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Abstract
Numerical simulations of reactive transport in fractured porous media require the solution 
of coupled physical and chemical processes that depend on the fractures. Such coupled 
processes are described by a system of nonlinear partial differential-algebraic equations, 
while strong heterogeneities characterise fractures. This paper presents an approach to sim-
ulate single-phase flow and non-isothermal reactive transport with mineral dissolution and 
precipitation in fractured porous media. Our numerical solution strategy is based on two 
ingredients. First, the model equations consist of coupled partial differential equations for 
the fluid flow, heat transfer and solute transport and nonlinear algebraic equations repre-
senting the chemical reactions. Second, fractures are explicitly represented and treated as 
lower-dimensional objects. The partial differential equations are discretised using finite-
volume methods, and at each time step, we solve a nonlinear system of equations using 
Newton’s method. With numerical simulations, we illustrate our model’s ability to accu-
rately describe the two-way interaction between coupled multi-physical processes and two- 
and three-dimensional porous media with intersecting fractures.

Keywords Reactive transport modelling · Fractured media · Mixed-dimensional 
modelling · Fully coupled method

1 Introduction

Understanding the impact geochemical reactions, with some combination of fluid flow, 
solute transport and heat transfer, have on the subsurface is important since it has a wide 
range of applications. These include carbon sequestration (Addassi et al. 2021), geothermal 
energy extraction (Akaku et al. 1991; Todaka et al. 2004; Chen et al. 2018), nuclear waste 
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management (Socié et al. 2021), microbiofilm processes (Rittmann and VanBriesen 1996) 
and ion exchange and chromatography (Appelo 1996).

The subsurface has, in many cases, a complex fracture network. Fractures often serve 
as the preferred flow paths. They thus transport more rapidly chemical species that trigger 
chemical reactions. The chemical reactions alter the porous medium locally, e.g. through 
dissolution/precipitation of reactive minerals, impacting fracture conductivity (Salimza-
deh and Nick 2019), or through accelerated degeneration of the geological structure (Socié 
et  al. 2021). Such modifications affect the porous medium globally. Hence, fractures 
strongly influence the geochemical alteration of the porous medium.

This tight interplay between reactive transport processes and fractures makes the devel-
opment of mathematical models and simulation tools difficult. Additionally, the coupling 
of reactive transport with fluid flow and heat transfer is characterised by a strong chemical 
and physical coupling. The flow and transport equations are described by coupled partial 
differential equations (Steefel et al. 2005; Cheng and Yeh 1998; Xu and Pruess 2001). If 
local equilibrium is assumed, the chemical reactions are represented by nonlinear algebraic 
equations (Yeh and Tripathi 1989; Kirkner and Reeves 1988).

Numerical strategies for solving the coupled chemical and physical equations are 
divided into the sequential approach and the global implicit approach (Yeh and Tripathi 
1989; Steefel and MacQuarrie 1996; Zhang et  al. 2016). In the sequential approach, the 
equations are split and solved sequentially, either once (non-iterative) or via iteration. 
These options are attractive since they are easy to implement and allow the usage of the 
most suited method for each equation. However, they require small time steps, even for 
moderately complex problems (Saaltink et  al. 2001; de Dieuleveult et  al. 2009), and the 
iterative option may require several iterations to converge (Saaltink et  al. 2001). In the 
global approach, the equations are not separated but solved fully coupled. While this 
method is more challenging to implement, the advantages are that it often requires fewer 
iterations and permits larger time steps (Saaltink et al. 2001; Steefel et al. 2015). The per-
formance of the coupling schemes is compared in, e.g. Steefel and MacQuarrie (1996), 
Saaltink et al. (2001) and Carrayrou et al. (2010).

Incorporating fractures in solution strategies implies the need for a representation that 
captures the transport and reaction effects within the fractures. One option is to use the 
multiple interacting continua model of Pruess and Narasimhan (1985). The idea  of this 
model is to appropriately subgrid  the matrix near the matrix–fracture interface to capture, 
e.g. chemical concentrations that propagate more rapidly through the fractures. This model 
is implemented in the simulator TOUGHREACT (Xu and Pruess 2001), which has been 
applied to simulate the geochemical interaction with fractured media in various applica-
tions (Xu et al. 2006; Dobson et al. 2003).

An alternative option is to explicitly represent the fractures in conjunction with the 
matrix (MacQuarrie and Mayer 2005; Berre et al. 2019). This option is commonly referred 
to as a discrete fracture-matrix model. In such models, the matrix and fractures are assigned 
individual equations. Further, the fractures are considered as objects one dimension lower 
than the matrix (see, e.g. Steefel and Lichtner 1998a; Fumagalli and Scotti 2021; Mac-
Quarrie and Mayer 2005), a representation often called mixed-dimensional representation 
(cf. Fumagalli and Scotti 2021). In the lower-dimensional modelling of fractures, the frac-
ture aperture is treated as a model parameter and not a geometric constraint (Berre et al. 
2019; Fumagalli and Scotti 2021). This is beneficial since the aperture may change during 
the simulations without requiring regridding.

Examples using this approach include Steefel and Lichtner (1998a), who presented a 
multicomponent reactive transport formulation with mineral dissolution and precipitation 
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in fractured media. In their model, the matrix-fracture coupling was through a continuity 
concentration condition and a zero-gradient concentration condition midway between the 
fractures. In a companion article (Steefel and Lichtner 1998b), they used this formulation 
to simulate the infiltration of hyperalkaline groundwater into fractures.

Another example is Fumagalli and Scotti (2021), who proposed a mathematical model 
and sequential non-iterative scheme for non-isothermal reactive transport for the geochem-
ical model of Agosti et al. (2016). Here, the matrix–fracture interface was modelled using 
the dimension-reducing interface modelling of Martin et al. (2005).

This work presents a mathematical model and numerical approach to simulate single-
phase flow and non-isothermal multicomponent reactive transport with mineral disso-
lution and precipitation in fractured porous media. The basis of our model is a discrete 
fracture-matrix mixed-dimensional framework, using the methodology of Martin et  al. 
(2005) to define the dimensionally reduced governing equations for the fractures and the 
fracture–matrix interactions. The fluid flow, heat transfer and solute transport are mod-
elled by conservation partial differential equations (PDEs) and discretised by finite-volume 
methods. The chemical reactions are represented by nonlinear algebraic equations, while 
the mineral dissolution and precipitation are formulated as a complementarity problem. To 
advance in time, we solve the governing equations fully coupled.

The article is organised as follows: section 2 introduces mixed-dimensional geometry 
and describes the governing model equations and the chemical system. We describe our 
numerical approach in Sect. 3 and present simulation results in Sect. 4. The numerical tests 
will show the convergence of our model and its ability to handle the interplay between 
challenging fracture networks and chemical and physical processes. Finally, we give some 
concluding remarks in Sect. 5.

2  Mathematical Model

This section describes the mathematical model for the reactive transport in fractured 
porous media. We begin, for simplicity, by presenting the governing model equations in the 
context of the porous matrix in Sects.  2.1–2.3. After introducing the mixed-dimensional 
geometry in Sect.  2.4, we expand the model PDEs in the mixed-dimensional setting in 
Sect. 2.5. Finally, changes in factors that couple geochemical transport to fluid flow and 
energy transport are addressed in Sect. 2.6.

2.1  Geochemical Equations

We consider a geochemical system that consists of aqueous, sorbed and precipitated chem-
ical species and assume at any time chemical equilibrium. We divided the species into M1 
components and M2 secondary species (Lichtner 1996; Kirkner and Reeves 1988; Yeh and 
Tripathi 1989), where the components form a linearly independent basis for the geochem-
ical system. The chemical reactions between the components and secondary species are 
written in the canonical form (Lichtner 1996):

(1)Xn ⇌

M1∑
k=1

�nkXk, n = 1,… ,M2.
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The single species on the left-hand side is the secondary species, and the species on the 
right-hand side are the components. Finally, �nk represents the stoichiometric coefficient for 
the kth component in the nth reaction.

Following the geochemical modelling of Yeh and Tripathi (1989), Kirkner and Reeves 
(1988) and de Dieuleveult et al. (2009), we distinguish between the aqueous, sorbed and pre-
cipitated species by writing the above reactions for the various species. The reactions for the 
aqueous and sorbed species read:

Here, c = (ck) ∈ ℝ
Nc and s = (sk) ∈ ℝ

Ns are vectors representing the chemical species 
of the aqueous and sorbed components. Further, � = (�n) ∈ ℝ

N� and � = (�n) ∈ ℝ
N� are 

vectors representing the chemical species of the aqueous and sorbed secondary species. 
Finally, the matrices S ∈ ℝ

N�×Nc , A ∈ ℝ
N�×Nc and B ∈ ℝ

N�×Ns contain the stoichiometric 
coefficients, with Mij being element (i, j) in the matrix M.

The equilibrium reactions are described by the mass action laws, which provide a link 
between the components and secondary species. Setting all activity coefficients to unity so that 
the activity and concentrations are equal and using the same notation for the chemical species 
and its concentration, the mass action laws for the aqueous and adsorbed reactions read: 

 where K� = (K�
n
) ∈ ℝ

N� and K� = (K�
n
) ∈ ℝ

N� are the vectors of equilibrium constants.
The precipitate species dissolves or precipitates when they react with the aqueous 

components:

where � = (�n) ∈ ℝ
N� is a vector of precipitate species and E = (Enk) ∈ ℝ

N�×Np are the stoi-
chiometric coefficients.

If the precipitate species is present, we write the mass action law for the corresponding 
reaction as:

where K� = (K�
n
) ∈ ℝ

N� are equilibrium constants, and the activity of the precipitate spe-
cies has been taken to be 1. If, on the other hand, the precipitate species is completely dis-
solved, the right-hand side of (3) is less than the left-hand side:

�n ⇌

Nc∑
k=1

Snkck, n = 1, … , N� ,

�n ⇌

Nc∑
k=1

Ankck +

Ns∑
k=1

Bnksk, n = 1, … , N� .

(2a)�n = K�
n

Nc∏
k=1

c
Snk
k
,

(2b)�n = K�
n

Nc∏
k=1

c
Ank

k

Ns∏
k=1

s
Bnk

k
,

�n ⇌

Np∑
k=1

Enkck, n = 1, … , N� ,

(3)1 = K�
n

Np∏
k=1

c
Enk

k
,
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Table 1 illustrates a schematic organisation of the algebraic relationships between the com-
ponents, secondary species and stoichiometric coefficients in terms of the vectors c, s, � , 
� and � , and the matrices S, A, B and E. With these variables, we can write a mass balance 
law for each component (Yeh and Tripathi 1989; Kirkner and Reeves 1988)

where U and W are the total concentrations for the mobile and immobile components.

2.2  Flow Equations

We consider a single-phase flow in a porous medium, where the fluid flow is modelled 
by Darcy’s law, together with the mass conservation for the fluid:

In the above equations, v is the Darcy flux, K is the permeability, p is the pressure, � is the 
porosity and �f  is the fluid density, with the subscript f referring to the fluid. Finally, � is 
the fluid’s dynamic viscosity and is, for simplicity, assumed to be constant.

We can insert Darcy’s law into the mass conservation equation, yielding

which we use to obtain the pressure.

2.3  Transport Equations

The transport of the solute species is assumed to happen due to advection but not dis-
persion. Denoting a concentration of a chemical species by u, we thus model the tempo-
ral evolution of the individual species by the transport equation

(4)1 > K𝛾
n

Np∏
k=1

c
Enk

k
.

(5)U = c + ST� + AT� + ET� ,

(6)W = s + BT�,

(7)v = −
K

�
∇p,

(8)�t(��f ) + ∇ ⋅ (v�f ) = 0.

(9)�t(��f ) − ∇ ⋅ (
�fK

�
∇p) = 0,

Table 1  Systematisation of the algebraic relationships between the components and secondary species

c s

� S 0
� A B
� E 0
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where Ru is a reaction rate term. We can compute a linear combination of the transport 
equations, under the assumption that the flow is independent of time and the chemical spe-
cies (cf. de Dieuleveult and Erhel 2010). Furthermore, since the chemical reactions are at 
equilibrium, the reaction rate terms are eliminated when computing the combination. The 
outcome is the following transport equations, applied to the total concentrations

where C = c + ST� is the aqueous part of U. For the derivation, we refer to Yeh and Trip-
athi (1989); Kirkner and Reeves (1988).

The  mechanisms for energy transport are convection and thermal conduction,  so we 
disregard external heat sources accounting for, e.g. heat production from chemical reac-
tions. Moreover, local thermal equilibrium is assumed so that the temperature of the fluid 
and host rock are equal. With these assumptions, the temperature is modelled by the energy 
conservation equation:

where (�b)m = �(�b)f + (1 − �)(�b)r and �m = ��f + (1 − �)�r are the heat capacity per 
unit volume and thermal conductivity, respectively. The subscript r refers to the rock. The 
specific heat capacity and thermal conductivity are denoted by b and � , with the subscripts 
indicating if it is a fluid or rock property. Finally, �r is the density of the rock. We assume 
these parameters are given and constant.

2.4  Mixed‑Dimensional Geometry

We described the governing model equations in the porous matrix in the preceding subsec-
tions. In this and the subsequent subsection, we expand the model for fractures and their 
intersections. The collection of the model equations for the matrix, fractures and intersec-
tions results in a discrete fracture-matrix mixed-dimensional non-isothermal reactive trans-
port model.

We first introduce some notation for the mixed-dimensional representation of a D
-dimensional ( D = 2, 3 ) fractured porous medium Ω . Following Martin et al. (2005) and 
Boon et al. (2018), we divide Ω into subdomains for the rock matrix, the fractures and frac-
ture intersections. The subdomain for the matrix is a subset of ℝD , the subdomains for the 
fractures are a subset of ℝD−1 and the subdomains representing fracture intersection are a 
subset of ℝD−2 . Additionally, in the case Ω ⊂ ℝ

3 , three fractures may mutually intersect at 
a single zero-dimensional point (intersection of intersections). Each subdomain is denoted 
Ωi , where the subscript i varies over all subdomains and is used to identify variables 
belonging to the ith subdomain. See Fig. 1 (left) for a 2D illustration of this decomposition.

Two subdomains whose dimensions differ by one communicate through an interface Γj , 
where subscript j varies over the interfaces and is used to identify quantities belonging to 
the jth interface. Using the notation of Keilegavlen et  al. (2021), we denote the higher-
dimensional subdomain by Ωh and the lower-dimensional subdomain by Ωl . The part of 

(10)�t(�u) + ∇ ⋅ (vu) = Ru,

(11)�t(�U) + ∇ ⋅ (vC) = 0,

(12)�t(�W) = 0,

(13)�t((�b)mT) + ∇ ⋅ (v(�b)f T − �m∇T) = 0,
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Ωh connected to the interface is an internal boundary �jΩh ; see Fig. 1 (right). Hence, Ωl , 
�jΩh and Γj coincide geometrically. We also define Ŝi and Ši as the sets of interfaces from 
Ωi towards its higher- and lower-dimensional neighbours, respectively. For example, for a 
subdomain Ωi representing a fracture, the set Ŝi will represent the interfaces of the fracture 
to the neighbouring matrix, while the set Ši represents the interfaces of the fracture to pos-
sible neighbouring fracture intersection subdomains. For a subdomain Ωi representing the 
matrix, the set Ŝi will be empty, while the set Ši will indicate interfaces of the matrix to 
neighbouring fractures.

To complete the description of the connection between neighbouring subdomains, we 
introduce projection operators for transferring variables between Ωh , Ωl and Γj . The opera-
tors are depicted in Fig. 2. First, we have the trace operator, tr, which maps quantities in Ωh 
onto its internal boundary. Π is a projector that maps from a subdomain onto an interface. 
The superscript indicates whether the subdomain is of a higher or lower dimension, and the 
subscript points to the interface’s index. Lastly, the operator Ξ maps from the interface onto 
a neighbouring subdomain, with a similar interpretation of the super- and subscript.

Fig. 1  Left: Illustration of a 2D porous matrix ( Ω1 ) with five fractures ( Ω2−6 ), represented as red lines 
and two fracture intersection points ( Ω7−8 ), depicted as black dots. Right: Visualisation of the connection 

between a higher-dimensional subdomain, Ωh , and a lower-dimensional subdomain, Ωl , via an interface, Γj . 
The part of Ωh connected to the interface is an internal boundary �jΩh . The internal boundary, the interface 
and the lower-dimensional subdomain coincide geometrically but are shown apart for illustration

Fig. 2  Illustration of the projection operators between two subdomains and a single interface. tr is a trace 

operator that maps quantities from inside Ωh onto its boundary, �jΩh . The Πl
j
 and Πh

j
 operators map from 

a subdomain onto the interface. Lastly, Ξh
j
 and Ξl

j
 map from the interface to the higher- and lower-dimen-

sional subdomains, respectively
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2.5  Governing Equations in Fractured Media

Utilising the notation from the previous subsection, we now present the governing PDEs in 
the fractures and their intersections; the geochemical equations (3)–(5) are as in the matrix.

For a subdomain Ωi of dimension d < D (i.e. the fracture and intersections), the fluid 
flow equations read

In these equations, the nabla operator and the permeability Ki operate in the tangential 
plane of the subdomain. Further, the scaling by the specific volume Vi accounts for the 
dimension reduction (Stefansson et  al. 2021). It is given by Vi = aD−d

i
 , where ai is the 

hydraulic aperture of the fracture (Zimmerman and Bodvarsson 1996). We also point out 
that there is no tangential flow direction for zero-dimensional points, resulting in a vanish-
ing Darcy flux (Boon et al. 2018).

The source term �i accounts for the coupling with the higher-dimensional neighbour sub-
domain. With vj denoting an  interface fluid flux, the source term on a single interface is 
Ξl
j
(Πh

j
Vh)�f ,jvj . Here, the scaling by the specific volume ensures that the dimension of the 

interface flux matches with the fluxes in the higher-dimensional neighbour (Stefansson et al. 
2021). Since Ωi has several interfaces that couple it with its higher-dimensional neighbour 
(recall Fig. 1 (right)), the source term is a sum of fluxes over the interfaces, that is

The higher-dimensional neighbour communicates with Ωi , via the interface fluid flux, 
through a Neumann boundary condition:

The interface flux is modelled by the Darcy-type equation (Martin et al. 2005)

Here, Kj is an effective permeability in the normal direction of the lower dimensional sub-
domain, accounting for the conductance of fractures (Berre et al. 2019), and ph and pl are 
the pressure in Ωh and Ωl , respectively.

The equations describing the solute transport and heat transfer in  the fracture and inter-
section subdomains, and at the interfaces have the same structure as the flow equations. For 
the solute transport equations, a sum of advective interface fluxes, �j , enters the  equations  
as a source term so that the system of equations will be:

(14)vi = −Vi

Ki

�
∇pi,

(15)�t(Vi�i�f ,i) + ∇ ⋅ (vi�f ,i) = �i.

𝜓i = Σj∈Ŝi
Ξl
j
(Πh

j
Vh)𝜌f ,jvj.

(16)nh ⋅ vh = Ξh
j
vj on 𝜕jΩh, j ∈ Ši.

(17)vj = −
2Kj

�Πl
j
al

(
Πl

j
pl − Πh

j
tr(ph)

)
.

(18)𝜕t(Vi𝜙iUi) + ∇ ⋅ (viCi) = Σj∈Ŝi
Ξl
j
(Πh

j
Vh)𝜂j,

(19)�t(Vi�iWi) = 0.



651Simulation of Reactive Transport in Fractured Porous Media  

1 3

In Ωh , the Neumann boundary condition for the coupling takes the form:

The advective interface flux follows the interface fluid flux direction as follows:

Finally, the energy conservation equation in the mixed-dimensional setting reads:

with the internal boundary conditions

for j ∈ Ši.
The interface convective and conductive fluxes, wj and qj , are calculated as

2.6  Coupling of Fluid Flow, Reactive Transport and Heat Transfer

The last set of equations we need is constitutive laws for the factors that couple the fluid flow, 
reactive transport and heat transfer.

Our modelling framework allows using different constitutive laws to model a varying fluid 
density, such as linear dependence on temperature, pressure and ion concentration (Bringedal 
et al. 2014) or a combination of the temperature-dependent density of pure water and concen-
tration, molecular weight and density of dissolved chemical species (Cheng and Yeh 1998).

In the present work, we model the fluid density of a slightly compressible fluid according 
to the following:

Here, �f ,0 is a reference fluid density, and the coefficients ĉf  and 𝛽f  are the fluid compress-
ibility and fluid thermal expansion, respectively. Finally, p0 and T0 are initial pressure and 
temperature.

The porosity is calculated from

(20)nh ⋅ (vhCh)|𝜕jΩh
= Ξh

j
𝜂j, j ∈ Ši.

(21)𝜂j =

{
vjΠ

h
j
tr(Ch), if vj ≥ 0

vjΠ
l
j
Cl, if vj < 0.

(22)
𝜕t(Vi(𝜌b)m,iTi) + ∇ ⋅ (�i(𝜌b)f ,iTi − Vi𝜆m,i∇Ti) =

Σj∈Ŝi
Ξl
j
(Πh

j
Vh)(wj + qj),

(23)�h ⋅ (�h(�b)f ,hTh)|�jΩh
= Ξh

j
wj,

(24)nh ⋅ (−�m,h∇Th)|�jΩh
= Ξh

j
qj,

(25)wj =

{
vjΠ

h
j
tr((𝜌b)f ,hTh), if vj ≥ 0

vjΠ
l
j
(𝜌b)f ,lTl, if vj < 0,

(26)qj = −
2Πl

j
�f ,l

Πl
j
al

(Πl
j
Tl − Πh

j
tr(Th)).

(20)𝜌f = 𝜌f ,0 exp
{
ĉf (p − p0) − 𝛽f (T − T0)

}
.
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where �n is the nth mineral volume fraction,

and Vn is the volume of the nth mineral. Further, �nr is the mineral volume fraction of a 
non-reactive mineral and is only present in the matrix.

For alteration of the matrix permeability, we use a Kozeny–Carman equation,

where K0 and �0 are the initial permeability and porosity. Other choices are also possi-
ble, see, e.g. MacQuarrie and Mayer (2005). The fracture permeability is calculated by the 
cubic law

We estimate fracture aperture as

where a0 is the fracture aperture when no reactive minerals are present, and An is the nth 
mineral surface area. In this work, we set the surface areas to be constants for simplicity. 
However, constitutive laws where the surface areas depend on, e.g. porosity (Steefel and 
Lichtner 1998a) can also be used.

At fracture intersections, we calculate the aperture as the average of its higher-
dimensional neighbours (Stefansson et al. 2021):

In our model, the normal permeability at the fracture–matrix interface can be set independ-
ent from the tangential permeability. This flexibility can be used, for instance, to let the 
normal permeability determine which minerals are precipitated on the fracture walls. In the 
present simulation, we take the simpler option of setting the normal permeability equal to 
the permeability of its lower-dimensional neighbour:

Finally, the equilibrium constants depend on temperature. We model this temperature 
dependency according to van’t Hoff’s relationship

(21)� = 1 −

N�∑
n=1

�n − �nr,

�n =
Vn

Vmedium

,

(22)K = K0

(1 − �0

1 − �

)2( �

�0

)3
,

(23)K =
a2

12
.

(24)a = a0 −

N�∑
n=1

Vn

An

,

(25)aintersect =
1

|Ŝl|
Σj∈Ŝl

Ξl
j
Πh

j
ah.

Kj = Πl
j
Kl.

(26)K = K0 exp

{
ΔH0

R

(
1

T0
−

1

T

)}
,



653Simulation of Reactive Transport in Fractured Porous Media  

1 3

where K0 is a reference equilibrium constant at the initial temperature T = T0 and R is the 
ideal gas constant. Finally, ΔH0 is the standard enthalpy of the particular chemical reaction 
and is assumed to be independent of temperature. However, as remarked by Cheng and Yeh 
(1998), we pointed out that this equation is only applicable if the standard enthalpies are 
available, and some data-based equations can be used to model K if this information is not 
available. We use the standard enthalpy values in Chang and Goldsby (2014).

3  Numerical Approach

We now present our fully coupled solution strategy to solve the system that consists of the 
PDEs (6)–(19) and the nonlinear geochemical equations (3)–(5), together with the constitu-
tive laws (21)–(26).

3.1  Spatial Discretisation

The PDEs are solved using the method of lines, i.e. we first discretise in space. For spa-
tial discretisation, we use cell-centred finite-volume methods. The advective flux terms are 
discretised by a first-order upwind scheme so that, e.g. the advective part of Eq. (11) is 
calculated as

where sign(vkl) is the sign of the flux moving from cell k to l at the previous iterate. We 
have a similar expression for the convective term in Eq. (13), where also the fluid density is 
computed from the previous iterate.

For simplicity, the elliptic parts (the Darcy flux and conduction term) are discretised by 
the two-point flux approximation method (Aziz and Settari 1979). Finally, the fluid density 
in Eq. (9) is mapped from the cell centres to the faces by an upstream weighting.

For the lower-dimensional PDEs, we discretise the flux terms using lower-dimensional 
versions of the schemes described above (Keilegavlen et al. 2021; Stefansson et al. 2021). 
Moreover, the interface fluxes are calculated using the projected subdomain variables. In 
particular, the advective interface fluxes (21) and (26) are discretised by an upwind scheme 
(Keilegavlen et al. 2021).

3.2  Numerical Modelling of Geochemistry

To evaluate the conservation equations (5) and (6), we use the logarithmic formula-
tion described in de  Dieuleveult et  al. (2009). We introduce the variables lc = ln(c) and 
ls = ln(s) . These variables guarantee that the component concentrations are always posi-
tive. Further, the mass action laws (2) and (2) can be rewritten as

(vC)kl =

{
(vC)l, if sign(vkl) > 0

(vC)k, if sign(vkl) ≤ 0
,
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where Slc, Alc and Bls are matrix–vector multiplications. One issue with the logarithm 
formulation is when concentrations equal zero. We resolve this problem by approximation 
zero by exp{−30} . Lastly, the solubility condition (3) and (4) can be formulated as a com-
plementarity problem and solved, in vectorised from, as (Kräutle 2011)

The minimum function is a semismooth function, and the equation must be solved by a 
semismooth Newton method. We solve it with an active set strategy by defining the two 
sets (Kanzow 2004)

so the minimum equation  can be solved as

where FAn
 and FIn

 are diagonal matrices with entries

3.3  Fully Implicit Scheme

To advance forward in time, we couple the semi-discretised PDEs with the geochemical 
equations (3)–(5) and the constitutive laws (21)–(26) at every computational cell. The 
resulting system of differential-algebraic equations is solved fully coupled, using the back-
ward Euler method for temporal discretisation. Hence, at every time step, we solve a sys-
tem of nonlinear equations in the form

Here, G represents the residual form of the equations and Yn is a vector representing 
p, U, W, T , �, a, K, K , at time step n. The nonlinear system is solved using a damped 
Newton’s method (Dennis Jr and Schnabel 1996). The kth Newton iteration gives rise to a 
linear system

where J is the Jacobian of G(Yn
k
) and is calculated by forward automatic differentiation. 

The linear system is solved using the software superLU (Li 2005).
This strategy is relatively simple and straightforward but can be computationally 

demanding for problems where the number of mesh points is high and numerous chemical 

� = K� exp(Slc),

� = K� exp(Alc + Bls),

min(� , 1 − K� exp(Elc)) = 0.

An ∶ {𝛾 ∶ 𝛾n ≥ 1 − K𝛾
n
Π

Np

k=1
c
Enk

k
},

In ∶ {𝛾 ∶ 1 − K𝛾
n
Π

Np

k=1
c
Enk

k
> 𝛾n},

FAn
(�)(1 − K� exp(Elc)) + FIn

(�)� = 0,

FAn
(�) =

{
1, n ∈ An

0, n ∈ In
,

FIn
(�) =

{
0, n ∈ An

1, n ∈ In
.

G(Yn) = 0.

(27)J ⋅ (Yn+1
k+1

− Yn
k
) = −G(Yn

k
),
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reactions (and consequently solute transport equations) are present. One possible approach 
to resolve that issue could be to reduce the number of chemical transport equations (8) by 
applying the technique developed in Kräutle and Knabner (2005, 2007) and applied, e.g. in 
Hoffmann et al. (2010). Such an approach can also be applied to model solute transport and 
chemical reaction equations in the mixed-dimensional framework.

Finally, the time step is adjusted following Saaltink et  al. (2001): If the number of 
Newton iterations needed to converge is lower than a prescribed number, the time step is 
increased by a specified factor. Conversely, if the number of Newton steps is higher than a 
prescribed number or does not converge, the time step is decreased by a fixed factor. These 
are complemented with an upper and lower bound on the time step, i.e. dtmin ≤ dt ≤ dtmax.

We have implemented the presented model using the open-source simulator PorePy 
(Keilegavlen et al. 2021) to generate computational grids and for spatial discretisation.

4  Numerical Results

In this section, we test our numerical solution strategy on a synthetic test problem. The 
chemical reactions we consider were introduced by Bringedal et  al. (2014) and are dis-
played in Table 2. This is a simple set of chemical reactions where the two minerals calcite 
( CaCO3 ) and anhydrite ( CaSO4 ) might dissolve or precipitate and affect the permeability. 
The first three reactions are present since they affect the concentrations of three species in 
the last two reactions.

Using the Gaussian elimination procedure described in Steefel and MacQuarrie (1996), 
we find that the total concentrations are

where H2O is treated as neither a component nor a secondary species and is assigned unit 
activity (i.e. it is incorporated in the equilibrium constant of the third reaction). We note 
that

UCa2+ = Ca2+ + CaCO3 + CaSO4,

UCO2−
3
= CO2−

3
+ HCO−

3
+ CaCO3,

USO2−
4
= SO2−

4
+ HSO−

4
+ CaSO4,

UH+ = H+ + HCO−

3
+ HSO−

4
− OH−,

Table 2  Chemical reactions and 
reference equilibrium constants

Reactions log(K0)

HCO
−

3
⇌ H+ + CO

2−

3
−10.339

HSO
−

4
⇌ H

+ + SO
2−

4
−1.979

  OH−
⇌ H2O − H

+ 13.997
CaCO3 ⇌ Ca

2+ + CO
2−

3
−8.406

CaSO4 ⇌ Ca
2+ + SO

2−

4
−4.362
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where

are the stoichiometric coefficient matrices for the chemical reactions.
In the simulation examples, we consider a fractured porous medium filled with 20 

mol∕m3 of calcite and no anhydrite. We then inject a fluid, which causes dissolution of 
the calcite. The dissolved mineral releases Ca2+ ions, which will react with present SO2−

4
 

ions and trigger precipitation of anhydrite. An interesting point about our model is that, 
due to the chemical equilibrium assumption, the precipitation reaction happens simultane-
ously with the dissolution reaction. Hence, the dissolution front and the precipitation front 
coincide.

We estimate the mineral volumes using the mineral densities from Schön (2015), and 
the surface areas are set to two-thirds power of the computational cell volumes. The refer-
ence equilibrium constants are from Plummer et al. (1988) and are presented in Table 2.

4.1  Two‑Dimensional Simulation—Convergence Study

We consider a convergence study in an isothermal and a non-isothermal context in the first 
two simulation examples.

The porous medium is initially at a state with a pressure p0 = 1000 Pa and a matrix 
permeability K0 = 10−11 m 2 . We alter the initial state by injecting a fluid, based on a pres-
sure of 7000 Pa, from the left-hand side of the domain. For the aqueous species, the initial 
and inflow values for SO2−

4
 and OH− are 10 and 1500 mol∕m3 , respectively. The remaining 

initial and inflow values are so that the mass action laws and solubility conditions are ful-
filled. The top and bottom walls are impermeable, while on the right-hand side, we impose 
the initial concentration and pressure values as boundary values.

The geometry is a 2 × 1 m two-dimensional domain, consisting of four fractures and one 
intersection, see Fig. 3 and is discretised with triangles. Starting with a coarse grid consist-
ing of 187 cells for the matrix, 15 fracture cells and one intersection cell, we refine the grid 
five times. The solutions on the finest grid with 95972 2D cells, 318 1D cells and one 0D 
cell are used as reference solutions.

U = c + ST� + ET� ,

S =

⎡
⎢⎢⎣

0 1 0 1

0 0 1 1

0 0 0 −1

⎤
⎥⎥⎦
, E =

�
1 1 0 0

1 0 1 0

�
,

Fig. 3  Fracture network for 
the simulations presented in 
Sects. 4.1.1 and 4.1.2
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4.1.1  Isothermal Case

In this subsection, we verify our model in the isothermal context, i.e. we have T = T0 at 
all times. Consequently, we do not update the equilibrium constants, and the fluid density 
varies only due to pressure (recall Eq. 27). Additional simulation parameters are listed in 
Table 3.

Figure 4 shows the reference solution of the pressure and concentrations of Ca2+ , calcite 
and anhydrite at the time 1300 s. In the simulation, the fractures are the preferential flow 
paths, and thus we see a more rapid transport of the aqueous concentration through the left-
most fractures. We see analogous fronts for the dissolution and the precipitation. Further, 
Fig. 5 shows the same reference solutions at the time 7000 s. The impact of the fractures as 
the preferential flow paths is again visible. The aqueous concentration propagates rapidly 

Table 3  Simulation parameters 
for the isothermal test case

Name Symbol (if used in 
the text)

Value

Compressibility ĉf 10−9 1/Pa
Fluid viscosity � 10−3 Pa s
Reference fluid density �f ,0 103 kg/m3

Density calcite 2710 kg/m3

Density anhydrite 2970 kg/m3

Non-reactive mineral
volume fraction �nr 0.8
Open aperture a0 5 ⋅ 10−3 m

Fig. 4  The reference solutions of the pressure and the concentrations of Ca2+ , CaCO3 and CaSO4 at the time 
1300 s
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in the rightmost fractures and alters its matrix state locally. The mineral concentrations 
exhibit similar profiles.

Figures 6 and 7 display the matrix and fracture permeabilities compared to their initial 
values, and the occluding of the fracture (given as a0 − a ) at the times 1300 s and 7000 
s. The relationship between the precipitation and the permeability and fracture closure is 

Fig. 5  The reference solutions of the pressure and the concentrations of Ca2+ , CaCO3 and CaSO4 at the time 
7000 s

Fig. 6  Permeabilities of matrix and fractures relative to the initial state (top), and aperture closure (bottom) 
at the time 1300 s
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evident: As the anhydrite precipitates, it changes the porosity and aperture, altering the 
permeabilities and fracture occluding. However, the permeability results show that the 
chemical impact is minor.

Finally, Figs. 8 and 9 show the logarithm of the errors for pressure and the chemi-
cal species in the individual subdomains under the grid refinement at the time 7000 s. 
The error is calculated by projecting the coarse grid solution onto the reference grid 
and measuring the l2-norm of the difference between the reference solution and coarse 
solution. Lastly, the error is normalised by the number of cells in the reference subdo-
main (Stefansson et al. 2021).

In general, we observe first-order convergence. However, we also observe that the 
convergence is somewhat slow, and in the fractures, particularly the second one, there 
are minor kinks. We also note from Fig.  5 that all the calcite within the fractures is 
dissolved. This implies that the errors for this variable are always zeros, and while we 
cannot take the logarithm of the errors, it still is convergent.

Fig. 7  Permeabilities of matrix and fractures relative to the initial state (top), and aperture closure (bottom) 
at the time 7000 s

Fig. 8  Convergence of the variables in the matrix for the isothermal simulation case. The black line repre-
sents first-order convergence
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Modelling of reactive transport is difficult (Carrera et  al. 2022) since it requires 
the solution of coupled PDEs and nonlinear algebraic equations (de Dieuleveult et al. 
2009; Carrera et al. 2022). The obtained solution depends on several aspects, such as 
discretisation, the number of chemical species present (Addassi et al. 2021) and, in our 
simulation, the varying fracture aperture. These aspects strongly influence the result. 
Therefore, we consider the results in Figs. 8 and 9 to serve as a convergence verifica-
tion of the model.

4.1.2  Non‑isothermal Case

In this subsection, we carry out the convergence study in the non-isothermal context. 
The addition of the thermal effects increases the complexity of the simulation because it 
adds more couplings, particularly to the updates of the equilibrium constants. The vary-
ing equilibrium constants introduce an extra thermal front to the chemical front for the 
chemical concentrations.

The simulation parameters are the same as  in Table 3. Regarding the thermal effects, 
the initial temperature is 573.15 K, and the inflow temperature is 543.15 K. The top and 
bottom borders are insulating barriers, and we use the initial temperature at the right 
border. Further parameters for the energy conservation equation and other temperature-
related parameters are given in Table 4, and the standard enthalpy values are presented 
in Table 5.

Figures 10 and 11 depict the reference solution of temperature and concentrations of 
Ca2+ ion, the calcite and the anhydrite, after 1300 s and 5000 s, respectively. As in the iso-
thermal case, the fractures are the preferred flow paths. Hence, the temperature and the ion 
concentration are transported faster through the fractures. Moreover, the chemical and ther-
mal fronts are visible in the outcomes of the Ca2+ ion concentration: The blue middle part 
represents the chemical front, while the leftmost part illustrates the temperature front. The 

Fig. 9  Logarithm of the errors of the variables for the isothermal simulation case in each fracture. The 
black lines represent first-order convergence
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Table 4  Additional simulation 
parameters for the non-
isothermal convergence study

Name Symbol (if used in 
the text)

Value

Fluid thermal expansion 𝛽f 4 ⋅ 10−4 1/K
Fluid specific heat capacity bf 4200 J/K
Solid specific heat capacity br 790 J/K
Fluid thermal conduction �f 0.6 W/(m K)
Solid thermal conduction �r 3.0 W/(m K)

Table 5  Standard enthalpy 
values from Chang and Goldsby 
(2014)

Species Value (in kJ/mol)

HCO3 − 691.10
H

+  0.00
CO

+

3
− 676.30

HSO
−

4
− 885.75

SO4 − 907.50
OH

− 229.94
H2O − 285.80
CaCO3 − 1206.90
Ca

2+ − 542.96
CaSO4 − 1432.69

Fig. 10  Reference solutions for temperature and the concentrations of Ca2+ , calcite and anhydrite at the 
time 1300 s
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results for matrix and fracture permeabilities compared to their initial state and aperture 
clogging are not shown since they are indistinguishable from the isothermal case.

Figures 12 and 13 show the logarithm of the errors in the matrix and the fractures for 
the variables at the time 5000 s. We again observe first-order convergence, albeit slow. 
Nevertheless, based on the discussion in the previous subsection, we again consider this 
to be a convergence verification of our model.

We finally observe in Fig.  11 what appears to be a non-physical oscillatory-like 
behaviour for the anhydrite and remaining calcite in the region that is affected by the 
cooling, in particular within the intersection fractures and in the matrix around these 
fractures. We zoom in on this region in Fig.  14. These instabilities were not present 
in the isothermal simulation case. Therefore, we believe they come from nonlinearities 
induced by the chemical reactions, in which the equilibrium constants vary due to an 
altering temperature in a porous media with different dynamically updated properties 
due to chemical reactions.

Fig. 11  Reference solutions for temperature and the concentrations of Ca2+ , calcite and anhydrite at the 
time 5000 s

Fig. 12  Convergence of the variables in the matrix for the non-isothermal simulation case. The black line 
represents first-order convergence
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Fig. 13  Logarithm of the errors of the variables for the non-isothermal simulation case in each fracture. The 
black lines represent first-order convergence

Fig. 14  Zoom on instabilities in the minerals. To the left, we see an oscillatory behaviour for the precipitat-
ing mineral. To the right, we see some remains of the dissolved mineral

Fig. 15  Left: Unit cube. Right: Intersecting two-dimensional fractures
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4.2  Three‑Dimensional Simulation

In this section, we test our model on a three-dimensional problem. We consider the unit 
cube with two two-dimensional intersecting fractures; see Fig. 15.

The simulation parameters and initial and boundary values are as in Sect. 4.1, with 
the modification that the inlet and outlet for this problem are the planes x = 0 and x = 1 , 
respectively.

As in the 2D simulations, the reactive front is characterised by the calcite dissolving 
and the anhydrite precipitating. Figures 16 and 17 depict the calcite concentration and the 
anhydrite concentration, with the matrix concentrations represented as surface contours, 
after 700 and 1500 s, respectively. Similar to the 2D cases, the fractures are the preferred 
flow path, and the reactive front propagates more quickly in the fractures compared to 
the matrix (Fig. 16) and migrates into the matrix when the end of the fracture network is 
reached (Fig. 17). We also observe that within the fracture planes, the reactive front moves 
the fastest close to the fracture intersection.

This simulation illustrates that our modelling framework readily applies to 3D domains 
with intersecting fractures. We emphasise that this also applies to our implementation; 
beyond altering the computational grid, no code alterations were necessary to migrate from 
2D to 3D.

Fig. 16  Calcite concentration (left) and anhydrite concentration (right) after 700 s. The matrix concentra-
tions are illustrated as contour surfaces and cut in half to highlight where the fractures have affected them

Fig. 17  Calcite concentration (left) and anhydrite concentration (right), after 1500 s. The matrix concentra-
tions are illustrated as contour surfaces and cut in half to highlight where the fractures have affected them
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5  Conclusion

This work presented a fully coupled approach to simulate single phase-flow and non-
isothermal reactive transport in fractured porous media with mineral dissolution and pre-
cipitation. The model equations consist of coupled nonlinear partial differential-algebraic 
equations combined with several constitutive laws. Our solution strategy uses cell-centred 
finite-volume methods to discretise the PDEs and Newton’s method to solve a nonlinear 
system of equations. Two-dimensional simulations have shown a convergence verification 
of the model and its ability to handle the two-way interaction between multi-physical pro-
cesses and fractures. We also tested the latter point on a three-dimensional problem, dem-
onstrating the full capabilities of our model.
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