations
is less well understood (Barr et al., 2005; Woloszynska, 2010;
Galtier, 2011; McCauley, 2013). Although the observation of
within-plant segregation of oDNA-linked phenotypes dates back
over a century (and led to the discovery of cytoplasmic inheri-
tance; Hagemann, 2010; Greiner, 2012), the quantitative
dynamics and mechanisms of this segregation remain unclear. Pre-
vious work characterising inheritance and sorting of heteroplasmy
in carrot (Mandel et al., 2020) described rather little evidence for
mitochondrial segregation during plant development, with most
observations involving a loss of heteroplasmy between genera-
tions. Such intergenerational sorting has also been observed in
Silene, where only 17% of offspring retained heteroplasmy that
was present in their mother (Bentley et al., 2010). The hetero-
plasmy levels involved in the carrot study were typically extreme
(c. 1% frequency of the minor allele), meaning that within-plant
segregation would be very hard to detect. However, one notable
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instance was recorded of a moderately heteroplasmic offspring
(31% minor allele frequency) arising from a < 1% heteroplasmic
mother and father, suggesting that a mechanism for substantial
amplification of minor alleles may nonetheless be present.
Barnard-Kubow et al. (2017) reported substantial vegetative sort-
ing of ptDNA in Campanulastrum americanum, acting to resolve
heteroplasmy arising from the plant’s biparental plastid inheri-
tance. More general, qualitative observations of variegated pheno-
types also suggest that vegetative sorting (within-plant segregation
during development) must be possible (Greiner et al., 2015).

Recent experimental evidence has shown that generational
sorting out of plant mtDNA and ptDNA is extremely rapid com-
pared with animals (Broz et al., 2022). This work showed that
this sorting depends on MSH1, a gene responsible for controlling
recombination activity in oDNA (Abdelnoor et al., 2003).
Although the precise nature and mechanism of this control is yet
to be determined (Arrieta-Montiel et al., 2009; Christensen,
2014; Virdi et al., 2015), MSH1 is required to maintain a low
mutational burden in plant oDNA (Wu et al., 2020), accelerates
oDNA segregation (Broz et al., 2022), and supports oDNA gene
conversion (Gualberto et al., 2014; Edwards et al., 2021). Other
recombination factors, including members of the RECA gene
family, also contribute to oDNA maintenance (Day &
Madesis, 2007; Shedge et al., 2007; Maréchal & Brisson, 2010;
Rowan et al., 2010; Miller-Messmer et al., 2012). Theoretical
work has explored the role of recombination processes in shaping
plant oDNA (Atlan & Couvet, 1993; Albert et al., 1996), sug-
gesting that gene conversion provides a strategy for oDNA segre-
gation (Lonsdale et al., 1988; Khakhlova & Bock, 2006), with
stochastic modelling showing that such segregation can occur
without requiring a reduction in cellular oDNA copy number
(Edwards et al., 2021). This feature is potentially useful for
plants, where, due to developmental dynamics, a germline cannot
readily be sequestered and manipulated to impose a physical bot-
tleneck. oDNA copy number in plant meristems is lower than in
many animal cases (Preuten et al., 2010; Wang et al., 2010;
Greiner et al., 2020; Edwards et al., 2021), but this reduction
alone cannot account for the extent of segregation observed (Broz
et al., 2022). The developmental history of the plant germline
differs dramatically from the animal case (Burian et al., 2016;
Lanfear, 2018), and any understanding of how oDNA segrega-
tion proceeds during development necessitates an analysis
approach that can both account for the developmental history
underlying samples (Wilton et al., 2018; Stadler et al., 2021) and
the uncertainty over different models of plant germline develop-
ment (Kirk et al., 2013; Lanfear, 2018).

Here, we attempt to illuminate the dynamics and mechanisms
by which plants perform this rapid sorting of oDNA hetero-
plasmy. We combine existing heteroplasmy measurements within
and across plant generations with a stochastic phylodynamic
model for cellular oDNA dynamics during plant development.
We use Bayesian inference and model selection to reveal when
and where cell-to-cell variability is generated; model selection
and mathematical analysis reveal the likely physical mechanisms
responsible for this segregation. We confirm the predictions of
this model with new experimental observations, characterising

the segregation dynamics of mtDNA and ptDNA within plants
in unprecedented quantitative detail.

Materials and Methods

Plant material and growth

The initial generation and selection of heteroplasmic Arabidopsis
thaliana L. lines is described in Broz et al. (2022). Here, plants of
the homozygous msh1 (At3g24320) mutant line CS3372 (chm1-
2) were used for analysis of plastid heteroplasmy. For mitochon-
drial heteroplasmy analysis in a wild-type background, maternal
lines ofmsh1 CS3246 (chm1-1) were crossed with wild-type males
to generate F1 progeny. These different msh1 alleles were used
because it was on these backgrounds that oDNA variants present
at reasonable allele frequencies arose and were retained (to be
described later); both have been reported to be full allelic knock-
outs (Broz et al., 2022). All progeny were confirmed to be hetero-
zygous for MSH1. Seeds of desired lines were vernalised in water
at 4°C for 3 d, sown in 3-inch pots containing Pro-Mix BXmedia,
and grown under short day conditions (10 h : 14 h, light : dark)
on light racks with fluorescent bulbs (c. 150 μE m�2 s�1) at ambi-
ent temperature (c. 25°C). An initial fully expanded rosette leaf
sample was taken at 4 wk of growth to identify heteroplasmic indi-
viduals. Three additional leaves were sampled at 5 wk of growth.
These 4–5-wk-old leaf samples are considered ‘early leaf’ (EL) for
subsequent analyses. At 8 wk, four additional leaf samples were
taken. Two were harvested from the base of the rosette. These leaves
were already fully expanded at 5 wk and emerged from the SAM
around the same time as the EL samples described. Thus, these are
also considered ‘EL’. Two additional fully expanded leaves were har-
vested at 8 wk from the top of the rosette, emerging from the SAM
at a later timepoint than ELs, and are considered as late leaf ‘LL’ in
the analysis. Inflorescence tissue (INF) was harvested after plants
began to bolt. The number of families sampled, and the range of
samples in each family were in the original study (Broz et al., 2022):
mtDNA msh1 (five families, 23–57 samples per family); ptDNA
msh1 (seven families, 11–47 samples per family); mtDNA WT (six
families, 12–38 samples per family); in this study, ptDNA msh1
(one family, 64 samples in family); mtDNA WT (three families,
16–37 samples per family). Samples were of two main types:
mother-offspring, where EL measurements were taken in a mother
and across its offspring, and within offspring, where EL, LL, and
INF samples were taken withinmultiple offspring in a family.

Heteroplasmy measurements

DNA extraction and heteroplasmy analysis were performed as
described previously (Broz et al., 2022). Briefly, single nucleotide
variants (SNVs) in oDNA ofmsh1mutant lines were identified by
sequencing (Wu et al., 2020) and ddPCR assays were designed to
track these SNVs within plants and between generations. Allele-
specific primers and probes were designed for each SNV and dro-
plet generation, and reading was performed using Bio-Rad
QX200 system. This study used the specific loci plastid 26 553,
mitochondria 91 017, and mitochondria 334 038, which were
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retained after screening the original set of heteroplasmic variants
for those present at moderate allele frequencies. A correction fac-
tor was applied to mitochondrial data to account for the amplifica-
tion of nuclear copies of the mitochondrial genome (numts)
found in Arabidopsis. Specifically, the large numt on chromosome
2 is too similar to actual mtDNA to be distinguished with short
reads or ddPCR markers. So, we approximate the number of
nuclear genome copies in the sample (which would inflate the
number of apparent mitochondrial ‘wild-type’ alleles) and correct
accordingly. All nupts have enough sequence divergence that
nuclear and plastid copies can be unambiguously distinguished.

Developmental history models

We first picture a fertilised zygote giving rise to an early popula-
tion of stem cells. At some developmental time point, this popula-
tion will contain the single ancestral cell of all early-leaf samples,
as well as of cells that will continue to proliferate in the SAM. At a
later time point, the new SAM population will contain the ances-
tor for all late leaf samples, as well as for further proliferating cells.
At a still later time point, the new SAM population will contain
the ancestral cell to all inflorescence samples. Inflorescences are
interpreted as containing the egg cells for the next generation, in
which the developmental outline above is repeated for each single
fertilised zygote. Each tissue’s heteroplasmy value is drawn from a
distribution describing some amount of segregation acting on
developing descendants of these ancestral stem cells, with rela-
tionships described via the ‘cell pedigrees’ or ‘lineage trees’ in the
“linear” model of Fig. 1(a) (Wilton et al., 2018; Stadler
et al., 2021). An example of a possible relationship between het-
eroplasmy distributions in this case is illustrated in Fig. 1(b).

The developmental history of plant germlines is debated (Lan-
fear, 2018). To compare hypotheses on plant germline beha-
viour, we also consider two additional alternative models. In the
“separate germline” model of Fig. 1(a), the future germline is
sequestered early in development and then develops in parallel to
the somatic tissues. Here, the model is as above, except the inflor-
escence ancestral cell is drawn from the early stem cell popula-
tion. In the “all separate” model of Fig. 1(a), separate somatic
lines also exist so that the different organs all develop indepen-
dently from an original early precursor. In theory, different germ-
line histories – where soma and germline are sequestered at
different developmental time points – will give rise to different
correlations and variance structures in the oDNA populations in
different tissue types. For example, if the germline develops inde-
pendently of the soma, correlations between mean oDNA hetero-
plasmy in somatic and inflorescence samples are less likely, and it
may be possible for inflorescence oDNA to have lower variance
than soma oDNA. If the germline shares a common developmen-
tal ancestry with the soma, correlations are more likely, and
inflorescence variance will be at least as high as soma variance.

Inference of segregation dynamics

Our statistical approach requires a ‘likelihood’ function, giving
the probability of making our experimental observations given a

particular model and parameterisation (mathematical terms here
and throughout are described in Table 1). To assign a likelihood
to our tissue observations given a developmental model, we need
to (1) estimate the ancestral cell heteroplasmies and (2) estimate
the probability of observing a tissue heteroplasmy given the
ancestral value and some parameterised description of segregation
(Burgstaller et al., 2014, 2018). For (1), we treat ancestral cell
heteroplasmies as latent (unobserved) variables and integrate the
likelihood over all possible values for each. For (2), we use
the Kimura distribution (Kimura, 1955; Wonnapinij
et al., 2008) to describe the probability of observing a given het-
eroplasmy in individual tissue samples, creating a stochastic
model with a full likelihood function (Broz et al., 2022; Gianna-
kis et al., 2022). We change variables from the ‘drift parameter’ b
to a number of ‘effective segregation events’ n= log b/(1–1/Ne) –
described in detail below – to provide a convenient, additive
parameter for serial segregation events. The corresponding likeli-
hood is then used in a reversible jump Markov chain Monte
Carlo (RJMCMC) framework (Green, 1995; Dellaportas
et al., 2002; described below) with uninformative uniform priors
on initial heteroplasmies and division numbers and compute pos-
terior distributions over these parameters.

For numerical efficiency, we precompute Kimura distributions
for 0–200 cell divisions and initial heteroplasmies from 0 to 1 in
steps of 0.01 and use these precomputed distributions as a lookup
table in the inference process. For numerical efficiency, we set
effective population size to 50. A post hoc correction can be used
to interpret the results from this setup in terms of any other
population size (to be described later).

To account for the fact that heteroplasmy measurements may
have some associated uncertainty, we implement a degree of
granularity within the model. For example, a granularity of 0.01
means that heteroplasmy values are rounded to the nearest 0.01.
This both allows for measurement noise and improves computa-
tional speed; we will show that our results are robust to different
choices of this parameter.

We write fDig ¼ fDi ,MEL ,Di ,EL ,Di ,LL ,Di ,IN F g for the set
of observations in family i, with elements respectively corre-
sponding to Mother Early leaf (MEL), Child Early leaf (EL),
Child Late leaf (LL), and Child Inflorescence (INF). The under-
lines mean that we are in general talking about vectors of observa-
tions. We write SCj for the unobserved (latent) variable associated
with ancestral cell heteroplasmy at developmental stage j. The
likelihood associated with a set of measurements is built up itera-
tively, considering all possible values of unobserved variables, and
how subsequent behaviour might vary thereafter. The basic
“building block” of these expressions is Pðhjh0; nÞ, which is the
probability of seeing heteroplasmy h given an initial hetero-
plasmy of h0 and n effective segregation events. These probabil-
ities are described by the Kimura distribution (Kimura, 1955;
Wonnapinij et al., 2008; Table 1). For example, imagine we had
initial heteroplasmy h0, then n0 effective segregation events before
an unobserved developmental state SC1, after which n1 effective
segregation events generate the population from which a sample
D is taken. We could write

R
d SC1PðSC 1jh0; n0ÞPðDjSC 1; n1Þ,

which considers, for all possible values of SC1 (
R
d SC1 means we

New Phytologist (2024) 241: 896–910
www.newphytologist.com

� 2023 The Authors

New Phytologist� 2023 New Phytologist Foundation

Research

New
Phytologist898

 14698137, 2024, 2, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.19288 by U

N
IV

E
R

SIT
Y

 O
F B

E
R

G
E

N
, W

iley O
nline L

ibrary on [22/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



integrate over all these values), the probability of an SC1 value
given the initial heteroplasmy and n0 events (PðSC1jh0; n0Þ) and
the probability of our observation D given that SC1 value and n1
further events (PðDjSC 1; n1Þ). The actual expressions are longer

(and depend on the other n parameters of our model) but consist
of building blocks like these, combined according to the develop-
mental models in Fig. 1. For the model without a segregated
germline, the likelihood is then

Fig. 1 Models and data for heteroplasmy segregation in plant development. (a) Developmental models for observations of heteroplasmy (h, the proportion
of mutant organelle DNA type in a sample) in Arabidopsis thaliana. MSi and CSi are the unobserved (latent) ancestral cells at different developmental
stages (O, original precursor state; EL, early leaf; LL, late leaf; INF, inflorescence) in Mother and Child shoot apical meristem (SAM). The blue horizontal
bars denote the generation of sex cells and the establishment of a new generation. Greyed-out elements are unidentifiable given our observations and play
no role in our model. ni corresponds to the number of effective segregation events (model cell divisions) at each developmental stage. (b) Example of model
for heteroplasmy h within the linear developmental model in (a). The SAM at the CS2 stage includes cell with a distribution of heteroplasmy levels. In this
example, three cells a, b, and c from this distribution, with different heteroplasmy levels, go on to be the ancestors of two late leaves (LL1 and LL2) and part
of the future SAM at stage CS3. Segregation increases heteroplasmy variance as the descendants of a, b, and c develop, leading to new distributions. These
may be sampled (the mean of LL1 and LL2 are recorded) or unseen (the CS3 distribution plays a latent role in our model). (c–f) Observed heteroplasmy data
through development in different heteroplasmic plant families from Broz et al. (2022): (c) mtDNA in mutantmsh1 background; (d) mtDNA in wild-type
background (no within-plant data was taken here in Broz et al., 2022); (e) ptDNA in mutantmsh1 background; (f) no heteroplasmic samples for wild-type
ptDNA available in Broz et al. (2022). Samples are taken between generations (lower stages; comparing mother EL to a range of offspring EL) and within
offspring (upper stages; measuring EL-LL-INF within offspring); within-offspring measurements were not taken for wild-type mtDNA in Broz et al. (2022).
Different colours correspond to different families (with different founder mothers). The ‘fanning out’ of individual sample heteroplasmies over time corre-
sponds to increasing sample-to-sample variance.

LðfDigjn, h0iÞ ¼ PðDi ,MEL jh0i ; n0Þ
Z

dSC1PðSC1jh0i ; n0 þ n1 þ n2 þ n3ÞPðDi ,EL jSC 1; n0Þ
Z

d SC2PðSC 2jSC 1; n0ÞPðDi ,LL jSC 2; n1Þ
Z

d SC 3PðSC3jSC2; n1ÞPðDi,IN F jSC 3; n2Þ
Eqn 1
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So that SC1 is the precursor to EL and SC2, SC2 is the precursor
to LL and SC3, and SC3 is the precursor to INF (Fig. 1a). With a
segregated germline, the corresponding expression is

So that SC1 is the precursor to EL, INF, and SC2, and SC2 is
the precursor to LL. With completely separate developmental
lineages, we have

So that SC1 is the precursor to all lineages, which develop
independently. These likelihood functions are the mathematical
analogues to the graphical illustration of developmental models
in Fig. 1.

An important difference between the models is whether sam-
ples at different stages can have different population means. In
the separate lineages model, EL, LL, and INF pedigrees all come
from the same precursor, so have the same population mean. In
the linear model, each pedigree begins with a (latent) sample
from a previously segregated population (Fig. 1b), so population
means can differ (Supporting Information Fig. S1). They also
differ in the accumulated amount of segregation at the popula-
tion level. The ‘linear germline’ model enforces a monotonic
increase in segregation (hence in V0(h)) through development –
hence EL≤ LL ≤ INF ≤ cross-generation. The ‘all separate’
model supports a more flexible picture where INF< EL, for
example. However, although these relationships hold statistically
at the population level, a given set of samples may not reflect
them: for example, a sample of inflorescences may not capture
the full possible spread of values and may thus suggest a lower
variance than the true case. The full likelihood-based inference
process below accounts for these sampling issues.

Given one of the above likelihood functions for a family set of
observations fDig, the likelihood associated with a full set
of observations D is the product of likelihoods across the different
independent families in our dataset:

LðDjn; h0Þ ¼
Y

families i

LðfDigjn; h0iÞ Eqn 4

Effective population sizes

Preuten et al. (2010) find 50 or fewer mtDNAs in stems and
flowers. Wang et al. (2010) found egg cells from Arabidopsis to
possess 59.0 copies of mtDNA on average. Gao et al. (2018) do
not quantify mtDNA molecules in Arabidopsis but observe c. 250

mtDNA nucleoids in mature eggs and mature zygotes, and 100–
200 mtDNA nucleoids per cell during embryogenesis, with a
doubling between early apical cells and mature apical cells. We

choose an effective population size of 50 for consistency with
those studies where mtDNA copy number is more directly
observed.

In a comprehensive survey across species, Greiner et al. (2020)
report an increase in plastids per cell in Arabidopsis development
from 4 to 10 in the meristematic region, through 22–34 in young
leaves, to 50–90+ in mature leaves. Corresponding ptDNA
counts per plastid (per cell) are given as 8–21 (71–146), 48–84
(997–2476), and 79–121 (2900–5500+). We choose an effective
population size of 7, corresponding to the central estimate for the
meristematic observations, and assuming that plastids are intern-
ally genetically homogeneous (Scarcelli et al., 2016). This
assumption may be challenged in the case of recent mutations
(see the Discussion section).

For numerical convenience, we used a population size of
Ne = 50 in the numerical simulations. Following the usual
parameterisation of the Kimura distribution for mtDNA
work (Wonnapinij et al., 2008; Giannakis et al., 2023),
b ¼ exp �n=N eð Þ≃ð1� 1=N eÞn. Using this approximation
(which is not perfect for low Ne), we can immediately interpret
an inferred value of n for Ne as equivalent to a value n

0 for N 0
e: as

1–1=N eð Þn ¼ 1–1=N 0
e

� �n0
, n0 ¼ n logð1�1=N eÞ=logð1�1=N 0

eÞ,
so that, for example, n= 10 divisions for Ne= 50 give roughly
the same heteroplasmy distribution as n0 = 20 divisions for
Ne = 100. We can then scale the results for Ne= 50, chosen for
numerical convenience in our simulation, to the required effec-
tive population size in our estimates of biological reality. Hence,
any of the inferred numbers n of segregating events we report
(using Ne = 50 for mtDNA and Ne= 7 for ptDNA) can readily
be interpreted for another effective population size Ne

0 by multi-
plying by the factor log (1� 1/Ne)/log (1� 1/Ne

0), which for
most values is close to Ne/Ne

0 (Fig. S2). Finally, effective ‘bottle-
neck size’ Nb (the effective population size if variance is generated
by a single event) can be recovered from our inferred n with
N b ¼ 1=ð1�ð1�1=N eÞnÞ

Reversible jump MCMC

We use reversible jump MCMC (RJMCMC) to identify the sta-
tistical support for different models of developmental histories

LðfDigjn, h0iÞ ¼ PðDi ,MEL jh0i ; n0Þ
Z

d SC1PðSC 1jh0i ; n2 þ n3ÞPðDi,EL jSC1; n0ÞPðDi,LLjSC1; n1ÞPðDi,IN F jSC 1; n2Þ Eqn 3

LðfDigjn, h0iÞ ¼ PðDi ,MEL jh0i ; n0Þ
Z

dSC1PðSC1jh0i ; n2 þ n3ÞPðDi ,EL jSC 1; n0Þ

PðDi,IN F jSC 1; n2Þ
Z

dSC2PðSC2jSC1; n0ÞPðDi,LLjSC2; n1Þ
Eqn 2
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given observations (Green, 1995; Dellaportas et al., 2002; Kirk
et al., 2013). Briefly, RJMCMC simultaneously explores differ-
ent parameterisations of models and different model structures,
assigning support to model-parameter combinations that are
most compatible with the data. To search the joint model-
parameter space, a way of relating parameters between models
must be specified. We explored several options for relating para-
meters in each model class, which all gave convergent results in
the long-term limit of the MCMC chains, but found the best
mixing between model classes to be achieved simply using
ni
(1)= ni

(2)= ni
(3) for all developmental stages i and with model

classes given by superscripts (1: linear germline; 2: separate germ-
line; 3: all separate lineages), enforcing these (and preserving h0
values) as deterministic proposal rules upon a proposed shift from
model i to model j. These expressions immediately provide the
(trivial) mapping functions g ijðnðiÞÞ for implementing such a step
from model i to model j (Green, 1995; Dellaportas et al., 2002).
All models have the same dimensionality and the Jacobean deter-
minants associated with each of these mapping functions are all
one. We employ uniform priors on all parameters and model
indices, corresponding to no prior favouring of one model struc-
ture over another, and no prior favouring of particular parameter
values. This makes the acceptance rule for the RJMCMC imple-
mentation equivalent to the normal Metropolis–Hastings accep-
tance rule when a between-model step is proposed. We propose
such steps with probability one-third, employing the above per-
turbation to parameters when this option is not chosen. MCMC
chains were run over 105 samples, discarding 104 as burn-in and
subsequently recording every 10th sample.

Estimating and simulating variance due to gene conversion

The parameter κ in the main text is the rate constant associated
with the gene conversion processes WT+MU→WT+WT and
WT+MU→MU +MU (Edwards et al., 2021). In a simple pic-
ture, we could assume that half ourNe = 50 mtDNAs are WT and
half are MU. Then the rate of gene conversion is κ × 25 × 25,
which for κ = 0.007 per cell division gives c. 4 events per cell divi-
sion or c. 4/50 = 0.08 events per mtDNA per cell division.

The derivation of this expression depends on a linear noise
approximation, and the rates in the above argument will of course
vary as segregation proceeds. To provide a more precise estimate,
we implemented a simple stochastic simulation of binomial cell
divisions, random reamplification, and gene conversion in a
model cellular population. We simulated these processes for var-
ious gene conversion rates and 300 cell divisions and asked what
gene conversion rates were needed to generate a given normalised
heteroplasmy variance V0(h) within c. 34 cell divisions (Fig. S3).

Results

Developmental models for heteroplasmy within and across
plant generations

To use heteroplasmy measurements through developmental his-
tory to infer the dynamics of oDNA segregation, we require a

quantitative model predicting the distribution of heteroplasmy at
the different developmental and generational time points we
observe (Johnston et al., 2015; Burian et al., 2016; Burgstaller
et al., 2018; Wilton et al., 2018). Throughout this work, hetero-
plasmy is defined as the proportion of a mutant oDNA type in a
sample: so a sample of 60% mutant and 40% wild-type oDNA
has heteroplasmy h= 0.6; this and other quantitative terms are
listed as a glossary in Table 1. We analysed bulk tissue samples,
so cell-to-cell variability cannot be directly quantified; instead, we
assume that the heteroplasmy mean in a tissue sample reflects the
heteroplasmy of the single cell that was the developmental ances-
tor of the tissue (Furner & Pumfrey, 1992; Irish & Sussex, 1992;
Burian et al., 2016). This assumption allows for any amount of
segregation to occur during the development of the tissue from
the precursor cell but assumes there is no systematic shift due to
selection for one oDNA type over another. This is compatible
with evidence in this system, which found only weak bias for
some alleles (Broz et al., 2022) and evidence from other systems
(Mandel et al., 2020).

Table 1 Mathematical terms used in the manuscript.

Mathematical/
statistical
model

A quantitative description of how observations may be
generated by a biological system. Statistical models
describe a distribution from which observations can be
‘drawn’; the shape of these distributions will be
influenced by the parameters of the model.

Parameters A set of values in a mathematical model that describes its
behaviour. These often represent the rates of biological
processes, or the magnitudes of their effects on the
system.

Heteroplasmy Written throughout the text as h. The proportion of a
reference oDNA type – usually a mutant type – in a
population, which may be within a cell or in a bulk
sample.

Kimura
distribution

A statistical model, giving a theoretical distribution used
to describe how the cell-to-cell distribution of
heteroplasmy values spreads out as segregation occurs.
Takes parameters describing the mean heteroplasmy
and the amount of segregation.

Reversible
jump MCMC

A computational approach that explores different model
structures and their possible parameters. It returns
probability distributions (called ‘posterior’ distributions)
describing which model structures, and which
parameter values, are most supported by a given set of
observations.

Bottleneck
size/
(normalised)
heteroplasmy
variance

V(h) is cell-to-cell variance of heteroplasmy values h.
This is often ‘normalised’ by dividing by a function of
mean heteroplasmy: V0(h)=V(h)/(h(1� h)). This
accounts for the fact that the scale of V(h) can depend
on mean heteroplasmy. Bottleneck size is the number
of oDNAs that, when binomially sampled, would
generate a given amount of variance: Nb= 1/V0(h).

Effective
segregation
event

Our study’s representation of a developmental event
generating cell-to-cell heteroplasmy variance. We
picture a population of Ne oDNA molecules in a cell.
Each is randomly assigned to one of two daughter cells.
Each daughter then randomly reamplifies their oDNA
population back up to Ne. The combination of
partitioning and reamplification constitutes an effective
segregation event (and is a model for cell dynamics
during development).
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Given this picture, bulk heteroplasmy samples from different
tissues are interpretable as readouts of single-cell heteroplasmy in
the population of stem cell precursors to each tissue (Fig. 1a,b).
For example, mean heteroplasmy samples from three leaves are
interpreted as three single-cell heteroplasmy values from the (ear-
lier) population of stem cells that gave rise to those leaves. We
can then construct a developmental model inspired by an ‘onto-
genetic phylogeny’ picture, which tracks the relationships
between cells at different developmental stages (Wilton et al.,
2018). Here, the developmental history of a set of cells is
accounted for by a ‘cell pedigree’ or ‘lineage tree’ (Stadler
et al., 2021) describing the relationship between ancestral and
descended cells. Wilton et al. (2018) used such a picture to infer
rates of segregation and mutation through human development
given cellular profiles of the presence of different heteroplasmic
variants. We will follow this philosophy, but apply it to a descrip-
tion of a continuous heteroplasmy level as it varies through plant
development. Our mathematical model describes and links the
distributions of heteroplasmy in the estimated stem cell popula-
tions through and between generations (Fig. 1a,b; see the Materi-
als and Methods section). We consider three different models of
development, corresponding to no sequestered germline, separate
germline and soma developmental lineages, and a separate devel-
opmental lineage for every tissue we consider (Lanfear, 2018;
Fig. 1a). Importantly, our model considers individual hetero-
plasmy measurements (rather than fitting using coarse-grained,
uncertain summary statistics like heteroplasmy variance), increas-
ing the statistical power of our approach (Giannakis et al., 2023).

The amount of segregation occurring between each develop-
mental period is quantified in our model as ‘effective segrega-
tion events’. This draws upon a picture of binomial cell
divisions, where a cell has an effective population size of Ne

oDNA molecules. At a cell division, each oDNA is randomly
assigned to one of the two daughter cells. The daughter cells’
oDNA populations are then expanded back to Ne through
‘relaxed’ replication, where oDNA molecules randomly replicate
(Chinnery & Samuels, 1999). Because of the random partition-
ing and replication, each division generates some variance in
heteroplasmy between daughter cells: the number n of such cell
divisions that would generate the observed variance in hetero-
plasmy is our number of ‘effective segregation events’. We use
this variable rather than a ‘bottleneck size’ or ‘drift parameter’
(Wonnapinij et al., 2008; Johnston, 2019b) because (1) it cor-
responds to a biological ‘null model’ where variance is gener-
ated by cell divisions alone (to be described later); and (2)
because it is a convenient additive quantity so that the effective
number of segregation events describing n1 events followed by
n2 events is simply n1+ n2. We assume, based on biological
observations in the Arabidopsis germline (see the Materials and
Methods section), that cellular oDNA population size Ne= 50
for mtDNA (Preuten et al., 2010; Wang et al., 2010) and 7 for
ptDNA (the latter corresponding to seven genetically homoge-
neous organelles (Scarcelli et al., 2016; Greiner et al., 2020)).
We adopt binomial cell divisions and reamplification as a con-
venient null model with some empirical support (Johnston
et al., 2012, 2015), although mtDNA partitioning in yeast has

been observed to be controlled to a tighter extent (Jajoo
et al., 2016).

To learn the likely mechanisms of oDNA segregation in real
plants, we begin with the dataset from Broz et al. (2022), labelled
by different developmental stages (Fig. 1c–e). These stages are
early-emerging leaves (EL, fully expanded basal rosette leaves
between 4 and 8 wk of growth), late-emerging leaves (LL, upper
rosette leaves that were fully expanded after 8 wk of growth), and
inflorescences (INF; Fig. 1a; see the Materials and Methods sec-
tion), reflecting tissues generated progressively later in develop-
ment from the SAM. These data include observations of mtDNA
heteroplasmy in wild-type and msh1 mutant backgrounds, and
ptDNA heteroplasmy in the msh1 mutant. All wild-type lines
measured were homoplasmic in ptDNA, likely due to the high
rate of plastid segregation in wild-type plants (Broz et al., 2022).

Generation of heteroplasmy variance across tissues and
between generations

We first aim to infer the number of effective segregation events at
each developmental stage in Fig. 1. We used reversible jump
Markov chain Monte Carlo (RJMCMC), a computational
method which simultaneously estimates which of a set of differ-
ent mathematical models is most supported by data, and the
parameters of those models (Green, 1995; Dellaportas et al.,
2002). RJMCMC gives ‘posterior’ probability distributions for
each parameter and model index, describing the probability of
different mechanisms given the data and any prior information
(see the Materials and Methods section; Kirk et al., 2013). We
validated this modelling and inference approach with a set of syn-
thetic observations compatible with different mechanisms of var-
iance generation through development and between generations,
including cases distinguishing the likely presence of an early
germline (Fig. S1), and confirmed that inference results were
numerically stable (Fig. S4). Because the statistical approach con-
siders individual heteroplasmy observations, rather than losing
information with summary statistics like the sample variance,
substantial statistical power is retained to infer parameters and
select mechanisms (Giannakis et al., 2023).

Fig. 2 shows the inferred number of effective segregation
events at different stages of plant development and between gen-
erations, across the different model structures in Fig. 1(a). As
above, this value is the number of binomial cell divisions that
would be required to generate the observed heteroplasmy var-
iance, given an effective population size of 50 mtDNAs or 7
ptDNAs per cell.

The amount of segregation occurring between generations
(OM→O) is substantially greater than that occurring within a
single plant up to the inflorescence stage (O→ INF). In the msh1
mutant, a total of between 9 and 15 events are inferred to occur
for mtDNA and between 15 and 25 for ptDNA between genera-
tions. In the wild-type, between 50 and 100 events – on average
about a sevenfold increase in segregation – are inferred to occur
between generations for mtDNA.

To compare with other studies, we can consider the ‘normal-
ised heteroplasmy variance’ V0(h), which is the cell-to-cell
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variance in heteroplasmy normalised by h(1� h), where h is the
cell-to-cell mean heteroplasmy. The ‘bottleneck size’ Nb,
the effective population size if all heteroplasmy variance was gen-
erated by a single binomial sample, is 1/V0(h). Our inferred num-
bers of effective segregation events correspond to normalised
heteroplasmy variances V0(h) of 0.17–0.26 for msh1 mtDNA,
0.90–0.98 for msh1 ptDNA, and 0.64–0.87 for wild-type
mtDNA; hence, ‘bottleneck sizes’ of c. 4 for msh1 mtDNA, c. 1
for msh1 ptDNA, and c. 1 for wild-type mtDNA. In all cases,
substantial segregation is inferred to occur between the bulk
inflorescences of one generation and the early stem cells in the
next. This could correspond to the generation of large cell-to-cell
variability within the reproductive cells in an inflorescence,
matching the generation of variance in female reproductive cells
in mammalian systems.

Segregation differences in samples within a generation were
less pronounced, with comparatively few effective segregation
events inferred to occur up to the generation of early leaves (fully
expanded at 4–5 wk of growth), and few more inferred to occur
up to late leaf generation (fully expanded at 8 wk of growth). The
means of each estimated parameter show a roughly linear trend

through within-plant development, with heteroplasmy variance
increasing through developmental stages, but the extent of this
increase is at most half the total segregation between generations.

Due to sampling limitations in Broz et al. (2022), no within-
plant samples were generated for wild-type mtDNA, and msh1
ptDNA sampling was also somewhat limited. Based on the seven-
fold scaling of mtDNA segregation from the msh1 mutant to the
wild-type, we hypothesised that the amount of segregation at
each within-plant developmental stage would also be scaled
seven-fold. We next set out to test this prediction and to verify
the results of the ptDNA inference with further experiments.

New heteroplasmy observations support and refine model
predictions for segregation dynamics

To further illuminate the developmental dynamics of Arabidopsis
heteroplasmy, we measured mitochondrial heteroplasmy across
developmental profiles in lines where MSH1 functionality was
recovered by backcrossing to a wild-type male, while preserving
the heteroplasmy that was present in the female. The hetero-
plasmy dynamics in these lines are expected to reflect those in the

Fig. 2 Posteriors from inference process. Posterior distributions, inferred across models, for the effective segregation events from a precursor state (O for
child, OM for mother) to different tissue precursors (EL, early leaf; LL, late leaf; INF, inflorescence), and between generations (OM→O) in Arabidopsis

thaliana. (a)msh1mtDNA (Ne= 50); (b)msh1 ptDNA (Ne= 7); (c) wild-type mtDNA (Ne= 50, different scale); no within-plant data was taken here in Broz
et al. (2022), so the details of vegetative segregation cannot be inferred.
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wild-type (where heteroplasmy rarely arises because of low muta-
tion rates and the rapid sorting). The new observations are shown
in the right panels of Fig. 3(a,b).

Matching our predictions, we found dramatically accelerated
mtDNA segregation in the wild-type at the late leaf and
inflorescence stages, with the rates inferred from new observa-
tions compatible with the seven-fold scaling predicted from the
between-generations data (Fig. 3c). However, the extent of wild-
type mtDNA segregation before early-leaf development was
lower than this hypothesis predicted (with only 0.2% posterior
probability shared between the two distributions) – and more
similar to the lower levels in the msh1 mutant. This difference
suggests a refinement to our predicted picture – that the increased
segregation activity of MSH1 is mainly manifest in later

development, which in turn is in qualitative agreement with
observed patterns of MSH1 expression (Fig. S5).

Our new ptDNA observations also matched the predictions
inferred from previous data, with the increased volume of obser-
vations substantially refining the estimates of effective segregation
events at different developmental stages (Fig. 3d). The new obser-
vations were always compatible with the (more uncertain) esti-
mated parameters from the original measurements and combined
to provide a tightly defined estimate of segregation dynamics
through development. Assuming, as before, an effective popula-
tion size Ne = 7, the number of effective segregation events is
quite limited from early leaf to late leaf to inflorescence, with an
over 10-fold further increase in segregation following between
generations. It seems likely that this dramatic segregation

Fig. 3 New data and predicted segregation behaviour. (a, b) Previous (‘old’, left) and new (right) oDNA observations for (a) wild-type mtDNA and (b)
msh1 ptDNA in Arabidopsis thaliana. Data are displayed as heteroplasmy levels hmeasured at different developmental stages. Different colours corre-
spond to different families (with different founder mothers). (c) Within-plant segregation dynamics for wild-type mtDNA, plotted as the probability of a
given number of effective segregation events between different developmental stages. Predictions (blue) from scaling themsh1 observations sevenfold to
match between-generation observations; (red) inferred effective segregation events from new data. (d) Segregation dynamics ofmsh1 ptDNA; previous
observations (blue); new observations (grey); and refined estimates inferred from the joint dataset (red). Developmental stages: O, original precursor state;
EL, early leaf; LL, late leaf; INF, inflorescence.
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between generations is due to a severe physical bottleneck on
ptDNA, perhaps involving the inheritance of approximately only
one homoplasmic organelle (see the Discussion section).

To ask whether within-generation segregation was a genuinely
continuous process, we next explored the probability that the
magnitude of segregation increased sequentially through develop-
mental stages (e.g. whether the amount of segregation experi-
enced by late leaves exceeded that experienced by early leaves).
Here, we found evidence for continuous mitochondrial segrega-
tion through development when functional MSH1 is present,
but more limited support when MSH1 was compromised
(Fig. 4a). When MSH1 is compromised, segregation patterns can
be explained by all segregation occurring in early development
before early-leaf sampling; with functional MSH1, mitochondrial
segregation proceeds continuously through development. Given
our limited dataset, it remains open to what extent MSH1 influ-
ences within-generation segregation in plastids.

Cell divisions account for oDNA variance in themsh1
mutant, and gene conversion can account for additional
wild-type segregation of mtDNA

Arabidopsis has been estimated to undergo c. 34 germline cell
divisions between generations (Watson et al., 2016). In the msh1

mutant, the number of inferred effective segregation events
(averages c. 12 for mtDNA and 20 for ptDNA) easily fall within
what would be expected from this number of binomial cell divi-
sions for cellular populations of Ne = 50 mtDNAs and Ne= 7
ptDNAs, meaning that the observed heteroplasmy variance could
then be readily accounted for through random cell divisions and
reamplification alone.

In the wild-type mtDNA, much more segregation is observed
than can be accounted for by 34 cell divisions – the average num-
ber of inferred events is c. 75. Several possibilities exist for the
mechanism generating this additional variance. As hypothesised
in mammalian systems, partitioning of oDNA clusters, increased
random turnover of oDNA, and oDNA replication restricted to
a subset of the cellular population can all increase heteroplasmy
variance (reviewed in Johnston, 2019b). However, given the clear
difference between the wild-type and msh1 mutant, we suggest
that an MSH1-dependent process may be responsible for this
increased segregation in Arabidopsis. Following Edwards et al.
(2021), we propose that gene conversion may be this process – in
the Discussion section, we consider alternative mechanisms. That
reference characterised the contribution of gene conversion to
normalised heteroplasmy variance V 0(h) as 2(1� f ) κ t, where t
is time, f is the proportion of mtDNA molecules in a fused state
and thus physically capable of recombination, and κ is the rate of

Fig. 4 Patterns and models of segregation through development inferred from combined heteroplasmy profiles. (a) Evidence for progressive vegetative
segregation through development in Arabidopsis thaliana. Each plot asks whether the extent of segregation over one period is greater than that over
another. LL> EL corresponds to late-leaf segregation exceeding early-leaf segregation; INF> LL corresponds to inflorescence segregation exceeding late-
leaf segregation; OM→O>O→ INF corresponds to whether between-generation segregation (early mother to early offspring) exceeds vegetative segre-
gation (early offspring to inflorescence). The probability for yes/no answers to these questions is given, with two independent computational estimates
plotted to demonstrate numerical convergence. (b) Probabilities of different model structures from reversible jump MCMC. Models 0–2 are respectively
the linear germline, separate soma, all separate lineage models from Fig. 1. Rows correspond to different organelle-mutation combinations: the final row is
the mtDNAmsh1mutant with one potentially outlier lineage removed (see text). The two colours correspond to results from different RJMCMC simulation
to demonstrate convergence (see also Supporting Information Fig. S4). Developmental stages: OM, original precursor state of mother plant; O, original
precursor state; EL, early leaf; LL, late leaf; INF, inflorescence.
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gene conversion between a pair of fused molecules per unit time.
As the difference between V 0(h) in msh1 and wild-type mtDNA
is roughly 0.5, this expression suggests that a rate of κ= 0.007
per cell division (corresponding to c. 0.1 gene conversion events
per mtDNA per cell division; see the Materials and Methods sec-
tion) would be sufficient to generate the observed segregation
patterns over c. 34 cell divisions.

The expression for how much variance is generated by gene
conversion employed a particular mathematical assumption (a
linear noise approximation) that may be challenged by the sub-
stantial segregation magnitudes involved in this system. To check
these results, we constructed a simulation-based stochastic model
for oDNA during development, including the binomial cell divi-
sions and relaxed replication used previously, and a variable rate
of gene conversion in a population of Ne = 50 oDNA molecules
(see the Materials and Methods section). We asked what rates of
gene conversion were required to generate the observed V 0(h)
within c. 34 cell divisions, finding support for figure c. 0.25
events per mtDNA per cell cycle (Fig. S3). This simulation
model provides predictions for heteroplasmy distributions at any
given stage of plant development (Fig. S6). We should note that
this gene conversion activity could be partitioned into more
intense bursts in reduced developmental stages to achieve the
same variance generation – as suggested by the new mtDNA
observations in Fig. 3, where early meristem development
appears not to generate as much segregation as later developmen-
tal stages. Such a partition of activity would agree with observed
patterns of MSH1 expression during plant development (Schmid
et al., 2005; Winter et al., 2007; Fig. S5) and the observed physi-
cal behaviour of mitochondria, forming a reticulated network in
the shoot apical meristem, with the potential to facilitate recom-
bination between mtDNA molecules (Seguı́-Simarro & Staehe-
lin, 2009; Edwards et al., 2021).

Plant germline history

The parameter estimates we have presented are integrated over
all the model structures in Fig. 1(a), so that they reflect ‘univer-
sal’ behaviour regardless of the support for the individual mod-
els. However, the RJMCMC process also estimates the
statistical support for our different models of the plant germ-
line. Interestingly, we initially observed some diversity in the
estimated probabilities over these different model structures
(Fig. 4b). The mtDNA msh1 data have strong support for the
‘linear germline’ model, while the mtDNA wild-type and
ptDNA msh1 data provide strong support for the ‘all separate
lineages’ model (Fig. S4).

To interpret these findings, it helps to consider the behaviour
of heteroplasmy statistics under the different models. Under ‘all
separate lineages’, samples from different developmental stage
(EL, LL, and INF) reflect the mean heteroplasmy of an early stem
cell (CS1) and have independent heteroplasmy variances. Under
a ‘linear germline’, progressive sampling events form the precur-
sor state for each developmental stage. Differences in hetero-
plasmy mean can therefore arise due to this sampling, and the
heteroplasmy variance for each stage is ‘overlaid’ on top of any

such mean variability (Fig. 1b). Observations where mean hetero-
plasmy shifts between developmental stages are therefore more
compatible with a linear germline model; limited or no shifts in
mean heteroplasmy may select the separate lineages model as
more flexible.

The mtDNA msh1 data have one developmental lineage in
particular that suggests a strong shift in mean heteroplasmy (top
right of Fig. 1c), where an initial heteroplasmy c. 0.85 gives rise
to several homoplasmic late leaves and inflorescences. If this line-
age is removed from the dataset, the results of inference fall more
in line with the other systems (Fig. 4). If that lineage is regarded
as an outlier corresponding to an accident of sampling – where,
for example, other heteroplasmic inflorescences may have existed
to bring the mean heteroplasmy back down – then all the remain-
ing data support a model where segregation proceeds indepen-
dently in different tissue types after diverging from a
developmentally early source. There is, thus, at least some sup-
port for the heteroplasmy profiles in inflorescences and leaf tissue
developing independently (Lanfear, 2018). However, the sub-
stantial potential for a single family of observations to alter the
weighting of these results means we cannot make definitive
claims here, and further characterisation of somatic heteroplasmy
in wild-type lineages will help resolve this question.

Discussion

We have shown, with a combination of oDNA measurements
from heteroplasmic plant lines and mathematical modelling, how
oDNA segregation proceeds through plant development and
between generations (Fig. 5). New experiments support the pre-
dictions of the mathematical models; the models also make
further predictions about heteroplasmy distributions at any stage
of plant development (Fig. S6). We have shown that in the
absence of MSH1 functionality, oDNA segregation can largely
be accounted for by the physical process of binomial partitioning
at cell divisions. Although other mechanisms likely support some
gene conversion activity in the absence of MSH1, high rates of
such activity are not required to explain observed segregation pat-
terns in the mutant. By contrast, MSH1 functionality induces a
seven- to 10-fold increase in segregation strength for mtDNA,
leading to rapid shifts towards homoplasmy, which cannot be
explained by cell divisions alone.

We do not have measurements of heteroplasmic ptDNA on
the wild-type background – all lines measured so far have been
homoplasmic. The predictions of this theory for wild-type plastid
heteroplasmy dynamics depend on the spatial arrangement of
ptDNA information. If ptDNA within a single plastid is homo-
plasmic, and heteroplasmy arises from a mixture of internally
homoplasmic organelles, then the effect of functional gene con-
version will be limited. This is because each ptDNA will usually
only be physically colocalised with an identical partner, leaving
no capacity to change genetic identity. If, however, plastids are
internally heteroplasmic, functional gene conversion may act to
further speed up segregation. In this case, following observations
for mtDNA, we would expect roughly seven times as many effec-
tive cell divisions to take place (matching the mtDNA case),
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leading to an effective 150–200 cell divisions for the Ne = 7 case.
This would lead to homoplasmy in all but a very small propor-
tion of offspring (as observed).

The quantitative details of our model depend on some
assumptions, including a binomial division model for oDNA at
cell divisions, the Kimura model for oDNA heteroplasmy, and
particular choices for effective population size of oDNAs. The
choices we have made have support from the literature (see the
Materials and Methods section), but are not expected to be uni-
versally true or perfectly precise single values. oDNA population
sizes change through development (see the Materials and Meth-
ods section and references therein) and oDNA partitioning at cell
divisions may be more or less tightly controlled than a binomial
distribution (Johnston et al., 2015; Jajoo et al., 2016). Our effec-
tive ptDNA population size is based on a picture where ptDNA
populations inside individual plastids are homogeneous: this
assumption may be challenged in the case of recent de novo muta-
tions that have not yet fixed within an organelle. The results we
report – the relative magnitudes of segregation at different devel-
opmental stages, the difference between wild-type and msh1 lines,
the role for gene conversion, and the agreement of new experi-
ments with theoretical predictions – are robust with respect to
different choices of these parameters. The specific numbers of
segregating events we infer should be interpreted as effective
quantities, reflecting biological reality if our parameter choices
are accurate, otherwise requiring some scaling (see the Materials

and Methods section and Fig. S2) for a precise quantitative con-
nection to other conditions.

The indirect evidence from our study, after removing a poten-
tial outlier lineage, supports a picture where different tissues,
including the germline, have different developmental lineages
after diverging from a developmental ancestor (Lanfear, 2018). A
previous study in carrot (Mandel et al., 2020) did not find shifts
of mean mtDNA heteroplasmy during development, although
some individual observations suggested the capacity for large
minor allele amplification; this picture would also be compatible
with segregation (increasing variance) through independent
developmental lineages. We do not find evidence for vegetative
ptDNA sorting in the Arabidopsis msh1 mutant between early-
leaf and inflorescence stages, in contrast to results in Campanulas-
trum americanum (Barnard-Kubow et al., 2017). Our results sug-
gest that ptDNA in msh1 Arabidopsis is already substantially
sorted by the early-leaf stage (Figs 4, 5). It may be that the msh1
mutation slows vegetative sorting in plastids as it does in mito-
chondria and that further plastid vegetative sorting during later
stages of development would be observed in a wild-type back-
ground, or that ptDNA sorting after this stage is indeed more
limited in Arabidopsis, which does not exhibit biparental plastid
inheritance and therefore may have experienced less pressure to
evolve vegetative ptDNA sorting.

Regardless of the within-plant model, most of the between-
generation segregation we observe occurs between the

Fig. 5 Summary of inferred segregation
dynamics within plants and between
generations. Illustrative distributions of
heteroplasmy in Arabidopsis thaliana,
corresponding to the inferred mean
segregation magnitude (n segregating
events, for Ne= 50 mtDNAs or Ne= 7
ptDNAs; and Nb, effective bottleneck size).
Distributions at each developmental stage,
and an initial heteroplasmy of 0.5, are shown
for mtDNA (MT) and ptDNA (PT) in wild-
type andmsh1mutants (all wild-type PT
observations are homoplasmic, so no
inference is possible; see the Discussion
section for hypotheses). Continuous
segregation is supported by inference in all
systems except PT; model selection suggests
most support for a picture where separate
developmental lineages are involved for each
developmental stage.
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inflorescences of the mother and the early meristem of the off-
spring. For plastids in particular, it seems likely that this strong
segregation may be in part due to a physical bottleneck, where a
small number – perhaps just one in some cases – of homoplasmic
organelles are inherited. For mitochondria, our observations sup-
port a picture where some segregation occurs progressively
through development. The rate of this increase is limited in the
msh1 mutant and clearer in the wild-type, and its magnitude is
smaller than the between-generation shift.

Substoichiometric shifting (SSS) involves the sudden amplifi-
cation of a rare mtDNA type (a sublimon) to dominance
(Arrieta-Montiel et al., 2001; Abdelnoor et al., 2003; Wolos-
zynska, 2010). The dynamics characterised here illustrate how
this amplification may occur. Even if a sublimon is present only
rarely in SAM cells, if one of those cells becomes the precursor to
a plant branch or organ, the sublimon can very naturally (and
quickly) come to dominate that branch or organ (and hence off-
spring from it). Our work here quantifies how this shifting may
occur across different organs in a plant, leading to inherited
differences. In a similar vein, branch-to-branch differences in var-
iegation caused by oDNA features have been recognised for over
a century (initially laying the foundation for the understanding
of cytoplasmic inheritance (Hagemann, 2010)). Such branch-to-
branch differences are caused by the segregation of oDNA from
an initially heteroplasmic state across different parts of the plant.
The quantitative model we present links, for example, the unob-
servable initial inherited heteroplasmy to the proportion of differ-
ent variegated phenotypes throughout the plant, by quantifying
the extent of segregation through different periods of plant devel-
opment.

Observations here and in Broz et al. (2022) point toMSH1 dra-
matically accelerating oDNA segregation. We have proposed that
this acceleration may be due to gene conversion. However, the
function and mechanism of action of MSH1 in plants remain
debated. Evidence certainly points to its role in the control of
oDNA recombination (often described as recombination surveil-
lance (Abdelnoor et al., 2003; Shedge et al., 2007)). Its unusual
structure – including an endonuclease domain – has led to the sug-
gestion that it induces double stand breaks that then provide the
substrates for gene conversion (Christensen, 2014). The hetero-
plasmy measurements here strongly suggest that MSH1 acts to
generate high cell-to-cell variance in oDNA heteroplasmy through
plant development. Theory has suggested gene conversion as one
plausible mechanism with desirable properties (Edwards
et al., 2021). However, it may be that MSH1 generates hetero-
plasmy variance via another mechanism. Depletion of oDNA
copy number, for example, would impose a physical bottleneck on
the population, both amplifying variability from divisions and
inducing variability from subsampling the population. If MSH1
acts to deplete oDNA, these effects could be of comparable or
greater importance in generating variability, depending on the
quantities involved (Cree et al., 2008; Johnston et al., 2015). Broz
et al. (2022) showed that oDNA copy number was not signifi-
cantly impacted in leaves of MSH1 vs wild-type plants, but it is
unknown whether these results reflect oDNA levels in germline.
If, in some way, MSH1 enforces replication of a subset of oDNA

molecules as proposed by Wai et al. (2008) in a mammalian con-
text, this mechanism could also explain the observed segregation.
While the evidence points towards a more direct link between
MSH1 and gene conversion (Wu et al., 2020; Broz et al., 2022),
we cannot completely discard these hypotheses without measure-
ments of copy number and oDNA replication activity. We were
unable to find or acquire estimates for absolute rates of oDNA
recombination in Arabidopsis; future estimates of these quantities
will help provide further evidence for these mechanisms. It is note-
worthy thatMSH1 expression is increased relative to other tissues
in the meristem in Arabidopsis and other species (Fig. S5; Edwards
et al., 2021) and that mitochondria physically fuse to a greater
extent in the meristem cells (Seguı́-Simarro & Staehelin, 2009;
Edwards et al., 2021). Physical co-localisation of mitochondria is
a prerequisite for mtDNA interaction and recombination
(Logan, 2006; Arimura, 2018; Giannakis et al., 2022), and the
collective dynamics of mitochondria are altered in the msh1
mutant, potentially as a compensatory response to support more
interaction (Chustecki et al., 2021, 2022). Together, these obser-
vations suggest a linked physical and genetic axis of control acting
to shape oDNA through plant generations.
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