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Abstract
In this paper, we use TMB to study spatial variation in weather-generated claims in 
insurance. Our motivation is twofold. By comparing with INLA, we first find that 
TMB is a robust and efficient approach to deal with spatial variation of covariates 
and the dependent variable in a case with sparse data. Second, we demonstrate how 
examining the spatial pattern of random effects may offer auspicious suggestions for 
model extensions, represented by added covariates accounting for relevant spatial 
characteristics. Both the approach and the results represent useful input in reaching 
an efficient spatial diversification of premium rates in non-life insurance.

Keywords Spatial modeling · Generalized Linear Mixed Models · Gaussian Markov 
Random Fields · Insurance claims · INLA · TMB

1  Introduction and Motivation

In this paper, we use TMB (Template Model Builder) [1] and [2] to estimate model 
formulations accounting for the possible presence of spatial dependence in data. 
Spatial dependence means that there is a systematic spatial pattern in the phenom-
enon being studied, see e.g. [3]. The impact of variations in specific covariates on 
the response variable may differ systematically across locations, and this may not 
be adequately captured by variation in the selected covariates. Ignoring such spatial 
patterns in the model formulation may lead to seriously biased estimates of how 
variations in covariates affect the response variable, see for instance [4].
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Data are often defined for a specific subdivision of the geography into administra-
tive units. In such cases, one option is that each unit, zone, is represented by separate 
fixed effects in the model formulation. This may lead to a model formulation that fits 
data reasonable well, but such an approach may prove to have some shortcomings for 
example when it comes to providing reliable out-of-sample predictions. This could 
for instance be to predict the response to an unfortunate incident in a zone outside 
the region that was used for estimation. Significant location-specific fixed effects 
may reflect the impact of omitted information on spatial characteristics. Hence, such 
effects can prove to be useful in attempts to improve the model formulation, and to 
uncover general spatial patterns in the response to variations in risk factors.

The Gaussian conditional autoregressive model (CAR) represents one possible 
approach to account for systematic spatial dependencies in data, see e.g. [5]. A concise 
presentation of the intrinsic CAR model can be found in [6]. This model accounts for the 
possibility that neighbouring zones may respond similarly to variations in risk factors. 
Accounting for such spatial patterns may contribute to improved explanatory power, and in 
particular it potentially contributes to more precise predictions concerning the local impact 
of specific incidences. Based on a CAR-model, [7] find that accounting for spatial depend-
encies results in a significantly improved explanatory power, and more reliable estimates.

Accounting for spatial dependencies in general leads to a complex likelihood func-
tion, which results in a challenging optimization problem. One approach to overcome 
this problem is to employ Markov-Chain Monte Carlo (MCMC) simulations in esti-
mating the model parameters. Recently, however, a few approaches have been intro-
duced that enable us to do the estimation by maximizing a likelihood function, see 
for instance [8] for a presentation of the so-called SPDE-approach. Software packages 
like TMB (Template Model Builder) and INLA (the integrated nested Laplace approx-
imation) use Matérn correlation parameters to impose a spatial dependence structure 
in the model formulation, see for example [8]. The specification of a likelihood func-
tion in general allows for a more flexible approach, both in terms of what information 
that can be utilized in the data, and in terms of estimated output on the relationship 
between variations in the covariates and the response variable.

In this paper, TMB is used to discuss spatial variation in weather-related property 
claims. However, our motivation is not solely methodological. Studying property claims 
due to extreme weather conditions is highly relevant in times of climate change. Insurance 
companies are aiming for an efficient pricing regime, introducing incentives that contrib-
ute to prevent or reduce future claims. This involves geographical variations in insurance 
premiums, reflecting the local variations in the likelihood of claims. In the perspective of 
reaching reliable estimates of the likelihood of claims, it is important to account for spatial 
dependencies in risk factors. Such dependencies may reflect local variations in weather 
conditions, but also in the response to unfortunate weather, represented for instance by the 
soil, the topography, local building regulations and construction technologies.

As a first step, we use exploratory approaches to demonstrate and test how 
weather-related claims vary systematically across the geography. We focus primarily 
on the frequencies of claims in different geographies, but we also have some infor-
mation on the size of claims (the insurance payout). One observation in the descrip-
tive part of the paper, is a tendency of more claims per insurance policy in relatively 
large urban areas than in more rural areas.
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The literature offers some results on the relationship between weather condi-
tions and insurance claims. According to [9], the insurance payouts due to water 
claims in Norway were increased by more than six times in the period from 1993 
to 2003. They further distinguish between claims from instant rain, and claims 
from accumulated rainfall, measured by the total precipitation over the last five 
days and nights. They found a tendency that counties in western and southern 
Norway were slightly less sensitive to instant rain than the rest of the country, 
and suggest that this might reflect that the construction technology in coastal 
areas are better prepared for heavy rain [10] find that frequency plots “indicate 
that densely populated areas exhibit larger vulnerability than do municipalities 
in rural districts”. It is our ambition to enter in more detail into this observation.

Based on a very large dataset with more than 6.7 million observations from the 
period 2011–2018, [6] study model for insurance premium rating taking spatial 
effects into account. They do not study the impact of meteorological and hydro-
logical defined covariates, but in general find that accounting for random effects 
when modeling water claims yields better model fit and that this is the best way 
of taking the geographical location into account. [6] use the R-package mgcv to 
estimate the parameters in random effects. mgcv is also compared to utilizing 
INLA, but they have not been considering TMB. In this paper, we present results 
from both TMB and INLA, as a basis for evaluating the robustness and efficiency 
of the TMB approach.

The size of premium rates in private insurance is based on the expected value 
principle, with an addition for overhead costs. The expected value principle is 
stating that the expected value of discounted payments from policyholders equals 
the total expected value of payouts from the insurance companies. In a spatial 
context, it is important to account for the possibility that both the occurrence of 
risk factors and the response to variation in risk factors may vary systematically 
across space. This represents the justification for geopricing; correct pure pre-
mium rates call for reliable predictions of expected payouts. One important prob-
lem is whether the premium rates should be differentiated across spatial units, 
like municipalities or counties, or according to a more continuously defined geog-
raphy, corresponding to a more spatially smoothed pattern in the likelihood of 
claims. Approaches based on INLA or TMB allow for a continuous, coordinates-
based specification of the geography. In this paper, however, all the observations 
are assigned to the corresponding municipality center; information on location is 
restricted to the coordinates of the municipality center. Hence, we have not spa-
tially detailed enough information to discuss the possibility that claims may vary 
continuously within municipalities. However, an important ambition of this paper 
is to demonstrate how examining the spatial pattern of random effects contributes 
to an improved, extended, model formulation, which is in addition suggesting 
additional guidelines for spatially diversification of premium rates.

The data and descriptive statistics are presented in Section 2, before Section 3 
provides a presentation of the basic modelling and conceptual framework. The 
estimation procedures are introduced and explained in Section  4. Estimation 
results are presented and discussed in Section 5, while Section 6 provides con-
cluding remarks.
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2  Data Source and Data Exploration

The data used in this paper is obtained from regular water claims inflicted to prop-
erties in the portfolio of a Norwegian insurance company. The stock data and reg-
istered water claims are given for policy holders at the time in the 429 Norwegian 
municipalities included in our data, before a process of merging municipalities and 
counties in later years. The stock data includes information on the number of poli-
cies, the insurance premiums, as well as claim frequencies and claim size by data. 
Meteorological and hydrological information are also given by date, provided for the 
insurance company by the Norwegian Meteorological Institute and the Norwegian 
Water Resource and Energy Directorate (NVE).

Table 1 offers definitions of the weather-related covariates that are included in 
the data, and will be used in our model formulation. Notice that the information of 
the variables is in general available for the period 1961–2006, but stock data are 
only available in the period after 1996. In this paper, we utilize information for the 
period from 1999–2006. Drain represents a measure of the total draining away of 
water from the surface of an area, which is the precipitation minus evaporation. 
Snow (the snow water equivalent) is the amount of precipitation represented by an 
amount of water.

Both as a starting point for the formulation of interesting hypotheses and for the 
evaluation of estimation results, it may be useful to study temporal and spatial pat-
terns in data. Figure 1 illustrates time series of some basic insurance-related meas-
ures for the period from 1999 through 2006.

It follows from Fig. 1b that the insurance sum paid to the clients increased sub-
stantially over the period under study. This does not solely reflect the increased 
number of insurance policies. Another reason is that Norway experienced a strong 
growth in housing prices in this period. The irregularities at the turn of each year in 
the graphs of Fig. 1, are due to a yearly indexation of construction costs.

Figure 2 provides an illustration of the development in the frequency of claims. It 
clearly appears from the figure that the claims do not take place in a regular pattern 
over time. As stated in the introduction, one ambition of this paper is to study how 
claim frequencies depend on meteorological and hydrological risk factors. Figure 2 
reveals no specific time trend in the frequencies of claims but the number of claims 
was at the lowest in 2004. The figure further illustrates that trends may be more 
visually apparent in a figure where the chosen time scale is relatively aggregated.

Both the risk factors and the number of water claims vary systematically over 
space. Figure  3 visualizes county-wise deviations from national averages in 

Table 1  Weather-related 
covariates to be included in our 
model formulation

Variable Description (Unit)

RAIN Precipitation registered (mm/day)
TEMP Mean temperature (Celsius)
DRAIN Runoff (mm/day)
SNOW Snow water equivalent (mm)
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precipitation and snow melting. Notice that all the maps, and the corresponding text, 
apply to the situation prior to the process of merging counties in more recent years. 
The maps reveal expected patterns of heavy rain in the counties of Western Nor-
way, while in particular Northern Norway has a lot of snow melting. The variance of 
these risk factors may also be relevant in explaining the frequency of water claims. 
County-wise estimates of this variance show a pattern very similar to the pattern of 
averages in Fig. 3

Figure  4 provides information on the county-wise variation in the number of 
water claims, and the average size of the claims. The number of claims is naturally 
closely related to the housing stock, which reflects the population size. It is for 
example reasonable that the most populous counties (Oslo, Akershus, Rogaland, and 
Hordaland) have the highest number of water claims. There is apparently no such 
relationship regarding the average size of the claims. The high value for Finnmark 
may reflect the dominance of a few abnormal observations.

From an insurance perspective, it is more interesting to study the number of water 
claims per policy, since this measure does at least not to the same degree reflect 
the population size. Figure  5a visualizes the county-wise variation in the number 
of water claims per policy, measured by an average of the municipalities of the 
county, over the period 1999–2006. Once again, there is a pattern with high values 
for densely populated counties, while the sparsely populated Hedmark and Oppland 
stand out with a low number of water claims per policy. The number of policies 
per inhabitant reflects both the regional variation in the propensity to buy insur-
ance, and regional variation in the market share of the insurance company being 
studied. As visualized in part b of Fig. 5, it is in particular Hedmark and Oppland 
that has a high number of policies per inhabitant. More densely populated areas in 
eastern and western Norway have a lower number of policies per inhabitant, while 
the two sparely populated counties furthest north have the lowest number of policies 
per inhabitant.

Figure 6 provides information on the spatial variation in risk factors at the munic-
ipality level. Comparing these maps to the maps in Fig. 3 serves as an example that 
heterogeneities potentially represent a potential source of bias in statistical analy-
sis based on an aggregated representation of the geography into zones. In some 

Fig. 1  The development in the number of insurance policies, the sum insured and the insurance premium 
in the period from 1999 through 2006
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counties, like Sogn og Fjordane in Western Norway, there are coastal municipali-
ties with loads of rain, while some inner parts have considerably less precipitation 
than the national average. By using average values for counties extending over rela-
tively large areas, we fail to account for the effect of local variations in risk factors. 
Hence, potentially important information are not accounted for, and the results can 
be expected to be sensitive to the level of spatial aggregation used in the analysis.  
This is called “the modifiable areal unit problem” (MAUP) in the literature. An early  
contribution to study such problems can be found in [11]. The chosen level of spatial 
aggregation for the analysis is in general a compromise between what is theoreti-
cally desirable and what data are available.

Fig. 2  Number of claims in the period from 1999 through 2006 at three different aggregation levels
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3  The Modelling Framework

This section provides a presentation of the modelling framework that is being used 
for the estimation and predictions. As mentioned in the introduction, approaches 
based on TMB are in general referring to a continuous, coordinate-based defini-
tion of the geography. Our data are point-based, assigned to the coordinates of the 
municipality centers. Ideally, TMB would come into its own with a more continu-
ously defined, coordinate-based specification of the geography, but this paper dem-
onstrates that such a geo-statistical approach still provides useful results and insight. 
The subdivision of Norway into m = 429 municipalities allows for a reasonable esti-
mation of spatial dependence, in terms of the Matern correlation function.

3.1  Generalized Linear Mixed Models (GLMM)

Generalized Linear Models (GLM) may be considered as a generalization of 
the classical linear regression [12]. The first element of a GLM is the depend-
ent variable, which is assumed to follow a distribution from the exponential 
family. In non-life insurance, the Poisson distribution has typically been used 
to model claim frequency, while the claim size is often modelled by the gamma 
distribution. We focus on claim frequencies, while both [10] and [6] also dis-
cuss claim size.

The second element in the GLM specification is the linear predictor, �i . This is 
a linear combination of the parameter vector, � = (�0, �1, ..., �p)

t , and the vector of 
covariates, xij:

where i = 1, ..., n and n is the number of insurance policies.
Finally, the third element of a GLM is the link function, g, which is connecting 

the linear predictor to the expected value, � , of the dependent variable:

In this paper, the GLM-formulation is extended by adding a spatially referenced 
random effect, uR[i] , to the linear predictor:

uR[i] refers to the random effect assigned to each policy i belonging to municipality 
R[i] ∈ 1, ...,m . The extension of a GLM with random effects is called Generalized 
Linear Mixed Models (GLMM) ([13]).

(1)�i = �0 +

p∑

j=1

xij�j.

g(�i) = �i = �0 +

p∑

j=1

xij�j.

g(�i) = �i = �0 +

p∑

j=1

xij�j + uR[i].
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3.2  Gaussian Markov Random Fields (GMRF)

As stated in [14], one of the main drawbacks working with Gaussian fields has 
been the so-called “big m problem” related to the computational cost of algebraic 
operations with dense covariance matrices. When the number of municipalities, m, 
increases, factorization of the dense covariance matrix of order mxm will require a 
general cost of O(m3) [8].

One way to overcome the “big m problem” is by formulating a Gaussian Markov 
Random Field (GMRF) representation of the Gaussian field. As described in [15], 
this is done by introducing a Markovian element, such that only neighbouring sites 
will have covariance values different from zero. Hence, the precision (inverse covar-
iance) matrix becomes sparse, and the computational cost is reduced to O(m3∕2).

3.3  Matern Correlation Function

The Matern correlation function defines the statistical correlation between 
measurements made at two spatial points. In [15] the Matern correlation func-
tion is defined as follows:

The term ||si − sj|| represents the Euclidean distance between these locations. 
K� is the Bessel function of the second kind. As described in [15], 𝜅 > 0 is a 
scaling parameter that is linked to the range parameter r. According to Lindgren 
and Rue (2011), empirical evidence concludes that the relationship between r 
and � can be more precisely expressed by

where r is the distance where the correlation has been reduced to 0.1.
The Matern covariance matrix of the spatial random effects, � , has elements:

where �2
u
 represents the marginal variance of the random effects. Hence, the covari-

ance of the spatial Gaussian fields can be defined by this Matern covariance func-
tion, and we are then left with estimating the two parameters �2

u
 and � . However, 

working with large sample sizes, � tends to be large, and this causes challenges in 
the estimation procedure. represented by the “big m problem” that was mentioned in 
Section 3.2. The SPDE approach is a method to estimate the parameters in a compu-
tationally effective way.

(2)corrMatern

(
uR[i], uR[j]

)
=

21−�

Γ(�)

(
�||si − sj||

)�
K�

(
�||si − sj||

)
.

(3)r =

√
8�

�
,

(4)Σij = �2
u
⋅ corrMatern

(
uR[i], uR[j]

)
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3.4  The Stochastic Partial Differential Equation (SPDE)

As explained in Section 3.2, the introduction of a Markovian element leads to a 
sparse precision matrix of the GMRF, with substantially reduced computational 
costs. The SPDE approach was introduced in [8], and may be used for estimation 
of the unknown parameters in the covariance function of a Gaussian field. A 
presentation of the approach is provided in Appendix A.

This approach calls for a specification of a spatial domain that is represented 
by irregular grids called a mesh, that is based on subdividing the geography 
into non-intersecting triangles. The mesh is explained in “Mesh”. The last step 
of solving the model, and estimating spatial dependence, is the finite element 
approach, see [8].

4  TMB Estimation Approach

In this paper, the estimation of the GMRF is performed using the SPDE-approach 
by the software package TMB. Like INLA, TMB uses the Laplace approximation 
Appendix B. While INLA can be considered as a Bayesian method, TMB represents 
a frequentist approach, using maximum likelihood estimator.

Consider, for simplicity, a model with only one hyperparameter ( � ) and two 
regression parameters, �1 and �2:

where y is the response variable. By using Bayes theorem and the theory of condi-
tional probability, the following expression follows for the joint distribution:

where f (�1, �2|�) and f (�) are the priors. When working with GMRF’s, the � ’s are 
assumed to be normally distributed and independent. The results of the Bayesian 
estimation approach are given by the posteriori marginal distribution, i.e. f (�1|y) , 
f (�2|y) and f (�|y).

In general, the marginal distribution of a continuous random variable can be 
found by integrating the joint distribution over the desired variable. Hence, we need 
to factor out the parameters of interest. Working with complex models with latent 
variables (like GMRF’s) such integrals will become high-dimensional and solving 
them analytically might be impossible. Because of this, traditional estimation rou-
tines have involved Markov Chain Monte Carlo (MCMC) (see for example [16] and 
[4]). However, recent contributions involving Laplace Approximation have proven 
to be successful in approximating marginal distribution ([17] and [18]).

While MCMC represents a simulation based algorithm for Bayesian inference, 
the INLA-algorithm was introduced by [18], and represents a deterministic algo-
rithm. INLA enables us to compute accurate approximations to the posterior mar-
ginals in shorter time than MCMC.

y = �1X1 + �2X2,

f (�1, �2, �|y) ∝ f (y|�1, �2, �)f (�1, �2|�)f (�),



 Operations Research Forum            (2023) 4:79 

1 3

   79  Page 14 of 27

Skaug and Fournier [17] introduced a method of fitting hierarchical random 
effects models by Laplace approximation and automatic differentiation. This method 
is further implemented in TMB. As described in [1], TMB can be considered as 
an interface between R and C++. The user defines the likelihood for the data and 
the random effects in C++, while other operations are performed in R. Recently, a 
version of TMB, referred to as RTMB (https:// github. com/ kaskr/ RTMB), allows all 
the code to be written in R. The fact that the user do not have to know C++ can be 
expected to expand the TMB user base. It is not clear to us if all TMB models can be 
implemented in RTMB, but the models used in the present paper can be formulated 
in RTMB. Although the analysis performed in this manuscript has been done using 
ordinary TMB we have chosen to present RTMB for the model, because the code is 
shorter and easier to understand. The code and a simulated dataset is described in 
Appendix C.

Thorson and Kristensen [19] discuss how the TMB software has been modi-
fied to reduce bias resulting from non-linear transformation of random effects, 
and adjust under-estimation of uncertainty. [2] provide a detailed description of 
the TMB technology and source code. They describe the approach as exception-
ally flexible, computationally efficient, and applicable to a wide class of spa-
tial models. [2] in addition provide an elaborate comparison between TMB and 
INLA, concluding that “the predictive fields from both methods are comparable 
in most situations even though TMB estimates for fixed and random effects may 
have slightly larger bias than R-INLA”. In general, however, [2] were “pleasantly 
surprised”  to find near concurrence in spatial field estimation distributions in 
TMB and INLA.

5  Results

The data we use in this paper to some degree represent dated information, as they 
are utilizing information of claims and meteorological and hydrological observa-
tions from the period 1999–2006. One advantage of using these data is that the 
results can be directly compared to other studies based on alternative approaches, 
but the same data set, see for instance [10]. Another advantage is that old data are 
not to the same degree subject to strict confidentiality policies at the insurance 
companies, which for instance prevents [10] from showing the results in full. In 
addition, data are relatively sparse, involving numerous entries with ‘zero’. This 
is in general no advantage, and it is demanding from a methodological, calibra-
tion, point of view. However, as a basis for evaluating TMB, it is an advantage 
that data are challenging. If a calibration approach deals satisfactorily with this 
problem, there is reason to claim that it is relatively robust.

https://github.com/kaskr/RTMB
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5.1  The Basic Model Formulation

Let DC denote the number of weather-related claims. In modelling DC we use 
a zero-inflated Poisson model (ZIP). Early contributions to ZIP models can be 
found in [20] and [21]. Yip and Yau [22] find that a ZIP model is a suitable 
approach to study the number of claims with extra dispersion in insurance. The 
model to be estimated can be formulated as follows:

Here, � is the covariance matrix, defined by Eq.  4 in Section  3.3, and the 
covariates are defined in Table 1. 

(
u1, ..., um

)
 is the vector of the random effects 

for all municipalities.

5.2  The Estimated Impact of Variations in Weather‑Related Covariates

As a basis for evaluating the TMB approach, we have also estimated the model by 
INLA, as an alternative approach to TMB. While we have been working with this 
paper, new versions have been released of both approaches. From a computational 
perspective there was a convergence problem in using earlier versions of the INLA 
approach for our full dataset, while TMB had no such problems. The underlying 
problem was that the daily observations of the weather-related variables, as well as 
claims, leave us with a high number of entries with zero, that is with very sparse 
data. In earlier versions of INLA, we treated this by aggregating over the time 
dimension, that is be defining the weather-related observations for a specific number 
of days. The lowest number of days which resulted in a number of entries with zeros 
that did not cause convergence problems in the previous version of INLA was found 
to be 7. However, with the updated version of INLA, documented in [23], we did not 
enter into convergence problems, even in cases where the full dataset is used. Hence, 
both the results represented by INLA and TMB in Table 2 correspond to a definition 
of the covariates on a daily resolution. It follows from the table that INLA and TMB 
give more or less identical parameter estimates in this case. Without entering into 
more details, our experiments demonstrate that this is the case for any version of the 
model where the level of time aggregation is the same in the two approaches. The 
analysis were performed on a regular desktop computer with 16 GB of memory with 
an Intel(R) Core(TM) i7-11800 H@2.30GHz with 8 cores.

Likewise, we will not enter into details on the results based on the iCAR model, 
estimated by MCMC in the WINBUGS software. We have used the same dataset for 
experiments based on this specification, but they proved to be considerably more 
time-consuming than the INLA and TMB-estimations, and we entered into problems 

(5)DC ∼ ZIP(�i, p),

(6)�i = � + �1 ⋅ RAINi + �2 ⋅ TEMPi + �3 ⋅ DRAINi + �5 ⋅ SNOWi + uR[i],

(7)
(
u1, ..., um

)
∼ N(0,�).
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with convergence in cases where the full dataset was used. This also underpins our 
perception of TMB as a very robust and efficient procedure.

As mentioned above, we have run experiments where the covariates are defined for a 
longer period than the daily observations. This may be necessary to reach convergence 
in cases with a very high number of zero entries. In general, it is not desirable to use 
data averaged over a long time period in predicting the number of property damages 
following from unfortunate weather conditions. This corresponds to intuitively reasona-
ble tendency that the estimated impact of bad weather is scaled down over a longer time 
perspective, and time aggregation may lead to a severely underestimation of weather-
related property claims. Hence, it is fortunate that both TMB and the new version of 
INLA proved to be robust towards this problem for the sparse dataset that we are using.

Other studies based on the same dataset have distinguished between instant 
rain and accumulated rain, see for instance [9] and [24]. [24] defines accumulated 
rain as the total rainfall over the last 5 days. If aggregation of time has to be made 
in order to reach convergence, RAIN captures both the effect of accumulated and 
instant rain. This complicates the interpretation of the corresponding parameter 
estimate. Based on estimation by MCMC simulations of a conditional autore-
gressive model formulation (iCAR), [24] reported parameter estimates attached 
to rainfall that was overall higher than the estimate following from TMB (and 
INLA) in Table 2. At the same time, however, the parameter estimates attached to 
accumulated rain was substantially lower than the TMB-estimates of variations in 
RAIN. Hence, a reasonable hypothesis is that the estimates attached to variations 
in RAIN in Table 2 reflect a mixture of instant and accumulated rain.

Table  2 also provides estimated standard deviations for the parameter esti-
mates, and it is straightforward to see for example that all the covariates are 
estimated to have a positive impact on the number of property claims in the 
approach given by TMB (and INLA).

5.3  The Matern Correlation

In a spatial dependency context, the most important of the hyperparameters in Table 2 
is � . As stated in Section 3.3, Matern correlation defines statistical correlation between 
measurements made at two spatial points that are at a specific distance from each other. 
The estimates of � offers information about this correlation. If � is estimated to be high, 
this means that the two points have to be close to each other to be statistically dependent. 
The so-called correlation range, r, that was also discussed in Section 3.3 is closely related 
to � ; r =

√
8

�
 , for � = 1 (Eq. 3). The range offers information of the distance where the 

spatial correlation more or less can be ignored. According to Table 2, the range is esti-
mated to be around 70 km for the different estimation approaches. As illustrated in Fig. 7, 
the spatial dependency ceases at around 70 km, with corresponding values of the Matern 
correlation below 0.1. This result supports the hypothesis that there is a strong spatial 
dependency between the risk of property claims at sites located close to each other.
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5.4  The Spatial Random Effects

As was made clear in Section 1, both INLA and TMB estimate the random effects 
of each municipality center, reflecting spatial variation that is not captured by the 
covariates or the estimated parameters of the Matern correlation function.

The literature provides some unfortunate experiences in terms of convergence 
and computing costs of using INLA. This is for example reported in [6], who find 
that by using INLA “….. not possible to fit the frequency model using the full data-
set from Gjensidige in a reasonable time”. INLA was found to give a very long run 
time compared to the other approaches that were considered. However, according to 
[6] “It should be noted that INLA is in rapid development, with new features added 
continuously. Hence, the difference in run times may be smaller in the future than 
those reported here”. This is very much in line with our experience. In fact, things 

Table 2  Results based on 
alternative estimation and 
model formulations. TMBX 
represents the extended model, 
accounting for CENTRALITY, 
MOUNTAIN and NORTH

Parameter estimates based on observations from the period 1999–
2006 robust standard errors in parentheses

INLA TMB TMBX

Constant -10.658 -10.333 -12.739
(0.080) (0.078) (0.164)

RAIN 0.034 0.034 0.034
(0.000) (0.000) (0.000)

TEMP 0.015 0.015 0.015
(0.001) (0.001) (0.001)

SNOW 0.001 0.001 0.001
(0.000) (0.000) (0.000)

DRAIN 0.030 0.030 0.030
(0.002) (0.002) (0.002)

CENTRALITY - - 0.038
(-) (-) (0.002)

MOUNTAIN - - -0.219
(-) (-) (0.088)

NORTH - - 0.544
(-) (-) (0.105)

log(�) -3.204 -3.210 -3.176
(0.095) (0.097) 0.124

�2 0.398 0.393 0.152
(-) (0.042) (0.019)

r 70.010 70.084 67.729
(-) (6.771) (8.376)

p 0.605 0.605 0.604
(0.006) (0.006) (0.006)

AIC - 213148.6 212895.5
DIC 208858.0 - -
Time (minutes) 33.22 20.70 26.15
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have improved considerably in a relatively short time, and the differences in com-
puting time for our problems were relatively marginal between TMB and INLA. We 
provide another demonstration that both TMB and INLA are now extremely effi-
cient from a computational perspective. INLA “was designed, in part, to be a com-
putationally efficient and quick alternative to MCMC samplings” ([2]).

In our data, the municipalities marked in blue in Fig. 8 have a higher number of 
weather-related claims than what should be expected from the structural part of the 
model that is formulated in Section  5.1. Correspondingly, the model overpredicts 
the number of claims in the municipalities marked in red.

Figure  8 demonstrates that the values of the random effects display a system-
atic spatial pattern and spatial dependencies. This is potentially helpful in suggest-
ing model extensions accounting explicitly for spatial structure characteristics. As 
mentioned above, the blue marked municipalities represent areas where the model 
underpredicts the risk of weather-related property claims. From a basic knowledge 
of the Norwegian geography, the blue marked areas tend to be found in Northern 
Norway, and in prosperous, centrally located, coastal areas in southern Norway. This 

Fig. 7  Estimated spatial correlation is reduced with increasing distance between two locations
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suggests a model extension where a measure of centrality is explicitly accounted for, 
as well as a covariate identifying Northern Norway. In addition, the municipalities 
marked in red, or with statistically insignificant contributions to explain the depend-
ent variable, tend to be located in mountainous areas in Southern Norway.

5.5  A Model Accounting for Centrality and Location

Exploring the spatial pattern of random effects discloses a potential for increasing 
the explanatory power of the spatial distribution of claims. The systematic spatial 
pattern of the random effects suggests that the following covariates are added to the 
linear predictor of the model formulation:

• CENTRALITY = a measure of the centrality of a municipality
• MOUNTAIN = a dummy variable identifying mountainous areas
• NORTH = a dummy variable representing municipalities in Northern

Fig. 8  Estimated spatial random effects (u) for Norwegian municipalities in the model presented in Sec-
tion 5.1 (TMB)
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The hypotheses from studying the random effects are that

• high values of CENTRALITY and a location in NORTH contribute to increase 
the number of claims related to unfortunate weather conditions, beyond the 
predictions from the basic model formulation.

• the parameter attached to MOUNTAIN in the linear predictor of the extended 
model should be expected to be negative.

Hence, the basic model is hypothesized to underpredict the number of claims in 
centrally located areas and in municipalities in Northern Norway, while it over-
predicts the number of claims in mountainous areas. The operationalization of 
centrality for our purpose is based on an index developed by Statistics Norway 
([25]). Centrality is based on the travelling time to the working places that can be 
reached by car within 90 min, and how many different kinds of services that can 
be reached within a travelling time by car of 90 min. The location of jobs and ser-
vices are weighted by the distance from the residential site. All calculations are 
made for census tracts, and then aggregated to a value at the municipality level. 
Statistics Norway publishes values of the index both on a continuous scale, and 
for a categorization, where municipalities are classified into 6 mutually exclusive 
groups, according to centrality levels.

The results from using the continuous and categorized scale of the index naturally 
were quite similar. Only the results based on the continuous scale are reported in 
Table 2, since this variant of the index gave a somewhat better model performance, 
in terms of AIC values. This makes sense, since the continuous scale utilize more of 
the available information on centrality. The centrality index from Statistics Norway 
applies for the situation in 2017, rather than the period for which the rest of our data 
refers to. We have made no attempts to adjust centrality relative to the situation in 
1999–2006. This is hardly a serious source of error, since adjustments in centrality 
values for municipalities should be expected to be very sluggish.

All the hypotheses are supported by the results. Consider the results of the 
extended model TMBX in Table 2. Notice first that the parameter estimates attached 
to the four covariates that were incorporated also in the basic model TMB do not 
change significantly for the extended model formulation. Second, it follows from 
the values of AIC that TMBX performs better than the basic model TMB. Third, 
the partial effects of variations in CENTRALITY, MOUNTAIN and NORTH are 
according to a priori expectations, reflected in the hypotheses that was stated above. 
All the relevant parameters are estimated to be different from zero, at any reasonable 
level of significance.

The partial impact of variations in CENTRALITY is illustrated in Fig. 9. Values 
of the centrality index are measured on the horizontal axis, while the vertical axis 
measures �i in Eq. 1, representing the number of claims in a scenario where random 
effects are ignored. Centralized, national average, values are used for the covariates 
included in Eq. 6. The solid curve illustrates how �i responds to variations in CEN-
TRALITY, for a municipality that is not located in Northern Norway, and not in a 
mountainous area. The curve indicates that variations in CENTRALITY have a sub-
stantial quantitative impact on the frequency of damage claims. However, this does 
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not to the same degree apply to variations in NORTH and MOUNTAIN. The dashed 
curve illustrates the relationship between �i and CENTRALITY for a municipality in 
Northern Norway, while the dotted curve represents the relationship for a municipal-
ity that is located in a mountain area, but not in Northern Norway. Despite the fact 
that both NORTH and MOUNTAIN were found to have a clearly significant impact 
on the number of claims, the quantitative effect is not found to be substantial. This 
in particular applies for mountainous areas.

Notice also from Table 2 that incorporating relevant spatially defined covariates 
leads to a reduction in the estimated values of �2

u
 , which represents the variance of 

the spatial random effects. This is according to a priori expectations, since spatial 
random effects capture the effect of omitted spatial characteristics. The substantial 
reduction in the estimated values of �2

u
 indicates that the covariates CENTRAL-

ITY, MOUNTAIN and NORTH in sum represent important spatial characteristics in 
explaining spatial variation in damage claims due to unfortunate weather conditions. 
In addition, introducing additional spatial characteristics results in a slightly lower 
estimate of the spatial dependency between observations of damage claims at two 
points located close to each other. With this model formulation, the spatial correla-
tion ceases at around 68 km.

Fig. 9  The linear predictor ( �
i
 ) partial impact of variations in CENTRALITY, NORTH and MOUNTAIN. 

CENTRALITY is limited to values between 600 and 800, which covers the majority of the municipalities
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6  Concluding Remarks

In our study, TMB, like INLA, turned out to be a robust and efficient approach in 
calibrating a model aiming at studying spatial variation in weather-generated claims 
from a demanding, sparse, data set. First, we were examining the spatial pattern of 
random effects that was estimated by TMB from a basic model formulation. Besides 
introducing an assumption regarding the distribution of random effects, this basic 
model incorporates covariates which are defining local weather conditions in Nor-
wegian municipalities. Examining the spatial structure of the random effects in the 
basic model turned out to offer useful input and justification for an extended model, 
defined by the introduction of a set of spatial characteristics. This extended model 
was accounting for the effect of the location in a rural/urban dimension, altitude 
information, and some matters that seem to be specific to Northern Norway. Each 
of these added covariates contributes significantly to explain the spatial variation in 
weather related claims. Taken together, this resulted in an extended model formula-
tion representing a substantially improved explanation of the problem under study. 
Besides contributing with a more complete list of relevant covariates, our approach 
offers useful information of spatial correlation in local claims.

In general, our results give support for TMB to be a very suitable approach to 
estimate a model formulation with spatial dependence in data. The results further 
demonstrate that it is important to account for spatial dependencies in reaching reli-
able estimates of the likelihood of events like weather-related claims. Estimating the 
likelihood of such claims is potentially important for insurance companies, in estab-
lishing efficient pricing regimes. The likelihood reflects local variation in risk fac-
tors related to weather, but also local variation in the response to the weather condi-
tion, like the building regulations. As such, spatial variation in insurance premiums 
involves relevant incentives to prevent or reduce future claims.

Wahl et al. [6] use a similar data set to what has been used in this paper to compare 
different spatial models to make reliable out-of-sample predictions for claim frequen-
cies and claim sizes resulting from water claims. They find that all spatial models 
outperform a baseline, non-spatial, model and that all the models taking the geogra-
phy into account by using random effects, outperform models based on spatial spline. 
Most of the random effect models are found to have a very similar performance. 
However, [6] do not study the spatial pattern of random effects in terms of the poten-
tial for adding new covariates, and they do not use meteorological and hydrological 
information in explaining the frequencies and sizes of water claims. In addition, they 
do not consider how TMB performs in dealing with random effect models.

Correct premium rates call for reliable predictions of expected payouts. In many 
cases, there are substantial spatial variation in risk factors and substantial spatial 
correlation, that should be accounted for in the predictions. One potential advantage 
of approaches like TMB is that they allow a continuous, coordinate-based specifica-
tion of the geography. Hence, it may estimate a spatially smoothed pattern in the 
likelihood of claims. In the results presented in this paper, data were available only 
for municipalities. Ideally, the estimation and predictions should be made at a more 
disaggregated subdivision of the geography, but this will often be restricted by data 
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availability. If data were collected at a finer geographical scale, this would improve 
the potential for setting more efficient insurance premiums. Still, information on for 
example centrality and altitude may be constructed for instance for census areas, 
and contribute to a spatially more smoothed estimation of risk factors, allowing for 
more spatially differentiated premium rates. Our results on claim frequencies pull 
in the direction of recommending that insurance premiums are set relatively high in 
centrally located, urban, areas, low in mountainous areas, and high in Northern Nor-
way, ceteris paribus. However, as demonstrated in [10] this recommendation may be 
modified by examining the spatial pattern of claim sizes.

Appendix A: The Stochastic Partial Differential Equation (SPDE)

The stochastic partial differential equation (SPDE) for a Gaussian field, U(�) , with 
location coordinates s1, ..., sN is expressed by:

Here, Δ is the Laplacian and �(s) is a Gaussian spatial white noise process. The  
parameter � is the spatial range parameter, � is a parameter controlling the smooth-
ness of the realisations, while � controls the variance (see [26]). The Gaussian 
field with the Matern covariance function defined in Eq. 4 is the exact and station-
ary solution to the SPDE (see for example [8] and/or [14]). Hence, the param-
eters in Eq. 8 are linked to the parameters in Eq. 4. More precisely, [14] show that 
the link between the parameters of the SPDE in Eq. 8 and the parameters of the 
Matern covariance function in Eq. 4 for a d-dimensional space is given by the fol-
lowing expressions:

and

Given a solution to Eq. 8, these expressions can be used to find all the parameters 
needed to specify the covariance matrix of the GMRF. The default value is � = 2 
in the estimation procedures R-INLA and TMB that will be reviewed in Section 4. 
� = 2 corresponds to � = 1 , which leads to a simplified expression of the Matern 
correlation function, and the following simplified relationships between the basic 
parameters of the Matern covariance function:

(8)
(
�2 − Δ

)�∕2
�U(s) = �(s).

� = � − 1

�2
u
=

Γ(�)

Γ(�)(4�)d∕2�2��2
.

(9)r =

√
8

�
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Lindgren and Rue [8] show that the basic parameters of the Matern covariance func-
tion follow from the solution of Eq. 8 in a case defined on a regularly spaced lattice. 
However, geostatistical data are in general not based on such a regular lattice. Lindgren  
and Rue [8] proved that the solution of the SPDE gives the relevant parameter estimates  
of spatial dependence also in cases where the geography is represented by an irregular  
grid. Hence, the specification of an irregular grid, also called a mesh, is an important  
step in the formulation of a modelling framework.

Mesh

A mesh can be considered as a triangulation of the spatial domain. As described in 
[8], the spatial domain is subdivided into a set of non-intersecting triangles. Any 
two triangles meet in at most a common edge or corner. The three corners of a trian-
gle are called vertices. A high number of vertices in a mesh increases the accuracy 
of the GMRF representation, but also the computational cost. The mesh to be used 
should give a sufficient GF approximation at a reasonable computational cost.

In the mesh that we will be using, all our spatial data points (municipality cent-
ers) are on one of the vertices. To avoid boundary problems in cases where a triangle 
is located at the edge of the geography under study, the triangularization in addition 
includes an outer area to the geography under study. The number of triangles is deter-
mined by the specification of the maximum edge length. However, it is often reasona-
ble to let this upper limit be larger for the outer area than for the inner area of the mesh, 
since it is in general essential to work with a more accurate, finer grid, of the inner area. 
Our results are based on the mesh that is presented in Fig. 10, where the circles repre-
sents the center of each municipality.

Appendix B. Laplace Approximation

Both INLA and TMB make use of the Laplace approximation. As explained in 
[14], Laplace approximation is used to approximate integrals of the form

where u = [u1, ..., un]
T and g(⋅) a scalar function of u and M is a large number. To 

find an approximated solution to Eq. 11, a second order Taylor expansion evaluated 
in u0 is performed:

(10)�2
u
=

1

4��2�2
.

(11)∫ expM⋅g(u) du,

(12)g(u) ≈ g(u0) +▽g(u0)(u − u0) +
1

2
(u − u0)

T +▽2g(u0)(u − u0)
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▽g(u0) and ▽2g(u0) represent the gradient and the Hessian matrix for g(u) . If g(u) 
has a unique global maximum in û , ▽g(û) = 0 and ▽2g(û) is negative definite. 
Hence, the Taylor expansion of g(u) around û becomes:

Inserted in Eq. 11 it follows that

The integrand in Eq. 14 is the kernel density of a multivariate Normal distribu-
tion with mean û and covariance matrix [−M ⋅ ▽2g(û)]−1 . Hence, the approxi-
mated solution of the integral is given by:

where | −▽2g(û)| represents the determinant of the matrix −▽2g(û).

(13)g(u) ≈ g(û) +
1

2
(u − û)T +▽2g(û)(u − û).

(14)∫ expM⋅g(u) du ≈ expM⋅g(û) ∫ exp
1

2
(u−û)T+M⋅▽2g(û)(u−û)

du

(15)∫ expM⋅g(u) du ≈
(
2𝜋

M

) n

2 | −▽2g(û)|−
1

2 expM⋅g(û)

Fig. 10  The mesh; the triangulation of the spatial domain
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Appendix C: TMB Code

A TMB program consists of an R file and a C++ file. However, recently a pure R 
interface to TMB has become available via the R package https:// github. com/ kaskr/ 
RTMB. Because we expect that most users would prefer this to the C++ interface, 
we present RTMB code for a simplified version of of model. We use simulated data 
based on parameter values from Table 2. The R code is available in the subfolder 
Thorsen_etal of https:// github. com/ skaug/ Suppl ement ary.

The R code has three sections: 1) Use INLA to set up the spatial mesh and calcu-
late the sparse matrices needed for building the precision matrix, 2) Simulate data, 
and 3) Specify and fit the model in RTMB. For the benefit of the user the R code in 
Section 3 refers to equations in the paper.
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