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Abstract

Exploiting the structure of graphs is a well-known strategy for solving hard problems on

complex graphs. In our studies we consider structural characteristics of social network

graphs, in particular ways to exploit the high frequency of closed triangles due to the

property of triadic closure.

In recent years this property has been captured in the notion of c-closure introduced

by Fox et al. [SIAM Journal on Computing, 2020]. A graph is c-closed if any two nodes

with at least c friends in common are also friends themselves. Multiple NP-complete

problems exhibits FPT algorithms parameterized by c.

Computing the actual value for c can be done in O(nω) time, where ω is the matrix

multiplication complexity. We provide an improved algorithm for computing the c-

closure of a graph that runs in O(n · d3) time for a majority of real-world networks and

O(n · d3 + n2 · d) in the worst case. The algorithm exploits another common property of

social networks, a low degeneracy value d.
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Chapter 1

Introduction

The world of data and networks yields an intricate web of information, with every single

record, node and connection offering valuable insights about the network they belong to.

But with a vast amount of data that is constantly evolving and accumulating, we are

faced with some critical challenges: How can we extract information and insights from

networks in an efficient manner?

To achieve this we lean on a specialized field within computer science called param-

eterized complexity. In essence, it provides methods to solve complex problems fast by

exploiting known patterns and properties of the data we are working with.

Take for instance social networks, which are the primary focus of our study. Here,

we notice that two people with many mutual friends are likely to be introduced to each

other. It also applies to meeting new people through common interests, work or school.

New connections forming as a result of existing connections are far more likely than two

randomly selected people in the network becoming friends. One can also validate the

effects of this by simply looking at our own social circles. This principle is referred to as

triadic closure.

Motivated by the concept of triadic closure, Fox et al [5] recently introduced the

parameter c-closure rooted in the very intuitive tendencies of the dynamics in social

networks described above. Put a bit more formally, they state that the c-closure of a

graph is the largest amount of common connections two people can have, without being

connected themselves, see the formal definition, Definition 3.

Due to the effects of triadic closure, social networks exhibit small c-closure values

relative to in randomly generated graphs. As c-closure is a simple concept to grasp and

not a hard parameter to calculate relative to some of the known hard problems in the

world of algorithms, it has been utilized to design more efficient algorithms for solving

hard problems on social network graphs by several researches following Fox et al.

As well as a discussion upon c as a parameter, we aim to tackle the complexity
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associated with computing the parameter itself. We apply the ideas behind exploiting c to

design efficient algorithms for hard problems, and provide a new algorithm to compute c

by exploiting another common property of social networks, a small degeneracy d. The

degeneracy of a network is a measure of sparseness, and aims to quantify how densely

knit groups of people are within the network. By utilizing this property, we obtain an

algorithm that runs in linear time in the input size of the graph for 94% of the real-world

data sets we considered and O(n2 · d + n · d3) in the worst case. This is a significant

improvement to the naive approach that in the worst case can take cubic time relative to

the input size.

The effects of triadic closure also implies that there is an abundance of triangles within

a social network, compared to a randomly generated graph. We make use of known

methods to count triangles in graphs to give an altered algorithm of computing c-closure

that has shown to perform very well compared to naive approaches.

In our results we have determined the c-closure of roughly 250 new data sets varying

in size in addition to testing the performance of our proposed algorithms, thus gaining

new insights into the properties of large social networks.

1.1 Preliminaries

In order to provide context and clarity we give some definitions and specifications regarding

notions used throughout the thesis. We assume some fundamental knowledge in algorithms

and computer science prior to our general discussion.

1.1.1 Graphs

The constantly growing amount of data generated within the world of social networks

holds important insights into the social dynamics at play. However, exploiting these

insights can become an impossible task without a method for structuring the data, often

consisting of thousands or even millions of records. Representing the data available to

us as graphs lets us transform what appears initially as unstructured pools of data to

mathematical models. This enables us to make use of computational procedures to reveal

the internal structures and information embedded within large data sets.

A graph G = (V,E) is a data structure consisting of a set of vertices V , also called

nodes, and a set of edges E. Each edge, denoted as a tuple (u, v), represents a certain

relationship between two nodes u and v.

Unless stated otherwise, all graphs considered in this thesis are assumed to be undirected

and unweighted. In an undirected graph, the relationship between two nodes is symmetric.
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This implies that an edge (u, v) also yields an edge (v, u). We use a single edge between

two nodes to signify their relationship. In an unweighted graph, every edge carries equal

significance, and does not have an associated weight.

When working with graphs, we are interested in which nodes are connected to each

other, and introduce the neighborhood of a node v. For a node v, the adjacent nodes

make up its open neighborhood, denoted N(v). We give the following formal definition:

N(v) = {u ∈ G|(u, v) ∈ E, u ̸= v}. That is, N(v) is the set of all nodes that can

be reached from v by traversing a single edge in G. In addition, we define the closed

neighborhood of v, N [v], as the union of the open neighborhood of v and v itself, hence

N [v] = N(v) ∪ {v}.
When implementing a graph model, we need a suitable data structure to keep track

of which nodes are connected. The most commonly used for representing adjacency in a

graph is an adjacency matrix or an adjacency list. The choice of adjacency representation

depends on what is most efficient for the purpose of the graph or algorithm that utilizes

it.

Substructures of graphs

A subgraph S of a graph G is defined as a set of nodes and edges within G such that

S ⊆ G. Including the edges between the nodes in a subgraph yields substructures within

the graph, also referred to as induced subgraphs. These provide important insights about

a graph and its nodes in their surrounding context.

Our work primarily relies on examining and exploiting substructures frequently found

in social networks. Among these are triangles. A triangle, denoted (u, v, z) is a complete

subgraph of G composed of three nodes. In a complete subgraph the nodes are pairwise

adjacent meaning that there is an edge between every pair of nodes in the graph. This is

also referred to as a clique.

Another substructure essential to the analysis of density and triangle patterns in social

networks are open triangles, commonly referred to as wedges throughout the thesis. A

wedge, denoted (u, v, z), is an induced subgraph of G made up of three nodes but only

including two edges (u, v) and (v, z). A wedge is also referred to as a path of three vertices,

or an open triangle as it is equivalent to a triangle missing an edge. The relationship

between wedges and triangles in social networks and its significance in the context of

c-closure will be discussed in Section 2.3.
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Figure 1.1: A triangle (u, v, z).
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Figure 1.2: A wedge (u, v, z).

1.1.2 Computational complexity

One of the first concepts we come across when entering the field of computer science and

algorithms, is classifying problems as hard or perhaps simple to compute. In order to

have some agreed upon way to characterize a problem as hard, the field of computational

complexity theory is introduced. The field aims to provide a hierarchy to classify problems

based on scalability.

We introduce basic terminology used throughout the thesis when discussing the

complexity of problems and how well both known and new algorithms perform.

A problem instance is a formalization of a computational problem and represents

some specific input to a problem. On small problem instances most computable problems

can be solved within a reasonable amount of time. Consequently, it can be difficult to

distinguish between the complexity of two such problems. However, as the size of the

problem instances grows, the time required to find a solution can evolve very differently.

In other words, two problems that appear equally complex at a smaller scale may exhibit

great differences in the time it takes to find a solution when the problem instances grow

in size.

This concept can be represented visually by plotting the computational time of

algorithms against thesis instance size, see Figure 1.31. The instance size, commonly

measured in number of nodes n or edges m, is plotted along the x-axis, while the

computational time, represented as a function of the instance size f(n), is plotted along

the y-axis. By illustrating how the functions evolve when the instance sizes increase, the

differences in time complexity of algorithms becomes evident. Another common measure

of computational complexity is space complexity, which serves as a measure of the memory

usage of an algorithm. Throughout this thesis space complexity is not considered to an

extensive degree.

1.2 Roadmap of the thesis

Throughout the remaining parts of the thesis we introduce fundamentals within social

network theory and characteristics of social networks in Section 2.1. We elaborate upon

1Figure 1.3 is an illustration from Stack Overflow cc-by-sa
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Figure 1.3: Time complexity

the topic of triadic closure and its impacts in the formation of triangles in social networks

in Section 2.1.3 as well as the correlation between open triangles and the c-closure of a

graph. In Section 2.2 we introduce an extended field of complexity theory, Parameterized

complexity. We introduce the motivation and ideas behind exploiting known structures of

graphs to obtain better algorithms, both for intractable problems in Section 2.2.1 and

tractable problems in Section 2.2.2. We go in depth on the formal definition and results of

exploiting c-closure in Section 2.3. Throughout the section we also encounter a discussion

on the complexity of computing the c-closure itself and suggest multiple approaches to

reduce this cost. In Section 2.4 we present the degeneracy value d of a graph and how it

can contribute to the computation of the c-closure. The actual algorithms for both known

and new methods to compute c-closure and d-degeneracy is presented in Section 3. The

results of running our algorithms on hundreds of data-sets are presented in Section 3.3.

Finally, we conclude in Chapter 4.
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Chapter 2

Background

2.1 Social Networks

In the field of computer science, social networks are often modeled as graphs with nodes

representing individuals and edges representing a relationship between two individuals.

What yields an edge can be any predefined parameter and can encompass a variety of

social interactions, such as friendships, connections on social media, e-mail interactions,

long-term relationships or just a brief acquaintance. The reasoning behind the evolution

of edges is less relevant for evaluating and constructing the actual algorithms for social

networks but an interesting topic when researching the theory behind social networks.

Throughout our general discussion we will refer to two people being friends as equivalent

to their corresponding nodes sharing an edge.

As mentioned in our introduction to graph theory in Section 1.1.1, our algorithms and

results consider undirected and unweighted graphs, unless stated otherwise. Undirected

graphs are common for social network graphs that models a mutual relationship, such

as friendships. Directed social network graphs, on the other hand, are intended to

capture one-way relationships between nodes. Social media platforms that utilizes follower

relationships, such as Instagram and Twitter, serves as good examples of social networks

that would call for a directed graph model. Weighted graphs are useful for modelling

social networks that incorporate multiple types of relationships that can be measured

along a weight spectrum. For instance, one might want to assign a larger weight to a

long-term relationship compared to a brief acquaintance if this serves the purpose of the

model. However, the introduction of weights adds additional parameters to consider and

may increase the complexity of the problem without providing significant insight into the

actual problem we are looking to solve. In our studies we ignore weighted relationships as

it does not serve any good purpose for the issues we are considering.

Modelling large and complex networks, such as social networks as graphs with restricted
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parameters, allows us to utilize computer science to provide insight in the mechanisms

behind social network evolution. It also facilitates solving mathematical problems on con-

cepts that from a human perspective is anything but mathematical, such as interpersonal

relationships and social constructs.

2.1.1 Central measures in social networks

When we aim to describe characteristics of social networks, certain measures and metrics

are essential. They allow for a thorough understanding of and reasoning behind the

structures within a social network. We provide a brief explanation of central terms in

social network theory.

1. Degree: The degree is a measure that applies to a single node and is simply the

number of connecting nodes a node has. The degree of a node u, denoted deg(u), is

the size of its neighborhood, |N(u)|.

2. Density : The density is a measure that applies to the overall structure of the graph.

It tells us how interconnected a network is, essentially revealing how tightly the

nodes are linked to each other. There are several methods to measure graph density,

but one commonly applied method involves the ratio of the actual edges in the

graph, denoted as |E(V )|, to the maximum possible number of edges, indicated by(
n
2

)
.

3. Diameter: The diameter of a graph is the longest shortest path between any two

nodes. Put simply, its the longest one will have to travel to reach any node from

any other in a graph.

4. Centrality : Centrality contains several different measures designed to identify the

most significant nodes within a social network. These include degree centrality,

closeness centrality and betweenness centrality, among others. Each of the measures

embodies different interpretations of what constitutes an influential node. Degree

centrality categorizes nodes with the highest degrees, i.e. the most connections,

as the most important. This measure emphasizes the pure connectivity of a node

within the network. On the other hand, closeness centrality focuses on the proximity

of a node to the other nodes within the network. This way it emphasizes the most

centrally located nodes relative to all other nodes which is a beneficial measure

when desiring efficient information flow or rapid interaction within the network.

Betweenness centrality captures the frequency of which a node occurs on the shortest

path between other nodes. Nodes with high betweenness centrality are likely to serve

as critical bridges within the network and can play a crucial part in controlling the
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flow of information or interaction. Each of the measures captures different aspects

of an individuals potential role within a social network.

5. Clustering Coefficient : The clustering coefficient is a metric related to a single node

and encapsulates how tightly embedded a node is within its own neighborhood.

Essentially, it quantifies how interconnected a nodes’ neighbors are with each other.

The clustering coefficient is calculated by simply counting the number of pairs

of neighbors of a given node u that are also mutually connected. The clustering

coefficient plays an important role in understanding the local structure surrounding

individual nodes, particularly as it directly relates to the formation of triangles and

wedges in a social network. While this concept will be further elaborated upon in

Section 2.1.3, it is important to recognize its role in analyzing and understanding

the underlying structures within social networks.

6. Transitivity : The transitivity of a network is also a measure of density more

specifically the ratio between triangles and wedges in a graph. As with the clustering

coefficient, the transitivity of a graph can be directly related to its c-closure.

In addition to the measures and properties introduced above there are several other terms

often used in the context of social networks. However, these are among the most central

and serves a purpose for understanding how we can benefit from the structures of social

networks.

2.1.2 Characteristics of social networks

When studying complexity theory and algorithms on a theoretical level the primary focus

is on the algorithms themselves, with their complexity expressed as a function of the

number of nodes within a graph. The internal structure of a graph is not usually a

central part of the discussion. Yet, when it comes to applying our theoretical knowledge

to real-world data, the actual performance of an algorithm will often depend on the

structure of the graph it operates on. Acquiring in-depth knowledge about the data we

are working with can be an important tool to further develop algorithms for graphs of

certain characteristics.

Social networks, for instance, are among the complex graph types that tend to exhibit

a predictable structure and thus making them prime candidates for developing fine-tuned

algorithms. Unlike a randomly generated large graph, the structure of a social network is

a product of human behaviour over time. This offers us valuable information about the

structure of the graph, allowing us to identify specific characteristics that can be exploited

to construct algorithms that performs better given these characteristics. There has been
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done extensive research on common characteristics in social networks. Some of the most

prominent ones are:

1. Power law distribution: Social networks have a tendency to conform to a power law

distribution. This implies that while a vast majority of the nodes have a degree

near the average, there exists a few nodes with an extraordinarily high degree. The

phenomenon, also referred to as a heavy tail distribution, results in a distribution

where the majority of the nodes occurs far away from the peak of the distribution.

This arises naturally from popularity dynamics. Consider celebrities as an example.

In a social network, a celebrity (represented as a node) will have an atypically high

number of connections compared to the average individual. This implies that, for

the most part, the average degree of the nodes in a social network does not differ

too much. This is an observation that can be useful in the complexity analysis

and the design of algorithms applied to social networks and more efficiently handle

real-world data.

2. Communities : Within social network theory, we refer to communities as tightly-knit

groups with a significantly higher connectivity internally than externally. Community

structures tend to naturally form within social networks as a result of a networks

evolution over time. Identifying these communities can provide valuable insights into

understanding the social dynamics at play. Furthermore, the concept of communities

serves as a crucial role in several centrality measures, including but not limited to,

the closeness centrality measure previously mentioned.

3. Small-world phenomenon: The small world phenomenon refers to the surprisingly

low diameter found in social networks. As a consequence, regardless of how the

social network scales in size, it is usually possible to reach any given node within a

remarkable small number of steps. The concept is also commonly called six degrees

of separation, a term popularized by a play written by Guare in 1990[3]. The idea

was that any two individuals in the world can be connected through a chain of no

more than six common acquaintances. There is also done extensive research on the

topic of small world phenomenon, but our interest is mainly lies in what this implies

for the structure of the graph, specifically its low diameter.

4. Triadic Closure: Triadic closure is the tendency of triangles closing in social networks

over time due to common connections. The principle is quite intuitive: it reflects

the likelihood that an individual is introduced to new connections through existing

ones, such as new friends through a common friend, or new interests through the

interests among people in your community. The effects of triadic closure close wedges
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formed within the network, forming closed triangles. In upcoming sections we will

dive deeper into the implications of triadic closure, particularly how it affects the

formation of triangles and wedges, and consequently c-closure of a graph.

These characteristics illustrates the special structures found in social networks and are

exactly what we aim to exploit in the design of our algorithms.

2.1.3 Triadic closure: The relationship between wedges and

triangles in social networks

As the effect of triadic closure, introduced in the previous Section 2.1.2, plays out in

a social network, the amount of closed triangles in the graph increase. Counting and

enumerating these substructures play an important part in both deciding the transitivity

of a network and central nodes in a network [7].

Triangle counting and enumeration is not considered an inherently difficult task

from an algorithmic perspective, following the definition of hard problems given in

Section 1.1.2 regarding computational complexity. As early as in 1978, Itai and Rodeh

presented an algorithm for listing triangles in terms of the number of edges, m, with a

runtime of O(m
3
2 ) [8]. However, it has shown to be an expensive procedure for large

graphs. Social network graphs can consist of millions of nodes with dynamically evolving

relationships(edges), which makes triangle enumeration costly. Multiple of the metrics

discussed in Section 2.1.1 concerning the density of a social network is directly related to

the number of open and closed triangles in the graph. Two of these are the clustering

coefficient of a node and transitivity the entire graph. The local clustering coefficient of a

node u in a graph G tell us something about how embedded a node is in its surrounding

community. Nodes with a high clustering coefficient tend to be centers of cliques, both in

the social and in the algorithmic sense of the word. Formally it is defined as the fraction

of neighbors of u that are neighbors themselves. Hasan et al. [7] give the following formal

definition:

C(u) =
{|(v, w) : (v, w) ∈ E ∧ v, w ∈ N(u)}

1
2
|N(u)| · (|N(u)| − 1)

Two adjacent neighbors of u would yield a triangle, making the clustering coefficient of a

node also a measure of how many triangles it contributes to. The metric can also be used

to detect global clusters in general graphs and community detection in social networks.

The second metric mentioned is the transitivity. Whilst the clustering coefficient

relates to a single node, the transitivity of a graph is defined as the ratio between open

and closed triangles in the entire graph. The task of computing the transitivity is thus

identical to computing the number of open and closed triangles in a graph. Hasan et al.
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[7] give the following definition of the transitivity ratio of a graph G denoted by γ(G)

γ(G) =
|triangles|
|triples|

=
|triangles|

|opentriangles] + |triangles|

Only the number of open and closed triangles are used in the computation, so computing

the transitivity does not require the substructures to be enumerated just counted.

The understanding of clustering coefficients and the transitivity of a graph is valuable

when arguing the evolution of c-closure as a parameter, as these measures relate to the

same substructures in a graph, triangles and wedges.

2.2 Parameterized complexity

Complexity theory in the field of computer science serves as a foundational pillar in the

field of theoretical computer science, with the P versus NP question as one of its central

challenges. At its core, it seeks to classify computational problems based on their difficulty

by categorizing them into complexity classes such as P, problems solvable in polynomial

time, and NP, problems whose solutions can be verified in polynomial time but not

necessarily solved in polynomial time, see Section 1.1.2. However, there may be different

factors influencing the difficulty of problems within the same complexity class. Parame-

terized complexity aims to offer an approach to solving and understanding computational

problems by considering how different parameters contribute to the complexity. In classical

complexity, the most common parameter to measure complexity by is the input size of

the problem n and m, i.e. nodes and edges, whereas parameterized complexity tries to

acknowledge that real world problems exhibits varying levels of difficulty depending on the

characteristics of the problem or data. For social networks some of these characteristics are

introduced in Section 2.1.2 and can serve as a topic of designing parameterized algorithms

for these types of graphs. A parameterized algorithm is simply an algorithm that makes

use of some known parameter [2]. In our work we discuss algorithms parameterized by

respectively c-closure c and degeneracy d.

In Parameterized complexity an extended class hierarchy, like the hierarchy found in

classical complexity theory, is introduced as the W-hierarchy [2]. This hierarchy aims to

classify problems beyond the class of NP-complete problems. We do not go into detail

regarding the hierarchy, but will provide some examples of how parameterizing problems

by different parameters may yield different complexity classes in a later Section 2.2.3.

13



2.2.1 FPT

One of the key concepts within parameterized complexity is Fixed Parameter Tractability,

FPT for short. Fixed parameter tractability is a complexity class that contains problems

solvable within a function of some parameter k other than the input size n which is

the traditional measure of complexity. This parameter can be any chosen parameter or

combination of parameters often known to be smaller than n. The most common value

to parameterize by is the solution size, as the optimal solution of NP-complete problems

with a minimization objective is often small relative to the size of the problem instance.

When k is significantly smaller than n one can obtain efficient algorithms that may

run in exponential time with respect to k, yet in polynomial time with respect to n. The

formal definition is as follows:

Definition 1 ([2]). For a parameterized problem L ⊆ Σ∗ ×N we say that it is FPT if

there exists an algorithm A, a computable function f : N→ N, and a constant c such that

A correctly decides whether an instance of L, (x, k) ∈ L in time bounded by f(k) · |(x, k)|c.

As different parameters may influence the complexity of a problem, the choice of

parameter needs careful consideration when designing FPT algorithms. As established in

”Parameterized Algorithms” [2], there are two primary criteria that should be satisfied to

obtain a successful parameterization:

1. We want to select a parameter that is likely to be small for the specific problem

instances in consideration. If the parameter we choose is large, the complexity might

not differ much from its classical complexity measured by the size of the input.

2. Secondly, we want to design algorithms where the time consuming terms are restricted

to the parameter of choice. Meanwhile, the growth induced by other parameters,

such as input size n, should be kept as small as possible and within polynomial

growth.

These outlined criteria are also the topic of the two primary strategies for optimizing

FPT-algorithms. We aim to either minimize the parametric dependence, Item 1, or

minimize the polynomial factor, Item 2.

Another central aspect of designing FPT-algorithms and parameterizing problems is

kernelization. In the field of parameterized complexity, kernelization involves applying

a polynomial-time preprocessing algorithm to an instance of a computationally hard

problem. In ”Parameterized Algorithms” [2] they give the following formal definition:

Definition 2. A kernelization algorithm, or simply a kernel, for a parameterized problem

Q is an algorithm A that, given a problem instance (I, k) of Q, works in polynomial time
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and returns an equivalent instance (I ′, k′). Moreover, we require that size A(k) ≤ g(k) for

some computable function g : N→ N

The aim is to reduce the size of the problem instance, thereby making it feasible to

apply an exact algorithm to solve the reduced instance. As it is proven that a decidable

problem admits a kernel if and only if its fixed-parameter tractability, kernelization can

serve as another way of defining FPT [2].

The motivation behind designing FPT algorithms is directly applicable to solving

problems for complex social networks, when we know that these networks often exhibit low

values for certain parameters as the c-closure value c and degeneracy value d discussed in

later Sections 2.3 and 2.4. By also expanding the principles of designing FPT algorithms

beyond intractable problems, major contributions to bridging the gap between theoretical

computation and real world application can be made. This topic will be further explored

in the following Section 2.2.2.

2.2.2 FPT in P

Traditionally, FPT algorithms are designed for solving intractable problems, specifically

those in the class of NP-hard problems. However, when solving problems known to be in

P on large networks, by designing algorithms that exploits known small parameters of

the network rather than solely considering the instance size, the cost can be significantly

reduced. As we recall, this strategy is a fundamental aspect of designing FPT algorithms

for intractable problems, as it enables the development of more efficient real-world

applications. In FPT-in-P, instead of obtaining polynomial dependence on the input size,

we aim towards getting a linear or closer to linear dependence on the input size. The

FPT-in-P algorithms differ from the FPT algorithms designed for NP-complete problem in

that the dependence on the parameter, f(k), may be polynomial. Giannapoulou et al. [6]

provide three desirable algorithmic properties that one should aim for when designing FPT-

in-P algorithms, equivalent to the listed goals for traditional FPT-algorithms mentioned

in the previous Section 2.2.1:

1. The running time should have a polynomial dependency on the parameter.

2. The running time should be as close to linear as possible for instances when the

parameter value is constant.

3. The parameter value, or a good approximation thereof, should be computable

efficiently.

Following the example from the introduction of the article by Giannapoulou above

[6], assume there exists an O(nz)-time algorithm for a problem with instance size n. Our
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aim is to exploit a smaller parameter k and provide an algorithm f(k) · nz′ such that

z′ < z and f(k) depends solely on our parameter k. In contrast to the class of Fixed

Parameter Tractable (FPT)-problems where f(k) may be exponential in k, for the class

of Polynomial Fixed Parameter Tractable, P-FPT, problems, f(k) is polynomial in k, i.e

kt for some fixed integer t.

2.2.3 Not in FPT: W[1]-hard problems

What about the problems that does not exhibit an FPT-algorithm parameterized by

solution size k? As a sidenote to further emphasize the motivation behind the choice of

parameter when designing FPT-algorithms we introduce some of the complexity classes

in the W -hierarchy, W [1] and W [2]. Some NP-complete problems, like the independent

set and dominating set problem, does not have a known FPT-algorithm parameterized

by solution size k. For these two problems we say that they are respectively W [1]-hard

and W [2]-hard with respect to the solution size k. For our purposes, it is sufficient to say

that a problem being W [1]-hard for a parameter k is equivalent to saying that it does

not yield an FPT-algorithm. This also hold for the higher levels of the hierarchy, such as

W [2]-hard, as they are subsets of each other. However, this does not necessarily imply

that these problems does not yield FPT-algorithms parameterized by other parameters.

2.3 C-closure

Motivated by triadic closure in social networks, the notion of c-closure was recently

introduced by Fox et al. [5]. The c-closure of a graph is a concept that captures the

likelihood of two individuals having many mutual friends being friends themselves. They

state that if two people in a c-closed graph are not friends, they share less than c common

friends. Equivalently, if two nodes in a c-closed graph have more than or exactly c common

neighbors, they are also adjacent. More formally Fox give the following definition of

c-closure:

Definition 3. [5] A graph G is c-closed if |N(u)∩N(v)| < c for each pair of nonadjacent

vertices u and v. The c-closure of G is the smallest integer c such that G is c-closed.

We say that a graph is c-closed for its lowest number of c-closure.

As a social network matures, the effects of triadic closure tends to reduce the c-closure

value. This pattern is evident in our results presented in our table of results 3.3 for a

significant portion of our datasets. In their work, Fox et al.[5] utilize the c-closure of

a graph to obtain algorithms parameterized by c, with their main result being a new

O(p(n, c) + 3
c
3n2 upper bound for generating all maximal cliques in any c-closed graph,
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with p(n, c) denoting the complexity of listing all wedges. [5]. Several studies following the

initial introduction of c-closure by Fox et al. have developed FPT-algorithms and claimed

new upper bounds for known NP-complete problems for complex graphs by parameterizing

by c [1, 9, 12, 13, 10, 11, 14, 15].

Observe that c is not a good measure for bipartite graphs, since by definition any two

vertices with a common neighbor do not share an edge.

2.3.1 c as a parameter

When designing FPT-algorithms, the parameter chosen needs careful consideration. One

can argue that c as a parameter is quite fragile as it only requires a single pair of ”bad”

nodes to increase the value of c significantly, as the parameter is defined for its highest c.

However, c-closure effectively captures a simple effect of human behavior and is an intuitive

parameter to grasp, across various fields of study. Its computation is also relatively simple,

and our results in Table 3.3 reveal that c is typically small for many of the social networks

under consideration. Other types of complex networks, not necessarily social, can exhibit

low c-closure due to various reasons, and are also included among the data-sets we have

used for our analysis.

The parameter also holds other properties that is worth to note when utilizing it for

parameterization. Contrary to parameterizing by the solution size k, the c-value is derived

directly from the structure of the graph itself and is not an externally chosen parameter.

When a graph is modified, either due to its natural evolution or during computational

processes such as kernelization algorithms, briefly introduced in Section 2.2.1, the c-closure

value of the graph can change.

To illustrate this, imagine a kernelization algorithm that reduces a problem instance

(I, c) to a smaller instance (I ′, c′). This yields an interesting discussion regarding the

c-closure of the reduced problem instance. Since the removal of nodes from a graph could

alter the c-closure value, this aspect of parameterizing by c-closure needs to be considered

when designing FPT algorithms and kernelization algorithms that make use of c. If the

value for c decreases, one might be able to give an even tighter bound. But a change in c

may also call for a new computation of c for each iteration of an algorithm. This is one of

the motivations behind desiring an optimized algorithm for computing c-closure in the

following Section 2.3.2.

2.3.2 Computing c-closure

A majority of the results following the introduction of c-closure does not include a

discussion regarding the computation of the c-closure itself. As it is a parameter computed
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in polynomial time it makes sense that it is not not a priority in arguing the complexity

of algorithms solving NP-complete problems. However, it is evident that optimizing the

time it takes to compute c can remarkably reduce the overall costs associated with the

algorithms. Recall that the c-closure is a property a graph itself holds and not a chosen

parameter. Because of this it may be necessary to compute the c-closure multiple times

during the execution of an algorithm, following from the discussion in Section 2.3.1.

The computational complexity associated with determining the c-closure, beyond

simply using it as a parameter, needs to be considered when contributing to this field

of study. Understanding and optimizing the computation of c-closure could potentially

further enhance the efficiency and applicability of algorithms parameterized by c.

When calculating the c-closure of a graph G the common neighborhood of every pair

of non-adjacent vertices needs to be considered. This can be time consuming and we

discuss the restrictions it puts on the c-closure metric later in this section.

To calculate the c-closure of a graph G, Fox et al. suggest squaring the adjacency

matrix of G in O(nω) with ω < 2.373 as the matrix multiplication exponent[5]. When

squaring the adjacency matrix of a graph the entry in the (u, v) position of the squared

adjacency matrix represents the number of paths on three vertices from u to v. This

number is equivalent to the number of common neighbors of u and v seeing as any path

between u an v on three vertices passing through a single vertex w implies that w is

adjacent to both u and v. Even though this method performs well in theory, constructing

these n× n adjacency matrices for large sparse graphs involves a lot of overhead and is

not considered the optimal approach for such graphs. As this tend to be the case for

social networks, with sparsely distributed nodes with a constant average low degree, we

argue that other methods can perform just as well or better in practice.

We can also apply our knowledge from metrics related to the c-closure of a graph to

develop more efficient algorithms to compute it. The low c-closure of social networks

follows from the same reasoning as the abundance of closed triangles in social networks.

Two non-adjacent nodes (u, v) with c common neighbors, also contributes to c wedges in

the graph. If an edge forms between u and v the number of wedges decrease by c whilst

the number of triangles increase by c. With this direct correlation between c-closure and

the number of triangles and wedges in a graph, we can make alterations to known methods

of wedge-counting to determine the c-closure of a graph. In section 3, we provide a worst

case O(n3)-algorithm for computing c-closure based on some of the most efficient results

in triangle and wedge enumeration by Schank [16] that actually performs significantly

better than O(n3) in practice.

Another approach to optimizing the computation of c-closure is tackling the constraint

the complexity of computing the common neighborhood of nodes puts on the parameter.
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By the definition of c-closure 3, we know that the size of the common neighborhood of

any two non-adjacent pair of nodes are bounded by c. The sum of the sizes of all common

neighborhoods of non-adjacent nodes is therefore O(cn2). However, an algorithm that

calculates these in O(cn2) is yet to be found. Koana et al. [11] states that the discovery

of such an algorithm would immediately yield better results for wedge enumeration in

c-closed graphs , which is also what is done for the preproccessing stage for the maximal

clique algorithm presented by Fox et al. [5].

As one of our main results, we provide a new algorithm exploiting another common

measure of density in social networks, the degeneracy of a graph. The idea is to limit the

cost of calculating common neighborhoods by limiting the size of the neighborhoods we

are examining.

2.4 Degeneracy

Another metric commonly used in the analysis of social networks is the d-degeneracy of the

graph. The d-degeneracy of a graph serves as a measure of the sparseness and robustness

of a graph. More specifically, the degeneracy d represents the minimal degree found within

the densest segment of a graph. The formal definition of degeneracy considers an ordered

sequence of the graph’s vertices such that each vertex has at most d adjacent vertices that

occupy a higher position in the order. Koana et al. citekoana2020weaklyclosedsubgraphs,

provide the following formal definition of a d-degenerate graph:

Definition 4. A graph G is d-degenerate if one of the following two equivalent conditions

holds:

• There exists a degeneracy ordering δ := (v1, ..., vn) of G, that is, an ordering such

that degGi
(vi) ≤ d where Gi := G[{vi, ..., vn}]

• Every induced subgraph G′ of G has a vertex v with degG′(v) ≤ d

The degeneracy number d of the entire graph G is the lowest d such that G is

d-degenerate.

Erdös and Hajnal[4] gave an equivalent definition of the coloring number of a graph,

stating that the coloring number of a graph is the lowest number κ there exists an ordering

for such that each node has κ or less neighbors previously in the ordering.

To compute the d-degeneracy ordering, sequentially remove the node with lowest

degree and update the degrees of the remaining nodes. We present the pseudocode and

correctness of computing the degeneracy ordering in Section 3.1.

The maximum degree of any node removed throughout the procedure determines the

d-degeneracy of the graph. This is also refereed to as the maximal d-core subgraph. A
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d-core subgraph is a subgraph of G that consists of the remaining nodes after exhaustively

removing all nodes with degree less than d. It is worth noting that a d-core subgraph

can consist of multiple disconnected cores, offering insights in the number of tightly-knit

communities in a graph. The cores represent groups of nodes in the graph with high

inter-connectivity.

The properties of the degeneracy ordering following its Definition 4 allows for a

restricted search in the common neighborhoods when computing c-closure. We present an

algorithm utilizing this property in Section 3.2.3.

20



Chapter 3

Algorithms

3.1 Computing degeneracy

As discussed in Section 2.4, computing the degeneracy ordering is a linear operation with

respect to the number of nodes, n. During each iteration of the algorithm, the node with

the current smallest degree is appended to the ordering and removed from the graph

G. Using a suitable data-structure in the implementation of the algorithm, such as a

minimum priority queue, results in a time complexity of O(n · log(n)). The initial step

involves arranging the nodes in the queue according to their degrees. Seeing as each

insertion operation into a priority queue typically requires O(log(n)) time due to the

data structure’s tree-like nature, processing all nodes results in a total complexity of

O(n · log(n)) for this preprocessing stage. The construction of the degeneracy ordering

involves dequeueing the node with the smallest degree, an operation that takes O(1) time.

Furthermore, the degree of each node in the dequeued nodes neighborhood is decreased

by one, and inserted to the queue without necessarily removing its previous version. To

ensure that no node is appended to the ordering more than once, we keep track of all

processed nodes. Consequently, any re-inserted node will always be processed before its

preceding version with a higher degree, due to the properties of the priority queue.

For the ordering to serve its purpose in limiting the number of nodes needed to be

processed in our algorithm, it is important to ensure that the left neighborhood of each

node is bounded by degeneracy value, d, calculated by the algorithm. The correctness of

this property follows from the construction of the algorithm. As each node is appended to

the ordering, its current degree is equal to the count of its neighbors that have yet to be

included in the ordering. Should this count exceed the current degeneracy value, d, it is

updated. Upon the termination of the algorithm, the highest degeneracy value recorded

throughout the iterations is returned. Thus, the construction of the algorithm validates

that the ordering and degeneracy value corresponds.
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Algorithm 1 Degeneracy Ordering

1: procedure DegeneracyOrdering(G)
2: ordering← empty list
3: degeneracy← 1
4: while G ̸= empty do
5: v ← vertex in G with the minimum degree
6: ordering.add(v)
7: degeneracy← max(degeneracy, degree(v))
8: G.remove(v)
9: end while
10: return ordering
11: end procedure

3.2 Computing c-closure

In Section 2.3.2 we present the constraints of computing the c-closure of a graph, and

why reducing this cost can contribute to faster algorithms parameterized by c.

Based off of these we give three different algorithms for computing c-closure along

with a discussion on its computational complexity.

3.2.1 Algorithm: Naive approach

In this section, we outline a straightforward brute force algorithm designed to compute

the c-closure of a graph. This is achieved by simply counting the size of the common

neighborhood for each pair of non-adjacent vertices in a graph G. While we have not

incorporated this algorithm in our results for the real-world data-sets, primarily due to

its extensive computation time and relative inefficiency compared to other approaches,

it still serves as a useful point of reference. The brute force approach helps to illustrate

the improvements achieved by our more fine-tuned algorithms, which we introduce in the

upcoming Sections 3.1 and 3.2.3.

For each pair of nodes (u, v) in E(G), the algorithm checks if they are not adjacent,

calculates the size of their common neighborhood, and updates the c-value whenever a

larger common neighborhood is found. The algorithm iterates over every pair of nodes in

the graph, both adjacent and non-adjacent. Consequently, the complexity of iterating

over the pairs of non-adjacent nodes are upper bound by O(n2) regardless. When a pair of

non-adjacent vertices are found, the complexity of computing their common neighborhood

is bounded by O(min(|N(u)|, |N(v)|)) = O(n).

The correctness of the algorithm follows from its construction, as it checks the common

neighborhood of every non-adjacent pair of nodes in G.
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Algorithm 2 CC-Bruteforce

1: procedure CC-Bruteforce(g)
2: c← 0
3: for each u in V (G) do
4: for each v in V (G) do
5: if u ̸= v and (u, v) /∈ E(V ) then c = max(c, [N(u) ∩N(v)])+
6: end if
7: end for
8: end for
9: return c
10: end procedure

In conclusion, the overall complexity of the algorithm is upper bounded by O(n3).

However, a somewhat tighter bound on the common neighborhood, based on the average

degree of the graph, is discussed in the implementation of our degeneracy based algorithm

in Section 3.1.

3.2.2 Algorithm: Wedge enumeration alteration

The direct correlation between the number of wedges in a graph and its c-closure lets

us apply established techniques for triangle and wedge counting in the computation of

c-closure.

A simple wedge-enumeration algorithm introduced by Koana and Nichterlein [11]. The

algorithm considers all edges in a graph and computes the union of their neighborhoods.

For each node found in the union but not in the intersection, a wedge is output. By

counting all of the wedges for which two nodes are the endpoints, we can determine a

graphs c-closure. Our findings is motivated in Theorem 4 as presented in [11], stating that

there exists an O(cn2 +m
3
2 )-time algorithm to compute the c-closure of a graph. The

proof provided by the authors builds upon a constructive approach. Initially, all wedges

are enumerated by the above procedure. Each wedge with endpoints in u and v is stored

in a set denoted as Puv
3 . The sets are sorted by size using radix sort. Radix sort completes

the sorting operation in O(n), where n represents the number of sets. The size of the

largest set where u and v are not adjacent incremented by one yields the c-closure value

of the graph.

The algorithm described above serves as the idea behind our altered algorithm. We

want to compute the sizes of the sets of wedges for which two nodes contribute to, and

this way obtain the c-closure value. We have also based our implementation on results

from basic triangle enumeration presented by Schank [16].

By considering the nodes sorted by degree we can avoid checking the common neigh-
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borhoods of nodes that can not possibly contribute to a higher c. This alteration can be

made as we do not need the total number of wedges in order to compute the c-value of a

graph.

In our algorithm we initially sort the nodes by degree in decreasing order. This process

has a worst case complexity of O(n log n).

As long as there are nodes remaining in the graph, choose the node u of maximum

degree. For every node v adjacent to u, iterate over the neighborhood of v, N(v). For

each node w found in the N(v), check if u and w are not adjacent. If they are not, the

node w share at least one common friend with u and we increase the count of common

neighbors between u and w by 1. If the updated value for common neighbors between

two nodes found in the iteration exceeds the current largest value for c found, update the

c value to the new, larger value. After considering every v and w for u, u is removed from

the graph.

Before searching through the neighbors of the node u of current lowest degree picked

at the start, we check if the degree deg(u) is lower than the current highest value for c. If

this is the case, terminate the algorithm.

The worst case complexity of the algorithm sums up to O(n3) but because of our

additional check, on average it performs considerably better than this.

When applied to our data-sets we can see that the wedge-alteration algorithm actually

performs just as well if not better than the other algorithms considered for a majority of

the data-sets.

3.2.3 Algorithm: Computing c-closure using degeneracy

We now provide a new algorithm based on the FPT-in-P design principles presented in

section 2.2.2 for computing the c-closure. We argue that the algorithm is more efficient

than the previous proposed methods, for graphs with a lower degeneracy value d than

c-closure value c. Recall the best theoretical results from computing c-closure, based

on fast matrix multiplication, as mentioned in Section 2.3.2. This method yields an

O(nω)-algorithm, where ω is the matrix exponent with ω < 2.373. By parameterizing

our approach using the degeneracy d of the graph, we are able to achieve a significantly

smaller polynomial dependence on n, with O(d3 · n2)-complexity in the worst case, but

O(d3 · n)-complexity for 94% of our data sets.

Even though we do not, in the worst case, obtain a linear dependence in n by the

principles of designing FPT-in-P algorithms, we still achieve n2 = O(nω) for fixed d.

However, for data-sets with d < c the same algorithm yields an O(d3 · n)-algorithm, thus

achieving a linear dependence in n.
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Algorithm 3 CC-Wedge

1: procedure cc-wedge(G)
2: c← 0
3: visited← set
4: while V (G) not empty do
5: u← u ∈ u(G) of maximum degree
6: u wedges← []
7: if degree(u) < c then
8: return c
9: end if
10: for each v in N(u) do
11: for each w in N(v) do
12: if (u,w) /∈ E(G) then
13: u wedges[w] + +
14: c← max(u wedges[w], c)
15: end if
16: end for
17: end for
18: end while
19: return c
20: end procedure

We now argue that replacing a squared dependence on n, O(n2), with a cubic depen-

dency in d, O(d3) results in a significantly better run time for the majority of real-world

data-sets. As we can see from our results in Table 3.3, even in the largest networks the

degeneracy value d of the graph remains small. To further emphasize the improved bound,

consider the map-geology-graph from Table 3.3 with n ≈ 3 000 000 and d = 13. It is

evident that the O(d3) factor is minor compared to the O(n2) dependency on n. The

correctness of the O(d3 · n)-algorithm when d < n will be given alongside the construction

of the algorithm, in Section 3.2.3

The relationship between degeneracy and c-closure

While both c-closure and degeneracy serves as a measure of sparseness in a graph, it

is important to note that the parameters do not necessarily correlate. In other words,

a graph exhibiting low c-closure is not definitively associated with either high or low

d-degeneracy values, and the same principles applies the other way around.

To illustrate the lack of correlation between c-closure and d-degeneracy, let us consider

a complete graph with n nodes, where all nodes are pairwise adjacent, see Figure 3.1.

In this scenario, the c-closure value c of the complete graph is 0, as there is no pair of

nodes that are not directly connected. On the other hand, the d-degeneracy value d of the

25



same graph equals the total number of nodes, n− 1. This is because, regardless of which

node v is removed first when constructing the degeneracy ordering of the graph, the node

will have n− 1 neighbors. This yields a degree of n− 1, deg(v) = n− 1, resulting in a

d-degeneracy value of n − 1, d = n − 1. Consequently, a complete graph exemplifies a

scenario where a low c-closure coexists with a high d-degeneracy.

As a contrasting example, consider a complete bipartite graph with two nodes in one

partition and an arbitrary number of nodes, n, in the other partition. In a complete

bipartite graph there exists an edge between every node in one partition to every node in

the other partition. We denote our example-graph K2,n, see Figure 3.2. In this scenario,

the two nodes in one partition have n common neighbors, resulting in a c-closure value of

n+ 1. Yet, each of the nodes in the other partition has a degree of 2. Therefore, during

the computation of the degeneracy ordering, by sequentially removing all nodes in the

largest partition first, the resulting d-degeneracy value d will be 2 due to the iterative

degree updates.

To exemplify a graph with both low c-closure and low d-degeneracy consider a chain

graph of arbitrary length, see Figure 3.4. This structure, regardless of the number of

nodes, will always yield a c-closure of c = 2 and a d-degeneracy of d = 1.

Conversely, a complete bipartite graph with a large number of nodes in both partitions

serves as an example of high degeneracy and high c-closure, see Figure 3.3. This underscores

the possibility of small values for both parameters simultaneously.

These examples demonstrate the absence of direct correlation between c-closure and

d-degeneracy emphasizing their independent roles when computing and characterizing

graphs later on in the thesis.

Figure 3.1: K4

Figure 3.2: K2,n Figure 3.3: K4,4 Figure 3.4: P4

The Algorithm

The goal of the algorithm remains somewhat the same as with the naive algorithm, we

want to consider the size of the common neighborhood of two non-adjacent nodes u

and v for every pair (u, v). The algorithm determines the c-closure of a graph with a

O(d3 ·n2)-complexity in the worst case, and a reduced O(d3 ·n)-complexity when d < c, by

limiting the number of common neighborhoods that needs to be computed. We accomplish

26



this by dividing the procedure into three distinct cases, each handling separate possibilities

of pairings of non-adjacent vertices u and v. The construction and correctness of the cases

will be argued in the remaining part of this section.

As a preprocessing stage of the algorithm we simply compute the degeneracy d and

the degeneracy ordering of G. This is achieved by exhaustively removing the node v ∈ G

with the current lowest degree, thus decreasing the degree of the neighbors of v by 1 at

each step, as described in Section 2.4. The order in which we remove the vertices is the

degeneracy ordering. To compute the c-closure value c of a graph we can exploit the fact

that for each node v in the ordering, a maximum of d neighbors of v appear before v in

the ordering, by the definition of a degeneracy ordering 4. Using the degeneracy ordering

we can limit the number of pairs we consider within a factor of d.

As parameters, the algorithm takes in a graph G, the degeneracy d and the degeneracy

ordering, D. For each x in the ordering we want to find all pairs (u, v) where u, v ∈ N(x)

and (u, v) /∈ E(G). When iterating the ordering, x is the rightmost vertex in the common

neighborhood of u and v, N(u) ∩ N(v). When trying to locate all non-adjacent pairs

(u, v) adjacent to x we can picture the possible locations of the three nodes along the

degeneracy ordering. As the ordering can be represented as a path of nodes, this yields

three possible cases:

1. u < v < x: Both u and v are located in the left neighborhood of x, see Figure 3.5

2. u < x < v: The node x is located between u and v in the ordering, see Figure 3.6

3. x < u < v: The node x is located to the left of both u and v, see Figure 3.7

For all cases, u is located to the left of v. As u and v are nodes we label when we find

them, the correctness of this follows from the way we iterate over the nodes.

Separating the three instances and only considering pairs of nodes with at least one

common neighbor, x, lets us avoid the cost of computing the common neighborhood of

two nodes with no common neighbors. Even though the size of the common neighborhood

of two nodes is zero, the complexity of calculating it remains the same as it would with

two nodes sharing a large common neighborhoods. As it is trivial to see that two nodes

with no common neighbors cannot contribute to the c-closure, the correctness of not

considering these combinations of pairs holds. We proceed to construct each case:

Case 1: u < v < x

In the first case the algorithm encounters, u and v are both located in the left neighborhood

of x. From the definition of degeneracy we know that node x has a total of d neighbors

to its left in the ordering. Thus, for each x we consider, we iterate over the possible

combinations of two unique nodes, (u, v), in the left neighborhood of x, N−(x), which at
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u v x

Figure 3.5: Case 1 u < v < x

u x v

Figure 3.6: Case 2 u < x < v

x u v

Figure 3.7: Case 3 x < u < v

most consists of O(d2) pairs. For each of the pairs (u, v), we check if u and v are adjacent. If

they are not adjacent, we compute their common neighborhood in O(min(deg(u), deg(v)))

time. Intuitively this would yield an O(n) complexity, but because we exclusively choose

the node with minimum degree for two vertices u and v and consider unique pairs of

(u, v) for each iteration, the sum of nodes processed at this stage is bound by d times

the average degree of the graph. The average degree of a graph is formally defined as

avg deg(G) =
∑

v∈V (G)
degG(v)

n
. The sum of degrees can be substituted by 2 times the

number of edges m, counting one for each endpoint u and v for a single edge (u, v) ∈ E(G).

In a degeneracy ordering we obtain the number of edges by simply summing up the

left neighborhood for each node in the ordering inducing the following substitution,
1
n
· 2m = 2m

n
= 2d·n

n
= 2d. This replaces the original n-factor by a factor of d. The

procedure is repeated for every x in the ordering, starting with x as the rightmost node

in the neighborhood of u and v, yielding an O(n · d2 · d) = O(n · d3) complexity for case 1.

After terminating case 1, the algorithm has calculated some current value for c. We

make the following claim:

Claim 1. If the c-closure value, c, is higher than the degeneracy value, d, after case

1, return the current c-closure c and terminate the algorithm. This yields an O(n · d3)-
complexity for C-Closure Degeneracy when c > d.
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The correctness of this claim follows from the definition of degeneracy.

After case 1, every pair of u and v in the left neighborhood of x, N−(x), have been

considered and we are left with some value for c. We argue that if c is larger than d, we

cannot find a larger c in case 2 or case 3.

In case 2, x is contained in the left neighborhood of v, N−(v). Recall that x is the

rightmost node in the common neighborhood of u and v. If u and v has a common neighbor

to the right of x, the pair has been considered in a previous iteration, as a consequence

of choosing x in decreasing order. Because x is located in the right neighborhood of v,

N−(v) with N−(v) ≤ d, and x is the rightmost common neighbor of u and v, the size of

the common neighborhood of u and v is also bound by d. u and v having more than d

common neighbors would contradict the property of x being the rightmost neighbor in

their common neighborhood and we can safely claim that this can not be the case.

For case 3, the claim also holds as x is contained in the left neighborhood of both u

and v which is more restrictive than only being contained in the left neighborhood of v,

as in case 2.

It is clear that an increased c cannot be found when c > d seeing as the sizes of the

neighborhoods we are calculating are lower than the current c.

Assume this is not the case, and we have d > c after the first case. We then proceed

to argue the complexity of case 2:

Case 2: u < x < v

In the second case, we consider the pairs of u and v adjacent to x with vertex x positioned

between vertices u and v in the ordering, such that u < x < v. Recall that x is the

rightmost node in the common neighborhood of u and v.

Contrary to the first case, the set of neighbors for vertex x, where v may be located, is

not bound by the degeneracy d of the graph and can require O(n) time to locate. However,

we make use of the fact that, 1: x is situated to the left of v and, 2: that x and v are

adjacent. Rather than searching the unbounded right-neighborhood of x, we opt to instead

search the left neighborhood of v, N−(v), to find x. For each node for x, we search its left

neighborhood, N−(x) to identify u, because u < x. For each non-adjacent combination

of v and u, calculate their common neighborhood. The complexity of calculating their

common neighborhood follows the same line of argumentation as in case 1.

Consequently, the total time complexity case 2 contributes to in the algorithm is

O(n · d · d · d) = O(n · d3).
We continue to argue the final part of our algorithm:

Case 3: x < u < v

By summarizing the runtime obtained for each case we get the following: O(n · d3) +
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O(n · d3) + O(n2 · d) = O(n2 · d + n · d3), when c > d. This completes our proof, and

validates our claim.

Algorithm 4 C-Closure Degeneracy

1: procedure C Closure Degeneracy(G,D, d)
2: c← 0

▷ CASE 1: u < v < x
3: for x ∈ V (G) do
4: for {u, v} ⊆ N−(x) do
5: if (u, v) not adjacent then
6: c← max(c, |N(u) ∩N(v)|)
7: end if
8: end for
9: end for
10: if c ≥ d then
11: return c
12: end if

▷ CASE 2: u < x < v
13: for v ∈ V (G) do
14: for x ∈ N−(v) do
15: for u ∈ N−(x) do
16: if (u, v) not adjacent then
17: c← max(c, |N(u) ∩N−(v)|)
18: end if
19: end for
20: end for
21: end for

▷ CASE 3: x < u < v
22: for v ∈ V (G) do
23: for u ∈ V (G) do
24: if (u, v) not adjacent then
25: c← max(c, |N−(u) ∩N−(v)|)
26: end if
27: end for
28: end for
29: return c
30: end procedure

3.3 Results

We provide new calculations for the degeneracy values d and c-closure values c for a

wide range of network data sets. For every data set listed in Table 3.3, we ran the

wedge enumeration algorithm denoted Wedge, see Algorithm 3 and two alterations of the
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algorithm using the degeneracy ordering denoted Deg and Deg2, see Algorithm 4.

We timed out each algorithm at 75 seconds for each data set, resulting in some

undetermined values in our results. For each data set the c-closure has been calculated

which can be used for future work in developing FPT-algorithms parameterized by c.

As we have mentioned in the run time analysis for the C closure degeneracy-Algorithm

4 in Section 3.2.3, for a majority of the data sets the computed degeneracy value d is

significantly lower than the c-closure value c. In fact, for 94% of the data sets considered

this is the case.

Algorithm

Dataset n m d c Deg Deg2 Wedge

iscas89-s27 9 8 1 1 0.19 0.08 ∞
wafa-padgett 15 27 3 3 0.24 0.16 0.22

BioGrid-Human-Immunodeficiency-Virus-2 19 15 1 1 0.4 0.14 ∞
wafa-hightech 21 159 12 16 1.12 0.54 0.83

wafa-ceos 26 93 5 6 0.67 0.49 0.65

BioGrid-Dictyostelium-Discoideum-Ax4 27 20 1 1 0.37 0.24 ∞
seventh-graders 29 250 13 17 1.36 0.73 1.64

karate 34 78 4 6 0.77 0.31 0.36

windsurfers 43 336 11 16 4.59 2.18 4.97

BioGrid-Glycine-Max 44 39 2 2 0.47 0.28 0.3

wafa-eies 45 652 24 30 4.78 2.63 6.07

dutch-textiles 48 90 5 11 0.77 0.39 0.31

bergen 53 272 9 12 2.58 1.27 2.81

iscas89-s208.1 61 67 2 2 0.62 0.33 0.46

dolphins 62 159 4 4 2.31 1.17 1.98

train bombing 64 243 10 8 1.76 0.98 1.65

BioGrid-Emericella-Nidulans-Fgsc-A4 64 62 2 2 1.35 0.77 0.66

pollination-tenerife 68 129 4 10 2.24 1.06 1.36

BioGrid-Cricetulus-Griseus 69 57 1 1 0.82 0.4 ∞
Noordin-terror-relation 70 251 11 10 3.58 2.03 3.46

mg watchmen 76 201 7 5 1.79 0.97 1.98

lesmiserables 77 254 9 8 1.91 0.97 1.75

mg godfatherII 78 219 8 8 1.97 0.95 1.37

iscas89-s298 92 131 2 5 1.08 0.56 0.4

mg forrestgump 94 271 8 3 5.69 3.24 8.2

win95pts 99 112 2 3 1.22 0.76 0.68

iscas89-s344 100 122 2 4 1.19 0.66 0.55

iscas89-s641 100 144 3 6 1.56 0.89 0.47

movies 101 192 3 5 2.19 1.01 1.36

iscas89-s349 102 127 2 4 1.11 0.58 0.51

polbooks 105 441 6 15 3.33 1.52 1.8

mg casino 109 326 9 7 2.15 1.18 3.22

word adjacencies 112 425 6 13 7.01 3.18 4.36

hypertext 2009 113 2196 28 53 62.32 24.62 26.8

iscas89-s386 114 200 3 12 1.5 0.78 0.44

StackOverflow-tags 115 245 6 6 1.84 1.06 1.32

football 115 613 8 9 5.6 3.09 5.43

iscas89-s382 116 168 2 4 8.56 11.43 4.64

iscas89-s400 121 182 2 4 1.64 0.9 0.94

BioGrid-Human-Herpesvirus-5 121 107 1 1 1.3 0.76 ∞
Noordin-terror-loc 127 190 3 6 2.41 0.94 0.9
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iscas89-s420.1 129 145 2 2 1.57 0.89 1.1

Noordin-terror-orgas 129 181 3 10 1.44 0.74 0.55

iscas89-s444 134 206 2 4 1.55 0.88 0.82

BioGrid-Hepatitus-C-Virus 136 134 1 1 1.11 0.68 ∞
iscas89-s713 137 180 3 6 1.72 0.94 0.57

capitalist 139 1071 19 34 9.97 4.48 11.62

foodweb-otago 141 832 14 35 21.51 8.12 2.64

american revolution 141 160 3 9 1.37 0.79 0.5

BioGrid-Canis-Familiaris 143 125 2 2 1.59 0.93 0.69

iscas89-s526n 159 268 3 8 1.95 1.03 0.67

iscas89-s526 160 270 3 8 2.7 1.35 0.98

iscas89-s510 172 251 2 2 2.3 1.9 2.26

BioGrid-Human-Papillomavirus∞6 173 186 2 17 2.02 1.07 0.72

BioGrid-Human-Herpesvirus∞ 178 208 3 10 1.96 1.17 0.95

CoW-interstate 182 319 4 12 2.51 1.27 1.1

jazz 198 2742 29 41 32.54 13.71 26.02

mousebrain 213 16089 111 178 1642.88 762.78 215.11

residence hall 217 1839 11 17 23.6 8.85 18.95

airlines 235 1297 13 42 11.61 5.1 6.95

sp data school day 2 238 5539 33 53 300.87 113.66 162.43

iscas89-s820 239 480 3 15 4.44 2.24 0.96

rhesusbrain 242 3054 19 37 60.64 22.88 37.81

iscas89-s832 245 498 3 18 4.68 1.85 1.04

BioGrid-Danio-Rerio 261 266 3 3 2.54 1.46 1.61

iscas89-s838.1 265 301 2 2 3.14 1.66 2.14

haggle 274 2124 39 40 12.21 8.04 35.53

celegans 297 2148 10 40 39.44 11.75 7.68

BioGrid-Human-Herpesvirus-4 323 326 2 5 3.61 2.52 1.59

hex 331 930 3 2 44.95 36.81 ∞
iscas89-s953 332 454 2 3 5.14 2.39 3.15

autobahn 374 478 2 2 4.76 2.72 3.21

photoviz dynamic 376 610 4 12 6.06 3.62 1.94

iscas89-s1196 377 537 2 2 7.07 3.69 4.66

ia-infect-dublin 410 2765 17 22 31.79 13.79 20.57

BioGrid-Gallus-Gallus 413 436 4 21 9.14 4.86 2.46

iscas89-s1238 416 625 2 2 9.37 5.16 8.32

ecoli-transcript 423 578 3 10 7.39 5.43 3.46

iscas89-s1423 423 554 2 4 5.79 3.09 2.43

muenchen-bahn 447 578 2 1 13.01 11.67 ∞
BioGrid-Bos-Taurus 454 424 3 6 3.99 5.05 2.31

iscas89-s1488 463 779 3 10 10.2 4.13 1.73

iscas89-s1494 473 796 3 10 6.68 3.36 1.84

foodweb-caribbean 492 3313 13 154 155.73 56 4.76

pigs 492 592 2 6 27.91 12.69 6.26

ratbrain 503 23030 67 126 283.06 191.58 490.32

BioGrid-Human-Herpesvirus-8 716 691 3 5 7.44 13.14 2.61

codeminer 724 1015 4 6 9.68 5.36 4.35

pollination-daphni 797 2933 9 44 49.52 19.11 9.48

cpan-authors 839 2112 9 51 24.62 9.55 9.94

columbia-mobility 863 4147 9 11 59.05 17.8 54.19

columbia-social 863 7724 18 53 97.48 41.52 74.4

unicode languages 868 1255 4 18 13.78 6.7 6.23

soc-wiki-Vote 889 2914 9 17 31.51 12.22 20.23

link-pedigree 898 1125 2 13 10.64 5.78 2.6

Opsahl-forum 899 7036 14 37 247.82 77.38 97.07

pollination-uk 984 16712 35 201 4405.58 1564.44 99.42

32



EU-email-core 986 16064 34 161 929.57 304.67 102.07

roget-thesaurus 1010 3648 6 7 211.81 66.02 139.66

bn-mouse retina 1 1076 90811 121 402 36565.4 16115.6 4621.39

BioGrid-Candida-Albicans-Sc5314 1121 1609 9 63 15.24 7.66 4.77

ia-email-univ 1133 5451 11 18 82.51 33.15 62.46

BioGrid-Human-Immunodeficiency-Virus∞ 1138 1319 3 42 16.43 8.88 5.17

euroroad 1174 1417 2 3 14.44 8.45 6.81

BioGrid-Far-Western 1199 1089 3 10 52.91 35.14 15.38

polblogs 1224 16715 36 129 1346.81 460.73 170.67

BioGrid-Escherichia-Coli-K12-Mg1655 1273 1889 5 12 22.26 12.35 8.99

web-google 1299 2773 17 17 24.93 14.15 8.52

munin 1324 1397 3 28 29.66 15.86 6.94

iscas89-s5378 1411 1639 3 4 20.08 10.73 6

diseasome 1419 2738 11 8 21.21 12.36 15.42

BioGrid-Dosage-Growth-Defect 1447 2193 5 69 26.74 11.54 4.92

netscience 1461 2742 19 5 27.1 17.65 13.54

chicago 1467 1298 1 1 14.52 9.25 ∞
pollination-carlinville 1500 15255 18 66 952.73 287.03 90.5

bitcoin-otc-negative 1606 3259 16 38 60.83 25.98 15.8

BioGrid-Fret 1700 2395 19 37 22.54 12.86 8.72

BioGrid-Dosage-Lethality 1776 2289 4 32 121.63 56.08 39.81

bn-fly-drosophila medulla 1 1781 8911 18 41 186.84 67.01 151.23

BioGrid-Affinity-Capture-Luminescence 1840 2312 6 37 29.09 15.99 9.43

DNC-emails 1866 4384 17 73 65 28.97 33.12

wikipedia-norm 1881 15372 22 137 1473.37 431.54 316.97

exnet-water 1893 2416 2 2 23.79 12.75 14.6

Opsahl-socnet 1899 13838 20 111 914.45 275.78 103.55

Y2H union 1966 2705 4 29 40.51 21.68 9.62

iscas89-s9234 1985 2370 4 9 21.92 12.55 5.18

NZ legal 2141 15739 25 128 765.81 237.13 150.1

BioGrid-Co-Crystal-Structure 2291 2021 5 5 27.38 17.37 10.17

Yeast 2361 7182 10 21 73.51 33.06 35.78

soc-hamsterster 2426 16630 24 76 404.47 132.93 135.83

iscas89-s13207 2492 3406 4 30 31.79 17.65 6.39

moreno health 2539 10455 7 16 92.34 44.43 26.38

minnesota 2642 3303 2 2 30.05 16.44 23.29

ODLIS 2900 16377 12 85 544.97 138.17 123.45

openflights 2939 15677 28 110 514.41 257.52 192.62

iscas89-s15850 3247 4004 4 15 38.89 21.93 8.59

BioGrid-Dosage-Rescue 3380 6444 7 34 57.77 30.46 12.62

BioGrid-Co-Localization 3543 4452 6 24 42.52 23.59 12.1

twittercrawl 3656 154824 142 506 ∞ 31298.5 579.41

BioGrid-Escherichia-Coli-K12-W3110 4063 181620 156 441 ∞ ∞ 6967.28

boards gender 1m 4134 19993 25 19 183.48 100.88 128.57

boards gender 2m 4220 5598 4 20 54.26 32.88 20.74

web-EPA 4271 8909 6 63 457.42 232.95 102.18

BioGrid-Co-Purification 4326 5970 12 70 90.07 39.27 15.59

ingredients 4372 431654 297 835 ∞ ∞ 52127.6

advogato 5155 39285 25 215 2603.04 672.53 144.92

soc-advogato 5167 39432 25 217 2703.6 726.77 140.9

ca-GrQc 5242 14496 43 42 138.33 76.39 52.01

bitcoin-otc-positive 5573 18591 20 91 543.61 181.51 188.11

JUNG-javax 6120 50290 65 618 11918.3 3046.9 164.81

web-california 6175 15969 11 68 298.26 176.93 39.81

reactome 6327 147547 176 445 15803.3 6422.56 181.19

BioGrid-Caenorhabditis-Elegans 6394 23646 64 81 1088.83 495 509.43
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JDK dependency 6434 53658 65 706 9180.59 2321.43 125.04

as20000102 6474 12572 12 42 477.83 159.92 319.75

zewail 6651 54182 18 98 2098.01 780.9 370.15

ia-reality 6809 7680 5 18 90.87 49.09 48.24

wiki-vote 7115 100762 53 440 26818.3 7723.15 503.66

eva-corporate 7253 6711 3 6 64.73 42.88 26.84

chess 7301 55899 29 63 2811.21 907.18 1252.1

lederberg 8324 41532 15 174 1473.78 489.98 141.31

BioGrid-Biochemical-Activity 8620 17746 11 181 477.31 164.14 72.51

iscas89-s38584 9193 12573 4 12 154.05 89.05 33.45

BioGrid-Drosophila-Melanogaster 9330 60556 83 114 2976.28 881.29 428.86

iscas89-s38417 9500 10635 4 11 583.84 312.07 132.94

movielens 1m 9746 1000209 221 2355 ∞ ∞ 7612.18

BioGrid-Arabidopsis-Thaliana-Columbia 10417 47916 26 384 3727.6 1183.21 64.81

p2p-Gnutella04 10876 39994 7 28 1410.29 238.19 79.77

BioGrid-Co-Fractionation 11017 56354 83 83 1589.05 667.48 601.44

AS-oregon∞ 11174 23409 17 74 540.25 214.36 467.52

AS-oregon-2 11461 32730 31 117 881.34 283.61 507.99

ca-HepPh 12006 118489 238 89 4223.35 2179.1 5809.21

ukroad 12378 15641 3 4 152.03 98.52 32.34

iscas89-s35932 12515 15961 2 1 8683.81 19835.2 ∞
foldoc 13356 91471 12 62 1930.61 719.78 373.99

BioGrid-Affinity-Capture-Rna 13765 42815 54 1629 6815.16 2201.38 152.56

escorts 16730 39044 11 68 924.48 379.98 174.65

marvel 19428 96662 18 744 16837 5580.36 272.25

BioGrid-Affinity-Capture-Western 21028 64046 17 92 1705.95 602.9 433.16

as-22july06 22963 48436 25 217 1893.41 608.05 916.96

edinburgh associative thesaurus 23132 297094 34 204 63635.8 14940.1 5234.23

ca-CondMat 23133 93439 25 26 1821.29 937.45 1263.38

cora citation 23166 89157 13 69 1466.61 633.56 193.42

google+ 23628 39194 12 489 1547.25 446.16 189.74

soc-gplus 23628 39194 12 489 1511.75 470.67 173.32

BioGrid-Homo-Sapiens 24093 369767 71 801 ∞ 66570.3 5797.07

cit-HepTh 27769 352285 37 1669 43545.1 11724.6 257.65

digg 30398 86312 10 19 1889.52 821.53 1753.49

linux 30834 213217 23 4835 ∞ 50150.8 549.76

BioGrid-Chemicals 33266 28093 1 1 302.02 214.42 ∞
cit-HepPh 34546 420877 30 299 35749.2 11218.1 1077.14

email-Enron 36692 183831 43 186 19597.6 5297.92 4772.45

BioGrid-Affinity-Capture-Ms 40495 321887 58 842 ∞ 22773 1847.17

slashdot threads 51083 117378 15 64 4827.19 1590.45 2527.13

deezer 54573 498202 21 82 20741.8 893079 3278.69

loc-brightkite edges 58228 214078 52 183 8417.44 3745.35 1572.27

facebook-links 63731 817090 52 232 ∞ 42368.4 13507.9

BioGrid-All 75550 1316843 164 1791 ∞ ∞ 4066.71

soc-Epinions1 75879 405740 67 550 ∞ 33899.6 5919.28

soc-Slashdot0811 77360 469180 54 617 ∞ 25663.8 2536.62

NYClimateMarch2014 102378 327080 34 1036 ∞ 14548.7 3135.96

livemocha 104103 2193083 92 ∞ ∞ ∞ ∞
tv tropes 152093 3232134 115 2654 ∞ ∞ 41177.8

gowalla 196591 950327 51 1131 ∞ 31112.2 6484.08

bahamas 219856 246291 6 57 10359.6 3342.71 860.32

location 225486 293697 5 853 66911.6 6611.02 835.75

offshore 278877 505965 13 5697 ∞ 17383.8 1023.31

dogster friendships 426820 8546581 249 32803 ∞ ∞ 1.09764e+06

Cannes2013 438089 835892 27 3167 ∞ 21512.5 2582.39
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actor movies 511463 1470404 14 216 46932.2 21746.8 1589.21

paradise 542102 794545 23 4241 51289.8 15224.5 1600.58

panama 556686 702437 62 1947 18667.8 10530.8 1519.89

countries 592414 624402 6 11047 ∞ 25819.4 1733.09

teams 935591 1366466 9 350 ∞ 47165.9 4751.34

mag geology coauthor 2852295 4448428 13 192 ∞ 73773.8 7574.13
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Chapter 4

Conclusion

We give a new algorithm that is faster, both in theory and in practice, for computing

the c-closure of a graph. The algorithm is a FPT-in-P algorithm parameterized by the

degeneracy d. For 94% of the real-world graphs we considered, the algorithm runs in

O(n · d3) time, whilst for the remaining it runs in O(n2 · d+ n · d3) time. The latter only

happens when the degeneracy value of the graph is larger than the c-closure value of the

graph, which has shown to be rare for social networks. In the case when d = O( 3
√
n) our

algorithm is faster than the current best algorithm to compute c, regardless of the value

of c.

In addition to an improved algorithm, we provide the c-closure value of a large amount

of social and biological networks.
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