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Miguel López3,4 and Johan Fernø1,2*

1Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University
Hospital, Bergen, Norway, 2Mohn Center for Diabetes Precision Medicine, Department of Clinical
Science, University of Bergen, Bergen, Norway, 3Department of Physiology, CIMUS, University of
Santiago de Compostela, Santiago de Compostela, Spain, 4CIBER Fisiopatología de la Obesidad y
Nutrición (CIBERobn), Santiago de Compostela, Spain, 5Department of Clinical Science, Faculty of
Medicine, University of Bergen, Bergen, Norway, 6Department of Medical Biochemistry and
Pharmacology, Haukeland University Hospital, Bergen, Norway
Obesity is associated with chronic, low-grade inflammation. Excessive nutrient

intake causes adipose tissue expansion, which may in turn cause cellular stress

that triggers infiltration of pro-inflammatory immune cells from the circulation as

well as activation of cells that are residing in the adipose tissue. In particular, the

adipose tissuemacrophages (ATMs) are important in the pathogenesis of obesity.

A pro-inflammatory activation is also found in other organs which are important

for energy metabolism, such as the liver, muscle and the pancreas, which may

stimulate the development of obesity-related co-morbidities, including insulin

resistance, type 2 diabetes (T2D), cardiovascular disease (CVD) and non-

alcoholic fatty liver disease (NAFLD). Interestingly, it is now clear that obesity-

induced pro-inflammatory signaling also occurs in the central nervous system

(CNS), and that pro-inflammatory activation of immune cells in the brain may be

involved in appetite dysregulation and metabolic disturbances in obesity. More

recently, it has become evident that microglia, the resident macrophages of the

CNS that drive neuroinflammation, may also be activated in obesity and can be

relevant for regulation of hypothalamic feeding circuits. In this review, we focus

on the action of peripheral and central macrophages and their potential roles in

metabolic disease, and how macrophages interact with other immune cells to

promote inflammation during obesity.

KEYWORDS

obesity; inflammation, macrophages, adipose tissue, microglia, hypothalamus, small
extracellular vesicles
Introduction

The increasing prevalence of obesity represents a serious health concern in both

developed and developing countries. Obesity is associated with several co-morbidities, such

as type 2 diabetes (T2D), atherosclerosis, non-alcoholic fatty liver disease (NAFLD) and

cancer, and is estimated to be responsible for the deaths of more than 4 million people each

year (1). Inflammation is believed to be important in the pathogenesis of obesity and its co-
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morbidities. Indeed, dysregulation of immune cells located in

metabolically active tissues, in particular in the adipose tissue

(AT), has been shown to contribute to disease progression. A

plethora of immune cells may contribute to a pro-inflammatory

state in obesity, but macrophages seem to be of special importance,

representing up to 50% of the immune cells in the obese AT (2). In

recent years it has become clear that obesity-induced inflammation

also occurs in the central nervous system (CNS) (3), which may

contribute to the metabolic phenotype as well as to CNS-specific

pathologies associated with obesity, including neurodegenerative

diseases like Alzheimer’s disease and Parkinson’s disease (4, 5).

However, how peripheral and central inflammation is connected in

obesity remains unclear. In this review we focus on macrophages in

metabolically active tissues and their role in metabolic regulation,

and we examine how central and peripheral immune cells interact

during obesity.

Macrophages are part of the innate immune system, and

together with other innate immune cells, such as neutrophils,

eosinophils, and natural killer (NK) cells, they form the first line

of immune defense that respond quickly to foreign invaders. The

adaptive immune system, on the other hand, elicits a slower

response, but has the ability to generate an immunologic memory

towards specific pathogens and to trigger effective immune

responses when exposed to the same pathogens in the future (6).

Accumulating evidence indicates that the innate immune system

may also form such a long-term memory after encountering a

stimulus, a concept termed “trained immunity” that involves

sustained epigenet ic reprogramming that potent iates

inflammatory responses to future challenges (7–9). Obesity has

been shown to promote such trained immunity in innate immune

cells, where for example obesity-induced changes in AT

macrophages (ATMs) were maintained after weight loss in mice

(10), and elevated free fatty acids induced a sustained inflammatory

phenotype in myeloid cells in vitro (11).

Innate and adaptive immune cells can be categorized as either

circulating or tissue-resident cells. Circulating immune cells are

those who are transported in the blood stream, recognizing and

killing infected/abnormal cells. Examples of circulating innate

immune cells are monocytes and macrophages, whereas T cells

and B cells represent circulating adaptive immune cells (12, 13).

Tissue-resident immune cells play integral roles at all stages of the

immune response. It should be noted that in addition to responding

to infectious challenges and mediating the resolution of

inflammation, these cells also have important roles in maintaining

tissue homeostasis and repair (10, 14). Tissue-resident immune cells

are found in AT, liver, pancreas, brain and intestine, where they

express specific surface markers depending on the tissue that they

reside in (15–17) and the functions they exert. Examples of major

tissue-resident immune cells are ATMs, hepatic Kupffer cells (KC)

and CNS microglia.

In recent years, there has been increased awareness of the

importance of ATMs in obesity. Adiposity has been shown to

affect their abundance, subset ratios, and phenotype diversity,

which can contribute to alterations in whole body metabolism. As

a response to specific microenvironmental stimuli, including

metabolic stress signals such as fatty acids and glucose, levels of
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proinflammatory M1-like ATM subtypes are elevated, whereas

alternatively activated M2-like macrophages, with anti-

inflammatory properties, are reduced (18). The M1-like ATMs

have been shown to impair insulin signaling in both mice and

humans (19). In contrast, the M2-like ATMs are believed to mediate

protection from these metabolic disturbances and to play a role in

AT homeostatic functions (20, 21). Various subcategories of M2

macrophages are found, including M2a, M2b, M2c, and M2d (22).

Furthermore, it is now well established that there exists a complex

range of ATM phenotypes that display characteristics differing from

the classical M1- and M2-like ATMs (21, 23, 24). These cells differ

in their expression of cell surface markers, cytokine secretion

profile, and biological characteristics, which is described in more

detail below.

Although ATMs are considered the most important immune

cells that mediate metabolic (dys)regulation during obesity, other

cells such as T cells and NK cells are also of importance. This is

partly due to their role in modulating ATM polarization,

emphasizing that the interaction between immune cells plays a

significant role in inflammation in obese mice and in people with

obesity (25–29). In this review we aim to describe how immune

cells, especially macrophages, are involved in obesity-related

metabolic inflammation, and to illustrate how the balance

between pro- and anti-inflammatory immune cells is important

to maintain a healthy tissue homeostasis during changes in

nutritional status.
Macrophage polarization and
inflammation in the adipose tissue
during obesity

Obesity is a consequence of excess nutrient intake and a positive

energy balance that increases both the size of mature adipocytes

(hypertrophy) and the number of adipocytes by de novo formation

from preadipocytes (hyperplasia) (30). Fatty acid-binding protein

(FABP4/aP2) has been shown to be important in controlling

adipocyte size, differentiation and the recruitment of new

adipocytes (31). Further, it regulates mitochondrial redox

signaling through uncoupling protein 2 (in contrast to UCP1,

which controls energy expenditure, UCP2 mainly controls ADP/

ATP ratio) (32) in a process commonly termed “adipose tissue

remodeling”, which is important to adapt to the increased energy

load. However, during obesity, hypertrophy may not be

compensated by sufficient blood vessel vascularization, which may

lead to hypoxia, mitochondrial dysfunction and, subsequently, AT

stress. In turn, this can lead to an increase in pro-inflammatory

responses. Normally, the AT immune cells play vital roles in

maintaining AT homeostasis during tissue remodeling, but pro-

inflammatory activation over time may lead to chronic

inflammation and the activation of reactive super oxygen species

(ROS), impairing AT hormonal signaling and function (33).

In hypoxic AT, anaerobic glucose breakdown may fuel pro-

inflammatory processes via activation of hypoxia-inducible factor 1-

alpha (HIF-1a) (34). Moreover, the hypoxic signal has been shown to
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inhibit the mitochondrial electron transport chain and decrease

oxidative phosphorylation (OXPHOS), leading to increased ROS

production and a shift towards glycolytic processes that may further

stimulate the inflammatory phenotype (35). The activation of HIF-1a

also contributes to direct regulation of innate and adaptive immune

cells in the AT, including epithelial cells, neutrophils, macrophages,

dendritic cells (DC), T cells, B cells, NK cells and innate lymphoid cells

(36). For macrophages, the elevated glycolysis leads to a shift towards

M1-like ATM, as well as increased expression of genes involved in

macrophage adhesion and inhibition of macrophage migration from

the hypoxic AT (37, 38). It has also been reported that obesity activates

the FABP4/UCP2 axis in macrophages, resulting in the activation of

inflammasomes (32). Further, the activation of toll-like receptors

(TLRs) by elevated fatty acids during obesity is essential for the

capacity of ATMs to generate pro-inflammatory cytokines, such as

tumor necrosis factor alpha (TNFa) and interleukin (IL)-6 (39). This is

mediated probably through the activation of pathways regulated by the

nuclear factor kappa B/c-Jun N-terminal kinases (NFkB/JNK) and

Inhibitory kappa B kinase (IkB) inhibitor (40, 41). The M2-like ATMs

rely on mitochondrial OXPHOS and are thus reduced under these

conditions, rendering the hypoxic environment in the expanding AT

supportive of an elevated M1/M2 ratio (18, 42).

All these studies suggest that expansion of AT during obesity

can trigger adipocyte hypertrophy and hypoxia, which finally may

lead to chronic, low-grade inflammation where ATM activity and

polarization play an important role.
Adipose tissue macrophage
heterogeneity

In AT of both animals and people with obesity, pro-

inflammatory macrophages form so-called crown-like structures

(CLS), surrounding dead or dying adipocytes, in particular evident

in the visceral AT (VAT) (43, 44). In recent years it has become

clear that there are numerous types of ATMs that can be

characterized based on the combination of surface proteins they

express. Also, recent advances in single-cell sequencing have

demonstrated that a variety of macrophage subsets exist that

differ from the conventional M1-/M2-like macrophages, some of

them exhibiting proinflammatory characteristics, while others are

more metabolically active (23, 24, 45). In humans, CLS

macrophages have been shown to express the surface proteins

CD206 and CD11c (46), and are associated with systemic

markers of metabolic dysfunction, supporting the idea that pro-

inflammatory ATMs may have unfavorable effects on metabolic

health (45–48). However, more recent literature has claimed that

CLS are indispensable in controlling metabolic homeostasis, and

that their accumulation around dying adipocytes is a mechanism to

get rid of excessive adipocyte lipids in a non-harmful way (49–51).

Nevertheless, the excessive inflammation associated with CLS can

result in “collateral damage”, where the effect on metabolism

depends on the type of pro-inflammatory and/or metabolically

active ATMs that predominate in the AT. Interestingly, pro-

inflammatory ATMs does not seem to express the classical
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surface markers of activated M1 macrophages, CD38, CD319, and

CD274 (18). Instead, in addition to the combination of CD206 and

CD11c as described above, ATMs have been shown to express

ABCA1, CD36, and PLIN2, defining so-called metabolically

activated macrophages (MMe) (18). These cells promote the

clearance of dead adipocytes via lysosomal exocytosis (51).

NADPH oxidase 2 (NOX2) was shown to be a major mediator of

the inflammatory and adipocyte-clearing properties of MMe

macrophages, and Nox2−/− mice exhibited insulin resistance, liver

inflammation, and visceral lipoatrophy, characterized by deposition

of dead adipocytes and dysfunctional ATM lysosomal exocytosis

(51). In another study, mouse Ly6c-expressing ATMs have been

shown to be predominant outside of CLS and to display adipogenic

properties, while CD9-lipid associated ATMs (LAMs) were found

to be present within CLS of HFD-fed mice and humans with obesity

(50). The LAMs expressed “triggering receptor expressed on

myeloid cell 2” (TREM2) lysosomal acid lipase, and controlled

lipid metabolism and phagocytosis in mouse AT (50). Interestingly,

TREM2 deletion has been shown to cause weight gain,

hypercholesterolemia, and glucose intolerance in mice due to the

loss of LAM function, lipid uptake, and storage (14), indicating that

Trem2+ LAM cells may be key in the mitigation of metabolic

disruption in the AT. Other ATMs that have been described are

iron rich (MFe) macrophages, shown to have an inflammatory

phenotype in obese mice (52), and antioxidant macrophages (Mox)

ATMs, essential to iron and oxidative stress handling (53). In

agreement with findings described above (46), a recent study

from our laboratory found a positive correlation between the level

of insulin resistance in 80 patients with obesity and the pro-

inflammatory ATM ratio between M1-like (CD206/CD11c

expressing cells) and M2-like (CD206 expressing cells) in both

VAT and subcutaneous AT (SAT) (29). However, using a surface

proteomics approach we also identified several new surface markers

on these immune cells, indicating that a plethora of M1-like and

M2-like ATM subtypes exist in the human AT (54). According to

these findings, it is obvious that ATMs exist in pro- and anti-

inflammatory forms, but in the light of recent findings the M1/M2

dichotomy is gradually replaced by a more differentiated view on

ATM characteristics. ATMs act in response to obesity in a temporal

and site-specific manner that may be both beneficial and harmful.

Other immune cells in the
adipose tissue that interact with
adipose tissue macrophages

The details of how the different ATM subtype’s function and act

in response to metabolic stimuli is further complicated by their

interaction with other adipose-resident immune cells, such as T

cells, invariant natural killer T (iNKT) cells, gamma delta (gd) T
cells, NK cells, DCs, eosinophils and their diverse phenotypes that

may manifest in the obese AT. T cells are the second most prevalent

immune cells in AT. It has been reported that in obesity there is an

increased frequency of pro-inflammatory CD4+ T cells (e.g., Th1

and Th17 cells), and cytotoxic CD8+ T cells, and reduction in anti-

inflammatory CD4+ T cells (e.g., Th2 cells) and FOXp3 regulatory
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T cells (Tregs) (55). The Th1 cells and CD8+ T cells have been

shown to stimulate M1 ATM polarization in obese mice AT

through IFNg production. There may, however, be several

subgroups of AT-T cells with potentially different metabolic

effects. An in-depth analysis of T cells in human AT depots has

been conducted by our laboratory. Here, distinct subsets of T cells

were shown to express markers such as CD26 and the chemokine

receptor type 5 (CCR5), as well as obesity-specific genes known to

activate pro-inflammatory mechanisms (56).

iNKT cells are reported to be highly expressed in AT of lean

mice, and their abundance is reduced in the obese state (44). In

human AT, iNKT cells are less abundant. AT-resident NKT cells

have been demonstrated to modulate macrophage phenotype; IL-

10-producing iNKT cells have been shown to trigger M2

polarization in steady-state AT. Further, iNKT-induced M2

polarization has been reported following acute or prolonged HFD

challenges in an IL-4-dependent manner in mouse models and in

human subjects with obesity (57, 58). In addition, AT-resident

iNKT cells have been shown to trigger M2 macrophage polarization

in the absence of HFD challenge in mice, via IL-10 (59). These

results indicate that iNKT cells mitigate pro-inflammatory effects

and induce metabolically favorable signaling in AT.

gd T cells represent another subset of T cells that may act in AT

(60). Usually, gd T cells are prevalent in lean AT, but a further increase

during obesity has been reported (61). Unlike the conventional CD4+

and CD8+ T cells, gd T cells are negative for CD4 and CD8 markers,

and express gd T cell receptors (TCRs) (62). Further, the activation of

these cells are mediated by TCR in a MHC-independent manner, and

by receptors shared with NK cells (e.g., NKG2D and:DNAM-1) (63).

The increase of infiltrating gd T cells in AT in obesity has been shown

to trigger the accumulation of ATMs, inflammation, and insulin

resistance in mice, indicating that they are pro-inflammatory (61). In

accordance with this finding, another study found reduced HFD-

induced inflammation in AT of mice lacking gd T cells (64).

Nevertheless, further research is necessary to determine the exact

role of gd T cells is in obesity and obesity-related diseases.

NK cells and other innate lymphoid cells (ILCs) have been

suggested as important mediators of the metabolic dysfunction of

AT in obesity, in part through regulation of ATM activity. In AT of

lean mice, NK cells were shown to exert homeostatic roles through

killing M2-like ATMs, likely a mechanism to prevent them from

turning pro-inflammatory (65). HFD promotes early accumulation

of NK cells, especially in VAT, displaying reduced killing ability and

increased IFNg production that drive the polarization and

maintenance of M1-like ATMs and development of insulin

resistance (27, 66). Although less studied, AT NK cells in

individuals with obesity were shown to display altered phenotype

and function (67) (68), pointing to a similar role of these cells in

human AT. However, the exact crosstalk between human NK cells

and ATMs needs to be further elucidated.

Recently, DC has been found to play a crucial role in AT

inflammation during obesity (69). DC expressing CD11c+ have

been shown to be increased significantly in AT following HFD.

Further, the DC increase in AT has been shown to be associated

with CLS, thus confirming their association with ATMs.

Importantly, a DC-null mouse model had a reduced number of
Frontiers in Endocrinology 04
AT macrophages, whereas DC replacement increased AT

macrophage numbers in the DC-null mice. Finally, mice lacking

DC did not gain weight or develop metabolic abnormalities when

given an HFD (69). These data demonstrate that DC play an

important role in systemic metabolic responses during obesity,

and macrophage infiltration in AT.

Like other white blood cells, eosinophils are also involved in

fighting disease and infections. In addition, eosinophils play a role in

obesity that has become more evident in recent years. For example, the

alternative activation of AT macrophages in obesity has been reported

to be inextricably linked with eosinophils by an IL-4- or IL-13-

dependent process (70). Briefly, IL-4 production by eosinophils was

reported to promote thermogenesis inWAT, thereby increasing energy

expenditure, limiting weight gain and improving glucose tolerance. In

contrast, decreased eosinophil count was shown to be associated with

increased weight gain and glucose intolerance in obese animals (70).

Further, this study showed that M2-macrophages are greatly

suppressed by the absence of eosinophils in WAT of obese mice.

Similarly, eosinophils have been shown to control glucose homeostasis

in people with obesity (71). These data suggest that eosinophils play a

role in maintaining an anti-inflammatory ATM population to promote

metabolic homeostasis.

Taken together, these studies confirm that in addition to ATMs,

other immune cells are involved in metabolic inflammation and in

the regulation of AT inflammation. These cells release

proinflammatory cytokines which may directly affect metabolic

pathways, but also modulate ATMs phenotypic characteristics to

constitute a positive inflammatory feedback look. However, the role

of macrophages and other immune cells during obesity is not

limited to AT. We will now briefly discuss their role in other

metabolic organs, such as the liver, pancreas, and gut.
Obesity affects immune cells in non-
adipose metabolic tissues

Liver

The liver is important in a number of homeostatic functions,

including detoxification, glucose metabolism, and synthesis of bile

acids, proteins and lipids (72, 73). It is therefore noteworthy that

obesity is a major cause of the most common chronic liver disease,

non-alcoholic fatty liver disease (NAFLD), with recent data

suggesting a world-wide prevalence of NAFLD of astonishing

40% (74). A sub-group of NAFLD patients develops chronic

inflammation in the liver, which over time can lead to liver

fibrosis, also known as non-alcoholic steatohepatitis (NASH) (1).

The liver contains numerous immune cells, and accumulating

evidence suggests that fatty acids and pro-inflammatory

mediators released from AT may be important for liver immune

cell activation and NASH progression, pointing towards the AT for

a potential strategy to treat NASH (75). Several types of tissue

resident immune cells (macrophages, neutrophils, B lymphocytes, T

lymphocytes, and NK cells) have been reported to be associated

with liver inflammation (76). The KC-liver macrophages constitute

the largest population of liver immune cells and play an important
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role in NASH development (77, 78). They can be found within

sinusoids, in contact with endothelial cells (79). Like ATMs, KCs

can also be divided into pro- and anti-inflammatory M1/M2

subtypes (80), and the importance of KC polarization in the

initiation and development of NAFLD and NASH is supported

by several recent studies (81, 82). Additionally, KC subsets with

distinct transcriptional profiles have been identified in NAFLD/

NASH, reminiscent of heterogeneous ATMs in obesity. A recent

study using scRNA-seq identified three distinct clusters of recruited

macrophages (termed Mo-MFs) and a cluster of tissue resident KCs

in HFD-fed mice (83). Another recent study, also using scRNA-seq,

found distinct clusters of KCs in NASH livers. Two subsets of KC

were identified by analyzing the levels of Cd5l expression and finally

Trem2+ NASH-associated macrophages (NAMs) were identified by

analyzing the levels of Trem2, Cd9, and Gpnmb expression in both

mice and humans (84). These studies indicate that, like the AT,

steatotic livers contain a heterogeneous pool of macrophages (84).

KC polarization may activate other immune cells in the liver that

are relevant for obesity-related metabolic disease. One example is NK

cells that normally participate in the defense against viral infections and

tumor development, but that in the setting of obesity may promote

fibrosis and NASH development (85). It has been shown that NK cell

activity in the liver is stimulated by KCs (86). This is somewhat

contrary to observations in AT, where inflammatory signals derived

from NK-cells stimulate the pro-inflammatory polarization of ATMs

(66). KCs have been shown to activate NK cells in the liver by

generating IL-18 (87, 88), but also to suppress NK cell activity

through the production of IL-10 that inhibits IFNg expression and

renders NK cells hyporesponsive in mice (86). Recent studies suggest

that CD8+ T cells may also play important roles in liver

immunopathology and NASH development (89, 90). However, there

is still much to be discovered about the contribution of CD8+ T cells

and their interaction with KCs under metabolic conditions leading to

NASH. These findings indicate that KC polarization plays a major role

in haptic inflammatory signaling during obesity and is thus involved in

the development of NAFLD and NASH.

There has been little research on NK cells and inflammation in

the liver during obesity. However, a recent study has reported that

NK cells are responsible in inducing endoplasmic reticulum (ER)

stress, and thus promote insulin resistance in obesity (91). In this

study, HFD-fed mice display elevated production of

proinflammatory cytokine osteopontin (OPN) in NK cells and

this leads to ER stress and insulin resistance in the liver. At the

AT level, OPN mediates macrophage infiltration, inflammation,

and insulin resistance in mice during obesity. However, there is not

yet a clear understanding of the role of liver NK cells derived OPN,

and whether they are able to mediate inflammation in the liver by

accumulating more macrophages.

Like in AT, the liver of obese (HFD) mice have been shown to

be overpopulated with CD11c expressing DCs (69). This study also

reported that increased liver DCs accumulated more macrophages,

suggesting a macrophage-DC interaction and that DCs are involved

in promoting liver inflammation during obesity (69). This is

supported by human studies showing that DCs are critical in the

development of liver fibrosis during obesity, thereby proving its
involvement in liver inflammation (92, 93).
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Overall, all these studies confirm that liver macrophages and

their interaction with other liver immune cells are important

mediators of metabolic dysfunction, and that targeting hepatic

immune cells may represent a feasible strategy for the treatment

of NASH and other metabolic disorders.
Skeletal muscle

The skeletal muscle plays a significant role in metabolism.

Normally, skeletal muscle is responsible for the majority of

insulin-stimulated glucose disposal, suggesting that dysregulation

of skeletal muscle metabolism can influence whole-body glucose

homeostasis and insulin sensitivity (94). Indeed, obesity is

associated with inflammation in myocytes/muscle cells, which

may contribute to muscle inflammation. Nevertheless, changes in

myocyte secretion of cytokines do not appear to constitute the

major component of skeletal muscle inflammation in obesity.

Instead, there is an increased accumulation of immune cells – in

particular, macrophages and T cells - in the AT depots adjacent to

the myocytes (95). This may explain why skeletal muscle immune

cells in obesity resemble those identified in the AT, including the

formation of CLS (96). AT resident immune cells may also help

explain the fluctuations in the level of immune cell population and

inflammation often observed in small-muscle biopsies, since this

may be caused by variations in the ratio of muscle cells and AT (97).

This may also explain why weight loss does not always seem to alter

macrophage numbers in skeletal muscle (98).

Macrophages and T cells residing in skeletal muscles and their

role in metabolic disorders have not been studied as extensively as

in other tissues. One study showed that resveratrol alleviates

obesity-induced skeletal muscle inflammation via decreasing M1

macrophage polarization and increasing the regulatory T cell

population (99), suggesting that targeting these cell types may be

of clinical importance. Studies exploring skeletal muscle

macrophage activity are needed to explore the inflammatory

pathway associated with obesity and comorbidities.
Pancreas

The pancreas is essential for the regulation of macronutrient

digestion. Maintaining metabolism/energy homeostasis via its

exocrine and endocrine components, the pancreas controls blood

sugar levels through insulin secretion and production in response to

glucose intake (100).. The pancreatic immune system is composed

mainly of macrophages and T cells (101, 102). Generally, pancreatic

macrophages are present from embryonic development and shown to

play a role in pancreatic islet morphogenesis and remodeling during

the fetal and neonatal stages, but they may also be involved in adult

pancreatic regeneration (103). However, the phenotypic characteristics

of pancreatic macrophages remain enigmatic. Unlike ATMs and liver

macrophage categorization, no M2 vs. M1 polarization paradigm has

been suggested for metabolic regulation and dysfunction in islet

macrophages. Healthy islets often have macrophages expressing M1

markers (CD11c, MHC-II), producing IL-1b, TNF-a, and expressing
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the pro-inflammatory transcription factor interferon regulatory factor

(IRF)-5 (104–106). However, they do not express M2 markers

(CD206), as compared to exocrine pancreatic stromal macrophages

(105). It has been reported that a number of factors or stimuli in obesity

can change the phenotype and function of islet macrophages, resulting

in both acute and chronic pancreatitis (AP and CP). For example, like

other tissue resident macrophages, islet macrophages have been shown

to be activated by excess free fatty acids (FFA) (107). Further,

infiltration of macrophages results in inflammation and tissue

destruction in obesity, shown in islets from obese rodent models (88)

and in T2D patients (89). Interestingly, caloric restriction and bariatric

surgery have shown to diminish obesity-induced proinflammatory

macrophage infiltration in the pancreas in experimental models

(108), supporting the idea that pancreatic macrophages play a crucial

role during obesity and obesity-induced pancreatic steatosis. Pancreatic

macrophages have also been shown to be involved in autoimmune

T1D. T1D occurs when the pancreatic beta cells lose their endocrine

function, and genetically susceptible individuals develop a chronic lack

of insulin in the system. Here, macrophages have been shown to

accumulate autoreactive T cells, which leads to inflammation of the

islets (“insulitis”) or immune-mediated degeneration of insulin-

producing pancreatic beta cells. Overall, all this evidence suggests

that, pancreatic macrophages, and T cells are the central mediators

of low-grade chronic inflammation associated with obesity and

T2D (109).
Gut

Microbes that reside in the gut influence the host’s health directly

through metabolic functions and immune system regulation. The

innate immune system in the gut consists of a variety of cells, such

as macrophages, ILC, DCs, and eosinophils, as well as epithelia.

However, macrophages are the dominant innate immune cells in the

gut, including a range of subtypes. At least five macrophage

subpopulations were identified in mice and human intestine using

flow cytometry (110). These subtypes have various functions, including

maintenance of Tregs, crucial for responding to orally ingested antigens

(111), and scavenging without causing inflammation. In obesity, it has

been reported that there are significant changes in the gut-immune cell

composition, leading to metabolic inflammation and gut dysbiosis via

upregulation of inflammatory mediators like TLR4, TNF, and NFkB

(112, 113). Gut dysbiosis enhances intestinal permeability by elevating

the levels of gut bacterial lipopolysaccharides (LPS), which is then

released into the systemic circulation to exacerbate low-grade

inflammation and insulin resistance.

Among the gut-resident immune cells, increased levels of

macrophages, a reduction of Tregs and increased Th1, CD8+, and

gd T cells have been reported in HFD-fed mice (114–116). In

addition to these cells, ILC2s (produce proinflammatory IL-5 and

IL-13) from the small intestine, have been also shown to be involved

in the diet-induced obesity (117). A reduction in ILC3s (produce

proinflammatory IL-17 and IL-22) levels in the lamina propria of

HFD-fed mice has been shown to be correlated with reduced

epithelial barrier integrity, increased serum LPS levels in gut,

resulting in inflammation (115).
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Overall, all these studies suggest that obesity-induced

dysregulation of the gut metabolism may affect immune cell

function, interaction, and composition, with some macrophage

subtypes shown to play significant roles in obesity-induced

metabolic diseases. These studies have revealed how microbiota

affect systemic inflammation, suggesting that restoring gut

microbiota could be a promising therapeutic target to treat

obesity as an alternative to drugs and bariatric surgery.
Small extracellular vesicles in cellular-
and tissue crosstalk

Metabolic signaling between tissues occurs via neuronal

connections and biochemical messengers in the circulation, such

as adipokines, neuropeptides, chemokines, and cytokines. However,

recent findings have highlighted that AT and other metabolic

tissues also communicate via small extracellular vesicles (sEV)

that are membrane particles derived from the cell (118). Because

of their unique structure and physical characteristics, sEV have

turned out to play a significant role in a variety of physiological

processes, including immune responses, tissue repair and cell to cell

communication (119). In addition, they are characterized by

molecules biomarkers that are candidates for future diagnostic

use in metabolic diseases like T2D (120).

sEV have a diameter of 30-200 nanometers and are

constitutively produced from late endosomes and are secreted

after fusion of multivesicular bodies (MVBs) with the plasma

membrane. The cargo of sEV is composed of lipids, proteins,

nucleic acids, organelles and other elements. There are several

markers that confirm the exosome’s structural organization,

including CD63, CD81, CD9, apoptosis-linked gene 2-interacting

protein X (ALIX), heat-shock proteins (HSP60, HSP70, and HSP90)

and tumor susceptibility gene 101 (TSG101). Commonly used non-

specific sEV markers include glucose-regulated protein 94 (Grp94),

calnexin (ER markers), GM130 (Golgi marker) and Cytochrome C

(mitochondrial marker). These markers, which are not

endogenously expressed on sEV, indicate that the sEV are

released via an endocytic pathway and distinguish the sEV from

necrotic bodies and other vesicles.

Recently, it has been reported that adipocyte-derived sEV exert

a pivotal role in adipocyte-macrophage crosstalk during obesity

(121). For example, adipocytes have been reported to release

lipid-laden sEV (122) that express the lipid droplet-associated

protein perilipin1 and carry phospholipids, neutral lipids, and

free cholesterol that are taken up by ATMs to induce their

differentiation. In another study, adipocytes from obese mice were

found to release sEV with different mitochondrial composition than

those derived from lean mice (123). This study also demonstrated

that sEV cargo can control ATM activity and intra-organ transport

of damaged mitochondria during metabolic stress.

It has been demonstrated that miRNA-containing sEV released

by adipocytes influence ATMs phenotypes and function, as well as

insulin sensitivity (124). For instance, it has been reported that

rodents possess higher quantity of adipocyte-derived sEV-

containing miR-34a during obesity (124, 125). This miRNA has
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been found to be interconnected with insulin resistance and

metabolic inflammations by acting on ATMs. A study by Ying

et al. (126) found that sEV enriched with miR-155 were mostly

released fromM1macrophages isolated from obese AT. These miR-

155 containing sEV have been shown to develop insulin resistance

when injected into lean mice by directly targeting PPARg, leading to

a reduced insulin expression and action. Besides acting as an

inflammatory mediator, adipocyte-derived sEV may reduce

inflammation, as demonstrated in adipocyte stem cells, and

facilitate M2 macrophage polarization, thus offering a probable

therapeutic intervention for obesity and metabolic disorders (127).

Indeed, lean AT contained macrophages that emit sEV enriched in

miR-690, were shown to improve systemic insulin sensitivity in

obese mice (128).

These reports confirm that sEV are important in cellular

crosstalk within the adipose tissue. Further, these data support

that obesity-induced inflammation is governed by the sEV/ATM

axis, which not only provides mechanistic details of AT

inflammation in metabolic disease, but also opens for a new

approach to treating such diseases. Moreover, recent evidence

suggests that AT derived sEV can be released into the circulation

and target other major metabolic organs, such as the liver, the

skeletal muscle, and the heart (121, 129). Still, there are relatively

few studies that have investigated whether sEV mediate the

connections between AT and the brain and influence central
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inflammation (130, 131) (Figure 1). Currently, researchers are

also studying the role of native (132), stem cell-derived (127,

133), and bioengineered sEVs (134–136)in other metabolic

tissues, which may lead to improved understanding of whole-

body metabolic control and therapeutic approaches to obesity.
Autonomic nervous system and
macrophage crosstalk during obesity.

The autonomic nervous system (ANS) is a part of the peripheral

nervous system that regulates involuntary physiological functions.

ANS is further divided into the sympathetic, parasympathetic, and

enteric nervous systems.

The innervation by sympathetic nervous system (SNS) of WAT

was reported in the early 90s (137), and modulation mediated by

SNS has been shown to influence weight changes in both rodents

and humans through the release of norepinephrine (NE) (acting

both as hormone and neurotransmitter) from sympathetic nerve

endings (138–140). Macrophages have also been reported to release

NE as well as expressing adrenergic NE receptors, and their activity

can be affected by obesity-induced stress and the level of this

neurotransmitter, suggesting a macrophage-SNS connection (141,

142). For instance, one study reported that anti-inflammatory

ATMs release NE under cold stress (142), suggesting a role for
FIGURE 1

sEV as inflammatory mediators and cell to cell communicators in obesity. Excess nutrient intake may directly stimulate inflammation (1°
inflammation) in the ARC (1), which leads to appetite dysregulation and obesity (2). This process involves activation of hypothalamic glial cells and
neuronal interactions. In addition, tanycytes, that are special ependymal cells in the third ventricle of the brain (3V) are also involved in this
inflammatory process in the CNS. Obesity also promotes inflammation and dysregulation of AT homeostasis (3), including increased macrophage
infiltration and generation of various pro-inflammatory ATM subsets. During this altered microenvironment, both ATMs and adipocytes release sEV,
which can mediate inter-cellular communication. AT-derived sEV can be released in the systemic circulation (4), but whether it can travel to the
brain during obesity to participate in the secondary central inflammation from the circulation (2° inflammation) is still an open question. Created with
BioRender.com. ARC, Arcuate nucleus; 3V, third ventricle; AT, adipose tissue; ATMs, adipose tissue macrophages; sEV, small extracellular vesicles;
PVM, perivascular macrophage.
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these macrophages in the physiological response to reduced

temperature. Other studies, however, reported that ATMs do not

release NE (143, 144). A recent study shed new light on the

connection between ATMs and NE: a cluster of sympathetic

neuron–associated macrophages (SAMs) that reside in the AT

was found to regulate obesity directly via the uptake and clearing

of NE (145). This study demonstrated that SAMs act as a reservoir

for NE and control NE uptake/elimination via the activation of the

NE transporter solute carrier family 6 member 2 (SLC6A2) and the

monoamine oxidase-A (MAO-A). Indeed, NE uptake by SAMs was

blocked by genetic ablation of Slc6a2, which also led to increased

browning of white fat, upregulation of thermogenesis, and weight

loss in obese mice (145). Additionally, this study indicates that the

molecular machinery encoding the NE clearance pathway is

conserved across species, including humans, suggesting that

obesity could be treated by targeting this pathway (145).

With regard to parasympathetic signaling, vagus nerve

cholinergic signaling is an important major component. Vagus

nerve activity regulates body weight and regulates inflammation

in the GI tract and the liver. Ablation of vagus nerve signaling

can promote hyperphagia and obesity, while vagus nerve

stimulation promotes resolution of inflammation and obesity

in mice through a mechanism that requires a7- acetylcholine

(Ach) receptor (a7nAChR) subunit (146, 147). Intriguingly, it
has been reported that macrophages, KCs, and DCs express

7nAChR, suggesting macrophage-vagus nerve crosstalk (148–

151). For instance, peripheral activation of a7nAChR in mice

has been shown to reduce NF-kB nuclear translocation and

JAK2/STAT3 signaling, as well as lowering of proinflammatory

cytokine production (152). This vagal nerve-macrophage

signaling has also been reported to play a significant role in

suppressing obesity-induced hepatic inflammation in mice

models of NASH or NAFLD (153, 154). Similarly, in

randomized clinical trials, modulation of this regulatory

circuitry triggered by oral ingestion of acetylcholinesterase

inhibitors has been shown to play a role in alleviating obesity-

induced comorbidities in humans (155, 156), suggesting that

modulating this circuitry may be an effective method of

controlling obesity and obesity-related diseases. However,

whether macrophages were involved in the manifestation of

this effect remains unclear.

It is known that the enteric nervous system (ENS) controls

intestinal motility, absorption of nutrients and whole body energy

homeostasis (157). Interestingly, intestinal muscularis macrophages

have been demonstrated to connect enteric neurons by releasing

bone morphogenic protein 2 (BMP2, an osteogenic factor) which is

required by enteric neurons for peristalsis to occur (158). As a

result, the enteric neurons release the growth factor colony

stimulating factor -1 (CSF-1) that supports the survival and

function of enteric macrophages, confirming a symbiotic

relationship. Also, it has been reported that the synapses between

enteric neurons and muscularis macrophages express b2 adrenergic
receptors (159), further underlining a relationship between

macrophages and the peripheral nervous system. Thus, any

changes in metabolism during obesity could negatively affect

intestinal motility, nutrient absorption, and energy metabolism.
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For example, gastrointestinal alterations, mainly dysmotility, have

been reported at the onset of obesity or in HFD animal models (160,

161). Further, in response to bacterial stimulation, NE was shown to

be released by sympathetic neurons and to stimulate adrenergic

signaling, which in turn activates a macrophage response in the

intestine (159). This indicates that gut microbiota changes caused

by obesity or diet changes may affect the relationship between

enteric neurons and macrophages.

In view of the observations made above, macrophages can

actively interact with peripheral nervous system in obesity,

suggesting that modulating peripheral nervous system-

macrophage axis may be useful in treating obesity in the future.

Central nervous system inflammation
during obesity: role of macrophages
and other immune cells

So far, we have focused on how activation of peripheral tissue

immune cells, in particular macrophages, may impact organismal

metabolic control. However, the obesity-induced central

inflammation is more complex. Although it is becoming increasingly

clear that microglia, which are specialized macrophages in the CNS,

may contribute to obesity-associated metabolic changes (162), recent

evidence also indicate that this central inflammation is influenced by

the activity of other CNS cells, such as astrocytes and tanycytes, and

their interactions with neurons (163, 164).

In particular, the microglial cell population located in the

mediobasal hypothalamus (MBH), an anatomically distinct brain

region that includes the arcuate nucleus (ARC) and median

eminence, can be activated to a pro-inflammatory phenotype in

response to nutrient excess (165, 166). For example, palmitic acid

(PA)-induced neuro-inflammation has been shown to involve

microglial activation (167, 168). Interestingly, the deactivation of

FABP4 in microglia has been shown to decrease the PA induced

inflammation by expressing more microglial UCP2 (169),

indicating that overnutrition can trigger microglial activation,

which may exacerbate hypothalamic inflammation.

It is well known that the hypothalamic neuronal population in the

arcuate nucleus (ARC) controls metabolic feedback and regulates

energy homeostasis in the body (170–172). Two functionally

antagonistic neuronal populations contribute to this regulatory

function; one cluster of neurons that expresses the orexigenic

neuropeptides agouti-related peptide (AgRP) and neuropeptide Y

(NPY), and a second cluster that expresses the anorexigenic peptides

proopiomelanocortin (POMC) and cocaine and amphetamine

regulated transcript (CART). Interestingly, the activity of these

neurons has been reported to be altered by microglial activation

during obesity (173). For instance, microglial activation increased

TNFa secretion, leading to mitochondrial stress and altered firing

rates in adjacent POMCneurons, thus contributing to the development

of obesity in mice (174). On the contrary, increased exercise levels in

mice led to reduced hypothalamic microglial activation and

improvement of glucose tolerance, suggesting that microglial

inflammation may be a potential therapeutic target to ameliorate

metabolic dysfunction (175).
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Microglia are derived from yolk sac and usually do not get

replaced by circulating progenitors derived from the bone marrow

(176). Nevertheless, during obesity, microglia-like myeloid cells

from the circulation may infiltrate the MBH to be engaged in

inflammatory crosstalk with the resident microglia (177). It may be

difficult to separate the different myeloid cell populations in the

brain, but cell surface markers to define distinct microglial

phenotypes have been reported (178). Interestingly, it was shown

that a positive energy balance in the form of high glucose treatment

triggered the expression of many of the pro-inflammatory markers

on microglial cells recognized from peripheral macrophages,

including ionized calcium-binding adapter molecule 1 (Iba1),

CD68, high mobility group box-1 protein (HMGB1), and CD11b

(179), whereas the expression of anti-inflammatory microglial

markers, such as CD206 and arginase-1, were decreased. Further,

mimicking the environment of diabetes (characterized by

hyperglycemia and hyperlipidemia) in cultured microglial cells,

supplement with high glucose and free fatty acids (mixture of

palmitic and oleic acids) was shown to promote Iba1 and CD11b

expression, induce microglial morphological changes, raise

oxidative stress levels, and stimulate IL-1 production and TNF

production. This indicates that elevated levels of circulating

nutrients may change microglial activity and phenotype to cause

central inflammation, which may lead to dysregulation of feeding

behavior in the in vivo setting.

Microglial activity can also be modulated by circulating

nutrients, neuropeptides and hormones that are altered in obesity

(180). The POMC-derived peptide alpha melanocyte stimulating

hormone (a-MSH) and hormones like ghrelin and leptin have

gained attention due to their ability to reduce or induce

inflammation in the brain (181–184). Fatty acids and leptin are

both elevated in the obese state and can promote cytokine secretion

from microglia through activation of the TLR4/IKK/NF-kB
pathway. Leptin has also been shown to induce NF-kB through

the LepR/IRS1/AKT pathway (185, 186). In addition to

hypothalamic inflammation, altered microglial homeostasis in the

hippocampus and amygdala has been reported during HFD feeding

in mice, although the activation of microglia in these areas mainly

affects cognitive performance (187).

Other than parenchymal macrophages or microglia, non-

parenchymal macrophages, including perivascular macrophages

(PVMs), choroid plexus macrophages, and meningeal

macrophages, inhabit the interface between the brain and the

periphery where they function as “guardians”/”guards” against

invading microorganisms and suppress harmful inflammation

(150). PVMs are considered important defense immune cells, but

with dual physiological functions (188). On the one hand, PVMs

has been shown to mediate activation in the HPA axis by

prostanoids (lipid mediators that stimulate the inflammatory

response) (188, 189), whereas on the other hand PVMs have been

shown to limit endothelial involvement in inflammatory processes,

thereby inhibiting CNS responses to inflammatory insults.

Nevertheless, during obesity PVMs seem to mostly be involved in

pro-inflammatory activation. Elevated saturated fatty acid (SFA)

levels and inflammatory molecules in the circulation have been

shown to activate PVM signaling molecules, such as nitric oxide
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(NO), which may mediate increased vascular permeability and

accumulation of lipids in the hypothalamus (3, 151). Vascular

endothelial growth factor (VEGF) is another signaling molecule

expressed by PVM. Elevated serum VEGF level is associated with

obesity, poor glycemic control, and T2D (190, 191). Interestingly,

the expression of VEGF in PVMs has been reported to be increased

during the first four weeks of HFD feeding in mice, a period during

which no significant increase in the expression of VEGF is evident

in the spleen, liver, or AT (192). This suggests PVMs as a primary

source of this pro-inflammatory growth factor. The PVMs may also

have an effect on microglial cell function during obesity, and it was

reported that PVMs, together with meningeal macrophages, may

induce microgliosis in the hypothalamus (177). Indeed, the number

of meningeal macrophages is elevated during HFD, indicating that

these cells can trigger diet-induced microgliosis (177). The choroid

plexus macrophages have also been shown to play critical roles in

brain inflammation, but this seems to occur during

neurodegenerative diseases such as Alzheimer ’s disease,

neurodevelopmental and psychiatric disorders (193–195). The

role of these cells in inflammation induced by HFD and obesity is

still elusive.

The astrocytes are another type of glial cell found in the CNS,

and normally they are responsible for supporting differentiation

and homeostasis in neurons, as well as influencing synaptic activity.

However, during HFD induced obesity, astrocytes have been

reported to interact with microglia and augment hypothalamic

inflammations (196, 197) probably due to an increase in

astrocytic NF-kB signaling (198), or due to increased chemokine

signaling in microglia. For instance, conditioned medium of

palmitate-treated reactive astrocytes has been shown to increase

the expression of microglial chemokine CCL2, which promotes

migration of microglia (196), supporting that interactions between

astrocytes and microglia may contribute to obesity-induced

inflammation in the CNS.

Taken together, these studies confirm that central immune cells,

especially microglia, play a major role in obesity-induced central

inflammation. Although the brain contains other immune cells such

as T cells, B cells, and NK cells, their role and interaction with

microglia and astroglia remain unexplored. Central inflammation

affects appetite regulation, and thus peripheral metabolism through

increased food intake and obesity Box 1. Further research on the

interactions between CNS- and peripheral immune cells and

between different types of brain-resident immune cells in a

context of obesity is needed to better understand the how obesity-

related central inflammation affect whole-body metabolism.
Concluding remarks

Tissue-resident, pro-inflammatory immune cells give rise to

systemic inflammation and play a role in the development of

metabolic dysregulation associated with obesity. The purpose of

this review has been to shed light on peripheral and central immune

cells in obesity and obesity-related disorders, with particular focus

on macrophages. Macrophages are characterized by significant

diversity and plasticity both within and between tissues. Their
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BOX 1: Can peripheral and central inflammation be affected by obesity in a bidirectional manner?
Several studies have indicated that during obesity, peripheral tissues and the CNS are in constant communication with each other, and that this signaling includes
inflammatory mediators (199–201). However, it has proven difficult to identify the origin of the inflammatory signal. On the one hand, inflamed AT has been shown to
send pro-inflammatory, adipokine-mediated signals to the hypothalamus, which then controls energy homeostasis, feeding behavior, and metabolic rate. Also, circulating
myeloid cells can be recruited to the CNS and subsequently be involved in hypothalamic inflammation that contribute to further food intake dysregulation (177). On the
other hand, it was shown that inflammatory signaling in the hypothalamus occurred in response to nutrient overload before weight gain occurred and peripheral
inflammation had taken place, suggesting that peripheral inflammation is rather a consequence of obesity than the source of an initial stimulating signal to the CNS (177,
202). Thus, the inflammation in the peripheral tissues that is relevant for systemic insulin sensitivity and metabolic dysfunction seems to be secondary to obesity, and that
hypothalamic inflammation and dysregulation of food intake is the primary signal. Nevertheless, a positive feedback loop from the periphery to the CNS seems to be
important in maintaining obesogenic signaling (Figure 2) (177, 203).

The ability of the peripheral tissues to communicate metabolic status to the CNS is of great importance. One example is the gut hormone glucagon-like peptide-1
(GLP-1) that is released into the bloodstream after feeding (204, 205). In general, it stimulates insulin secretion by potentiating the insulinotropic effects of glucose, and it
also reduces appetite by acting in the hypothalamus (206). The beneficial effects of GLP-1 have been exploited pharmacologically, and there is currently a surge in GLP1R
analogues and other gut hormone-based therapies that is becoming available for clinical use. Interestingly, gut hormones may also affect CNS inflammation; dysbiosis in
the gut during obesity has been shown to cause the activation of hypothalamic glial cells (especially microglia) through abnormal GLP-1 receptor (GLP-1R) signaling (207).
The GLP-1R signaling has also been established in Tanycytes (a special type of ependymoglial cell located near the third ventricle), and they have been reported to be
involved in obesity-related CNS inflammation. Blocking GLP1R in tanycytes has been shown to prevent the transport of the anti-diabetic drug and GLP1R agonist
liraglutide into the brain and its activation in the hypothalamic neurons, as well as its anti-obesity effects on food intake and body weight (208). This shows the potential of
glial-like cell types in the hypothalamus to modulate GLP-1R signaling from the gut and targeting this signaling could develop new treatments for obesity. Weight loss
surgery further emphasizes gut-macrophage-neuron crosstalk and the importance of bidirectional communication between the CNS and the periphery. For example,
Roux-en-Y gastric bypass (RGYB) has been shown to alter the interaction between microglia and POMC neurons due to alteration in circulating humoral factors and leads
to improvement in hypothalamic inflammation (irrespective of weight loss) and leptin sensitivity, suggesting a CNS-periphery crosstalk (209). In respect to humoral
factors, the sEV could serve as promising candidates for a CNS-targeted strategy in the treatment of obesity. sEV can be loaded with specific cargos (e.g. lipids, proteins,
DNA, and RNA) that can be transported in the circulation and targeted to specific cell types in the hypothalamus, which in turn can modulate CNS inflammation and
ameliorate whole body metabolism. These possibilities emphasize the importance to understand more about how inflammation and immune cell are involved in the cross
talk between the periphery and the brain, insight that will be of uttermost important in the quest for future therapies for obesity and metabolic disease.
FIGURE 2

Peripheral and central macrophage interaction during obesity: a bidirectional mechanism? Neuro-immune interactions trigger hypothalamic
inflammation and obesity. As a result, tissue-resident macrophages and other immune cells in AT, liver, pancreas, muscle, gut are activated, thereby
dysregulating metabolism within these peripheral tissues. Furthermore, the tissue-resident immune cells release proinflammatory cytokines and
chemokines into the circulation, some of which can enter the brain and exacerbate hypothalamic inflammation though the activation of glial cells
(especially microglia) and tissue resident T-cells. Ultimately, this will result in sustained CNS inflammation and obesity, suggesting a bidirectional
interaction between CNS and peripheral inflammation. Created with BioRender.com. CNS, Central Nervous system; AT, adipose tissue; POMC, Pro-
opiomelanocortin neurons; NPY, Neuropeptide Y neurons; AgRP, Agouti-related protein.
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phenotypes are modulated by intricate communication with other

immune cells as well as with parenchymal cells, such as adipocytes

and neurons. During obesity, inflammation in peripheral tissues

leads to release of pro-inflammatory cytokines into the circulation,

from where they may cross the BBB to further activate brain

resident macrophages and stimulate inflammation in the CNS.

However, hormones, neuropeptides, and dietary fatty acids have

also been shown to change macrophage function in the brain

directly, independent of peripheral inflammation. Adding another

layer of regulation are the sEVs, which are particularly interesting

for their involvement in inter-organ communications. The

adipocyte/ATM axis is important for obesity-induced

inflammation and the involvement of sEV during this process

seems to be of great importance. The contribution of sEVs to the

CNS inflammation is also an interesting area of research that needs

to be further pursued.
Future perspectives

The development of anti-obesity therapies has proved to be

extremely challenging from a methodological, technical, and

societal perspective. Therefore, in-depth research into neglected

areas can lead to new anti-obesity therapies that can benefit medical

fields and society. For example, when it comes to the role of central

macrophages in obesity and CNS inflammation, most studies have

focused on microglia. However, other macrophage subsets may also

be of relevance, such as those in the perivascular space, meninges,

and choroid plexus that have so far been mostly neglected. Some

studies have shown their connection to hypothalamic inflammation

during diet-induced obesity, but their exact role in hypothalamic

inflammation remains unclear, and more research is needed to

understand how these non-parenchymal macrophages contribute to

obesity-induced inflammation and if they affect regulation of food

intake or energy expenditure.

Exploiting the properties of sEV is a promising strategy for

targeted delivery of molecules to specific CNS cell types, potentially

leading to more specific clinical effects and reduced side-effects.

Efforts in this field should aim to understand both basic-
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mechanistic concepts as well as translate them into clinical

practice. Due to the extremely complex nature of obesity-related

inflammatory activation, involving numerous organs, cell types,

signaling pathways and feedback mechanisms, the distance from

“bench to bedside” appears long. However, in the face of the

escalating global obesity epidemic, the pursuit of novel

therapeutic agents, resting on sound fundamental research,

should be continued.
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